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A multi-level dimension reduction Monte-Carlo method1

for jump-diffusion models ∗2
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Abstract5

This paper develops and analyses convergence properties of a novel multi-level Monte-Carlo6

(mlMC) method for computing prices and hedging parameters of plain-vanilla European options7

under a very general b-dimensional jump-diffusion model, where b is arbitrary. The model in-8

cludes stochastic variance and multi-factor Gaussian interest short rate(s). The proposed mlMC9

method is built upon (i) the powerful dimension and variance reduction approach developed in10

Dang et al. (2017) for jump-diffusion models, which, for certain jump distributions, reduces the11

dimensions of the problem from b to 1, namely the variance factor, and (ii) the highly effec-12

tive multi-level MC approach of Giles (2008) applied to that factor. Using the first-order strong13

convergence Lamperti-Backward-Euler scheme, we develop a multi-level estimator with variance14

convergence rate O(h2), resulting in an overall complexity O(ε−2) to achieve a root-mean-square15

error of ε. The proposed mlMC can also avoid potential difficulties associated with the stan-16

dard multi-level approach in effectively handling simultaneously both multi-dimensionality and17

jumps, especially in computing hedging parameters. Furthermore, it is considerably more ef-18

fectively than existing mlMC methods, thanks to a significant variance reduction associated19

with the dimension reduction. Numerical results illustrating the convergence properties and20

efficiency of the method with jump sizes following normal and double-exponential distributions21

are presented.22

Keywords: Monte Carlo, variance reduction, dimension reduction, multi-level, jump-diffusions,23

Lamperti-Backward-Euler, Milstein24
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1 Introduction26

In mathematical finance, Monte-Carlo (MC) is a very popular computational approach, especially27

for high-dimensional stochastic models. This is primarily due to the fact that the complexity of28

MC methods increases linearly with respect to the number of dimensions. However, it is also29

well-known that MC methods typically converge at a rate proportional to M−
1
2 , where M is the30

number of paths in the MC simulation. As a result, the main challenge in developing an efficient31

MC method is often to find an effective variance reduction technique. We refer the reader to32
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Glasserman (2003) and relevant references therein for a detailed discussion on various variance33

reduction techniques. Using an ordinary MC approach with a (time) discretization scheme having34

first-order weak convergence, such as the Euler-Maruyama scheme, the computational complexity35

to achieve a root-mean-square error (RMSE) of ε is O(ε−3) (Duffie and Glynn, 1995).36

The multi-level MC (mlMC) approach, developed in Giles (2008), is based on the multi-grid37

idea for iterative solutions of partial differential equations (PDEs), but applied to MC path cal-38

culations. More specifically, the mlMC approach combines simulations with different numbers of39

timestep sizes to achieve the same level of accuracy obtained by the ordinary MC approach at the40

finest timestep size, but at a much lower computational cost. It is well-known that the efficiency41

of a mlMC method primarily depends on the strong convergence of the scheme used to discretize42

the underlying processes (see, for example, Giles et al. (2013); Giles and Szpruch (2014), among43

several others). More specifically, with a time discretization scheme that has first-order strong con-44

vergence, such as the Milstein (Kloeden and Platen, 1992) or the Lamperti-Backward-Euler (LBE)45

(Neuenkirch and Szpruch, 2014) schemes, to achieve a RMSE of ε, the computational complexity46

is reduced to O(ε−2) for European options with Lipschitz continuous payoffs. This significant com-47

plexity reduction can also be achieved for discontinuous and path-dependent payoffs, but requires48

careful treatment and special estimators, as discussed in Giles (2006). This reduction a signifi-49

cant computational complexity saving compared to the Euler-Maruyama scheme which has only50

half-order strong convergence, and hence O(ε−2(log(ε))2) computational complexity (Giles, 2008).51

There is much interest in the computational finance community in using mlMC with the Milstein52

scheme. See, for example, the series of works by Giles and coauthors in Giles (2006); Giles et al.53

(2013); Giles and Szpruch (2014). The popularity of the Milstein scheme is primarily due to its54

well-established first-order strong convergence results (Kloeden and Platen, 1992). However, a55

disadvantage of the Milstein scheme is that, for multi-dimensional models, except in some special56

cases, to achieve an overall complexity O(ε−2) for a RMSE of ε, it usually requires simulation57

of iterated Itô integrals, also known as Lévy areas, and this is usually very slow. In Giles and58

Szpruch (2014), it is shown that, through the construction of a suitable antithetic mlMC estimator,59

it is possible to avoid simulating Lévy areas, but still achieve an overall complexity O(ε−2) for60

a RMSE of ε. To the best of our knowledge, this is the only mlMC method that can effectively61

deal with multi-dimensional models. Nonetheless, this method still requires multi-dimensional MC62

simulations. In addition to the Milstein scheme, the LBE scheme, recently studied in Neuenkirch63

and Szpruch (2014), also has first-order strong convergence and positivity preserving properties.64

Applications of this scheme in a context of mlMC setting, however, have not been studied.65

All above mlMC methods are developed for pure-diffusion models. However, from a modelling66

point of view, a jump-diffusion model combined with stochastic volatility, and possibly (multi-67

factor) interest rate(s), can capture more faithfully important empirical phenomena, such as the68

observed volatility smile/skew for both short and long maturities. See discussions in, for example,69

Alizadeh et al. (2002); Andersen et al. (2002); Bakshi et al. (2000, 1997); Bates (1996), among70

many others. The implied volatility smile/skew phenomena are present in various asset classes,71

such as equity and foreign exchange (FX). Moreover, from a risk-management point of view, it is72

important to model jumps in the underlying asset prices to account for “crash” effects. However,73

the current literature on mlMC methods for jump-diffusion processes is rather under-developed,74

with focus on only one-dimensional jump-diffusion models (Xia, 2011, 2013; Xia and Giles, 2012).75

Furthermore, in all of these works, only the normal jump distribution of Merton (1976) is considered,76

with virtually no discussions of other popular jump distributions, such as the double-exponential77

distribution of Kou (2002).78
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The common thread in the solution techniques proposed in the above mlMC works for one-79

dimensional jump-diffusion models is to develop a jump-adapted Milstein scheme. It appears pos-80

sible to extend this approach to multi-factor jump-diffusion models; however, the major challenge81

would be to develop a multi-dimensional version of the jump-adapted Milstein scheme in combina-82

tion of the antithetic mlMC method developed in Giles and Szpruch (2014) so that simulation of83

the Lévy areas can be avoided. Based on the current mlMC literature, this possible extension ap-84

pears to be the only way that can effectively handle simultaneously both multi-dimensionality and85

jumps. Nonetheless, this approach still requires multi-dimensional MC simulations. In addition,86

as well-noted in the mlMC literature, this approach may have difficulties in computing hedging87

parameters for jump-diffusion models, especially high-order ones, such as Gamma, due to lack of88

smoothness in the payoff (Burgos and Giles, 2012).89

Along a different line of MC research, in Dang et al. (2015a), we develop a powerful and easy-90

to-implement dimension reduction approach for MC methods, referred to as drMC, for plain-vanilla91

European options under a very general b-dimensional pure-diffusion model, where b is arbitrary.92

This general model includes stochastic variance/volatility and (multi-factor) Gaussian interest short93

rate(s). The underlying idea of the drMC approach of Dang et al. (2015a) is to combine (i) the94

conditional MC technique applied to the variance factor, and (ii) a derivation of a Black-Scholes-95

Merton type closed-form solution of an associated conditional Partial Differential Equation (PDE)96

via a Fourier transform technique. Results of Dang et al. (2015a) show that the option price can97

be computed simply by taking the expectation of this closed-form solution. Hence, the drMC98

approach results in a powerful dimension reduction from b to only one, namely the variance factor.99

This dimension reduction often results in a significant variance reduction as well, since the variance100

associated with the other (b − 1) factors in the original model are completely removed from the101

drMC simulation.102

In Dang et al. (2017), we extend the drMC framework developed in Dang et al. (2015a) to103

handle jumps in the underlying asset. One of the major findings of Dang et al. (2017) is that the104

analytical tractability of the associated conditional Partial Integro-Differential Equation (PIDE)105

is fully determined by that of the (well-studied) Black-Scholes-Merton model augmented with the106

same jump components as the model under investigation. As a result, for certain jump distributions,107

such as the normal (Merton, 1976) and the double-exponential (Kou, 2002) distributions, the option108

price under the above-mentioned very general jump-diffusion model can be simply expressed as an109

expectation of an analytical solution to the conditional PIDE, which depends only on the variance110

path. The option’s hedging parameters can also be computed very efficiently in the same fashion111

as the option price.112

In this paper, we propose and analyse the convergence properties of a novel mlMC method for113

computing the price and hedging parameters for plain-vanilla European options under the above-114

described general jump-diffusion model. The proposed method essentially consists of two stages.115

In the first stage, by applying the drMC method of Dang et al. (2017), we reduce the dimension of116

the pricing problem from b to only one, namely the variance factor. In the second stage, we apply117

the mlMC technique with a first-order strong convergence scheme, such as the Milstein or the LBE118

schemes, to the stochastic variance factor on which we condition in the first stage. We refer to the119

proposed MC method as multi-level drMC (ml-drMC).120

The main contributions of this paper are121

• The proposed ml-drMC method is the first multi-level based MC method reported in the122

literature that can effectively handle simultaneously both multi-dimensionality of the pricing123
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problem and jumps in the underlying asset, especially in computing hedging parameters.124

The ml-drMC method naturally avoids the above-mentioned difficulties of the standard mlMC125

approach in this case by handling effectively these issues in a separate stage using the drMC126

technique. Moreover, the proposed method is easy to implement, and can readily handle127

different jump distributions.128

• We show that the closed-form solution of the conditional PIDE, i.e. the payoff, is a Lips-129

chitz function of the values of its variables. We then construct a multi-level estimator based130

on the first-order strong convergence LBE scheme (Neuenkirch and Szpruch, 2014), and show131

that the multi-level variance converges at rate O(h2). By a general complexity result in Giles132

(2008), the proposed ml-drMC method requires only an overall complexity O(ε−2) to achieve133

a RMSE of ε. These convergence and complexity results hold for both price and hedging134

parameters, such as Delta and Gamma.135

• Since the application of the drMC technique in first stage of the ml-drMC method often136

results in a significant variance reduction, it is expected that the ml-drMC approach is signif-137

icantly more efficient than the antithetic mlMC based approach of Giles and Szpruch (2014)138

when applied to pricing plain-vanilla European options under (j ump-) diffusion models with139

stochastic variance and (multi-factor) Gaussian interest rates.140

The remainder of the paper is organized as follows. We start by introducing a general pricing141

model and reviewing the drMC approach in Sections 2 and 3, respectively. In Section 4, we discuss142

the ml-drMC method in detail. The convergence results are proven in Section 5. In Section 6,143

numerical results with a 3-factor equity model and a 6-factor FX mode are presented to illustrate144

the convergence properties of the ml-drMC method and its efficiency. Section 7 concludes the paper145

and outlines possible future work.146

2 A general pricing model147

We consider an (international) economy consisting of c+1 markets (currencies), c ∈ {0, 1}, indexed148

by i ∈ {d, f}, where “d” stands for the domestic market (Dang et al., 2017). We consider a complete149

probability space (Ω,F , {Ft}t≥0,Q), with sample space Ω, sigma-algebra F , filtration {Ft}t≥0, and150

