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Abstract 

We present a novel theory for estimation of the effective permeability of pure gases in flat 

mixed-matrix membranes (MMMs), in which effective medium theory (EMT) is extended to 

systems with finite filler size and membrane thickness. We introduce an inhomogeneous filler 

volume fraction profile, which arises due to depletion of the filler in regions adjacent to the 

membrane ends, into the MMM permeation model. In this way, the effective medium approach 

(EMA) can still be applied to systems where the dispersant size is not small in comparison to the 

membrane thickness, and for which a permeability profile arises in th MMM that is dependent on 

both filler size and membrane thickness, besides the filler-polymer equilibrium constant. It is 

found that increase in particle size reduces the effective membrane permeability at fixed 

membrane thickness, and that the effective membrane permeability increases with increase of the 

membrane thickness to asymptotically reach the value predicted by existing models. The present 

theory is validated against detailed simulations of the transport in MMMs, and theoretical 

predictions are found to be in agreement with those obtained from the exact calculations. Further, 

comparison of the exact effective permeability at different filler volume fractions is made for 

different packing configurations, showing variations in dispersant packing structure to have only 

a very weak effect on MMM performance.  
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1. Introduction 

 Materials chemistry and structure play a critical role in the attainment of high membrane 

permeability and selectivity [1–3]. Based on their materials, membranes can be classified into 

two major groups: (i) polymeric or (ii) inorganic [1,4], of which the former type is known to 

have a wide range of molecular transport properties, easy processing techniques, high 

mechanical stability, and low manufacturing costs [5,6]. However, they fail to overcome the 
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well-known permeability-selectivity upper bound (also known as Robeson’s upper bound) 

[1,7,8]. Inorganic membranes, on other hand, offer higher permeability and selectivity than 

polymeric membranes, but their applications are limited by their fragility and higher cost over 

organic membranes [9,10]. Because achieving both high gas permeability and selectivity is 

desirable, the synthesis of membranes performing beyond Robeson’s upper bound has been the 

focus of multiple studies [3,4,11–13], in which mixed-matrix membranes (MMMs) have become 

a fast growing branch of membrane-based separation technologies [1,6,14]. MMMs are hybrid 

composite membranes containing inorganic filler particles (e.g. zeolites, metal organic 

framework materials or activated carbon) dispersed in a continuous organic (polymer) matrix 

[4,5,15]. Such composite membranes are cost-effective, mechanically resistant and, thermally 

and chemically robust while offering high selectivity and permeability [6,7,10], thereby 

providing the advantages of both types of conventional membranes. 

 Notwithstanding the benefits of MMM-based separation processes, there are still obstacles 

that need to be addressed for optimization of their industrial implementation [8]. A key challenge 

is the necessity of characterizing the transport of species across the membrane and its 

dependence on inherent filler-matrix properties [6,16,17]. Current research is centered on the 

determination of a suitable pair combination of polymer and filler phases [13,18], the impact of 

membrane geometry on separation efficiency [1,4,15], the effect of dispersant physical properties 

(i.e. particle size, shape and distribution) [19–21], and the influence of polymer-particle 

interfacial morphologies [6,13,22]. Although much effort has been devoted to mathematically 

representing such effects [13,16,17], existing models are adaptations of highly idealised early 

theories of transport in composite materials [13,22–29] while considering a linear concentration 

profile and empirically embedding the effects of filler properties in a single parameter 

(maximum filler volume fraction) [6,30]. Such an approach masks the effect of nonuniformity of 

the concentration field and its interplay with dispersant size on the composite membrane 

performance. 

 Current permeation models often treat the heterogeneous membrane under the restriction that 

one of the phases is finely dispersed in the other, so that the composite can be considered 

macroscopically homogeneous [25,31,32]. However, when the ratio of the membrane thickness 

to the filler size is not very large, EMT-based models are unable to quantitatively estimate the 
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MMM permeability [5,15,33,34]. Here, we present a model for the permeation of pure gases in 

MMMs, explicitly considering the effect of filler size of filler and membrane thickness, and the 

interplay with the interfacial adsorption equilibrium, overcoming the assumption of uniformity of 

the field (e.g. potential gradient in electric conduction, and pseudo-bulk concentration or 

pressure gradient in MMM permeation), inherent to existing models of transport in composite 

media. To validate the proposed theory, rigorous 3d simulations of the diffusive transport in 

MMMs have been performed, in which the simulation results are considered to be the exact 

solution to the transport problem in the MMMs. Further, five different packing configurations 

(i.e. random, simple cubic, body-centered cubic, face-centered cubic and hexagonal close-packed 

structures) and dispersant sizes are considered, for which the variation of MMM permeability 

with filler volume fraction is determined and compared. 

2. Permeation models for composite membranes 

 Although there exist a plethora of models to predict the permeation properties of MMMs 

[9,13,16,17,22–25,27–30,35–39], most are adaptations of highly idealized early theories of 

conduction in composite materials falling within the scope of effective medium theory (EMT) 

[13,22–29]. The crux of EMT is the substitution of a given composite system by an equivalent 

effective homogeneous one with the properties of the dispersion [31,40]. In general, permeation 

models consider either a low filler volume fraction or a small difference between the 

permeabilities of the filler and matrix [23,35,40,41]. Among the most significant results within 

the first group is that of Jeffrey [24,42], who showed that the relative permeability  rP  can be 

expanded in a series of the form [43]: 

   2

1 21m
r o o

c

P
P K K

P
        (1) 

where 
mP  and 

cP  denote the permeabilities of the MMM and continuous phase, respectively. 

