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Abstract 

The Giant or Black Tiger Shrimp, Penaeus monodon, is an economically significant aquaculture 

species globally, producing 4.5 million tonnes of product annually at a value of US$ 23.5 billion 

(FAO, 2016a). Recent innovations in the domestication and selective breeding of P. monodon have 

resulted in significant improvements in growth rate, survival and pathogen tolerance. However, the 

reproductive performance of domesticated stocks is inferior compared to that of wild-caught 

broodstock. Significant reductions in the number of females maturing, egg and nauplii production 

and hatch rates are commonly reported for domesticated stocks relative to their wild-caught 

counterparts.  

The complexities surrounding reduced reproductive performance in domesticated P. monodon are 

underpinned by two critical issues: 1) a poor understanding of the specific nutritional requirements 

for reproduction in the species and; 2) a lack of clarity as to the characteristics that define a ‘good 

spawner’ – particularly on a biochemical and molecular level. The studies that make up this thesis 

employed a multidisciplinary approach to assess nutritional, biochemical, and molecular factors that 

relate to broodstock reproductive performance. Primarily this thesis sought to: (1) investigate 

whether the current constraints to reproductive performance in domesticated stocks could be 

overcome by including the microbial biomass derived bioactive Novacq™ (Patent #2008201886) 

within pelleted diets; (2) evaluate whether current broodstock maturation diets are limiting in 

relation to repeated spawning and; (3) characterise key interactions between micronutrients and 

regulatory gene(s) and/or pathways linked to reproduction.  

A series of reproductive performance trials were undertake to assess the effect of incorporating 

microbial biomass (Novacq™) within pelleted maturation diets. Preliminary farm-based trials 

observed significant increases to maturation rate, egg production and nauplii production when 

domesticated broodstock were fed an experimental pelleted diet containing the Novacq™ ingredient 

(20% Novacq™ inclusion rate, 2.4% of total diet fed). However, in a subsequent trial conducted 

under controlled experimental conditions, broodstock fed commercial-grade pelleted diets (30% 

Novacq™, 5.5% of total diet fed) exhibited a significant decrease in egg hatch rate. Reductions in 

reproductive performance under controlled experimental conditions were attributed to a decrease in 

the quality of basal pellet diets, both as a function of increased Novacq™ inclusion and their 

commercial-based formulation. The above studies suggest the capacity to improve reproductive 

performance in domesticated P. monodon, using biofloc and its substituents, is highly dependent on 

the quality of the basal maturation diet fed. 
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In response to the aforementioned studies, a trial was undertaken to identify potential factors 

limiting reproductive performance within current broodstock maturation diets. The effect of 

repeated spawning on reproductive performance and tissue biochemistry (ovary and 

hepatopancreas) was assessed in a population of broodstock fed a typical high performance 

maturation diet. During the initial two spawning cycles broodstock demonstrated significant 

variation in aspects of hepatopancreas and ovary biochemistry. Most notably, significant reductions 

in hepatopancreas and ovarian arachidonic acid (ARA) content were observed, suggesting that the 

requirement for and/or utilisation of ARA in relation to spawning exceeds quantities provided by 

current maturation diets. Additionally, a number of hepatopancreas fatty acids were depleted in 

second spawn, and therefore represent micronutrients likely to become limiting in subsequent 

spawning cycles.  

To further understand the impact of limiting ARA on reproduction, ovarian ARA content was 

quantified in a homogeneous population of domesticated broodstock. Significant individual 

variation in ovarian ARA content was observed. RNA-seq analyses was undertaken to investigate 

the effect of variable ARA content on global gene expression and prostaglandin (ARA derived 

hormones with significant regulation over reproduction) biosynthesis. Global gene expression 

analyses identified a total of 757 genes with >2-fold expression difference in relation to ovarian 

ARA content. Additionally, variation in ovarian ARA content had significant impact on the 

regulation of prostaglandin biosynthesis genes, particularly those linked to egg production (PGE2) 

and maturation (PGF2α).  

The studies contained in this thesis shed light on the influence of nutritional bioactives, whilst 

providing a comprehensive framework for the development of high-performance broodstock feed 

formulations and optimized nutrition strategies.  
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Chapter 1: General Introduction 

With the human population predicted to exceed 9.5 billion come 2050, the global requirement for 

animal protein is set to increase dramatically. The continued development of production systems 

that yield high quality, yet inexpensive animal-protein is essential to meet global food trajectories. 

Fish production, which includes finfish, crustacean and mollusc species represent one such 

commodity. In 2014, an estimated 167.2 million tonnes of fish were consumed globally, accounting 

for approximately 20% of the global population’s intake of animal protein (FAO, 2016a). Capture 

fisheries represent the predominant source of food-fish production worldwide (93.4 million tonnes 

produced in 2014) (FAO, 2016a). However, widespread overexploitation of capture fisheries 

represents a significant impediment to the continued growth of the sector (currently estimated at 

0.8% per annum) (FAO, 2016a). Recent modelling suggests that even under strict management 

regulations the capture sector has little to no capacity to expand in line with global population needs 

(see Garcia and Rosenberg, 2010). If we are to meet future global food demands any increase in 

global fish production must be derived primarily from farm-based systems, a practice commonly 

referred to as aquaculture.  

1.1. Aquaculture  

The Food and Agriculture Organization of the United Nations (FAO) defines aquaculture as the 

farming of aquatic organisms including finfish, molluscs, aquatic plants and crustaceans. In 2014, 

South East Asia represented the largest contributor to aquaculture production, with the top five 

aquaculture producers (based on total yield) being China (45.5 million tonnes), India (4.9 million 

tonnes), Indonesia (4.3 million tonnes), Vietnam (3.4 million tonnes), and Bangladesh (2 million 

tonnes) (FAO, 2016a). In terms of global production volume, annual aquaculture production is 

primarily comprised of finfish (68% of production, 49.9 million tonnes), molluscs (22% of 

production, 16.1 million tonnes) and crustaceans (9% of production, 6.9 million tonnes) (FAO, 

2016a).  

Of the above mentioned groups, crustaceans command the greatest commodity value (US$5,200 per 

tonne) despite their relatively low production volume (FAO, 2016a). Crustaceans, which include 

lobsters, crayfish, crabs and shrimp, owe their considerable market value to their status as ‘luxury’ 

food items. Shrimp in particular represent the second most valuable aquaculture commodity traded 

globally (salmon being the first), accounting for 15% of the total value of globally traded fish 

products in 2014 (FAO, 2016a). Within the shrimp sector, marine Penaeid species are of particular 
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significance, namely Litopenaeus vannamei (Pacific White shrimp) and Penaeus monodon (Black 

or Giant Tiger shrimp). 

1.2. Penaeid Shrimp Aquaculture  

The prevalence of disease has been the driving force shaping the development and growth of the 

shrimp aquaculture industry. Established in the 1980s, the industry saw consistent annual growth of 

25% per annum during its founding years (FAO, 2010). At the time, farms focused primarily on the 

production of P. monodon, a species valued for its large size and fast growth. During the industries 

founder years operations focussed on sourcing broodstock from wild populations to produce high 

quality seedstock. However, this practice eventually led to the introduction and spread of disease 

into global farming operations, resulting in considerable slowing of industry growth during the 

1990s (5 to10% growth per annum) (FAO, 2010). In response to widespread disease outbreaks, 

shrimp industries shifted towards the development and production of domesticated lines as a means 

of reducing industry reliance on wild-sourced seedstock. Litopenaeus vannamei quickly emerged as 

a favourable culture species, due to its rapid growth rate, ability to be cultured under high stocking 

densities and its readiness to breed in captivity. These traits favoured domestication of the species 

and lead to the development of genetically-selected specific pathogen free (SPF) lines. As a result, 

global production of P. monodon, which had proved difficult to domesticate, was largely replaced 

by L. vannamei in the early 2000s. The global shift towards domesticated SPF L. vannamei stocks 

dramatically increased industry growth between 2000 and 2006 (43% per annum) (FAO, 2010), 

before the industry stabilized to the current level of 6.9% growth per annum (Anderson and 

Valderrama, 2013).  

Today, global L. vannamei production is derived almost exclusively from domesticated SPF or 

specific pathogen resistant (SPR) stocks. In stark contrast, progress in the domestication of 

P. monodon has been limited, despite the species retaining its superior market value. The 

reproductive performance of domesticated P. monodon broodstock remains the primary obstacle to 

the establishment of domesticated SPF and/or SPR lines. Unlike L. vannamei, farm-reared 

P. monodon rarely develop mature gonadal tissue without ablation spawn fewer viable offspring 

than their wild-caught counterparts. As a direct result, P. monodon production remains heavy reliant 

on wild-caught broodstock, exposing the industry to seasonal variability in seedstock quality, 

precluding opportunities to improve traits through selective breeding and increasing disease risks. If 

the industry is to replicate the successes made in L. vannamei, efforts must first be directed at 

resolving the poor reproductive performance of P. monodon in captivity. 
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1.3. Commercial Lifecycle of P. monodon Broodstock 

In recent years the lifecycle of P. monodon has been successfully closed, allowing for broodstock to 

be reared from egg to adult on-farm (Figure 1). Under typical commercial conditions, eggs are 

broadcast spawned and externally fertilized. The embryos are then hatched within specialized 

biosecure spawning tanks. Approximately 12 hours following spawning, hatched nauplii are 

collected and transferred to biosecure nursery facilities. Within nursery facilities nauplii continue to 

develop though a number of larval stages, including six non-feeding nauplii stages (typically 

denoted as nauplii I-VI), three feeding protozoea stages (denoted protozoea I-III) and three feeding 

mysis stages (denoted mysis I-III). Each larval stage molts to progress and is concluded 

approximately 20 days post-hatch, following one additional molt from mysis III to the juvenile 

post-larval form. Typically, post-larvae (PL) are reared for an additional 15 days (commonly 

referred to as PL15) to ensure stability of body proportions, before being transferred from nursery 

facilities to large earthen seawater ponds (Motoh, 1985). Adolescent broodstock continue to be 

reared within earthen ponds or dedicated biosecure broodstock ponds or raceways until six months 

of age (termed the grow-out phase), before being transferred to enclosed biosecure maturation 

tanks. The now sub-adult broodstock are matured for an additional 1-3 months before reaching 

sexual maturity at approximately nine months after hatching (Motoh, 1985). Mature broodstock are 

then conditioned for a further 1-3 months (termed pre-conditioning) before being induced to spawn 

by ablation, with impregnated gravid females being transferred to biosecure spawning tanks – thus 

completing the commercial lifecycle. 

1.4. Reproductive Performance of Domesticated P. monodon 

Despite the successful closing of the P. monodon lifecycle, the low fecundity of domesticated 

broodstock represents a significant bottleneck to the broad industry adoption and use of such stocks. 

Furthermore few companies have mastered the techniques and nuances associated with broodstock 

husbandry and nutrition. Thus P. monodon has not yet undertaken industry wide domestication, 

with the majority of production still being dependant on the availability of wild sourced broodstock.  

One of the primary issues when investigating causal factors of reduced reproductive performance in 

P. monodon is isolating the influences of sex. Given the collection of male spermatophores is non-

invasive as compared with the destructive ovary extraction, and that they can be successfully 

inseminated into a donor female, earlier works tended to focus heavily on male-specific measures of 

performance. Numerous articles have been published linking spermatophore weight, sperm number,  
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Figure 1. Commercial production cycle of Penaeus monodon. Adapted from FAO Penaeus monodon 
factsheet available from http://www.fao.org/fishery/culturedspecies/Penaeus_monodon/en 
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and quantity of reactive sperm with male reproductive performance and quality (Pongtippatee et al., 

2007, Pratoomchat et al., 1993, Jiang et al., 2009, Meunpol et al., 2005). Although not explicitly 

stated, the bulk of these studies implied that males represented the primary limiting factor to 

seedstock production in domesticated P. monodon. However, more recent works have demonstrated 

that spermatophore weight and sperm number are not reliable predictors of offspring viability 

(Arnold et al., 2012). Further, males have far less influence on fertilization rate, hatch rate and 

subsequent embryo development then originally suggested (Arnold and Coman, 2012, Arnold et al., 

2012, Arnold et al., 2013). Certainly, these contemporary studies do not suggest male propagule 

quality is irrelevant, more so that the mechanisms underlying reduced reproductive performance in 

domesticated P. monodon stocks are predominantly female based.  

It is well documented that in a commercial environment, females from domesticated stocks rarely if 

ever develop fully mature ovaries before spawning unlike their wild-caught counterparts (Coman et 

al., 2006, Menasveta et al., 1993, Arnold et al., 2013). In addition domesticated P. monodon 

produce far fewer eggs and spawn less frequently than their wild-caught counterparts (Klinbunga et 

al., 2009, Coman et al., 2006, Hall, 2003, Menasveta et al., 1993, Peixoto et al., 2005, Arnold et al., 

2013). Peixoto et al. (2005) noted that the ovaries of mature domesticated broodstock frequently 

contained high proportions of immature oocytes. The spawning of immature oocytes by 

domesticated broodstock is likely to lead to low hatch rates (Coman et al., 2005, Hall, 2003, 

Makinouchi and Hirata, 1995, Preston et al., 2009, Primavera and Posadas, 1981, Arnold et al., 

2013). Indeed, in the absence of an observed male effect on fertility, Arnold et al. (2013) concluded 

that low fertility in domesticated P. monodon was due to females spawning with immature ovaries. 

Taken together, these studies suggest that egg development, quality and quantity represent key 

target areas for improvement in female domesticated P. monodon.  

1.5. Current Status of P. monodon Selective Breeding in Australia  

To date, the bulk of P. monodon selective breeding programs in Australia have focused on 

improving production traits during stock grow-out. Targeted traits include increased growth 

(Glencross et al., 2013), harvest yields (Arnold et al., 2013) and viral tolerance (Arnold et al., 2013, 

Coman et al., 2005, Sellars et al., 2015a). Given the prevalence of growth selection in P. monodon 

hatcheries, Macbeth et al. (2007) calculated the degree of genetic correlation between growth and 

nauplii production. Genetic correlations identified no significant linkage between broodstock 

growth and nauplii production traits. These results are intriguing given that Arnold et al. (2013) 

reported increased reproductive performance in eighth-generation selected P. monodon lines. Taken 
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together, these data suggest that, whilst modest improvements in performance have been observed 

in advanced generation stocks, it is not likely to be due to the current selection pressures imposed 

(growth, survival and pathogen tolerance). Instead, improvements in Australian domesticated 

broodstock performance likely reflect improved broodstock husbandry and nutrition. However, 

Macbeth (2007) noted that egg and nauplii production are heritable traits. Functional genomic 

studies aimed at identifying gene functions underlying reduced reproductive performance should be 

a prioritized. Notably, as no annotated genome currently exists for P. monodon, transcriptomic 

techniques such as RNA-seq have the greatest potential to identify genes functionally linked with 

reproduction. Such genes may serve as future markers for use in selective breeding programs 

looking to improve reproductive output. 

1.6. Broodstock Nutrition  

Nutrition is considered as one of the primary factors that constrains the reproductive performance in 

Penaeid shrimp (Arnold et al., 2013, Emerenciano et al., 2013b, Browdy, 1998, Coman, 2014). As 

such, there is considerable potential to boost stock performance through improved diet formulation 

or the use of novel feed ingredients. The basic nutritional requirements for shrimp maturation diets 

have been extensively reviewed in the past (see Wouters et al., 2001a, Harrison, 1990). However, a 

number of key research areas remain unresolved in relation to broodstock, including quantitative 

nutritional requirements, nutrient metabolism in relation to spawning and nutrient interaction with 

broodstock endocrinology (Hoa et al., 2009, Wouters et al., 2001a). Due to our lack of 

understanding on fundamental broodstock nutrition requirements in P. monodon, maturation diets 

remain heavily reliant on fresh-frozen feed ingredients (i.e. squid polychaete worms, bivalves, 

Artemia biomass, beef liver), which are susceptible to seasonal variations in quality, and provide a 

potential vector for pathogen transmission (Chimsung, 2014). Compound pelleted diets consistently 

underperform when compared with fresh feeds and therefore make up a small proportion of typical 

maturation diet regimes (estimated at 16%) (Meunpol et al., 2005, Harrison, 1990, Bray and 

Lawrence, 1992, Bray et al., 1990, Wouters et al., 2001a). However, compound maturation diets 

have a number of advantages over fresh-frozen feeds, including consistent nutritional content, easier 

management and storage, and reduced risk of pathogenic contamination (Chimsung, 2014, Wouters 

et al., 2001a, Harrison, 1990). Therefore, the generation of comprehensive reproduction-associated 

biochemical data to aid in maturation diet formulation represents a key research priority and 

opportunity. 
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The superior performance of fresh-frozen feeds has been largely attributed to their optimal fatty 

acid composition, particularly highly unsaturated fatty acids (HUFA) (Meunpol et al., 2005). 

Shrimps, as for all crustaceans, have a limited capacity to elongate unsaturated fatty acids or 

synthesize HUFA de novo and therefore these nutrients must be supplied in the diet (Glencross, 

2009). In Penaeid shrimp a large portion of ovarian HUFA is composed of the essential fatty acids 

arachidonic acid (ARA), eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) (Hoa et al., 

2009). Broodstock diets rich in ARA, EPA and DHA have been linked to a number of favourable 

performance traits in Penaeid shrimp including: improved nutrient uptake and transfer, improved 

spawning activity, egg production, hatch rates and nauplii survival (Coman et al., 2011, Cahu et al., 

1994, Palacios et al., 2001, Emerenciano et al., 2013b, Xu et al., 1994a). Interestingly, Wouters 

(2001a) noted that compound diets contain relative low levels of both ARA and EPA when 

compared with fresh-frozen feeds, and therefore may require further investigation in relation to 

spawning. The requirement for ARA is of particular interest given ARA serves as the primary 

substrate for the synthesis of series II prostaglandins, hormones with significant regulatory control 

over maturation and oocyte development in P. monodon (Wimuttisuk et al., 2013).  

A novel area of nutrition research is the incorporation of microbial biofloc within broodstock 

maturation feeding regimes. The term biofloc typically refers to a flocculation of highly-

concentrated bacterial and microalgae biomass, which are deployed into commercial grow-out 

ponds. When made available in-pond, biofloc constitute a significant food source for shrimp 

(Burford et al., 2004), providing a source of diverse protein (Emerenciano et al., 2012), lipid 

(Wasielesky et al., 2006), amino acid (Ju et al., 2008) and fatty acid (Izquierdo et al., 2006). The 

effect of biofloc on reproduction has been examined for a number of Penaeid species, with authors 

reporting improvements in maturation and spawning rates (Litopenaeus stylirostris, Emerenciano et 

al., 2012), total and relative egg production and egg size (Farfantepenaeus duorarum, Emerenciano 

et al., 2013a) and increase egg HUFA content (Litopenaeus vannamei, Emerenciano et al., 2013b). 

The aforementioned studies clearly demonstrated that the biofloc has the potential to improve the 

reproductive potential in Penaeid shrimp. Whether biofloc has the potential to improve reproductive 

performance in domesticated P. monodon warrants further investigation.  

1.7. Aims of This Research Thesis 

The reduced reproductive of performance of domesticated P. monodon broodstock represents the 

most significant constraint to their widespread domestication and adoption. Distinct knowledge 

gaps in adequate feed formulation, broodstock nutrition and genetic regulation of maturation and 
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spawning in P. monodon contribute to the ongoing reliance of industry on wild-caught broodstock. 

This research thesis aims to address these key knowledge gaps by increasing our understanding of 

the nutritional, biochemical and molecular mechanisms that underlie variations in the reproductive 

performance of domesticated P. monodon broodstock, investigating specifically:   

 Whether nutritional intervention using microbial biofloc has the potential to overcome 

current constraints on reproductive performance  

 Whether nutrient requirements and/or utilization are limiting under current high 

performance maturation feeding regimes in relation to repeat spawning, and 

 Whether interactions exist between limiting nutrient(s) and key regulatory genes or gene 

pathways linked to reproduction. 

Answers to these questions will provide a rigorous scaffold for the optimization of maturation diet 

formulations and further our understanding of the molecular mechanisms regulating reproduction in 

shrimp. Outcomes from this project will enhance the reproductive productivity of domesticated 

broodstock, enhance the sustainability of P. monodon farming and improve the accessibility of elite 

domesticated-selected lines to Australian shrimp farmers. 
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Chapter 2: Effect of microbial biomass supplementation on the reproductive 

performance of domesticated Penaeus monodon when fed in combination 

with high quality broodstock diets 

 

2.1. Abstract 

The effect of a microbial biomass derived feed additive, Novacq™ (Patent #2008201886), on the 

reproductive performance of third generation domesticated Penaeus monodon broodstock was 

evaluated across a 20-day period. Reproductive performance was evaluated within a commercial 

hatchery across two commercial spawning periods (termed experiments), which saw broodstock 

conditioned for three weeks (experiment one) or 11 weeks (experiment two) prior to ablation. 

Broodstock were fed a typical fresh-frozen maturation diet throughout both the pre-conditioning 

and 20-day evaluation period, which included a pelleted diet containing 20% inclusion of the 

microbial biomass ingredient or a pelleted diet designed to mimic the treatment pellet, without 

microbial biomass. Pelleted diets made up 12.2% of the total diet fed (based on dry matter) and thus 

the microbial biomass ingredient constituted 2.4% of the total diet fed within the treatment diet 

(based on 20% inclusion rate). The reproductive performance of broodstock, across both 

experiments one and two were evaluated on a ‘per female, per day’ basis. The proportion of females 

spawning, the number of eggs produced and nauplii produced were significantly higher (P<0.05) in 

experiment two broodstock fed the treatment pellet. However, no significant differences in 

performance were observed between experiment one broodstock fed either diet. These results 

suggest that microbial biomass derived feed additives can enhance reproductive performance in 

domesticated P. monodon, however the effect appears to be dependent on the duration of the pre-

conditioning period.  
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2.2. Introduction  

The reproductive performance of domesticated Penaeus monodon (giant tiger shrimp) broodstock 

has routinely been shown to be lower than that of their wild-caught counterparts (e.g. Coman et al., 

2006, Arnold et al., 2013). Recent improvements in husbandry and genetic selection have resulted 

in minor generational improvements to reproductive performance (Coman et al., 2013), yet such 

improvements have not been comparable with or superior to the reproductive outputs observed in 

wild-caught broodstock. Whilst many factors influence the reproductive performance in P. 

monodon, an optimal diet is considered critical for ‘normal’ sexual maturation and spawning 

(Wouters et al., 2001a). Traditionally, broodstock maturation feeding regimes have consisted of a 

fresh frozen food (FFF) component (e.g. squid, mussel, bloodworm, Artemia and ox liver) 

supplemented with various pelleted feeds (Wouters et al., 2001a). A number of broodstock nutrition 

studies have examined the effect of varying quantities of nutrient classes and/or compounds within 

such broodstock feeding regimes (Alava et al., 1993, Cahu et al., 1994, Xu et al., 1994a, Marsden et 

al., 1997, Naessens et al., 1997, Hoa et al., 2009, Emerenciano et al., 2013b, Emerenciano et al., 

2013a, Coman et al., 2007a, Chimsung, 2014, Wouters et al., 2001a, Wouters et al., 2001b). Recent 

studies have suggested that biofloc technology (BFT) may help improve reproductive performance 

in Penaeid shrimp (Emerenciano et al., 2012, Emerenciano et al., 2013b, Emerenciano et al., 2013c, 

Braga et al., 2015). In male broodstock, the use of BFT during pre-conditioning allowed the 

reduction of dietary protein content from 68.4% to 39.9% whilst maintaining spermatophore and 

sperm quality in pacific white shrimp (Litopenaeus vannamei) (Braga et al., 2015). When 

conditioned within BFT systems, female pacific blue shrimp (Litopenaeus stylirostris), pink shrimp 

(Farfantepenaeus duorarum) and L. vannamei broodstock matured and spawned more frequently 

and produced a greater numbers of eggs (Emerenciano et al., 2012, Emerenciano et al., 2013b, 

Emerenciano et al., 2013c). However, the ability to improve reproductive performance in female 

Penaeid broodstock using BFT appears to be largely dependent on the length of pre-conditioning 

prior to ablation, as well as the nutritional quality of the basal maturation diets fed in combination 

with BFT (Emerenciano et al., 2012, Emerenciano et al., 2013b, Emerenciano et al., 2013c). 