“d” risk-neutral measure Q defined on F . We denote by E the expectation taken under Q measure.151

Let the underlying asset S(t), its instantaneous variance ν(t), and the two short rates rd(t) and152

rf (t) be governed by the following SDEs under the measure Q:153

dS(t)
S(t−)

= (rd(t)− c rf (t)− λδ) dt+
√
ν(t) dWs(t) + dJ(t), (2.1a)

rd(t) =
m∑

i=1

Xi(t) + γd(t),

with dXi(t) = −κdi(t)Xi(t) dt+ σdi(t) dWdi(t), Xi(0) = 0, (2.1b)

rf (t) =
l∑

i=1

Yi(t) + γf (t),

with dYi(t) = −κfi(t)Yi(t) dt+ σfi(t) dWfi(t)− ρs,fiσfi(t)
√
ν(t) dt, Yi(0) = 0, (2.1c)

dν(t) = κν (ν̄ − ν(t)) dt+ σν
√
ν(t) dWν(t) . (2.1d)
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We work under the following assumptions for model (2.1).154

• Processes Ws(t), Wdi(t), i = 1, . . . ,m, Wfi(t), i = 1, . . . , l, and Wν(t) are correlated Brownian155

motions (BMs) with a constant correlation coefficient ρ(·)(·) ∈ [−1, 1] between each BM pair.156

• The process J(t) =
∑π(t)

j=1 (yj − 1) is a compound Poisson process. Specifically, π(t) is a157

Poisson process with a constant finite jump intensity λ > 0, and yj , j = 1, 2, . . ., are inde-158

pendent and identically distributed (i.i.d.) positive random variables representing the jump159

amplitude, and having the density g(·).160

Several popular cases for g(·) are (i) the log-normal distribution given in Merton (1976), and161

(ii) the log-double-exponential distribution given in Kou (2002). When a jump occurs at time162

t−, we have S(t) = yS(t−), where t− is the instant of time just before the time t. In (2.1a),163

δ = E[y − 1] represents the expected percentage change in the underlying asset price.164

• The Poisson process π(t), and the sequence of random variables {yj}∞j=1 are mutually inde-165

pendent, as well as independent of the BMs Ws(t), Wdi(t), i = 1, . . . ,m, Wfi(t), i = 1, . . . , l,166

and Wν(t).167

The functions κdi(t), σdi(t), i = 1, . . . ,m, m ≥ 1, κfi(t), and σfi(t), i = 1, . . . , l, l ≥ 1,168

are strictly positive deterministic functions of t, with κdi(t), and κfi(t) being the positive mean-169

reversion rates. The functions γd(t) and γf (t) are also deterministic, and they, respectively, capture170

the “d” and “f” current term structures. They are defined as171

γi(t) = ri(0) e−κi1 t + κi1

∫ t

0
e−κi1 (t−s) θi(s) ds, i∈{d, f}, (2.2)172

where θi are deterministic, and represent the interest rates’ mean levels. In addition, κν , σν and ν̄173

are also positive constants.174

The constant c takes on the value of either zero or one, and essentially serves as an on/off switch175

of the “f” economy. That is, by setting c = 0, the model (2.1) reduces to an option pricing model in176

a single market. It can be used for stock options, in which case, S(t) denotes the underlying stock177

price. When c = 1, the model (2.1) becomes a FX model, with indexes “d” and “f” respectively178

denoting the domestic and foreign markets (currencies). In this case, S(t) denotes the spot FX179

rate, which is defined as the number of units of “d” currency per one unit of “f” currency.180

We emphasize the generality of the model. A number of widely used pricing models are a181

special case of (2.1). For example, for stock options, (2.1) covers the Heston model due to Heston182

(1993), its jump-extension, or the Bates model (Bates, 1996), as well as the popular (3D) Heston-183

Hull-White (HHW) equity model used in Grzelak and Oosterlee (2012b); Haentjens and in ’t Hout184

(2012). For FX options, the widely used four-factor model with stochastic volatility and one-factor185

Gaussian interest rates is also a special case of (2.1) (see, for example, Grzelak and Oosterlee (2011,186

2012a); Haastrecht et al. (2009); Haastrecht and Pelsser (2011)).187

3 Review of the dimension reduction MC method188

Denote by b = m+ 2 + c l, where c ∈ {0, 1}, the total number of stochastic factors in the model. As189

the first step, we decompose the (correlated) BM processes into a linear combination of independent190
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BM processes W̃i(t), i = 1, . . . , b. The decomposition is as follows191

c = 0 :
(
Ws(t),Wd1(t), . . .Wdm(t),Wν(t)

)>

= A
(
W̃1(t), W̃2(t), . . . , W̃b−1(t), W̃b(t)

)>
,

c = 1 :
(
Ws(t),Wd1(t), . . .Wdm(t),Wf1(t), . . . ,Wfl(t),Wν(t)

)>

= A
(
W̃1(t), W̃2(t), . . . , W̃m+1(t), W̃m+2(t), . . . , W̃b−1(t), W̃b(t)

)>
.

(3.1)192

Here, A ≡ [aij ] ∈ Rb×b, obtained using a Cholesky factorization, is an upper triangular matrix with193

ab,b = 1. The normalization condition on the correlation matrix requires
∑b

j=1 a
2
i,j = 1 for each194

row.195

We denote by
V (S(t), t, ·) ≡ V (S(t), t, rd(t), rf (t), ν(t))

the price at time t of a plain-vanilla European option under the model (2.1) with payoff Φ(S(T )).196

We further assume that the payoff Φ(x) is a continuous function of its argument having at most197

polynomial (sub-exponential) growth, which is satisfied in the case of call and put options.198

In the following, we briefly review the dimension reduction MC approach for the jump-diffusion199

model (2.1). The reader is referred to Dang et al. (2015a, 2017) for detailed discussions of the200

approach and relevant proofs. Using standard arbitrage theory (Delbaen and Schachermayer, 1994),201

and the “tower property” of the conditional expectation, the option price under the general model202

(2.1) can be expressed as two-level nested expectation, with the inner expectation being conditioned203

on the filtration associated with W̃i(t), i = 2, . . . , b. More specifically,204

V (S(0), 0, ·) = E
[
e−

∫ T
0 rd(t) dtΦ(S(T ))

]
= E

[
E
[
e−

∫ T
0 rd(t) dtΦ(S(T ))

∣∣∣∣
{
W̃i(τ)

}b
i=2

]]
, (3.2)205

where
{
W̃i(τ)

}b
i=2
≡
{
W̃i(τ ; 0 ≤ τ ≤ T )

}b
i=2

denotes the filtration generated by the corresponding206

BMs. The focus of the drMC method developed in Dang et al. (2015a, 2017) is primarily on the207

development of an analytical evaluation of the inner expectation, whereas the outer expectation is208

approximated by the usual means of MC simulation. The application of the multi-level technique209

is on the outer expectation, and this is the focus of the next section.210

3.1 Step 1: conditional PIDE and solution via Fourier transform211

Under certain regularity conditions, which are satisfied in the present case, by the Feynman-Kac212

theorem for jump-diffusion processes (Cont and Tankov, 2004), the inner expectation of (3.2) can213

be shown to be equal to the unique solution to an associated (conditional) PIDE. Specifically, under214

log variables z = ln(S) and ω = ln(y), and letting v(z, 0, ·) = V (S, 0, ·), it can be shown that215

v (z(0), 0, ·) = E
[
u

(
z(0), 0;

{
W̃i

}b
i=2

)]
, (3.3)216

where u
(
z, t;

{
W̃i

}b
i=2

)
is the time-t solution of an associated (conditional) PIDE.217

To solve the conditional PIDE, we first transform it into the Fourier space to obtain an ordinary218

differential equation in û(ξ, t, ·), which is the Fourier transform of u(z, t, ·). This ordinary differential219
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equation can then be easily solved in closed-form from maturity t = T to time t = 0 to obtain220

û(ξ, 0; ·). It turns out that221

û

(
ξ, 0;

{
W̃i(τ)

}b
i=2

)
= φ̂(ξ) exp

(
−ξ2

∫ T

0

a2
11

2
ν(t) dt+ iξ

∫ T

0

(
rd(t)− crf (t)− λδ − ν(t)

2

)
dt

+ iξ
b∑

j=2

a1j

∫ T

0

√
ν(t) dW̃j(t)−

∫ T

0
(rd(t) + λ) dt+

∫ T

0
λΓ(ξ)dt

)
,

(3.4)222

where φ̂(ξ) is the Fourier transform of φ(z) = Φ(ez), and Γ(ξ) the characteristic function of ln(y).223

3.2 Step 2: dimension reduction224

The next step in our dimension reduction MC approach is to express E[û(ξ, 0; ·)] as an expectation225

of a quantity that depends only on the {W̃b(τ)} ≡ {Wν(τ)}, which is the filtration generated by226

the BM associated with the variance factor. First, we apply iterated conditional expectation to227

obtain228

E[û(ξ, 0; ·)] = E
[
E
[
û(ξ, 0; ·)

∣∣∣∣{W̃b(τ)}
]]

, (3.5)229

where û(ξ, 0; ·) is defined in (3.4). Then, we handle the terms exp
(∫ T

0 ri(t)dt
)

, i = d, f , present in230

û(ξ, 0; ·), see (3.4), as follows. Using the Gaussian dynamics of the interest rates and the decom-231

position (3.1), we express
∫ T

0 ri(t)dt, i = d, f , as a sum of of Itô integrals involving independent232

BMs W̃j , j = 2, . . . , b. As a result, the expectation of exponential terms involves these Itô integrals233

in E
[
û(ξ, 0; ·)|{W̃b(τ)}

]
can be factored out and evaluated in closed-form. The step results in the234

following expression for the transformed option price v̂ (ξ, 0, ·)235

v̂ (ξ, 0, ·) = E [û(ξ, 0; ·)] = E
[
φ̂(ξ) exp

(
−Gξ2 + iFξ +H + λTΓ(ξ)

)]
, (3.6)236

where the coefficients G, F , and H are given by
237

G =
a2

11

2

∫ T

0
ν(t) dt +

1
2

b−1∑

k=2

∫ T

0

( m∑

j=1

a(j+1),k βdj (t) − c
l∑

j=1

a(j+m+1),k βfj (t) + a1,k

√
ν(t)

)2

dt,

(3.7a)

F =− 1
2

∫ T

0
ν(t) dt+

∫ T

0
(γd(t)− cγf (t)) dt

−
b−1∑

k=2

∫ T

0

( m∑

j=1

a(j+1),k βdj (t)
( m∑

j=1

a(j+1),k βdj (t)− c
l∑

j=1

a(j+m+1),k βfj (t)
))

dt

+
m∑

j=1

a(j+1),h

∫ T

0
βdj (t) dWν(t)− c

l∑

j=1

a(j+m+1),h

∫ T

0
βfj (t) dWν(t)

