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Abstract  

Sepsis is a major health issue in the Australian Indigenous population. Unfortunately, the high rates 

of mortality and morbidity caused by sepsis or severe sepsis in this population have not 

significantly reduced over recent decades. Research into the role of optimisation of antibiotic 

therapy for improving patient outcomes is certainly an important area of need. In other patient 

populations, there is increasing evidence of an improvement of clinical cure rates and survival in 

patients with severe sepsis when antibiotic dosing results in therapeutic concentrations, that is, 

achieves pharmacokinetic/pharmacodynamic (PK/PD) targets. However, numerous PK changes 

caused by the altered physiology associated with critical illness may reduce the likelihood of such 

effective dosing.    

Previous studies have identified a number of physiological characteristics in the Australian 

Indigenous population which suggest that interethnic PK differences are likely in comparison with 

the non-Indigenous. As most PK data of antibiotics were obtained from healthy Caucasian 

volunteers, whether these data can be extrapolated to the critically ill Indigenous patients requires 

investigation.  

The aims of this thesis are to describe the PK of meropenem, ceftriaxone, vancomycin and 

piperacillin in severely septic Indigenous patients; compare the PK with existing data from non-

Indigenous patients; design optimised dosing regimens for each of the study antibiotics; and 

quantify the variation in renal function of critically ill Indigenous patients.  

This thesis consists of nine Chapters:  

Chapter one provides an overview of the current clinical challenges encountered in antibiotic dosing 

in critically ill patients. It also discusses specific physiological characteristics of Australian 

Indigenous patients which may lead to different PK compared with non-Indigenous comparators.  

Chapter two comprises of a narrative review which discusses the PK/PD factors that should be 

considered when prescribing antibiotics to critically ill patients. This Chapter summarises data 

which describe an improvement in clinical outcome when antibiotics achieve PK/PD targets. This 

Chapter concludes to support an individualised approach to dosing antibiotics as opposed to the 

‘one dose fits all’ approach that is common to clinical practice.   
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Chapter three incorporates a systematic review which investigates the published data describing 

differences in antibiotic PK between different ethnic groups. No reports on PK in Indigenous 

Australians were found. The predominant data described differences in PK between the Asian and 

Caucasian ethnicities. Typically, Asian subjects manifested higher antibiotic concentrations for 

antibiotics that have significant hepatic metabolism, are substrates to p-glycoprotein or other forms 

of active transport and/or have high alpha-1-acid glycoprotein binding.  

Chapter four incorporates a study which described the renal function of critically ill Australian 

Indigenous patients. This study found a numerically higher incidence of augmented renal clearance 

(ARC) in the Indigenous patients and a similar rate of acute kidney injury (AKI) when compared 

with the non-Indigenous patients. The study also found that major surgery, male sex and younger 

age were each associated with the presence of ARC.    

Chapter five includes a population PK study aiming to optimise meropenem dosing in critically ill 

Australian Indigenous patients. No significant interethnic differences in meropenem PK between 

the Indigenous (n=6) and Caucasian (n=5) patients were observed and CrCL was found to be the 

strongest determinant of dosing requirements.  

Chapter six includes a population PK study aiming to optimise piperacillin dosing in critically ill 

Australian Indigenous patients. CrCL was found to be the most important determinant of 

appropriate dosing regimens. When compared with other published data, a slightly lower mean 

piperacillin CL was observed.  

Chapter seven includes a PK study aiming to optimise ceftriaxone dosing in critically ill Australian 

Indigenous patients. The unbound trough concentration for the first and second dosing intervals 

exceeds the minimum inhibitory concentration (MIC) of all typical target pathogens, supporting the 

empiric dosing regimen of 1 g 12-hourly. Ceftriaxone CL and Vd in this study were generally lower 

than previously published data in critically ill non-Indigenous patients. 

Chapter eight includes a population PK study aiming to optimise vancomycin dosing in critically ill 

Australian Indigenous patients. Loading dose requirements were found to be heavily dependent on 

weight and CrCL. Maintenance doses were highly dependent on CrCL. These results provide a 

framework for effective dosing of vancomycin in these patients. 
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Chapter nine provides a summary of all findings obtained from the five research projects conducted 

and recommendations for the implementation of these findings in the clinical setting. The Chapter 

also includes a discussion of potential future research directions.  

The overall results of this thesis do not support any significant interethnic PK differences for 

meropenem or vancomycin between the Indigenous compared with the non-Indigenous 

comparators. However, a slightly lower drug CL was observed for ceftriaxone and piperacillin in 

the Indigenous patients, and lower of Vd in the ceftriaxone. These differences observed are unlikely 

to affect the dosing of these antibiotics. Nonetheless, it is concluded that dose individualisation is 

necessary to maximise PK/PD target attainment in the patients that are critically ill.  
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Chapter 1 Introduction   

1.1 Overview 

Severe sepsis is a major disease burden and is associated with a mortality rate 3-times greater than 

the Australian road toll(1). It is an even greater health concern for the Indigenous population in the 

Central Australian regions and is associated with higher morbidity and similar mortality rates (2-5). 