Commercially, BFT is largely restricted to the grow-out phase of the production cycle. However, 

recent attempts have been made to harvest and process the microbial biomass (MB) or biofloc for 

further use in pelleted maturation diets. This allows MB to be fed across all stages of the production 

lifecycle, including broodstock conditioning and spawning. This study aimed to evaluate whether a 
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MB-derived ingredient (Novacq™, Patent #2008201886) influenced the reproductive performance 

(at the levels fed in this study) of P. monodon.  

Broodstock were fed the MB ingredient during both pre-conditioning and maturation periods at a 

rate of 2.4% of the total diet based on dry matter (20% MB inclusion rate, pellet fed at a rate of 

12.2% of total diet). The reproductive evaluations within this study were undertaken on-farm (Gold 

Coast Marine Aquaculture (GCMA), Woongoolba, Queensland, Australia) within commercial 

maturation and hatchery facilities, as well as across multiple broodstock conditioning periods. This 

design enabled the assessment of short- and long-term feeding effects of the MB containing diets 

under commercial hatchery conditions. 

2.3. Methods 

2.3.1 Manufacture of Supplemental Diets  

All raw ingredients were milled separately to 750 μm on a hammer mill prior to use. A single batch 

of mash was prepared and thoroughly mixed in an upright mixer (Model 60 A-G, Bakemix). The 

two treatment diets were designated by the addition of dried MB at 20% dry weight basis to one 

aliquot of mash. The two diets were processed using a laboratory-scale, twin-screw extruder (APV 

MFP24; APV-Baker, Peterborough, United Kingdom), with intermeshing, co-rotating screws. 

Measurements were taken during initial running phases with incremental variations in water 

addition and measurement of the expansion using vernier callipers (TradeToolsDirect, Ormeau, 

Australia). Feeds were extruded through the 2 mm die and cut into 20 to 25 mm lengths using a 

two-bladed variable speed cutter and collected on large aluminium oven trays. The diets were dried 

in fan forced ovens at 60°C overnight until they reached a constant dry matter. Approximately 

50 kg batches of each diet were collected and vacuum bagged, stored at -20°C until use. 

2.3.2 Stock Origin and Animal Rearing 

Experimental broodstock were from a third generation domesticated P. monodon line maintained at 

GCMA. The broodstock were reared within enclosed nursery facilities until postlarval stage (PL) 15 

(15 days post-metamorphosis from mysis to postlarval stage 1), before being stocked into earthen 

grow-out ponds (3,000 m2). After 6 months shrimp were transferred from the grow-out ponds to a 

series of rectangular 15,000 L indoor maturation tanks (17 m2) fitted with sub-sand circulation 

systems. The tanks were stocked with 60 to 80 individual broodstock at a 1:1 sex ratio and density 

of 3.52 – 4.70 shrimp/ m2. Seawater flowed through tanks to provide approximately 30 to 50% 
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water exchange daily maintaining the temperature and salinity at 29 ± 1°C and 35 ± 1 ppt 

respectively. Lighting within the maturation facilities was low with an ambient photoperiod.  

Within the maturation facility, all broodstock were fed on a typical commercial fresh-frozen 

maturation diet supplemented with the MB-inclusive (MBD) or control (CTRL) pelleted 

experimental diet (see 2.2.3 Experimental Design). The contribution of pelleted diets to the total 

maturation diet fed was approximately 12.2% based on dry matter (DM), with the remainder of the 

total diet fed (based on DM) made up by fresh-frozen feed ingredients: arrow squid (25.2%), green-

lip mussel (24.6%), ox liver (12.6%), Artemia (10.6%), marine bloodworm (14.8%). All broodstock 

were fed eight times daily, spread evenly throughout a 24 h period, following standard commercial 

broodstock protocols at the GCMA hatchery facility, which included a single daily ration of the 

respective supplemental pellet diet. The total contribution of supplemental pellets, within the 

complete dietary regime was 12.2%. Therefore, the MBD treatment provided approximately 2.4% 

of the total diet. During each feeding event the ration was provided to satiation, with excess feed 

cleaned from tanks using hand nets.  

2.3.3 Experimental Design 

The study was conducted across two spawning events, designated experiment one and experiment 

two (Figure 2). The first experiment used stocks at approximately nine months of age, which had 

been fed their respective diet (MBD or CTRL) for three weeks prior to unilateral eyestalk ablation 

of females (removal of eyestalk with hot sterile tweezers) and the commencement of reproductive 

evaluations. The second experiment used stocks of approximately 11 months of age, which had 

been fed their respective diet (MBD or CTRL) for three months prior to unilateral eyestalk ablation 

of females and the commencement of spawning evaluations. Across both experiments, all 

broodstock were fed identical fresh-frozen diets which were supplemented with either the MBD or 

CTRL experimental pelleted diets.  

2.3.4 Reproductive Performance Assessment  

The spawning performance in both experiments was assessed for a maximum of 20 days. Following 

ablation (day 0), broodstock were monitored daily for ovarian development, until the conclusion of 

the evaluation period (day 20). When ripe ovaries (Stage IV following Tanfermin & Pudadera 

1989) were detected, females were removed from maturation tanks and transferred to spawning 

tanks. The spawning tanks used were 80 L flow-through square spawning tanks (water flow 
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Figure 2. Experimental timeline demonstrating the progression of experiment one and two broodstock. All 
broodstock were fed identical diets throughout the grow-out period (green). During the pre-conditioning 
(yellow) and repro (reproductive) evaluation (red) periods broodstock were fed either the control diet 
(CTRL) or microbial biomass inclusive pelleted diet (MBD) 

 

0.5 L/min, water temperature 29° C, gentle aeration), which were coupled with an overflow egg 

collection system, which served to separate eggs from the spawning tank soon after spawning. 

Whilst females were generally stocked into spawning tanks individually, at times multiple females 

were stocked in individual spawning tanks and left to spawn overnight. The number of females 

maturing (i.e. developing stage IV ovaries) and thus entering spawning tanks, from each treatment, 

was recorded each night across the 20-day evaluation period for all experiments and diet treatments 

The morning after spawning, eggs within the overflow collector were concentrated and washed 

thoroughly on a 142 μm mesh, before being transferred into 7 L of fresh seawater for quantification 

within a standard volume. Total egg production was derived by counting three replicate volumetric 

1 mL samples, taken from the 7 L of the egg-seawater solution, under a dissecting microscope. 

Following quantification, embryos were transferred to a separate nauplii hatching system; which 

consisted of a 18 L primary vessel coupled with an overflow system which allowed newly hatched, 

healthy nauplii (strong nauplii display a strong phototactic response) to rise up from the bottom of 

the primary vessel and be flushed into a 9 L “nauplii boot” (which was screened with 142 μm mesh) 

(see Supplementary Figure 1). Within the nauplii boot, the healthy nauplii were continually rinsed 

with clean seawater, until they were counted the following morning, before being transferred onto 
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the commercial hatchery for rearing. Percentage hatch rate and total nauplii production were 

derived from three replicate volumetric 1 mL samples taken from the 9 L of the nauplii boot. 

Percentage hatch rate was calculated from the number of nauplii hatching in the nauplii boot 

divided by the number of eggs collected within the egg collector. All females were returned to the 

maturation tanks each morning, regardless of whether spawns were detected. 

2.3.5 Broodstock Sampling 

Following the 20-day reproductive evaluation period, broodstock were allowed to undergo one 

additional maturation cycle. When ripe ovaries (Stage IV) were detected females were removed 

from maturation tanks and anaesthetized via ice-water immersion. Whole ovary, hepatopancreas 

and muscle tissue (from the first abdominal segment) was excised from anaesthetized females, then 

frozen on dry ice, before being stored at -80°C awaiting further analysis. Notably, commercial 

operations did not allow for sampling of broodstock from experiment two and therefore 

investigations into the effects of diet on ovary, hepatopancreas and muscle tissue were restricted to 

experiment one broodstock only (i.e. those conditioned for three weeks prior to ablation). Five 

experiment one broodstock from the CTRL and MBD diet treatments were sampled.     

2.3.6 Chemical Analysis of Feeds 

Prior to analysis, the feeds were ground into a fine powder and shrimp samples minced frozen, and 

then freeze-dried in a laboratory freeze dryer (Alpha 1-4, Martin Christ, Germany). A sub-sample of 

the original frozen mince was analyzed for its moisture content by gravimetric analysis following 

oven drying at 105˚C for 24 h and this was used as a correction for the freeze-dried material. For the 

freeze-dried sample, dry matter was calculated by gravimetric analysis following oven drying at 

105˚C for 24 h. Gross ash content was determined gravimetrically following loss of mass after 

combustion in a muffle furnace at 550° C for 12 h. Protein was calculated from the determination of 

total elemental nitrogen (CHNS-O Flash 2000, Thermo Scientific, USA auto-analyser, based on N x 

6.25). Gross energy of freeze-dried diets was determined using adiabatic bomb calorimetry 

following the manufactures protocols (Parr 6200 Calorimeter, USA). Total lipid extractions and 

quantification were conducted following Folch (1957). Total lipid content was determined 

gravimetrically following extraction of the lipids using chloroform/methanol (2:1). Carbohydrates 

were calculated based on the difference between dry matter content of the feed minus the lipid, ash 

and protein contents.  
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2.3.7 Data Analysis  

Due to the commercial operations from which the data was collected, individual female 

performance was unable to be tracked. Moreover, as spawning tanks were at times stocked with 

multiple females (though always from the same maturation treatment) it was not possible to 

consistently determine the number of females contributing whole or partial spawnings within each 

spawning tank. With these constraints to the reproductive evaluations, a novel approach to 

quantifying reproductive performance was employed.  

The reproductive performance of each treatment was analyzed in two ways: 1) averaged across both 

experiment one and experiment two and; 2) separated across experiment one and two. The first 

method aimed at discerning the overall effect of MB supplementation, whilst the second method 

allowed the effect of MB supplementation to be examined after feeding over the two timescales. 

Reproductive performance measures were assessed on a ‘per day’ basis, which included diet and 

run (separated or combined) as main effects, and the covariate term ‘female day’ (i.e. day following 

female ablation). The number of female days was simply a function of ‘the number of females 

originally ablated within a tank’ totaled up for each treatment based on the number of females from 

each tank qualifying for evaluation on any particular day. Analysis of co-variance (ANCOVA) 

(McCullagh and Nelder, 1989) was performed to test for diet type effects (CTRL and MBD) for 

four reproductive performance measures assessed over the 20-day period post-ablation: the 

proportion of spawning females (i.e. the number of females transferred into spawning tanks; this 

being a proxy measure of spawning performance); total egg production; percentage hatch rate and; 

total nauplii production.  Analyses were performed using SAS software using the Generalized 

Linear Models (PROC GLM; SAS Institute Software, 1999). Levels of significance were defined as 

P<0.05. All biochemical analyses of experiment one broodstock tissues were undertaken using R 

Studio (R Studio Team, 2015) using Student’s T-Test (Zar, 1984a).  

2.4. Results 

2.4.1 Broodstock Diet Formulation 

The biochemical composition of broodstock diets was analyzed. The combined nutritional content 

of fresh frozen feed ingredients is presented in Table 1. Experimental pelleted diets were analyzed 

independently, with the CTRL and MBD diet formulation and composition presented in Table 2.  
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Table 1. Proximate compositional analysis (g/kg unless otherwise stated) of the combined basal fresh-
frozen feed (FFF) component of broodstock maturation diets fed during experiments one and two. 

 FFF 

Composition   

Dry matter 210 

Protein 166 

Lipid 16 

Ash 16 

Carbohydrates^ 12 

Gross Energy (MJ/Kg) 4.6 

^Carbohydrates calculated by difference. 

2.4.2 Reproductive Performance Measures 

Reproductive performance measures in response to diet treatments across the 20-day evaluation 

period were assessed as a function of the number of original females ablated. When the effect of 

diet was combined across both experiments one (3-week pre-conditioning) and two (11-week pre-

conditioning), a greater proportion of MBD-fed broodstock matured per day (i.e. developed stage 

IV ovaries and thus entered the spawning facility), in addition to producing greater numbers of total 

egg and nauplii when compared with CTRL-fed broodstock (P<0.05) (Table 3). Percentage hatch 

rate did not differ between experimental diet treatments when considered across both experiments 

one and two (P>0.05) (Table 3). The same data were also separated by experiment to distinguish 

effects of pre-condition period. The proportion of spawning females , total egg production, 

percentage hatch rate and total nauplii production did not significantly differ between experiment 

one broodstock fed MBD or CTRL diets 3-weeks prior to ablation (P>0.05) (Table 3). However, 

when broodstock were pre-conditioned for 11-weeks prior to ablation (experiment two), a greater 

proportion of MBD fed broodstock matured per day, in addition to producing greater numbers of 

total egg and nauplii when compared with CTRL fed broodstock (P<0.05) (Table 3). Percentage 

hatch rate did not differ between experimental diet treatments when broodstock were pre-

conditioned for 11- weeks (P>0.05) (Table 3). 

2.4.3 Biochemical Analysis of Broodstock Tissues 

Ovary, hepatopancreas and muscle tissue composition was analyzed for experiment one broodstock 

only, following the 20-day reproductive performance phase. Compositionally, dry matter (%), total 

protein (%), total lipid (%), ash (%) and gross energy content within hepatopancreas and muscle 

tissues did not differ significantly between MBD and CTRL-fed broodstock (P>0.05) (Table 4). 
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Table 2. Ingredient formulation (on a % dry matter (DM) basis) and proximate compositional analysis (g/kg 
unless otherwise stated) of control (CTRL) and microbial biomass inclusive (MBD) maturation pelleted diets 
fed during experiments one and two.  

  CTRL MBD 

   Ingredients (all values presented as % DM)   

     Fish meal (anchovetta) a 54.5 45 

     Krill meal b 10 10 

     Wheat gluten c 10 15 

     Wheat flour c 19.9 4.4 

     Fish Oil a 1.8 1.8 

     Astaxanthin (10%) d 0.5   0.5 

     Vitamin premix e 1.5 1.5 

     Arachidonic Acid (40%)® f 1.8 1.8 

     Microbial Biomass g - 20 

   

Composition (all values g/kg unless otherwise stated)  

     Dry matter 695 694 

     Protein 436 362 

     Lipid 71 72 

     Ash 52 99 

     Carbohydrates^ 135 162 

     Gross Energy (MJ/kg DM) 23 20 

a Fish (Peruvian anchovetta) meal and oil: Ridley Aquafeeds, Narangba, QLD, Australia. b Krill meal: Qrill™ 
Aqua, AkerBioMarine, Oksenøyveien, Bærum, Norway. c Wheat gluten and flour: Manildra, Auburn, NSW, 
Australia. d Carophyll Pink (10%), DSM Nutritional Products, Basel, Switzerland. e Vitamin premix : Rabar, 
Beaudesert, QLD, Australia; includes (IU/kg or g/kg of premix): Vitamin A, 2.5MIU; Vitamin D3, 1.25 MIU; 
Vitamin E, 100 g; Vitamin K3, 10 g; Vitamin B1, 25 g; Vitamin B2, 20 g; Vitamin B3, 100 g; Vitamin B5, 100; 
Vitamin B6, 30 g; Vitamin B9, 5; Vitamin B12, 0.05 g; Biotin, 1 g; Vitamin C, 250 g; Banox-E, 13 g. f ARASCO®, 
Martek Biosciences Co., Columbia, MD, USA. g Novacq™ : CSIRO, Cleveland, QLD, Australia, PCT Patent AU 
2008201886.  
^Carbohydrates calculated by difference 

 

However, the ovarian tissues of MBD fed broodstock contained significantly greater total lipid (%) 

following the 20-day evaluation period than those fed the CTRL diet (P<0.05). Ovary dry 

matter(%), total protein (%), ash (%) and gross energy content did not significantly differ between 

MBD and CTRL fed broodstock (P>0.05). 
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Table 3. Proportion of spawning females, total egg production, percentage hatch rate and total nauplii performance parameters taken over the 20-day 
reproductive evaluation period post-ablation. Performance parameters are presented for broodstock fed either a control (CTRL) or microbial biomass inclusive 
(MBD) diet for either 3-weeks (experiment one), or 12- weeks (experiment two) prior to ablation and during spawning (20-day evaluation period), or averaged 
across experiments one and two.  

    Combined Experiment 1 and 2    Experiment 1   Experiment 2 

Performance Measures Diet Reps (n) Mean ±SD P-value   Reps (n) Mean ±SD P-value   Reps (n) Mean ±SD P-value 

Proportion of Spawning 

Females  
CTRL 216 0.035 0.006 0.019  47 0.021 0.007 nsd  169 0.038 0.006 0.016 

MBD 256 0.042 0.004 
  42 0.019 0.007 

  214 0.047 0.004 
 

                

Total Egg Production CTRL 216 10371.61 1822.21 0.018  47 4670.21 1711.30 nsd  169 11742.46 2026.69 0.018 

MBD 256 13152.70 1345.86 
  42 5369.05 1894.75 

  214 14731.34 1385.71 
 

                

Percentage Hatch Rate  CTRL 216 39.08 4.17 nsd  47 42.90 10.24 nsd  169 38.23 4.33 nsd 

MBD 256 44.76 4.01 
  42 36.10 10.70 

  214 45.75 3.91 
 

                

Total Nauplii 

Production  
CTRL 216 4017.77 836.94 0.034  47 1500.00 541.23 nsd  169 4649.00 975.51 0.017 

MBD 256 5460.50 695.32     42 1595.24 581.70     214 6289.12 815.37   

All reproductive performance measures are presented on a per female per day basis 
SD= Standard Deviation 
Reps (n) = replicates (number) 
nsd = P>0.05 
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Table 4. Proximate compositional analysis (expressed on a % dry weight basis unless otherwise 
stated) of experiment one broodstock hepatopancreas, ovary (stage IV) and muscle tissue sampled 
one maturation cycle following the conclusion of the 20-day reproductive evaluation period. 

Component 

CTRL ± SE   MBD ± SE   Significance 

Hepatopancreas Tissue        

 Dry Matter 97.58 1.00  94.93 0.73  nsd 

 Protein  44.57 5.16  50.03 3.53  nsd 

 Lipid  39.48 5.63  38.51 3.36  nsd 

 Ash 4.23 0.66  4.21 0.40  nsd 

 Gross Energy  26.46 0.89  26.04 0.49  nsd 
         

Ovary Tissue        

 Dry Matter 97.37 1.29  94.59 0.79  nsd 

 Protein  70.04 1.53  73.37 0.67  nsd 

 Lipid  19.98 0.77  22.28 0.42  0.032 

 Ash 6.37 0.53  5.83 0.12  nsd 

 Gross Energy  25.81 0.62  25.68 0.19  nsd 
         

Muscle Tissue        

 Dry Matter 95.04 1.71  92.83 1.27  nsd 

 Protein  94.12 0.71  97.03 1.29  nsd 

 Lipid  4.35 0.31  4.32 0.18  nsd 

 Ash 6.1 0.26  6.11 0.19  nsd 

  Gross Energy  21.81 0.60   23.23 0.53   nsd 

SE= Standard Error 
nsd = P>0.05 

 

2.5. Discussion 

The present study demonstrated that the inclusion of 20% dried MB within broodstock 

pelleted diets improved reproductive performance of P. monodon when fed in combination 

with high-quality basal maturation feeds. However, such improvements were only observed 

in experiment two broodstock fed experimental diets over an 11-week pre-conditioning 

period. A higher proportion of spawning females and greater egg production was observed 

for experiment two broodstock fed MBD diets relative to those fed the CTRL diet. Whilst 

nauplii hatch rate was not influenced by experimental diet treatments, the sheer number of 

eggs spawned and increased maturation rates of MBD fed broodstock resulted in significantly 

greater nauplii yields. These results are consistent with previous reports demonstrating 

increased spawning and egg production of Penaeid shrimp when reared in live biofloc 

systems (Emerenciano et al., 2013a, Emerenciano et al., 2013b, Emerenciano et al., 2012). 
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Therefore it is possible that both live and dried bioflocs contain similar assemblages of 

microbial biomass or that the bioactive mechanism by which biofloc improves performance 

remains similar between dried and live strains. Further research is required to elicit the 

mechanism by which biofloc acts upon reproductive performance in Penaeid shrimp and to 

understand whether such mechanisms in biofloc differ between live and dried variants. 

In addition to investigating dried MB, the current experiment highlights the significance of 

broodstock pre-conditioning. Whilst improvements in reproductive performance were 

observed in experiment two broodstock, the performance of experiment one broodstock did 

not differ across diet treatments. Certainly, the type of diet (selected FFF and/or percentage of 

dry pellet applied) fed during pre-conditioning may affect broodstock performance 

(Emerenciano et al., 2013b, Emerenciano et al., 2013a). However, for the current study the 

pre-conditioning diet regime was identical between experiments one and two, with the 

exception of the length of the pre-conditioning period. Compositional analysis of the 

experimental diet pellets highlighted reduced protein content within the MBD diet. However, 

when the tissue composition of experiment one broodstock was analyzed no significant 

difference in protein content were observed for hepatopancreas, ovary or muscle tissues. 

Experiment one broodstock fed the MBD diet displayed significantly greater ovary lipid 

content than the CTRL fed animals, suggesting that the total MBD feeding regime (which 

includes fresh-frozen ingredients) did not result in nutrient deficiencies in MBD broodstock 

relative to CTRL. Tissue samples could not be obtained from the commercial broodstock 

used in experiment two, so the effect of the MBD on broodstock composition over extended 

timescales could not be determined. However, it is possible that 3-weeks of pre-conditioning 

simply did not provide sufficient level of exposure to the MB ingredient to elicit the level of 

improvement that was observed in experiment two broodstock. I also cannot exclude the 

possibility that individual shrimp simply did not consume much of the available pellets 

during experiment one or that the age of broodstock between experiments one and two may 

have also contributed to variation in spawning performance. Future studies may be needed to 

optimize the duration of exposure to MB supplemented diets, in addition to optimization of 

pre-conditioning period.  

