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Random walks in nonuniform environments with local dynamic interactions
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We consider a class of lattice random walk models in which the random walker is initially confined to a finite
connected set of allowed sites but has the opportunity to enlarge this set by colliding with its boundaries, each
such collision having a given probability of breaking through. The model is motivated by an analogy to cell
motility in tissue, where motile cells have the ability to remodel extracellular matrix, but is presented here as a
generic model for stochastic erosion. For the one-dimensional case, we report some exact analytic results, some
mean-field type analytic approximate results and simulations. We compute exactly the mean and variance of the
time taken to enlarge the interval from a single site to a given size. The problem of determining the statistics of
the interval length and the walker’s position at a given time is more difficult and we report several interesting
observations from simulations. Our simulations include the case in which the initial interval length is random
and the case in which the initial state of the lattice is a random mixture of allowed and forbidden sites, with
the walker placed at random on an allowed site. To illustrate the extension of these ideas to higher-dimensional
systems, we consider the erosion of the simple cubic lattice commencing from a single site and report simulations
of measures of cluster size and shape and the mean-square displacement of the walker.
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I. INTRODUCTION

The study of random walks can be traced back to a
letter to Nature in 1905 by Karl Pearson [1]. Since then,
many variations of the problem have been considered, both
with a variety of applications in mind and also for their
mathematical interest [2–5]. Although random walk models
have found applications in the physical sciences in such
disparate contexts as polymer physics [6], quantum computing
[7], and xerography [8], Pearson’s motivating example was
biological (mosquito dispersal) [9]. Biology continues to
provide a rich source of opportunities for random walk
modeling, from describing the migratory and settling behavior
of invertebrates [10] to probing the migration of individual
cells [11]. The variant of the random walk model discussed
in this paper, involving walks in restricted domains, was
inspired by biology. In tissue, cell motility is impeded by
a support structure called the extracellular matrix (ECM)
[12]. Some cells are able to produce enzymes called matrix
metalloproteinases, which are used to break down the ECM
and allow greater cellular movement [13–15]. Interpreting a
motile cell as a lattice-based random walker and regions of
intact matrix as blocked sites produces the simple generic
random walk problem that we pose below and describe as the
erosion model. A realistic model of the cell-ECM interaction
would necessarily be somewhat more complex, but our simple
erosion model will be seen to have some interesting properties.

In the erosion model, we assign a state to each lattice site. A
site is either allowed or blocked. At each time step, the walker
attempts one move, either left or right with equal probability.
If the move is onto an allowed site, then it is always successful.
However, if the step is onto a blocked site, the walker must
change the state of the site from blocked to allowed if it is to
move there. The walker is successful in unblocking the site
with probability ps (the snipping probability). The state of the

*barrydh@unimelb.edu.au

site is then permanently changed to allowed. If the walker is
unsuccessful in clearing the target site, then the attempt to step
onto the target site is unsuccessful. The walker remains in its
original position and the site remains blocked. An example of
a walker attempting to move right is illustrated in Fig. 1.

The erosion model can be implemented on any lattice,
but except for Sec. V our discussion here is restricted to
the one-dimensional case (the linear chain). The mean-square
displacement for an unbiased one-dimensional random walk
in an unbounded environment is〈

R2
n

〉 = 2Dn, (1)

where D is the diffusivity [3]. For the classical Pólya random
walk (nearest neighbor stepping only, with the two possible
steps each having probability 1/2), we have 2D = 1, while if
the walker has a probability pm/2 of stepping left, a probability
pm/2 of stepping right, and a probability 1 − pm of pausing at
each time step, we have 2D = pm. One question we investigate
here is whether the result (1) also holds for erosion models,
with a ps-dependent diffusivity. A second question of interest
is the growth of the interval length (that is, the number of sites
in the cluster of allowed sites). We seek information about
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FIG. 1. The site occupied by the walker is shown in black and the
star denotes a blocked site. A walker at position i attempts to move
right onto the blocked site i + 1. It is successful with the probability
ps, in which case the walker makes the step, and i + 1 becomes an
allowed site. With probability 1 − ps the walker fails to clear this site
i + 1, and the move is aborted, leaving the walker at site i.
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the random variable Ln, which we define as the length of the
interval after n steps, or the random variable Tl , which we
define as the time taken for the interval size to be l for the first
time.

We always commence the process by placing a walker on
an allowed site, but we consider several initial conditions,
starting with the simplest, in which the walker starts at an
isolated allowed site, with all other sites of the lattice blocked
(Sec. II). We show how the mean and variance of the random
variable Tl can be calculated exactly and demonstrate that
in this system fluctuations are never negligible. The standard
deviation is asymptotically proportional to the mean as l →
∞. Although we are unable to determine exact formulas for the
mean length 〈Ln〉 of the allowed interval and the mean-square
walker displacement 〈R2

n〉 at a given time, simulation reveals
the asymptotic behavior of both of these, and we develop a
mean-field type approximation for 〈Ln〉.

In Secs. III and IV we start the process at an occupied site in
a realization of a random lattice of allowed and blocked sites.
In both sections, the initial interval size (which is random) is
determined by declaring sites at random to be allowed with
probability p and blocked with probability 1 − p, so that we
have a realization of the Bernoulli site percolation process
in one dimension [4,16,17]. (Conventionally, in percolation
theory one would describe as “occupied” what we call
“allowed” sites, but that terminology would create ambiguities
in the discussion.) Beyond one dimension, statistical attributes
of interest in percolation theory as a function of p, such as
the mean cluster size, the distribution of cluster sizes, and
the probability that a given site lies on an infinite cluster, are
extremely hard to calculate, though they have been extensively
studied [4]. In contrast in one dimension, all of the calculations
are straightforward and short, and we now discuss briefly
several useful results.

The probability that a randomly chosen site is part of a
cluster of precisely m allowed sites, with m > 0, is given by
mpm(1 − p)2 [4]. This follows since we require m contiguous
sites being allowed (probability pm), a blocked site on either
end [probability (1 − p)2], and have m possible places within
the cluster at which the chosen site may be located. In our
model, the walker always starts on a cluster at the origin, so
the origin is always an allowed site. Computing the conditional
probability that the origin is on a cluster of size m, given that
it is on a cluster of size at least one, we have our required
distribution of the initial cluster size Cp:

Pr{Cp = m} = mpm−1(1 − p)2 (m � 1). (2)

Within this cluster, each site has probability 1/m of being the
starting site. The mean initial cluster size is

〈Cp〉 =
∞∑

m=1

m × mpm−1(1 − p)2 = 1 + p

1 − p
. (3)

Here and in a number of results derived below, finite and
infinite series are evaluated directly by recognizing them as
differentiated geometric progressions and we do this without
further comment.

