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Abstract  

Altered peptide ligands (APLs) have routinely been studied in clonal populations of Th cells 

that express a single T cell receptor (TCR), but results generated in this manner poorly 

predict the effects of APLs on polyclonal Th cells in vivo, contributing to the failure of phase 

II clinical trials of APLs in autoimmune diseases such as multiple sclerosis (MS). We have 

used a panel of APLs derived from an encephalitogenic epitope of myelin proteolipid protein 

to investigate the relationship between antigen cross-reactivity in a polyclonal environment, 

encephalitogenicity, and the capacity of an APL to provide protection against experimental 

autoimmune encephalomyelitis (EAE) in SJL mice. In general, polyclonal Th cell lines 

specific for encephalitogenic APLs cross-reacted with other encephalitogenic APLs, but not 

with non-encephalitogenic APLs, and vice versa. This, alongside analysis of TCR Vβ usage, 

suggested that encephalitogenic and non-encephalitogenic subgroups of APLs expand largely 

non-cross-reactive Th cell populations. As an exception to the rule, one non-encephalitogenic 

APL, L188, induced proliferation in polyclonal CD4
+
 T cells specific for the native 

encephalitogen, with minimal induction of cytokine production. Co-immunization of L188 

alongside the native encephalitogen slightly enhanced disease development. In contrast, 

another APL, A188, which induced IL-10 production without proliferation in CD4
+
 T cells 

specific for the native encephalitogen, was able to protect against development of EAE in a 

dose-dependent fashion when co-immunized alongside the native encephalitogen. These 

results suggest that testing against polyclonal Th cell lines in vitro may be an effective 

strategy for distinguishing between potentially therapeutic and non-therapeutic APLs. 
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1. Introduction 

 

Multiple sclerosis (MS) is a chronic inflammatory and demyelinating disease of the central 

nervous system (CNS) characterised by the formation of lesions both in CNS white matter 

tracts and in CNS grey matter (McDonald et al., 2001; Polman et al., 2005; Polman et al., 

2011). These sites of inflammation are believed to be initiated by adaptive immune responses 

directed against antigens derived from CNS myelin, although innate responses play a major 

role in the evolution of the lesion. Current treatments for MS invariably act without 

discriminating between pathogenic autoimmune responses and homeostatic immune function, 

either by inhibiting inflammatory responses, depleting certain classes of immune cells, 

sequestering immune cells within lymph nodes, or by limiting the access of immune cells to 

the CNS, with associated risks and side-effects (Lim and Constantinescu, 2010; Benkert et 

al., 2012; Steinman, 2012). Therapies that are able to selectively disrupt immune responses 

directed against autoantigens may be able to prevent the development of lesions at an earlier 

stage, thereby proving safer and less intrusive than treatments which suppress autoimmunity 

by disrupting systemic immune function. 

 

Altered peptide ligands (APLs), created by introducing amino acid substitutions within a 

peptide at positions that interact with the TCR, can have the capacity to actively antagonize T 

cell activation in an antigen-specific manner. Because of this property, APLs have been 

studied as therapeutic agents in animal models of autoimmune diseases, such as experimental 

autoimmune encephalomyelitis (EAE). However, attempts to translate the successes seen in 

these models to the treatment of human diseases have failed in clinical trials (Bielekova et al., 

2000; Kappos et al., 2000). There are a number of contributing factors behind these failures 

(reviewed in Sauer et al., 2015); one, in particular, has been the way in which candidate APLs 
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have been selected for use. Typically, APLs have been studied on the basis of their ability to 

antagonize monoclonal T cell clones in vitro (Kuchroo et al., 1994; Vergelli et al., 1997; 

Anderton et al., 1998), on the apparent assumption that the APLs would function in a similar 

manner to suppress autoreactive T cells in vivo. While the homogeneity of monoclonal T cell 

lines can simplify the interpretation of data, they poorly represent the characteristics of 

physiological, polyclonal T cell immune responses. Variations between TCRs involved in a 

polyclonal response crease a spectrum of affinites for an antigen and variation in the 

antigenic residues that contribute to TCR ligation. Sampling many monoclonal T cell 

responses (as in Vergelli et al., 1997) does not guarantee the construction of a representative 

picture, as it does not account for the paracrine effects of cytokine production on T cell 

differentiation and activation. T cell anergy and antagonism, particularly, can be over-ridden 

by exogenous IL-2, which is produced by activated T cells (Dure and Macian, 2009). 

 

Furthermore, APLs are often immunogenic in their own right, expanding populations of 

APL-reactive T cells with the potential to cross-react with the native antigen (Nicholson et 

al., 1995; Das et al., 1997; Nicholson et al., 1997; Anderton et al., 1998; Anderton et al., 

1999; Ausubel et al., 1999). This effect cannot be detected using monoclonal autoantigen-

specific T cells. APL-reactive T cells will produce cytokines which may mediate bystander 

suppression of autoimmune responses (Nicholson et al., 1995; Greer et al., 1997; Nicholson 

et al., 1997; Cloake et al., 2014) or which may exacerbate inflammatory responses (Anderton 

et al., 1998; Anderton et al., 1999). Often, therefore, the immunogenic properties of an APL, 

rather than its direct effect on autoreactive T cells, have proven more valuable in the 

treatment of disease. 
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We sought to investigate how the immunogenic and immunomodulatory properties of an 

APL affect its inherent encephalitogenicity and its capacity to provide protection against the 

induction of EAE, in a polyclonal T cell environment, using a relapsing-remitting model of 

EAE in SJL mice. In this model, disease can be actively induced by an epitope of myelin 

proteolipid protein (PLP) spanning residues 178-191, which contains phenylalanine at 

position 188 (PLP178-191; F188) (Greer et al., 1992). An APL created by introduction of 

alanine at this position (A188) has been found to show only a low level of cross-reactivity 

with F188-specific T cells, but to also expand a population of A188-responsive T cells that 

produce Th2 cytokines and suppress EAE, at least in part through bystander suppression 

(Greer et al., 1997; Cloake et al., 2014).  

