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Abstract This paper presents a new copula-based methodology for Gaussian and non-Gaussian inverse
modeling of groundwater flow. The presented approach is embedded in a Monte Carlo framework and it is
based on the concept of mixing spatial random fields where a spatial copula serves as spatial dependence
function. The target conditional spatial distribution of hydraulic transmissivities is obtained as a linear com-
bination of unconditional spatial fields. The corresponding weights of this linear combination are chosen
such that the combined field has the prescribed spatial variability, and honors all the observations of
hydraulic transmissivities. The constraints related to hydraulic head observations are nonlinear. In order to
fulfill these constraints, a connected domain in the weight space, inside which all linear constraints are ful-
filled, is identified. This domain is defined analytically and includes an infinite number of conditional fields
(i.e., conditioned on the observed hydraulic transmissivities), and the nonlinear constraints can be fulfilled
via minimization of the deviation of the modeled and the observed hydraulic heads. This procedure enables
the simulation of a great number of solutions for the inverse problem, allowing a reasonable quantification
of the associated uncertainties. The methodology can be used for fields with Gaussian copula dependence,
and fields with specific non-Gaussian copula dependence. Further, arbitrary marginal distributions can be
considered.

1. Introduction

Modeling of groundwater flow is important for a number of different tasks, such as groundwater manage-
ment and contaminant remediation. The mathematical models describing groundwater flow are based on
the continuity equation and Darcy’s law and are formulated in the form of partial differential equations.
These equations require the knowledge of parameters such as hydraulic transmissivity and porosity. These
parameters, as they describe natural conditions below the surface, cannot be assessed directly. Their values
are estimated from a limited number of point measurements (wells) and sometimes combined with infor-
mation obtained from indirect observations such as geophysics. This limited information is the basis for the
estimation of the parameters over the whole investigation area. There are a great number of geostatistical
methods that can be used to estimate spatial fields conditioned on a limited number of observations. These
methods, however, are only partially useful for groundwater modeling. The reason for this is that in addition
to the observations of the parameters, groundwater heads are also observed at a number of locations.
These groundwater heads are linked to the partly unknown parameters (transmissivities). The link is estab-
lished through a mathematical model of groundwater flow formulated as partial differential equations.
Thus, these head observations can be used as information for reducing the uncertainty of the transmissiv-
ities. This is, however, a complicated task as the link between heads and the other parameters is not linear.

The task to estimate the unknown transmissivities from limited hydraulic transmissivity and groundwater
head observations is the typical inverse problem in groundwater modeling. Other inverse problems formu-
lated using concentrations of different substances or transient conditions can also be treated with the sug-
gested methodology. Inverse modeling is usually an ill-posed problem: either there is no solution
(contradicting constraints) or there are infinitely many solutions. Furthermore, specific properties of the dis-
tribution—such as nonnegativity of the values constitute further problems [Michalak, 2008]. The complexity
of the problem seldom allows an exact solution, instead a solution which is close to the observations is
attempted. These problems are usually formulated as optimization problems. The objective function(s) are
related to the observations and to the spatial structure of the field. The unknown field is usually represented

Key Points:
� Flexible to several conditioning

constraints
� Inverse problem transformed to a

continuous optimization problem
� Extensions to non-Gaussian spatial

structures

Correspondence to:
A. B�ardossy,
bardossy@iws.uni-stuttgart.de

Citation:
B�ardossy, A., and S. H€orning (2016),
Gaussian and non-Gaussian inverse
modeling of groundwater flow using
copulas and random mixing, Water
Resour. Res., 52, 4504–4526,
doi:10.1002/2014WR016820.

Received 18 DEC 2014

Accepted 14 MAY 2016

Accepted article online 19 MAY 2016

Published online 12 JUN 2016

VC 2016. American Geophysical Union.

All Rights Reserved.

B�ARDOSSY AND H€ORNING GAUSSIAN AND NON-GAUSSIAN INVERSE GROUNDWATER MODELING 4504

Water Resources Research

PUBLICATIONS

http://dx.doi.org/10.1002/2014WR016820
http://onlinelibrary.wiley.com/journal/10.1002/(ISSN)1944-7973/
http://publications.agu.org/


by a dense grid containing a large number of points. Thus, a straightforward optimization is computation-
ally not feasible. Therefore, a reduction of the dimensions of the problem is absolutely necessary.

There are a great number of different methods ranging from manual model calibration to sophisticated
numerical procedures that can be used for this problem, e.g., the pilot point method [RamaRao et al., 1995],
the ensemble Kalman filter [Evensen, 2003; Hendricks Franssen and Kinzelbach, 2008; Zhou et al., 2011,
2012a], the self-calibration method [G�omez-Hern�andez et al., 1997; Franssen et al., 2003], the Markov chain
Monte Carlo method [Oliver et al., 1997; Fu and G�omez-Hern�andez, 2008], or the gradual deformation
approach [Hu, 2000; Hu et al., 2001; Hu, 2002; Caers, 2003]. A comprehensive review of several methods is
given in Zhou et al. [2014] and a comparison of different methods can be found in Franssen et al. [2009].

Another important issue in groundwater modeling is whether the hydraulic transmissivities exhibit a Gaus-
sian spatial dependence structure or not. Most inverse modeling methods implicitly assume multi-
Gaussianity, however, not only the marginal distributions but also the spatial dependence of the hydraulic
transmissivity field W(x) might differ significantly from Gaussian. Such non-Gaussian spatial structures have
a significant influence on groundwater flow and transport behavior. G�omez-Hern�andez and Wen [1998]
showed how different non-Gaussian models, all sharing the same marginals and the same covariance func-
tion but with different spatial patterns of continuity, lead to different groundwater travel times. In Zinn and
Harvey [2003], the effect of non-Gaussian spatial dependence on groundwater flow and mass transfer was
demonstrated using several examples. In Haslauer et al. [2012], it was shown for a selected case study that
spatial dependence of transmissivities can best be modeled using a v-transformed copula. In Guthke [2013]
it was shown how different real-world processes lead to asymmetric spatial dependence structures which
can be described using copulas. In general, a Gaussian spatial dependence implies a low spatial correlation
of extremes, however, the dependence of transmissivities is often asymmetrical—high values being clus-
tered differently than the low values. Some inverse modeling methods are able to handle non-Gaussian pat-
terns of variability. However, most of them are based on multiple-point geostatistics, i.e., they require a
suitable training image.