+ a1,h

∫ T

0

√
ν(t) dWν(t) + c

l∑

j=1

ρs,fj

∫ T

0
βfj (t)

√
ν(t) dt−

b−1∑

k=2

m∑

j=1

∫ T

0
a1,ka(j+1),k βdj (t)

√
ν(t) dt

− λδT, (3.7b)
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H = −
m∑

j=1

a(j+1),h

∫ T

0
βdj (t) dWν(t) −

∫ T

0
γd(t) dt +

1
2

b−1∑

k=2

∫ T

0




m∑

j=1

a(j+1),kβdj (t)




2

dt − λT,

(3.7c)

In (3.7a)-(3.7c), βdi(t), i = 1, . . . ,m, and βfi(t), i = 1, . . . , l, are defined as238

βdi(t) = σdi(t)
∫ T

t
e−

∫ t′
t κdi (t

′′) dt′′ dt′, βfi(t) = σfi(t)
∫ T

t
e−

∫ t′
t κfi (t

′′) dt′′ dt′ . (3.8)239

We emphasize that the quantities F , G, H are conditional on the variance path only. The variance240

coming from the rd’s BMs and the rf ’s BMs, if any, is completely removed from the computation.241

Thus, the drMC method not only offers a powerful dimension reduction from b factors to at most242

two, namely the S and ν factors, but it also significantly reduces the variance in the simulated243

results in many cases.244

3.3 Step 3: inverse Fourier transform245

The final step in the approach is to inverse the result in (3.6) back to the real space to obtain246

the option price. When λ = 0, i.e. the pricing model (2.1) reduces to a pure-diffusion model, a247

closed-form solution to the conditional PDE for a plain-vanilla European option can be obtained.248

More specifically, results in (Dang et al., 2015a) show that, for a European call option, we have249

V (S(0), 0, ·) = E[P ], where P = S(0)e(G+F+H)N (d1)−KeHN (d2) . (3.9)250

Here,251

d1 =
ln
(
S(0)
K

)
+ F

√
2G

+
√

2G, d2 = d1 −
√

2G, N (x) =
1√
2π

∫ x

−∞
e−v

2/2dv . (3.10)252

When λ > 0, the analytical tractability of the conditional PIDE depends on the distribution of253

the jump amplitude y, or equivalently, on that of w = ln(y). It is shown in Dang et al. (2017) that254

the analytical tractability of the conditional PIDE is fully determined by that of the (well-studied)255

Black-Scholes-Merton model augmented with the same jump component dJ(t) as in model (2.1).256

In particular, in the case w = ln(y) ∼ Normal(µ̃, σ̃2) (Merton, 1976), the European call option257

value is given by (Dang et al., 2017)[Corollary 3.2]258

V (S(0), 0, ·) = E

[ ∞∑

n=0

(λT )n

n!

{
exp

(
nµ̃+

nσ̃2

2

)
S(0)e(G+F+H)N (d1,n)−KeHN (d2,n)

}]
, (3.11)259

where260

d1,n =
ln
(
S(0)
K

)
+ nµ̃+ F

√
2
(
G+ nσ̃2

2

) +

√
2
(
G+

nσ̃2

2

)
, d2,n = d1,n −

√
2
(
G+

nσ̃2

2

)
. (3.12)261

The Delta and Gamma of the option respectively are (Dang et al., 2017)[Corollary 4.2]262

∂V

∂S

∣∣∣∣
(S(0),0,·)

= E

[ ∞∑

n=0

(λT )n

n!

{
exp

(
nµ̃+

nσ̃2

2
+G+ F +H

)
N (d1)

}]
,

∂2V

∂S2

∣∣∣∣
(S(0),0,·)

= E



∞∑

n=0

(λT )n

n!





exp
(
nµ̃+

nσ̃2

2
+G+ F +H

) N ′ (d1)

S(0)
√

2
(
G+ nσ̃2

2

)






 .

(3.13)263
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In our analysis, for simplicity, we focus on the normal jump case. For the case of double-exponential264

distribution (Kou, 2002), the analytical solution to the conditional PIDE is presented in Dang et al.265

(2017)[Corrolary 3.1], and is repeated in Appendix D.266

4 Multi-level drMC267

The previous results show that, for a jump-distribution of ln(y) such that the conditional PIDE is268

analytically tractable, i.e. the inner expectation of (3.2) can be evaluated analytically, the option269

price can be expressed as an expectation of this analytical solution. This solution involves only the270

variance factor. The application of the multi-level technique is on the outer expectation of (3.2),271

and this is the focus of this section.272

In the ml-drMC method, we apply the multi-level technique to the variance factor ν(t), which is273

driven by the BM W̃b(t). For simplicity, for the rest of the paper, let W (t) ≡ W̃b(t). In this paper, to274

simulate ν(t), we use the so-called Lamperti-Backward-Euler (LBE) discretization scheme, studied275

in Neuenkirch and Szpruch (2014). Given a timestep size h = T/N , the LBE discretization scheme276

for the variance process (2.1d) is given by (Neuenkirch and Szpruch, 2014)277

ν̂n+1 = (ẑn+1)2 , (4.1)278

where279

ẑn+1 =
1

2 + κν h


ẑn +

1
2
σν∆Wn +

√(
ẑn +

1
2
σν∆Wn

)2

+ κν

(
ν̄ − σ2

ν

4κν

)
h


 , ẑ0 =

√
v(0) .280

Here, ν̂n denotes the discrete approximation to the exact value ν(tn), where tn = nh, n = 0, . . . , N−281

1, ∆Wn = Wn+1 −Wn = Normal(0, h). As shown in Neuenkirch and Szpruch (2014), we have the282

following result on the strong convergence with order one of the LBE scheme.283

Proposition 4.1 (Proposition 3.1 of Neuenkirch and Szpruch (2014)). Let T > 0 and 2 ≤ p < 4κν ν̄
3σ2
ν

,284

there exists a bounded constant Cp such that285

E

[
sup

n=0,...,dT/he
|v(tn)− v̂n|p

]
≤ Cphp.286

In our context, we are primarily interested in the above result for the case p = 2. For this special287

case, as required in the above proposition, the condition p = 2 < 4κν ν̄
3σ2
ν

must hold.288

Assumption 4.1. We assume that the parameters of the process ν(t), defined in (2.1d), are such289

that 2κν ν̄ > 3σ2
ν .290

We note that this assumption is slightly stricter than the Feller’s condition 2κν ν̄ > σ2
ν which291

guarantees that ν(t) > 0 and is bounded, as shown in Andersen and Piterbarg (2007).292

4.1 Preliminaries293

We illustrate the idea of the ml-drMC method via the pure-diffusion case. Consider multiple sets of294

simulations of ν(t) with different timesteps sizes h` = T
N`

, N` = 2`, ` = 0, . . . , L, and so the level `295

has 2 times more timesteps than the level (`− 1). For a given simulated BM path W (t), we denote296
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by P̂`, ` = 0, . . . , L, an approximation to the payoff P , defined in (3.9), using the discretization297

scheme (4.1) with timestep size h`. Note the key identity underlying the mlMC method298

E(P̂L) = E(P̂0) +
L∑

`=1

E[P̂` − P̂`−1]. (4.2)299

We denote by Ŷ0 an estimator for E(P̂0), and by Ŷ`, ` = 1, . . . , L, an estimator for E[P̂` − P̂`−1]300

using M` simulation paths. In the simplest scheme, the estimator Ŷ` is a mean of M` paths, i.e.301

Ŷ` =
1
M`

M∑̀

m=1

(
P̂

(m)
` − P̂ (m)

`−1

)
. (4.3)302

A key point in the mlMC approach is that the quantity P̂
(m)
` − P̂

(m)
`−1 comes from two discrete303

approximations with different timestep sizes, but are based on the same BM path. We denote by304

Ŷ the combined estimator, defined as Ŷ =
L∑

`=0

Ŷ`. The idea of mlMC is to independently estimate305

each Ŷ`, ` = 1, . . . , L, in such a way that, for a given computational cost, the variance of the306

combined estimator, namely V(Ŷ ), is minimized. As showed in Giles (2008), this can be achieved307

by choosing M` proportional to
√
V`h`, where V` ≡ V

[
P̂` − P̂`−1

]
. Thus, the convergence of the308

sample variance V` as `→∞ is very important to the efficiency of the methods, since it determines309

an optimal choice of M`, i.e. the number of sample paths used the `-th level.310

In the remainder of this section, we show that it is possible to construct an ml-drMC estimator311

that can achieve V` = O(h2
` ). Following from Giles (2008)[Theorem 3.1], the computational com-312

plexity required by the ml-drMC method to obtain a RMSE of ε is O(ε−2). We primarily focus on313

the case that ln(y) follows a normal distribution (Merton, 1976), for simplicity reasons. The proof314

techniques for the case of normal distribution can be extended to the case of double-exponential315

distribution (Kou, 2002).316

For simplicity, in our analysis as, well as in the numerical experiments, we consider the case317

where κdi , and σdi , i = 1, . . . ,m, and κfi , σfi , i = 1, . . . , l, are constants. In this case, (3.8) reduces318

to the following form319

β(·)(t) = σ(·)

∫ T

t
eκ(·)(t−t′) dt′ =

σ(·)
κ(·)

(
1− e−κ(·)(T−t)

)
, (4.4)320

for some positive constant κ(·) and σ(·).321

For the rest of the paper, the super-scripts “f” and “c” are used to denote the dependence of322

the quantities on fine and coarse levels, respectively. This is not to be confused with the sub-script323

“f” used to indicate association with the “f” interest rate factor.324

4.2 Approximation schemes for integrals325

Define the following stochastic variables326

x1 =
∫ T

0
ν(t)dt, x2 =

∫ T

0

√
ν(t) dW (t),327

xdi,1 =
∫ T

0
βdi(t)

√
ν(t) dt, xfi,1 =

∫ T

0
βfi(t)

√
ν(t) dt, i = 1, . . . ,m,328

xdi,2 =
∫ T

0
βdi(t) dW (t), xfi,2 =

∫ T

0
βfi(t) dW (t), i = 1, . . . , l . (4.5)329
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We note that the option price and hedging parameters are functions of these random variables only.330

In the analysis, the discrete paths of the variance ν(t) are simulated using the LBE scheme331

(4.1), with the `-th level having twice as many number of timesteps as the (` − 1)-th level. In332

the following discussion, we denote by x̂f(·),` an approximation to x(·) on a fine-path using N` = 2`333

timesteps, and by x̂c(·),`−1 the corresponding coarse-path approximation to x(·) using N`−1 = 2`−1
334

timesteps. That is, x̂f(·),` is and x̂c(·),`−1 are two discrete approximations to x(·) with T/N` and335

T/N`−1 timestep sizes, respectively, but are based on the same BM path.336

Frequently in our analysis, we use the following inequality.337

Proposition 4.2. For random variables ai, i = 1, . . . , n, we have338

E



(

n∑

i=1

ai

)2

 ≤ n

(
n∑

i=1

E
[
(ai)

2
])