Here, 
o  represents the nomimal dispersant volume fraction, which is commonly assumed to be 

uniform. Each term in the expansion  1 2, , , nK K K  takes into account the interaction between 

successively larger sets of particles [24,42]. Existing models are then simplifications or 
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adaptations of Eq. (1) [13,22–29]. The most popular ones are summarized in Table 1, 

highlighting their key features. All of these consider spherical filler particles as inclusions. 

Table 1. Summary of most popular permeation models. 

Model Equation 

Large 

permeability    

differences 

High       

filler 

loadings 

Filler 

morphology 

Maxwell [26] 
1 2

1

o
r

o

P








 

 ✗ ✗ ✗ 

Chiew–Glandt [23] 

2 2

21 2 ( 3 )

1

o o
r

o

K
P

  



  



 

 ✓ ✓ ✗ 

Lewis–Nielsen [38] 
1

1

o
r

o m

A
P









 

 ✓ ✓ ✓ 

Bruggeman [44]  
1

1
3

1
1r o

r

P
P






 
  

   

 ✗ ✓ ✗ 

Pal [25] 
1

3
1

1

m

o
r

r m

P
P





 



  
   

     

 ✗ ✓ ✓ 

 

 Among the models in Table 1, that of Maxwell [26] was developed for the effective electrical 

conductivity of a dilute dispersion of particles in an infinite matrix using an effective medium 

approach (EMA) [6,23,26,35,45]. Only the first-order term of the Maxwell model is exact, i.e.  

    21 3r o oP       (2) 

with   given by [23,24,42]:  
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1

2






 
  

 
  (3) 

where f cP P   is the ratio of the permeability of the dispersed to the continuous phase. Since 

the Maxwell model disregards interaction between particles, it generally describes the 

permeability well only at low loadings of filler particles with 0.2o   [2,6,14,46]. Furthermore, 

the Maxwell model is the simplest among the various models presented in Table 1, and considers 

dispersant particle size to be negligibly small with no aggregation [2,17,30,35,46].  

Chiew and Glandt [23] extended Jeffrey’s model to higher particle concentrations [43], using 

pair-correlation functions of hard-sphere fluids in the equilibrium state [23,47] to replace the 

probability calculation based on well-stirred distributions [24,42]. Such modification led to the 

appropriate estimation of 2K  in Eq. (1), in which the series simplifies to yield the Chiew-Glandt 

model in Table 1 [6,48]. The resulting values of 2K  were tabulated as function of   and o . 

Later, Gonzo et al. [35] fitted Chiew and Glandt’s results for 2K  to the following expressions: 

   
3
2

2 oK a b    (4) 

   2 30.002254 0.123112 2.93656 1.6904a          (5) 

   2 3 40.0039298 0.803494 2.16207 6.48296 5.27196b           (6) 

Although the Chiew-Glandt model may be applicable to moderate particle concentration [23], 

the effect of filler properties such as particle size and morphology remains to be considered. 

 Lewis and Nielsen [38] extended the Halpin-Tsai equation, originally developed for the 

elastic modulus of particulate composites, to the thermal conductivity of heterogeneous media 

[29,49]. In their result, presented in Table 1, the value of the parameter m  depends on the 

maximum filler volume fraction in the system ( )m  and is given by:  

   
2

1
1 m

m o

m


 



 
   

 
  (7) 
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Further, in the Lewis-Nielsen model in Table 1, 1EA k   and is a constant related to the filler 

shape depending on the Einstein coefficient  Ek . For a suspension of rigid spheres 2.5Ek  , so 

that 1.5A   [28,29]. Later, Pal [27] proposed that for spherical particles, A  should take the 

value of 2  instead of 1.5  to allow the Lewis-Nielsen model to be consistently simplified into the 

Maxwell model when 1m  . 

 The Bruggeman model was originally developed for the dielectric constant of particulate 

composites using differential effective medium theory (DEMT) [6,9,25,44], which builds up a 

composite medium through a process of incremental homogenization [31,35]. The approach 

proceeds from the premise that the fields of neighboring particles can be taken into account by 

adding the dispersed particles incrementally while considering the surrounding medium as the 

existing composite at each stage [31,41,50]. Thus, assuming that Maxwell’s equation is a good 

enough approximation to characterize suspensions with low particle concentrations, Bruggeman 

[44] established an expression for the increment on the thermal conductivity due to infinitesimal 

increments in the filler loading. Such increment dP  resulting from the addition of new particles 

may be obtained calculated from Eq. (2) by substituting cP P , mP P dP   and 

(1 )o o od    , which, after integration, leads to the Bruggeman model in Table 1. 

 The Pal model was originally developed for thermal conductivity of particulate composites 

[6,25,27], in an manner analogous to that of Bruggeman [44] and also under the scope of the 

DEMT. He derived an expression for the infinitesimal increment of the dispersion conductivity 

while introducing the volume fraction dependence on the maximum filler packing fraction  m . 

Such increment dP  resulting from the addition of new particles was also calculated from Eq. (2) 

substituting cP P  and mP P dP   but  1o o mod     instead of (1 )o o od    , 

which, after integration, leads to the Pal model in Table 1 [35]. Bruggeman’s result is a special 

case of the Pal model for 1m  , whence the two become identical. 

 Among the limitations of the above-described models, the most significant ones are the 

assumption of uniform concentration field together with the consideration of an infinite system 

[5,9,51]. Such assumptions make the permeability independent of the membrane thickness and 
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particle size. Futhermore, the effect of filler properties including particle size is embedded in a 

single empirical morphology-related parameter, such as in the Pal [25] and Lewis-Nielsen [38] 

models. Further, permeation models often cannot match or reconcile experimental data without 

the postulation of nonidealities, such as the presence of interfacial voids [13,52] or rigidified 

polymeric regions at the interface with the filler [22,30,53,54]. Such nonidealities are typically 

taken into account by modifying EMT-based models to include ispecific interfacial regions at the 

filler- matrix interface. Here, because DEMT treats local variations in the system as fluctuations 

in an effective unvarying medium, no discrimination between both continuous and suspended 

phases is made [35]. Thus, no information on the system morphology can be obtained from the 

model [2,30,43]. 