Growing evidence suggests that optimised antibiotic dosing in severely septic patients can increase 

clinical cure rates and reduce mortality (6-8). To develop such dosing regimens, detailed knowledge 

of the antibiotic's PK is required. A number of physiological differences have been identified 

between ethnic groups that can significantly affect the PK of drugs, such as body size, body fat 

percentage, hepatic metabolism, biliary excretion, renal secretion and alpha1-acid glycoprotein 

(AGP) concentration (9-16).  Unfortunately, despite optimisation of antibiotic administration in 

accordance with its PK/PD properties being an important clinical determinant (8, 17), there are 

currently no antibiotic PK data available for the Indigenous population to guide treatment therapies, 

let alone for severely septic patients that can anticipate drastic PK alterations (18, 19). The current 

practice of treating this patient cohort is with dosing guidelines obtained mainly from healthy 

Caucasian patients, and with an assumption that interethnic differences do not exist. 

 

1.2 Treatment of Sepsis  

1.2.1 Sepsis 

Severe sepsis is a life-threatening condition commonly seen in critically ill patients and has a 

mortality rate of 20-50% around the world (20-23). A multi-centre epidemiological study published 

in 2004 looking at patients with severe sepsis in an intensive care unit (ICU) setting in 23 

Australian and New Zealand hospitals found that 11.8% of ICU admissions were diagnosed with 

severe sepsis, which had a 26.5% mortality rate in ICU, and 37.5% overall in-hospital mortality rate 

(24). This mortality rate is further supported by another study conducted in Victoria published in 

2005, which described a hospital mortality of 28.9% for septic patients needing intensive care (21, 

25).  
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1.2.2 Sepsis in the Australian Indigenous population  

A study conducted at Alice Springs Hospital (ASH) has found that 60% of all hospital deaths were 

related to infection compared to 25% in non-Indigenous patients. Furthermore, 56% of these deaths 

in the Indigenous patients were due to bacterial sepsis (26). Indigenous patients were found have 

four times higher hospital admission rates due to sepsis when compared with their non-Indigenous 

counterparts, and three times higher ICU admission rate due to severe sepsis (27).  Although 

critically ill Indigenous patients were found to be generally younger, they also have more co-

morbidities and greater disease severity, leading to similar mortality rates as observed in the non-

Indigenous critically ill patients (2, 28-30). 

 

1.2.3 Antibiotic PK/PD  

Early antibiotic therapy is the cornerstone of treatment of sepsis and is associated with increased 

survival (14, 31-33). Moreover, there is growing evidence which demonstrates the optimisation of 

antibiotic dosing in accordance with its PK/PD profile increases clinical cure rates and reduces 

mortality, especially in severely septic patients (6, 7, 34-37).  

Every antibiotic has a defined PK/PD index associated with optimal efficacy. PK describes a drug’s 

changing concentrations in the body after administration of a dose. In this respect, it is affected by 

absorption, distribution, metabolism and excretion. Whereas PD describes the pharmacological 

effect (i.e. bacteria killing) of the antibiotic relative to concentration. The PK/PD profile describes 

the relationship between the PK and PD. In other words, by administering an antibiotic in a way 

that follows its bacterial kill characteristics, the optimal bacterial killing can be anticipated (18, 38).  

There are three categorisations of PK/PD and each antibiotic would fall under one or two of the 

following categories (as only the unbound antibiotic molecules are of any clinical value for most 

antibiotics, these PK/PD categorisations only apply to unbound antibiotic concentrations): 

- Time dependent (fT>MIC) – the length of time the unbound drug concentration remains above 

the MIC for the duration of the dosing interval. Examples: β-lactams, carbapenems, linezolid, 
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lincosamides and erythromycin (18, 38). 

Optimisation of bacterial killing for this type of antibiotics can be achieved by modulating 

dosing regimens or infusion time to increase the duration where the unbound drug concentration 

remains above the maximum bacterial killing concentration (6, 36, 39).  

- Concentration-dependent (fCmax:MIC) – the ratio of the maximum unbound drug 

concentration during a dosing interval relative to the MIC. Examples: Aminoglycosides, 

metronidazole, fluoroquinolones and daptomycin (18, 38).  

Optimisation of bacterial killing for this type of antibiotics can be achieved by increasing the 

dose to achieve a maximum unbound concentration (fCmax) that is 8-10 x MIC of the pathogen 

(40).  

- Time-dependent with concentration dependence (fAUC0-24:MIC) – the ratio of the area under 

the drug concentration-time curve during the 24 hour time period to the MIC (18, 38).  

Optimisation of bacterial killing for these antibiotics can be achieved by modulating the dosing 

regimen to increase the fAUC0-24:MIC ratio to the recommended indices for the respective 

antibiotic and bacteria. Examples: Glycopeptides, fluoroquinolones, aminoglycosides, and 

azithromycin (41, 42).  

 

1.3 PK changes in critical illnesses 

Optimisation of antibiotic dosing can improve clinical cure rates especially in severely septic 

patients (6-8). Nonetheless, there are many factors that can affect the PK parameters of antibiotics 

in the setting of severe sepsis, and subsequently alter the probability of toxicity and clinical 

outcome (18, 38, 43). The two main PK parameters affecting drug exposure are the volume of 

distribution (Vd) and drug clearance (CL) (18).  

An increase in Vd and CL are commonly seen in critically ill patients, leading to decreased 

antibiotic concentrations in the patient’s body. Factors that drive these PK changes include 

vasodilation, presence of extracorporeal circuits, third spacing due to leaky capillaries, high fluid 
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resuscitation volumes and presence of ARC. Antibiotic CL can also decrease due to end-organ 

failure (renal and/or hepatic failure), increasing the likelihood of antibiotic accumulation  (18, 38). 

Antibiotics with a hydrophilic physicochemical property are especially affected by the PK changes, 

and hence need particular consideration when devising a dosing plan for the severely septic. 