.339

4.2.1 An approximation scheme for x1 =
∫ T

0 ν(t)dt340

Following Giles et al. (2013), given N` = 2`, we define the following piecewise linear interpolant341

(PLI)342

ν̂PLI,`(t) = ν̂n +
t− tn
h`

(ν̂n+1 − ν̂n) , tn ≤ t ≤ tn+1, n = 0, . . . , N` − 1 . (4.6)343

Furthermore, by approximating the drift and diffusion coefficient of the dν as being constant within344

each timestep, we define the following Brownian motion interpolant (BMI)345

ν̂BMI,`(t) = ν̂n +
t− tn
h`

(ν̂n+1 − ν̂n) + σν
√
ν̂n

(
W (t)−Wn −

t− tn
h`

(Wn+1 −Wn)
)
,

tn ≤ t ≤ tn+1, n = 0, . . . , N` − 1 .
(4.7)346

Note that, ν̂BMI,`(t) deviates from ν̂PLI,`(t) if and only if W (t) deviates from the BM piecewise linear347

interpolant Wn + t−tn
h`

(Wn+1 −Wn).348

We present two schemes for computing x̂f1,`. In the first scheme, we integrate the Brownian349

motion interpolant ν̂BMI,`(t) from 0 to T . More specifically,350

x̂f1,` =
∫ T

0
ν̂BMI,`(t) dt =

N`−1∑

n=0

h`
2
(
v̂fn + v̂fn+1

)
+ σν

√
ν̂nI

f

n,`, (4.8)351

where Ifn,` are independent Normal(0, h3
`/12). The corresponding coarse-path approximation to x1,

i.e. x̂c1,`−1, is defined similarly as (4.8), and it turns out that, for n = 0, . . . , N`2 − 1, we have

Icn,`−1 =
∫ tn+2

tn

(
W (t)−Wn −

t− tn
2h`

(Wn+2 −Wn)
)

dt

= Ifn,` + Ifn+1,` −
h`
2

(Wn+2 − 2Wn+1 +Wn) ,

which can be obtained using the BM information utilized for the fine path. An alternative ap-352

proximation scheme is the same as the first one, but with the terms Ifn,` and Icn,`−1 omitted. This353

approximation can be viewed as being obtained by integrating the PLI ν̂PLI,`(t) from 0 to T . More354

specifically,355

x̂f1,` =
∫ T

0
ν̂PLI,`(t) dt =

N`−1∑

n=0

h`
2
(
v̂fn + v̂fn+1

)
. (4.9)356
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Lemma 4.1. Both approximations (4.8)-(4.9) give E
[(
x̂f1,` − x̂c1,`−1

)2
]

= O(h2
` ).357

Proof. See Appendix A.358

For the rest of the analysis and in the numerical experiments, we use the approximation (4.9).359

4.2.2 An approximation scheme for x2 =
∫ T

0

√
ν(t) dW (t)360

We note that, by first integrating (2.1d) from tn to tn+1 for ν(t), and then rearranging, we obtain361

∫ tn+1

tn

√
ν(t) dW (t) =

ν(tn+1)− ν(tn)− κν ν̄h` + κν
∫ tn+1

tn
ν(t)dt

σν
. (4.10)362

Thus, (4.9) and (4.10) gives rise to the following scheme for x̂f2,`:363

x̂f2,` =
ν̂fN` − ν(0)− κν ν̄T + κν

∑N`−1
n=0

h`
2

(
ν̂fn + ν̂fn+1

)

σν
. (4.11)364

The corresponding coarse-path approximation to x2, namely x̂c2,`−1, is defined similarly.365

Lemma 4.2. The approximation (4.11) gives E
[(
x̂f2,` − x̂c2,`−1

)2
]

= O(h`|2).366

Proof. First, note that367

E
[(
ν̂fN` − ν̂

c
N`−1

)2
]

= E
[(
ν̂fN` − ν(T ) + ν(T )− ν̂cN`−1

)2
]

≤ 2
(

E
[(
ν̂fN` − ν(T )

)2
]

+ E
[(
ν(T )− ν̂cN`−1

)2
])

= O(h2
` ).

(4.12)368

Here, the inequality follows from Proposition 4.2, and theO(h2
` ) bound follows from Proposition 4.1.369

The desired result follows from (4.11), (4.12) and Lemma 4.1.370

4.2.3 An approximation scheme for xdi,1 =
∫ T

0 βdi(t)
√
ν(t) dt, i = 1, . . . ,m, and xfi,1 =371 ∫ T

0 βfi(t)
√
ν(t) d, i = 1, . . . , l372

All of these integrals are of the form y1 =
∫ T

0 β(t)
√
ν(t) dt, where β(t) is define in (4.4). On the

fine-path of the `-th level, we approximate these integrals by

ŷf1,` =
N`−1∑

n=0

h`
2

(
β(tn)

√
ν̂fn + β(tn+1)

√
ν̂fn+1

)
, (4.13)

Lemma 4.3. The approximation (4.13) has E
[(
ŷf1,` − ŷc1,`−1

)2
]

= O(h2
` ).373

Proof. See Appendix B.374

4.2.4 An approximation scheme for xd2,i =
∫ T

0 βdi(t) dW (t), i = 1, . . . ,m, and xf2,i =375 ∫ T
0 βfi(t) dW (t), i = 1, . . . , l376

All of these integrals are of the form y2 =
∫ T

0 β(t) dW (t), where β(t) is defined in (4.4). On the
fine path of the `-th level, we use the following approximation

ŷf2,` =
N`−1∑

n=0

β(tn) (Wn+1 −Wn) . (4.14)

The scheme for ŷc2,`−1 is defined similarly.377
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Lemma 4.4. The approximation (4.14) has E
[(
ŷf2,` − ŷc2,`−1

)2
]

= O(h2
` ).378

Proof. Note that

E
[(
ŷf2,` − ŷc2,`−1

)2
]

= E







N`
2
−1∑

n=0

(β(t2n+1)− β(t2n)) (W2n+2 −W2n+1)




2
 . (4.15)

Since, (β(t+ h`)− β(t))2 = O(h2
` ), for each n = 0, . . . , N`2 − 1, we have379

E
[
((β(t2n+1)− β(t2n)) (W2n+2 −W2n+1))2

]
= (β(t2n+1)− β(t2n))2 E

[
(W2n+2 −W2n+1)2

]

= (β(t2n+1)− β(t2n))2 h` = O(h3
` ) .

(4.16)380

The result follows from using (4.16), and noting that the cross terms in (4.15) have expectation381

zero.382

5 Variance convergence results383

5.1 Option price, pure-diffusion384

We consider ml-drMC method applied to computing option price under a pure-diffusion model, i.e.385

when λ = 0. In this case, the payoff is P defined in (3.9).386

5.1.1 Lipschitz payoff387

Analyses of multi-level MC methods are typically built upon the Lipschitz property of the payoff388

function. In our case, however, the presence of the stochastic variables xfi,2, i = 1, . . . , l, in389

the payoff gives rise to a non Lipschitz payoff. This is because (i) these stochastic variables are390

Gaussian, and hence unbounded, and (ii) they appear only in the F (see (3.7)). As a result, the391

payoff has P → ±∞, as xfi,2 → ±∞, due to the term eG+F+H . Inspection of the F in (3.7)392

shows that these stochastic variables disappear if the correlations between the BMs associated with393

factors of the “f” interest rate and the BM of the variance, i.e. between Wfi(t), i = 1, . . . , l, and394

Wν(t) ≡W (t), are zero. We establish the convergence analysis of the ml-drMC method under the395

modelling assumption that these afore-mentioned correlations are zero.396

Assumption 5.1. The correlations between the BMs Wfi(t), i = 1, . . . , l, and Wν(t) ≡ W (t) are397

zero.398

Lemma 5.1. Suppose Assumptions 4.1 and 5.1 hold and λ = 0. Then, the payoff function399

P = F (x1, x2, xd1,1, . . . , xdm,1, xf1,1, . . . , xfl,1, xd1,2, . . . , xdm,2)400

defined in (3.9) is a Lipschitz function of the values of variables x1, x2, xdi,1, i = 1, . . . ,m, xfi,1,401

i = 1, . . . , l, and xdi,2, i = 1, . . . ,m, with the Lipschitz bound402

∣∣∣∣∣F
(
x

(1)
1 , x

(1)
2 , x

(1)
d1,1

, . . . , x
(1)
dm,1

, x
(1)
f1,1

, . . . , x
(1)
fl,1
, x

(1)
d1,2

, . . . , x
(1)
dm,2

)

−F
(
x

(2)
1 , x

(2)
2 , x

(2)
d1,1

, . . . , x
(2)
dm,1

, x
(2)
f1,1

, . . . , x
(2)
fl,1
, x

(2)
d2,2

, . . . , x
(2)
dm,2

)∣∣∣∣∣

≤ C
(

2∑

i=1

∣∣∣x(1)
i − x

(2)
i

∣∣∣+
m∑

i=1

∣∣∣x(1)
di,1
− x(2)

di,1

∣∣∣+
l∑

i=1

∣∣∣x(1)
fi,1
− x(2)

fi,1

∣∣∣+
m∑

i=1

∣∣∣x(1)
di,2
− x(2)

di,2

∣∣∣
)

(5.1)403
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for some C <∞.404

Proof. See Appendix C.405

Given a fine-path of ν(t) simulated using timestep size h` = T/N`, where N` = 2`, the corre-406

sponding fine-path estimate of the payoff is defined by407

P̂ f

` ≡ F
(
x̂f1,`, x̂

f

2,`, x̂
f

d1,1,`
, . . . , x̂fdm,1,`, x̂

f

f1,1,`
, . . . , x̂ffl,1,`, x̂

f

d1,2,`
, . . . , x̂fdm,2,`, x̂

f

f1,2,`
, . . . , x̂ffl,2,`

)
,408

where each x̂f(·),` is defined as in the previous subsection. The corresponding coarse-path estimate409

of the payoff using timestep size 2h`, namely P̂ c
`−1, is constructed similarly. We now state the main410

result of the convergence analysis for the pure-diffusion case.411

Theorem 5.1. Suppose Assumptions 4.1 and 5.1 hold and and λ = 0. Approximations (4.9),412

(4.11), (4.13) and (4.14) result in a ml-drMC estimator for the option price that has V` = O(h2
` ).413

Proof. We have414

V
[
P̂ f

` − P̂ c
`−1

]
≤ E

[(
P̂ f

` − P̂ c
`−1

)2
]

≤ C2E

(
2∑

i=1

∣∣∣x̂fi,` − x̂ci,`−1

∣∣∣+
m∑

i=1

∣∣∣x̂fdi,1,` − x̂
c
di,1,`−1

∣∣∣+
l∑

i=1

∣∣∣x̂ffi,1,` − x̂
c
fi,1,`−1

∣∣∣+
m∑

i=1

∣∣∣x̂fdi,2,` − x̂
c
di,2,`−1

∣∣∣
)2

≤ bC2

(
2∑

i=1

E
[(
x̂fi,` − x̂ci,`−1

)2
]

+
m∑

i=1

E
[(
x̂fdi,1,` − x̂

c
di,1,`−1

)2
]

+
l∑

i=1

E
[(
x̂ffi,1,` − x̂

c
fi,1,`−1

)2
]

+
m∑

i=1

E
[(
x̂fdi,2,` − x̂

c
di,2,`−1

)2
])

,

415

for some bounded constant C, and b is the number of stochastic factors in the model. Here,416

the second inequality comes from the Lipschitz bound (5.1), and the third inequality comes from417

Proposition 4.2. Applying Lemmas 4.1, 4.2, 4.3, and 4.4 gives the desired result.418

Remark 5.1. We note that when the Assumption 5.1 is not satisfied, the extreme path technique419

in Giles et al. (2009) may be used to show that V` is probably still O(h2
` ). Specifically, this technique420

involves (i) partitioning the set of ν(t) paths into two subsets, namely the sets of extreme paths,421

i.e. paths along which x̂fi,2 satisfies certain extreme conditions, and non-extreme paths, and (ii)422

showing that the contribution of the set of extreme paths to E
[(
P̂ f

` − P̂ c
`−1

)2
]

is negligible. We423

plan to investigate this issue in the near future. Nonetheless, as shown in numerical experiments,424

we observe that the presence of these stochastic variables does not have any impact on the expected425

optimal convergence rate of V`.426

5.2 Option price, normal jump427

Recall that in this case, the option price can be expressed as428

V (S(0), 0, ·) = E

[ ∞∑

n=0

(λT )n

n!
Pn

]
, Pn = exp

(
nµ̃+

nσ̃2

2

)
S(0)e(G+F+H)N (d1,n)−KeHN (d2,n) .