The present study suggests that, in addition to promoting growth in juvenile shrimp 

(Glencross et al., 2014, Glencross et al., 2013), the inclusion of dried MB within pelleted 

diets may enhance reproductive performance in domesticated P. monodon broodstock. 
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However, the ability to improve reproductive performance appears highly dependent on 

quality of the entire broodstock diet (which includes both the fresh frozen and basal pellet 

formulation) as well as the duration of the pre-conditioning period. Currently, the exact 

nature of the bioactive constituents within biofloc and dried MB that are influencing 

reproduction remain unknown. Notably, the reproductive performance evaluations within this 

study were taken on-farm within two commercial spawning runs. Commercial environments 

impose unique challenges such as, in these experiments, the inability to track and monitor 

individuals. Therefore, future works should aim to investigate the mechanism by which MB 

influences reproductive performance under ‘commercial-like’ experimental conditions where 

individuals can be tracked and more control over the production system can be imposed. 

 

 



22 

 

Chapter 3: The effects of adding microbial biomass to grow-out and 

maturation feeds on the reproductive performance in Penaeus monodon 

 

3.1. Abstract: 

A 40-day reproductive performance trial was conducted to assess the effect of targeted 

supplementation of Penaeus monodon broodstock grow-out and maturation diets with 

microbial biomass (MB; Novacq™, Patent #2008201886). Over a seven month grow-out 

period, shrimp were fed a typical pelleted grow-out diet with or without 10% MB. 

Broodstock were then transferred to a maturation facility and a subset of animals from each 

grow-out diet fed on a typical fresh-frozen maturation diet that included a pellet ration with 

or without 30% MB. The pelleted diet constituted 18.5% of total diet (based on dry matter) 

and therefore the MB ingredient was fed at an approximate rate of 5.5% of their total diet fed 

(based on a 30% inclusion rate).  At nine months of age, all broodstock were unilaterally 

eyestalk-ablated and reproductive assessments commenced. No significant difference in 

ovarian maturation, hepatosomatic index, spawning and egg and nauplii production 

parameters were found between diet treatments (P≥0.05). However, females originating from 

control ponds displayed a higher gonadosomatic index at first spawn, whilst the percentage of 

embryos that hatched was lower in females fed a MB-inclusive maturation diet (P<0.05). 

These results indicate that the inclusion of MB within broodstock grow-out and maturation 

diets (at the rates presented in this study) did not enhance reproductive performance of 

domesticated broodstock. When MB supplementation was limited to the broodstock grow-out 

phase only, diets containing 10% MB did not impact on the reproductive performance of 

stocks. Breeders therefore have the potential to include MB within grow-out diets, at levels 

optimal for improving growth and health benefits, without impacting on potential 

reproductive performance. 
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3.2. Introduction: 

To date, significant advances have been made in the domestication and genetic improvement 

of Penaeus monodon (giant tiger shrimp). These include superior growth and feed utilization 

(Glencross et al., 2013, Glencross et al., 2014), increased harvest yields (Preston et al., 2009) 

and increased viral tolerance (Sellars et al., 2015a). Despite these improvements, the 

reproductive performance of domesticated broodstock remains inferior when compared with 

wild-caught broodstock (Menasveta et al., 1993, Peixoto et al., 2005, Coman et al., 2006, 

Arnold et al., 2013). As a result, progress in widespread commercial domestication of P. 

monodon has been slow, leaving most farming operations to rely on stocks produced from 

wild-caught broodstock. Continued reliance on the progeny of wild-caught broodstock is 

unfavourable as farmers risk the introduction of wild diseases and pathogens into the farming 

system, as well as precluding the opportunity for genetic improvements via selective 

breeding. While reproductive performance in domesticated broodstock has been shown to 

improve over successive generations in captivity (Coman et al., 2013, Preston et al., 2009), 

there remains significant scope and economic merit to improving reproductive output and 

seedstock production from domesticated stocks (Arnold et al., 2013). 

Broodstock nutrition is regarded as one of the primary factors that constrains the reproductive 

performance of domesticated Penaeid shrimp (Arnold et al., 2013, Emerenciano et al., 2013b, 

Browdy, 1998, Coman et al., 2007a, Coman et al., 2007b). In general broodstock diets can be 

classified into two broad categories: ‘grow-out diets’ designed to facilitate rapid and 

sustained crop growth in juvenile shrimp; and ‘broodstock conditioning and maturation diets’ 

(henceforth referred to simply as maturation diets) designed to provide mature broodstock 

with the nutrients required for high larval output over successive spawnings. Inadequacies in 

broodstock diets are known to impact on the reproductive performance of broodstock either 

by negatively affecting egg formation and development (resulting in poor offspring viability) 

or through the stunting or inhibition of spawning activity (Wouters et al., 2001b, Clarke et al., 

1990, Harrison, 1990, Wouters et al., 2001a). The nutritional status of females prior to 

maturation can have significant implications for subsequent performance. For example, 

Marsden et al. (1997) demonstrated that maturation diets fed to wild P. monodon broodstock 

after capture and during maturation significantly influenced spawning frequency and larval 

quality. However, these authors also noted that seasonal or individual variation, presumably 

reflected a large-part in the nutritional condition of the stocks, could not necessarily be 
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eliminated by short-term dietary changes, and that the diet consumed in the period prior to 

maturation significantly influenced subsequent reproductive performance. This has led some 

authors to speculate that variation in diet prior to capture may explain the disparate 

reproductive performance between wild and domesticated broodstock (Coman et al., 2006, 

Arnold et al., 2013).  

A particularly promising area of shrimp nutrition research is the use of concentrated 

microbial aggregates, known as bioflocs. The growth promoting effects of microbial biomass 

on shrimp have been reported in a number of studies (Burford et al., 2004, Kuhn et al., 2008, 

Kuhn et al., 2009). Nutritional studies have demonstrated that the growth enhancing effects 

are critically dependent on meeting the overall nutritional demands of shrimp (Glencross et 

al., 2013, Glencross et al., 2014).  

A number of studies have examined the effects of microbial biomass on reproductive 

performance of farmed shrimp. Comparison of the reproductive performance showed that 

female Farfantepenaeus duorarum (pink shrimp) reared in a biofloc system had higher 

spawning activity than females reared in clear water (Emerenciano et al., 2013a). However, 

as demonstrated for growth rates in shrimp, the effects of microbial biomass on reproductive 

performance appear to be strongly co-dependent on other nutritional factors. For example, 

fresh food supplementation enhanced the reproductive performance of Litopenaeus vannamei 

(pacific white shrimp) reared under biofloc conditions (Emerenciano et al., 2013b). Similar 

improvements in reproductive performance were observed in P. monodon when fed 20% 

MB-inclusive pelleted diet (2.4% of total diet), however these improvements in egg 

production maturation frequency and nauplii production were largely dependent on the length 

of pre-conditioning period (see chapter 2).  

The purpose of the current study was to assess the effects of including microbial biomass 

(Novacq™, Patent #2008201886) in the diet of domesticated P. monodon during a seven 

month grow-out phase and the subsequent three month maturation phase. Broodstock grow-

out was conducted on a commercial farm, before stocks were transferred to a research facility 

where they were pre-conditioned, matured and spawned. Maturation and spawning of 

broodstock off-farm allowed for increased precision and control when assessing individual 

broodstock response to diet treatments.  



25 

 

3.3. Methodology 

3.3.1 Stock Origin and Rearing 

The experimental stocks used in this trial were from a fourth generation commercially 

domesticated P. monodon line maintained by Gold Coast Marine Aquaculture (GCMA, 

Woongoolba, Queensland, Australia). These stocks were spawned over two commercial 

spawning events in 2013, using the company’s commercial maturation, hatchery and 

broodstock nursery protocols. Upon reaching postlarval stage (PL) 15 (15 days post-

metamorphosis from mysis to postlarval stage 1), juvenile shrimp were stocked into three 

earthen grow-out ponds at a density of 2-3 shrimp/m2 (Table 5). At this time, juvenile 

broodstock began receiving experimental grow-out diets. One group received the control diet 

that was a commercially-produced pellet that did not contain the MB ingredient, whilst the 

other group received a commercially-produced pellet formulated similarly to the control diet, 

but including 10% MB (10% of total diet; crude analysis of the two grow-out diets provided 

below: Table 6). In accordance with GCMA’s commercial grow-out protocols, broodstock 

were fed their respective grow-out diets four times per day in preparation for maturation and 

spawning. During grow-out, average female weight for each grow-out treatment was 

estimated on a monthly basis. Average weight per treatment was derived from 20 individual 

female broodstock sampled (via cast net) per pond, per month, averaged across all ponds 

within a given diet treatment.  

When animals reached sexual maturity at approximately seven months, a total of 80 male and 

80 female domesticated broodstock from each respective grow-out treatment were randomly 

selected from the grow-out ponds via cast net. All shrimp were transported 2 h by road to 

 

Table 5. Commercial pond and stocking parameters for broodstock reared at Gold Coast Marine 
Aquaculture. Broodstock were fed on either a control (pond C) or microbial biomass (MB) inclusive 
(pond A and B) pelleted diet throughout the grow-out period (7 months). 

  Pond Size (m2) No. Shrimp 

Stocked 

Stocking Density Grow-out Diet 

Pond A 2000 6000 3 shrimp/ m2 MB Pellet 

     

Pond B 3000 5000 2 shrimp/ m2 MB Pellet 

     

Pond C 3000 5000 2 shrimp/ m2 Control Pellet 
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Table 6. Proximate compositional analysis (on a % dry matter (DM) basis) of control and microbial 
biomass (MB)-inclusive pelleted diets fed during broodstock grow-out and maturation (includes both 
conditioning and spawning periods) phases. 

Diet Component Control MB 

Grow-out Protein  47.9 47.4 
 Fat 7.9 8.4 
 Moisture (air) 8.7 9.1 
 Ash  9.0 12.6 
 Crude Fibre 2.6 3 
 Carbohydrate^ 35.2 31.6 

 Energy (kJ/g)1 19.5 18.9 

    
Maturation Protein  36.9 30.7 

 Fat 8.5 8.3 
 Moisture (air) 31.3 34.6 
 Ash  9.3 9.9 
 Crude Fibre 0.4 2.1 

 Carbohydrate^ 45.3 51.1 

  Energy (kJ/g)1 19.1 18.8 

All results are reported on a % weight per weight basis unless otherwise stated^ Carbohydrates 
calculated by difference 
1 Energy calculated as 21.3 kJ/g for protein, 17.6 kJ/g for carbohydrate and 39.5 kJ/g for lipid (Cuzon 
and Guillaume, 1997) 

 

CSIRO’s research facility at the Bribie Island Research Centre (BIRC, Woorim, Queensland, 

Australia). Animals were stocked into 10,000 L circular maturation tanks containing a fine 

layer of sand substrate (Crocos and Coman, 1997). Seawater flowed through the tanks at 4 L 

min-1 (57% water exchange per day) at an average water temperature of 27°C, and 35 ± 1 ppt 

salinity. Photoperiod was maintained at 14 h light: 10 h dark with an artificial light system.  

At BIRC, tanks were allocated a maturation diet as described in Figure 3. Broodstock that 

had previously been reared on a control grow-out diet were either allocated to a control 

maturation diet (C+C) or switched to a MB-inclusive maturation diet (C+MB). Broodstock 

previously reared on a MB-inclusive grow-out diet were either allocated to a MB-inclusive 

maturation diet (MB+MB) or switched to a control maturation diet (MB+C). Control 

maturation diets consisted of a fresh-frozen invertebrate based maturation diet supplemented 

with a high-quality commercial broodstock maturation pellet. MB-inclusive maturation diets 

consisted of the same fresh-frozen invertebrate based diet supplemented with a high-quality 

broodstock maturation pellet that comprised of 30% MB prepared on a similar base as to the 

control diet. The total contribution of pelleted feeds within maturation diets was  



27 

 

 

Figure 3. Diagrammatic representation of experimental stock and diet allocations. All stocks were 
reared on-farm under controlled pond grow-out (GO) conditions for a total of seven months. During 
the GO (grow-out) phase shrimp stocked in ponds A and B were fed on a MB inclusive grow-out diet, 
whilst those stocked in pond C were fed on a control grow-out diet. At seven months of age 
broodstock from ponds A and B were combined (n=160 shrimp/ treatment, 1 ♂:1 ♀) to form the MB 
grow-out pool. A second independent control grow-out pool was created by sampling broodstock 
from pond C only (n=160 shrimps/ treatment, 1 ♂:1 ♀).  Both pools were then transported off-farm 
to maturation tanks and randomly allocated to a maturation diet. Half of the broodstock within the 
MB grow-out pool were allocated a MB inclusive maturation diet (MB+MB) whilst the remaining half 
were switched to a control maturation diet (MB+C). Similarly, half of the broodstock within the 
control grow-out pool were allocated a control maturation diet (C+C) whilst the remaining half was 
switched to a MB- inclusive maturation diet (C+MB). Two independent replicate tanks were used per 
treatment, with each tank containing 40 individuals (4 shrimp/ m2, 1 ♂:1 ♀). All broodstock were fed 
their allocated broodstock diet for the entirety of the pre-maturation (PC) and reproductive (REP) 
phases. 

 

approximately 18.5%, with the remainder made up by fresh-frozen ingredients: Artemia 

biomass (5.1% of total diet fed); bloodworm (16.6% of total diet fed); mussel (15.8% of total 

diet fed); ox liver (13.5% of total diet fed); squid (30.6% of total diet fed). Therefore, within 

the MB-inclusive maturation diets the MB ingredient was provided to broodstock at 

approximately 5.5% of their total diet. A crude analysis of the two pelleted maturation diets is 

provided below in Table 6. Broodstock were fed to slight excess five times daily which 

included a single daily ration of the experimental pelleted diets. Animals were fed their 

respective maturation diets over a three week acclimation period (post-stocking) followed by 
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a four week conditioning period in preparation for reproductive assessments, and throughout 

the assessment period. 

3.3.2 Reproductive Performance Trial 

At 7.5 months of age, all female broodstock were captured from tanks and eye-tagged for 

individual identification. At 8.5 months of age, all female broodstock were molt-tagged and 

subsequently monitored daily for evidence of molting. Four days post-molt, females were 

unilaterally eyestalk ablated using sterile forceps to induce ovarian development. Ablated 

females were examined daily for ovarian maturation by shining a torch through their dorsal 

exoskeleton (Coman et al., 2005). When ripe ovaries (Stage IV: Tanfermin & Pudadera 1989) 

were detected, females were removed from maturation tanks and transferred to 80 L 

spawning tanks maintained with water flow of 0.7 L min-1 and 29˚C water temperature.  

The reproductive performance of each ablated female was assessed for a maximum of two 

molt cycles (approximately 40 -days) or until sacrificed according to the sampling schedule 

(see 3.3.3 Measures of Broodstock Performance below). The morning after spawning, or if 

the ovaries had regressed, females were weighed and returned to maturation tanks. All 

spawnings were designated ‘normal’ or ‘partial’ based on whether females presented with 

fully (Stage V) or partially (Stage I-III) spent ovaries post-spawn. The total number of eggs 

per spawn was estimated by taking egg counts from three 250 mL samples from the spawning 

tank water after thoroughly mixing to ensure eggs were homogenous within the water column 

(note that eggs, whether they are fertilized and technically embryos or unfertilized eggs, will 

be referred to as eggs from herein for simplicity). The remaining eggs were left to hatch 

within the spawning tanks.  Approximately 2 to 3 h after the observation of first hatching, 

larvae were mixed thoroughly and nauplii per spawn estimated by counting viable nauplii 

from three 250 mL representative samples. The percentage of nauplii hatching per spawn was 

estimated from the total number of nauplii divided by the number of eggs that spawned.  

3.3.3 Measures of Broodstock Performance  

Over the course of the reproductive trial, samples were collected from individual broodstock 

for evaluation of broodstock performance across two maturation cycles. Within all feed 

treatments groups, a subset of broodstock (n=10) were anaesthetized and sacrificed at first 

maturation (i.e. upon reaching ovary stage IV for the generation of gonadosomatic index 
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(GSI) and hepatosomatic index (HSI). Each shrimp was weighed (g) before the 

hepatopancreas and ovaries were removed via dissection. The ovary and hepatopancreas were 

weighed and GSI/ HSI calculated as follows: 

 

GSI = [Gonad weight/ Total female weight] x 100 

HSI = [Hepatopancreas weight/ Total female weight] x 100 

 

The remaining broodstock were allowed to spawn before completing one additional 

maturation cycle. When ripe ovaries were detected in second order spawners broodstock were 

again culled for the generation of somatic indexes (n=10).  

The size of female broodstock during the maturation period was expressed as weight (g) at 

first maturation and weight (g) at second maturation. The number of days elapsed between 

molt tagging and the detection of first molt and subsequent ablation was expressed as days to 

first molt and days until ablation, respectively. Survival was assessed as percentage of natural 

female deaths (i.e. not as a result of culling) post-ablation and post-ablation prior to first 

maturation. For all ablated females, broodstock maturation was expressed as the percentage 

of females maturing at least once, percentage of females maturing to stage 3 ovaries at least 

once, days from ablation to first maturation, days from maturation to first spawning 

(excluding those that were culled) and days to second maturation from first maturation.  

3.3.4 Statistical Analysis 

Time to first molt and subsequent ablation, survival of females throughout the trial and the 

difference in individual reproductive and broodstock performance parameters were analyzed 

using Two-way ANOVA (Zar, 1984b) (Generalized linear model; PROC GLM; SAS Institute 

Software, 1999) which included an interaction term; 

Model I  Yijk = µ + Gdieti + Mdietj + Gdieti × Mdietj + eijk 

where Y is the performance of the kth female which had been fed on the ith grow-out diet and 

the kth conditioning diet; µ is the overall mean; Gdieti is the effect of the ith grow-out diet; 

Mdietj is the effect of the jth maturation diet; e is the random error. Where significant 

interactions were found between grow-out and maturation diets, parameters were analyzed by 
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Student’s T-Test (Zar, 1984a) for each maturation and grow-out diet separately (SAS 

Institute Software, 1999).  

3.4.  Results  

3.4.1 Broodstock Grow-out Weight 

Female weight in response to grow-out diets varied throughout the grow-out period 

(Supplementary Figure 2). At three months of age female weight did not significantly differ 

between grow-out diets (P≥0.05). However, female weight at four (P<0.001), five (P<0.001), 

six (P<0.001), and seven (P<0.001) months of age was significantly higher in females reared 

within control ponds, relative to their MB reared counterparts (Supplementary Figure 2).  

3.4.2 Molt Period, Ablation And Broodstock Survival Post-Ablation 

The interval between molt tagging and first molt did not significantly differ in response to 

grow-out or maturation diets (P≥0.05), with females molting 12.8 to 14.4 ± 0.8 days 

following molt tagging (Table 7). Similarly, broodstock grow-out and maturation diet did not 

affect time to ablation with females being ablated 15.6 to 18.4 ± 0.8 days following molt 

tagging (P ≥ 0.05). Mortality following ablation was not significantly impacted by grow-out 

or maturation diets (P≥ 0.05). Similarly, mortality of females (of those ablated) prior to first 

maturation did not differ in response to grow-out or maturation diets (P ≥0.05). 

3.4.3 Broodstock Maturation And Spawning 

The percentage of females maturing to stage III or stage IV did not significantly differ in 

response to grow-out or maturation diets (P≥0.05) (Table 8). The interval between ablation 

and first maturation was not significantly affected by grow-out or maturation diets (P≥0.05); 

with females maturing 12.2 to 13.9 ± 0.9 days post-ablation. Similarly, the interval between 

ablation and first spawn did not significantly differ between diets (P≥0.05); with females 

spawning 10.9 to 13.2 ± 1.2 days post-ablation. The capacity for repeat spawns was similar in 

response to grow-out and maturation diets (P≥0.05) with females completing a second 

maturation cycle 4.2 to 10.2 ± 1.0 days following first maturation. 

3.4.4 Somatic Indices  

The body weight of females at first and second maturation differed significantly in regards to 
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Table 7. Molt, ablation and broodstock survival parameters of female P. monodon broodstock in response to broodstock grow-out and maturation diet 
regime, following the completion of the broodstock pre-conditioning (3-weeks acclimation period followed by 4 weeks pre-conditioing) phase at Bribie 
Island Research Centre. 

  Measure C+C C+MB MB+C MB+MB Pooled SEM  Gdiet Mdiet Gdiet x Mdiet 

Molt period Days to first molt from stocking 12.8 13.5 14.2 14.4 0.8  nsd nsd nsd 

           

Ablation Days to ablation  15.6 16.3 17.3 18.4 0.8  nsd nsd nsd 

           

Survival % female deaths post-ablation 23.5 13.2 10.3 5.1 2.9  nsd nsd nsd 

  

% female deaths (of those ablated) prior to 

first maturation 14.7 10.5 7.7 6.1 2.5  nsd nsd nsd 

Treatment combinations are represented based on diet treatments fed, where: C+C= control grow-out and maturation diet; C+MB= control grow-out diet 
with MB maturation diet; MB+C= MB grow-out diet with control maturation diet; MB+MB= MB grow-out and maturation diet; Gdiet = grow-out diet; 
Mdiet= maturation diet  
nsd = no significant difference (P>0.05) 
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Table 8. Maturation parameters and somatic indices of female P. monodon broodstock in response to broodstock grow-out and maturation diet regime, 
sampled across first-order and second-order maturation cycles. 

 Measure C+C C+MB MB+C MB+MB Pooled SEM  Gdiet Mdiet Gdiet x Mdiet 

Development  % of females maturing at least once  70.6 68.4 76.3 71.9 3.8  nsd nsd nsd 

 % of females maturing to stage III at least once 85.3 89.5 94.7 90.6 2.5  nsd nsd nsd 

           

1st Maturation Time from ablation to 1st maturation (days) 13.9 12.3 12.2 12.4 0.9  nsd nsd nsd 

 Female weight at first maturation (g) 167.1A 170.7A 142.8B 150.9B 2.1  p<0.0001 nsd nsd 

 Gonadosomatic index at 1st maturation 8.7A 7.6A 7.2B 6.6B 0.32  p=0.026 nsd nsd 

 Hepatosomatic index at 1st maturation 2.9 3.0 3.3 3.2 0.09  nsd nsd nsd 

 Time from first ablation to 1st spawning (days) 13.2 10.9 11.1 12.8 1.8  nsd nsd nsd 

           

2nd Maturation Time to 2nd maturation (days) 7.9 9.4 4.2 10.2 1.0  nsd nsd nsd 

 Female weight at 2nd maturation (g) 170.6A 163.1A 145.1B 158.0B 3.1  p=0.021 nsd nsd 

 Gonadosomatic index at 2nd maturation 6.9 6.8 7.5 7.5 0.28  nsd nsd nsd 

  Hepatosomatic index at 2nd maturation 2.9 2.8 3.0 3.1 0.07  nsd nsd nsd 

Treatment combinations are represented based on diet treatments fed, where: C+C= control grow-out and maturation diet; C+MB= control grow-out diet 
with MB maturation diet; MB+C= MB grow-out diet with control maturation diet; MB+MB= MB grow-out and maturation diet; Gdiet = grow-out diet; 
Mdiet= maturation Diet; nsd = no significant difference (P>0.05).  
Superscripts marked on individual treatment combinations (in each row) refer to ANOVA results for the diet treatment comparison (i.e. the A superscript is 
noted on both individual treatments comprising the diet treatment that is significantly larger, and the B superscript on both treatments comprising the diet 
that is significantly smaller). 
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grow-out treatments (P<0.05) (Table 8). At first maturation, broodstock reared in control 

ponds were significantly larger (167.1 to 170.7 ± 2.6 g) than those reared in MB ponds (142.8 

to 150.9 ± 2.4 g) (P<0.0001). Likewise, female body weight at second maturation was 

significantly greater when females were reared in control ponds (163.1 to 170.6 ± 3.6 g) 

relative to MB ponds (145.1 to 158.0 ± 4.4 g) (P=0.021). Female weight at first and second 

maturation was not affected by maturation diet (P≥0.05).  