 

1.4 Physiology of the Australian Indigenous    

Numerous physiological characteristics of the Australian Indigenous population differ to the 

Caucasian populations, which may provide the basis for interethnic PK differences for commonly 

used antibiotics.  

Young and healthy Australian Indigenous are reported to have approximately 30% fewer nephrons 

yet 27% greater kidney mass compared with non-Indigenous comparators (44). This is thought be 

one of the main explanations for the dramatically high rates of chronic kidney disease in this 

population, but the effect of this physiology has not been well explored in acute settings. 

Pharmacogenetic polymorphisms of metabolic enzymes are known to cause interethnic PK 

differences for numerous drugs, and it has been identified that the Australian Indigenous population 

share similar allele frequencies with South Asians for cytochrome P450 (CYP) 2C19 and 2D6 

enzymes, although other enzymes with more prominent effect on drugs were not tested (such as 

P450 3A4) (45). It has been reported that 25.6% of Indigenous Australians are poor CYP2C19 

metabolisers compared to 3-5% of the Caucasian population (45). Furthermore, from an 

anthropometric point of view, the Indigenous people are more likely to have smaller body mass, a 

higher level of central fat and slimmer limbs (46).  Finally, significantly higher rates of some severe 

and rare adverse drug effects are seen in this population (47). Recent case reports have suggested 

the presence of human leucocyte antigen-B*56:02 allele (HLA-B*56:02) correlates with an 

increased risk of phenytoin-related drug-induced hypersensitivity syndrome (DIHS, formally known 

as drug reaction with eosinophilia and systemic symptoms syndrome – DRESS syndrome), 

especially in the Australian Indigenous population (48). The central Australian Indigenous 

population appear to carry an extra-ordinary high prevalence of this allele when compared with the 

general Australian population on the Australian Bone Marrow Donor Registry (>10% vs. 0.6%), 

however the population prevalence in the Indigenous Australians living in Western Australian and 

Arnhem Land are likely to be <2% (49).  
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Aims  

The global aim of this thesis is to improve antibiotic dosing in critically ill Australian Indigenous 

patients.  

 

The specific aims are: 

1. To systematically review the interethnic differences in the PK of antibiotics which also 

discusses their probable mechanisms and any clinical implications. 

2. Describe the incidence of ARC in critically ill Indigenous and non-Indigenous patients, and to 

identify the likely determinants of ARC in the Indigenous patient group. Assess the accuracy of 

available CrCL equations, using measured urinary CrCL as the reference. 

3. Describe the population PK of meropenem in Australian Indigenous patients with severe sepsis 

and compare with critically ill Caucasian patients with sepsis, and define optimal meropenem 

dosing regimens for this population. 

4. Describe the population PK of piperacillin in critically ill Australian Indigenous with severe 

sepsis, and define optimal piperacillin dosing regimens for this population.  

5. Describe the PK of total and unbound ceftriaxone in critically ill Australian Indigenous patients 

with severe sepsis.  

6. Describe the population PK of vancomycin in critically ill Australian Indigenous with severe 

sepsis, and define optimal loading and maintenance doses for vancomycin in this population.  
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Chapter 2 Pharmacokinetic/pharmacodynamic considerations for the 

optimisation of antimicrobial delivery in the critically ill 

 

2.1 Synopsis 

Antibiotics and antifungals are commonly used in the intensive care setting. This Chapter discusses 

the recently published data around the PK and PD of these antimicrobials. This Chapter also 

describes the data correlating an improvement in clinical outcome with the optimisation of dosing 

regimens and associated PK/PD target attainment. Nonetheless, changes in PK observed in critical 

illness may complicate the attainment of these targets, especially for antibiotics/antifungals that are 

hydrophilic and extensively renally eliminated. In such situations, individualised dosing regimens 

and therapeutic drug monitoring is advised.   
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2.2 Published review article entitled “Pharmacokinetic/pharmacodynamic 

considerations for the optimisation of antimicrobial delivery in the critically ill” 

 

The manuscript entitled “Pharmacokinetic/pharmacodynamic considerations for the optimisation of 

antimicrobial delivery in the critically ill” was published by Current Opinion in Critical Care 

(2015; 21(5):412-20.)  

The co-authors contributed to the manuscript as follows: The literature review was performed by 

the PhD Candidate, Danny Tsai under the supervision of Prof. Jason A. Roberts. Data extraction 

from cited articles and analysis of data was performed by the PhD Candidate, Danny Tsai, under the 

guidance of Prof. Jason A Roberts and Prof. Jeffrey Lipman. The PhD Candidate, Danny Tsai, took 

the leading role in manuscript preparation and writing, Prof. Jason A. Roberts took the leading role 

in critical review and revision of the manuscript, and Prof. Jeffrey Lipman critically reviewed the 

manuscript.  

The manuscript is presented as per the accepted manuscript. The figures and tables have been 

inserted into the text in locations close to where they were referred. The abbreviations and 

numberings of pages, figures and tables have been adjusted to comply with the format of this thesis. 

The references can be found in the references section of the thesis.  
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2.2.1 Abstract  

 

Purpose of review Antimicrobials are very commonly used drugs in the intensive care setting. 

Extensive research has been conducted in recent years to describe their PK/PD in order to maximise 

the pharmacological benefit and patient outcome. Translating these new findings into clinical 

practice is encouraged.  