 

In the present study, we have expanded upon these findings using a panel of eight APLs 

carrying conservative and non-conservative amino acid substitutions at position 188. We 

show that in a polyclonal setting, APLs which activate polyclonal F188-reactive Th cells 

either induce disease directly or exacerbate F188-induced disease, while APLs which 

activated polyclonal A188-reactive Th cells do not. Different APLs preferentially activate T 

cells bearing specific T cell receptor V chains.  

 

These results suggest that testing against polyclonal Th cell lines in vitro may be an effective 

strategy for distinguishing between potentially therapeutic and non-therapeutic APLs. 
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2. Materials & Methods 

 

2.1. Peptides 

A set of eight peptides including native murine PLP178-191 (F188) and seven APLs containing 

substitutions of alanine (A), aspartic acid (D), glycine (G), leucine (L), serine (S), tryptophan 

(W), and tyrosine (Y) in place of F at position 188 were synthesized.  Each peptide was 

named according to the amino acids at position 188 (A188, D188, G188, F188, L188, S188, 

W188 and Y188). The properties of the different residues at position 188 are shown in Table 

I. The peptides were reconstituted to 5 mg/mL in 0.2 M acetic acid and stored at -20 °C.  For 

experimental use, the stock solutions were diluted in PBS (for in vivo testing) or in tissue 

culture medium, consisting of RPMI-1640 (Sigma-Aldrich, St Louis MO, USA) 

supplemented with 10% heat-inactivated Serum Supreme, 20 mM HEPES, 2 mM L-

glutamine (all from Lonza, Basel, Switzerland), and 50 mM 2-mercaptoethanol (Sigma-

Aldrich). 

 

2.2. Induction of EAE 

Female SJL/J mice between six and eight weeks of age were immunised s/c on the flanks 

with 100 μg of peptide emulsified in complete Freund’s adjuvant (CFA) (Difco) containing 4 

mg/mL heat-killed M. tuberculosis H37RA (Difco). At the same time, and again after three 

days, each mouse received 300 ng pertussis toxin (List Biological Laboratories, Inc., CA, 

USA) in PBS i/v via the tail vein. Mice were monitored daily from day seven until euthanasia 

at day forty, recording weight and grading the clinical severity of EAE according to a 

standard scale (0 = normal, 1 = weak tail, 2 = limp tail, 3 = hind limb weakness, 4 = hind 

limb paralysis, 5 = moribund) (Cloake et al., 2014). 
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2.3.Generation and maintenance of antigen-specific T cell lines 

Female SJL/J mice between six and eight weeks of age were primed by immunization with a 

total 100 μg of peptide in the same manner as for the induction of EAE. After ten days, the 

draining (axilliary and inguinal) lymph nodes were removed into tissue culture medium and 

teased apart to give a lymph node cells (LNC) suspension. Polyclonal T cell lines (TCLs) 

were generated from LNCs by regular rounds of stimulation with peptide. Stimulated TCLs 

were maintained in long-term culture at approximately 1×10
6
 cells/mL in flat-bottom 24-well 

plates at 37°C in a 5% CO2 in air environment.  Each T cell line was stimulated at least three 

times with peptide and irradiated (3000 rad) syngeneic spleen cells as antigen-presenting cells 

(APCs), allowing at least four weeks in tissue culture medium supplemented with 20 U/mL 

recombinant human IL-2 (Hoffman-LaRoche Inc., Basel, Switzerland) between each round of 

stimulation, to ensure specificity prior to experimental use.  

 

2.4. Proliferation assay 

Antigen-specific TCLs were suspended in tissue culture medium and plated in triplicate into 

96-well round-bottomed plates (Corning, Inc., Corning NY, USA) at 3×10
4
 cells per well. 

Each well was stimulated by addition of antigen at specified concentrations (or, for 

unstimulated controls, tissue culture medium alone), together with 3×10
5
 irradiated syngeneic 

spleen cells as APCs. Plates were cultured for 48 hours, after which time 0.5 μCi of 
3
H-

thymidine (ICN Pharmaceuticals, Montreal, Canada) was added to each well for a further 18 

hours. 
3
H-thymidine incorporation was measured using a liquid scintillation counter. The 

proliferation induced by each peptide was expressed as a stimulation index (SI), determined 

by the formula: SI = mean cpm of antigen-containing triplicate wells / mean cpm of control 

triplicate wells. 
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2.5. Flow cytometric analysis of V usage 

T cells were stained with FITC-TCR Vβ and PE-CD4 antibodies as described, then analysed 

by flow cytometry using a two-laser four-colour BD FACScalibur flow cytometer and BD 

CellQuest Pro version 0.3 software. Lymphocytes were gated according to forward- and side-

scatter characteristics, then on expression of CD4. Statistics were collected from a histogram 

plot of FITC-TCR Vβ intensity within the gated population. 