Most methods, practically all of them that use only moments up to the order 2, can only handle Gaussian
spatial patterns. But there is an increasing interest in inverse modeling approaches that are able to deal
with non-Gaussian dependencies. However, from the above mentioned techniques, only the Markov chain
Monte Carlo method, extensions of the gradual deformation method, and modified ensemble Kalman filter
approaches [Jafarpour and Khodabakhshi, 2011; Zhou et al., 2011] are able to handle certain types of non-
Gaussian patterns. A different approach to address non-Gaussianity is to use multiple-point geostatistics,
where a training image serves as a conceptual geological model [Guardiano and Srivastava, 1993]. Several
multiple-point geostatistics algorithms are available, e.g., SNESIM [Strebelle, 2002], FILTERSIM [Zhang et al.,
2006], SIMPAT [Arpat and Caers, 2007], or direct sampling [Mariethoz et al., 2010]. In the context of inverse
modeling, multiple-point geostatistics are frequently applied [Caers and Hoffman, 2006; Ronayne et al.,
2008; Alcolea and Renard, 2010; Zhou et al., 2012b; Hu et al., 2013] and the advantages of multiple-point
geostatistics compared to variogram-based methods have been confirmed in several studies [Journel and
Zhang, 2006; Huysmans and Dassargues, 2010]. However, all the methods referred to above suffer from one
main drawback, namely the training image itself. In general, a training image is a conceptual model and its
preparation is often based on subjective criteria of the modeling expert [P�erez et al., 2014]. Thus, the selec-
tion of an appropriate training image is a main issue, especially in 3-D applications.

In this paper, a new methodology based on random mixing of spatial fields is presented. It is an extension
of the methodology for the gradual deformation of Gaussian random fields described in Hu [2000]. The pur-
pose of the new method is to produce fields that not only reproduce the spatial variability of the field but
also the hydraulic transmissivity measurements, other linear functions related to transmissivities, and the
corresponding head values. The proposed method uses the concept of spatial copulas, thus Gaussianity
and non-Gaussianity in both, the marginal distribution as well as in the spatial dependence can be consid-
ered. The occurrence of non-Gaussian (and non-logGaussian) distributions in permeability fields was investi-
gated in Riva et al. [2013]. The copula-based approach can accommodate arbitrary heavy tailed marginals.
The copula serves as spatial dependence function which is fitted to the observations directly, hence non-
Gaussianity of the dependence can be addressed without the need for a suitable training image. However,
the suggested approach can be coupled to a multiple-point geostatistics method which allows inversion
under specific structural constraints.
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The basic assumptions and the basics of copulas are introduced in section 2. Their use corresponding to the
suggested approach as well as the approach itself is described in section 3. This section also contains the
extensions to non-Gaussian spatial copulas. In section 4, the numerical methodology is described, and in
section 5, the suggested inverse modeling approach is demonstrated using several examples. Conclusions
are drawn in section 6.

2. Basic Assumptions, and the Application of Spatial Copulas

Assuming that W(x) is the unknown hydraulic transmissivity field with x being the location in the investiga-
tion domain D, the general goals of inverse modeling are as follows:

1. To find a field W(x) for x 2 D with the observed distribution and spatial variability.
2. To honor all observations at locations xt of the hydraulic transmissivities in field W(x) such that WðxtÞ5wt

for t51; . . . ; T .
3. To have the head field HWðuÞ, corresponding to the field W(x) and calculated from the corresponding dif-

ferential equation with given boundary and initial conditions with the observations at locations um, fulfill-
ing HWðumÞ5hm for m51; . . . ;M.

There are different possibilities to describe spatial variability. The most common assumptions are second-
order stationarity or an explicit assumption of a multivariate lognormal distribution of the spatial field. The
assumption of a multivariate lognormal spatial distribution is very restrictive, and statistical investigations of
observed data provide evidence of its unsuitability [G�omez-Hern�andez and Wen, 1998; Haslauer et al., 2012].
Therefore, models which allow non-Gaussian marginals and/or non-Gaussian dependence are required.
Multipoint geostatistics and indicator geostatistics offer different approaches, which allow certain types of
non-Gaussian dependence. Copulas offer another possibility to define model with non-Gaussian properties.
The multivariate lognormal case can also be simulated using copulas. The approach allows the considera-
tion of arbitrary marginal distributions with both Gaussian and certain non-Gaussian spatial dependencies.
For the sake of completeness, the copula-based methodology to describe spatial variability is briefly
sketched here. For more details on spatial copulas and on copula parameter estimation based on maximum
likelihood, see B�ardossy [2006] and B�ardossy and Li [2008].

In general, copulas are multivariate distributions defined on the unit hypercube with uniform univariate
marginals. Formally:

C : ½0; 1�n5½0; 1� (1)

for any number 0 � ui � 1:

CðuðiÞÞ5ui if ui5ð1; . . . ; 1; ui ; 1; . . . ; 1Þ (2)

Copulas are used to describe the dependence between random variables independently of their marginal
distributions, i.e., monotonic transformations of the marginals do not influence the dependence structure.
They are linked to multivariate distributions by Sklar’s theorem [Sklar, 1959] that proves that each continu-
ous multivariate distribution Fðx1; . . . ; xnÞ can be represented with the help of a unique copula:

Fðx1; . . . ; xnÞ5CðFx1ðx1Þ; . . . ; FxnðxnÞÞ (3)

where Fxi ðxÞ denotes the ith one-dimensional marginal distribution of the multivariate distribution. Vice
versa, any copula C can be used to create a multivariate distribution Fðx1; . . . ; xnÞ.

Copulas of multivariate distributions can be extracted by taking:

Cðu1; . . . ; unÞ5FðF21
x1
ðu1Þ; . . . ; F21

xn
ðunÞÞ (4)

The major advantage in using copulas for describing multivariate distributions is that the dependence struc-
ture can be modeled separately from the marginal distributions. For more information on copulas, the inter-
ested reader is referred to Nelson [1999].

In the geostatistical context, copulas can be used to describe the joint multivariate distribution correspond-
ing to variables that are spatially distributed in the domain of interest. As in traditional geostatistics, it is
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assumed that the univariate marginal distribution corresponding to each point of the domain is the same,
and the spatial dependence is translation invariant, thus for any separating vector h. This means that for
any set of points si in the investigation domain such that si1h is also in the domain the spatial copula of
the multivariate distribution is such that:

CSðu1; . . . ; ukÞ5PðFZðZðs1ÞÞ < u1; . . . ; FZðZðskÞÞ < ukÞ

5PðFZðZðs11hÞÞ < u1; . . . ; FZðZðsk1hÞÞ < ukÞ

5CS1hðu1; . . . ; ukÞ

(5)

Spatial copulas have to fulfill certain conditions which are listed in B�ardossy [2006].