Recent findings This paper will discuss mechanistic data on factors causing changes in 

antimicrobial PK in critically ill patients, such as the phenomena of ARC as well as the effects of 

hypoalbuminaemia, renal replacement therapy and extracorporeal membrane oxygenation. Failure 

to achieve clinical cure has been correlated with PK/PD target non-attainment, and a recent meta-

analysis suggests an association between dosing strategies aimed at optimising antimicrobial PK/PD 

with improvement in clinical cure and survival. Novel dosing strategies including therapeutic drug 

monitoring (TDM) are also now being tested to address challenges in the optimisation of 

antimicrobial PK/PD.  

Summary Optimisation of antimicrobial dosing in accordance with PK/PD targets can improve 

survival and clinical cure. Dosing regimens for critically ill patients should aim for PK/PD target 

attainment by utilising altered dosing strategies including adaptive feedback using TDM. 
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2.2.2 Introduction 

Despite the advancement in the management of critically ill patients over the past few decades, 

severe sepsis and septic shock still remain responsible for persisting high mortality rates for patients 

in the ICU. The cornerstone of infection treatment is initiation of early antimicrobial therapy and 

source control of the infection, both of which have a high likelihood of improving clinical cure and 

survival rates (50, 51). There is increasing evidence that optimisation of antimicrobial dosing 

regimens can lead to further patient outcome benefits. The aim of these dosing regimens is to 

maximise pathogen killing through application of PK/PD principles that account for the significant 

changes in PK and pathogen susceptibility that are common to the critically ill patient. This review 

will explore the recent evidence on dose optimisation of antimicrobials in critically ill patients as 

well as provide dosing recommendations based on this data.  

 

2.2.3 Main text  

Critically ill patients experience drastic derangements in their physiological parameters, 

subsequently impacting on the PK of antimicrobials. Unfortunately, treatment success for these 

drugs is heavily dependent on the drug concentration achieved at the site of infection and thus 

extensive research has been committed to further our understanding of the physiological processes 

that cause PK changes, as well as investigating treatment strategies that can address and overcome 

the aforementioned obstacles.  

 

2.2.3.1 PK/PD of antimicrobials  

In the context of PK/PD, antimicrobials can be categorised by either their physicochemical 

properties (Figure 2.1) or pathogenic kill characteristics (Figure 2.2 and Table 2.1). Understanding 

these characteristics can aid us in formulating an optimal antimicrobial treatment regimen for an 

individual patient.  
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Time-dependent – pathogenic kill is dependent on the time the free drug concentration (f) remains 

above the MIC during the dosing interval (fT>MIC).  

Concentration-dependent – pathogenic kill is dependent on the ratio of the maximum free drug 

concentration (fCmax) to the MIC of the pathogen (fCmax/MIC).  

Concentration-dependent with time-dependence – pathogenic kill is dependent on the free drug 

exposure within 24 hours relative to the MIC of the pathogen, and is represented by area under the 

concentration-time curve (fAUC0-24:MIC).  

 

 

Figure 2.1 Physiochemical properties of antimicrobials, PK of general patients, PK in the 

critically ill and sample antimicrobials 
Abbreviation: PK, pharmacokinetics; ICU, intensive care unit; Vd, volume of distribution; CL, drug 

clearance. 
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Figure 2.2 PK/PD of antimicrobials 
Abbreviation: fCmax>8xMIC, maximum free drug concentration is greater than 8x the minimum inhibitory 
concentration; fAUC0-24:MIC, free drug exposure within 24 hours relative to the minimum inhibitory 
concentration; MIC, minimum inhibitory concentration; fT>MIC, time of the free drug concentration remains 
above the minimum inhibitory concentration during the dosing interval; fT>4xMIC, time of the free drug 
concentration remains above 4x minimum inhibitory concentration during the dosing interval. 
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Table 2.1. PK/PD of antimicrobials, optimal PD of antimicrobials, sample 

antimicrobials and pathogenic kill targets 

 

Abbreviation: PD, pharmacodynamics; fT>MIC, time of the free drug concentration remains above the 
minimum inhibitory concentration during the dosing interval; fCmax/MIC, ratio of the maximum free drug 
concentration to the minimum inhibitory concentration; fAUC0-24:MIC, free drug exposure within 24 hours 
relative to the minimum inhibitory concentration; fCmax>8-10xMIC, maximum free drug concentration is greater 
than 8-10x the minimum inhibitory concentration 

 

2.2.3.2 Factors impacting PK/PD of antimicrobials and their clinical consequences 

Numerous factors alter the PK of antimicrobials in the critically ill by changing either or both of the 

two main PK parameters – Vd and CL.  

 

2.2.3.2.1 Vd and CL in the critically ill 

Vd significantly increases in critically ill patients mainly due to volume expansion from rigorous 

fluid resuscitation and the presence of systemic inflammatory response syndrome (SIRS), whereby 

the phenomenon of third spacing precipitates from capillary leakage. In this circumstance, 

hydrophilic antimicrobials will be diluted and the PK significantly altered. On the other hand, PK of 

lipophilic drugs are relatively unaffected due to more extensive intracellular and adipose tissue 

penetration (52). The extent of volume expansion is described by changes in disease severity, with 
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increasing Acute Physiology and Chronic Health Evaluation II (APACHE II) and Sequential Organ 

Failure Assessment (SOFA) scores associated with increased Vd for hydrophilic antimicrobials (53). 