(5.2)429

Here, the relevant quantities di,n, i = 1, 2, are defined in (3.12). Typically, in a numerical imple-430

mentation, the (quickly converging) infinite series (5.2) is truncated to a finite number of terms, if431

a certain tolerance, denoted by tol > 0, has been met.432
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For a given simulated BM path W (t), and a value of n, n = 1, 2, . . ., we denote by P̂ f

n,` an433

approximation to the conditional payoff Pn, defined in (5.2), on a fine-path using N` = 2` timesteps,434

and by P̂ f

` the corresponding fine-path approximation to the payoff. We have435

P̂ f

` =
Ntol,`∑

n=0

(λT )n

n!
P̂ f

n,` =
Ntol,`∑

n=0

(λT )n

n!
Fn
(
x̂f1,`, x̂

f

2,`, x̂
f

d1,1,`
, . . . , x̂fdm,1,`, x̂

f

f1,1,`
, . . . , x̂ffl,1,`, . . . , x̂

f

fl,2

)
.

(5.3)436

In (5.3), Fn(·) is defined in (5.2) as a function of stochastic variables x(·). We note that in (5.3)437

Ntol,` = max
(
Nf

tol,`, N
c
tol,`−1,

)
, (5.4)438

where Nf

tol,` and Nc
tol,`−1, are the finite number of terms required to achieve the tolerance tol on439

corresponding the fine- and coarse-path, respectively.440

Theorem 5.2. Suppose that Assumptions 4.1 and 5.1 hold, and that ln(y) ∼ Normal(µ̃, σ̃2). Ap-441

proximations (4.9), (4.11), (4.13) and (4.14) result in an ml-drMC estimator for the option price442

that has V` = O(h2
` ).443

Proof. The result follows from Theorem 5.1 and the fact that Ntol is finite.444

5.3 Hedging parameters445

We consider the Delta and Gamma of the option. We start with the Delta and Gamma for the446

pure-diffusion case, which can be obtained by setting n = 0 in (3.13). It is straightforward to447

show that the payoffs in these cases are also satisfied a Lipschitz bound. The fine- and coarse-path448

payoffs for the Delta and Gamma can be constructed the same way as the option price. Following449

the steps used previously, we can show that the pure-diffusion case, the ml-drMC estimator for450

the option’s Delta and Gamma has V` = O(h2
` ). For the jump case, the convergence results451

of the ml-drMC estimator for option’s Delta and Gamma can be obtained in the same fashion as452

previously for the option price.453

6 Numerical results454

In the experiments, we consider the following two models: (i) a 3-factor Heston-Hull-White (HHW)455

jump-diffusion model for stock options, and (ii) a 6-factor jump-diffusion model for FX options.456

The models for these two cases respectively are457

dS(t)
S(t−)

= (rd(t)− λδ) dt+
√
ν(t) dWs(t) + dJ(t), J(t) =

π(t)∑

j=1

(yj − 1),

rd(t) = rd(0) e−κdt + κd

∫ t

0
e−κd(t−t′) θd(t′) dt′ +X(t),

with dX(t) = −κdX(t) dt+ σd dWd(t), X(0) = 0,

dν(t) = κν (ν̄ − ν(t)) dt+ σν
√
ν(t) dWν(t),

(6.1)458
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and459

dS(t)
S(t−)

= (rd(t)− rf (t)− λδ) dt+
√
ν(t) dWs(t) + dJ(t), J(t) =

π(t)∑

j=1

(yj − 1),

rd(t) = X1(t) +X2(t) + γd(t),

with dXi(t) = −κdi Xi(t) dt+ σdi dWdi(t), Xi(0) = 0, i = 1, 2,

rf (t) = Y1(t) + Y2(t) + γf (t),

with dYi(t) = −κfi Yi(t) dt+ σfi dWfi(t)− ρs,fiσfi
√
ν(t) dt, Yi(0) = 0, i = 1, 2,

dν(t) = κν (ν̄ − ν(t)) dt+ σν
√
ν(t) dWν(t).

(6.2)460

For the jump components, we consider two distributions, namely (i) ln(yj) ∼ Normal(µ̃, σ̃2), and461

(ii) ln(yj) ∼ double-exponential(p, η1, η2), j = 1, 2, . . ., where ln(yj) are i.i.d. Note that, as stated462

earlier, in these models, all coefficients κ(·), σ(·), κν , σν and ν̄ are also constant. Furthermore, for463

simplicity, for the interest rate model, we assume θi, i = {d, f}, defined in (2.2), are constant. As a464

result, all the deterministic integrals in G, F and H can be computed analytically. The quantities465

G, F and H defined in (3.7) can further be reduced for the above two cases. For brevity, we omit466

these reduced formulas, which can be found in Dang et al. (2017).467

Since we compare the efficiency of various MC methods, it is important to determine the com-468

putational complexity of each MC method. Following Giles (2008), for a pure mlMC method, we469

define the computational complexity of a MC method as the total number of random numbers gen-470

erated for all factors in the model. More specifically, due to presence of jumps, the computational471

cost is approximated by
∑L

`=1

∑M`
m=1

(
J

(m)
[0,T ] +N`

)
, where J (m)

[0,T ] is the number of jumps along the472

m-th path from time 0 to time T .473

For ml-drMC methods, however, it is not appropriate to use just the number of random numbers474

generated for the variance factor, as this does not reflect the fact that each ml-drMC sample requires475

additional computations. Inspection of the analytical solution (5.2) indicates that, for each level `,476

the extra costs are primarily for (i) approximations of integrals and computation of the terms F ,477

H, and G (see (3.7)), which is done only once per path, and (ii) evaluations of a total of Ntol,` + 1478

terms in the sum (5.3). (For pure-diffusion case, Ntol,` = 0.) Based on operation counts and479

timing results of the drMC and ordinary MC methods (see Dang et al. (2015a, 2017)), our estimate480

is that, on average, given the same number of timestepping, for the 3-factor HHW model, the cost481

per path of the drMC is approximately 1.5 times that of the ordinary MC, while for the 6-factor482

model (6.2), the difference is about 2 times. These factors are taken into account in the complexity483

comparisons between ml-drMC and mlMC methods in this section.484

The computational cost of a non-multi-level method is computed as
∑L

`=0M
∗
`N`, where M∗` =485

2ε−2V[P̂`], so that the variance bound is also ε2/2 as with its multi-level counterpart (Giles, 2008).486

We also note that in all of the experiments reported below, Assumption 5.1 is not satisfied. Nonethe-487

less, as noted in Remark 5.1, the ml-drMC method with LBE scheme performs well, requiring only488

an overall complexity O(ε−2) to achieve a RMSE of ε.489

6.1 Pure-diffusion: a 6-factor model490

First, we illustrate the the efficiency of the ml-drMC method when applied to a pure-diffusion491

model. For this experiment, we consider a European option under the 6-factor model (6.2) with492

the jump intensity λ = 0. For the numerical experiments, we use the following parameters (Dang493

et al., 2015b): rd(0) = 0.02, κd1 = 0.03, κd2 = 0.03, σd1 = 0.03, σd2 = 0.03, θd = 0.02, and494
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rf (0) = 0.05, κf1 = 0.03, κf2 = 0.03, σf1 = 0.012, σf2 = 0.012, and θf = 0.05. The correlations495

are from Dang et al. (2015a): ρS,d1 = 0.08, ρS,d2 = 0.08, ρS,f1 = 0.08, ρS,f2 = 0.08, ρS,ν = −0.02,496

ρd1,d2 = 0.12, ρd1,f1 = 0.12, ρd1,f2 = 0.12, ρd1,ν = 0.15, ρd2,f1 = 0.12, ρd2,f2 = 0.12, ρd2,ν = 0.15,497

ρf1,f2 = −0.70, ρf1,ν = 0.15, ρf2,ν = 0.15. For the variance factor, we use the parameters κν = 0.5,498

ν̄ = 0.9, σν = 0.05, ν(0) = 0.9, which are taken from Giles and Szpruch (2014). We also use499

S(0) = 10, K = 10, and T = 20 (years). The parameters above are highly challenging for practical500

applications, due to long maturity.501

For comparison purposes, we also implement an antithetic mlMC method combined with a502

Milstein discretization scheme, as developed in Giles and Szpruch (2014). We refer to this method503

as anti-mlMC. To the best of our knowledge, anti-mlMC is currently the most efficient mlMC504

method for multi-dimensional pure-diffusion models, since it requires only an overall complexity505

O(ε−2) to achieve a RMSE of ε without simulating Lévy areas. For this method, due to the non-506

linearity of the diffusion coefficient in the price process S(t), we work with log(S(t)) instead, as507

suggested by Giles and Szpruch (2014). Given a timestep size h = T/N , the Milstein scheme for508

the 6-factor model under consideration with the Lévy area terms set to zero is given by509

log(Ŝn+1) = log(Ŝn) +
(
r̂d,n − r̂f,n − 0.5ν̂n

)
h+

√
ν̂+
n ∆Ws,n + 0.5ν̂n

(
(∆Ws,n)2 − h

)

+ 0.25σν
(
∆Ws,n∆Wν,n − ρs,νh

)
,

r̂d,n+1 =
2∑

i=1

X̂i,n+1 + γd,n+1, X̂i,n+1 = X̂i,n − κdiX̂i,nh+ σdi∆Wdi,n, X̂i,0 = 0, i = 1, 2,

r̂f,n+1 =
2∑

i=1

Ŷi,n+1 + γf,n+1, Ŷi,n+1 = Ŷi,n −
(
κfi Ŷi,n + ρS,fiσfi

√
ν̂+
n

)
h+ σfi∆Wfi,n,

Yi,0 = 0, i = 1, 2,

ν̂n+1 =
ν̂n + κν ν̄h+ σν

√
ν̂+
n ∆Wν,n + 0.25σ2

ν

(
(∆Wν,n)2 − h

)

1 + hκν
.