The most common spatial copula is the Gaussian copula obtained by applying (4) for the multivariate nor-
mal distribution. A class of non-Gaussian copulas can be obtained by a nonmonotonic transformation of
the multivariate normal distribution.

If Z(x) is a Gaussian random field defined on a selected domain, then

VðxÞ5gðZðxÞÞ (6)

defines a new random field which is non-Gaussian if g(z) is a nonmonotonic function. If g(z) is continuous
then the copula of V(x) obtained using (4) fulfills the conditions of a spatial copula. An example for this is
the v-copula used in B�ardossy and Li [2008] with:

gðzÞ5
kðz2mÞ if z � m

m2z if z < m

(
(7)

In B�ardossy and Li [2008], parameter inference for such copulas is described. Haslauer et al. [2012] showed
that for the Borden site such a copula provides a better description of spatial variability as the Gaussian cop-
ula, and that contaminant transport is significantly influenced by the choice of the spatial copula.

In Figure 1, two realization of random fields are shown. The two fields have the same marginal distribution
and the same variogram. The difference of the spatial structure of the two fields can be diagnosed by their
different bivariate spatial copulas. The two fields were generated as common random fields [Guthke and
B�ardossy, 2012] in order to make a clearer distinction between the structures possible.

3. Methodology: Simulation and Inverse Modeling

Inverse modeling is often formulated as an optimization problem, where a transmissivity field with given
spatial variability is to be found minimizing the difference between observed and simulated transmissivity
and corresponding head values. This problem can effectively be solved restricting the search domain to a
connected set of fields with the given spatial variability which honor the observation. Such a technique,
called gradual deformation, was developed in Hu [2000]. The methodology is modified in order to cope
with more general linear constraints. The nonlinear constraints imposed by the flow model can be fulfilled
by an unconstrained minimization of the squared differences.

In this paper, inverse modeling using two different spatial copula models of spatial dependence of the
transmissivity field W(x) is presented. First, the Gaussian copula-based methodology is described which ena-
bles the use of any arbitrary marginal distribution with multi-Gaussian spatial dependence structure. Sec-
ond, the copula defined by (7) leading to a non-Gaussian spatial dependence and with an arbitrary
marginal is considered. This allows asymmetric dependencies of the values and different structures of spa-
tial connectedness.

3.1. Gaussian Copulas
In groundwater modeling, it is often assumed that the hydraulic transmissivities follow a multivariate log-
normal distribution [Freeze, 1975]. However, the distribution of the transmissivity values does not necessarily
follow the lognormal distribution. The use of Gaussian copulas allows the consideration of the multivariate
lognormal distribution and that of a non-lognormal marginal with a Gaussian dependence. The Gaussian
copula is defined in accordance with (4) as
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CCðu1; . . . ; unÞ5UC;nðU21ðu1Þ; . . . ;U21ðunÞÞ (8)

where U21 denotes the inverse univariate standard normal distribution and UC;n the n-dimensional Gaus-
sian distribution with correlation matrix C and standard normal marginals. The transformation:

ZðxÞ5U21 FðWðxÞÞð Þ (9)

applied for each location x of the field under investigation transforms the hydraulic transmissivity field W to
a multinormal field Z. Note that the covariance of Z in the normal space is different from the covariance of W.
Then the conditional simulation of the field Z is carried out using a linear combination of unconditional fields
as described below. Finally, the conditional field Z is transformed back to W for each point x via:

Figure 1. Common random field with (left) Gaussian and (right) non-Gaussian dependence structure.
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WðxÞ5F21ðUðZðxÞÞÞ (10)

where F21 denotes the inverse marginal distribution of W(x). Thus, the transmissivity field W(x) exhibits a
Gaussian spatial dependence structure with an arbitrary marginal distribution FðWðxÞÞ, which includes the
classical lognormal case. In the next section, the simulation of the field W(x) is described.

3.2. Linear Conditions
In order to find a possible solution to the inverse problem, the first step is to identify fields with the pre-
scribed spatial dependence expressed by the correlation matrix C of the copula introduced in (8) and with
the prescribed values (transformed hydraulic transmissivities) at the observation locations. Let Z be the
transformed multinormal field obtained from the transformation described above. This random field Z is
expressed as a linear combination of other unconditional random fields Yi. This means:

Z5
Xn

i51

aiYi (11)

Let Yi for i51; . . . ; n be independent random fields with zero expectation, unit variance, and the correlation
matrix being the same C as of Z. Such fields can be simulated using different methods such as Fast Fourier
Transformation for regular grids [Dietrich and Newsam, 1996], Turning band simulation [Journel, 1974], or
the Cholesky transformation of the covariance matrix.

As described in Hu [2000], if all Yi have the same covariance matrix C and:

Xn

i51

a2
i 51 (12)

then Z also has the same covariance structure as all random fields Yi.

The conditional field Z should honor certain linear constraints:

At Zð Þ5zt t51; . . . ; T (13)

where AtðZÞ represent linear functions on Z. They include as special case point and/or integral observations
(for a point xj the linear function is AðZÞ5ZðxjÞÞ.

In Hu [2000], Hu et al. [2001] point observations are incorporated using conditioning via Kriging. In Hu
[2002], the methodology is extended to combine dependent conditional realizations. The approach sug-
gested here incorporates any linear constraint directly. Therefore, for the n independent realizations of
unconditional fields Yi , the weights ai have to be selected so that:

At

Xn

i51

aiYi

 !
5
Xn

i51

aiAtðYiÞ5zt t51; . . . ; T (14)

If the number n of fields Yi is greater than T there are weights ai that fulfill (14). However, these
weights do not necessarily fulfill (12). Thus, the next step is to find weights that fulfill both (14) and
(12). If the dimension n> T, the weights in (14) are nonunique. These weights form a hypersurface
in the n-dimensional space of the weights ða1; . . . ; anÞ. If (in the n-dimensional space of weights) this
hypersurface intersects with the unit sphere then one can find a solution. The intersection is not
empty if and only if the closest point of the hypersurface to the origin is within the unit sphere.
This closest point (minimizing the norm

Pn
i51 a2

i ) can be found for any set of fields Yi by singular
value decomposition [Golub and Kahan, 1965]. By increasing n (adding further random fields Yi) the
norm can be reduced below 1.