Vd is also affected by hypoalbuminaemia, which may have profound effects on highly albumin 

bound antimicrobials (54, 55), such as ceftriaxone, cefazolin, flucloxacillin, ertapenem, teicoplanin 

and daptomycin, with protein binding percentage approximating 90, 80, 93, 90, 90 and 92% 

respectively. In this scenario, a transient increase in free drug concentration will be observed, 

followed by an increase in Vd and drug CL. Furthermore, high variability of protein binding and 

free drug concentration is reported in the critically ill even for lower binding antimicrobials such as 

linezolid and vancomycin (31 and 55% respectively) (56, 57). Obesity is also a major contributing 

factor to sub-therapeutic dosing (58-60).  

A decline in CL is usually caused by end organ dysfunction (renal and/or hepatic) (61). Renal 

impairment significantly alters the PK of renally clear antimicrobials, in particular those with higher 

hydrophilicity and most of the commonly used antimicrobials in the ICU fall into this category. On 

the other hand, reduction for dose or dosing frequency for hepatically cleared antimicrobials is only 

recommended in the presence of liver decompensation (62). Nonetheless, should altered renal 

function coexist, revision of dosing regimens based on the CL mechanisms of the prescribed 

antimicrobial is especially necessary (61, 62).  

A recent multicentre observational study found that 65% of critically ill patients without history of 

renal impairment will experience ARC, (defined as ‘enhanced renal elimination of circulating 

solute’ (63)), and factors correlate with its prevalence include male gender, younger age, multiple-

trauma and ventilation (64). Furthermore, many studies have demonstrated higher antimicrobial CL 

in presence of burns, SIRS, multiple trauma, severe medical illnesses, use of inotropes and increase 

in cardiac output, which increases the risk of sub-therapeutic drug concentration and thus, treatment 

failure (59, 65-68). Udy et al. have found high CrCL in the critically ill the greatest predictor of 

PK/PD target non-attainment for β-lactams (69).  

Renal replacement therapy (RRT) also increases antimicrobial CL (especially β-lactams and other 

small molecule, hydrophilic and low protein bound antimicrobials) relative to patients with renal 

dysfunction. The extent of this extracorporeal CL varies with different settings of the RRT, RRT 

dose and haemofilters used. A recent meta-analysis by Jamal et al. has found effluent flow rate the 

strongest predictor of the extent of drug removal by RRT, which includes vancomycin (rs = 0.90; p 

= 0.08), meropenem (rs = 0.43; p = 0.12) and piperacillin (rs = 0.77; p = 0.10) (70). The large 

multicentre SMARRT (SaMpling Antibiotics in Renal Replacement Therapy) study is under 



 27 

progress, which examines antimicrobial dosing and PK in patients on RRT (Australian New 

Zealand Clinical Trials Registry ACTRN12613000241730). Its result hopes to provide further 

information to guide antimicrobial dosing in patients receiving any form of RRT.  

Studies investigating antimicrobial PK for patients on extracorporeal membrane oxygenation 

(ECMO) have been mostly performed on paediatric patients and animals. Though these data show 

large variability between studies, higher Vd and lower CL were generally observed in the ECMO 

arms. Notwithstanding these findings, small PK studies have found no significant PK differences 

for vancomycin, piperacillin/tazobactam and meropenem in adult cohorts (71, 72). Currently, a 

multinational study investigating the effect of ECMO on conventional antimicrobial regimens is 

being conducted (73).  

 

2.2.3.2.2 Evidence of failure of PK/PD target attainment and its clinical relevance  

Changes in CL and/or Vd can lead to a significant decrease in the plasma drug concentration leading 

to non-attainment of PK/PD targets and thus a higher treatment failure rate (74-76). Recent studies 

have correlated ARC with failure of PK/PD target attainment for a number of β-lactams, 

subsequently requiring dose escalation (77, 78). The DALI-(Defining Antibiotic Levels in ICU 

patients) study, a multinational, observational study involving 68 hospitals, assessed β-lactam 

PK/PD target attainment in a large cohort of critically ill patients and found that 16% of the 361 

enrolled patients failed to achieve 50%fT>MIC with conventional therapy, and were 32% less likely 

to achieve a positive clinical outcome (79). 

 

2.2.3.3 PK/PD target attainment of antimicrobial classes 

Despite confirmation of relationship between unsuccessful PK/PD target attainment and treatment 

failure, the association of PK/PD target attainment and treatment success is still a subject of 

ongoing debate.  
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2.2.3.3.1 β-lactam 

β-lactams are the commonest and most extensively studied antibacterials in ICU. Maximised fT>MIC 

can be achieved by extending the infusion time, although a number of previous studies and meta-

analyses failed to show superior clinical outcome. Many of the studies used lower doses in the 

prolonged infusion (PI, includes extended and continuous infusion) arm and had small sample sizes. 

It has been shown that T>MIC for a thrice daily meropenem regimen is similar between 1 g infused 

over 30 minutes and 0.5 g over 3 hours (80). Similar results are found between a regimen of thrice 

daily imipenem 1g infused over 30 minutes compared with a four times daily regimen of 0.5 g over 

3 hours (81), and thus a superior outcome would not be anticipated. Nonetheless, a number of 

recently published larger single-centre studies have shown superior clinical outcome with PI (82-

85). A meta-analysis by Teo et al. (86) has also demonstrated improvement in clinical cure with a 

significant reduction in mortality (relative risk = 0.66, 95% confidence interval 0.53-0.83) based on 

a total of 19 studies encompassing 1620 hospitalised patients. This important finding based on the 

most recent and robust data challenges some of the previously conducted systematic reviews (87, 

88). Furthermore, BLING-II (Beta-Lactam Infusion Group) study, the largest international 

multicentre randomised controlled trial studying the correlation between PI and clinical outcome for 

β-lactams will report its results soon (89), to provide further clarification on this intervention.  