 

In addition, proliferation of specific V expressing T cell populations in response to antigenic 

stimulation was determined using T cells labelled with 5 µM Cell Trace Violet (CTV, Life 

Technologies, Carlsbad CA, USA), an analog of carboxyfluorescein diacetate succinimidyl 

ester (CFSE). The CTV-labelled cells were stimulated as described earlier. After 72 hours, 

cells were washed three times in sterile PBS-azide wash solution (PBS, 1% serum, 0.5% 

sodium azide), then resuspended in PBS-azide wash solution containing FITC-conjugated 

monoclonal antibodies against mouse TCR Vβ subunits (FITC-TCR Vβ; Becton Dickinson, 

Franklin Lakes NJ, USA), PE-conjugated monoclonal antibodies against mouse CD4 (PE-

CD4; Becton Dickinson), or isotype controls. Staining proceeded for 30 minutes at 4 ºC, then 

unbound antibodies were removed by three washes in PBS-azide wash solution at 4 ºC. All 

samples were resuspended in 500 µL PBS-azide wash solution, then analysed by flow 

cytometry using a three-laser, ten-color Beckman Coulter Gallios flow cytometer and 

software. Lymphocytes were gated according to forward- and side-scatter characteristics, 

then on expression of CD4. Quadrant statistics were collected from a scatter plot comparing 

FITC-TCR Vβ to CTV intensity within the gated population. The gating strategy is shown in 

Supplementary Figure 1. 
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2.6. Measurement of cytokine production using Cytometric Bead Arrays 

Supernatants were collected from each T cell line three days after stimulation and stored at -

80°C. Production of IL-2, IL-10, IL-17A, IFN-γ, and TNF-α was measured using a 

Cytometric Bead Array (CBA) Mouse Th1/Th2/Th17 Cytokine Kit (Becton Dickinson) 

according to the manufacturer’s instructions. Measurements of fluorescence were collected 

using a two-laser four-colour BD FACScalibur flow cytometer and BD CellQuest Pro version 

0.3 software, and analysed using BD FCAP Array v3 software. 

 

2.7. Preparation of total RNA 

A188- and F188-specific TCLs were stimulated as described. After six hours, total RNA was 

extracted using a QIAGEN RNeasy kit (QIAGEN, Venlo, Netherlands), according to the 

manufacturer’s instructions. The total RNA sample was stored at -80 °C prior to use. Total 

RNA concentration and purity was estimated by spectrophotometry, measuring absorbance at 

wavelengths of 260 nm (A260) and 280 nm (A280).     

 

2.8. Real-time polymerase chain reaction 

Quantitative RT-PCR was performed using the RT2 Profiler PCR Array system (QIAGEN). 

Complementary DNA was prepared from total RNA. The RT-PCR reaction was performed 

using RT2 SYBR Green Mastermix (QIAGEN), which contained HotStart DNA Taq 

Polymerase, and customized 96-well arrays pre-loaded with optimized quantities of gene-

specific primers, as well as controls for genomic DNA, reverse-transcription, and positive 

PCR. The array was sealed and run, using a Bio-Rad iCycler and iQ5 Optical System 
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Software v1.0.410, for one cycle at 95 °C for 10 minutes, then for forty cycles at 95 °C for 15 

seconds, 60 °C for 1 minute. Fluorescence data was collected during the 60 °C incubation and 

used to automatically calculate the threshold cycles (CT) for each well of the array. After the 

RT-PCR was completed, dissociation (melting) curve analysis was performed to verify PCR 

specificity by incubation at 95 °C for 1 minute, 65 °C for 2 minutes, then from 65 °C to 95 °C 

at 2 °C/minute, during which time fluorescence data was collected. Results were validated 

and analyzed using PCR Array Data Analysis Software from QIAGEN. 

 

2.9. Statistical Analysis 

Statistical analysis was performed using GraphPad Prism version 6.01. Disease incidence was 

compared between control and test groups using Fisher’s Exact test. For other comparisons, 

unless otherwise indicated, data were first tested to see if they fitted a normal distribution, 

and then statistical comparisons were made using a one-way analysis of variance (ANOVA) 

method for either parametric or non-parametric data, with Bonferroni’s correction for 

multiple comparisons. Data was deemed significant at p < 0.05. 
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3. Results 

 

3.1. Encephalitogenic potential of APLs 

We first tested the ability of the native encephalitogenic peptide, F188 

(NTWTTCQSIAFPSK), and the seven other APLs in our panel to induce EAE in SJL mice. 

The APLs contained amino acid substitutions at position 188 which differed with respect to 

size, charge, and acidity, and included aromatic and aliphatic groups.  Animals immunized 

with peptides containing aromatic residues at position 188 (F188, W188 and Y188) 

developed EAE (Table II). The incidence of disease was lower in mice immunized with 

W188 (50%) and Y188 (75%) compared to those immunized with F188 (100%), and while 

the maximum clinical score in animals which developed clinical disease was no different 

between these three groups of animals, the duration of the acute phase of disease was 

significantly shorter in mice immunized with W188 or Y188, compared to those immunized 

with F188. No animals which received A188, G188, L188, S188 or D188 lost any weight or 

developed clinical signs of disease within 40 days of immunization, nor were any signs of 

inflammation or demyelination present in spinal cords or brains of these mice upon 

histological analyses (data not shown). 