GSI at first maturation differed significantly in response to grow-out diet (P<0.05). The 

proportion of gonad weight to overall female body weight was significantly greater in 

females reared on the control grow-out diet (7.6 to 8.7 ± 0.45) relative to those reared on the 

MB grow-out diet (6.6 to 7.2 ± 0.44) (P=0.026). Maturation diet had no significant effect on 

GSI at first maturation (P≥0.05). At second maturation GSI did not differ in response to 

grow-out or maturation diets (P≥0.05). HSI at first and second maturation was unaffected by 

grow-out and maturation diets (P≥0.05); with females presenting a hepatopancreas to body 

weight ratio of 2.9 to 3.3 ± 0.09 and 2.8 to 3.1 ± 0.07 respectively.  

3.4.5 Egg and Nauplii Production  

The body weight of females sampled at first spawn differed significantly in regards to grow-

out treatments (P<0.05) (Table 9). When females were weighed post-spawn, broodstock 

reared in control ponds (164.6 to 167.6 ± 2.9 g) were significantly larger than those reared in 

MB ponds (142.9 to 146.3 ± 3.1 g) (P<0001). 

Female weight at first spawning was not affected by maturation diet (P≥0.05). The 

percentage of females spawning at least once did not significantly differ in response to grow-

out or maturation diet treatments (P≥0.05) with 58.3 to 65.5 ± 4.8% of the females allowed to 

spawn, spawning at least once. The number of eggs per spawn was not significantly different 

between broodstock diet treatments (P≥0.05). Total egg production was similar across grow-

out and maturation diets (P≥0.05) with females producing 225,541 to 230,644 ± 15,252 eggs 

per spawn. Similarly, total eggs spawned per gram female body weight was unaffected by 

grow-out and maturation diets (P≥0.05) with females spawning 1,457 to 1,611 ± 89 eggs/ g 

body weight. The percentage of spawnings that hatched did not significantly differ between 

grow-out and maturation diet treatments (P≥0.05). However, whilst the mean hatch rate (of 

the spawning that hatched) was unaffected by grow-out diet (P≥0.05), maturation diets
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Table 9. Spawning, egg and nauplii production parameters for first order female P. monodon spawners in response to broodstock grow-out and maturation 
diet regime. 

  Measure C+C C+MB MB+C MB+MB Pooled SEM  Gdiet Mdiet Gdiet x Mdiet 

Spawning Female weight at first spawning (g) 167.6A 164.6A 142.9B 146.3B 2.5  P<0.0001 nsd nsd 

 % of females spawning at least once 58.3 61.5 65.5 60.9 4.8  nsd nsd nsd 

           

Egg Production No. of eggs spawned ' 249 687 255 535 230 644 225 541 15 252  nsd nsd nsd 

 No. of eggs spawned/ g female body weight ' 1 457 1 531 1 611 1 480 89.0  nsd nsd nsd 

           

Hatching % of first spawnings hatching ' * 100 100 94.5 92.3 2.5  nsd nsd nsd 

 Hatch Rate (%) ' * 44.2A 29.2B 38.2A 28.4B 3.0  nsd P=0.041 nsd 

           

Nauplii Production No. nauplii produced ' 111 565 70 092 80 533 65 261 8 477  nsd nsd nsd 

 No. nauplii produced/ g female body weight ' 653 416 554 417 50.0  nsd nsd nsd 

Treatment combinations are represented based on diet treatments fed, where: C+C= control grow-out and maturation diet; C+MB= control grow-out diet 
with MB maturation diet; MB+C= MB grow-out diet with control maturation diet; MB+MB= MB grow-out and maturation diet; Gdiet = grow-out diet; 
Mdiet= maturation Diet; nsd = no significant difference (P>0.05) 
Superscripts marked on individual treatment combinations (in each row) refer to ANOVA results for the diet treatment comparison (i.e. the A superscript is 
noted on both individual treatments comprising the diet treatment that is significantly larger, and the B superscript on both treatments comprising the diet 
that is significantly smaller). 
'  excludes partial spawns  
* excludes non-valid eggs and nauplii 
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significantly impacted hatch rate (P= 0.043). The percentage of eggs hatched within each spawn 

was significantly lower when broodstock were fed a MB maturation diet (28.4 to 29.2 ± 3.2% hatch 

rate) compared with the control maturation diet (38.2 to 44.2 ± 4.8% hatch rate). Despite the 

difference in hatching, total nauplii production did not differ significantly in response to grow-out 

and maturation diet treatments (P≥0.05) with females producing 65,261 to 111, 565 ± 8, 477 nauplii 

per spawn. Nauplii production per gram female body weight was unaffected by grow-out and 

maturation diets (P≥0.05) with broodstock producing 416 to 653 ± 50 nauplii per gram body 

weight.  

3.5. Discussion  

In the present study, no significant improvement or reduction in nauplii production was conferred to 

domesticated broodstock via the inclusion of MB in broodstock diets. Similar responses have been 

observed in Litopenaeus vannamei, whereby no significant variation in growth performance was 

observed between control groups and animals fed MB-inclusive pelleted diets (Bauer et al., 2012). 

However, these results contrast to the positive effects on reproductive performance reported for 

Litopenaeus stylirostris and Farfantepenaeus duorarum (Emerenciano et al., 2013a, Emerenciano et 

al., 2012) and those reported for P. monodon in chapter 2. The pelleted maturation diets used in this 

study contained 30% MB yet the reproductive performance of females was similar to those fed on 

the commercial control diet (with the exception of percent hatch rate). The results of this study may 

indicate a negative MB-specific dose-response, where the relationship between observed 

performance benefits relative to MB inclusion rate is not linear. Similar dose-responses have been 

reported for biofloc supplementation; Anand et al. (2014) reported that supplementation of shrimp 

diets with 4 and 8% biofloc improved both growth and digestive enzyme activity in juvenile P. 

monodon. However, 12% biofloc supplementation did not result in proportionate growth and 

enzyme activity, with shrimp performing on par with control groups (Anand et al. 2014). Similarly, 

Kuhn et al. (2010) reported significant improvements to growth performance in Litopenaeus 

vannamei at 10 and 15% dietary biofloc inclusion levels, yet non-significant growth at 21 and 30% 

inclusion. Whether MB has a similar dose-dependent influence on reproductive performance 

remains undetermined, however at 30% inclusion rate, no improvements were observed in this 

study. A point of contrast with several previous studies is that the MB used in the present study was 

a dried product. Live bioflocs have been shown to contain various compounds including 

carotenoids, chlorophylls, phytosterols, bromophenols, amino sugars and anti-bacterials, all of 

which potentially play a role in bioactivity (Ju et al., 2008, Crab et al., 2010, Anand et al., 2014). 
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However, the bioactive components of live bioflocs or bioflocs that have been harvested and dried 

have yet to be comprehensively characterized. 

Several factors influence the number of spawned eggs that hatch to nauplii including mating 

success, egg fertilization, and subsequent development of the fertilized embryo (Coman et al., 

2007a). In this study, the maturation diet containing MB impacted broodstock performance by 

significantly reducing the percentage of eggs hatching. Mating success did not appear to be a 

significant constraint in this study as >95% of spawnings hatched irrespective of diet treatment. 

Rather, the distinctive hatch rates suggest that nutritional differences between the control and MB 

maturation diets produced eggs or sperm of differing quality, contributing to the lower hatching of 

spawns from females fed the MB maturation diet. It is well established that the maturation diet fed 

immediately prior to spawning can drastically impact on egg quality and thus egg hatching in 

shrimp (Millamena, 1989, Bray and Lawrence, 1992, Cahu et al., 1995a, Cahu et al., 1994, Xu et 

al., 1994a, Wouters et al., 2001a, Wouters et al., 1999, Coman et al., 2007a, Coman et al., 2011, 

Hoa et al., 2009). The proximate analysis demonstrated that the diet containing MB had lower 

protein content than the control diet. Reproductive development and maturation is a period of 

intense protein biosynthesis, whereby the parent must sustain not only its own metabolic needs, but 

also stock the oocytes with the nutritional requirements for the developing eggs once spawned and 

fertilized (Harrison, 1990, Wouters et al., 2001a). It is known that the availability and storage of 

dietary protein plays a critical role in the reproductive biology of decapod crustaceans (Castille and 

Lawrence, 1989, Harrison, 1990, Wouters et al., 2001a, Rodriguez-Gonzalez et al., 2013, 

Rodriguez-Gonzalez et al., 2006, García-Guerrero et al., 2003, Saoud et al., 2012). As such, the 

reduced protein content of the MB maturation diet may have contributed to the reduced hatch rates. 

Given the known effects of maturation diet on egg quality, it is plausible that changes in egg quality 

associated with the 5.5% inclusion of MB within the maturation diet may have compromised either, 

or both, egg fertilization and subsequent embryo development. 

The failure of the MB diet to improve broodstock performance in the present study contrasts the 

results reported in chapter 2. When fed a pelleted diet including 20% MB (2.4% of total diet) 

broodstock demonstrated significant increases in maturation frequency, egg production or nauplii 

production, with no significant reductions in egg hatching. The disparity between chapter 2 and the 

present study likely reflects the quality of the pelleted diets, which contrast experimental pellets 

designed for optimal performance (chapter 2) and the commercially formulated diets of the present 

study. Notably, the diet fed in the present study contained 10% more MB, which may have made 

the pelleted diet less palatable overall, reducing uptake of the pelleted maturation diets. In addition, 
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astaxanthin (derived from Carophyll Pink), arachidonic acid (ARASCO®) and phospholipids (in the 

form of krill meal) are known to improve reproductive performance and embryonic and larval 

development (Alava et al., 1993, Coman et al., 2011, Wouters et al., 2001a), and thus their inclusion 

within chapter 2’s maturation diets may have served to satisfy or offset nutritional requirements 

which were lacking in the current experiments commercial formulation.  

One notable outcome of this study was the slower growth of broodstock fed diets containing MB, 

compared to broodstock fed the control diet, in the grow-out phase (see Supplementary Figure 2). 

This result is inconsistent with former studies which have reported improved growth of juvenile 

shrimp when fed diets including MB (Glencross et al., 2014, Glencross et al., 2013, Anand et al., 

2014, Glencross et al., 2015). There are several factors that may have contributed to the growth 

rates observed in the present study. Firstly, differences in stocking densities among ponds within 

the two treatments may have contributed. Certainly, broodstock rearing density is known to 

significantly affect growth rate in shrimp (Jackson & Wang 1998; Coman et al. 2004; Coman et al. 

2007b). Secondly, the inherent pond to pond variation which results from each pond being its own 

ecosystem, and which is impossible to control completely even through consistent management, 

may also have impacted on observed growth outcomes. The possible impact of pond to pond 

variation on differences in growth among the grow-out treatment diets is heightened by lack of 

pond replication used in the study. Thirdly, the present study was conducted in low density pond 

environments, which provide much more natural forage for the shrimp than semi-intensive ponds or 

experimental tank systems. It is possible that the 10% inclusion rates of MB used within this studies 

grow-out diets were not optimized for the growth of P. monodon broodstock in low density rearing 

(as could be the case for reproductive performance). Whilst certainly one explanation for the 

observed pond growth result was that the MB grow-out diet constrained growth under these low-

density pond conditions, it is also possible that any growth enhancing effects of including MB in the 

grow-out diet may have been masked by other variables within the study (i.e. stocking density). 

Future research should aim to assess potential interactions (if any) between rearing of broodstock 

within low density ponds and the dietary inclusion of MB (ideally across multiple dosage rates). 

Certainly, the variation in stocking densities among broodstock ponds, and limited numbers of 

broodstock ponds used, are acknowledged as weaknesses of the study. These design weaknesses 

reflect the practical constraints of running such trials in commercial environments where access to 

low-density P. monodon broodstock ponds are very limited. However, it should be noted that this 

study was not focused on assessing growth, but rather on assessing reproductive performance. 

Growth rates in all ponds were very high, with mean 6-monthly weights of females in both 
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treatments of greater than 100 g. These high growth rates reflect both the genetic quality of the 

domesticated stocks originating from the company’s breeding program, but also the quality 

management of the ponds and the favorable seasonal conditions that existed throughout the 

production cycle. Certainly, broodstock from both grow-out treatments had grown well in ponds, 

and as such, were expected to be produce good quality broodstock and to allow a reliable evaluation 

of the impact of the MB during the grow-out period on subsequent reproductive performance. 

Finally, the results of this study demonstrated that MB supplementation during broodstock grow-out 

did not significantly affect the subsequent reproductive performance when broodstock were fed a 

commercial maturation diet. Limiting MB supplementation to the broodstock grow-out phase may 

be advantageous as breeders have the potential to increase juvenile crop growth, energy utilization 

and resilience to disease (Sellars et al., 2015b, Glencross et al., 2014, Glencross et al., 2013), 

without reducing the reproductive potential of mature broodstock.  

To date, the causes of constraints to reproduction in P. monodon remain multifaceted and complex. 

The exact nature of the bioactive constituents within MB influencing a range of commercially 

relevant traits has not been specified. Results of the present study demonstrated that adding MB to 

the diet of domesticated P. monodon broodstock did not improve their reproductive performance. 

Despite this, use of MB in broodstock grow-out may still have value as breeders have the potential 

to improve upon juvenile crop growth and disease tolerance without impinging upon reproductive 

potential. Further research into the specific nutritional requirements of broodstock, particularly in 

response to spawning, is critical for the continued development and optimization of broodstock 

nutritional diets.  
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Chapter 4: Interactions between repeated spawning and tissue biochemistry in 

domesticated Penaeus monodon 

 

4.1. Abstract:  

Reliable production of seedstock remains a major constraint on the Penaeus monodon aquaculture 

industry, both through inability to stock production ponds and inefficient resource utilization 

maintaining poor performing broodstock. The present study investigated the effect of consecutive 

spawning events on the reproductive performance and tissue biochemistry in a homogeneous 

population (152.5 g mean initial weight) of domesticated P. monodon. A multidisciplinary approach 

was undertaken by which the following were investigated in parallel: a) comparative reproductive 

performance across first and second spawn; b) changes in biochemistry between first and second 

spawn; and c) the correlation between reproductive performance at first spawn and second spawn 

biochemistry. Broodstock demonstrated significant variation in aspects of hepatopancreas and 

ovarian tissue biochemistry in response to successive spawning. Notably, a significant decrease in 

hepatopancreas total saturated fatty acid (SFA), polyunsaturated fatty acids (PUFA), n-3 and n-6 

fatty acids was observed in second order spawners (P<0.05). Conversely, ovary tissues at second 

spawn contained significantly greater quantities of total lipid, monounsaturated fatty acid (MUFA), 

PUFA, n-3 and n-9 fatty acids relative to first order spawners (P<0.05). When lipid classes were 

investigated independently, significantly lower levels of hepatopancreas C15:0, C17:0, C18:1n-9, 

C18:2n-6, C20:3n-6, C20:4n-6(ARA), C20:5n-3 (EPA), C22:6n-3 (DHA), as well as ovarian 

C20:4n-6(ARA) were observed (P<0.05), suggesting the utilization and/or requirement for said 

fatty acids may exceed that which is provided by current broodstock feeding regimes. Significant 

positive correlations were observed for latency period and hepatopancreas PUFA, C20:5n-3, 

C22:6n-3 and n-3 content, relative egg production and hepatopancreas C18:0 content, and hatch rate 

and ovarian C14:0 content (P<0.05). Combined, results of this study suggested that lipid 

composition has a greater influence on reproductive performance than total lipid content, and that 

the availability and utilization of specific fatty acids are critical to maintaining broodstock 

reproductive performance. In particular, the consistent depletion of arachidonic acid in 

hepatopancreas and ovarian tissues in response to repeat spawning requires further investigation. 
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4.2. Introduction: 

Penaeus monodon (Giant Tiger Shrimp), is an economically significant aquaculture species 

producing 4.5 million tonnes product annually, at a value of US$23.5 billion (FAO, 2016b). Whilst 

P. monodon remains a popular species, maximizing production potential through the development 

of domestication and breeding programs has been problematic. Considerable advances have been 

made with respect to growth potential (Glencross et al., 2014, Glencross et al., 2013, Preston et al., 

2009), yet the reproductive performance of domesticated stocks remains far from optimal. 

Domesticated stocks show significantly lower numbers of females maturing, lower egg production 

and lower hatch rates compared to their wild-caught counterparts (Arnold et al., 2013, Coman et al., 

2006, Menasveta et al., 1993, Peixoto et al., 2005, Hall, 2003, Wen et al., 2015). Furthermore, the 

proportion of domesticated broodstock that contribute to nauplii yields can be greatly skewed – with 

a small proportion of high-performing females contributing the significant majority of offspring 

(Parnes et al., 2007).  

Disparity in P. monodon reproductive quality carries substantial economic cost for breeders. Farms 

may waste substantial resources on conditioning poor-performing individuals, which provide 

proportionally few viable nauplii in return, and limits the ability to stock production ponds. 

Alternatively, breeders may be forced to supplement their breeding programs with seedstock 

spawned from wild-caught broodstock, which are expensive to source, dilute gains made through 

selective breeding programs (via the introduction of non-selected alleles), and represent a potential 

vector for the introduction of pathogens. The development of predictive measures of reproductive 

performance may facilitate the identification high performing individuals, whilst also allowing for 

early detection and/or removal of sub-optimal broodstock.  

The reduced reproductive performance observed in domesticated stocks is thought to be derived 

largely from female body condition prior to ablation and spawning (Arnold et al., 2013, Coman et 

al., 2006). The relationship between optimal nutrition and spawning performance has been 

investigated extensively in shrimp (Bray and Lawrence, 1992, Cahu et al., 1994, Cahu et al., 1995b, 

Coman et al., 2007a, Coman et al., 2011, Hoa et al., 2009, Millamena, 1989, Wouters et al., 2001a, 

Xu et al., 1994b, Chimsung, 2014). However, it is worth noting that many of these studies did not 

assess the condition of the ovaries directly; instead the biochemical composition of ovulated eggs or 

tissues at the completion of spawning were used as a proxy measure (e.g. Cahu et al., 1994, Cahu et 

al., 1995b, Coman et al., 2011, Xu et al., 1994b). This is due to the non-complementary nature of 

assessing reproductive performance and tissue biochemistry for a single individual. It is not possible 
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to obtain both pre-spawning tissue samples (i.e. ovarian and hepatopancreas tissues) along with 

complementary measures of broodstock production performance (i.e. hatch rates and egg/ nauplii 

production) from the same individual over a single spawning event (i.e. spent ovaries are not 

representative of mature ovaries).  

The present study analyses reproductive performance and tissue biochemistry (ovary and 

hepatopancreas) in response to consecutive spawns within a homogeneous, domesticated 

P. monodon population (152.5 g mean initial female weight), reared under typical commercial 

conditions. In a bid to overcome the incompatibility of assessing reproductive performance and 

tissue biochemistry, a multidisciplinary approach was undertaken by which: a) comparative 

reproductive performance across first and second spawn was assessed based on historical spawning 

data for individuals reared under similar commercial conditions; b) changes in biochemistry 

between first and second spawners were assessed for a cohort of broodstock held under identical 

conditions and; c) correlation between productive performance at first spawn and second spawn 

biochemistry were assessed for a single cohort (see Figure 4). We aimed to identify variables with 

significant influence on reproductive performance that represent priority traits for improvement 

during broodstock maturation.  

4.3. Materials and Methods: 

4.3.1 Acquisition Of Historic Spawn Data 

Comparative reproductive performance measures total egg number, hatch rate and total nauplii 

production were sourced from historic P. monodon spawning data (CSIRO unpublished data). Data 

were selected only if they met the following conditions: 1) rearing was undertaken under typical 

farm conditions; 2) females were mated and spawned under typical farm conditions; 3) females had 

been fed a typical commercial control diet throughout rearing and maturation; 4) concurrent 

spawning data existed for each individual across the first two spawning events post-ablation. A total 

of 42 females met the above requirements and were available for statistical analysis of performance 

from first spawn (SP1) to second spawn (SP2, Figure 4). Spawn performance measures were 

determined as outlined below. 

4.3.2 Live Broodstock Origin And Rearing 

To assess variation in biochemistry across subsequent spawns, P. monodon broodstock were 

sourced from Gold Coast Marine Aquaculture (Woongoolba, Queensland, Australia). All  
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Figure 4. Representation of the three key comparative lines of investigation in this study: a) spawning 
performance across first (SP1) and second spawn (SP2) derived from historic spawning data; b) tissue 
biochemistry across first (TB1) and second spawn (TB2) derived from live animals and; c) correlations 
between first spawn reproductive performance (RP1) and second spawn tissue biochemistry (TB2). Dashed 
lines indicate the separation of datasets between historic data and data collected from live animals. The 
notation ‘X’ indicates which it is not possible to obtain both forms of data from a single time point, from a 
single individual. 

 

broodstock were reared within earthen grow-out ponds under the company’s commercial 

broodstock management protocols. At seven months of age, 160 broodstock were caught via cast 

net and transported to CSIRO’s research facility, Bribie Island Research Centre (BIRC, Woorim, 

Queensland, Australia).  

Broodstock were held in four 10,000 L circular maturation tanks (40 shrimp per tank, stocking 

density of 4 shrimp/ m2, sex ratio1 ♂:1 ♀), as per the conditions described by Goodall et al. (2016). 

In brief tanks contained a fine layer of sand substrate, seawater was maintained at 27°C, at a flow 

rate of 4 L min 1 (57% water exchange per day) and average salinity of 35 ± 1 ppt, whilst 

photoperiod was maintained at a ratio of 14 h light: 10 h dark. All broodstock were fed on a typical 

composite maturation diet consisting of fresh-frozen feedstuffs: squid (30.6% of total diet fed 

(TDF), bloodworm (16.6% of TDF), mussel (15.8% of TDF), ox liver (13.5% of TDF), Artemia 

biomass (5.1% of TDF) supplemented with a high quality broodstock pellet (Ridley Aqua Feed™: 

MR Broodmax, 18.5% of TDF, Narangba, Queensland, Australia). All feed ingredients were fed 

Reproductive 

Performance 

(RP1)  



43 

 

separately ad libitum, with five rations provided daily, which included a single daily ration of the 

pelleted diet. All animals were fed the maturation diet for seven weeks post-stocking at BIRC (pre-

conditioning period), and throughout the reproductive assessment period which followed (40-days 

total).   

4.3.3 Performance Trial Design And Sampling 

In preparation for spawning, all females were eye-tagged for individual identification (plastic, 

numerically-coded open-split bird bands on the eyestalk) at 7.5 months of age as previously 

described by Goodall et al. (2016). At 8.5 months of age all females were molt tagged (water-proof 

numerically coded labels glued to the carapace) to allow for standardization ablation to the molt 

cycle (Goodall et al., 2016). All females were unilaterally eyestalk ablated (using sterile forceps) 

four days following the detection of molt (152.5 g mean initial female weight). The ovarian 

maturation of ablated females was monitored daily as performed previously (Coman et al., 2005). 