 

2.2.3.3.2 Glycopeptides 

Recent studies suggest that vancomycin-induced nephrotoxicity is reduced via administration by 

continuous infusion (Tafelski et al. 26 vs 35%; Hanrahan et al. intermittent infusion with higher 

risk of nephrotoxicity odds ratio = 8.204, p ≤0.001) (90, 91). Continuous infusion is also associated 

with earlier PK/PD target attainment and a lower incidence of sub-therapeutic concentrations (91). 

However, the low AUC achieved in the first 24 hours of administration is an independent risk factor 

for treatment failure for MRSA bacteraemia (adjusted odds ratio = 4.39, 95%, confidence interval 

1.26-15.35 by Etest), and as such a loading dose (LD) is recommended prior to initiation of 

continuous infusion (76).  

Teicoplanin is slightly different. In a retrospective PK study, Matsumoto et al. recommended 3 LDs 

of 11-15mg/kg 12 hours apart for teicoplanin with a target trough concentration (Cmin) of 15-

30mg/L (92). The 11mg/kg and 15mg/kg regimens each achieved a respective Cmin of 17.5 and 

27.8mg/L after 3 LDs. Due to teicoplanin’s prolonged terminal half-life (T½) of 90-157 hours, TDM 
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is still recommended thereafter. Furthermore, teicoplanin’s high protein binding complicates its 

PK/PD because of the increased free drug concentrations that have been described in 

hypoalbuminaemia (55). Studying the teicoplanin dataset of the DALI-study, Roberts et al. have 

found albumin bound percentages varying between 71-97% and free drug Cmin between 0.1-

4.5mg/L (target 1.5-3mg/L), and the free drug concentration inversely increases in proportion to the 

severity of hypoalbuminaemia (55).  

 

2.2.3.3.3 Aminoglycosides 

Two studies investigating the PK of 25mg/kg dosing regimen of amikacin in critically ill patients 

have found 25-33% of participants failed to achieve the defined PK/PD target, which was a Cmax 

>60-64mg/L (53, 93). The 25mg/kg dosing regimen was calculated according to total body weight 

(TBW). Neither study had an upper limit to the Cmax, and toxicity was not assessed. In the De 

Montmollin et al. study, PK/PD target non-attainment with positive 24-hour fluid balance and body 

mass index (BMI) lower than 25kg/m2 (93). This highlights the importance of using adjusted body 

weight (ABW) or lean body weight (LBW) especially in patients with lower BMI.  

 

2.2.3.3.4 Echinocandins 

The antifungal dataset from the DALI-study revealed a significantly lower AUC0-24 for a 100mg 

daily regimen of anidulafungin when compared with the study by Liu et al. (55 vs 93mg.h/L) (94, 

95). Plasma sampling was obtained for Liu et al.’s study after 3-7 days (included a 200mg LD) with 

the DALI-study having sampling on various days of therapy. Anidulafungin has a mean T½ of 26.5 

hours, hence the AUC0-24 may differ significantly on different dosing days before steady state is 

reached. Patients recruited from the Liu’s study were older and had lesser weight than the DALI 

study (mean age and weight 51 vs 60 years, 82 vs 65kg respectively), and only patients with an 

APACHE II score of <25 were recruited whereas the median score for DALI is 18 (range 15-32). 

The DALI-study also found a mean AUC0-24 of 52mg.h/L for a 70mg LD of caspofungin compared 

to 89mg.h/L reported by Muilwijk et al. on day 3 after a LD of 70mg followed by 50mg daily 

regimen (94, 96). For both Muilwijk and Liu’s studies, the PK findings are comparable to general 
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patients, and therefore further studies are warranted to guide dosing regimens in the critically ill 

(95, 96).  

2.2.3.3.5 Triazoles 

The DALI-study found that of the 15 ICU patients receiving fluconazole regimens (mean daily dose 

4.9mg/kg), 33% did not reach the PK/PD index of AUC0-24/MIC >100 for an MIC of 2mg/L 

(breakpoint for most Candida species) (94). Fluconazole was observed to be given commonly as a 

standard 400mg daily dose and hence have produced significantly varied PK in the DALI study. 

Weight based dosing may need to be considered.  

Hypoalbuminaemia is also correlated to an increase in free drug concentration for voriconazole, and 

this relationship is more pronounced in the presence of hyperbilirubinaemia (97). Voriconazole is 

~56% protein bound and is subject to saturable hepatic metabolism, monitoring of free drug 

concentration may prove to be a useful intervention in later studies.  

 

2.2.3.4 Application of PKPD in clinical setting 

Both sub-therapeutic and toxic drug concentrations may eventuate in unwanted outcomes. 

Unfortunately the unpredictability of PK in this patient group complicates PD target attainment, 

leading to the predicament where a consistent dosing regimen does not produce consistent 

concentrations (98, 99). Various strategies can be implemented to address these challenges. 

 

2.2.3.4.1 Dose individualisation without TDM availability 

Many ICUs do not have immediate access to a pathology service with drug assay capability for 

antimicrobials other than vancomycin and gentamicin although there is an increasing number of 

such centres (100).  
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2.2.3.4.1.1 Loading dose  

Timely administration of appropriate antimicrobial is imperative to ensure early achievement of 

therapeutic concentration (101). This is commonly referred to as the bucket theory, where the 

bucket needs to be filled (antimicrobial distribution) before water leak (CL) needs to be considered, 

and hence the presence of end organ dysfunction should not discourage the administration of a LD 

(Figure 2.3). Usually a single conventional dose is sufficient, exceptions are glycopeptides where 

the change in Vd can be quite high relative to standard doses. An LD up to twice the conventional 

dose (vancomycin) or multiple LDs (teicoplanin) may be needed.  