 Although much effort has been devoted to the improvement of EMT models, their limitations 

have prompted reserachers to explore more accurate approaches such as the detailed simulation 

of MMMs [15,55–57], in which the coupled 3d transport equations for the transport in the filler 

particles and in the surrounding polymer matrix are simultaneously solved using the finite 

element method (FEM). Such detailed 3d simulation overcomes limitations of EMT models in 

the estimation of the effective permeability, particularly the effect of particle size and the 

interfacial adsorption equilibrium [5]. Moreover, detailed simulation is able to embrace large 

differences among the Fickian diffusivities in both phases, and their interplay with particle size 

effects as well as permeant concentration inhomogeneities due to particle interaction [58]. 

 Recently, Singh et al. [5] performed simulations of the transport in 3d-MMMs with randomly 

distributed spherical fillers, using the COMSOL multiphysics software package [59], and 

estimated the relative permeability  r m cP P P  as function of the filler volume fraction. They 

used the adsorbed concentration as field variable, with a linear isotherm in each phase, so that the 

equilibrium constant was defined as the ratio between the adsorbed concentration in the filler to 

that in the polymer, i.e. f c f cK K q q  , where fq  and cq  are the adsorbed concentrations in 

the filler and polymer phases, respectively, and fK , cK  are the corresponding gas-solid 

equilibrium constants. In this manner, they were able to estimate the relative permeability as the 

ratio of the fluxes in the permeate direction of the MMM to that in the corresponding polymer 

matrix. Their predictions showed that the various permeation models, given in Table 1, are 
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unable to address the dependence of relative permeability on the equilibrium constant. Besides, 

they also studied the effect of particle size on the MMM performance; however, the relative 

permeability was found to be independent of the particle size in the range of sizes investigated. 

 Subsequently, Yang et al. [15], following the same approach as Singh et al. [5], calculated the 

relative permeability of 3d hollow-fiber and dense flat MMMs, also with randomly distributed 

spherical fillers. They studied the effects of filler-to-matrix self-diffusivity ratio  of oc
, 

filler-to-matrix equilibrium constant ratio  f c f cK K q q  and filler size on MMM 

performance, finding that in general hollow-fibers had higher effective permeabilities than flat-

dense MMMs. Nevertheless, in contrast with Singh et al. [5], the relative permeability was found 

to increase with the decrease of the filler size for both flat-dense and hollow-fiber MMMs. Most 

likely, the discrepancy between the results of Singh et al. [5] and Yang et al. [15] is associated 

with the mesh quality used in FEM implementation, and issues related to numerical convergence 

[15]. Our simulations results address such issues, while investigating the effect of particle size 

and other system parameters, as described below. 

3. Methods 

3.1. Theory 

3.1.1. Transport model 

 We consider a flat mixed matrix membrane of finite thickness   comprising uniformly sized 

spheres of radius or  dispersed in a polymer matrix. Steady state transport through the mixed-

matrix membrane is described by the continuity equation:  

   ( 0)
m

b
m

d dC

dx dx
x

 
 

 
  (8) 

in which we use the pseudo-bulk concentration  m

bC  in the mixed matrix as the field variable, 

with the following boundary conditions:  

   20 m

b bx C C    (9) 
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   1

m

b bx C C    (10) 

Here the local diffusivity of the mixed-matrix membrane  m  is estimated using a suitable 

EMT-based model, in which the filler  f
 and matrix  c  local Fickian diffusivities follow 

the Darken relation, leading to  

   
( )

( )
m

m b
b o m

b

I C
C

C
   (11) 

where o  is the mobility [60,61], and  m

bI C  the local adsorption isotherm, in any given phase 

(filler or matrix). Here, c , f and m  have similar connotation as permeability ( cP , fP  and 

mP  respectively), since we use the pseudo-bulk concentration as the field variable. The mixed-

matrix permeability, m , can be position-dependent, not only due to concentration dependence 

of the filler and polymer dffusivities, but also due to the presence of inhomogeneity in the filler 

volume fraction, discussed below. At low pressures, i.e. in the Henry’s law region, the adsorbed 

gas concentration is given by: 

   ( )m m

b bI C KC   (12) 

and f and c then follow 

   f f ofK   (13) 

   c c ocK   (14) 

with fK and cK  being the Henry’s law constants for the filler and matrix, respectively. While 

the above approach is general, in the present work we will confine ourselves to the low pressure 

Henry law region. 
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3.1.2. Filler volume fraction profile 

 The filler volume fraction  o  in the EMT models in Table 1, is commonly considered to be 

homogeneous and uniform due to the underlying assumption of the system effectively being an 

infinitely large continuum. Such an assumption precludes end effects that will arise in a finite 

system, in which there will be regions near the surface, of thickness equal to the particle radius, 

in which no particle centres can lie. Thus, if a finite membrane of thickness  containing 

spherical particles of radius or  is considered, as shown in Fig. 1, there can be no particle centres 

in the regions 0 ox r   and or x   , and only portions of spheres can occupy these 

regions. Consequently, the filler volume fraction will be smaller than o  in these regions. 

Similarly, the absence of sphere centres in these end regions implies that the filler volume 

fraction in their neighbouring regions 2o or x r     and 2o or x r  will also be less than o . 

This leads to a profile of the filler volume fraction as a function of position within the membrane. 

 

Fig. 1. Variation of filler volume fraction with position for 4 or . 