Although the same initial size distribution (2) for the cluster
on which the walk commences is used in Secs. III and IV,
we treat the remainder of the lattice differently in these two

sections. In Sec. III all sites that are not part of the cluster of
allowed sites on which the walk commences are set as blocked,
so that the random walker has to erode never-ending blocked
regions and the length of the allowed interval can only ever
increase by one on any successful erosion step. We are able
to adapt the methods of Sec. II to compute the mean time to
grow the allowed cluster to a given length, but again we are
only able to compute 〈R2

n〉 by simulation.
When ps is set to zero, the model of Sec. III reduces to a

random walk on a restricted domain (the finite interval between
the two nearest blocked sites on either side of the starting
site) with reflecting boundary conditions [2]. Previous work
on this problem has focused on the probability distribution of
the position of the walker and first passage times [18,19]. In
our case we consider a slightly different problem, where the
size of the region is chosen randomly in each realization and
depends on the parameter p. We also seek the mean-square
displacement, rather than the probability distribution and first
passage time to a blocked site. Some exact and empirical
results for the case ps = 0 are given in the Appendix.

In Sec. IV we consider the most challenging one-
dimensional problem, in which the walker starts at a random
allowed site in a random lattice with allowed site density p. In
this case, as well as the cluster of allowed sites on which
the walker starts, there are additional clusters of allowed
sites separated from it by intervals of blocked sites. Some
successful erosion steps will remove a single blocked site that
separates two clusters of allowed sites and so join the clusters
together. Consequently, the length of the allowed cluster on
which the walker moves may have a large increase on a single
time step.

The basic erosion idea can be implanted on an arbitrary
lattice. We have emphasized the one-dimensional case, where
a number of exact or approximate analytic calculation can be
performed and compared against simulations, but simulations
are easily performed on other standard lattices. As an illus-
tration, in Sec. V we have considered the three-dimensional
simple cubic lattice, confining our attention to the case where
the walker commences from a single allowed site.

Techniques used in the paper include exact probability
arguments, approximate or heuristic probability arguments,
and simulations. Random variables are always capitalized and
averages are denoted by angle brackets. Simulations reported
were performed using MATLAB or MATHEMATICA, except for
the diffusivity estimates in Sec. IV, where C++ was used
(with the default random number generator replaced by the
Mersenne Twister [20]).

While there has been a considerable body of work on
random walk or diffusion processes in static random environ-
ments [21], there appears to have been little previous work on
random walk problems for which one or more walkers modify
the geometry of their environment as they move. In 1983,
Herrmann [22] posed and simulated the problem of the “moles’
labyrinth”, which in our terminology would correspond to
seeding an infinite lattice at random with a given density of
simultaneous random walkers. All sites not occupied by a
walker at the seeding time are deemed disallowed. The walkers
are given probability 1 of converting any disallowed site onto
which they step to allowed status, and Herrmann’s interest
was in the phase transition from disconnected finite clusters of
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allowed sites to a state in which an infinite connected cluster
appears.

II. ONE-DIMENSIONAL EROSION FROM A SINGLE SITE

A. Time to grow a cluster to a given size

We consider the special case of an erosion problem in which
the walker starts on a single allowed site, where all other sites of
the one-dimensional lattice are initially deemed blocked. The
walker undertakes a simple, unbiased random walk, where an
attempt to step onto a blocked site succeeds with probability
ps (thereby changing that site’s status to allowed), while if
the attempt fails, the walker remains at its previous location
at the edge of the cluster of allowed sites (Fig. 1). Suppose that
the size of the cluster has just increased from l − 1 to l. Let Ik

denote the indicator random variable for the event that it takes
precisely k attempts to visit either or both of the blocked sites
at 0 and l + 1 to convert one of these sites to an allowed site
(and so increase the size of the cluster of allowed sites from l

to l + 1). Then

〈Ik〉 = Pr(Ik = 1) = ps(1 − ps)
k−1.

Each unsuccessful attempt to step onto a blocked site leaves the
walker at the allowed end-point site from which the attempt
was made. Hence, the times between attempts are indepen-
dently, identically distributed random variables. We denote
their mean by τl and their variance by σ 2

l . Therefore, the time
Tl,k taken for k attempts has mean 〈Tl,k〉 = kτl and variance
Var(Tl,k) = kσ 2

l . The random time taken to increase the length
of the cluster from l to l + 1 is

T +
l =

∞∑
k=1

IkTk,l .

Although this is a formal infinite series, in each realization
of the random process, only a single term is nonzero. The
calculation of the mean time taken to increase the cluster size
is straightforward:

〈T +
l 〉 =

〈 ∞∑
k=1

IkTk,l

〉
=

∞∑
k=1

ps(1 − ps)
k−1kτl = τl

ps
. (4)

To compute the variance of T +
l we note first that since 〈IkIm〉 =

0 if k �= m and 〈I 2
k 〉 = 〈Ik〉, we have

〈(T +
l )2〉 =

〈( ∞∑
k=1

IkTk,l

) ( ∞∑
m=1

ImTm,l

)〉

=
∞∑

k=1

〈Ik〉〈(Tk,l)
2〉

=
∞∑

k=1

ps(1 − ps)
k−1[Var(Tl,k) + 〈Tl,k〉2]

=
∞∑

k=1

ps(1 − ps)
k−1

[
kσ 2

l + k2τ 2
l

]

= σ 2
l

ps
+ (2 − ps)τ 2

l

p2
s

. (5)

Hence, we find that

Var(T +
l ) = 〈(T +

l )2〉 − 〈T +
l 〉2 = 1

p2
s

[
psσ

2
l + (1 − ps)τ

2
l

]
.

(6)

It is not difficult to calculate τl and σ 2
l using simple difference

equation arguments (cf. [3], pp. 114–115). For example, τl =
t(1) = t(l), where t(k) = k(l + 1 − k) is the unique solution
of the difference equation t(k) = 1 + [t(k − 1) + t(k + 1)]/2
with boundary conditions t(0) = t(l + 1) = 0. We have

τl = l and σ 2
l = 1

3 l(l2 − 1). (7)

Consequently,

〈T +
l 〉 = l

ps
and Var(T +

l ) = 1

3p2
s

[psl
3 + 3(1 − ps)l

2 − psl].