 

 

 

Figure 2.3. A proposed process for optimising the dose for a renally cleared antimicrobial in a 

critically ill patient. 
Abbreviation: Vd, volume of distribution 
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2.2.3.4.1.2 Maintenance dose  

Accurate estimation of glomerular filtration rate (GFR) is imperative for renally-cleared 

antimicrobials. CrCL calculated from 8-12 hours urine collection remains the gold standard for 

clinical practice. Where this is not achievable in a timely manner, estimated GFR (eGFR) calculated 

from the Chronic Kidney Disease Epidemiology Collaboration (CKD-EPI) formula has been shown 

to be superior to the Modified Diet in Renal Diseases (MDRD) and eGFR of the Cockroft Gault 

CrCL in the critically ill, albeit the CKD-EPI eGFR has a tendency to underestimate the likely value 

in the presence of ARC (67, 102). TBW can generally be used for weight based dosing for patients 

with average body weight, with LBW or ABW recommended in either extremes of body weight 

(exception is vancomycin where TBW should be used).  

 

2.2.3.4.1.3 Administration  

The administration method of an antimicrobial should be in accordance with its pathogenic kill 

characteristic, maximising the chance of PK/PD target attainment.  

Time-dependent antimicrobials – Maximising fT>MIC is the aim of dosing, especially when the 

suspected pathogen is likely to have a high MIC such as Pseudomonas aeruginosa (83). This can be 

achieved by extending the infusion time to ≥3 hours.  

Concentration dependent antimicrobials – Achieving a high Cmax is the aim of dosing and is 

mainly achieved by choosing an adequate dose.  

Concentration dependent with time-dependence antimicrobials – Administration method is 

individualised for each antimicrobial.  

 

2.2.3.4.1.4 Regimen reassessment  

Signs of antimicrobial toxicity should be monitored. Antimicrobial doses should be adjusted in 

accordance with the MIC of the pathogen cultured. ARC, third spacing and other inflammatory 

related complications are likely to subside as the patient clinically improves (99), and hence review 

of antimicrobial regimen is advised daily.  
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2.2.3.4.2 Therapeutic drug monitoring 

Various methods of TDM show improvement in PK/PD target attainment (though their clinical 

relevance still needs to be ascertained), for example one PK study suggests an 100% attainment of 

100%fT>MIC if daily TDM is performed for 2 studied β-lactams (99).  

Time dependent antimicrobials – after administration of a LD, subsequent maintenance doses 

should be guided by the PK/PD indices in concert with the MIC. Attaining a target of 100%fT>MIC 

is generally encouraged, where the Cmin can guide subsequent doses. For continuous infusions, a 

random concentration at least 4x MIC is suggested. Drug assays usually describe the total drug 

concentration, but only the unbound concentration is of clinical value (calculated by multiplying the 

total concentration by 1 less than the binding fraction). For deep tissue infection, the concentration 

ratio between serum and target site should also be addressed as serum concentrations may in fact 

not be sufficiently representative (103).   

Concentration dependent antimicrobials – achieving a Cmax (obtained 30 minutes after end of 

infusion) >8-10xMIC of suspected pathogen is the aim of therapy unless if in toxicity. Eg. Cmax of 

>64mg/L is aimed for MIC of 8mg/L. Doses can be adjusted in proportion to the change in 

concentration needed.  

Concentration dependent with time-dependence antimicrobials – TDM for each antimicrobial (e.g. 

ciprofloxacin, linezolid and colistin) is different and individualised.  

 

2.2.5 Conclusion 

Optimisation of antimicrobial dosing in accordance with PK/PD indices can improve survival and 

clinical cure rates for critically ill patients. Hence, dosing regimens should aim to maximise PK/PD 

target attainment by utilising techniques such as TDM. Further studies may be needed to assess the 

clinical relevance of target site free drug concentration, antimicrobial PK/PD in patients on ECMO 

and RRT. 
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2.3 Conclusion  

This Chapter has reviewed the recently published PK/PD data for different classes of antibiotics and 

antifungals in critical illness.  There is increasing evidence demonstrating improved clinical 

outcomes when antibiotic PK/PD targets are achieved. Furthermore, TDM can facilitate attainment 

of PK/PD targets in scenarios where drastic PK changes are anticipated yet are difficult-to-predict.  
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Chapter 3 Interethnic differences in pharmacokinetics of antibacterials 

 

3.1 Synopsis 

Significant differences in PK of drugs between different ethnic groups have been reported for many 

drugs. Subsequent dose adjustment is often advised when these PK differences are identified. 

However, the effect of ethnicity on antibacterial PK is less certain. This Chapter consists of a 

systematic review which aims to describe possible PK differences in antibiotics between ethnicities, 

discuss their probable mechanisms as well as any clinical implications.  
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3.2 Published review article entitled “Interethnic differences in 

pharmacokinetics of antibacterials”  

 

The manuscript entitled “Interethnic differences in the pharmacokinetics of antibacterials” is 

published in Clinical Pharmacokinetics (2015; 54:243-260.)  