 

 As a first approximation, we may assume the EMT to be applicable at any position in the 

membrane, with the corresponding effective permeability evaluated at the local filler volume 

density. The motivation for this approach follows from the work of Chang and Acrivos [33], who 

found such an assumption to be successful in the context of heat transfer from a planar wall to a 

dispersion of finite size spheres in a continuous matrix. To derive an expresion for the filler 

volume fraction profile, we consider the differential volume in the region  ,x x dx  of a sphere 

centred at position x  within the membrane: 

    
22 , 0, oo odV r x x d x x rx x r     


 


  (15) 
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Here, x  is the distance from one side of the membrane measured along the normal to the surface. 

Considering a differential portion of the membrane in  ', ' 'x x dx  with volume 'Adx  and 

having NAdx  particle centers, where A  is the membrane cross-sectional area on the yz -plane 

and N  the particle number density (assumed uniform), the differential filler volume fraction in 

 ,x x dx  is given as: 

    
22

o

NAdx
d r x x dx

Adx
 

    
 

  (16) 

On defining the nominal filler volume fraction as 34
3o oN r  , Eq. (16) may be rewritten as:  

    
22

3

3

4

o
o

o

d r x x dx
r


     

 
  (17) 

and for particles located in 0 2 ox r  , the volume fraction is given by (c.f. Fig. 1):  

      
22

3

3

4

o

o

r x

o
o

o r

x r x x dx
r






    
    (18) 

Similarly, for particles located in 2 or x   , the volume fraction is given by (c.f. Fig. 1):  

      
22

3

3

4

o

o

r

o
o

o x r

x r x x dx
r








    
    (19) 

Upon performing the integrations in Eqs. (18) and (19), the filler volume fraction profile is 

obtained as:  

   

 

   

2

3

2

3

3 0 2
4

( ) 2 2

3 2
4

o
o o

o

o o o

o
o o

o

x r x x r
r

x r x r

x r x r x
r



 




  


   


        


  (20) 
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where Eq. (20) is applicable to flat MMMs for which 4 or . The above volume fraction profile 

agrees with Eq. (9) of Ref. [33], for both membrane ends. Eqs. (18) and (19) hold for both 

membrane ends even for MMM in which 2 4o or r  . However, for such MMMs the filler 

volume fraction is no longer uniform in the internal region 2 2o or x r   , since the filler 

depletion also extends into this region, as shown in Fig. 2. 

 

 

Fig. 2. Variation of filler volume fraction with position for 2 4o or r  . 

 

Thus, for particles located in 2 2o or x r   , the volume fraction is given by: 

      
22

3

3

4

o

o

r

o
o

o r

x r x x dx
r






    
    (21) 

which after integration leads to 

   

 

  

   

2

3

2 2 2

3

2

3

3 0 2
4

2 2 3 3 2 2
4

3 2
4

o
o o

o

o
o o o o o

o

o
o o

o

x r x x r
r

r r r x x r x r
r

x r x r x
r









   




        



       


  (22) 

Further, ( ) 0x   for membranes for which 2 or . The ratio, ( ) ox   represents the probability 

that a given point in the composite lies within a sphere [34] . Upon integration of the profiles in 

Eqs. (20) and (22), the mean filler volume fraction is obtained as:  

    0

0

( )
2o

o

x dx
r

dx

 
   




  (23) 
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in which the second term within the parenthesis represents the effect of the two exclusion regions 

of thickness or  on each side of the membrane, where no particle centres can lie.  

 The use of EMT with the above local filler volume fraction profile, i.e. with m  evaluated 

using ( )x  to replace o  in any of the models in Table 1, is at best a first approximation, as it 

does not consider the variation of filler volume fraction in the space occupied by the particle. 

Such nonlocal effects lead to variation of the effective permeability at the scale of the dipersant 

particles, and are most conveniently captured by the local average density model (LADM), first 

proposed by Bitsanis et al. [62,63] in modeling the position-dependent viscosity of an 

inhomogeneous fluid. The LADM volume averages the position-dependent number density of 

particle centres over the space occupied by a single particle, and evaluates the local transport 

property at this locally volume-averaged density. The LADM has also found success in our 

group in modeling the transport of adsorbates in nanopores [64,65], where strong 

inhomogeneities exist. In the present context, since the local number density of particle centres is 

proportional to the local filler volume fraction, we appeal to th LADM and incorporate nonlocal 

effects through the average of the filler volume fraction profile over the volume of a single filler 

particle, i.e. 

   
2

3

0 0

3
( ) ( cos ) sin

2

or

o

x x r r d dr
r



         (24) 

where ( )x  is a coarse-grained locally averaged filler volume fraction.  

 The current approach introduces the locally averaged position-dependent filler volume 

density, ( )x , into EMT, in place of a uniform value equal to the mean filler volume fraction, 

 , or the local volume fraction ( )x  in the membrane. Thus, we use EMT to evaluate 

 ( )m x , in which ( )x  replaces o  in Table 1. In this way, by solving Eqs. (8)-(11) along the 

MMM, the calculated local MMM diffusivity depends on the particle size, membrane thickness 

and interfacial adsorption equilibrium. We note that the assumption that EMT holds in the end 

regions where the filler comprises parts of spheres is strictly not valid, as Maxwell’s derivation, 

on which the Chiew Glandt model is based, considers the filler particles to be spherical. 
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However, Chang and Acrivos [34] observed this assumption to be satisfactory, while indicating 

that there is no formal justification for this. We do note here that at small particle size for which 

the effect on permeability is negligible this assumption is justifiable, but the reason for its 

success even at large size is essentially due to it being a correction for end effects, approximately 

accounting for effects of depletion of filler in this region. 