When mature ovaries (Stage IV: Tanfermin and Pudadera, 1989) were detected, females were 

alternately allocated to one of two groups, as outlined in Figure 4. In group 1 (TB1; n=20) females 

were anaesthetized via ice-water immersion and sampled for biochemical analysis of tissues (see 

4.3.5 Biochemical Analysis of Animal Tissues) just prior to their first spawn (i.e. following the 

detection of stage 4 ovaries) (termed first order spawners). The second group (TB2, n=19) females 

were moved to 80 L spawning tanks and allowed to spawn overnight. The following morning, 

reproductive performance measures were determined (RP1) as outlined below, and ovulated 

females were weighed then returned to maturation tanks. Ovulated females were allowed to 

complete one additional maturation cycle, before being anaesthetized and sampled for biochemical 

analyses just prior to second spawn (i.e. following the detection of stage IV ovaries). For all groups, 

anaesthetized females were first patted dry and weighed, before whole ovary and hepatopancreas 

were removed via dissection. Whole ovary and hepatopancreas tissues were weighed to the nearest 

mg, frozen in liquid nitrogen and stored at -80°C awaiting further analysis.  

4.3.4 Reproductive Performance Measures  

Two sets of independently assessed reproductive performance measures were taken during this 

experiment. For the comparison of historic spawning data (SP1 vs. SP2) total egg production, 

percentage hatch rate and total nauplii production were sourced from historic data. For the 

comparison of first spawn reproductive performance (RP1) and second spawn biochemistry (TB2), 

relative (per gram female weight) egg and nauplii production, percentage hatch rate and latency 
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period (days till the detection of stage IV ovaries post-spawn) were measured. For all RP1 

broodstock, females were removed from spawning tanks and weighed before being returned to 

maturation tanks. Relative egg production was derived by dividing total egg production — 

quantified from three 250 mL representative water samples taken from spawning tanks following 

thorough mixing of the water column — by total female weight. The remaining eggs were 

monitored for hatching. Relative nauplii production was similarly derived by dividing total nauplii 

production — quantified from three 250 mL representative water samples taken from spawning 

tanks three hours after the detection of first hatching, following thorough mixing of the water 

column — divided by total female weight. Percentage of nauplii hatching was estimated from total 

number of nauplii production divided by the total number of eggs produced. Latency period was 

defined as the number of days elapsed between spawning and subsequent sampling upon re-

maturation.  

4.3.5 Biochemical Analysis of Animal Tissues 

To assess tissue biochemistry, all TB1 and TB2 hepatopancreas and ovary tissues were minced 

frozen using a blender. A sub-sample of the original frozen mince was analyzed for its moisture 

content by gravimetric analysis following oven drying at 105˚C for 24 h and this was used as a 

correction for the freeze-dried material. The remaining frozen mince was freeze-dried to completion 

in a laboratory freeze dryer (Alpha 1-4, Martin Christ, Germany), re-homogenized in a blender and 

used for subsequent analyses. Protein was calculated from the determination of total elemental 

nitrogen (CHNS-O Flash 2000, Thermo Scientific, USA, auto-analyser, based on N x 6.25). Total 

lipid extractions and quantification were conducted following Folch (1957). Total lipid content was 

determined gravimetrically following extraction of the lipids using chloroform/methanol (2:1). 

Fatty acid composition was determined following published best-practice methods (Christie 

(2003b). A known quantity of lipids was esterified by an acid-catalyzed methylation and 0.3 mg of 

an internal standard was added to each sample (21:0 Supelco, PA, USA). The fatty acids were 

identified relative to the internal standard following separation by gas chromatography using an 

Agilent Technologies 6890N GC system (Agilent Technologies, California, USA) fitted with a DB-

23 (60m x 0.25mm x 0.15 μm, cat 122-2361 Agilent Technologies, California, USA) capillary 

column and flame ionization detector. Individual fatty acids were expressed on a mg/g of total lipid 

basis. 
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4.3.6 Data Analysis and Statistics 

A sample set of 42 domesticated P. monodon broodstock for which repeated spawning information 

(SP1 and SP2) was available was obtained from historic CSIRO spawning data. Unfertilized 

spawns, i.e. those with zero hatching and zero nauplii production values, were removed from hatch 

rate and nauplii production analyses reducing sample sizes from n=42 to n=22 for those measures. 

A Shapiro-Wilk normality test (Wilks, 1946) identified the dataset as non-normally distributed. As 

a result, individual differences in hatch rate, egg and nauplii production across first and second 

spawns were assess using a Wilcoxon Signed Rank Test (Siegel, 1956). 

The biochemical composition of TB1 and TB2 groups was compared. For all factors, normality 

testing was conducted using Shapiro-Wilk normality testing (Wilks, 1946). Outliers were identified 

and removed using modified Thompson’s Tau Test. Changes in biochemical composition between 

TB1 and TB2 for all factors were assess using Student’s T-Test (Zar, 1984a). Potential correlations 

between RP1 and TB2 were investigated (n=19). Normality testing and outlier detection were 

conducted using Shapiro-Wilk normality testing (Wilks, 1946) and modified Thompson’s Tau Test, 

respectively. Significant correlations between factors were identified using Spearman’s Rank 

correlation coefficient (Sokal and Rohlf, 1981).  

4.4. Results: 

4.4.1 Changes in Spawning Performance (Historic Data)  

Variation in spawning performance was assessed across first (SP1) and second (SP2) order 

spawning events (Table 10). Total egg production decreased in successive spawnings, however this  

Table 10. Comparison of egg production, hatch rate and nauplii production parameters between first (SP1) 
and second (SP2) order spawners, sourced from historic P. monodon spawning data. SE= standard error 

    SP1 SP2   Significance 

Egg Production (number of eggs; n=42) 

 Mean 185,446 158,500  0.177 
 ±SE 18.759 16,662  

      
Hatch Rate (percent; n=22) 

 Mean 24.2 23.4  0.949 
 ±SE 3.8 4.4  

      
Nauplii Production (number of nauplii; n=22) 

 Mean 59,500 40,393  0.337 
  ±SE 13,742 9,079   
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decrease was not significant (P≥0.05). Similarly, hatch rate and nauplii production were reduced in 

second order spawners, but the decrease was also not significant. 

4.4.2 Tissue Biochemistry In Relation To Subsequent Spawns  

Variation in biochemical parameters between first (TB1) and second (TB2) order spawners was 

assessed. Within hepatopancreas tissues, no significant changes in hepatosomatic index (HSI), total 

protein or total lipid were detected (P ≥0.05) (Table 11). When considering fatty acid content 

broadly, significantly lower saturated fatty acid (SFA), polyunsaturated (PUFA), n-3, and n-6 fatty 

acid content (mg/g-lipid) was observed in second order spawns relative to first order broodstock 

(P <0.05). However, no significant variation in total monounsaturated fatty acid (MUFA), n-9 

content and n-3:n-6 ratios were observed between successive spawns. When hepatopancreas fatty 

acid composition was separated further, significantly lower C15:0, C17:0, C18:1n-9, C18:2n-6, 

C20:3n-6, C20:4n-6(ARA), C20:5n-3 (EPA), C22:6n-3 (DHA) and minor PUFA (Other3) content 

was observed in the tissues of second order spawners (TB2) relative to first order spawners (TB1) 

(P <0.05). Significantly higher C18:3n-3 fatty acid content was observed in second order (TB2) 

relative to first order (TB1) spawners (P <0.05).  

Within ovarian tissues, no significant changes in gonadosomatic index (GSI) or total protein were 

detected (P≥0.05) between spawns (Table 12). However, ovarian total lipid was comparatively 

higher (P<0.05) in second-order spawners (TB2) relative to first-order spawners (TB1). When 

considering fatty acid content broadly, significant higher total MUFA, PUFA, n-3 and n-9 content 

(mg/g-lipid) was observed in second-order spawns relative to first order broodstock (P <0.05). 

However, no significant variation in total SFA, n-6 content and n-3:n-6 ratios were observed in 

response to spawn order. When ovarian fatty acid composition was separated further, significantly 

higher C14:0, C16:0, C19:0, C16:1n-7, C18:1n-9, C18:1n-7, C20:1n-9, C18:3n-3, C20:2n-6, 

C22:6n-3(DHA), and minor SFA (Other1) and MUFA (Other1) fatty acid content (mg/g-lipid) were 

observed in second-order spawners (TB2) relative to first order (TB1) (P<0.05). Meanwhile, there 

was a significant lower ovarian C20:4n-6(ARA) content in second-order spawners (TB2) relative to 

first order (TB1) (P<0.05). 

4.4.3 Correlation Between Spawning Performance And Biochemistry  

Correlations between first order reproductive performance (RP1) and second order biochemistry 

(TB2) were investigated for hepatopancreas and ovary tissues. Relative egg production at first 

spawn was significantly positively correlated with second spawn hepatopancreas C18:0  
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Table 11. Proximate composition analysis of female P. monodon hepatopancreas biochemistry between 
first (TB1) and second (TB2) order spawners. Abbreviations within this Table are defined as: HSI= 
hepatosomatic index; SFA= saturated fatty acid; MUFA= mono unsaturated fatty acid; PUFA= poly 
unsaturated fatty acid; LA= linoleic acid; ARA= arachidonic acid; EPA= eicosapentaenoic acid; DHA= 
docosahexaenoic acid; nsd= no significant different (P>0.05). 

  TB1   TB2     

Parameter Mean ±SE   Mean ±SE   p-value 

HSI 3.12 0.10   2.95 0.09   nsd 

Protein (%) 31.63 1.59   32.36 2.18   nsd 

Total Lipid (%) 51.39 1.68   50.90 1.92   nsd 

Sum SFA ' 298.18 4.04   276.53 4.75   0.001 

14:0 ' 10.90 0.44   11.24 0.37   nsd 

15:0 ' 5.13 0.09   4.43 0.09   <0.001 

16:0 ' 211.22 3.39   198.69 5.10   nsd 

17:0 ' 7.38 0.24   6.60 0.17   0.012 

18:0 ' 51.10 3.52   48.16 2.46   nsd 

19:0 ' 1.44 0.05   1.39 0.05   nsd 

20:0 ' 1.43 0.05   1.54 0.06   nsd 

Other ' 1 6.10 0.24   5.59 0.17   nsd 

                

Sum MUFA ' 223.49 5.71   207.87 5.59   nsd 

16:1n-7 ' 24.50 1.17   22.00 0.58   nsd 

18:1n-9 ' 130.38 3.10   115.76 4.95   0.019 

18:1n-7 ' 32.96 1.09   32.61 1.00   nsd 

20:1n-9 ' 25.40 1.15   26.89 0.94   nsd 

Other ' 2 10.76 0.35   10.33 0.21   nsd 

                

Sum PUFA ' 127.32 23.03   60.10 11.15   0.014 

18:2n-6 (LA) ' 31.89 3.42   21.11 2.19   0.013 

18:3n-6 ' 0.00 0.00   0.03 0.03   nsd 

18:3n-3 ' 0.83 0.06   1.19 0.08   0.001 

20:2n-6 ' 9.19 0.79   8.45 0.79   nsd 

20:3n-6 ' 4.58 0.90   2.19 0.36   0.022 

20:4n-6 (ARA) ' 7.03 1.54   3.06 0.61   0.025 

20:5n-3 (EPA) ' 12.42 2.93   3.91 1.13   0.012 

22:6n-3 (DHA) ' 38.28 10.29   12.14 4.22   0.027 

Other ' 3 11.35 2.36   4.62 0.87   0.014 

                

Sum n-3 ' 65.42 15.50   21.36 6.29   0.014 

Sum n-6 ' 57.92 7.85   36.66 4.00   0.023 

Sum n-9 ' 185.97 4.56   173.87 4.99   nsd 

n-3:n-6 0.70 0.12   0.46 0.06   nsd 

' mg/g-total lipid   

1 Sum C8:0, C10:0, C11:0, C12:0, C13:0, C22:0, C23:0, C24:0 
2 Sum C14:1n-5, C15:1, C17:1, C20:1n-7, C22:1n-9, C24:1n-9 
3 Sum C18:4n-3, C20:3n-3, C22:2, C22:4n-6, C22:5n-3 
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Table 12. Proximate composition analysis of female P. monodon ovary biochemistry between first (TB1) and 
second (TB2) order spawners. Abbreviations within this table are defined as: GSI= gonadosomatic index; 
SFA= saturated fatty acid; MUFA= mono unsaturated fatty acid; PUFA= poly unsaturated fatty acid; LA= 
linoleic acid; ARA= arachidonic acid; EPA= eicosapentaenoic acid; DHA= docosahexaenoic acid; nsd= no 
significant different (P>0.05). 

  TB1   TB2     

Parameter Mean ±SE   Mean ±SE   p-value 

GSI 7.69 0.41   7.25 0.29   nsd 

Protein (%) 67.16 0.17   67.78 0.29   nsd 

Total Lipid (%) 20.73 0.17   22.06 0.28   <0.001 

Sum SFA ' 251.57 5.57   274.76 12.65   nsd 

14:0 ' 11.59 0.36   13.48 0.48   0.003 

15:0 ' 3.52 0.08   3.61 0.08   nsd 

16:0 ' 175.18 4.38   200.44 6.08   0.002 

17:0 ' 6.94 0.11   6.99 0.20   nsd 

18:0 ' 54.89 1.23   54.71 1.97   nsd 

19:0 ' 0.56 0.11   0.99 0.03   0.001 

20:0 ' 3.18 0.07   3.27 0.12   nsd 

Other ' 1 5.10 0.13   5.80 0.16   0.002 

                

Sum MUFA ' 229.95 3.94   260.97 7.20   0.001 

16:1n-7 ' 32.60 1.06   40.73 1.75   <0.001 

18:1n-9 ' 152.82 2.90   167.29 5.39   0.025 

18:1n-7 ' 25.36 1.04   29.50 1.05   0.008 

20:1n-9 ' 11.38 0.50   15.06 0.53   <0.001 

Other ' 2 10.12 0.49   12.68 0.71   0.006 

                

Sum PUFA ' 317.96 8.40   349.69 10.31   0.023 

18:2n-6 (LA) ' 44.78 1.27   45.20 2.20   nsd 

18:3n-6 ' 0.00 0.00   0.00 0.00   nsd 

18:3n-3 ' 2.13 0.08   2.51 0.15   0.033 

20:2n-6 ' 8.81 0.37   10.88 0.42   0.001 

20:3n-6 ' 8.58 0.78   8.40 0.78   nsd 

20:4n-6(ARA)' 32.17 1.62   26.56 1.91   0.032 

20:5n-3(EPA)' 57.91 1.49   63.64 2.58   nsd 

22:6n-3(DHA)' 149.30 5.79   177.45 8.09   0.008 

Other ' 3 21.11 0.95   21.92 0.96   nsd 

                

Sum n-3 ' 225.82 6.61   260.66 9.62   0.006 

Sum n-6 ' 99.63 3.56   97.04 5.35   nsd 

Sum n-9 ' 179.46 3.92   202.50 6.23   0.004 

n-3:n-6 2.26 0.13   2.65 0.17   nsd 

' mg/g-total lipid   

1 Sum C8:0, C10:0, C11:0, C12:0, C13:0, C22:0, C23:0, C24:0 
2 Sum C14:1n-5, C15:1, C17:1, C20:1n-7, C22:1n-9, C24:1n-9 
3 Sum C18:4n-3, C20:3n-3, C22:2, C22:4n-6, C22:5n-3 
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fatty acid content (Figure 5; p=0.02). Furthermore, significant positive correlations existed between 

latency period and hepatopancreas total PUFA (P=0.003), C20:5n3 (EPA, p=0.0014), C22:6n-3 

(DHA, p=0.001), total n-3 fatty acid content. No significant correlations between first order spawn 

hatch rate and naupii production were observed for second order hepatopancreas biochemistry 

(P>0.05). For ovary tissues, a significant positive correlation was existed between first spawn hatch 

rate (%) and second spawn C14:0 (Figure 6, p=0.04). No significant correlations between first order 

relative egg production, relative nauplii production and latency period were observed for second 

spawn ovary biochemistry (P>0.05).  

4.5. Discussion 

Whilst the degree to which reproductive performance declines over successive spawning events 

may reflect species-specific variation in nutritional requirements, an adequate broodstock diet 

remains a critical factor in maintaining spawn quality in Penaeid shrimp (Wouters et al., 2001a, 

Chimsung, 2014). The sustained production of high quality spawns requires shrimp to continuously 

absorb and assimilate nutrients via the hepatopancreas, as well as efficiently transfer such nutrients 

to the developing ovary. However, endocrine manipulation resulting from unilateral eyestalk 

ablation forces females to mature and molt more frequently, causing broodstock to allocate greater 

energy reserves over a shorter periods (Racotta et al., 2003). Physiological exhaustion as a result of 

repeated spawning and the subsequent impact on reproductive traits such as gonadosomatic index, 

hatch rate, fecundity and offspring viability has been well documented in Penaeids (Lumare, 1979, 

Emmerson, 1980, Beard and Wickins, 1980, Browdy and Samocha, 1985, Bray et al., 1990, 

Marsden et al., 1997, Mendoza, 1997, Wouters et al., 1999, Arcos et al., 2005). Certainly, there is 

evidence to suggest that declines in reproductive performance as a result of physiological 

exhaustion can be mitigated through optimal diet (Marsden et al., 1997, Wouters et al., 1999). 

However, as the specific nutrient requirements with respect to repeated spawning remain unknown, 

at least for P. monodon, the formulation of optimal maturation diets remains difficult.    

All broodstock maintained under the present study were fed a high-quality composite diet, which 

included both commercial broodstock pellets and fresh-frozen feeds. Despite this, broodstock 

displayed significant variation in hepatopancreas and ovary fatty acid composition between first and 

second spawns. For second order spawners (TB2), a significant higher ovarian total lipid was 

observed, however, no significant correlation between first order performance (RP1) and total lipid 

(TB2) was detected. With the exception of latency period and hepatopancreas total PUFA and n-3 
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HSI -0.17 -0.27 -0.30 0.14     

Protein (%) 0.18 0.34 0.30 -0.52     
Total Lipid (%) -0.13 -0.29 -0.24 0.43     

Sum SFA 0.18 0.23 0.21 -0.38     
14:0 ' -0.03 -0.20 -0.23 -0.39     
15:0 ' -0.04 0.17 0.17 -0.07    1 
16:0 ' -0.13 0.20 0.09 -0.39      

17:0 ' 0.19 0.07 0.08 0.34       
18:0 ' 0.54 -0.05 0.15 0.07      0.8 

19:0 ' -0.07 -0.05 0.01 -0.07       
20:0 ' -0.01 -0.21 -0.20 -0.15      0.6 

Other ' 1 0.41 0.26 0.45 0.26       
Sum MUFA ' 0.08 -0.38 -0.22 -0.35      0.4 

16:1n-7 ' -0.17 -0.08 -0.10 -0.43       
18:1n-9 ' -0.09 -0.44 -0.25 0.37      0.2 

18:1n-7 ' -0.34 -0.15 -0.25 -0.50       
20:1n-9 ' -0.21 0.01 -0.04 -0.52      0 

Other ' 2 -0.07 -0.54 -0.33 -0.44       
Sum PUFA ' -0.09 -0.29 -0.27 0.14      -0.2 

18:2n-6 (LA) ' -0.13 -0.32 -0.30 -0.12       
18:3n-6 ' -0.25 0.26 0.07 0.39      -0.4 

18:3n-3 ' 0.33 0.16 0.17 -0.33       
20:2n-6 ' 0.02 0.12 0.15 0.22      -0.6 

20:3n-6 ' 0.04 -0.16 -0.12 0.00       
20:4n-6 (ARA) ' -0.01 -0.06 -0.09 -0.08      -0.8 

20:5n-3 (EPA) ' -0.09 -0.28 -0.28 0.05       
22:6n-3 (DHA) ' -0.11 -0.28 -0.28 0.05      

-1 
Other ' 3 0.03 -0.20 -0.16 -0.12    

Sum n-3 ' -0.07 -0.28 -0.28 0.01     
Sum n-6 ' -0.16 -0.25 -0.27 -0.12     
Sum n-9 ' 0.10 -0.37 -0.17 -0.34     

n-3/n-6 0.16 -0.22 -0.28 -0.21     
Figure 5. Heatmap showing correlations (R2) between reproductive performance measures at first spawn 
(RP1) and hepatopancreas biochemistry at second spawn (TB2). Values greater than zero (i.e. blue) indicate 
positive correlation between traits, whilst values less than zero (i.e. red) indicate negative correlation. 
Where values appear in bold, significant correlations occur (P<0.05). Abbreviations within this table are 
defined as: HSI= hepatosomatic index; SFA= saturated fatty acid; MUFA= mono unsaturated fatty acid; 
PUFA= poly unsaturated fatty acid; LA= linoleic acid; ARA= arachidonic acid; EPA= eicosapentaenoic acid; 
DHA= docosahexaenoic acid  
' mg/g-total lipid   

1 Sum C8:0, C10:0, C11:0, C12:0, C13:0, C22:0, C23:0, C24:0 
2 Sum C14:1n-5, C15:1, C17:1, C20:1n-7, C22:1n-9, C24:1n-9 
3 Sum C18:4n-3, C20:3n-3, C22:2, C22:4n-6, C22:5n-3 
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GSI 0.45 0.46 0.32 0.24     

Protein (%) -0.37 -0.37 -0.41 0.07     
Total Lipid (%) -0.02 0.04 -0.08 0.05     

Sum SFA -0.05 -0.23 -0.22 0.17     
14:0 ' -0.04 0.46 0.46 0.20     
15:0 ' 0.17 0.05 -0.09 0.05    1 
16:0 ' -0.25 -0.10 -0.18 0.12      

17:0 ' -0.02 0.12 0.06 0.00      
 

18:0 ' 0.21 0.15 0.24 0.08      0.8 

19:0 ' -0.24 -0.15 -0.09 0.22      
 

20:0 ' -0.02 -0.27 -0.31 0.16      0.6 

Other ' 1 -0.02 0.31 0.16 0.37      
 

Sum MUFA ' -0.55 -0.27 -0.40 0.15      0.4 

16:1n-7 ' -0.17 -0.21 -0.28 0.05      
 

18:1n-9 ' -0.06 0.28 0.17 0.21      0.2 

18:1n-7 ' -0.11 -0.20 -0.22 0.13      
 

20:1n-9 ' -0.39 -0.21 -0.19 0.39      0 

Other ' 2 -0.04 -0.25 -0.29 0.01      
 

Sum PUFA ' -0.26 -0.13 -0.09 0.23      -0.2 

18:2n-6 (LA) ' -0.25 -0.28 -0.33 0.18      
 

18:3n-6 ' 0.00 0.00 0.00 0.00      -0.4 

18:3n-3 ' 0.14 -0.07 0.05 -0.02      
 

20:2n-6 ' -0.31 0.01 -0.14 0.26      -0.6 

20:3n-6 ' 0.22 -0.11 -0.16 -0.14      
 

20:4n-6 (ARA) ' 0.40 -0.02 0.06 0.05      -0.8 

20:5n-3 (EPA) ' -0.09 0.25 0.21 0.32      
 

22:6n-3 (DHA) ' -0.32 -0.06 -0.06 0.15      

-1 
Other ' 3 0.05 0.04 -0.04 -0.04    

Sum n-3 ' -0.21 -0.02 -0.02 0.16     
Sum n-6 ' 0.03 -0.11 -0.13 -0.07     

Sum n-9 ' -0.22 -0.14 -0.24 0.14     

n-3:n-6 -0.05 -0.22 -0.10 -0.23     
Figure 6. Heatmap showing correlations (R2) between reproductive performance measures at first spawn 
(RP1) and ovary biochemistry at second spawn (TB2). Values greater than zero (i.e. blue) indicate positive 
correlation between traits, whilst values less than zero (i.e. red) indicate negative correlation. Where values 
appear in bold, significant correlations occur (P<0.05). Abbreviations within this table are defined as: GSI= 
gonadosomatic index; SFA= saturated fatty acid; MUFA= mono unsaturated fatty acid; PUFA= poly 
unsaturated fatty acid; LA= linoleic acid; ARA= arachidonic acid; EPA= eicosapentaenoic acid; DHA= 
docosahexaenoic acid  
' mg/g-total lipid   

1 Sum C8:0, C10:0, C11:0, C12:0, C13:0, C22:0, C23:0, C24:0 
2 Sum C14:1n-5, C15:1, C17:1, C20:1n-7, C22:1n-9, C24:1n-9 
3 Sum C18:4n-3, C20:3n-3, C22:2, C22:4n-6, C22:5n-3  
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content, no significant correlations were detected in either hepatopancreas or ovary tissues for broad 

level fatty acid groups, i.e. total SFA, MUFA, PUFA, n-3, n-6 and n-9.. It appears that simply 

increasing total lipid content and/or availability in feeds is unlikely to improve reproductive 

performance in P. monodon, instead targeting specific formulations may have a greater impact.  