If we now define Tl to be the time taken for a cluster of size 1
to grow to a cluster of size l we have

〈Tl〉 =
l−1∑
k=1

〈T +
k 〉 and Var(Tl) =

l−1∑
k=1

Var(T +
k ).

Using the identities
l−1∑
k=1

k = l(l − 1)

2
,

l−1∑
k=1

k2 = l(l − 1)(2l − 1)

6
,

l−1∑
k=1

k3 = l2(l − 1)2

4
,

we are able to conclude that

〈Tl〉 = l(l − 1)

2ps
(8)

and

Var(Tl) = l(l − 1)

12p2
s

[psl
2 + (4 − 5ps)l − 2]. (9)

As anticipated, the time to grow to a given interval size l goes
to infinity as the snipping probability ps → 0.

In the random walk literature, the number of distinct sites
visited by a walk (sometimes called the range of the walk) has
been a problem of considerable interest [3]. In one dimension,
the length of the interval that has been visited is known as the
span of the walk. In the special case ps = 1, our results give
us the mean and variance of the time taken to reach a given
span. The determination of the probability distribution for the
time Tl is more difficult. Even for the special case ps = 1 this
appears to be an unsolved problem. We have not pursued this
here.

B. Cluster size and mean-square displacement at a given time

Instead of considering the time Tl to a given allowed interval
size l, one might like to know the allowed interval size Ln

after n steps. Since we have 2ps〈Tl〉 ∼ l2, we anticipate that
we should have, at least as n → ∞,

〈Ln〉2 ∼ C(ps)n. (10)

Since Eqs. (8) and (9) show that fluctuations in Tl are
comparable to the mean for all l, it is a little naive to hope
that C(ps) = ps. Simulations of sufficient accuracy to clarify
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FIG. 2. The erosion model for a walker with all sites other than
the starting site initially blocked for four values of the snipping
probability ps. Results shown are averaged over 104 simulations of
103 step walks. The case ps = 1 corresponds to the ordinary random
walk. (a) Mean length of the interval. For ps = 1 our simulations
are indistinguishable at this level of resolution from a straight line of
slope 8/π (the asymptotic form for the square of the mean span of an
ordinary random walk). (b) Mean-square displacement. For ps = 1
we recover the elementary exact result 〈R2

n〉 = n.

this point are easily performed. In Fig. 2(a) we show the the
time evolution of the mean allowed interval length 〈Ln〉. For
each value of ps, we generated 104 walks of 103 steps with
MATHEMATICA. The excellence of the conjectured asymptotic
form (10) is clear. Moreover, for ps = 1, the simulation data
are indistinguishable from the relation 〈Ln〉2 = 8n/π , which
is the (large-n asymptotic) exact result for the span of a random
walk [5] and equivalently, the asymptotic form of 〈Sn〉2, where
Sn is the number of distinct sites visited [3].

In Fig. 2(b) we show the time evolution of the mean-square
displacement 〈R2

n〉. It appears that as n → ∞〈
R2

n

〉 ∼ 2D(ps)n; (11)

that is, the walker has a well-defined diffusion constant.
From the simulation we observe that 2D(1) = 1, correctly
recovering the familiar result for an unconstrained simple
random walk.

In Fig. 3 we show estimates of the coefficients C(ps)
and 2D(ps) computed from the final length and the final

8/π

1

10

C   (    )p
s

D   (    )2 p
s

p
s

FIG. 3. (Color online) The erosion model for a walker with
all sites other than the starting site initially blocked. For ps =
0.01,0.02, . . . ,1 we show estimates of the coefficients C(ps) and
2D(ps). The estimates are obtained by assuming that Eqs. (10) and
(11) are equalities at the largest value of n used. The results for 103

step walks, shown as blue (gray) curves, and for 104 step walks,
shown as black curves, are virtually indistinguishable. In each case
104 individual walks were averaged. The gray horizontal lines indicate
the exact value for ps = 1. The approximation C(ps) ≈ 8ps/π is
shown as a red (gray) line.

mean-square displacement in 103 step and 104 step walks (104

realizations for each value of ps, increments in ps of 0.01).
As the estimates based on walks of two different durations
coincide closely, it appears unnecessary to consider longer
walks. The coefficient C(ps) is approximated roughly by
C(ps) ≈ 8ps/π and fits quite well, as shown in Fig. 3.

We have used the MATHEMATICA function NonlinearMod-
elFit to fit the simulation data for 2D(ps) from 104 realizations
of 104 step walks with a quadratic polynomial that respects the
requirements that D(0) = 0 and D(1). We find that

2D(ps) ≈ aps + (1 − a)p2
s , a ≈ 0.068 824 (12)

(with R2 goodness of fit value 0.999 584). We have not plotted
this empirical fit in Fig. 3, because it matches the data too
closely to be distinguished from it. Despite the quality of the
fit, it is important not to overinterpret global phenomenological
relationships. One can obtain slightly better global fits by
choosing a cubic constrained to take the correct values at
ps = 0 and 1, or less physically natural functional forms as
ps/(ps − a ln ps) or a exp(bps + c ln ps), where a, b, and c are
best-fit coefficients.

The success of the simple approximation (12) suggests that
we try to improve on the rough approximation C(ps) ≈ 8ps/π

by trying the most general quadratics and cubics conforming
to the exact values C(0) = 0 and C(1) = 8/π . MATHEMATICA
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gives as the best fit of this kind (with corresponding R2

goodness of fit values)

C(ps) ≈ 1.995 65ps + 0.550 825p2
s (R2 = 0.999 73); (13)

C(ps) ≈ 2.019 61ps + 0.478 944p2
s + 0.047 920 8p3

s

(R2 = 0.999 74). (14)

These empirical fits to the data raise the possibility that
C(ps) ∼ 2ps as ps → 0. We demonstrate this analytically
below, but we do not at present have an argument to predict
the coefficient of p2

s in the small-ps expansion of C(ps).

C. Mean-field theory of cluster size

Since the cluster size grows by at most one per time step, the
evolution of the cluster size is governed by the exact probability
relation

Pr{Ln+1 = l} = Pr{Ln = l} Pr{Ln+1 = l | Ln = l}
+ Pr{Ln = l − 1} Pr{Ln+1 = l | Ln = l − 1}.