3.1.3. Effective permeability 

 The effective MMM permeability  mP  may be estimated from the steady state flux in the 

membrane, upon solution of eq. (8), as:  

   
   

1 2

( )
m

b
m

x
m

bb b

dC

dx J
P

RT CRT C C

x
 
 
  


  (25) 

which completes the theory for the permeation of pure gases in MMMs. In summary, Eqs. (8)-

(11), (20) or (22), (24) and (25), together with any of the EMT models in Table 1, comprise the 

proposed model to describe single gas permeation through MMM. In this initial study we 

consider only the low pressure region, in which the isotherms are linear, following Eqs. (13) and 

(14), although the theory is more general and can also accommodate nonlinear isotherms.  

 The above model has been solved using MATLAB
®
, and the results compared with the exact 

effective permeabilities obtained from detailed simulations are presented in the next section. The 

model parameters used in the present work are listed in Table 2. 

Table 2. Model parameters used in calculations. 

Parameter Value(s) SI units 

of oc  1, 10 , 25 , 50 , 100  dimensionless  

2bC  1 
3mol m  

1bC  0  3mol m  

f cK K  1, 10 , 100  dimensionless  

or  0.1 , 1, 2 , 3 , 4  μm  

 0 100   μm  

f cP P  25 , 50 , 100  dimensionless  
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3.2. Simulation 

 The finite element method has been implemented to solve the coupled 3d partial differential 

equations for the diffusive transport in both polymer and filler phases using the COMSOL 

Multiphysics
®
 software package together with MATLAB

®
.To do so, 3d-MMMs are constructed 

with uniformly distributed spherical fillers with a given radius  or , as shown in Fig. 3 for a 

membrane containing particles with 1 μmor   and 0.1  . Initially the particles are arranged in 

an idealized lattice at the required mean filling fraction, and subsequently a Monte-Carlo-based 

algorithm is used to randomize the position of each filler particle within the simulation box, such 

that the particles are non-overlapping and are positioned within the simulation box without 

intersecting the end planes. When 0.3  , the initial filler configuration is based on a simple 

cubic lattice, and when 0.3  , it is based on hexagonal-closed packed lattice. Fig. 3 illustrates 

typical initial and randomized final configurations as well as the corresponding positions of a 

tagged particle within the simulation box (coloured red). 

  

Fig. 3. Filler configuration within the MMM. (a) Initial, and (b) final configuration. Initial and 

final positions are illustrated for a tagged (red) particle. 

 

 Steady state transport through each phase of the composite membrane follows the continuity 

equation:  

     0J    (26) 
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where J  is the flux through the MMM. Fick’s law is used to describe the flux in the filler  fJ  

and matrix  cJ , while considering pseudo-bulk concentration as the field variable, following 

   ( )f

f f bJ C     (27) 

   ( )c

c c bJ C     (28) 

with  f

bC  and  c

bC  being the pseudo-bulk concentration gradients in the filler and matrix, 

respectively. f  and are c  the local diffusivities of the permeant in each phase, and follow the 

Darken relation in Eq. (11). In the present work, since we consider the low presure Henry law 

region, f  and c follow Eqs. (13) and (14), respectively. 

 The boundary conditions, used to solve Eq. (26) are shown in Fig. 4, which is a 2d view of the 

filler-matrix system with a single particle. Here, equality of fluxes and pseudo-bulk 

concentrations are automatically set as boundary conditions at the filler-matrix interface (filler 

surface). Periodic boundary conditions are applied at the membrane ends in the y and z 

directions, as depicted in Fig. 4. Isolated system boundary conditions (   0flux  ) at both y and z 

directions provide essentially identical results, as discussed subsequently. Hence, we adopted 

periodic boundary conditons in the bulk of the work presented here. 

 

Fig. 4. Boundary conditions for Eq. (26). 
 

 A stationary fully coupled linear direct solver (MUMPS) is used to determine the numerical 

solutions of Eq. (26). After convergence, the numerical results are post-processed to obtain the 
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effective permeability of the composite membrane  mP . To do so, the mean steady-state gas 

flux in the x-direction of each membrane is estimated as:  

   

( , )x

yz

x

yz

J y z dydzd

d d ydz
J 



 

 




 

n J

  (29) 

where   represents an arbitrary surface parallel to the boundaries in the x-direction, and n  the 

corresponding normal vector. The normal flux on both yz surface boundaries is calculated using 

Eq. (29), i.e. when 0 μmx   and 25 μmx  . Once the through-flux is known, mP  is computed 

using Eq. (25). Here, the permeability is evaluated as the mean value computed from three 

independent Monte-Carlo-generated filler configurations at the corresponding filler volume 

fraction. 

 Tetrahedral meshes are used to implement the FEM, in which the maximum and minimum 

element sizes for a given membrane depend on the filler volume fraction. In this way, when 

meshing MMMs with higher filler concentrations, the MMMs is subdivided into finer elements 

to ensure accuracy of the simulation solution. Fig. 5 compares the permeability prediction at 

different volume fractions for two different meshes, in which maximum element sizes of the 

finer mesh are half of the ones used to build the coarser mesh. Thus, the minimum mesh density 

is 350 elements/μm  for the overall study, which corresponds to 4 μmor   and 0   ,while 

the maximum is 5 32.5 10  elements/μm  , which corresponds to 0.1 μmor   and 0.5  . 

Here, all meshes are optimized to avoid inverted elements.  
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Fig. 5. Simulation convergence of MMM relative permeability for 1 μmor   with different 

boundary conditions, mesh density and yz  box size. PBC: Periodic boundary conditions. IBC: 

Isolated boundary conditions. All cases yield matching results. 