In the present study, significantly less hepatopancreas SFA, PUFA, n-3 and n-6 fatty acids were 

present per gram-lipid in second order spawners, largely reflecting a decrease in C15:0, C17:0, 

C18:2n-6, C20:3n-6, C20:4n-6(ARA), C20:5n-3 (EPA), C22:6n-3 (DHA) content within available 

lipid. Significantly less C18:1n-9 MUFA was also observed within the hepatopancreas tissues of 

second order spawners. The reduction of fatty acid content likely reflects the transfer of nutrients 

from the hepatopancreas to the developing ovary. In P. monodon, nutrient stores within 

hepatopancreas tissues decrease to meet the energetic needs for rapid development of ovary tissues 

(Marsden et al., 2007). However, disproportionately large reductions in fatty acid content within 

lipid, such as those noted for C15:0, C17:0, C18:1n-9, C18:2n-6, C20:3n-6, C20:4n-6(ARA), 

C20:5n-3 (EPA), C22:6n-3 (DHA), may indicate the preferential utilization of, or requirement for, 

such fatty acid classes during the maturation and spawning process. Significant reductions in fatty 

acid content suggest that where such fatty acids are being utilized, such demands are in excess of 

amounts supplied by the broodstock diet. Interestingly, no significant correlations were detected 

between hepatopancreas C15:0, C17:0, C18:1n-9, C18:2n-6, C20:3n-6, C20:4n-6(ARA), fatty acid 

content and reproduction performance measures. Still, where such fatty acids have essential roles in 

the maturation of ovarian tissue or the future development of nauplii, nutritional shortfalls within 

hepatopancreas tissues may have significant impact on the continued reproductive success of 

broodstock.  

In addition to declines in hepatopancreas arachidonic acid (C20:4n-6(ARA)), ovarian tissues 

showed decreases in ARA content between first and second order spawners. Consistent declines in 

both tissues suggest that utilization, and therefore the requirement for ARA in P. monodon, is high 

in relation to multiple spawnings. The potential for limiting ARA content within both 

hepatopancreas and ovary tissues is of particular concern given the role of ARA in maturation and 

spawning. A study conducted by Coman et al. (2011) demonstrated a positive association between 

ARA availability and increased spawn frequency and egg production. In addition to content, the 

ratio of ARA:EPA has also been suggested to influence reproduction by modulating the production 

of prostaglandins (Coman et al., 2011). Prostanoids derived from ARA (i.e. series II prostaglandin) 

have significant roles in the onset of maturation, stimulation and sequestration of egg yolk and 

development of essential cellular machinery such as cortical rods in P. monodon (Wouters et al., 
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2001a, Meunpol et al., 2010, Wimuttisuk et al., 2013). It has previously been reported that the 

ARA:EPA ratio in mature ovaries of wild P. monodon range from 0.3-0.6 (Crocos, 1997, Marsden 

et al., 1991, D'Souza and Kelly, 2000, Wouters et al., 2001a, Huang et al., 2008), whilst the diet 

used by Coman et al. (2011) contained a ARA:EPA ratio of 0.5 and resulted in a ratio of 0.57 in 

spawned eggs. In the present study, the ARA:EPA ratio within ovarian tissue declined from 0.55 to 

0.41 between first and second spawn, suggesting that the production and utilization of ARA was 

limiting in this study, despite the use of current ‘best practice’ feeding regimes. Given that 

maturation rate and egg viability are common areas of concern for domesticated broodstock 

production, potential deficiencies in the ARA-prostaglandin synthesis cascade as a response to 

current feeding regimes require further investigation. Similarly, further investigation of ARA 

utilization in domesticated P. monodon is required with particular emphasis on interactions between 

prostaglandin synthesis and spawning.  

Whilst ovarian ARA declined in second order spawners, this trend was not reflected in the 

remaining fatty acids. Comparatively higher MUFA, PUFA, n-3, n-9, C14:0, C16:0, C19:0, 

C16:1n-7, C18:1n-9, C18:1n-7, 20:1n-9, C18:3n-3, 20:2n-6, and 22:6n-3(DHA) content were all 

observed in second order spawners, relative to first order broodstock. The results of this experiment 

suggest that unlike hepatopancreas, at least for the initial two spawns, many ovarian fatty acids 

were not limiting. These results may explain, to a degree, why reproductive performance did not 

decline between first and second spawns for historic spawning data. However, we cannot exclude 

that analyses of historic spawning simply did not have sufficient power to detect declines in 

performance observed in previous works (see Hansford and Marsden, 1995, Makinouchi and Hirata, 

1995, Primavera and Caballero, 1992). Similarly, it is possible the reproductive evaluation period 

(40-days, maximum of two spawning cycles) within the present study was simply too short to 

observe significant declines in ovarian FA content. Still, whether increasing accumulation of lipid 

within ovary tissues continues across subsequent spawning events (i.e. third, fourth and fifth order 

spawns) requires further investigation, particularly given the significant depletion of various 

hepatopancreas fatty acids between first and second spawn. Given that relatively few correlations 

were observed between ovarian biochemistry and reproductive performance traits, future work 

should consider assessing changes in biochemistry across all tissues associated with the 

translocation of nutrient to ovary tissues (i.e. hepatopancreas and haemolymph) across an extended 

number of spawns (i.e. third, fourth, fifth order spawns).  

Improvement of reproductive performance for domesticated P. monodon broodstock requires the 

continued analysis of reliable repeat spawning data across variable timescales. In the current study, 
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broodstock demonstrated significant variation in aspects of hepatopancreas and ovarian tissues 

within the initial two spawns. Notably, whilst not limiting in ovary tissues, a number of fatty acids 

appear to be depleted rapidly within hepatopancreas tissues (i.e. C15:0, C17:0, C18:1n-9, C18:2n-6, 

C20:3n-6, C20:4n-6(ARA), C20:5n-3 (EPA), C22:6n-3 (DHA)), and therefore represent candidates 

for further investigation with respect to utilization in relation to spawning. The utilization and 

availability of hepatopancreas and ovarian ARA in particular requires further investigation in 

relation to spawning and prostaglandin synthesis. Notably, the current experiment failed to identify 

significant correlations between broad-level lipid and fatty acid components (i.e. total lipid, SFA, 

MUFA, PUFA, etc.), with the exception of latency period and hepatopancreas total PUFA and n-3 

content. The results of this study suggest that lipid composition of broodstock diets has a greater 

influence on reproductive performance than total lipid content. Continued optimization of fatty acid 

content within broodstock maturation diets is critical for the improvement of broodstock 

reproductive performance, with particular emphasis on FAs likely to be limiting in hepatopancreas 

and ovary tissues.  
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Chapter 5: Regulating reproduction: RNA-seq analysis of variation in ovarian 

arachidonic acid levels in domesticated Penaeus monodon  

5.1. Abstract:  

Recent works have demonstrated that current high-performance feeding regimes are not sufficient 

to sustain the high arachidonic acid (ARA) requirements for spawning in Penaeus monodon 

broodstock. Deficiencies in ARA content may impact egg production and maturation rates directly, 

or indirectly by limiting the production of downstream ARA-derived molecules with significant 

control over reproduction, such as prostaglandin. The current study investigated the availability, 

production and regulation of ARA and prostaglandin within fourth generation domesticated 

P. monodon broodstock (n = 19) fed an identical high-performance maturation diet. Broodstock 

demonstrated considerable variation in ovarian ARA content from 1.4 – 5.0%. To further inform 

biological conclusions drawn from biochemical data analyses, a gene expression study was 

undertaken. For this, a reference P. monodon ovarian tissue transcriptome was assembled using 100 

bp paired-end sequences generated on an Illumina HiSeq 2500. Differential gene expression 

analysis identified a total of 757 genes with greater than 2-fold expression change in response to 

variable ARA content. Of these genes, 677 could be annotated as unique homologs. However, a 

paucity of genomic resources for P. monodon and crustaceans generally, resulted in only 19 genes 

which could be assigned functional gene ontology (2.5% of all genes identified). An alternative 

approach was undertaken, where a subset of the 40 most differentially expressed genes between the 

LOW and HIGH groups were manually annotated through a search of gene keywords in the UniProt 

database to assess putative gene function. A specific study of prostaglandin synthesis genes from 

this dataset indicated a significant positive correlation between ovarian ARA content and cPLA2 

and COX expression (P<0.05). Broodstock also demonstrated significant variation in COX, PGFS, 

PGE1 and PGE3 as a function of varying levels of ovarian ARA (P<0.05). This study is the first 

demonstration of population level variation in ovarian ARA content, despite broodstock being fed 

identical high-performance maturation diets. Differential gene expression analysis demonstrates that 

variation in ARA has direct impact on the synthesis of key downstream prostaglandin synthesis 

genes, which have potent roles in broodstock egg production and maturation and elucidates a suite 

of currently uncharacterized genes for P. monodon.  
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5.2. Introduction: 

Continued improvement of reproductive performance in domesticated Penaeus monodon is 

essential to reducing industry reliance on wild-caught broodstock. Whilst incremental 

improvements have been via selective breeding (Coman et al., 2013), the fecundity of domesticated 

stocks is the key bottleneck to broader industry adoption. Recent analyses of domesticated 

P. monodon broodstock fed high-performance broodstock diets revealed significant reductions in 

hepatopancreas and ovarian arachidonic acid (ARA) content in response to repeat spawning 

(Goodall, J unpublished data, see chapter 4). Shortfall in the availability of ARA has the potential 

to impact reproductive performance either directly or through the disruption of downstream 

pathways. For many fish and crustacean species, ARA forms a significant fraction of the lipid 

present within reproductive tissues. Its presence has been linked to variation in maturation 

frequency, oocyte development, egg production and larval health (Millamena et al., 1993, Cahu et 

al., 1995b, Furuita et al., 2003, Mazorra et al., 2003, Meunpol et al., 2005, Huang et al., 2008, 

Coman et al., 2011, Ginjupalli et al., 2015, Ogata et al., 2004, Salze et al., 2005). Within most fresh-

frozen maturation shrimp broodstock maturation diets, polychaete worms (e.g. Marphysa sp., 

Perineries sp.) form an essential component they contain relatively high levels of ARA when 

compared with other common fresh-frozen ingredients (i.e. squid, mussel)(Coman et al., 2011). 

Coincidently, polychaete worm-based diets have been demonstrated to have significant influence on 

spawning performance and larval production in shrimp (Naessens et al., 1997, Lytle et al., 1990, 

Browdy, 1992). In P. monodon, ARA-supplemented diets have been demonstrated to increase 

broodstock egg production, maturation and spawning frequency (Coman et al., 2011). 

In addition to the direct utilization, ARA serves as the primary substrate for the synthesis of series II 

prostaglandin, bioactive lipid mediators with significant regulatory control over reproduction in 

invertebrates (Rowley et al., 2005, Stanley, 2006, Stanley and Howard, 1998). The prostanoid 

pathway is characterized by the release of cellular/ intracellular membrane bound ARA by 

phospholipase A2 (cPLA2), which is subsequently cyclized and reduced to prostaglandin H2 

(PGH2) by the cyclooxygenase (COX) (see Figure 7) (Stanley, 2006, Funk, 2001). Class specific 

synthases then convert PGH2 to various prostaglandins, such as prostaglandin E2 (PGE2), 

prostaglandin D2 (PGD2) and prostaglandin F2α (PGF2α) (Wimuttisuk et al., 2013). In crustaceans 

the presence or absence of prostaglandin class varies. PGE2, PGD2 and PGF2α have been detected 

in the fresh water crab, Oziotelphusa senex senex (Sreenivasula Reddy et al., 2004), PGE2 and  
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Figure 7. Predicted Penaeus monodon prostanoid biosynthesis pathway. Modified from Wimuttisuk et al. 
(2013) 

 

PGF2α in the Florida crayfish Procambarus paeninsulanus (Spaziani et al., 1995, Spaziani et al., 

1993), Kuruma shrimp Marsupenaeus japonicus (Tahara and Yano, 2004), and P. monodon 

(Wimuttisuk et al., 2013), whilst only PGE2 has been reported in the shore crab Carcinus maenas 

(Hampson et al., 1992) and acorn barnacle Balanus Amphitrite (Knight et al., 2000). In P. monodon, 

PGF2 acts as a regulator of maturation (Wimuttisuk et al., 2013), whilst PGE2 promotes the 

development of yolk globules and cortical rods in P. monodon oocytes during early, and late stage 

development respectively (Meunpol et al., 2010).  

Given the significant role of ARA and prostaglandin in P. monodon reproduction, the impact of 

variable ARA availability as a result of current feeding strategies forms the basis of this 

investigation. Among a larger set of P. monodon broodstock samples (Goodall, J. unpublished data, 

see chapter 4) that showed variable ovarian ARA content, the current study aimed to investigate the 

impact of ovarian ARA content on the regulation of key P. monodon prostaglandin biosynthesis 

genes using RNA-seq. In addition, the global regulatory gene expression response was compared 

between ovary tissues of different individuals that contained high or low levels of ARA.  



58 

 

5.3. Materials and Methods: 

5.3.1 Broodstock and Sampling 

All broodstock used in the current study (n=19) were derived from a fourth generation domesticated 

population maintained at Gold Coast Marine Aquaculture (GCMA; Woongoolba, Queensland, 

Australia). Juvenile broodstock were reared within earthen grow-out ponds as per GCMA’s 

broodstock management protocols (3,000 m2). A total of 40 female broodstock (7 months of age) 

were transferred from GCMA to CSIRO’s Bribie Island Research Centre (BIRC; Woorim, 

Queensland, Australia). At BIRC, broodstock were maintained in two 10,000 L circular maturation 

tanks at 40 shrimp per tank (20 male: 20 females, 4 shrimp/ m2). Tanks were fitted with flow 

through seawater systems at 4 L min-1 and 57% exchange per day to maintain seawater at an 

average salinity of 35 ± 1 ppt) and 27°C. Photoperiod was maintained at 14 h light: 10 h dark 

(Goodall et al., 2016). Broodstock were fed a typical broodstock maturation diet consisting of fresh-

frozen feed (squid, bloodworm, mussel, ox liver, Artemia biomass) supplemented with a 

commercial pelleted maturation diet (Ridley Aqua Feed™: MR Broodmax) (Goodall, J. 

unpublished data, see chapter 4). Feeds were provided separately, ad libitum, five times daily 

including a single ration of the pelleted diet.  

Broodstock were conditioned for seven weeks, before being unilaterally eyestalk ablated four days 

post-molt (Goodall et al., 2016). Following ablation, broodstock were monitored daily for ovarian 

maturation (by shining a torch through the dorsal carapace). Broodstock were allowed to spawn 

once before completing one additional maturation cycle. When stage IV mature ovaries were 

detected (Tanfermin and Pudadera, 1989) broodstock were removed from maturation tanks, 

anaesthetized via ice-water immersion and ovary tissues sampled via dissection. Dissected ovary 

tissues were snap-frozen in liquid nitrogen and stored at -80°C until further processing. 

5.3.2 Biochemical Analysis of Ovarian Arachidonic Acid Content 

Prior to analysis, all ovarian samples were minced frozen using a blender. The frozen mince was 

freeze-dried to completion in a laboratory freeze-dryer (Alpha 1-4, Martin Christ, Germany), re-

homogenized in a blender and used for subsequent analyses. Total lipid was extracted following 

Folch (1957), esterified by an acid-catalyzed methylation and 0.3 mg of an internal standard added 

to each sample (21:0 Supelco, PA, USA). Arachidonic acid contents were identified relative to the 

internal standard following separation by gas chromatography using an Agilent Technologies 

6890N GC system (Agilent Technologies, California, USA) fitted with a DB-23 (60m x 0.25mm x 



59 

 

0.15 μm, cat 122-2361 Agilent Technologies, California) capillary column and flame ionisation 

detector (Christie, 2003a). 

To reduce the impact of potential biological variation and aid in further downstream transcriptome 

assembly and analyses, all samples were plotted based on the percentage ovarian ARA content, and 

mean percentage of ARA content with 95% confidence intervals. The four samples with the lowest 

and highest percentage of ovarian ARA content were termed ‘LOW’ and ‘HIGH’ groups 

respectively (total n = 8). In addition, the sample with the median percentage of ovarian ARA 

content for all 19 was termed ‘MEDIAN’. 

5.3.3 Quantification of Ovarian Prostaglandins  

Ovary prostaglandin extraction and purification was conducted using a modified ELISA assay 

protocol as per the manufacturer’s instructions (see Sapphire Bioscience, Kookaburra Prostaglandin 

E2 Enzyme Immunoassay Kit, Cat# 133-16359). Optimization of extraction method was conducted 

using a 10-fold increasing input series (i.e. 0.5 mg, 5.0 mg, 50 mg freeze dried tissue used in 

original extraction). Prior to extraction all samples were spiked with deuterated prostaglandin E2 

standard (PGE2-d4, Caymann Chemical, item# 14010) (volume equal to 1µg/mL of final volume). 

Samples were acidified with 1.0 M HCl to a pH < 4.0. Following sample acidification, a C-18 SPE 

cartridge was conditioned by passing 5 mL of methanol, followed by 5 mL of Millipore water 

through the column. The sample was then washed through to the conditioned column, followed by 

5 mL Millipore water and 5 mL of hexane. The column was allowed to dry. Eluted prostaglandin 

were then washed from the column by passing 5 mL of ethyl acetate containing 1% methanol 

through the column into a collection reservoir. Prostaglandin extracts were dried to completion 

under a stream of nitrogen.  

Analysis of prostaglandin extracts was conducted using methods adapted from Prasain et al. (2013). 

All analyses were conducted using a Shimadzu LC-MS system consisting of a Nexera X2 LC and 

an 8030 LC-MS using electrospray ionization in negative ion mode. Prior to analysis, both dried 

extracts and a mixed standard containing PGE2-d4, prostaglandin E2 (PGE2, Caymann Chemical, 

item# 16010) and prostaglandin F2α (PGF2α, Caymann Chemical, item# 314010) (1 µg/mL) 

standards were eluted in 2 mL of methanol:water (8:2) and mixed thoroughly. Sample solutions and 

standards were stored within the 1.5 mL vial rack prior to analysis, which was maintained at 4°C. 

The mobile phase consisted of two solutions: 0.1%formic acid in Millipore water (A) and 

acetonitrile containing 0.1% formic acid (B). 
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Samples were injected (25 µL) into a Synergy hydor RP-C18 column under a gradient elution, 

starting with 12% B, increasing to 85% B from 0 to11 minutes, 85-100% B from 11 to 14 minutes, 

and returning to 12% B at 16 minutes (total run time 20 min). Detected peaks for the standards and 

biological samples were quantified based on retention time (RT) and MRM transitions ([M-H]-m/z) 

(PGE2-d4: RT=6.75 mins, [M-H]-m/z=355>275; PGE2: RT=7.05 mins, [M-H]-m/z=351>271/289; 

PGF2α RT=6.4 mins, [M-H]-m/z=353>309/193) (Prasain et al., 2013). Nitrogen was used as a 

nebulizer and drying gas. The collision energy was optimised for each compound and the collision 

gas pressure set at 230 kpa, with a heat block and desolvation line temperatures of 400°C and 

250°C respectively. Analytical data was processed using LabSolutions LC-MS version 5.82.  

5.3.4 De Novo Transcriptome Assembly 

RNA was extracted from all 19 individuals using the Qiagen™ RNeasy® Plus mini kit, as per 

manufacturer’s instructions (Qiagen™, Australia). To ensure high quality RNA was obtained prior 

to sequencing, RNA quantity and quality was assessed using a Nanodrop 8000 spectrophotometer 

(Thermo Fisher Scientific, Australia) and Agilent 2100 bioanalyzer (Agilent Technologies, 

Australia). The Australian Genome Research Facility (AGRF, Melbourne, Australia) completed 100 

base pair library preparation and paired end sequencing on an Illumina HiSeq 2500. Raw reads were 

processed following the Oyster River Protocol (MacManes, 2016. Available from http://oyster-

river-protocol.readthedocs.io/en/latest/). Data was subjected to quality control by checking raw 

reads for Illumina sequencing adaptors, trimming low quality reads (<30 Phred) with Trimmomatic 

(version 0.32, Bolger et al., 2014), error correction using Rcorrector (Song and Florea, 2015) and 

completing quality assessment with FastQC (Andrews, 2010. Available from 

http://www.bioinformatics.babraham.ac.uk/projects/fastqc/).  

Three samples were used to construct the reference transcriptome (assembly samples denoted with 

AS in Figure 8A). The first two represented those samples with the highest total sequence read count 

from the LOW and HIGH groups respectively. The third sample, MEDIAN, was included to ensure 

that all transcripts across the spectrum of low to high percent ovarian ARA content were 

represented. The preliminary transcriptome was de novo assembled using Trinity (version 2.0.6, 

Haas et al., 2013). The raw reads used to construct the preliminary assembly were mapped back 

against the transcriptome using Transrate (version 1.0.3, Smith-Unna et al., 2015) to filter and 

remove poorly supported transcript artefacts which are commonly retained by Trinity. The resultant 

transcriptome and the preliminary assembly were assessed for structural integrity and genic 

completeness using BUSCO (version 1.1b1, Simão et al., 2015) and Transrate respectively.  
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Figure 8. Total percentage ovarian arachidonic (ARA) acid content for P. monodon broodstock fed an 
identical maturation diet. All individuals were ranked by ARA content and designated a sample replicate 
number between 1 and 19. Data is displayed as: A) total percentage ARA content for all nineteen 
individuals surveyed and; B) Individuals designated as members of LOW (red), HIGH (green) or MEDIAN 
(sample replicate 10) groups respectively. The average percentage ARA content for all surveyed individuals 
is represented by a broken blue line, whilst samples within the broken yellow lines fall within the 95% 
confidence interval. Replicates used in assembly construction are denoted with an AS. 