In order to find a solution which also fulfills (12) and which honors nonlinear constraints a component fulfill-
ing the homogeneous conditions, that is, AtðYðkÞÞ50 t51; . . . ; T has to be added. This can be performed
by solving the homogeneous equations using different additional unconditional fields Vn1j which share the
same spatial properties as the fields Yi:
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Xn

i51

bj;iAtðViÞ52AtðVn1jÞ t51; . . . ; T (15)

By solving (15) for a set of fields j51; . . . ;N, one obtains weights ðbj;1; . . . ; bj;n; 0; . . . ; 0; 1; 0; . . . ; 0Þ with 1
being at the ðn1jÞ th position, which are all solutions of the homogeneous equations. Linear combinations
of these weights define fields YðkÞ which also fulfill the homogeneous conditions:

YðkÞ5
XN

j51

kj

Xn1N

i51

bj;iVi (16)

The coefficients kj of the linear combination are arbitrary real numbers used as unknowns for an optimiza-
tion procedure to honor nonlinear constraints. The final conditional field can now be obtained via:

Zk5
Xn

i51

ai Yi1kðkÞYðkÞ (17)

where kðkÞ denotes a normalizing constant defined as

kðkÞ56

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
12
Xn

i51
a2

iXN

j51

Xn1N

i51
bj;ikj

� �2

vuuut (18)

which is required for the fulfillment of condition (12). If the deviation between observed and modeled head
is not small enough, then an additional field Vn1N11 is generated, and the optimization (with respect to the
k values) is repeated. Note that the optima improve by adding a new field, and that the previous optimal
solution can be taken as initial point for the next.

This method differs from the approach described in Hu et al. [2001] as

1. it does not require any Kriging for conditioning;
2. it allows the consideration of any kind of linear constraints (including point and block observations and

correlations to external fields);
3. the optimization procedure used to fulfill nonlinear constraints such as the hydraulic heads for inverse

modeling is unconditional; and
4. arbitrary marginal distribution can be used.

This construct has the specific advantage with respect to other linear conditioning methods, that using the
points of the solution hyperplane it can be used to generate an infinite number of conditional fields.

3.3. Conditioning on the Head Observations
For each conditional hydraulic transmissivity field W(x) obtained from the corresponding Z(x), the solution
of the groundwater flow equations provides calculated head HZðumÞ values at the head observations. These
are, unfortunately, usually different from the observed values hm. Due to the nonlinear correspondence
between Z(x) and W(x) described by the partial differential equation, these conditions cannot be considered
as linear. As a next step, fields which also honor these conditions have to be found. The nonlinear con-
straints concerning the head observations can now be considered as

XM

m51

HZkðumÞ2hmð Þ2 ! min (19)

an optimization problem with kj values j51; . . . ;N being the unknowns, with no constraints. This is a stand-
ard continuous unconstrained optimization problem with m unknown kj values which can be solved by
standard numerical procedures. If the solution is such that the deviation of the simulated heads from the
observed is not greater than a selected threshold d:
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XM

m51

HZkðumÞ2hmð Þ2 < d (20)

then the solution is accepted, otherwise N is increased. The minimum of the objective function decreases as
N, the number of additional fields considered, increases. Thus, step-by-step, a better solution can be obtained
until the objective function becomes small enough, meaning that the head constraints are sufficiently fulfilled.
Other objective functions such as consideration of the covariances of the head observations:

ðHZkðumÞ2hmÞT RðHZkðumÞ2hmÞ < d (21)

or the minimization of the maximal deviation:

max
m

jHZk ðumÞ2hmj < d (22)

can alternatively be considered.

Note that for each choice of the random fields Yi , a different solution of the problem can be obtained. Thus,
this procedure can be used to produce an arbitrary number of random solutions of the inverse problem.

3.4. Non-Gaussian Dependence
The conditional simulation of fields with non-Gaussian copula-based spatial structures requires a few adjust-
ments of the above described approach.

1. The univariate marginal distribution G(v) of gðZðxÞÞ, where Z(x) is a univariate random variable with a
Gaussian distribution is assessed. Depending on the form of g, this can be done either analytically or
numerically.

2. The observed hydraulic transmissivity values W(x) are transformed to the above distribution by

VðxiÞ5G21 FðWðxiÞÞð Þ (23)

where G21 denotes the inverse univariate marginal distribution of g(Z) and FðWðxiÞÞ denotes the mar-
ginal distribution of the observed values.

3. These V(x) values are transformed back to the standard normal distribution using a Markov chain Monte
Carlo (MCMC) approach. Here the Metropolis algorithm is used [Hastings, 1970]. This procedure is needed
as the transformation is nonmonotonic. This means that a sample Zðx1Þ; . . . ; ZðxnÞ is generated so that

VðxiÞ5g ZðxiÞð Þ (24)

The density used for the Markov chain Monte Carlo simulation corresponding to this sample is
Un Zðx1Þ; . . . ; ZðxnÞ;Cð Þ. Here C denotes the covariance matrix of Z(x) and Un denotes the n-dimensional
Gaussian density. In the case of the v-transformed copula for each value VðxiÞ, there are two inverses ZðxiÞ
values which satisfy (24). They are ZðxiÞ5VðxiÞ=k1m and ZðxiÞ5m2VðxiÞ. In the MCMC procedure, first
the nonunique inverse is selected at random. Then the MCMC procedure is carried out by randomly chang-
ing one of the inverses using the density of the corresponding Z. The procedure is restarted for each realiza-
tion. The number of MCMC steps is selected so that the result becomes independent from the initial
realization. As the calculation of the density is simple the computational cost of it is low.

4. The conditional simulation of the field Z(x) is carried out as described in section 3.2 for all point equality
constraints. Note that those constraints are the sampled values Zðx1Þ; . . . ; ZðxnÞ resulting from step 3.

5. The resulting conditional field Z(x) is transformed back to W(x) via:

WðxÞ5F21 GðgðZðxÞÞð Þ (25)

Here F21 denotes the inverse marginal distribution of the observed values W(x).

Thus, W(x) exhibits a non-Gaussian spatial dependence structure defined by the nonmonotonic transforma-
tion (7). Furthermore, FðWðxÞÞ is an arbitrary marginal distribution.

3.5. Combination With Known Geological Structure Information
It is often assumed that the hydraulic transmissivity field is structured in a specific way according to the
geological processes leading to these variables. For example, geological sedimentation processes could
lead to fluvial deposits, i.e., contrasting facies of highly different transmissivities. Such structures are often
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obtained by combining observations and training images. In Li et al. [2012], a Kalman filter based method is
suggested for inverse modeling for this case. Here a different approach is presented.