 

3.2. Cross-reactivity between polyclonal T cells specific for each APL 

To explore the relationship between encephalitogenicity and cross-reactivity, we tested the 

recall responses of short term T cell lines generated from LNC of mice that had been primed 

by immunization with each peptide and then cultured in vitro for 3 rounds of stimulation with 

the immunizing peptide (20 μg/ml for the first round of stimulation, 10 μg/ml for the second 

round of stimulation, and 5 μg/ml for the third stimulation). Three to four weeks after the 

final stimulation (once T cells had returned to a resting state), T cell lines were tested for their 
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cross-reactivity with the panel of eight peptides, by measuring proliferative responses through 

the incorporation of 
3
H-thymidine. The maximal proliferative response to each peptide across 

the range of concentrations tested is summarized in Figure 1, and the responses of each line 

to each peptide across the range of concentrations are shown in Supplementary Table 1.  

 

Three main patterns of reactivity were observed. Firstly, T cell lines generated from LNCs of 

animals immunized with G188 responded strongly only to G188, with limited cross-reactivity 

to any other peptide. Secondly, T cell lines generated from LNCs of animals immunized with 

A188, D188, L188 and S188 displayed similar patterns of cross-reactivity, mounting the most 

vigorous responses to the non-encephalitogenic peptides A188, D188, G188, L188 and S188, 

but responding to the encephalitogenic peptides F188, W188 and Y188 only at the highest 

concentrations tested. These results demonstrate that these non-encephalitogenic peptides 

retained the capacity to induce immune responses in vivo. It was also likely, given the high 

level of cross-reactivity between these populations, that A188, D188, L188 and S188 

expanded a common pool of T cells, which were not stimulated by peptides containing an 

aromatic amino acid at position 188.  

 

Finally, there was a similar pattern of cross-reactivity amongst the T cell lines generated from 

LNCs of animals immunized with the peptides F188, W188 and Y188. All three of these 

lines reacted strongly to F188, although W188-specific T cell lines did not proliferate very 

strongly to Y188, and Y188-specific T cells did not proliferate very strongly to W188. F188-

specific T cell lines proliferated strongly to F188, W188 and Y188. Surprisingly, F188-

specific T cell lines also mounted a robust proliferative response to L188, evident even at the 

lowest concentrations of peptide tested. These results suggest that the encephalitogenicity of 

F188, W188 and Y188 was based on their ability to activate a common pool of autoreactive T 
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cells. Non-encephalitogenic peptides, with the exception of L188, failed to activate this 

population, but expanded an independent T cell pool that could not recognise native F188.  

 

3.3. V usage 

The low level of cross-reactivity between A188- and F188-specific T cell lines and F188 and 

A188 peptides suggested that T cell populations activated by A188 and F188 shared little 

TCR identity. To begin to explore this possibility, three independently-generated TCLs 

specific for A188 and three independently-generated TCLs specific for F188 were stained 

with FITC-conjugated antibodies against TCR Vβ subunits and with PE-conjugated anti-CD4 

antibody. SJL mice carry the “a” haplotype of the Tcrb gene complex, and express TCR Vβ1, 

Vβ2, Vβ3, Vβ4, Vβ6, Vβ7, Vβ10, Vβ14, Vβ15, Vβ16, Vβ17a, Vβ18, and Vβ19 (Luckheeram 

et al., 2012). In these experiments, we used a panel of antibodies specific for TCR Vβ2, Vβ3, 

Vβ4, Vβ6, Vβ7, Vβ14, and Vβ17a to identify Vβ usage in the TCLs. Antibodies against the 

other TCR Vβ subunits utilized by SJL/J mice were not commercially available.  

 

There was some variability from one line to another, but in the A188-specific lines, Vβ2 and 

Vβ3 expressing T cells predominated in all lines (Table III). In contrast, Vβ2 and Vβ3 

accounted for only a small fraction of the CD4
+
 T cell population in the F188-specific lines. 

Instead, Vβ4 and Vβ17
a
 positive T cells predominated in the F188-specific CD4

+
 T cell 

populations. These data confirm that the immune responses against A188 and F188 are 

dominated by T cells bearing distinct TCRs, but allow for the possibility that some TCRs 

may be represented in both A188- and F188-reactive T cell pools.  

 

TCR Vβ4 was also the most common subunit in W188- and Y188-specific T cell lines 

(contributing 31.3% and 34.1% of TCRs, respectively), suggesting that a common 
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encephalitogenic TCR Vβ4
+
 T cell population may be present among F188-, W188- and 

Y188-reactive T cells. The most abundant V TCR types in L188-specific T cells were TCR 

Vβ17
a
 and Vβ4. 