5.3.5 Differential Gene Expression and Functional Analyses  

Differential gene expression analysis was undertaken by indexing trimmed and error-corrected 

reads against the transcriptome using Bowtie (version 2.2.4, Langmead and Salzberg, 2012, 

Langmead et al., 2009). Read counts were quantified using Corset (version 1.04, Davidson and 

Oshlack, 2014). The Corset output was assessed for potential batch effects using Harman 

(Oytam, Y., 2014. Harman. Available online at http://bioinformatics.csiro.au/harman) and poorly 

clustering samples removed, reducing biological replicates for each of the LOW and HIGH groups 

to three (previously four as determined by biochemical analyses above). Differential gene 

expression (DGE) statistical analysis was undertaken using EdgeR (version 3.3, Robinson et al., 

2010). 

To determine putative identity, transcripts with greater than 2-fold DGE between LOW and HIGH 

groups were subject to tblastx against the NCBI nucleotide database (BLAST 1.0, accessed July 

2016) and two crustacean species, Daphnia pulex (accessed July 2016, Colbourne et al., 2011) and 

Parhyale hawaiensis (accessed July 2016, Zeng et al., 2011). Sequence identity was not available 

for the crustacean transcriptome datasets therefore these datasets were also subject to tblastx to 

generate gene identities. The resultant two-step tblastx analysis dataset was manually curated for 

sensible gene annotation. However, a paucity in functional gene ontology (GO) of crustacean 

species was generally prohibitive in using conventional Blast2GO methods. 
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To overcome this, gene ontology was derived manually following two methods. The first method 

aimed to derive GO terms for all DGE by extracting the sequences of homologous genes from the 

NCBI database and tblastx followed by the gene identity using the gene2accession.gz database 

(source ftp.ncbi.nlm.nih.gov/gene/DATA/). Where possible, the GO terms where then extracted 

from the gene2go.gz database (source ftp.ncbi.nlm.nih.gov/gene/DATA/). The second method used 

the EdgeR DGE fold change data to identify 20 transcripts for each group (LOW and HIGH) with 

the greatest positive and negative (total n = 40) fold change. For each of these sequences gene 

identity keywords were searched against the UniProt database (accessed September 2016, available 

from http://www.uniprot.org/) to inform the functional annotation of the manually extracted 

homologous genes.  

5.3.6 Prostaglandin Gene Expression Pathway Analysis 

A second analysis was undertaken to specifically investigate expression levels of known genes 

associated with the series II prostanoid synthesis pathway (see Figure 7). The transcriptome 

assembly was imported into CLC Genomics Workbench (v 9.0.1) and converted to a BLAST 

database. The homologous putative P. monodon prostaglandin pathway and synthesis genes were 

identified by tblastx analysis of the transcriptome against the NCBI nucleotide database including 

phospholipase A2 (PmcPLA2), cyclooxygenase (PmCOX), glutathione-dependent prostaglandin D 

synthase (PmgPGDS), prostaglandin F synthase (PmPGFS), prostaglandin E synthase 1 

(PmPGES1), prostaglandin E synthase 2 (PmPGES2), prostaglandin E synthase 3 (PmPGES3) and 

prostaglandin reductase 1 (PmPTGR1) (Supplementary Table 1). 

To assess gene expression of these prostaglandin genes, the total read counts for the PmcPLA2, 

PmCOX, PmgPGDS, PmPGFS, PmPGES1, PmPGES2, PmPGES3, PmPTGR1 homologs were 

extracted from the corset output and analyzed in two ways: 1) total reads for prostanoid genes were 

correlated with total ARA content on an individual basis using Spearmann’s rank correlation 

coefficient (Sokal and Rohlf, 1981) and; 2) differential gene expression for prostanoid genes 

between LOW and HIGH groups (n = 3) were compared using EdgeR. 

5.4. Results: 

5.4.1 Quantification of Ovarian Arachidonic Acid Content  

Percentage ovarian ARA content was assessed for nineteen mature (ovary stage IV) broodstock fed 

identical diets. Broodstock ranked by percentage ARA content are displayed in Figure 8A. Mean 
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percentage ARA content within the surveyed cohort was 2.92 (SE ± 0.21), whilst the outer limits of 

the 95% confidence interval ranged from 3.37 to 2.48. A total of five and six samples respectively 

had an ovarian ARA content which fell outside the lower and upper 5% confidence intervals 

respectively, suggesting variation in percentage ARA content was high within the sampled 

population. Individual broodstock were designated either LOW or HIGH based on the significant 

difference in ovarian ARA content (P < 0.005, Figure 8B). This disparity in ARA content for 

groups LOW and HIGH was investigated further using comparative RNA-seq gene expression 

analyses. 

5.4.2 Quantification of Ovarian Prostaglandin Content 

PGE2 and PGF2α levels were quantified from LOW and HIGH ARA groups against a mixed 

standard using LC-MS. For the mixed standard, detection peaks and retention times for 

prostaglandin standards PGE2-d4, PGE2 and PGF2α fell within expected ranges, and therefore 

could be accurately quantified (Supplementary Figure 3). For tissue samples, PGE2-d4 retention 

times fell within expected ranges, however, the observed peaks were on average four to 22 times 

less than those detected in the mixed standard (despite equal concentrations of 1µg/mL). This 

suggests a considerable reduction in potential prostaglandin yield most likely due to reduced 

extraction efficiency. In addition, PGE2 and PGF2α detection peaks could not be identified in tissue 

samples and therefore could not be accurately quantified. A typical tissue sample chromatographs 

derived from 0.5 mg of tissue is presented in Supplementary Figure 4, and chromatographs of 5.0 

mg, 50.0 mg tissue input showed a similar profile (data not shown). Given prostaglandin could not 

be accurately detected in tissues samples further attempts to quantify PGE2 and PGF2α via LC-MS 

were discontinued.  

5.4.3 De Novo Transcriptome Assembly  

Illumina HiSeq 2500 sequencing produced a total of 98,292,911 paired end reads from nine 

P. monodon ovary samples. Structural completeness and accuracy were assessed for both 

preliminary and final transcriptome assemblies using Transrate and BUSCO respectively 

(Supplementary Table 3). Both assemblies were of high quality as evidenced by Transrate 

(preliminary= 0.39; final =0.61) and BUSCO (preliminary= 91% complete BUSCOs; final =90% 

complete BUSCOs) scores. Notably remapping of raw reads improved Transrate score by 

approximately 1.5× (a score of 0.61 is three times greater than the minimum assembly score of 0.2), 

with only marginal reductions in complete BUSCOs. Data demonstrated that an accurate and 
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complete ovarian transcriptome had been assembled, and thus the final assembly was used for all 

further analyses that compared the expression levels between groups of varying ARA content.  

5.4.4 Differential Gene Expression and Functional Analyses  

LOW and HIGH samples were mapped against the transcriptome assembly to quantify read counts 

and clustered against the first and second principle component using Harmann. One sample was 

removed from further analysis for each group (LOW and HIGH) due to poor clustering of samples. 

DGE analysis identified a total of 1,805 genes with significantly different expression between LOW 

and HIGH groups (Table 13). Transcripts with less than 2-fold expression change were removed 

from analyses. The remaining 757 transcripts were queried against the NCBI database using tblastx. 

A total of 754 transcripts were assigned a blast match, of which 677 hits were unique and 77 

represented isoforms.  

Given that automated methods of assigning gene ontology (i.e. Blast2GO) could not be undertaken 

for this study, all gene ontology assignments were conducted manually. For all transcripts with >2-

fold expression change, gene identity and accession number were extracted from tblastx results. 

This resulted in identification of 677 unique transcripts with a total of 440 transcripts matching 

known homologs within the NCBI gene2accession.gz database enabling annotation. A total of 

1,108 associated GO terms were extracted from the NCBI gene2go.qz database resulting in 

functional GO annotation of 19 unique transcripts (2.5% of all entries). An alternate functional 

analysis identified the 20 (n = 40) most positively (Table 14) and negatively (Table 15) expressed 

transcripts, between LOW and HIGH groups based on log-fold change. For all 40 transcripts, GO 

terms were extracted from homologues genes contained within the UniProt database based on the 

 

Table 13. Summary of differential gene expression analyses and manual extraction of gene ontology (GO) 
terms from National Centre Biotechnology Information databases between arachidonic acid groups LOW 
and HIGH.  

Parameter   n 

Significant expression change between LOW and HIGH 1805 

> 2-fold expression change  757 

Assigned a Blast match 754 

Assigned a unique accession number 677 

Isoforms assigned non-unique accession number  77 

Assigned a GeneID based on accession and BlastID 440 

Assigned GO terms based on GeneID 1108 

Unique sequences with associate GO terms 19 
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Table 14. List of differential expressed genes with the greatest positive LogFC between arachidonic acid groups LOW and HIGH, and their corresponding homologs 
based on tblastx results against the National Centre Biotechnology Information database. Positive LogFC indicated genes are upregulated in group HIGH relative to 
group LOW. For all genes differential expression were significantly different between LOW and HIGH (P<0.05) based on EdgeR. PRED=Predicted. 

P. monodon Query Accession Description LogFC 

TR8839-c0_g1_i1 XM_013314116 PRED: Papilio xuthus 28S ribosomal protein S23, mitochondrial (LOC106119202), mRNA 5.96 
TR25321-c0_g1_i1 XM_008199456 PRED: Tribolium castaneum kinase D-interacting substrate of 220 kDa (LOC100141654), transcript variant X12, mRNA 5.79 
TR30211-c0_g1_i1 XM_012881566 PRED: Fundulus heteroclitus tumor necrosis factor receptor superfamily member 16-like (LOC105939421), mRNA 5.78 
TR1196-c0_g1_i1 U66319 Homarus americanus beta-II tubulin mRNA, complete cds 5.52 

TR25386-c0_g1_i1 XM_016862475 PRED: Gossypium hirsutum proline-rich receptor-like protein kinase PERK2 (LOC107930757), mRNA 5.45 
TR12891-c0_g1_i1 XM_014752225 PRED: Polistes canadensis longitudinals lacking protein, isoforms A/B/D/L-like (LOC106788730), transcript variant X2, mRNA 5.43 
TR20169-c0_g1_i1 XM_009909863 PRED: Picoides pubescens zinc finger, CCHC domain containing 7 (ZCCHC7), partial mRNA 5.35 
TR21764-c0_g1_i1 KM280384 Litopenaeus vannamei vascular endothelial growth factor receptor precursor (VEGFR) mRNA, complete cds 5.32 
TR11481-c0_g1_i1 XM_013921346 PRED: Limulus polyphemus protein Smaug homolog 1-like (LOC106461518), transcript variant X3, mRNA 5.32 
TR20787-c0_g1_i1 XM_009970265 PRED: Tyto alba collagen, type IV, alpha 5 (COL4A5), partial mRNA 5.24 
TR29794-c0_g1_i1 XM_017001213 PRED: Homo sapiens potassium voltage-gated channel subfamily A member 2 (KCNA2), transcript variant X6, mRNA 5.24 
TR15314-c0_g1_i1 XM_013536924 PRED: Lingula anatina U6 snRNA-associated Sm-like protein LSm5 (LOC106160346), transcript variant X2, mRNA 5.01 
TR8397-c0_g1_i1 XM_014443496 PRED: Microplitis demolitor nipped-B-like protein A (LOC103573670), mRNA 5.01 

TR11699-c1_g1_i1 XM_013929102 PRED: Limulus polyphemus histamine H2 receptor-like (LOC106468667), mRNA 5.24 
TR3671-c0_g1_i1 XM_012398145 PRED: Athalia rosae ribosome biogenesis protein TSR3 homolog (LOC105684564), transcript variant X2, mRNA 5.23 

TR18791-c1_g1_i1 XM_013289875 PRED: Papilio polytes N-acetylglucosaminyl-phosphatidylinositol de-N-acetylase (LOC106108619), mRNA 5.21 
TR6181-c0_g1_i1 XM_011499038 PRED: Ceratosolen solmsi marchali uridine phosphorylase 1-like (LOC105361772), transcript variant X2, mRNA 5.13 

TR24207-c0_g1_i1 XM_001348671 Plasmodium falciparum 3D7 transcription factor with AP2 domain(s), putative (ApiAP2) mRNA, complete cds 5.13 
TR3775-c0_g1_i1 XM_003729901 PRED: Strongylocentrotus purpuratus insulin-like growth factor-binding protein 2 (LOC100892499), mRNA 5.12 

TR29562-c0_g1_i1 AY965681 Eptatretus stoutii nonfunctional variable lymphocyte receptor B (VLRB) gene, complete sequence 5.04 
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Table 15. List of differentially expressed genes with the greatest negative LogFC between arachidonic acid groups LOW and HIGH, and their corresponding 
homologs based on tblastx results against the National Centre Biotechnology Information database. Negative LogFC indicated genes are downregulated in group 
HIGH relative to group LOW. For all genes differential expression were significantly different between LOW and HIGH (P<0.05) based on EdgeR. PRED=Predicted. 

P. monodon Query Accession Description LogFC 

TR19100-c0_g1_i1 XM_011669812 PRED: Strongylocentrotus purpuratus ras-related protein Rab-6A (LOC586726), transcript variant X2, mRNA -2.97 
TR8190-c0_g3_i1 XM_013938698 PRED: Limulus polyphemus actin-binding protein anillin-like (LOC106478176), mRNA -3.01 
TR607-c0_g1_i1 XM_014406041 PRED: Cimex lectularius protein Star-like (LOC106673783), mRNA -3.02 

TR11878-c0_g1_i1 XM_012406958 PRED: Athalia rosae protein spinster (LOC105689720), transcript variant X1, mRNA -3.10 
TR13636-c0_g1_i1 FN298876 Blattella germanica mRNA for Dicer-1 (dcr1 gene) -3.13 
TR23229-c0_g1_i1 XM_013924824 PRED: Limulus polyphemus zinc finger protein 423-like (LOC106464665), mRNA -3.16 
TR1331-c0_g1_i1 DQ455050 Penaeus monodon prophenoloxidase activating factor (PPAF) mRNA, complete cds -3.25 

TR29302-c1_g1_i1 XM_016062965 PRED: Parasteatoda tepidariorum DNA replication complex GINS protein PSF3-like (LOC107447926), transcript variant X3, mRNA -3.26 
TR18858-c1_g1_i1 XM_012424614 PRED: Orussus abietinus mucin-1 (LOC105699533), mRNA -3.27 
TR29674-c0_g1_i1 XM_006756458 PRED: Myotis davidii programmed cell death 11 (PDCD11), transcript variant X3, mRNA -3.42 
TR7908-c0_g1_i1 XM_014432904 PRED: Halyomorpha halys collagen alpha-1(I) chain-like (LOC106688446), transcript variant X2, mRNA -3.52 
TR500-c0_g1_i1 XM_006024794 PRED: Alligator sinensis NUAK family, SNF1-like kinase, 2 (NUAK2), mRNA -4.65 

TR9023-c0_g1_i1 XM_011696734 PRED: Wasmannia auropunctata ATP-dependent RNA helicase DDX24 (LOC105454235), mRNA -4.96 
TR30138-c0_g1_i1 XM_012375094 PRED: Linepithema humile serine hydroxymethyltransferase, cytosolic (LOC105676883), transcript variant X1, mRNA -5.11 
TR4692-c0_g1_i1 DQ667142 Callinectes sapidus hemolectin mRNA, partial cds -5.36 

TR28007-c0_g1_i1 XM_015256557 PRED: Diachasma alloeum zinc finger protein 608 (LOC107037804), mRNA -5.42 
TR11167-c1_g1_i1 XM_008552877 PRED: Microplitis demolitor retinoblastoma-binding protein 5 homolog (LOC103573691), mRNA -5.63 
TR15716-c0_g2_i8 DQ205425 Fenneropenaeus chinensis putative thrombospondin mRNA, complete cds -5.93 
TR11443-c0_g1_i1 XM_015660048 PRED: Neodiprion lecontei regulator of telomere elongation helicase 1 homolog (LOC107221150), mRNA -6.70 
TR8169-c0_g1_i1 XM_013275923 PRED: Oreochromis niloticus piggyBac transposable element-derived protein 3-like (LOC102079904), mRNA -7.60 
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gene identity inferred by tblastx. With respect to cellular component ontology, nucleus, membrane 

and cytoplasm associated genes were the most highly represented for both LOW and HIGH groups 

(Figure 9). However with respect to molecular function, upregulation of protein, poly(A) RNA, 

RNA, GTP binding and potassium channelling associated genes were observed in the LOW group 

relative to the HIGH group (Figure 10A). Conversely, upregulation of ATP, metal ion, DNA, actin 

binding and hydrolaze activity associated genes was observed for the HIGH group, relative to the 

LOW group (Figure 10B). Biological process ontology highlighted upregulation in regulators of 

transcription (DNA templated), potassium ion transmembrane transport, mitotic sister chromatid 

cohesion, axon midline recognition and guidance associated genes relative to the LOW group 

(Figure 11A). In contrast, upregulation of ventricular system deployment, mitotic cytokinesis, DNA 

repair and cellular senescence associated genes were observed in the LOW group relative to the 

HIGH group (Figure 11B). 

5.4.5 Analysis of Prostaglandin Pathway Genes 

A searchable nucleotide database derived from the transcriptome assembly was generated. Eight 

putative Penaeus monodon genes: PmcPLA2, PmCOX, PmgPGDS, PmPGFS, PmPGES1, 

PmPGES2, PmPGES3, and PmPTGR1 were queried against the nucleotide database using tblastx 

and homologs were derived from the transcriptome assembly (Supplementary Table 1). Read counts 

for predicted PmcPLA2, PmCOX, PmgPGDS, PmPGFS, PmPGES1, PmPGES2, PmPGES3, and 

PmPTGR1 transcripts were extracted from the Corset output and either: analyzed for correlation 

with ARA content across all 19 samples or; compared between groups LOW and HIGH only. 

Significant positive correlations were identified across all 19 samples between PmcPLA2 (R2 = 

0.540, p = 0.013) and PmCOX (R2 = 0.478, p = 0.012) transcript expression and percentage ovarian 

ARA content (Figure 12). No significant correlations between PmgPGDS, PmPGFS, PmPGES1, 

PmPGES2, PmPGES3, PmPTGR1 gene expression and percentage ovarian ARA content were 

identified (P>0.05) (Figure 12 and Figure 13). 

Total read counts for PmgPGDS did not meet the minimum requirements for the transcript to be 

retained during Corset analysis (>10 total reads). Therefore PmgPGDS was excluded from the final 

analysis. Total read count was significantly higher on average within the HIGH group for PmCOX, 

PmPGFS and PmPGE1 genes, when compared to the LOW group (P<0.05) (Figure 12 and Figure 

13). For the LOW group, total read count for PmPGES3 was significantly higher on average when 

compared with the HIGH group (P<0.05) (Figure 13). No significant difference in total read count 
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Figure 9. Summary of cellular component ontology for sequences with the highest positive (A) and negative (B) log-fold change, derived from UniProt database. 
Terms which appeared ≤ 2 times were grouped as “Other”. 
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Figure 10. Summary of molecular function ontology for sequences with the highest positive (A) and negative (B) log-fold change, derived from UniProt database. 
Terms which appeared ≤ 2 times were grouped as “Other”. 
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Figure 11. Summary of biological process ontology for sequences with the highest positive (A) and negative (B) log-fold change, derived from UniProt database. 
Terms which appeared ≤ 2 times were grouped as “Other”. 
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Figure 12. Analysis of prostanoid pathway genes in relation to variable ovarian arachidonic acid (ARA) 
content. Genes were analyzed in two ways. Prostanoid gene expression (total read counts) were correlated 
(R2) with % ovarian ARA content for all n=19 samples (A, C, E, G). Alternatively, prostanoid gene expression 
was compared between LOW (red) and HIGH (green) groups only (B, D, F, H). Analysis of the gPGDS gene (F) 
could not be completed as samples did not achieve minimum read counts required for comparison. Other 
genes of the prostanoid pathway are continued in Figure 13. 
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Figure 13. Analysis of prostanoid pathway genes in relation to variable ovarian arachidonic acid (ARA) 
content, continued from Figure 12. Genes were analyzed in two ways. Prostanoid gene expression (total 
read counts) were correlated (R2) with % ovarian ARA content for all n=19 samples (A, C, E, G). 
Alternatively, prostanoid gene expression was compared between LOW (red) and HIGH (green) groups only 
(B, D, F, H).  
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for PmcPLA2, PmPGE2 and PmPTGR1 genes was observed between LOW and HIGH groups 

(P>0.05). 

5.5. Discussion 

The present study investigated the impact of variable ARA on the regulation of global ovarian and 

prostaglandin biosynthesis pathway genes. Notably, samples were derived from a homogeneous 

population of domesticated P. monodon broodstock (fourth generation) reared and conditioned 

under identical experimental conditions and diets. Despite this, broodstock demonstrated significant 

variation in percentage ovarian ARA content at a population level. In addition, the percentage of 

ovarian ARA content demonstrated significant positive correlation with PmcPLA2 and PmCOX 

gene expression. Previous studies have shown that increasing the dietary levels of ARA promoted 

broodstock maturation and egg production (see Coman et al., 2011). The results of this study 

complement those of previous works, whereby the observed variation in ovarian ARA levels may 

contribute to the variable reproductive output commonly reported in domesticated broodstock. The 

reduction in ovarian ARA content may also have the secondary effect of limiting the release of 

bound phospholipid by cPLA2 and conversion of free ARA to PGH2 by COX. This has the 

potential to further reduce reproductive potential by limiting the availability of substrate essential 

for the production of prostaglandin E2 and F2α. Combined, these results suggest that an increase of 

ARA content within broodstock maturation diets may improve reproductive performance, and that a 

systematic review of ARA requirements in P. monodon broodstock may be warranted. Dietary 

ARA supplementation should be carefully considered given the well-documented effects of ARA 

overdose in aquaculture species (Furuita et al., 2003, Glencross and Smith, 2001, Tveiten et al., 

2004).  

We identified several effects of variable ARA levels within ovarian tissues. Significant differences 

in the expression of specific prostanoid biosynthesis genes were observed between the LOW and 

HIGH percentage ovarian ARA content groups. Significant up-regulation of PmCOX, PmPGFS, 

and PmPGES1 gene expression was observed in the HIGH group, whilst PmPGES3 was 

significantly up-regulated in the LOW group. The up-regulation of PmPGFS in the HIGH group is 

noteworthy, given its role in regulating the onset of maturation and the previously demonstrated 

reduction in PmPGFS gene expression in ovaries mature (Wimuttisuk et al., 2013). Within 

P. monodon ovaries, oocytes migrate radially away from the site of proliferation and therefore it is 

possible for oogonia, primary oocytes and mature oocytes to be present simultaneously within 

mature ovaries (Tanfermin and Pudadera, 1989). Therefore, a minimum level of PGFS expression 
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may be required to ensure the continued development and proliferation of oocytes even within 

mature ovaries. The up-regulation of PmPGFS expression in the HIGH relative to the LOW group 

may therefore reflect more optimal conditions for continued oocyte development to occur as a 

function of greater ARA availability. 

We identified three PmPGES isoforms, and each exhibited variable expression profiles in response 

to ARA. For the HIGH group significant up-regulation of PmPGES1 or membrane-associated 

PGES 1 was observed, whilst the LOW group saw significant up-regulation of PmPGES3 or 

cytosolic PGES 3. Unfortunately, prostaglandin quantification via LC-MS was unsuccessful in this 

study and therefore the significance of up-regulation of membrane- or cytosolic-associated 

PmPGES on total PGE2 could not be determined. The regulation of key prostanoid synthesis genes 

further suggests variation in ARA availability may directly impact the regulation of prostaglandin 

within P. monodon ovary tissues.  