(6.3)510

Here, ∆W(·),n = W(·),n+1 − W(·),n, and γi,n = (ri(0) − θi)e(−κi1nh) + θi, i ∈ {d, f}. Details of511

the antithetic mlMC technique for multi-dimensional pure-diffusion problems discretized by the512

Milstein scheme, such as (6.3), are discussed in Giles and Szpruch (2014), and hence omitted here.513

We also note that, although the coefficients of the variance process are not Lipschitz continuous,514

and hence the assumptions in Giles and Szpruch (2014) are not satisfied, the numerical tests show515

that the anti-mlMC performs well, and is able to achieve V` = O(h2
` ). Similar convergence results516

are reported in Giles and Szpruch (2014) for the Heston model.517

For the 6-factor pure-diffusion model (6.2), we compare three MC methods, namely ml-drMC,518

drMC, anti-mlMC. Here, drMC with the Lamperti-Backward-Euler (LBE) scheme is the non-multi-519

level counterpart of ml-drMC. The non-multi-level counterpart of the anti-mlMC is essentially the520

ordinary MC, and hence is skipped for brevity. The plots in the experiments are produced using521

Matlab code adapted from the code freely available from Giles (2008).522

6.1.1 Accuracy523

In Table D.1, to illustrate the accuracy of the ml-drMC method, we present the option prices524

obtained by the three methods, and the corresponding standard derivation (in brackets) for the525

case ε = 10−3. We observed that the option prices obtained by all methods agree well. Also, the526

standard deviation for each method is ≤ ε√
2
≈ 0.000707. This indicates that the variance bound527

ε2/2 is satisfied by all methods, as expected by analysis of mlMC methods.528
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In the above test, the ml-drMC and anti-mlMC method respectively requires L = 4 and L = 14529

to achieve the variance bound ε2/2. The drMC method with the LBE scheme for the variance factor530

requires 16 = 24 timesteps and about 46 × 106 samples to achieve the same variance bound. For531

ordinary MC method, although the results are not presented here, we note that the timesteps and532

samples required to achieve the same variance bound respectively are 16384 = 214 and 845× 106.533

6.1.2 Convergence properties and efficiency534

We present numerical results to show the convergence properties and compare the efficiency of535

the three methods, namely ml-drMC, drMC, anti-mlMC, in computing the option price. In Fig-536

ure D.1 (a), we investigate the convergence behavior of V` = V[P`−P`−1] as a function of the level537

of approximation when ε = 10−3. These values were estimated using 106 samples, so the sampling538

error is negligible.539

We make following observations. The variance of the (non-multi-level) drMC varies very little540

with level `. Both ml-drMC and anti-mlMC methods result in lines having slope -2, which indicates541

that V` = O(h2
` ), as expected from the complexity analysis. Moreover, the V` of the ml-drMC542

method is about 50 times smaller than that of the anti-mlMC method, which is expected, due to543

the a significant variance reduction offered by the drMC approach. We also note that the multi-544

level-based methods are substantially more accurate than their non-multi-level-based counterparts.545

In particular, on level ` = 2, which has just 4 timesteps, V` of ml-drMC is already more than 1000546

times smaller than that of drMC. (Compare V` = V[P` − P`−1] of ml-drMC and V[P`] of drMC at547

level ` = 2 on Figure D.1 (a)).548

In Figure D.1 (b), the mean value for the multi-level correction is shown. Both multi-level based549

methods’ estimators result in approximately a first-order convergence for E[P`−P`−1], as indicated550

by the slope -1.551

Next, we investigate the computational complexity of the three methods. Figure D.1 (c) show552

the dependence of the computational complexity Cost, defined as the total of random numbers553

generated, as a function of the desired accuracy ε. Here, we plot ε2Cost versus ε. As observed554

from Figure D.1 (c), for the drMC method, the quantity ε2Cost exhibits the well-known “stair-555

case” effect of non-multi-level MC methods (Giles, 2008). For both anti-mlMC and ml-drMC,556

the quantity ε2Cost appears to be independent of ε. This result indicates that the first-order557

strong convergence of the Milstein and LBE discretization techniques results in a computational558

complexity Cost = O(ε−2). This result is expected from the complexity analysis of multi-level559

methods in Giles (2008)[Theorem 3.1].560

Furthermore, we also observe that the ml-drMC is significantly more efficient than the anti-561

mlMC method, about 40 times more efficient than the anti-mlMC method for this example. These562

results from Figure D.1 indicate that the ml-drMC estimator can achieve the same second-order563

rate of convergence for V` as that of the anti-mlMC method of Giles and Szpruch (2014), but is564

significantly more efficient.565

6.2 Jump-diffusion: 3-factor HHW with normal jumps566

In the remaining experiments, we consider the popular 3-factor HHW model (6.1) with ln(yj)567

following the normal (Merton, 1976) and the double-exponential (Kou, 2002) distributions. For568

validation purposes, we extend the anti-mlMC method of Giles and Szpruch (2014) to handle jumps.569

Specifically, since the option is not path-dependent, the overall jump effects on the underlying570

asset can be evaluated separately at time T , and be taken into account at that time. The main571
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focus of this section is to demonstrate the convergence results of LBE scheme, and its benefit572

over the Euler-Maruyama scheme. The Euler-Maruyama scheme for (2.1d) is given by ν̂n+1 =573

ν̂n + κν (ν̄ + ν̂n)h+ σν
√
ν̂+
n ∆Wn.574

6.2.1 Accuracy575

In Table D.2, to illustrate the accuracy of the ml-drMC methods, we present the option prices ob-576

tained by ml-drMC methods with the Lamperti-Backward-Euler and the Euler-Maruyama schemes,577

as well as by the anti-mlMC, and the drMC method with the Milstein scheme of Dang et al. (2017),578

as well as the corresponding standard derivation (in brackets) for the case of ε = 10−3. We observed579

that the option prices obtained by all methods agree well. Also, as in the pure-diffusion case, the580

standard deviation for each method is ≤ ε√
2
≈ 0.000707. This indicates that the variance bound581

ε2/2 is satisfied, as expected by analysis of mlMC methods.582

In the above test, the ml-drMC method with Lamperti-Backward-Euler and Euler-Maruyama583

schemes respectively requires L = 7 and L = 9 to achieve the variance bound ε2/2, whereas the584

anti-mlMC method requires L = 20. The drMC method with Milstein scheme for the variance585

factor requires 128 = 27 timesteps and about 8× 106 samples to achieve the same variance bound.586

6.2.2 Convergence properties and efficiency - price587

We price a European call with initial spot price S(0) = 10, strike price K = 10, and maturity588

of T = 1 (years). We use the following parameters taken from Dang et al. (2017): rd(0) = 0.05,589

θd = 0.05, κd = 1.5, σd = 0.1, ν(0) = 0.04, ν̄ = 0.0225, κν = 2.5, σν = 0.2. The correlations are590

ρs,d = 0.4, ρs,ν = 0.1, ρd,ν = 0.35. The parameters for the normal jump amplitude w are λ = 1,591

µ̃ = −0.08, σ̃ = 0.3.592

Figure D.2 present our results for this test case obtained by various methods. In Figure D.2 (a),593

we investigate the convergence behavior of V` as a function of the level of approximation when594

ε = 10−3. As in the pure-diffusion case, these V` values were estimated using 106 samples, so the595

sampling error is negligible.596

We observe that both drMC estimators, i.e. non-multi-level, result in variances that vary very597

little with level. The ml-drMC estimator built upon the Euler-Maruyama scheme results in ap-598

proximately first-order of convergence for V` (slope ≈ −1). When the LBE is employed, the599

resulting ml-drMC estimator achieves second-order of convergence for V` (slope ≈ −2), same as600

the anti-mlMC method, as expected.601

Figure D.2 (b) shows the mean value and correction at each level. As expected, all methods’602

estimators result in approximately a first-order convergence for E[P` − P`−1], as indicated by the603

slope -1. We note that the strong and weak convergence of the Euler-Maruyama scheme observed604

in Figures D.2 (a) and (b) are respectively slightly more and less than the half-order strong and605

first-order weak convergence of the Euler-Maruyama scheme reported in Giles (2008) in the context606

of European options under Heston model.607

Figure D.2 (c) show the dependence of the computational complexity Cost as a function of608

the desired accuracy ε. As in the 6-factor pure-diffusion case, we observe that while the quantity609

ε2Cost is weakly dependent on ε for the Euler-Maruyama scheme, it is independent of ε for the LBE610

scheme and for the anti-mlMC method. These results again highlight the advantage of the first-order611

strong convergence of the LBE technique. To achieve a RMSE of ε, the computational complexity612

required by the ml-drMC built upon the LBE technique is only O(ε−2), which is expected from the613

complexity analysis of multi-level methods in Giles (2008)[Theorem 3.1]. Also from Figure D.2 (c),614
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we observe that using the LBE scheme results in much lower computational complexity for the615

ml-drMC than using the Euler-Maruyama scheme, about 7-8 times smaller. Furthermore, the616

ml-drMC methods are significantly more efficient than the anti-mlMC, about 50 times.617

6.2.3 Hedging parameters618

We now illustrate that the ml-drMC can also be readily applied to computing hedging parameters.619

We focus on the Delta and Gamma of the option obtained by the ml-drMC method. Figure D.3620

present plots showing the convergence order for V[P` − P`−1] and for E[P` − P`−1]. We observe621

that these plots have the same structure to the results presented in Figure D.2 for the option price.622

In particular, V` obtained by the LBE scheme is O(h2
` ), whereas the variance obtained by the623

Euler-Maruyama technique is O(h`). The computational complexity of the ml-drMC methods in624

this case have the same behaviour as in Figure D.3 (c), and hence omitted.625

6.3 Jump-diffusion: 3-factor HHW with double-exponential jumps626

Next, we present the convergence results for the case of double-exponential distribution. In this627

example, the parameters for the w are taken from Kou (2002): λ = 1, p = 0.4, η1 = 10, η2 = 5.628

Figure D.4 presents plots showing approximate orders of convergence of V[P`−P`−1] and E[P`−P`−1]629

for ml-drMC methods with the LBE and Euler-Maruyama schemes applied to computing option’s630

price, Delta and Gamma. Again, we observe that these plots have the same structure to those631

presented earlier for the normal jump case.632

We conclude this section by emphasize the ml-drMC method can naturally compute very ef-633

ficiently the hedging parameters under jump-diffusion models, especially high-order ones, such as634

Gamma. This is a significant advantage over existing mlMC methods, which typically encounter635

difficulties in this case, due to lack of smoothness in the payoff Burgos and Giles (2012). We also636

note that, although we focus on ml-drMC built-upon the LBE scheme for the variance factor, we637

can also use the Milstein scheme, which also have the same strong and weak convergence orders,638

as well as the positivity preserving property, as the LBE scheme (Neuenkirch and Szpruch, 2014).639