 

We tested the cross-reactivity of each TCR Vβ subgroup in each cell line to the APLs A188, 

F188 and L188, using CTV to measure proliferation (Figure 2). It was apparent that, among 

the A188-specific T cell line, T cells expressing TCR Vβ4, the subunit most abundant among 

F188-specific T cells, were also the most cross-reactive with F188. Similarly, F188-specific 

T cells expressing TCR Vβ17
a
 demonstrated less cross-reactivity to A188 than the broader 

F188-specific population, which matched the low proportion of TCR Vβ17
a+

 T cells in A188-

specific T cell lines. F188 and L188 typically induced proliferation of similar percentages of 

each V subtype in both lines, with the exception of V4
+
 F188-specific T cells, suggesting 

that this population of cells may be largely responsible for the encephalitogenic potential of 

the F188-specific response. These results point to functional heterogeneity within the 

polyclonal populations, related to TCR expression, but also suggest that some T cell clones 

expressing identical TCRs might be found among populations expanded by A188, F188 or 

L188. 

 

3.4. Cytokine production 

We measured the levels of cytokines produced by A188- and F188-specific T cells following 

stimulation with A188, F188 or L188 using a cytometric bead array. Supernatant was 

collected from A188-specific or F188-specific T cells three days after incubation with 

irradiated syngeneic splenocytes alone (to provide a background measure of cytokine 

production by unstimulated cells), or with irradiated syngeneic splenocytes plus 10 μg/mL of 

either A188, F188 or L188 (Figure 3).  
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Stimulation of A188-specific T cells with A188 peptide induced significantly increased 

production of all cytokines, apart from IL17a. The fold change in IL-10 production was 

particularly strong, with a greater than 250-fold increase compared to levels in unstimulated 

A188-specific T cells. Stimulation of A188-specific T cells with F188 or L188 peptides did 

not induce any cytokine production that was significantly elevated above background levels. 

 

Using F188-specific T cells stimulated under similar conditions with 10 μg/mL of F188, the 

greatest fold changes in cytokine levels were for IL-17A, TNF-α, IFN-γ, and IL-2. 

Stimulation of F188-specific T cells with 10 μg/mL of A188 induced increases in IFN- and 

IL-10 production that were of equal or greater magnitude to the increases induced by 

stimulation with F188. In contrast, levels of IL-17A, TNF- and IL-2 were significantly 

decreased in F188-specific T cells stimulated with A188 compared to when they were 

stimulated with cognate antigen. The levels of cytokines produced by F188-specific T cells 

following stimulation with 10 μg/mL of L188 were similar to those induced by A188, with 

the exception of IL-10 and IFN-.  

 

3.5. Different genes are activated in A188- and F188-specific T cells following activation 

We measured expression of a set of 26 genes related to T cell activation, Th effector subtype-

specific transcription factors, and the induction of anergy in A188- and F188-specific T cell 

lines following activation with either A188, F188 or L188. Resting T cells from A188- and 

F188-specific lines exhibited similar levels of expression for most genes tested; however, 6 of 

the 26 tested genes, namely Gata3, Maf, Tbx21, Rnf128, Mapk1, and Cdkn1a, were 

differentially expressed (Figure 4a). Maf, which is associated with Th2 and regulatory T cells, 

was expressed more strongly in A188-specific T cells than in F188-specific T cells. Gata3 
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expression was greater in F188-specific T cells than in A188-specific T cells. Rnf128 

(encoding GRAIL) was predominantly expressed in F188-specific T cells, and Mapk1 

(encoding ERK) and Cdkn1a (encoding p21/Waf1) were slightly more abundant in A188-

specific T cells. 

Compared to unstimulated A188- or F188-specific T cells, cells stimulated with their cognate 

antigen showed similar patterns of gene expression, with significant upregulation of Tbx21, 

Cd40lg, Nfatc1, Fasl, Ctla4 and Cdkn1a, and significantly downregulation of Foxp3, Nfatc2 

and Nfatc3, Mapk14, Blc2, Tob1, and Plcg1: this pattern of gene expression therefore seemed 

to reflect the signature of activated T cells in our populations (Fig 4b). 

 

In comparison with the cognate antigen, A188-specific T cells stimulated with either F188 or 

L188 failed to upregulate Cd40lg, Nfatc1, Fasl, or Ctla4, and did not significantly 

downregulate Nfatc2, Blc2, or Rnf128 (Fig 4b and Supplementary Table 2). Tbx21 was 

significantly upregulated following stimulation with F188 (although not as strongly as after 

stimulation with A188), but was not significantly upregulated following activation with 

L188.  F188-specific T cells stimulated with either A188 or L188 also failed to upregulate 

Cd40lg, Ctla4, Nfatc1 and Fasl. Tbx21 was also upregulated and Nfatc2, Blc2, and Rnf128 

were downregulated in F188-specific T cells by activation with both A188 and L188, 

although to a lesser degree than by activation with F188. 

 

3.6. Comparison of capacity of A188 and L188 to protect against induction of EAE  

Although the L188 peptide was not itself encephalitogenic (Table II), could expand the same 

common pool of T cells as the protective APL A188 (Figure 1 and Supplementary Table 1), 

and did not induce high levels of proinflammatory cytokines in F188-specific T cells (Figure 

3), the substantial degree of cross-reactivity between encephalitogenic F188-specific T cells 
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and L188 peptide (Figure 1) and lack of induction of IL-10 production (Figure 3) raised the 

question as to whether L188 would act in a protective manner, similar to A188. In a disease 

setting, where an expanded pool of autoreactive F188-specific T cells is driving CNS 

inflammation, the capacity of L188 to induce proliferation of F188-primed LNC might mean 

that L188 would exacerbate the autoimmune response instead of protecting against it. To test 

this, we examined the effects of A188 and L188 on the course of EAE actively induced by 

F188.   