Finally, the differential expression of all ovary genes in comparison between LOW and HIGH 

ovarian ARA content was investigated using RNA-seq. A total of 757 transcripts between LOW 

and HIGH groups (>2-fold expression change) were identified, the majority of which were up-

regulated (n=675) compared with down-regulated (n=82). However, the identification of only 19 of 

these differential genes expressed could be functionally annotated (2.5% of genes identified). To 

date, high-quality genomic and functional annotation for many marine invertebrate species, 

particularly shrimp, remains scarce and this impacted on the ability to attribute potential function to 

differentially expressed genes.  

A manual annotation approach was undertaken for 40 of the most significantly expressed transcripts 

between the LOW and HIGH groups using comparative UniProt annotation and associated gene 

ontologies. Functional analysis of the transcripts significantly up-regulated in the HIGH group 

suggested an overrepresentation of genes associated with the proliferation and development of 

oocytes. Ontology analyses of molecular function and biological processes were predominately 

associated with transcriptome regulation, hydrolysis of ATP, neural development and chromosome 

segregation. Interestingly, transcripts significantly up-regulated in the LOW group were associated 

with cellular division, cellular senescence and binding of G-protein coupled receptors. Up-

regulation of transcripts associated with G-protein coupled receptors have a putative link with 

prostaglandin binding and cellular senescence, and although requiring experimental confirmation 

may indicate a level of prostaglandin modulated oocyte atresia when ovarian ARA levels are 

reduced. Cellular component ontology was similar between both LOW and HIGH groups (nucleus, 
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membrane and cytoplasm), suggesting variation in ARA primarily impacts nucleus, membrane and 

cytoplasm.  

Taken together, the results of the present study suggest that variations in the availability of dietary 

ARA may contribute to reduced reproductive performance either directly, or by limiting the 

substrate available for downstream pathways such as prostaglandin. Significant variation in the 

regulation of several prostanoid biosynthesis genes in response to ovarian ARA content was 

observed. In particular the expression of PmCOX, which converts free ARA to the prostaglandin 

intermediate PGH2 demonstrated significant correlation to percentage of ovarian ARA content. 

Further research is required to optimize ARA content within broodstock maturation diets 

particularly given the population-level variation observed here, despite broodstock being fed 

identical diets. Similarly, the continued development of detailed genomic and functional annotation 

is essential to the long-term advancement of economically important aquaculture species such as 

P. monodon. 
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Chapter 6: General Discussion 

The ideal farming model for shrimp industries involves production of disease-free, selectively-bred 

stocks, derived independently from wild seedstock. To date, the reduced reproductive performance 

of domesticated broodstock has been the primary constraint to the establishment of this model in P. 

monodon. Continued industry reliance on wild-caught seedstock is perpetuated by a distinct lack of 

knowledge of reproductive performance in domesticated broodstock. Most notably, our current 

understanding of the nutritional, biochemical and molecular mechanisms that influence maturation 

and spawning in domesticated P. monodon is lacking. If at a minimum we are to achieve 

reproductive parity between domesticated and wild-caught stocks, key relationships between 

reproduction, nutrition and gene regulation must be identified and investigated. 

The research presented in this thesis examined a number of key areas in domesticated female 

P. monodon reproductive biology. The exclusive focus on female broodstock reflects recent 

research suggesting that male quality has far less influence on fertilization, hatch rates and offspring 

viability than previously estimated (Arnold and Coman, 2012, Arnold et al., 2012, Arnold et al., 

2013). Aspects relating to male reproductive biology fall outside the scope of this thesis, which is 

not to suggest male P. monodon reproductive biology is not important. As is the case in females, a 

number of factors relating to male reproductive biology remain unresolved (Leelatanawit et al., 

2011). Still, improvements to female broodstock maturation and conditioning have greater potential 

to improve on-farm production yields. 

Throughout this thesis, a number of experiments were undertaken to examine aspects of broodstock 

performance in relation to bioactive nutritional intervention, repeat spawning and nutrition-gene 

interaction. The over-arching theme was to provide a rigorous scaffold for the development of 

improved broodstock nutritional and husbandry strategies. As a secondary goal, these works aimed 

to increase the availability of high-quality functional genomic resources in shrimp, particularly in 

relation to reproductively significant tissues such as ovary. The following discussion summarizes 

the results, limitations and opportunities related to these experiments in an attempt to facilitate the 

development and accessibility of elite domesticated-selected P. monodon lines, both within 

Australian and throughout the world.  

6.1. Nutritional Intervention Using Biofloc-Derived Bioactives 

Incorporation of microbial bioflocs within conditioning diets regimes has improved egg production, 

maturation and spawning rates in a number of Penaeid shrimp species (Emerenciano et al., 2013b, 
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Emerenciano et al., 2013a, Emerenciano et al., 2012). Despite the above improvements to 

reproduction, current use of microbial bioflocs in broodstock conditioning is largely relegated to 

broodstock grow-out only. This is primarily due to the turbidity of biofloc systems presenting a 

number of mechanical and logistical challenges within maturation facilities. Research contained 

within chapters 2 and 3 attempted to circumvent this major limitation by incorporating a dried 

biofloc ingredient within broodstock pelleted diets, allowing the reproduction-enhancing 

constituents within biofloc to be made available across all stages of the production cycle. The 

primary aim was to determine whether the reduced reproductive performance of domesticated 

broodstock could be improved via nutritional intervention, namely by incorporating the biofloc-

derived bioactive Novacq™ within pelleted diets.  

Preliminary farm-based reproductive trails (chapter 2) indicated that Novacq™ improved 

maturation, egg and nauplii production when fed to broodstock (20% inclusion, 2.4% of total diet) 

over an extended preconditioning period (11 weeks). However, such improvements could not be 

reliably substantiated in a subsequent comprehensive trial conducted under controlled experimental 

conditions. When broodstock were fed a pelleted conditioning diet containing Novacq™ (30% 

inclusion, 5.5% of total diet), a significant decrease in egg hatching was observed relative to the 

commercial control diet (chapter 3).  

Variation in reproductive performance across the two experiments likely reflects the different 

pelleted diet formulation used, as well as the increased inclusion rate of Novacq™ outlined in 

chapter 3. Decreased reproductive performance in broodstock was primarily attributed to the 

increased Novacq™ inclusion rate compromising basal formulation quality, particularly by 

reducing diet protein content. Emerenciano et al. (2013b) demonstrated that the broad nutritional 

diet fed to broodstock influences the degree to which biofloc improved reproductive performance in 

L. vannamei. Therefore, it is reasonable to hypothesize that where the diet regime is otherwise 

lacking, the effect of biofloc on reproductive performance may be negated or minimized.  

Interestingly, when Novacq™ was fed to juvenile P. monodon, the resulting growth increases were 

attributed, in part, to increased appetite (Glencross et al., 2013). A logical extension for this study is 

that reproductive performance in farm-based trials may have been improved purely as a function of 

increased appetite, and therefore accumulation of resources for spawning. Variation in broodstock 

performance seen under the different conditions described in chapters 2 and 3 may therefore simply 

reflect the quality of the diets. The pelleted diet used in farm-based experiments was a high-

performance experimental diet containing a number of high-performance ingredients such as krill 
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meal, ARASCO® and Carophyll PinkTM. Such ingredients are expensive and are not commonly 

found in high concentrations with commercial formulations, to which the diet used in chapter 3 was 

designed. If indeed Novacq™ does increase  the appetite of adult broodstock, its inclusion within 

pelleted diets may promote accumulation of nutrient from the broader diet, a plausible conclusion in 

chapter 2. Conversely, increased appetite may further accentuate nutritional inadequacies present 

within broodstock diets, such as those fed in chapter 3.  

Still, the mechanisms by which biofloc improves reproduction in Penaeid shrimp remain unknown. 

The potential role of Novacq™, and more generally bioflocs, as a stimulator of appetite (and 

therefore nutrition accumulation) in mature broodstock requires further investigation. Similarly, 

investigation of changes in bioactivity between live and dried biofloc substituents is required to 

determine suitable inclusion rates. However, unless broad improvements are made to basal diet 

formulations, particularly commercial-grade diets, determining the reproductive effect of biofloc 

and its substituents may be elusive. 

6.2. Broodstock Nutrition In Relation To Repeated Spawning 

The nutritional factors that underlie maturation and spawning in P. monodon remain poorly 

understood. Current maturation diet formulations are primarily designed to replicate the nutritional 

profile of wild broodstock ovaries. Such formulation strategies are overly simplistic, as they do not 

account for nutrient utilization and interaction, compositional variation in reproductively significant 

tissues (i.e. hepatopancreas), or the impact of repeated spawning. The aim of research described in 

chapter 4 was to identify nutritional variables with significant influence on reproductive 

performance, as well as provide a robust profile of nutrient utilization in relation to maturation and 

spawning. Using a multidisciplinary approach variation in reproductive performance and tissue 

biochemistry (ovary and hepatopancreas) were analyzed within a homogenous population across 

consecutive spawning events.  

The outcome of this study outlined a number of interesting trends in relation to current high-

performance diets, particularly in relation to fatty acid composition and broodstock utilization. 

Firstly, broad macronutrient categories such as total protein and lipid showed no significant 

correlation with reproductive parameters suggesting micronutrient composition elicits greater 

influence on performance. When investigated independently a number of fatty acids were 

significantly depleted in the hepatopancreas of second order spawners including C15:0, C17:0, 

C18:1n-9, C18:2n-6, C20:3n-6, C20:4n-6(ARA), C20:5n-3 (EPA), C22:6n-3 (DHA). Interestingly, 

significant reductions in hepatopancreas fatty acid content were not reflected in ovarian tissue, with 
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the exception of C20:4n-6 (ARA). Fatty acids C15:0, C17:0, C18:1n-9, C18:2n-6, C20:3n-6, 

C20:5n-3 (EPA), C22:6n-3 (DHA) did not appear to be limiting during the initial two spawning 

cycles, based on ovary profiles. However, given its role in nutrient storage (Marsden et al., 2007), 

reductions in specific hepatopancreas fatty acids may identify those that are likely to become 

limiting in subsequent spawning cycles.  

As noted above, both hepatopancreas and ovary ARA content significantly decreased in second 

order spawners, suggesting that both the requirement for and the utilization of ARA across repeated 

spawning is high. Chapter 4 largely suggests that current maturation diets do not contain sufficient 

quantities of ARA to sustain the requirement of spawning P. monodon and therefore limiting ARA 

may be contributing to decreased reproductive performance in domesticated broodstock. 

Furthermore, experiments outlined in chapter 5 demonstrated that ovarian ARA content varied 

significantly at an individual level, even within a seemingly homogenous population of broodstock. 

This has further implications on the regulation of reproductively significant hormones such as 

prostaglandin (discussed in the next section). These works further support research by Coman et al. 

(2011), which suggest an increase in the availability of ARA within P. monodon broodstock diets is 

both beneficial and warranted. However, any increases should be done with the careful 

consideration of the effects of ARA overdose (Furuita et al., 2003, Glencross and Smith, 2001, 

Tveiten et al., 2004). To date, the requirement for ARA has been determined for juvenile P. 

monodon only (Glencross and Smith, 2001). In light of the results of Chapter 4, a systematic review 

of ARA requirement in adult broodstock is required to optimize dietary inclusion levels.  

A significant limitation to the experimental design of chapter 4 was the inability to measure 

reproductive performance and biochemical attributes from the same animals. The destructive 

sample methods required for biochemical analyses limit the capacity to obtain reliable repeat spawn 

data. In addition, following spawning ovarian tissue is rapidly regressed and therefore not 

representative of the pre-spawning condition. Future research efforts should aim to utilize non-

destructive methods of biochemical analysis. Technologies such as near-infrared spectroscopy 

(NIRS) have the potential for the reliable and non-destructive quantification of broodstock tissue 

composition across multiple spawning events for a single individual. Such technology would 

significantly increase our power to detect and make causative associations between nutrition and 

variable reproductive performance. Therefore, optimization and validation of such technologies for 

P. monodon represents a significant research priority. 
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6.3. Functional Genomic Resources And Nutrient-Gene Interactions In P. 

Monodon 

Currently, functional links between broodstock nutrition and endocrine regulation (i.e. 

prostaglandins) are poorly characterized for P. monodon. In a bid to improve our understanding of 

this significant area of broodstock biology, I investigated key interactions between nutrition and 

gene regulation (Chapter 5). Specifically, the chapter aimed to investigate the effect of variable 

ovarian ARA content on the regulation of both prostaglandin biosynthesis genes and global 

expression. As a secondary aim, chapter 5 sought to increase the availability of comprehensive 

functional genomic tools in P. monodon via the construction of a high quality ovarian transcriptome 

and subsequent RNA-seq analysis.  

The results of chapter 5 outlined a number of links between ARA content and prostanoid synthesis 

gene regulation. Significant positive correlations were observed between ovarian ARA content and 

expression levels of PmcPLA2 and PmCOX, suggesting that reduced ARA may limit the synthesis 

PGE2 and PGF2α by reducing PGH2 availability. This notion was complemented by the improved 

reproductive performance observed in broodstock fed high levels of dietary ARA (Coman et al., 

2011), although other biochemical or gene expression effects were not investigated in that study. 

Combined, these results suggest that dietary and ovarian ARA levels have a direct effect on 

production of hormones linked to maturation and egg viability (two key areas for improvement in 

domesticated P. monodon). When differential expression was investigated between LOW and 

HIGH ARA content groups, significant up-regulation of PmPGFS occurred in individuals with 

greater ovarian ARA content, suggesting a greater capacity for continued development of oocytes. 

The regulation of the three PmPGES isoforms was not consistent, and requires further investigation, 

particularly with respects to their impact on total ovary PGE2 content. Unfortunately, attempts to 

quantify ovarian prostaglandin content using LC-MS were unsuccessful, but represent an area that 

would provide valuable functional confirmation of the results seen in this study. Alternative 

detection methods such as ELISA should be pursued in future research, and the investigation of 

prostaglandin synthesis and regulation remains a significant research priority for P. monodon. 

Notably, there is preliminary evidence to suggest that ovarian prostaglandin concentration may vary 

in relation to broodstock origin, i.e. wild vs. domesticated (Wimuttisuk et al., 2013). Given the 

results of chapters 4 and 5, the limited availability of ARA in current maturation diets may underlie 

the some of the reproductive performance differences between wild and domesticated broodstock. 
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Future experimental works should therefore strive to assess prostaglandin regulation in both wild 

and domesticated broodstock. 

Assessment of global gene expression in relation to ovarian ARA content was complicated by the 

limited functional annotation available for marine invertebrate species. DGE analyses using RNA-

seq identified 757 unique genes with greater than 2-fold log expression difference. However, whilst 

754 putative P. monodon could be assigned homologs, the significant majority of these homologs 

were ‘predicted’ genes with no further functional annotation. As a result, traditional methods of 

assigning gene ontology such as Blast2GO could not be utilised, and only 19 of the 754 genes could 

be assigned ontology using manual methods. With such limited power to identify and assign 

functionally to gene sets, attributing higher-level function to genomic studies is difficult.  

The transcriptome developed as part of chapter 5 represents significant progress towards the 

development of comprehensive genomic resources in P. monodon, and has putatively identified a 

list of genes involved in ARA regulation. Further development of P. monodon specific functional 

resources is needed. Several of the differentially expressed genes identified in this study require 

experimental confirmation using qPCR. Some key targets from within the current data set of 

differentially expressed genes are listed in Table 16. Future efforts should be made to expand 

UniProt annotation beyond the current 40 most differentially expressed genes, in a bid to identify a 

greater diversity of genes with putative links to reproduction. The assemblies presented in chapter 5 

were derived from stage IV ovary tissues, and future functional characterisation should aim to 

develop transcriptome assemblies across multiple ovarian or life history stages. Development of 

functional gene analysis technologies to specifically down-regulate or investigate differentially 

expressed genes identified in this study, such as CRISPR, RNAi, in situ hybridization are needed. 

These may provide further evidence of their involvement in ovarian development, the link with 

nutritional requirements, and the functional mechanisms underlying reproductive performance in  

Table 16. Biological process ontology of genes with predicted putative link to reproductive processes. 
Genes were extracted from UniProt annotations of the 40 most differentially expressed genes in 
P. monodon ovarian tissue between LOW and HIGH groups.  

Log FC Significance Pmon Contig # GO ID GO Name Aspect  

5.429196 <0.001 TR12891-c0_g1_i1 GO:0008406 gonad development Biological Process 
-3.01176 0.001 TR8190-c0_g3_i1 GO:0000281 mitotic cytokinesis Biological Process 
-3.01176 0.001 TR8190-c0_g3_i1 GO:0048477 oogenesis Biological Process 
-3.01176 0.001 TR8190-c0_g3_i1 GO:0051297 centrosome organization Biological Process 
-3.01176 0.001 TR8190-c0_g3_i1 GO:0051301 cell division Biological Process 
-3.01176 0.001 TR8190-c0_g3_i1 GO:0051321 meiotic cell cycle Biological Process 
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Penaeid shrimp. A major challenge may lie in the fact that the functional regulatory mechanisms 

underlying reproductive production traits in shrimp may be highly specialised, and require 

dedicated species-specific studies. 

6.4. Conclusion  

In this research project, a range of approaches were undertaken to determine factors underlying the 

reduced reproductive performance of domesticate P. monodon broodstock. Studies aimed at 

improving reproductive performance using microbial bioactives highlight the need for supplements 

to be fed within the context of a highly optimized broodstock diet. Notably, current high-

performance maturation diets do not appear to be optimized for repeated maturation and spawning, 

as a number of potentially limiting fatty acids were identified. In particular, the low dietary 

availability of ARA may be contributing to the reduced maturation, egg production and hatching 

rates of domesticated broodstock either directly or through the disruption on the downstream 

prostanoid synthesis pathway. A number of technical constraints were identified in relation to RNA-

seq analysis, and therefore ongoing research of nutrient-gene interactions in domesticated 

broodstock is required. Similarly, the continued development and optimization of broodstock 

nutrition and husbandry practices are essential to improve reproductive outcomes in domesticated 

P. monodon.  
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Appendices 

 

Supplementary Table 1. tblastx analysis of known prostaglandin-associated genes against the final assembly 

Gene Contig # 
Contig Size 

(bp) 
Matched 
Accession 

Reference Species 
Sequence Identity 

(%)  
E-value 

cPLA2 TR16503-c0_g1_i1 1118 JN003878 Penaeus monodon 99.46 0 
COX TR25076-c0_g1_i1 516 KF501342 Penaeus monodon 99.42 3.21E-116 

gPGDS TR18226-c0_g1_i1 638 JN003880 Penaeus monodon 100 1.60E-104 
PGFS TR29149-c0_g1_i1 1407 JN003884 Penaeus monodon 72.01 2.99E-166 

PGES1 TR17519-c0_g1_i1 588 JN003882 Penaeus monodon 97.33 1.50E-101 
PGES2 TR20851-c0_g1_i1 1823 JN003883 Penaeus monodon 99.79 0 
PGES3 TR28136-c0_g1_i1 1003 JN003881 Penaeus monodon 99.56 0 
PTGR1 TR2673-c0_g1_i1 1771 JF834156 Penaeus monodon 98.12 0 
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Supplementary Table 2. FastQC summary statistics for LOW, HIGH and MEDIAN samples following 
trimming and read correction of Illumina 2500, 100 base pair, paired-end read sequencing. 

Sample 
Rep # 

Sequencing 
Group 

Total 
Sequences 

Flagged as Poor 
Quality 

Sequence 
Length 

%GC 
Content 

Used in de 
novo Assembly 

1 LOW 11517375 0 50-100 48 - 

2 LOW 10556680 0 50-100 47 - 

3 LOW 12030854 0 50-100 46 Yes 

4 LOW 10907147 0 50-100 47 - 

10 MEDIAN 10691389 0 50-100 46 Yes 

16 HIGH 10744830 0 50-100 46 - 

17 HIGH 10190109 0 50-100 46 - 

18 HIGH 10427726 0 50-100 47 - 

19 HIGH 11226801 0 50-100 46 Yes 
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Supplementary Table 3. BUSCO and Transrate statistics for both preliminary (prelim.) and final 
Penaeus monodon ovarian transcriptome assemblies. 

Parameter Prelim. Assembly Final Assembly 

BUSCO  
 

Complete Single-Copy BUSCOs (%) 91 90 

Complete Duplicated BUSCOs (%) 28 28 

Fragmented BUSCOs (%) 5.2 5.1 

Missing BUSCOs 3.6 4 

   
Transrate   

contigs 44481 40171 

smallest contig 224 224 

largest contig 14125 14125 

bases 47521243 43502525 

mean contig length 1068 1083 

contigs <200 bases 0 0 

contigs > 1000 bases 13823 13028 

contigs >10,000 bases 54 37 

contigs with an open reading frame 14832 13955 

mean % of contig covered by open reading frame 59.9 59.5 

n90 390 405 

n70 1071 1083 

n50 2014 1968 

n30 3206 3101 

n10 5601 5423 

GC content (%) 42.6 42.5 

GC skew -0.04 -0.05 

AT skew -0.03 -0.03 

CpG ratio 1.5 1.5 

bases that are N 0 0 

linguistic complexity 0.18 0.18 

read pairs provided 34323238 34322881 

read pairs mapping  31277543 32145288 

good mappings 27366314 30246112 

bad mappings 3911229 1899176 

potential bridges 11123 8989 

bases uncovered 4742307 1815180 

contigs containing at least one uncovered base 17567 13007 

contigs with mean per-base read coverage of < 1 3085 2125 

contigs with mean per-base read coverage of < 10 3402 32206 

contigs with ≥ 50% estimated chance of being segmented 1790 1481 

assembly score 0.39 0.61 
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Supplementary Figure 1. Representation of the on-farm spawning facilities used in chapter 2. Both 
the primary vessel and nauplii boot are denoted by arrows 
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Supplementary Figure 2. Female broodstock weight in response to grow-out diet treatment. Female 
weight was sampled on a monthly basis, between three and seven months of age (i.e. the conclusion 
of the grow-out period). During the grow-out period female broodstock were reared on either a 
control diet (commercial pellet; blue) or a pelleted diet containing 10% microbial biomass (MB; 
green). 
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Supplementary Figure 3. Chromatograph showing detection peaks for all prostaglandin standards within the mixed standard. The single transition product 
of the deuterated prostaglandin E2 (PGE2-d4) is represented in black (355.0>275.0); the two transition products of prostaglandin E2 (PGE2,) represented in 
pink (351.0 >271.0) and blue (351>189.0) respectively; and the two transition products of prostaglandin F2α represented in red (353.0>309.0) and green 
(353.0>193.0) respectively. 
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Supplementary Figure 4. Chromatograph showing detection peaks for all prostaglandin present within 0.5g of extracted ovary tissue. The single transition 
product of the deuterated prostaglandin E2 (PGE2-d4) is represented in black (355.0>275.0); the two transition products of prostaglandin E2 (PGE2,) 
represented in pink (351.0 >271.0) and blue (351>189.0) respectively; and the two transition products of prostaglandin F2α represented in red 
(353.0>309.0) and green (353.0>193.0) respectively. 
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9:PGF 2A 353.00>193.00(-) CE: 14.0
9:PGF 2A 353.00>309.00(-) CE: 14.0
5:PGE2 351.00>189.00(-) CE: 10.0
5:PGE2 351.00>271.00(-) CE: 10.0
1:PGE2-d4 355.00>275.00(-) CE: 10.0