(15)

In the Appendix we discuss the time evolution of the position
of a walker in a fixed interval (corresponding to a starting
interval of nonzero length, with ps = 0) and note that there
is exponentially fast relaxation to a uniform distribution.
Hence, especially for ps 	 1, it is natural to take as a first
approximation that at any instant in the present problem, the
walker’s position is uniformly distributed, and thus for l � 2,

Pr{Ln+1 = l | Ln = l − 1} ≈ 2

l − 1
× 1

2
× ps. (16)

The first factor on the right is an approximation for the prob-
ability that the walker is at the cluster edge. The other factors
account exactly for the probability that the walker attempts to
step beyond the cluster and that this attempt succeeds, growng
the cluster length by 1. Using this approximation, Eq. (15)
becomes (for l � 2)

Pr{Ln+1 = l} ≈
(

1 − ps

l

)
Pr{Ln = l}

+ ps

l − 1
Pr{Ln = l − 1}. (17)

If we multiply Eq. (17) by l − 1 and sum from l = 2 to ∞, we
obtain without further approximation

〈Ln+1〉 ≈ 〈Ln〉 + ps
〈
L−1

n

〉
. (18)

We know from Jensen’s inequality that 〈Ln〉〈L−1
n 〉 � 1, with

equality only when Ln has a unique value. Consequently, if we
make the crude approximation that 〈L−1

n 〉 ≈ 〈Ln〉−1, and also
the asymptotic approximation 〈Ln+1〉 − 〈Ln〉 ≈ (d/dn)〈Ln〉,
we arrive at

〈Ln〉 d

dn
〈Ln〉 ≈ ps.

From this we conclude that as n → ∞,

〈Ln〉2 ≈ 2psn, (19)

in excellent agreement for small ps with our observations
(13) and (14). Recalling Jensen’s inequality, we would expect

Eq. (19), which asserts that C(ps) = 2, to underestimate the
growth of 〈Ln〉. Therefore, a safer prediction would be that
C(ps) � 2, again consistent with our numerical evidence,
which gave C(ps) > 2 except perhaps when ps 	 1.

As we now show, one may calculate the large-n asymptotic
form of 〈Ln〉 implied by the approximate evolution equation
(17) exactly using generating functions. It will be convenient
to write

ϕn(l) = 1

l
Pr{Ln = l}, (20)

so that
∞∑

n=0

〈Ln〉ξn =
∞∑

n=0

∞∑
l=1

l2ϕn(l)ξn

=
∞∑

n=0

∞∑
l=1

l(l − 1)ϕn(l)ξn +
∞∑

n=0

∞∑
l=1

Pr{Ln = l}ξn

= ∂2

∂z2
�(z,ξ )

∣∣∣∣
z=1

+ 1

1 − ξ
, (21)

where

�(z,ξ ) =
∞∑

n=0

∞∑
l=1

ϕn(l)ξnzl. (22)

Using the constraints that ϕn(l) = 0 for l > n + 1 and that
0 � ϕn(l) < 1/l, it is easy to show that for 0 < ξ < 1 and
0 < z < ξ−1 we have

1 � �(z,ξ ) � ξ−1(1 − ξ )−1 ln[(1 − ξz)−1].

Consequently �(z,ξ ) is singularity-free at z = 1 and in the
neighborhood of z = 1.

Now Eq. (17) can be rewritten as

lϕn+1(l) = (l − ps)ϕn(l) + psϕn(l − 1), (23)

where we have suppressed explicit reference to this as an
approximate evolution equation [the only approximation in
use is (16)]. If we multiply by ξn+1, sum from n = 0 to ∞,
and recall that ϕ0(l) = δl,1, we obtain

∞∑
n=0

lϕn(l)ξn − δl,1 = ξ

∞∑
n=0

lϕn(l)ξn − ξps

∞∑
n=0

ϕn(l)ξn

+ ξps

∞∑
n=0

ϕn(l − 1)ξn.

Next we multiply by zl−1 and sum over l, finding that

∂

∂z
�(z,ξ ) + psξ (z−1 − 1)

1 − ξ
�(z,ξ ) = 1

1 − ξ
. (24)

Differentiating this equation with respect to z, setting z = 1
and using Eq. (21), we find a simple relation between the
generating function for 〈Ln〉 and �(1,ξ ):

∞∑
n=0

〈Ln〉ξn = 1

1 − ξ
{1 + psξ�(1,ξ )}. (25)

The first-order ordinary differential equation (24) can be solved
with the appropriate initial condition �(0,ξ ) = 0 using an
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integrating factor, giving, after a little algebra,

�(1,ξ ) = 1

1 − ξ

∫ 1

0
exp[λQ(t)]dt, (26)

where λ = psξ/(1 − ξ ) and Q(t) = 1 − t + ln(t). To find the
large-n behavior of 〈Ln〉 we need only to extract the dominant
asymptotic behavior of �(1,ξ ) as ξ → 1−, corresponding to
λ → ∞. Noting that Q(t) attains its maximum on the interval
at t = 1, in the neighborhood of which we have Q(t) =
2−1(t − 1)2 + · · ·, the usual method of Laplace argument [23]
gives the rigorous conclusion that

�(1,ξ ) ∼ π1/2

(1 − ξ )(2λ)1/2
=

√
π

(2ps)1/2(1 − ξ )1/2
. (27)

Hence, as ξ → 1− we find that
∞∑

n=0

〈Ln〉ξn ∼ (πps)1/2

21/2(1 − ξ )3/2
. (28)

Since 〈Ln〉 is monotonic in n, we may now conclude from a
Tauberian theorem [24] that as n → ∞

〈Ln〉 ∼ (πps)1/2

21/2
× n1/2

�(3/2)
= (2psn)1/2. (29)

Thus, our rough argument leading to the approximation (19)
actually identified correctly the dominant behavior of 〈Ln〉
implied by making the sole approximation (16): 〈Ln〉2 ∼ 2psn.
An asymptotic expansion for 〈Ln〉 can be developed by
introducing the new integration variable τ = −Q(t) in Eq. (26)
using Watson’s lemma [23] to produce an expansion of �(1,ξ )
in powers of (1 − ξ )1/2 and then using Darboux’s theorem [23]
to extract the large-n behavior of 〈Ln〉 to any desired order.
We refrain from exhibiting the algebra here, but we find that
subject to the approximation (16),

〈Ln〉 = (2psn)1/2 + 1
3 + o(1) as n → ∞ (30)

and correspondingly 〈Ln〉2 = 2psn + (2/3)(2psn)1/2 + · · ·.