 

 Each MMM is built with a fixed thickness  25 μm  in the x-direction (height) and at least 

10  times the filler radius on the remaining directions (depth and width). In this way, the 

simulation results are independent of the box depth and width (side) as shown in Fig. 5, where 

the relative permeability  rP  is compared for two different box sizes, one case corresponds to a 

box side of 10 or  and the other one to 15 or . The relative permeability predictions are found to be 

the same for both cases, demonstrating convergence. 

 The current approach differs from existing simulation works [5,15], because our simulations 

consider the gas pseudo-bulk concentration rather than its absorbed concentration as the field 

variable. This consideration enables automatically setting the continuity boundary at the filler-

matrix interface, through equality of the pseudo-bulk concentrations and fluxes in the two 

phases, while in the previous works [5,15], the interfacial boundary condition for adsorption 

equilibrium was used (i.e. 
f c f cq q K K ). Further, using the gas pseudo-bulk concentration as 

the field variable, the herein local diffusivities also denote local permeabilities, which allows 

direct comparison between the proposed theory and simulation predictions, as well as earlier 

analytical permeation models. 
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4. Results and discussion 

4.1.1. Comparison between existing EMT-based models and exact simulations 

 The EMT, as commonly used, assumes that the filler particle size is small compared to the 

MMM thickness, so that the composite can be viewed as an effective continuum on the 

membrane scale [34,50]. Consequently, the models summarized in Table 1 are most appropriate 

for systems in which there is a large difference between the MMM thickness and dispersant size 

[33,66]. Accordingly, Fig. 6 depicts a comparison of results based on the existing EMT models 

(lines), considering uniform filler volume fraction,  , and our simulations (symbols), for 

particle radius 0.1 μmor     which is small compared to the MMM thickness  25 μm . 

Further, we have used a value of 0.637m   for the maximum filler volume fraction in the 

Lewis-Nielsen and Pal models, which corresponds to the random packing limit [30,35]. While all 

models display qualitative trends in agreement with the simulations, the Chiew-Glandt model 

best predicts the permeability at moderate and high filler loadings upto a filler volume fraction of 

0.5 . Consequently, we have adopted the Chiew-Glandt model in conjunction with our model to 

represent the local MMM permeability in the work described in the subsequent sections. 

 

Fig. 6. Comparison between the relative permeability from conventional EMT model predictions 

and simulation-based results. 
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4.1.2. Effect of filler particle size 

 A key aim of this work is to establish the effect of the filler size on the effective permeability 

of the MMM. Fig. 7(a) depicts a comparison between the local filler volume density (continuous 

grey lines), ( )x , and locally averaged filler volume density (dotted color lines), ( )x , for three 

particle sizes ( 0.1or  , 1, 4 μm ) and 0.5o  . Here, while ( )x  gradually increases from 

 0 0   to   2 0.25o or   , the locally averaged filler volume density increases from 

 0 0.03   to   2 0.25o or   . Thus, in the regions 0 ox r   and or x    having 

portions of spheres with centres in 2o or x r   and 2 o or x r    , the locally averaged filler 

volume density is larger than the actual local filler volume density, because the regions 

2 3o or x r   and 3 2o or x r     are also sampled. The opposite effect occurs in 

2 3o or x r   and 3 2o or x r    , where the local volume average also samples points in 

2o or x r   and 2 o or x r    , and the local mean volume fraction is therefore smaller. The 

resulting local relative diffusivity profiles are depicted in Fig. 7(b), where the decrease in the 

local diffusivity ratio  m c  is seen to be consistent with that of the volume density. 

  

Fig. 7. Profile of the filler volume fraction and relative membrane diffusivity for 0.1,or   1 and 

4 μm . (a) Local and locally averaged volume fraction, and (b) local diffusivity ratio based on 

( )x (continuous grey lines) and ( )x (dotted coloured lines). 
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 Fig. 8 depicts a comparison of the relative permeability predictions based on eq. (25), using 

the new model with both local and locally averaged volume densities, and rigorous simulation 

results for four different filler sizes ( 1or  , 2 , 3 and 4 μm ), with 1f cK K   and 100of oc 

, so that 100f c f cP P   . Here, the theory predictions are also compared to the Chiew-

Glandt model (grey continuous line) with uniform filler volume fraction equal to  , which 

matches the exact solution when small particles are considered (c.f. Fig. 6). In Fig. 8(a) and (b), 

the Chiew-Glandt model is only able to match the simulation predictions at low filler loadings 

 0.25   for all particle sizes. Further, in Fig. 8(a), in which the local filler volume fraction 

( )x  is used, the permeability predictions for 2 μmor   and 4 μmor   slighly deviate from the 

simulation results (error within about 10% ) at filler volume fractions exceeding about 0.4 . Such 

deviations are alleviated and the prediction error reduced to within 3%  upon using the locally 

averaged filler volume fraction in the model, as seen in Fig. 8(b). Here, both simulation and 

theory show that increase of filler particle size decreases the effective relative permeability. Such 

deterioration in performance may be associated with decrease of the specific polymer-filler 

interfacial area as the particle size increases [15,19]. Further, the number of particles per unit 

volume increases with decrease of the filler size, at fixed filler volume fraction. Thus, because 

the overall filler surface area then increases, there is more potential polymer-filler interfacial area 

in MMMs containing smaller particles at a given filler volume fraction. 
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Fig. 8. Effect of the filler size on relative MMM permeability for 1f cK K   and 100of oc  , 

for which 100f c f cP P   , (a) using the local filler volume density, and (b) using the 

locally averaged filler volume density in EMT. Symbols represent exact simulation results, and 

lines the corresponding results from current theory. CG: Original Chiew-Glandt model, 

providing predictions equivalent to those of the new model with 0or  . 