Structural information obtained from training images can be combined with the random mixing methodol-
ogy to solve the inverse problem. The inversion is carried out for each realization of the categorical field.
Assume that a conditional categorical map has been obtained using multipoint geostatistics [Strebelle,
2002; Mariethoz et al., 2010]. This means that a random field B(x) with possible values BðxÞ51; . . . ; B is
obtained for conditioning. For each of the possible classes b, there can be a different distribution of the
hydraulic transmissivity values:

FbðwÞ5P WðxÞ < wjBðxÞ5bð Þ (26)

An inverse solution for the problem with the above additional condition can be obtained by defining the
new field:

ZðxÞ5U21 FbðWðxÞÞð Þ (27)

This Z(x) can then be treated the same way as described in section 3.2. Note that here it is assumed that the
spatial variability within the different units b is the same in the rank sense, and that there is a kind of conti-
nuity in the fields. This assumption could be weakened, by allowing an individual field ZbðxÞ for each geo-
logical unit b, with a specific description of the spatial variability. In this case, the fields are mixed
simultaneously, the same way as described above.

The likelihood of the field B(x) can be estimated via the likelihood of the realizations ZbðxÞ, and an Monte
Carlo Markov chain approach may provide means to perform combined simulations. This however requires
more research and goes beyond the scope of this paper.

4. Numerical Methodology

As described above, a conditional realization of the hydraulic transmissivities is determined by a linear com-
bination of unconditional Gaussian random fields. Thus, a large number of Gaussian random fields could be
required. In order to reduce the computational burden, simulation on a regular grid using Fast Fourier
Transformation [Wood and Chan, 1994; Wood, 1995; Dietrich and Newsam, 1996] is adopted for all examples.
This method allows very fast simulation of unconditional Gaussian random fields.

According to section 3.3, the inverse problem
is transformed to a continuous optimization
problem. Hence, every continuous optimiza-
tion technique can be applied. Throughout
this paper, the COBYLA algorithm (constrained
optimization by linear approximation) is
adopted. This algorithm is based on linear
approximations of the objective function and
each constraint. For further details, the reader
is referred to Powell [1998].

The numerical flow and transport model
applied is HydroGeosphere [Therrien and Sud-
icky, 1996]. HydroGeosphere is a three-
dimensional numerical model describing fully
integrated subsurface and surface flow and
solute transport. A finite element steady state
scheme is adopted throughout this paper.

5. Applications

The suggested inverse modeling approach is
demonstrated using several examples. To avoid

Figure 2. General flow setup for the synthetic test case.
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the use of examples that are especially designed to highlight the capabilities of the presented approach and to
ensure comparability to other inverse methods, two well-studied synthetic test cases of Franssen et al. [2009] are
applied to demonstrate the basic methodology. In order to illustrate the possible extensions, one test case is
modified.

In both cases, hydraulic transmissivity is considered as an undersampled parameter and its spatial distribu-
tion is assumed to be the only unknown of the problem. All other parameters are assumed to be known.
Figure 2 shows the general flow setup. The domain length is 4900 m in the x direction and 5000 m in the y
direction, discretized into 49 3 50 grid cells. The northern and southern boundaries share no-flow condi-
tions, while the western and eastern boundaries have prescribed heads of 0 and 5 m, respectively. A pump-
ing well at location (1900 m, 2350 m) pumps steadily with a flow rate of 0:0578 m3=s and a uniform
recharge rate of 362:912 mm=yr is predefined all over the domain.

The first case is mildly heterogeneous; the log transmissivity has a mean log10T of 22.932 and a log10T var-
iance of 0:189 log10ðm2=sÞ. An exponential variogram without nugget effect and an effective range of
500 m is assumed.

The second case is strongly heterogeneous, with a mean log10T of 22.932 and a log10T variance of
1:0 log10ðm2=sÞ. A spherical variogram without nugget effect and an effective range of 500 m is assumed.

The reference log transmissivity (Y) fields and the corresponding reference hydraulic head (h) fields are dis-
played in Figure 3. Those virtual realities are sampled at 25 locations resulting in two sets of conditioning
data for each test case.

According to Franssen et al. [2009], the performance of the method is evaluated using three statistics:

Figure 3. (left) Reference log 10 hydraulic transmissivity Y (log10ðm2=sÞ) field and (right) corresponding reference hydraulic head h ðmÞ
field. Cross denotes the conditioning point locations. The upper fields belong to the mildly heterogeneous test case and the lower fields
belong to the strongly heterogeneous test case.
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1. Average absolute error:

AAE Xð Þ5 1
N

XN

i51

jXi 2Xref ;ij (28)

with N being the number of elements, X the variable of interest, and �X the mean of the variable of inter-
est over all realizations.

2. Root-mean-square error:

RMSE Xð Þ5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
N

XN

i51

Xi 2Xref ;i
� �2

vuut (29)

Figure 4. (top) Three possible log 10 transmissivity fields Y (log10ðm2=sÞ) and (bottom) corresponding hydraulic head fields h (m) according to section 5.1.

Figure 5. (left) Ensemble mean Y field (log10ðm2=sÞ) and (right) ensemble mean h field (m) over 100 realizations corresponding to section 5.1.
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3. Average ensemble standard deviation:

AESD Xð Þ5 1
N

XN

i51

rXi (30)

with rXi being the ensemble standard deviation of variable X at element i.
Besides those comparison measures, standard deviation maps for both Y and h are provided for each exam-
ple. To illustrate the benefits of the inverse solution, the statistical measures are calculated for two noninverse
cases as well. In the first case, the hydraulic transmissivity fields are only conditioned on the spatial model
(UNC), while in the second case, the transmissivity fields are conditioned on the spatial model as well as on
the transmissivity values (CY). For both noninverse cases, a stack of 500 simulations is used.

5.1. Basic Case: Lognormal Marginals: Mildly Heterogeneous
The first example represents the mildly heterogeneous test case of Franssen et al. [2009]. It is associ-
ated with the traditional assumption that the hydraulic transmissivities follow a lognormal spatial
distribution. As described in section 2, a normal field is to be identified as ZðxÞ5log WðxÞ with W(x)

Figure 6. (left) Ensemble Y (log10ðm2=sÞ) and (right) ensemble h (m) standard deviation corresponding to section 5.1.

Table 1. Performance Statistic Measures for log-T and Hydraulic Heada

Example AAE(Y) (log10ðm2=sÞ) AESD(Y) (log10ðm2=sÞ) RMSE(Y) (log10ðm2=sÞ) AAE(h) (m) AESD(h) (m) RMSE(h) (m)

1 0.254 0.331 0.321 0.599 0.808 0.907
4 0.257 0.332 0.323 0.586 0.855 0.899
CY 0.277 0.374 0.348 1.653 2.646 2.151
UNC 0.299 0.437 0.379 1.72 4.25 2.27

a1: mildly heterogeneous test case, 4: integral example.