III. ONE-DIMENSIONAL EROSION FROM
A RANDOM INTERVAL

We now fix a value of p and start the walk at a randomly
chosen site of a random interval of allowed sites, where the
probability that the interval has length m is given by Eq. (2).
All other sites of the lattice are blocked initially. A number of
results for the limiting case in which ps = 0 (no erosion) can
be found in the Appendix.

A. Time to grow a cluster to a given size

We let Tl denote the first time at which the size of the cluster
of allowed sites on which the walker moves contains at least l

sites. This time is 0 if the cluster is initially of size l or greater,
and so we have

〈Tl〉 =
l−1∑
m=1

mpm−1(1 − p)2

[
1

m

m∑
k=1

〈Tk,m〉 +
l−1∑

j=m+1

〈T +
j 〉

]
,

(31)

where 〈T +
j 〉 = j/ps is as defined in Sec. II and the sum over k

is interpreted as void if m = l − 1. The random variable Tk,m is

the time taken for a walker starting at site k (with 1 � k � m)
to attempt to step beyond the boundary sufficiently often to
increase the cluster size to m + 1. After this time, the basic
approach of Sec. II applies, which is why the sum over k arises.
To compute 〈Tk,m〉 we note from Sec. II that the expected time
to the first attempt is k(m + 1 − k). This attempt is successful
with probability ps and otherwise the walker is left adjacent to
the boundary. Thus,

〈Tk,m〉 = k(m + 1 − k) +
∞∑
i=1

iτm(1 − ps)
ips, (32)

where the time τm = m has been discussed in Sec. II. Hence,

〈Tl〉 =
l−1∑
m=1

pm−1(1 − p)2
m∑

k=1

[
k(m + 1 − k) + m(1 − ps)

ps

]

+
l−1∑
m=1

mpm−1(1 − p)2
l−1∑

j=m+1

j

ps
. (33)

Evaluation of the algebra gives

〈Tl〉 = l(l − 1)

2ps
− 2p(3 − ps) + 3p2(1 − ps) + 2ps

3ps(1 − p)2

+ pl−1Q(l,p,ps)

6(1 − p)2ps
, (34)

where

Q(l,p,ps) = 2p[3p2(1 − ps) + 2ps + 2p(3 − ps)]

+ lp(1 − p)[6 + 7ps + p(12 − 13ps)]

+ l2(1 − p)2[5ps + p(6 − 8ps)]

− l3(1 − p)3ps. (35)

The last term on the right in Eq. (34) decays very rapidly
as l increases. The other terms are more important at large
l: We have the exact value of 〈Tl〉 for erosion from a single
point (independent of p, and growing quadratically with l),
plus an offset, independent of l, so that the mean time to grow
to modest interval length is influenced by the random initial
interval size.

B. Cluster size and mean-square displacement at a given time

Simulations provide data on the evolution of the mean
cluster size 〈Ln〉, as illustrated in Fig. 4. We plot alongside the
simulation results an empirical interpolation formula that we
infer from earlier results: Since 〈L0〉 = 〈Cp〉 = (1 + p)/(1 −
p) from Eq. (2), and 〈Ln〉 ∼ [C(ps)n]1/2 as n → ∞ from
Eq. (10) for erosion from a single site, we consider an amalgam
of these two as

〈Ln〉 ≈
√

C(ps)n + (1 + p)2

(1 − p)2
, (36)

with C(ps) approximated by the fitted quadratic function (13).
The formula (36) turns out to perform exceptionally well, as
observed in Fig. 7. Therefore, the approximation (36) provides
a satisfactory description of the cluster size as a function of
site state probability p and snipping probability ps.

The mean-square displacement 〈R2
n〉 obtained from simu-

lation results becomes asymptotically linear in n, as given by
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FIG. 4. (Color online) The growth over time of the cluster size
〈Ln〉 for erosion from a random interval (dashed lines) together with
the empirical interpolation formula (36) (solid lines) for 104 steps and
2 × 104 realizations and three sets of parameter values.

〈R2
n〉 ∼ 2D(ps)n [Eqs. (11) and (12)]. Therefore, as expected,

the effect of the random interval size (controlled by p) fades
as n → ∞. The approach to linearity depends on the value of
ps. It is slowest for small snipping probabilities ps and large
values of p. This case is shown in Fig. 5.

IV. ERODING A ONE-DIMENSIONAL RANDOM
ENVIRONMENT

We now consider erosion of a full realization of site
percolation, with allowed sites present with probability p,
starting the walk at an arbitrary allowed site. This now opens
the possibility that when the walker is successful in changing
a single site from blocked to allowed, two clusters of allowed
sites merge to form a new allowed cluster larger than either
of them. The cluster size is subject to increments of a range

0 2000 4000 6000 8000 10000

50

100

150

200

250

300

350

n

<Rn
2
>

FIG. 5. (Color online) The transition to effective diffusion for
erosion from a random interval. Mean-square displacement 〈R2

n〉
versus n for 104 steps and averaged over 2 × 104 realizations, with
p = 0.9 and ps = 0.1. We see that 〈R2

n〉 ∼ 2D(ps)n as n → ∞,
where the slope of the line, 2D(ps), is given by the empirically
determined formula (12).

of sizes. We have no exact results for this model, but we have
obtained results by extensive simulation.

A. Mean-square displacement

We assume that as n → ∞,〈
R2

n

〉 ∼ 2D(p,ps)n. (37)

To obtain acceptably accurate estimates of 2D(p,ps) we
generated 2 × 106 realizations of walks of 104 steps for each
specification of p and ps. We estimated 2D(p,ps) by linear
regression for n > 2500. To assess the likely imprecision in the
estimates of 2D(p,ps), we determined for the specific case p =
ps = 0.5 the standard error in the estimates of 〈R2

n〉, and per-
formed a standard bootstrap analysis [25], which suggests that
the estimate of 2D(0.5,0.5) obtained has an error of ±10−9.