 

Co-administration of the A188 APL alongside 100 μg F188 at molar ratios of 0.2:1, 1:1 or 

5:1 A188:F188 decreased the incidence of clinical disease in a dose-dependent manner (Table 

IV & Figure 5). In animals which developed clinical signs of disease, disease severity in mice 

receiving 1:1 A188:F188 was significantly less than in mice receiving F188 alone (2.0 ± 0.4 

versus 3.3 ± 0.2, respectively; P = 0.01), but not in mice receiving either 0.2:1 A188:F188 or 

5:1 A188:F188. There were no significant difference in the day of onset (P = 0.40). All mice 

treated with A188 recovered completely within 7 days after onset of EAE, and no relapses of 

disease were seen within the observation period in this group (Figure 5a).  

 

In contrast, all mice co-immunized with L188 APL together with F188 (at molar ratios of 

0.2:1, 1:1 or 5:1 L188:F188) developed clinical disease, with elevated maximum clinical 

scores relative to mice receiving F188 alone (Table 2 and Figure 5a). There were no 

significant differences in the day of onset for mice receiving any dose of L188 compared to 

F188-immunized mice (Figure 4b). By day 10 after onset of the first attack of EAE, some of 

the mice in the F188 alone and L188-treated groups had started to relapse (Figure 5a). Thus, 

L188 did not provide any prophylactic protection against F188-induced EAE, and appeared 

to slightly worsen disease. 
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4. Discussion 

 

A major problem encountered in designing APLs for therapeutic applications is that there is 

no empirical formula to decide what will constitute a therapeutically useful APL, and trial 

and error has played a large role in deciding which APLs should be taken forward to animal 

and clinical trials. Because of the large number of assays that need to be done using such an 

approach, testing of APLs has usually been carried out using T cell clones. Working with 

identical T cells simplifies the interpretation of the relationships between different signalling 

events and functional effects. But even among monoclonal populations, the differentiation of 

isolated naïve T cells into specific effector cell subtypes is stochastic, and it is autocrine and 

paracrine signalling between T cells, and between T cells and APCs, that directs Th cell 

differentiation (Nakayama and Yamashita, 2010). If the cross-talk between cells is influential 

in determining the differentiation of monoclonal T cell populations, then it is likely to play an 

even greater role in shaping and coordinating the response of polyclonal T cell populations to 

an antigen in vitro, and in determining the form of an adaptive immune response to antigen in 

vivo. It could therefore be expected that effects of APLs on clonal T cell populations might 

not bear a strong relationship to their effects in live animals and in the human patients, and 

this has indeed been found to be the case. APLs that successfully suppress the development 

of model autoimmune diseases have often done so by unforeseen mechanisms. Some APLs 

that were predicted to suppress autoimmunity, as they could antagonise the activation of 

select autoreactive T cell clones in vitro, instead proved to exacerbate disease. Furthermore, 

the amelioration or exacerbation of autoimmune disease by an APL has often been the 
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consequence of the APL's immunogenic properties, rather than its direct effects on 

autoreactive T cells. 

 

In the current study, we have investigated the dependence of encephalitogenic and protective 

immune responses on the amino acid occupying position 188 of the immunodominant epitope 

PLP178-191. T cell lines specific for non-encephalitogenic peptides proliferated strongly to 

other non-encephalitogenic peptides, suggesting that each of these peptides were recognized 

by T cells bearing a common pool of TCRs. These T cell lines did not proliferate strongly in 

response to F188, indicating limited capacity to recognize native PLP178-191. Similarly, T cell 

lines specific for F188 proliferated strongly to the two other encephalitogenic APLs (W188 

and Y188), but not (as a general rule) to non-encephalitogenic APLs. These results suggest 

that the capacity of these peptides to induce EAE in SJL mice was closely related to the 

populations of T cells that they expanded. 

 

The exception to the rule was the reactivity of F188-specific T cells to L188.  L188 was non-

encephalitogenic and expanded A188-specific T cells, but it also induced strong proliferation 

among T cell lines specific for F188. Evidently, L188 acted as an agonist for both sets of T 

cells. Because of this, it was not clear whether L188 would, like A188, provide protection 

against EAE induced by F188, or whether it would exacerbate disease. We confirmed that 

L188 was not encephalitogenic in SJL mice when administered without F188.  However, 

unlike A188, co-administration of L188 alongside F188 provided no protection against 

induction of EAE; instead, disease was exacerbated. L188 behaved as a weak or partial 

agonist towards F188-specific T cells, inducing proliferation and strong downregulation of 

Rnf128 and Bcl2, but poor cytokine production; indeed, levels of cytokines produced by 

F188-specific T cells following stimulation with L188 were no higher than those produced 
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following stimulation with A188, which was only able to induce a very low level of 

proliferation in F188-specific T cells.     

 

Consistent with data obtained from proliferation assays, cell populations expanded by A188 

and F188 were dominated by T cells carrying distinct TCR Vβ subunits. Among F188-

specific lines, most T cells carried TCR Vβ4 or Vβ17a, while among A188-specific lines, 

most carried TCR Vβ2 or Vβ3. Furthermore, TCR Vβ4
+
 T cells from both A188- and F188-

specific lines proliferated most strongly in response to the encephalitogenic peptide F188. 