 

 The current predictions demonstrate considerable improvement compared to using the Chiew-

Glandt model with constant filler volume fraction. Here, the error of the proposed model is about 

10%  at 0.5   when using the local filler volume fraction to estimate the local relative 

diffusivity, and 3%  at 0.5   when using the locally averaged filler volume fraction, while for 

the original Chiew-Glandt model it is approximately 40%  at the same mean filler volume 

fraction. The small difference between our theory and simulations occurs because the system 

increasingly deviates from an effective continuum when large particles are placed in the MMM. 

We notice that while the current model accounts for the effect of particle size through the volume 

averaged filler volume density profile this is essentialy an end effect correction in finite sized 

systems, and does not completely overcome the increased departure from an effective 

contimuum at particle sizes that are not negligible in comparison to the membrane thickness. 

Thus, for example, when 4 μmor  , only three particles can be placed along the membrane 

thickness (25 μm) , and local packing effects of the filler become significant, leading to 

deviation of the continuum assumption. This behaviour is illustrated in Fig. 9, which depicts a 
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comparison of the pseudo-bulk concentration profile at 0.1   and 0.5   when 4 μmor   

for both simulation and theory. Here, theoretical pseudo-bulk concentration profiles with the 

local (black continuous lines) and locally averaged (red dotted lines) volume density are also 

depicted in Fig. 9. For the simulation, the pseudo-bulk concentration profile is averaged on the 

yz  plane at any position x  in the direction of flow, while also calculating the mean value for 

three different random configurations. 

  

Fig. 9. Comparison between the theoretical and simulation-based pseudo-bulk concentration 

profiles with 100f c f cP P   , for (a) 0.1  , and (b) 0.5  , for 4 μmor  and 

membrane thickness 25 μm . 

 

 In Fig. 9(a) and (b), a steeper pseudo-bulk concentration profile is evident close to both 

membrane ends ( 0 μmx   and 25 μmx  ), which is due to the increased volume density of the 

polymer phase, arising from depletion of the lower resistance filler phase, in these regions. While 

the theory predictions match the simulation results at low filler loadings, as seen in Fig. 9(a), and 

at high filler concentration in Fig. 9(b), the simulation predictions show a systematic sinusoidal 

variation in curvature that is absent in the theoretical predictions. Such curvature changes in the 

simuation-based pseudo-bulk concentration profile in Fig. 9(b) occur because the gas is only 

permeating through three particles along membrane thickness, as shown in Fig. 10, so that the 

concentration profile reflects the’grainy’ texture of the membrane arising from layering effects in 
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the filler packing. Fig. 10(a) depicts the 3d pseudo-bulk concentration profile for 4 μmor   and 

0.5   while the 2d profile on the x-y plane for a slice placed at 50 μmz   is shown in Fig. 

10(b), both illustrating the ‘grainy’ texture of the composite.  

  
 

 

Fig. 10. Simulation-based pseudo-bulk concentration profile with 100f c f cP P    and

0.5  , depicted in a (a) 3d view, and (b) 2d view on a xy -slice placed at 50 μmz  , for 

4 μmor  and membrane thickness 25 μm . 

 

4.1.3. Effect of the membrane thickness  

The dependence of relative permeability on the the membrane thickness has also been studied. 

Fig. 11 depicts the theoretical variation of the relative permeability with membrane thickness for 

various particle sizes at fixed nominal filler volume fraction  0.5o  , with 1f cK K   and 

100/of oc  , so that 100f c f cP P   . Here, the model uses the locally averaged volume 

fraction in the local diffusivity calculation. Based on the new model, the permeability is a 

function of the ratio of the filler size to the membrane thickness  or , and therefore increase 

with membrane thickness at fixed particle size is analogous to decreasing the filler particle size 

at fixed membrane thickness. Consequntly, the relative permeability increases with the increase 

of the membrane thickness for all particle sizes in Fig. 11, which is consistent with the results 

presented above, showing increase in permeability with decrease in particle radius. Further, in 

Fig. 11, the relative permeability is equal to unity for membrane in which 2 or , since we take 

( ) 0x   when 2 or . For membranes in which 2 or , the permeability gradually increases 

and asymptotically approaches the result from the conventional EMT, which applies to an 

infinite continuum. Such behavior can be seen from the permeability profiles for 0.01 μmor   

(grey continuous line) and 0.1 μmor   (blue dashed line). 
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Fig. 11. Dependence of relative permeability on membrane thickness, for 0.5o  , 

100f c f cP P    and various values of or . 

 

4.1.4. Effect of the filler-to-matrix permeability ratio 

 It is well known that the effective permeability increases with increase of the filler-to-matrix 

permeability ratio f cP P  [12,25,51]. Fig. 12 depicts a comparison of the effective relative 

permeability predicted by the present model and simulations for different filler sizes ( 1or  , 2 , 

3 and 4 m ) for two filler-to-matrix permeability ratios. Here, 1f cK K   for all cases, while 

25of oc   and 50of oc  , for 25f c f cP P    and 50f c f cP P   , 

respectively. Comparing the relative permeability profiles in Fig. 12(a) and (b), it is seen that 

increase of the filler-to-matrix permeability ratio favours MMM performance, as expected. 

Further, the decrease of the relative permeability with increase of filler particle size is greater for 

50f c f cP P    than when 25f c f cP P   , for both model and simulation. 
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Fig. 12. Comparison of the theoretical and exact relative permeability profiles at various filler 

sizes, and different filler-to-matrix permeability ratios. (a) 25f c f cP P   , and (b) 

50f c f cP P   . Symbols represent exact simulation results, and lines the corresponding 

results from current theory. CG: Original Chiew-Glandt model, providing predictions equivalent 

to those of the new model with 0or  . 