In Fig. 6 our estimates of 2D(p,ps) are illustrated. As
expected, the diffusivity increases as p and ps increase.
We have considered empirical fits to the data. While many
functional forms with a small number of parameters can be
tuned to fit the data quite well, given the success of the
empirical approximation (12) in Sec. II B the most natural
fits to attempt are low-order polynomials in both variables that
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0.6

0.8

1

ps

2D

p  increasing
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0.4

0.6

0.8

1

0.2 0.4 0.6 0.8 1
p

(a)

(b)

p  increasing
s

2D

FIG. 6. (Color online) Diffusivity for eroding a random environ-
ment with initial allowed site density p and snipping probability
ps (Sec. IV) for 0.05 � p � 0.95 and 0.05 � ps � 0.95 (with
increments of 0.05 in each case). For each choice of p and ps, we
generated 2 × 106 random walks of 104 steps and the diffusivity was
inferred by a linear regression fit (not constrained to pass through the
origin) assuming that 〈R2

n〉 = 2D(p,ps)n + constant for n > 2500.
(a) Each curve shows 2D(p,ps) for a fixed value of ps between from
0.05 (lowest curve) to 0.95 (highest curve). (b) Each curve shows
2D(p,ps) for a fixed value of p from 0.05 (lowest curve) to 0.95
(highest curve). The curves plotted are linear interpolations. Except
for the lowest three curves in (a), a higher-order interpolation scheme
would produce no visible difference in the figure.
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respect the requirement that 2D(p,0) = 0 for p ∈ [0,1) and
2D(0,ps) = 2D(ps) given in Eq. (12). These conditions give
us a polynomial of the form

2D(p,ps) = aps + bpps + (1 − a)p2
s − bpp2

s , (38)

where Eq. (12) defines the value of a as a ≈ 0.068 824. The
value of b is found by fitting all the the data in Fig. 6; we find
b ≈ 2.115 with goodness of fit value R2 = 0.9540. If only
the p ∈ [0.05,0.8] data in Fig. 6 are fitted with a polynomial
of the form (38), then the value of b changes slightly to be
b ≈ 1.716 with an R2 = 0.9907. Note that we cannot expect
to find an expression for all values of p since by definition
2D(1,ps) = 1; hence, there is a discontinuity at p = 1.

B. Allowed cluster size

Insight can be obtained into the difference between erosion
on a random environment and erosion on a random interval
by comparing the cluster size as a function of number of steps
for the same parameter values p and ps. Figure 7(a) contains
such cluster size data which can be directly compared with the
data in Fig. 4. The cluster size is always larger now since a
successful erosion event that converts a single site to allowed
status may cause two previously disjoint intervals of allowed
sites to merge, so that an increase in the cluster size of more
than one per erosion event can occur. We take the ratio of the
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n
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FIG. 7. (Color online) Simulation results for erosion of a one-
dimensional random environment. (a) The growth over time of the
mean cluster size 〈Ln〉 for 104 steps and 2 × 106 realizations for the
same three sets of parameter values as in Fig. 4. (b) Ratio of cluster
sizes in Fig. 7(a) above those in Fig. 4. The results are always greater
than unity. The ratio increases as p increases.

corresponding cluster sizes and plot them in Fig. 7(b). Indeed,
the average cluster size increases significantly for larger values
of p and, as expected, negligibly for small values of p.

V. THREE-DIMENSIONAL EROSION FROM
A SINGLE SITE

We have focused on the one-dimensional implementation
of our model, where there are some exact results available,
as well as useful analytic approximations. The model can be
implemented on any lattice if we are prepared to forego the
prospect of exact analytic results. We report some represen-
tative simulation results for the simple cubic lattice in three
dimensions, which brings us closer to our original motivating
context of cellular interaction with ECM.

Our simulations are all for erosion of the simple cubic
lattice, starting at a single allowed site, taking ps = 0.25, 0.5,
0.75, and 1. We generated 20 000 realizations of random walks
for each value of ps considered, so that statistical fluctuations
in our results are negligible at the level of resolution of the
figures.

A. Growth of the allowed cluster

We have considered three measures of the state of the
allowed cluster after n steps. In Fig. 8 we show the mean
allowed cluster size, which we denote by χ (n,ps). For
certain erosion (ps = 1), the allowed cluster size is just the
number of distinct sites visited by an ordinary random walker,
conventionally denoted in physics by Sn. The asymptotic
behavior of the mean of Sn is well known to be [3]

〈Sn〉 ∼ (1 − R)n, (39)

where R is the probability of eventual return of the walker to
the starting site. The value of (1 − R)−1 for the standard Pólya
random walk on the simple cubic lattice is known exactly
in terms of the complete elliptic integral (or alternatively in
terms of � functions) and for our purposes the numerical value
(1 − R)−1 ≈ 1.516 386 suffices. Therefore,

χ (n,1) ∼ (1 − R)n as n → ∞, (40)
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FIG. 8. (Color online) The growth of the mean cluster size
χ (n,ps) for erosion of the simple cubic lattice Z3 starting from a
single site.
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FIG. 9. (Color online) The second moment of the mass distribu-
tion about the starting position, ρ0(n)2, for the cluster of allowed sites
in erosion of the simple cubic lattice Z3 starting from a single site.

where (1 − R) ≈ 0.659 462 7. In our simulations, we find that
χ (1000,1)/1000 ≈ 0.6758, consistent with the exact result for
the n → ∞ limit.

For ps < 1, not all attempts to move onto a disallowed site
are successful, and this represents an effective random time
delay on the growth of the number of distinct sites visited in a
normal random walk. The transience of normal random walks
in three dimensions suggests that an approximate prediction
of the asymptotic form of χ (n,ps) might be possible, but we
have not yet devised anything convincing.

We have examined two measures of the geometrical size of
the cluster of allowed sites at time n. We associate unit mass
with each site r of the cluster of allowed sites, and denote the
location of the center of mass by r. We define

ρ0(n)2 =
〈∑

r |r|2∑
r 1

〉
, ρCM(n)2 =

〈∑
r |r − r|2∑

r 1

〉
, (41)

with the sum taken over all allowed sites at time n. The positive
numbers ρ0(n) and ρCM(n) are the radii of gyration about the
origin and about the center of mass, respectively. We show
ρ0(n)2 in Fig. 9 and ρCM(n)2 in Fig. 10. The well-known
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FIG. 10. (Color online) The second moment of the mass distribu-
tion about the center of mass, ρCM(n)2, for the cluster of allowed sites
in erosion of the simple cubic lattice Z3 starting from a single site.
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FIG. 11. (Color online) The mean-square displacement 〈|Rn|2〉
for erosion of the simple cubic lattice Z3 starting from a single site.

asymmetry of typical realizations of ordinary random walks
despite their stochastic symmetry leads to an expectation that
for normal random walks ρ0(n)2 > ρCM(n)2. Our simulations
show this to be the case for the erosion model also.