Interestingly, V4 has also been shown to be the predominant TCR type used by SJL/J mice 

in the response to an encephalitogenic peptide of myelin basic protein (MBP92-103) (Padula et 

al., 1991; Kalman et al., 1994).  

 

Applying both anti-TCR Vβ antibodies and the fluorescent marker CTV to distinguish 

between the proliferative responses of T cell subpopulations demonstrated functional 

heretogeneity within our polyclonal populations, related to TCR expression, and suggested 

that T cell clones expressing identical TCRs might be found among populations expanded by 

A188 or F188. Anti-TCR Vβ antibodies are compatible with in vitro functional experiments, 

though they are imprecise in identifying specific TCRs, and do not currently span the 

diversity of TCR Vβ subunits expressed in mice. Spectratyping the TCRs borne by T cell 

clones from each population lacks such compatibility, but would confirm whether particular 

TCRs are common to some or all groups. 

 

Parallels can be drawn between the effects of L188 on the induction of EAE and the 

difficulties encountered in other EAE models and in clinical trials of APLs in MS. For 

example, APLs of a MBP epitope, which were expected to behave as antagonists in vivo, 
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based on their effects on monoclonal T cells in vitro, instead exacerbated EAE in mice by 

agonizing autoreactive polyclonal T cells (Anderton et al., 1998).  A similar phenomenon was 

encountered in a phase II clinical trial in which the APL increased the frequency of myelin-

specific Th1 cells in peripheral circulation in MS patients (Bielekova et al., 2000). These 

results, and our own results, demonstrate that the capacity of APLs to act as agonists in vivo 

can facilitate both amelioration and exacerbation of autoimmune disease. Therefore, when 

considering the therapeutic potential of an APL, it is necessary to consider both its effects on 

autoreactive T cells and its own immunological properties under physiological conditions. 

 

This is all the more important as the agonistic effects of APLs in vivo have often been 

responsible for providing protection against disease by expanding populations of T cells that 

play a regulatory role through the production of anti-inflammatory cytokines. This is evident 

in numerous CD4
+
 T cell-mediated models of autoimmune diseases. For example, in 

experimental autoimmune myasthenia gravis (EAMG), an APL of the acetylcholine receptor 

(AchR)-α subunit acted as an antigen-specific inhibitor of polyclonal T cell responses in vitro 

and in vivo and ameliorated the clinical manifestations of established EAMG (Katz-Levy et 

al., 1997). Because the in vivo response to native antigen could be inhibited by the transfer of 

splenocytes from APL-treated animals, it is likely that amelioration of disease was due to the 

activity of a regulatory T cell population (Paas-Rozner et al., 2001). Indeed, immunization 

with the APL increased the production of IL-10 and TGF-β (Faber-Elmann et al., 2000; Paas-

Rozner et al., 2001), increased the proportion of CD4
+
CD25

+
 cells (Paas-Rozner et al., 2003; 

Aruna et al., 2005; Ben-David et al., 2005; Aruna et al., 2006; Ben-David et al., 2007), and 

increased Forkhead box p3 (Foxp3) expression (Aruna et al., 2005; Ben-David et al., 2007). 

Likewise, an APL of collagen II (CII), effective against progression of collagen-induced 

arthritis (CIA) in rats (Zhoa et al., 2008; Li et al., 2009) was associated with the induction of 
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Th2 cells and reduced levels of IFN-γ (Li et al., 2009), and reduced titres of Th1-associated 

IgG2a (Zhoa et al., 2008). Also in CIA, an APL based on influenza virus hemagglutinin 308-

317 (which is structurally similar to the dominant CII epitope, with higher affinity for 

DR1/DR4 (Dessen et al., 1997)) had similar effects on the course of disease in DBA/1 mice, 

through induction of FoxP3
+
 Treg cells and associated suppression of IFNγ and IL17 

production (Sun et al., 2012). 

 

Our results illustrate the need to consider both the immunogenic and immunomodulatory 

properties of an APL in tandem, in order to identify or exclude APLs as potential therapeutic 

agents in the treatment of autoimmune diseases. An experimental strategy that examines the 

effects of APLs on the broader Th cell repertoire then identifies principle sub-populations and 

characterizes their distinctive responses to APLs while preserving a polyclonal context may 

provide a more realistic picture of how APLs modulate immune responses. An approach such 

as this may resolve the impasse that has arisen between the complexity of physiological 

immune responses and the clarity of observing monoclonal T cell populations. 
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Tables 

 

 

Table I. Properties of peptides used in this study. 

 

Designation Sidechain structure at residue 188 Properties 

A188 -CH3 nonpolar, aliphatic 

D188 

                 O
–
 

-CH2–C 

                 O 

acidic 

F188 

 

-CH2– 

 

nonpolar, aromatic 

G188 -H nonpolar, aliphatic 

L188 

                            CH3 

-CH2–CH2–CH 

                            CH3 

nonpolar, aliphatic 

S188 -CH2–OH polar 

W188 

-CH2– 

 

             N 
             H 

nonpolar, aromatic 

Y188 

 

-CH2–           –OH 

 

polar, aromatic 
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Table II. Encephalitogenicity of peptides containing substitutions at position 188 of PLP178-191 

in SJL/J mice.  Mice were immunised with 100 μg of each peptide using a standard protocol 

for active induction of EAE, and followed for 40 days. 