Figure 7. Observed versus simulated hydraulic heads at the observation locations corresponding to section 5.1.
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being the unknown hydraulic transmissivity field. The setup described above is applied, the 25
sampled hydraulic transmissivities are considered as linear equality constraints according to (14).
The sampled hydraulic heads are considered as nonlinear constraints according to section 3.3. The
objective function measuring the deviation between the simulated head values and the observed
head values is

XM

m51

ðHZkðumÞ2hmÞ2 (31)

and the optimization is terminated if the objective function deceeds a user-defined threshold d or if the
number of iterations (numerical model runs) exceeds a user-defined threshold niter. Here d51 m2 (i.e., a
root-mean-squared error of 0.2 m) and niter 5 1000.

In total, 100 realizations were generated. Three possible realizations are shown in Figure 4, the ensemble
mean fields and the corresponding ensemble standard deviations fields are shown in Figures 5 and 6,
respectively. It can be seen that the single realizations of the hydraulic transmissivity fields are allowed to
differ among each other while they represent satisfying solutions to the inverse problem. All realizations
reproduce the observed transmissivity values exactly and the observed spatial variability is preserved. The
provided ensemble mean fields resemble the reference fields, i.e., they are able to reproduce the regions of
high and low transmissivity and hydraulic head, respectively. As expected the ensemble standard deviations
are lower in regions with higher observation density. The performance measures are displayed in Table 1.
The results show that conditioning on transmissivities (CY) already leads to an improved characterization

Figure 8. (left) Ensemble mean Y field (log10ðm2=sÞ) and (right) ensemble mean h field (m) over 100 realizations corresponding to section 5.2.

Figure 9. (left) Ensemble Y (log10ðm2=sÞ) and (right) ensemble h (m) standard deviation corresponding to section 5.2.
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and to a reduced uncertainty of the transmissivities and the hydraulic heads compared to the unconditional
case (UNC). Additional conditioning on the observed hydraulic heads triggers further improvements. The
average absolute error AAE(Y) of the transmissivities show a reduction of 15:1%. Similar results are found for
RMSE(Y). The characterization of the hydraulic head field measured by AAE(h) could be improved by 65%;
RMSE(h) shows a reduction of 60%. The uncertainty associated with the transmissivity field, measured by
AESD(Y) shows a reduction of 24%. AESD(h) shows a reduction of 81%. Figure 7 shows three scatter plots of
observed versus simulated hydraulic heads. It can be seen that not only the average values but also the sin-
gle values match reasonably. As the performance measures range between those obtained in Franssen et al.
[2009], it can be concluded that the suggest approach performs in a satisfactory manner regarding the
mildly heterogeneous test case.

5.2. Basic Case: Lognormal Marginals: Strongly Heterogeneous
The second example represents the strongly heterogeneous test case of Franssen et al. [2009]. The hydraulic
transmissivities are again assumed to follow a lognormal spatial distribution but with a higher log10T var-
iance compared to the first case. Again the general flow setup as described in section 5 is applied. As in the
first example, the 25 sampled hydraulic transmissivities are considered as linear equality constraints accord-
ing to (14), the sampled hydraulic heads are considered as nonlinear constraints according to section 3.3.
The objective function is again (31) and 100 realizations are generated. Here d52 m2 (i.e., a root-mean-
squared error of 0.28 m) and the threshold number of iterations is niter 5 3000.

Figure 8 shows the resulting ensemble mean fields, Figure 9 shows the ensemble standard deviation fields.
The performance measures are displayed in Table 2. As expected, the improvements are smaller than in the
mildly heterogeneous test case. This is however a common observation in inverse modeling studies.

Figure 10. (top) Three possible log 10 transmissivity fields Y (log10ðm2=sÞ) and (bottom) corresponding hydraulic head fields h (m) according to section 5.3.

Table 2. Performance Statistic Measures for log-T and Hydraulic Head Corresponding To the Strongly Heterogeneous Test Case

Example AAE(Y) (log10ðm2=sÞ) AESD(Y) (log10ðm2=sÞ) RMSE(Y) (log10ðm2=sÞ) AAE(h) (m) AESD(h) (m) RMSE(h) (m)

1 0.712 0.903 0.891 1.182 1.823 1.678
CY 0.741 0.947 0.927 1.896 4.917 2.606
UNC 0.767 0.997 0.954 2.001 5.280 2.725
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Conditioning on the observed transmissivities (CY) reduces AAE(Y) by only 3:4% while the inverse solution
shows a reduction of 7:1%. Similar results are obtained for RMSE(Y) and AESD(Y). In general, larger heteroge-
neity is more demanding. Thus, the optimization process is more difficult and less effective. However, the
results are again reasonable as the performance measures range between those obtained in Franssen et al.
[2009].

5.3. Non-Lognormal Marginal
The third example requires a slight modification of the mildly heterogeneous test case. The assumption
that the hydraulic transmissivities follow a lognormal distribution is relaxed toward an arbitrary marginal
distribution with a Gaussian copula dependence structure. Here it is assumed that the transmissivities follow
an exponential distribution. On that account, an exponential distribution FðwÞ512e2kw is fitted to the 25
sampled transmissivity values. As described in section 3.1, the hydraulic transmissivity field W(x) can be
transformed to a multinormal field Z(x) according to (9). Thus, it is assumed that the spatial dependence
structure is multivariate Gaussian while the marginal distribution is exponential. Besides those changes, the
general setup remains as described in section 5.1. The transmissivity values are again treated as linear con-
straints according to (14), the hydraulic head values as nonlinear constraints according to section 3.3. The
objective function is (31) and 100 realizations are generated.

Three possible hydraulic transmissivity fields with corresponding hydraulic head fields are displayed in
Figure 10. The corresponding mean fields, as well as the standard deviation fields, are shown in Figures 11
and 12, respectively. It can be seen that due to the influence of the different marginal distribution, the Y
fields as well as the h fields differ slightly from those obtained in section 5.1. However, the mean fields still

Figure 12. (left) Ensemble Y (log10ðm2=sÞ) and (right) ensemble h (m) standard deviation corresponding to section 5.3.

Figure 11. (left) Ensemble mean Y field (log10ðm2=sÞ) and (right) ensemble mean h field (m) over 100 realizations corresponding to section 5.3.
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resemble the reference ones reasonably, i.e., they are able to reflect zones of high and low transmissivity
and hydraulic head, respectively. The exponential marginal distribution leads to a higher variance of the
transmissivity fields compared to the basic mildly heterogeneous case. Thus, the standard deviations are
also slightly higher than those obtained in section 5.1.