B. Mean-square displacement

We conclude our brief account of the erosion of the
simple cubic lattice with a discussion of the mean-square
displacement of the walker. Where Rn denotes the position
of the walker after n steps, we show simulations of the
mean-square displacement 〈|Rn|2〉 in Fig. 11. For ps = 1 we
find when n = 1000 that 〈|Rn|2〉 ≈ 10 008, which compares
well with the exact result that 〈|Rn|2〉 = n. The ps dependence
is captured roughly by 〈|Rn|2〉 ≈ pα

s n, with α ≈ 1.453, though
we not been able to predict this asymptotic form.

VI. CONCLUSION

We have considered several one-dimensional implementa-
tions of a random walk problem in which the random walker
interacts with the boundaries of the interval in which the walk
takes place and may enlarge the interval. For the cases in
which the initial interval is a point or has a size distribution
related to the cluster-size distribution in site percolation, we
are able to compute exactly the mean time taken for the walker
to find itself for the first time in an interval of length at least
l. Although we are unable to determine the exact asymptotic
growth law for the mean interval length and the mean-square
displacement of the walker, using simulation and mean-field
arguments we are able to identify the qualitative behavior.

For the more challenging problem in which the walker
moves in a full realization of site percolation, single-site
erosion events can link random intervals. We have studied this
problem by simulation. Our original motivating example, cell
motility in ECM with matrix remodeling under the action of
matrix metalloproteinases, naturally leads to the consideration
of the analogs in higher dimensions of the one-dimensional
problems we have considered. Above one dimension, rigorous
arguments and mean-field analyses like those we have used
appear to be unavailable. We have reported some simulations
in three dimensions, which show that erosion from a single
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point is qualitatively similar to a random walk with a reduced
diffusivity.
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APPENDIX: APPROACH TO EQUILIBRIUM FOR A WALK
IN AN INTERVAL OF RANDOM SIZE

In the following discussion the erosion probability ps is set
to zero, so the walk takes place inside an interval of fixed but
random length.

1. Exact limiting mean-square displacement

Because the distribution of cluster sizes is known, it
is easy to calculate the expected value of any statistical
property if we know the expected value conditioned on
the cluster size. This idea was applied in one-dimensional
bond percolation problems associated with discrete-space,
continuous-time master equations by Odagaki and Lax [26],
who were interested in the frequency-dependent electrical
conductivity of disordered systems. In the present context,
this idea enables us to compute exactly the long-time limiting
behavior of the mean-square displacement.

In a random walk on a given one-dimensional percolation
cluster, the mean-square displacement will satisfy Eq. (1)
exactly so long as n is small enough that the probability of the
walker on this specific cluster having encountered a boundary
is zero. Beyond this time, the effect of the boundary becomes
more pronounced as the probability of the walker having en-
countered a boundary increases and eventually, roughly speak-
ing, the mean-square displacement saturates. To calculate〈

R2
∞

〉 = lim
n→∞

〈
R2

n

〉
we need to take account of the n → ∞ limiting distribution of
the walker’s displacement from the starting position, and of the
randomness within the cluster of the starting position. In the
absence of boundaries the probability that the walker will be at
position l after n steps, denoted as pn(l), evolves according to

pn+1(l) = 1
2 [pn(l + 1) + pn(l − 1)]. (A1)

We seek u(l) = limn→∞ pn(l). Actually, unless we impose
suitable boundary conditions, the sets of sites that may be
occupied on odd-numbered steps is disjoint from the set that
may be occupied on even-numbered steps. Given that we
abort attempted steps off the cluster of allowed sites, the
even-odd oscillations problem is overcome in the long-time
limit so we need only solve the difference equation

u(l) = 1
2 [u(l + 1) + u(l − 1)]. (A2)

If our cluster of size m occupies the string of sites with
increasing integer coordinates {l1,l2, . . . ,lm}, then Eq. (A2)
holds for l1 < l < lm, while the boundary conditions

pn+1(l1) = 1
2 [pn(l1 + 1) + pn(l1)], (A3)

pn+1(lm) = 1
2 [pn(lm) + pn(lm−1)], (A4)

imply that u(l1) = u(l2) and u(lm−1) = u(lm). The substitution
u(l) = Aαl yields the characteristic polynomial α2 − 2α +
1 = 0 with unique solution α = 1, so the general solution
of the difference equation (A2) is u(l) = c1 + c2l. Either by
invoking the boundary conditions, or by noting the evident
left-right symmetry in the limiting distribution, we find that
u(l) is constant, and to preserve normalization, we have to
take

u(l) = 1

m
. (A5)

It may be remarked that this result can be obtained in
various ways. For example, it can be interpreted as the
stationary distribution or invariant measure of an aperiodic
finite-dimensional Markov chain [27].

The walker’s starting site (s, say) is also uniformly
distributed over the cluster of allowed sites and so the limiting
mean-square displacement for a walk started at random on a
cluster size m is

〈
R2

∞
〉
m

= 1

m

m∑
s=1

[
1

m

m∑
l=1

(s − l)2

]
= m2 − 1

6
. (A6)

As the size of the cluster on which the walk starts is itself
random, we have

〈
R2

∞
〉 =

∞∑
m=1

Pr(Cp = m)
〈
R2

∞
〉
m

=
∞∑

m=1

mpm−1(1 − p)2 m2 − 1

6
= p

(1 − p)2
. (A7)

This analytic result is compared to simulation results in Fig. 12.
A very good match between the long term root-mean-square
displacement of a random walk obtained by simulation and the
square root of Eq. (A7) is observed.
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FIG. 12. (Color online) Plot of root-mean-square displacement
estimated by simulations over 103 steps and 5 × 104 realizations for
three values of p. The solid lines are simulation results and dashed
lines are the square root of Eq. (A7). This shows that 〈R2

n〉1/2 →
〈R2

∞〉1/2, given by Eq. (A7), as n → ∞.
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2. Simulations and empirical approximations

The calculation leading to Eq. (A7) is related to various
calculations that have been done by physicists in the context
of the “ant in the labyrinth” problem [4,17]. Here we wish to
go further and address the transition from short-time behavior
(effective ignorance of the boundaries) to long-time behavior
(boundary effects strongly felt). It is evident from Fig. 12
that when p 	 1, the time taken for the root-mean-square
displacement 〈R2

n〉1/2 to saturate is small, but this time becomes
very long as p approaches 1.