Numerical results, which are not presented herein, for brevity, confirm that the two schemes have640

similar convergence and efficiency advantages over the Euler-Maruyama scheme in the context of641

drMC.642

7 Summary and conclusions643

In this paper, we develop a highly efficient multi-level and dimension reduction MC method, referred644

to as ml-drMC, for pricing plain-vanilla European options under a very general b-dimensional jump-645

diffusion model, where b is arbitrary. The model includes stochastic variance and multi-factor646

Gaussian interest short rate(s), and is highly suitable for options having a wide range of maturities647

in various asset classes, such as equity and foreign exchange. To the best of our knowledge, the648

proposed ml-drMC method is the first multi-level based MC method reported in the literature that649

can effectively handle both multi-dimensionality and jumps in the underlying asset in computing650

the option price and hedging parameters.651

The proposed ml-drMC method is based on two steps. First, by applying the drMC method652

of Dang et al. (2017), we can reduce the number of dimensions of the pricing problem from b to653

only 1, namely the variance factor. In the second step, we apply the multi-level technique with the654

Lamperti-Backward-Euler scheme of Neuenkirch and Szpruch (2014) on the variance factor, and655
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this step is essentially an application of the multi-level technique on a one-dimensional problem.656

We show that the proposed ml-drMC method requires only an overall complexity O(ε−2) to achieve657

a RMSE of ε. These complexity results hold for both price and hedging parameters, such as Delta658

and Gamma. Moreover, due to a (possible) significant variance reduction offered by the drMC659

method, it is expected that the ml-drMC method is significantly more efficient than the antithetic660

mlMC based approach of Giles and Szpruch (2014) when applied to pricing plain-vanilla European661

options under jump-diffusion models.662

Major research directions of the ml-drMC approach go in parallel with the developments of the663

drMC approach. Current research shows that drMC approach can be extended to effectively deal664

with exotic features, such as early exercise or barrier, as well as multi-asset options with stochastic665

volatility and interest rates. Preliminary results indicate that the ml-drMC approach will also work666

very effectively for options with early exercise features. It is expected that the theoretical analysis667

developed in this paper will serve as a building block for future work on ml-drMC. Finally, we668

note that a Shannon wavelet based approach is proposed in Dang and Ortiz-Gracia (2017) as an669

alternative to the multi-level approach in effectively handling the outer expectation.670

Appendix671

A Proof of Lemma 4.1672

A.1 Preliminaries673

First, we present the following bound for |ν̂BMI,h(t)− ν̂PLI,h(t)|.674

Lemma A.1. Consider ν̂PLI,h(t) and ν̂BMI,h(t), respectively defined in (4.6) and (4.7), with stepsize675

h = T/N . Then676

E

[(∫ T

0
ν̂BMI,h(t)− ν̂PLI,h(t)dt

)2
]

= O
(
h3
)
. (A.1)677

Proof. Let678

xn =
∫ tn+1

tn

y(t)dt, tn+1 − tn = h = T/N,679

where680

y(t) = W (t)−Wn −
t− tn
h

(Wn+1 −Wn) .681

For simplicity, let bn = σν
√
ν̂n. We have that

E

[(∫ T

0
ν̂BMI,h(t)− ν̂PLI,h(t)dt

)2
]

= E



(
N−1∑

n=0

bnxn

)2

 = E

[
N−1∑

n=0

b2nx
2
n

]
+ 2E




N−1∑

n=0,m>n

bnbmxnxm




= E

[
N−1∑

n=0

b2nx
2
n

]
+ 2

N−1∑

n=0,m>n

E[xn]E [bnbmxm] = E

[
N−1∑

n=0

b2nx
2
n

]
,

where the third equality is due to the independence between xn and xm, for m > n, and the fourth682

equality is due to the fact that E[xn] = 0. Next, we consider E
[∑N−1

n=0 b
2
nx

2
n

]
. By noting that all683

xn, n = 0, . . . , N − 1, are i.i.d., it follows that684

E

[(∫ T

0
ν̂BMI,h(xt)− ν̂PLI,h(t), dt

)2
]

= E

[
N−1∑

n=0

b2nx
2
n

]
= E

[
x2

0

]
E

[
N−1∑

n=0

b2n

]
.685
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We note that the quantity E
[∑N−1

n=0 b
2
n

]
is bounded, due to the boundedness of ν̂n, n = 0, . . . , N − 1686

(see Neuenkirch and Szpruch (2014)[Lemma 2.5]).687

Next, let χ1(h) =
∫ h

0 W (t) dt and χ2(h) = W1

∫ h
0

t
h dt. Note that χ2(h) ∼ Normal(0, h3/4), and

hence E[(χ2(h))2] = h3/4. We have

E
[
x2

0

]
= E

[
(χ1(h)− χ2(h))2

]
= E

[
(χ1(h))2 − 2χ1(h)χ2(h) + (χ2(h))2

]
= E

[
(χ1(h))2

]
+ E

[
(χ2(h))2

]
,

where the third equality comes from linearity of expectation, and the facts that χ1(h) and χ2(h)
are independent, and that E[χ2(h)] = 0. To compute E

[
(χ1(h))2

]
, note that

E
[
(χ1(h))2

]
= E

[∫ h

0
W (s) ds

∫ h

0
W (t) dt

]
= E

[∫ h

0

∫ h

0
W (s)W (t) dsdt

]

=
∫ h

0

∫ h

0
E [W (s)W (t)] dsdt =

∫ h

0

∫ h

0
E[min(s, t)] dsdt =

h3

3
. (A.2)

Here, in the third equality, Fubini’s theorem is applied. The result of (A.2), together with688

E[(χ2(h))2] = h3/4, concludes the proof.689

A.2 Proof of Lemma 4.1690

We are now in a position to prove Lemma 4.1. First, we show the desired result for scheme (4.8).
We have

E
[(
x̂f1,` − x̂c1,`−1

)2
]

= E

[((
x̂f1,` −

∫ T

0
ν̂fPLI,`(t) dt

)
−
(
x̂c1,`−1 −

∫ T

0
ν̂cPLI,`−1(t) dt

)

+
(∫ T

0
ν̂fPLI,`(t) dt−

∫ T

0
ν(t) dt

)
+
(∫ T

0
ν(t) dt−

∫ T

0
ν̂cPLI,`−1(t) dt

))2]

= E

[((∫ T

0
ν̂fBMI,`(t) dt−

∫ T

0
ν̂fPLI,`(t) dt

)
−
(∫ T

0
ν̂cBMI,`−1(t) dt−

∫ T

0
ν̂cPLI,`−1(t) dt

)

+
(∫ T

0
ν̂fPLI,`(t) dt−

∫ T

0
ν(t) dt

)
+
(∫ T

0
ν(t) dt−

∫ T

0
ν̂cPLI,`−1(t) dt

))2]

≤ 4

(
E
[(∫ T

0
ν̂fBMI,`(t) dt−

∫ T

0
ν̂fPLI,`(t) dt

)2]
+ E

[(∫ T

0
ν̂cBMI,`−1(t) dt−

∫ T

0
ν̂cPLI,`−1(t) dt

)2]

+ E
[(∫ T

0
ν̂fPLI,`(t) dt−

∫ T

0
ν(t) dt

)2]
+ E

[(∫ T

0
ν(t) dt−

∫ T

0
ν̂cPLI,`−1(t) dt

)2])
, (A.3)

where the inequality is obtained by applying Proposition 4.2. From Lemma A.1, it follows that the691

first and second expectations on the right-side of the inequality are O
(
h3
`

)
. From Proposition 4.1,692

the third and fourth expectations are O
(
h2
`

)
. This concludes the proof for scheme (4.8).693

We now show that scheme (4.9) also has E
[(
x̂f1,` − x̂c1,`−1

)2
]

= O
(
h2
`

)
. Under this scheme, we

have

E
[(
x̂f1,` − x̂c1,`−1

)2
]

= E

[(∫ T

0
ν̂fPLI,`(t) dt−

∫ T

0
ν̂cPLI,`−1(t) dt

)2
]

= E

[((∫ T

0
ν̂fBMI,`(t) dt−

∫ T

0
ν̂cBMI,`−1(t) dt

)
−
(∫ T

0
ν̂fBMI,`(t) dt−

∫ T

0
ν̂fPLI,`(t) dt

)
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+
(∫ T

0
ν̂cBMI,`−1(t) dt−

∫ T

0
ν̂cPLI,`−1(t) dt

))2]

≤ 3

(
E

[(∫ T

0
ν̂fBMI,`(t) dt−

∫ T

0
ν̂cBMI,`−1(t) dt

)2
]

+ E

[(∫ T

0
ν̂fBMI,`(t) dt−

∫ T

0
ν̂fPLI,`(t) dt

)2
]

+ E

[(∫ T

0
ν̂cBMI,`−1(t) dt−

∫ T

0
ν̂cPLI,`−1(t) dt

)2
])

,

where the inequality is obtained by applying Proposition 4.2. The desired result follows from the694

bound for scheme (4.8), as shown previously, and Lemma A.1.695

B Proof of Lemma 4.3696

We first recall an useful result from Neuenkirch and Szpruch (2014)(see page 120, Section 3.1).697

Let z(t) =
√
ν(t), the dynamics of which can be obtained by applying Itô’s rule to (2.1d). Under698

Assumption 4.1, there exists a bounded constant C such that699

E

[
sup

n=0,...,dT/he
|z(tn)− ẑn|2

]
≤ Ch2,700

where ẑn denotes the discrete approximation to the exact value z(tn) at time tn obtained by the701

Backward-Euler-Maruyama scheme (Neuenkirch and Szpruch, 2014). Using the above result, the702

proof of Lemma 4.3 can be obtained by closely following the steps of proof of Lemma 4.1, presented703

in Appendix A, using the idea of piecewise linear interpolant and Brownian motion interpolant,704

and noting that function β(t) is bounded on [0, T ].705

C Proof of Lemma 5.1706

Without loss of generality, we can express G, H, and F as707

G = G1x1 +
m∑

i=1

Gdi,1xdi,1 +
l∑

i=1

Gfi,1xfi,1 +Gc,

F = F1x1 + F2x2 +
m∑

i=1

Fdi,1xdi,1 +
l∑

i=1

Ffi,1xfi,1 +
m∑

i=1

Fdi,2xdi,2 +
l∑

i=1

Ffi,2xfi,2 + Fc,

H =
m∑

i=1

Hdi,2xdi,2 +Hc,

(C.1)708

where all the coefficients G(·), F(·), and H(·) are (deterministic) bounded constants. Under Assump-709

tion 5.1, the coefficient Ffi,2, i = 1, . . . , l, are zero.710

First we consider the pure-diffusion case. Recall that the payoff in this case is given by711

F
(
x1, x2, xd1,1, . . . , xdm,1, xf1,1, . . . , xfl,1,xd1,2, . . . , xdm,2

)

= S(0)eG+F+HN (d1)−KeHN (d2) ,
(C.2)712
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where

d1 =
ln
(
S(0)
K

)
+ F

√
2G

+
√

2G, d2 = d1 −
√

2G.