A comparison of the performance measures would be futile as this example and the reference case are
based on different assumptions. However, it is worth pointing out that satisfactory solutions to the inverse
problem can be achieved even though different assumptions are considered.

5.4. Change of Support: Integral Constraints
This example is associated with the problem of scales of inverse methods. There are different spatial scales
at which information is commonly handled in inverse groundwater modeling. For example, measurements
from boreholes represent punctual values while local pumping tests result in average values that are valid

Figure 14. (left) Ensemble mean Y field (log10ðm2=sÞ) and (right) ensemble mean h field (m) over 100 realizations corresponding to section 5.4.

Figure 13. (top) Three possible log 10 transmissivity fields Y (log10ðm2=sÞ) and (bottom) corresponding hydraulic head fields h (m) according to section 5.4.
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on a larger scale [Schad and Teutsch, 1994]. Taking information on different spatial scales into one model is
a frequent and challenging task in inverse groundwater modeling [Zhou et al., 2014].

This example demonstrates how integral constraints can be taken into account as additional nonlinear con-
straints. Therefore, the mildly heterogeneous case is considered where one of the 25 measured hydraulic
transmissivities is replaced by an integral value. The integral is rectangular with a size of 10 3 10 pixels sur-
rounding the actual (replaced) conditioning point. Its values are the geometrical mean of the values
obtained from the reference field. As the integral is an additional nonlinear constraint, the objective func-
tion which has to be minimized is changed to fobj5

PM
m51 ðHZkðumÞ2hmÞ21I with I 5 0 if the deviation of

simulated and observed integral value is less than 5% else I 5 666.

Again 100 realizations are generated and three resulting hydraulic transmissivity fields with corresponding
hydraulic head fields are shown in Figure 13. The performance measures are listed in Table 1. From Figure
14, it can be seen that the reference fields could be resembled reasonably. Figure 15 shows the ensemble

Figure 16. (top) Three possible log 10 transmissivity fields Y (log10ðm2=sÞ) and (bottom) corresponding hydraulic head fields h (m) according to section 5.5.

Figure 15. (left) Ensemble Y (log10ðm2=sÞ) and (right) ensemble h (m) standard deviation corresponding to section 5.4.
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standard deviation fields. It is worth noting that the standard deviation inside the integral is not zero as
only the mean value has to be matched (with a tolerance of 5%). However, the standard deviation inside
the integral is much lower than in the surrounding.

5.5. Non-Gaussian Spatial Structures
As described in section 3.4, the spatial dependence structure of hydraulic transmissivities might differ sig-
nificantly from Gaussian. Such non-Gaussian spatial dependence structures might have substantial influ-
ence on flow and transport processes. This example aims to take such asymmetrical dependence
structures into account: for that reason, the synthetic mildly heterogeneous test case is again modified.
The spatial dependence structure of the hydraulic transmissivities is no longer assumed to be multivariate
Gaussian; instead, a v-transformed normal copula, as presented in B�ardossy and Li [2008], is used to model
the dependence structure. v-Copulas are able to describe asymmetrical dependence structures, i.e., high
values can cluster differently than low values. A v-copula is fitted to the 25 hydraulic transmissivity values
and the inverse modeling approach is changed according to section 3.4. Aside from the modification
described above, the setup remains as described in section 5.1. Thus, the spatial dependence structure of
the hydraulic transmissivities is assumed to be non-Gaussian while the marginal distribution remains
lognormal.

To achieve a stable mean, 200 realizations are generated. Figure 16 shows three hydraulic transmissiv-
ity fields with corresponding hydraulic head fields. It can be seen that the spatial dependence struc-
ture clearly exhibits a non-Gaussian behavior. The low values as well as values around the mean form

Figure 18. (left) Ensemble Y (log10ðm2=sÞ) and (right) ensemble h (m) standard deviation corresponding to section 5.5.

Figure 17. (left) Ensemble mean Y field (log10ðm2=sÞ) and (right) ensemble mean h field (m) over 200 realizations corresponding to section 5.5.
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connected clusters, while high values occur
occasionally, or form somehow connected
flow paths. However, the observed transmis-
sivity values are represented exactly and the
corresponding hydraulic head fields are rea-
sonable. Figure 17 shows the ensemble mean
fields which are capable of identifying the
zones of low and high transmissivity and
hydraulic head, respectively. Figure 18 shows
the ensemble standard deviation fields. As a
result of the assumed non-Gaussian spatial
structure the standard deviations are higher
compared to the basic Gaussian case. How-
ever, the coarse patterns are similar.

As in section 5.3, a comparison of the perform-
ance measures would be meaningless as differ-
ent assumptions are considered. However, this
example shows that non-Gaussian spatial
dependence structures can be considered using
non-Gaussian spatial copulas. Even though the

resulting transmissivity fields clearly exhibit different spatial patterns of variability compared to the basic
test case, they represent satisfying solutions to the actual inverse problem.

5.6. Including Known Geological Structure Information
As described in section 3.5, it is often assumed that geological processes lead to hydraulic transmissivities
that are structured in a specific way. Including such curvilinear features in the spatial distribution of the
transmissivities goes beyond the traditional Gaussian assumption (second-order moment statistics) and
induces the necessity to account for higher-order moments. One possibility of considering such spatial
structures is to use multiple-point geostatistics [Strebelle, 2002]. According to section 3.5, the presented ran-
dom mixing approach can be coupled with a multiple-point approach, so that structural information
obtained from a training image can be incorporated in the inverse modeling procedure. Hence, the large-
scale structure (macrostructure) results from multiple-point geostatistics while the small-scale structure
(microstructure) is modeled by random mixing.

To illustrate this coupled approach, a new synthetic example is generated. The domain length is 5000 m in
x and y direction, discretized in 50 3 50 grid cells. The northern and southern boundaries share no-flow
conditions. The western and eastern boundaries have prescribed heads of 20 and 1 m, respectively. A two-
facies geological formation is considered. Each facies has its own marginal distribution: facies A (connected

Figure 20. (left) Reference log 10 hydraulic transmissivity field Y (log10ðm2=sÞ) and (right) corresponding hydraulic head h (m) field corre-
sponding to section 5.6.