 

 It is evident from Fig. 8(b) and Fig. 12 that the error of the theory increases slightly at high 

filler volume fractions, and when large particles are placed within the MMM. Such reduction in 

accuracy is expected, because the transport through the MMM is significantly affected by the 

filler intrinsic properties. Thus, when 1/f cP P , the heterogeneous medium may no longer be 

accurately mapped into an effective homogeneous one at particle sizes not much smaller than the 

membrane thickness. Nevertheless, the theory deviates only very marginally from the exact 

calculations even when  is as large as 4 μmor , and the error is only about 3%  for 100f cP P  , 

2%  for 50f cP P   and 1%  for 25f cP P   at 0.5  . 

4.1.5. Effect of the filler-to-matrix diffusivity and equilibrium constant ratios 

 Previous simulations have suggested that different combinations of f cK K and of oc , 

while keeping f c f c f of c ocP P K K   constant, yield different effective permeability 

values [5,15]. This is inconsistent with conventional effective medium theory, various versions 
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of which are presented in Table 1, as well as with the current theory, which yield the 

permeability of the composite ( mP  or m ) based on the ratio of permeabilities of the filler ( fP  

or f ) and of the polymer matrix ( cP  or c ). It may be seen from from Eqs. (13), (14) and (30), 

(31) that the products f ofK  and c ocK  provide the overall filler  f
 and matrix  c  

diffusivity values for both simulation and theory, and therefore no difference should be found if 

their ratio is held constant. To confirm this, a comparison between the model predictions and 

exact simulation-based calculations is made in Fig. 13 with 1,  10,  100f cK K   and 

100,  10,  1of oc   with 100f c f cP P    in all cases. No difference is found between the 

relative permeability predictions of the simulation for all combinations, consistent with the 

theory. 

 

Fig. 13. Effect of different combinations of the filler-to-matrix diffusivity and equilibrium 

constant ratios, at constant filler to matrix permeability ratio, on the relative effective 

permeability of the mixed matrix membrane. 

 

4.1.6. Effect of packing structure 

 Can variations in packing structure of the filler affect the overall permability of the composite 

and, if so, what is the most favourable structure? While in practice one expects the random 

structure to be the one approached experimentally, with the advent of 3d printing it may become 
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possible to synthesise MMMs with any specified filler packing structure in the future. The effect 

of the packing configuration has therefore been investigatied in this work. To this end, 3d-

MMMs were built with filler particles located in simple cubic (SC), random, body-centered 

cubic (BCC), face-centered cubic (FCC) and hexagonal-closed packed (HCP) lattices. Examples 

of the three filler configurations for 1 μmor   and 0.1   are depicted in Fig. 14. 

   

 

 

Fig. 14. Packing structures for 1 μmor   and 0.1  . (a) Body-centred cubic (BCC), (b) face-

centred cubic (FCC), and (c) hexagonal-closed packed (HCP) lattices. 
 

 The exact effective permeabilities have been determined for all configurations following the 

simulation methodology described in Section 3.2, and Fig. 15 compares the simulation results for 

all cases. No apparent improvement on the effective permeability is achieved with change in the 

packing configuration. At low filler concentrations  0.2  , all packing configurations 

provide the same prediction of the relative permeability. At moderate filler loadings 

 0.2 0.4  , all configurations provide slightly smaller relative permeability predictions 

compared to random packing. Finally, at high particle concentrations  0.4 0.5  , the 

simple cubic lattice provides nearly the same prediction as the random configuration. Such 

behavior suggests that the regular filler packing configurations (BCC, FCC, HCP) may lead to 

reduced permeabilities because the gas molecules follow the paths of least resistance, avoiding 

the uninterrupted low permeability paths in the space occupied by the polymer matrix adjacent to 

the filler particles. Hence, the relative permeability of these structures is lower compared to the 
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random structure at high filler volume fractions, as the gas molecules follow the higher 

permability paths through the particles. However, further studies should be carried out in order to 

comfirm this. 

 
Fig. 15. Exact simulation-based results for the relative permeability for different packing 

configurations, with 100f c f cP P   . 

5. Conclusions 

 This work has presented a new theory for the permeation of pure gases in flat mixed-matrix 

membranes, considering nonuniformity of the filler fraction in finite sized membranes. The 

mixed-matrix membrane flux, estimated through EMT, satisfies the transport equation for the 

composite, while using a position-dependent local permeability (diffusivity); this leads the 

MMM permeability to be dependent on the filler particle size and the membrane thickness. In 

this way, both EMT and transport models are coupled in a self-consistent manner, which is key 

to obtaining the MMM permeability while accounting for the finite filler particle size, and 

overcoming the assumption of the uniformity of the field, inherent to existing theories of 

transport in composite media. The pedictions of the theory have been validated against exact 

simulation-based results, showing excellent agreement. 

 A decrease of the effective permeability is found with increase of the particle size, which is 

associated with the decrease of the specific polymer-filler interfacial area. Here, both theory 
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predictions and exact calculations are in very good agreement, with differences less than about 3-

5%  at large filler volume fractions. Further, no difference is found in the exact relative 

permeability when altering the filler-to-matrix equilibrium constants and filler-to-matrix intrinsic 

diffusivities at constant filler-to-matrix permeability ratio, which is consistent with the proposed 

theory. Finally, very little relative permeability difference is found with changes in the filler 

packing configuration, with the random structure being the most favourable and showing a 

slightly higher effective permeability compared to the regular structures. This is due to the filler 

particles offering higher permeability pathways compared to the continuous polymer-filled 

regions adjacent to the particles in the regular structures. 
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Highlights 

 Filler volume fraction is non-uniform in finite sized composite membranes 

 Effective medium theory is extended to finite systems 

 The theory is in remarkable agreement with  detailed simulations  

 Membrane permeability decreases on increasing particle size.  

 Filler packing structure only weakly affects permeability of the composite. 

 

 