Group n 

Incidence of 

Acute Disease 

Maximum 

Clinical Score 

(mean ± sem)
 §

 

Day of onset  

(mean ± 

sem)
 §

 

Duration in days 

(mean ± sem) 

A188 4 0% 0 n.a. n.a. 

D188 4 0% 0 n.a. n.a. 

F188 5 100% 3.2 ± 0.2 10.4 ± 0.2 8.4 ± 0.7 

G188 4 0% 0 n.a. n.a. 

L188 4 0% 0 n.a. n.a. 

S188 4 0% 0 n.a. n.a. 

W188 4 50% 2.8 ± 0.8 10.5 ± 0.5 5.0 ± 2.0 

Y188 4 75% 3.2 ± 0.6 13.0 ± 0.0 6.0 ± 0.0 

 

§
The maximum clinical score and day of onset are derived only from mice that developed 

clinical disease (mean ± sem).  
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Table III. Percent usage of different V TCR elements by A188- and F188-specific T cell 

lines. 

V type A188 T cell line F188 T cell line 

Vβ2 15.6 ± 5.5%* 5.8 ± 0.7% 

Vβ3 19.5 ± 5.8%*** 2.7 ± 0.6% 

Vβ4 8.9 ± 1.7% 37.2 ± 4.5%**** 

Vβ6 0.6 ± 0.3% 2.4 ± 0.3% 

Vβ7 2.5 ± 0.4% 1.6 ± 0.4% 

Vβ14 2.8 ± 0.5% 3.2 ± 1.2% 

Vβ17a 3.2 ± 0.9% 12.7 ± 2.6% 

Remainder 46.9 ± 4.3%* 34.6 ± 0.7% 

Results for A188- and F188-specific T cell lines were compared using Bonferroni’s multiple 

comparison test. * P<0.05; ***P<0.001; ****P<0.0001  

ACCEPTED MANUSCRIPT



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

 

30 
 

Table IV.  Effects of A188 and L188 on the induction of EAE.   

Group n 

Incidence 

of Acute 

Disease 

Maximum 

Clinical 

Score
§
 

Day of 

Onset
§
 

F188 13 92% 3.3 ± 0.2 12.3 ± 1.2 

L188 4 0%** n.a. n.a. 

0.2:1 A188:F188 8 63% 3.1 ± 0.4 13.2 ± 1.4 

1:1 A188:F188 8 50%* 2.0 ± 0.4* 14.8 ± 1.7 

5:1 A188:F188 8 38%* 3.0 ± 0.8 13.3 ± 1.2 

0.2:1 L188:F188 4 100% 3.9 ± 0.1 11.0 ± 1.1 

1:1 L188:F188 4 100% 4.0 ± 0.4 11.5 ± 0.3 

5:1 L188:F188 4 100% 3.8 ± 0.5 12.0 ± 0.4 

 

§
The maximum clinical score and day of onset are derived only from mice that developed 

clinical disease (mean ± sem). *P<0.05 compared to F188 group; **P<0.01. 

  

ACCEPTED MANUSCRIPT



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

 

31 
 

Figure Legends 

Figure 1. Summary of cross-reactivity of APL-specific T cell lines. Each panel represents the 

cognate antigen (indicated in upper corners). Each bar represents the maximal level of 
3
H-

thymidine incorporation induced by the indicated peptide, irrespective of peptide 

concentration, expressed as a proportion of the maximal response to the cognate antigen 

(black bars). The hatched bar indicates the aberrant response of F188-specific T cells to 

L188. 

 

Figure 2. V usage of A188- or F188-specific T cells proliferating in response to stimulation 

by A188, F188 or L188. Each pie graph shows the proportion of cells of each V type that 

proliferated in response to antigen, out of the total number of cells that were proliferating. 

 

Figure 3. Fold change in cytokine production by A188-specific and F188-specific T cell lines 

(TCL) following stimulation with A188, F188 or L188. Significance relative to unstimulated 

T cells (no peptide) is indicated by * (p < 0.05), ** (p < 0.01), and *** (p < 0.001). 

 

Figure 4. Expression of selected genes related to T cell activation, Th effector subtype-

specific transcription factors and the induction of anergy in A188- and F188-specific T cell 

lines. A. Volcano plot comparing gene expression in unstimulated cells. B. Changes in gene 

expression (compared to unstimulated cells) when A188- and F188-specific T cell lines were 

activated by either A188, F188, or L188. 

 

Figure 5. Effects of A188 and L188 on the course of EAE. A. Mean clinical score of all 

animals. B. Disease incidence. Statistical significance at p < 0.05 and p < 0.01 levels, relative 

to mice immunised with F188 alone (red), is indicated by one or two symbols, respectively; * 
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for 0.2:1 A188:F188 (blue), † for 1:1 A188:F188 (green), ‡ for 5:1 A188:F188 (purple).  The 

log-rank test was used to test significance for B. Error bars represent sem. 
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Figure 1 
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Figure 2 
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Figure 3 
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Figure 4 
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Figure 5. 
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Graphical Abstract 
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Highlights  

 Effects of APL on polyclonal immune responses were investigated  

 Encephalitogenic and non-encephalitogenic APL expand different T cell populations  

 Some non-encephalitogenic APL can still enhance encephalitogenicity  

 Induction of IL-10 production is a good indicator of a protective APL  
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