We denote by 〈R2
n〉m the mean-square displacement after n

steps, given that the cluster size Cp is m (the starting site is
uniformly distributed over this cluster). Then the mean-square
displacement is given by

〈
R2

n

〉 =
∞∑

m=1

〈
R2

n

〉
m

Pr{Cp = m}. (A8)

If the time is sufficiently short compared to the cluster size,
then the walker is unlikely to have reached the boundary, so that

the walk may be taken as unconstrained, leading to 〈R2
n〉m ≈

n. On the other hand, if the walk is sufficiently long, then
the position distribution will be nearly equilibrated, so that
〈R2

n〉m ≈ 〈R2
∞〉m, where 〈R2

∞〉m is given in Eq. (A6). For the
crossover between these two regimes we choose the time n at
which m = β

√
n. This leads to the approximation

√〈
R2

n

〉 =
√√√√ ∞∑

m�β
√

n

(
m2 − 1

6

)
Pr{Cp = m}

+√
n

∞∑
m>β

√
n

Pr{Cp = m}. (A9)

For brevity we define q = �β√
n, that is, q is the largest

integer that is no greater than β
√

n. Since
∞∑

m=q+1

Pr{Cp = m} = pq[1 + (1 − p)q] (A10)

and

q∑
m=1

mpm−1(1 − p)2 m2 − 1

6
= 6p − pq[6p + {2 + p(3 − 6p + p2)}q + 3(p − 1)2q2 + (1 − p)3q3]

6(p − 1)2
, (A11)

it is straightforward to compute the approximation (A9) for
any choice of m, n, and the parameter β that controls the
crossover time. In Fig. 13 we compare the root-mean-square
displacement obtained from simulations against estimation by
the interpolation scheme defined in Eqs. (A9)–(A11). We have
found empirically that taking β = 2 works best overall, and
this is the value used in Fig. 13.

3. A continuum analog

To shed light on the time evolution of the mean-square
displacement in our random walk on a finite interval of random
length, we consider the standard one-dimensional diffusion
process in a finite interval of length L with no-flux boundary
conditions with the initial distribution concentrated on a single
point; that is, we seek P(x,t | a,L) such that

∂P
∂t

= D
∂2P
∂x2

, 0 < x < L, (A12)

where

∂P
∂x

∣∣∣∣
x=0

= ∂P
∂x

∣∣∣∣
x=L

= 0, P|t=0 = δ(x − a). (A13)

The standard eigenfunction expansion technique produces
the solution (as a Fourier cosine series) with exponential
time decay of the contributions from all of the nonconstant
eigenfunctions:

P = 1

L
+ 2

L

∞∑
n=1

exp

(
−n2π2Dt

L2

)
cos

(
nπx

L

)
cos

(
nπa

L

)
.

Let Rt denote the displacement of the process relative to the
starting position a. The mean-square displacement given the

starting coordinate a and the length L (with L � a, of course)
is

〈
R2

t

〉
a,L

=
∫ L

0
(x − a)2P(x,t | a,L)dx.

If we now average over the starting location a (giving
it a uniform distribution on [0,L]), then the mean-square
displacement at time t in an interval of length L becomes

〈
R2

t

〉
L

= 1

L

∫ L

0

∫ L

0
(x − a)2P(x,t | a,L)dx da.

The integrations are straightforward and we find that

〈
R2

t

〉
L

= L2

6
− 16L2

π4

∞∑
m=0

exp[−(2m + 1)2π2Dt/L2]

(2m + 1)4
. (A14)

The limiting value L2/6 may be compared with the analogous
result (A6) for the discrete-time lattice random walk (cluster
size m). We also see that the approach to the limiting
distribution is very rapid.

We now make L, the length of the interval, random. The
analog of the percolation-derived length distribution for the
continuum problem is the � density,

d

d�
Pr{0 � L � �} = κ2�e−κ�, (A15)

which results from taking the sum of two independent
exponential random variables with mean κ−1, representing
the distances on the left and on the right to the nearest blocked
position. Averaging Eq. (A14) using the density (A15) and
making the change of variables x = κ�, we find that the
mean-square displacement, averaged over all realizations of
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FIG. 13. (Color online) Convergence of the mean-square dis-
placement 〈R2

n〉1/2 to its equilibrium value, for a noneroding walker
(ps = 0) in a single interval of random length controlled by the
allowed site density p. Solid curves show simulation data, while
dashed curves show the empirical interpolation (A9) with β = 2,
which we found to be the most satisfactory choice. (a) Long-time
results, 0 � n � 3000. (b) Early time results, 0 � n � 200.

the random system, becomes

〈
R2

t

〉 = 1

κ2
− 16

π4κ2

∞∑
m=0

1

(2m + 1)4

×
∫ ∞

0
x3 exp

[
−x − (2m + 1)2π2κ2Dt

x2

]
dx.

(A16)

The integrals in the summand are recognized by MATHEMATICA

as Meijer G functions, although this is not especially helpful.
However, if we write

λ3
m

2
= (2m + 1)2π2κ2Dt,

then these integrals become

I(λm) =
∫ ∞

0
x3 exp

[
−x − λ3

m

2x2

]
dx

= λ4
m

∫ ∞

0
z3 exp

[
− λm

(
z + 1

2z2

)]
dz, (A17)

and so are well-suited to asymptotic estimation using Laplace’s
method [23]. Writing F (z) = z + 1/(2z2) we have F ′(z) =
1 − 1/z3 and F ′′(z) = 3/z4, so the function F (z) is concave
up for 0 < z < ∞ and attains its only minimum at z = 1.
Hence, as λ → ∞ we have

I(λm) ∼ λ4
m

∫ ∞

0
z3 exp

{
−λm

[
F (1) + F ′′(1)

2
(z − 1)2

]}
dz

∼ λ4
m exp

(
−3λm

2

) ∫ ∞

−∞
exp

(
−3λm

2
ζ 2

)
dζ

= λ4
m

(
2π

3λm

)1/2

exp

(
−3λm

2

)
. (A18)

This leads to our identification of the long term difference
between the mean-square displacement and its limiting value
as a stretched exponential:

〈
R2

t

〉 = 1

κ2

{
1 − 16

π4

(
2π

3

)1/2

(2π2κ2Dt)7/6

× exp

[
− 3

2
(2π2κ2Dt)1/3

]
+ · · ·

}
. (A19)

The appearance of stretched exponentials is unsurprising,
as these also arise in a mathematically closely related
problem of the time to extinction for a diffusing particle
released in an environment with randomly distributed traps
[3,28,29].
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