Figure 19. Training image representing the two-facies geological for-
mation corresponding to section 5.6.
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flow paths) exhibits a lognormal distribution with a mean log 10T of 21.5 and a log 10T variance equal to
0.189, while facies B exhibits a lognormal distribution sharing the same variance but a mean log 10T of
22.932. A direct sampling algorithm Mariethoz et al. [2010] is applied to generate conditional realizations of
the training image (Figure 19) which represents the assumed two-facies formation. A Gaussian copula is
used to model the small-scale dependence structure inside each facies. The reference Y and h fields are
shown in Figure 20. Those are sampled at 16 locations resulting in three sets of conditioning data: one set
on the geological structure information, one set on the actual hydraulic transmissivity values, and one set
on the corresponding hydraulic head values. The inverse modeling approach is changed according to sec-
tion 3.5. The objective function measuring the mismatch between simulated hydraulic head and observed
hydraulic head is (31). In total, 200 realizations were generated. Three possible solutions are shown in Figure
21. The large-scale structure, as well as the small-scale structure, differs strongly among the different realiza-
tions while the conditions on the geological structure (to which facies the value belongs) and the corre-
sponding hydraulic transmissivity values are exactly fulfilled. Figure 22 shows the ensemble mean fields,

Figure 22. Ensemble mean Y field and ensemble mean h field over 200 realizations corresponding to section 5.6.

Figure 21. (top) Three possible log 10 hydraulic transmissivity fields (log10ðm2=sÞ) and (bottom) corresponding hydraulic head fields h (m) according to section 5.6.
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Figure 23 shows the ensemble standard deviation fields. The mean hydraulic head field reproduces the ref-
erence one reasonably well. The average hydraulic transmissivity field resembles zones of high and low
transmissivity, respectively. Even though it is not optimized during the calibration process, the average
transmissivity field reflects the macrostructure to some extent. Especially, in the upper part of the transmis-
sivity field. Nevertheless, a coupled optimization of the macrostructure and microstructure could lead to
better results.

6. Discussion and Conclusion

In this paper, a new Monte Carlo based methodology to generate random hydraulic transmissivity fields
that are solutions of the inverse groundwater flow problem was presented. The methodology is based on
spatial copulas and allows arbitrary marginal distributions. The solutions are obtained as a linear combina-
tion of unconditional realizations of the fields, where the weights are identified on an appropriate subspace
via unconstrained optimization.

The advantages of the method are as follows:

1. High flexibility to cope with different spatial dependence structures and arbitrary marginal distributions.
2. Continuous and unconstrained formulation of the nonlinear constraints, which relate the hydraulic trans-

missivity fields to the observed hydraulic heads.
3. Combination with multiple-point statistics to integrate prescribed structural information.

The general applicability of random mixing to inverse groundwater modeling is first demonstrated using the
two examples. Those examples have been investigated in other studies using different inverse modeling
approaches. Thus, the results can easily be compared to each other. The first example is a mildly heterogene-
ous test case while the second example is strongly heterogeneous. If compared to the outcomes of other stud-
ies, the results obtained using random mixing are satisfactory in both test cases. The statistical performance
measures range between those obtained by other methods. Note however that the goal of this paper was not
to produce ‘‘better’’ or computationally ‘‘cheaper’’ results for the two test cases. The focus is more on the flexi-
ble extensions of the basic approach, i.e., non-Gaussian marginals, non-Gaussian spatial dependence struc-
tures, and integral constraints. Those extensions are demonstrated using the remaining examples.

The third example uses a Gaussian copula to describe the spatial dependence structure of the hydraulic trans-
missivities while the marginal follows an exponential distribution. Hence, the spatial dependence is multivari-
ate Gaussian with a non-Gaussian marginal distribution. This example demonstrates how the suggested
approach can be applied to solve the inverse problem if the observed transmissivities do not follow a lognor-
mal marginal distribution while the spatial dependence is Gaussian. A main conclusion that can be drawn
from this example is that even though a different marginal distribution is assumed one can still achieve satis-
factory solutions to the given inverse problem. This however leads to an increased overall uncertainty as both
the lognormal as well as the exponential distribution can be applied to solve the problem.

Figure 23. Ensemble Y (log10ðm2=sÞ) and h (m) standard deviation corresponding to section 5.6.
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The fourth example demonstrates how information on different spatial scales can be handled. It is
shown that arbitrary integral constraints can be incorporated as additional nonlinear constraints.

The fifth example demonstrates how certain non-Gaussian spatial dependence structures can be
handled. This approach has the significant advantage compared to other non-Gaussian inverse modeling
techniques that no training image is required. Instead, the parameters of the non-Gaussian copula used to
model the spatial dependence are estimated from the observed data directly. Thus, no assumptions on a
possible training image have to be made. An interesting result of this example is that the single realizations
clearly exhibit non-Gaussian spatial dependence structures, whereas the ensemble average transmissivity
field resembles the reference field reasonably well. This leads to an increased overall uncertainty as not only
the spatial model parameters but even its structure (copula model) has to be considered as uncertain. Addi-
tional diagnostic tools are required to reduce the uncertainty of the identification of the spatial structures,
and their parameter estimation.

The suggested approach can be coupled to multiple-point statistics as presented in the sixth example. The
difference to other methods using multiple-point statistics is that here the macrostructure and microstruc-
ture of the transmissivity field are modeled separately. While the macrostructure, which represents a facies
distribution is modeled using a multipoint approach, the microstructure is modeled using random mixing.
The results obtained are promising, nevertheless this approach has to be improved as the macrostructure is
not changed during the optimization process. A coupled treatment, where the likelihood of the multipoint
realization is assessed in combination with the microstructure during the optimization would probably lead
to a better representation of the combined uncertainty.

The copula-based approach uses parametric models for the description of spatial variability. The conditions
for a copula family to be used as a spatial model [B�ardossy, 2006] are restrictive, thus it is difficult to find
suitable models. Models described in B�ardossy and Li [2008] provide examples for the simulation of a wide
range of spatial patterns, but unfortunately parameter inference problems for many of these models are
not solved yet. Further the consideration of conditioning observations can become computationally very
time consuming. For this paper, a specific family of copulas, which could be derived via noninvertible trans-
formations of the normal, were used. These can account for asymmetrical properties of observations which
characterize certain natural processes on small and medium scales. Efficient modeling of large-scale fea-
tures using copulas requires further research.

In general, the suggested approach gives promising results and represents a reasonable alternative or
extension to training image based non-Gaussian inverse modeling. As the method is very general, it is not
limited to inverse groundwater flow modeling. More complex cases like flow and transport modeling can
also be treated. 3-D problems can also be handled with only slight modifications of the methodology. How-
ever, as is common in Monte Carlo based approaches, the limiting factor of large-scale applications is the
complexity of the numerical model.
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