First, we show that ∂F
∂x1

is bounded. By Andersen and Piterbarg (2007), under Feller’s condition

2κν ν̄ > σ2
ν , we have that 0 < ν(t) < ∞, t ∈ [0, T ]. As a result, we have 0 < x1 =

∫ T
0 ν(t)dt < ∞.

We also note that x1 appears only in F and G. Furthermore, by inspecting (3.7a), if G1 6= 0, then
0 < G <∞. Now, for G1 6= 0 (and hence G 6= 0), we have

∂F
∂x1

= S(0)(G1 + F1)eG+F+H N (d1) + S(0)eG+F+H e−
d21
2√

2π

(
F1

√
2G− F 1

2
√

2G

2G
+

1
2
√

2G

)

−KeH e−
d22
2√

2π

(
F1

√
2G− F 1

2
√

2G

2G

)
,

which is bounded, noting G 6= 0. For G1 = 0, then x1 appears only in F , and the proof is similar713

in this case.714

Next, we show that ∂F
∂x2

is bounded. First, we note that, using (4.10) for the period [0, T ], we715

have716

x2 =
ν(T )− ν(0)− κν ν̄T + κνx1

σν
.717

Because ν(0), κν , ν̄, and σν , are constant, as well as x1 is bounded, together with the boundedness718

of ν(T ) (Andersen and Piterbarg, 2007), it follows that x2 is bounded. We also note that x2 only719

appears in F . We can compute ∂F
∂x2

explicitly and it is straightforward to show that ∂F
∂x2

is also720

bounded.721

For the case of ∂F
∂xdi,1

, i = 1, . . . ,m, and ∂F
∂xfi,1

, i = 1, . . . , l, as noted earlier, all of the variables722

are of the form
∫ T

0 β(t)
√
ν(t) dt for positive bounded function β(t), defined in (4.4). Since ν(t) is723

positive and bounded for 0 ≤ t ≤ T , it follows that xdi,1, i = 1, . . . ,m, and xfi,1, i = 1, . . . , l, are724

bounded and non-zero. We also note that, similar to x1, these variables appear only in G and F .725

We can then compute the derivatives of f with respect to these variables explicitly, and show that726

they are are bounded, as we did for ∂F
∂x1

.727

For the case ∂F
∂xdi,2

, i = 1, . . . ,m, we first note that all of the variables are of the form728

∫ T
0 β(t)dW (t), and hence, is unbounded. First, we consider ∂F

∂xdi,2
, i = 1, . . . ,m. By inspection729

of (3.7), we see that xdi,2 appears only in F and H, and not in G, with730

Fdi,2 +Hdi,2 = 0 ⇔ Fdi,2 = −Hdi,2, i = 1, . . . ,m. (C.3)731

By (C.3), we also have eG+F+H does not depends on xdi,2. We have

∂F
∂xdi,2

= S(0)eG+F+H e−
d21
2√

2π
Fdi,2√

2G
−KHdi,2 eHN (d2)−K eH

e−
d22
2√

2π
Fdi,2√

2G

= S(0)Fdi,2 eG+F+H e−
d21
2

2
√
πG
−KHdi,2 eH


N (d2)− e−

d22
2

2
√
πG


 .

We consider the following two limit cases:732

• As Fdi,2xdi,2 →∞, by (C.3), we have Hdi,2xdi,2 → −∞. In this case, from the formulas for d1733

and d2, we have both d1 and d2 →∞ and thus, N (d2)→ 1. We also have eH → 0, e−
d21
2 → 0,734

e−
d22
2 → 0. Thus, lim

Fdi,2xdi,2→∞
∂F
∂xdi,2

= 0.735
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• As Fdi,2xdi,2 → −∞, by (C.3), we have Hdi,2xdi,2 → ∞. In this case, from the formulas for
d1 and d2, we have both d1 and d2 → −∞, and thus N (d2)→ 0. Also, we have eH →∞ and

both e−
d21
2 → 0, and e−

d22
2 → 0. We have

lim
Fdi,2xdi,2→−∞

∂F
∂xdi,2

= lim
Fdi,2xdi,2→−∞

S(0)Fdi,2eG+F+H e−
d21
2

2
√
πG

− lim
Fdi,2xdi,2→−∞

KHdi,2eH


N (d2)− e−

d22
2

2
√
πG




= − lim
Fdi,2xdi,2→∞

KHdi,2eHN (d2) = 0,

where the last equality can be obtained by L’Hopital rule.736

Furthermore, it is straightforward to see that ∂F
∂xdi,2

is bounded for −∞ < Fdi,2xdi,2 < +∞. We737

can conclude that in this case ∂F
∂xdi,2

is bounded.738

Finally, we show that, given all partial derivatives of F(·) with respect to the variables x1, x2,739

xdi,1, i = 1, . . . ,m, xfi,1, i = 1, . . . , l, and xdi,2, i = 1, . . . ,m, are bounded, F(·) is Lipschitz ,740

satisfying the Lipschitz bound (5.1). We note that the boundedness of ∂F
x(·)

implies that741

∣∣∣F(. . . , x(1)
(·) , . . .)−F(. . . , x(2)

(·) , . . .)
∣∣∣ ≤ C(·)

∣∣∣x(1)
(·) − x

(2)
(·)

∣∣∣ , (C.4)742

for some constant C(·). Now, using a telescoping sum, we have743

∣∣∣∣∣F
(
x

(1)
1 , x

(1)
2 , x

(1)
d1,1

, . . . , x
(1)
dm,1

, x
(1)
f1,1

, . . . , x
(1)
fl,1
, x

(1)
d1,2

, . . . , x
(1)
dm,2

)

−F
(
x

(2)
1 , x

(2)
2 , x

(2)
d1,1

, . . . , x
(2)
dm,1

, x
(2)
f1,1

, . . . , x
(2)
fl,1
, x

(2)
d2,2

, . . . , x
(2)
dm,2

)∣∣∣∣∣

=

∣∣∣∣∣F
(
x

(1)
1 , x

(1)
2 , x

(1)
d1,1

, . . .
)
−F

(
x

(2)
1 , x

(1)
2 , x

(1)
d1,1

, . . .
)

+ F
(
x

(2)
1 , x

(1)
2 , x

(1)
d1,1

, . . .
)
−F

(
x

(2)
1 , x

(2)
2 , x

(1)
d1,1

, . . .
)

+ F
(
x

(2)
1 , x

(2)
2 , x

(1)
d1,1

, . . .
)
− . . .

∣∣∣∣∣

≤
∣∣∣∣∣F
(
x

(1)
1 , x

(1)
2 , x

(1)
d1,1

, . . .
)
−F

(
x

(2)
1 , x

(1)
2 , x

(1)
d1,1

, . . .
)∣∣∣∣∣

+

∣∣∣∣∣F
(
x

(2)
1 , x

(1)
2 , x

(1)
d1,1

, . . .
)
−F

(
x

(2)
1 , x

(2)
2 , x

(1)
d1,1

, . . .
)∣∣∣∣∣+ . . .

≤ C
(

2∑

i=1

∣∣∣x(1)
i − x

(2)
i

∣∣∣+
m∑

i=1

∣∣∣x(1)
di,1
− x(2)

di,1

∣∣∣+
l∑

i=1

∣∣∣x(1)
fi,1
− x(2)

fi,1

∣∣∣+
m∑

i=1

∣∣∣x(1)
di,2
− x(2)

di,2

∣∣∣
)
,

(C.5)744

where in the last inequality, we use (C.4) and C = maxC(·). This completes the proof.745
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D Double-exponential (Kou, 2002)746

In the case w = ln(y) ∼ Double-Exponential(p, η1, η2), where 0 ≤ p ≤ 1, η1 > 1, η2 > 0, the747

European call option value is given by (Dang et al., 2017)[Corollary 3.1]748

V (S(0), 0, ·) = E

[ ∞∑

n=0

(λT )n

n!

{
S(0)e(G+F+H)An −KeHBn

}]
, (D.1)749

where

An =
1√
2π

[
n∑

k=1

Pn,k

(
η1

√
2G
)k

eG (1−η1)2Ik−1

(
−d1, (1− η1)

√
2G,−1, (1− η1)

√
2G
)

(D.2a)

+Qn,k

(
η2

√
2G
)k

eG (1+η2)2Ik−1

(
−d1, (1 + η2)

√
2G, 1,−(1 + η2)

√
2G
)]
,

Bn =
1√
2π

[
n∑

k=1

Pn,k

(
η1

√
2G
)k

eG (η1)2Ik−1

(
−d2,−η1

√
2G,−1,−η1

√
2G
)

(D.2b)

+Qn,k

(
η2

√
2G
)k

eG (η2)2Ik−1

(
−d2, η2

√
2G, 1,−η2

√
2G
)]

.

Here,750

Pn,k =
n−1∑

i=k

(
n− k − 1
i− k

)(
n

i

)(
η1

η1 + η2

)i−k ( η2

η1 + η2

)n−i
pi qn−i, 1 ≤ k ≤ n− 1,

Qn,k =
n−1∑

i=k

(
n− k − 1
i− k

)(
n

i

)(
η1

η1 + η2

)n−i( η2

η1 + η2

)i−k
pn−i qi, 1 ≤ k ≤ n− 1,

(D.3)751

with Pn,n = pn and Qn,n = qn, and d1 and d2 are defined in (3.10). Also, Hhk(·), Ik(·; ·) are defined752

as753

Hhk(x) =
1
k!

∫ ∞

x
(t− x)k e−

1
2
t2dt, k = 0, 1, 2, . . .

with Hh−1(x) = e−x
2/2, and Hh0(x) =

√
2πN (−x),

Ik(c;α, β, δ) =
∫ ∞

c
eαx Hhk(βx− δ) dx,

(D.4)754

for arbitrary constant α, c, β, and δ.755
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Figure D.1: Plots for price under the 6-factor pure-diffusion model.
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Figure D.2: Plots for price under the 3-factor HHW jump-diffusion model with normal jumps. Call option’s
price ≈ 1.535.
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Figure D.3: Plots for Delta and Gamma under the 3-factor HHW jump-diffusion model with normal jumps.
Call option’s Delta ≈ 0.648, Gamma ≈ 0.133.
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Figure D.4: Variance and mean plots for the option price, Delta, and Gamma, under the 3-factor HHW
jump-diffusion model with double-exponential jumps. Call option price ≈ 1.302, Delta ≈ 0.664, Gamma
≈ 0.125.
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ml-drMC (LBE) drMC (LBE) anti-mlMC (Milstein)
12.563512(0.000701) 12.563405 (0.000705) 12.563221 (0.000705)

Table D.1: Option prices obtained by different methods under the 6-factor pure-diffusion model (6.2). For
the anti-mlMC and ml-drMC methods, ε = 10−3.
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ml-drMC (Euler) ml-drMC (LBE) drMC (Milstein) anti-mlMC (Milstein)
1.535023(0.000706) 1.535145 (0.000703) 1.535381 (0.000704) 1.535233 (0.000704)

Table D.2: Call option’s prices obtained by different methods under the 3-factor HHW jump-diffusion
model (6.1) with normal jump. For the ml-drMC and anti-mlMC methods, ε = 10−3.