The co-authors contributed to the manuscript as follows: The literature review and data extraction 

from cited articles were performed by the PhD Candidate, Danny Tsai under the supervision of 

Prof. Jason A. Roberts. Analysis of data was performed by the PhD Candidate, Danny Tsai and Dr 

Janattul-Ain Jamal, under the guidance of Prof. Jason A Roberts. The PhD Candidate, Danny Tsai, 

took the leading role in manuscript preparation and writing. Prof. Jason A. Roberts took the leading 

role in critical review and revision of the manuscript. Critical review was performed by Dr Joshua 

Davis, Prof. Jeffrey Lipman and Prof. Jason A. Roberts. 

The manuscript is presented as per the accepted manuscript. The figures and tables have been 

inserted into the text in locations close to where they were referred to. The abbreviations and 

numberings of pages, figures and tables have been adjusted to comply with the format of this thesis. 

The references can be found in the references section of the thesis.  
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3.2.1 Abstract 

 

Background Optimal antibacterial dosing is imperative for maximising clinical outcome. Many 

factors can contribute to changes in the PK of antibacterials to the extent where dose adjustment 

may be needed. In acute illness, substantial changes in important PK parameters for certain 

antibacterials such as Vd and CL can occur. The possibility of interethnic PK differences can further 

complicate attempts to design an appropriate dosing regimen. Factors of ethnicity, such as genetics, 

body size and fat distribution contribute to differences in absorption, distribution, metabolism and 

elimination of drugs. Despite extensive previous work on the altered PK of antibacterials in some 

patient groups such as the critically ill, knowledge of interethnic PK differences for antibacterials is 

limited.  

Objectives This review aims to describe any PK differences in antibacterials between different 

ethnic groups, discuss their probable mechanisms as well as any clinical implications.  

Methods We performed a structured literature review to identify and describe available data of the 

interethnic differences in the PK of antibacterials. 

Results We found 50 articles that met our inclusion criteria and only 6 of these compared 

antibacterial PK between different ethnicities within the same study. Overall there was limited 

evidence available. We found that interethnic PK differences are negligible for carbapenems, most 

β-lactams, aminoglycosides, glycopeptides, most fluoroquinolones, linezolid and daptomycin, 

whereas significant difference is likely for ciprofloxacin, macrolides, clindamycin, tinidazole and 

some cephalosporins. In general, subjects of Asian ethnicity achieve drug exposures up to 2-3 fold 

greater than Caucasian counterparts for these antibacterials. This difference is caused by a 

comparatively lower Vd and/or drug CL.  

Conclusion Interethnic PK difference is likely; however, the clinical relevance of these differences 

is unknown and warrants further research.   
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3.2.2 Introduction 

Clinically significant interethnic PK differences requiring adjusted dosing regimens have been 

identified for numerous commonly used drugs (16, 104-110). However, there are few published 

data describing interethnic differences in the PK of antibacterials. Titration of doses to therapeutic 

response for antibacterials is not appropriate because resolution of symptoms and signs may take 

days to weeks to occur and therefore accuracy of dosing at the commencement of treatment should 

be considered essential (111). Sub-optimal dosing of antibacterials may directly lead to undesired 

outcomes such as treatment failure, toxicity or indirectly adversely affect the microbial ecology of 

an individual, ICU or hospital by selecting for antibacterial resistant organisms. Whilst most PK 

differences can be estimated by adjusting the Vd and CL in accordance to the ethnic group’s average 

body size, renal function and other basic physiological characteristics, there are still many factors 

which may affect the PK that cannot not be accounted for in such simple dose adaptations. 

Extensive research has identified a number of PK processes which may contribute to interethnic PK 

differences (15, 106, 112-116). These processes include the physiological mechanisms involved in 

the absorption, distribution, metabolism and elimination of a drug. Active drug transport serves as a 

mechanism for absorption differences observed between ethnic groups. Alpha-1-acid glycoprotein 

(AGP) concentrations, body size and body fat percentage may affect the distribution of a drug. 

Metabolic enzyme activities (including cytochrome P450 [CYP450], p-glycoprotein and phase II 

metabolism) contribute to differences seen in metabolic drug CL between ethnicities; whereas 

active transport mechanisms that result in drug secretion in the renal distal tubules may contribute 

to disparities in renal drug CL. While PD differences of antimicrobials between ethnic groups can 

also be an important determinant of treatment success and/or hypersensitivity (117), this article is 

only focused on the interethnic PK differences.  

Currently, most antibacterial dosing regimens are based on PK and PD data collected from studies 

performed on the healthy Caucasian population. Whether it is appropriate to extrapolate these 

dosing recommendations to other ethnic groups remains uncertain. The aim of this review is to 

describe the antibacterial PK differences between ethnic groups and discuss the clinical implication 

of these findings. 
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3.2.3 Methods 

3.2.3.1 Search strategy and selection criteria 

Data were identified through keyword searches on PubMed (from 1960 to July 2014). The 

keywords included ethnic, interethnic, ethnicity, race, racial, interracial, Asian, Caucasian, African, 

African American, European, Chinese, Japanese, Korean, Indonesian, Indian, Jordanian, Thai, 

Iranian, Taiwanese, Nigerian, pharmacokinetic(s), pharmacodynamics(s), antibiotic, antibacterial, 

aminoglycoside, carbapenem, cephalosporin, glycopeptide, clindamycin, lincomycin, macrolide, 

penicillin, quinolone, colistin, daptomycin, linezolid and tigecycline. Searches were limited to 

English and Chinese languages. The reference lists of identified articles were then hand-searched to 

identify further relevant articles. All non-duplicate articles reporting original research or literature 

reviews related to interethnic PK differences only on antibacterial drugs were included in this 

review. Relevant articles that demonstrated possible interethnic PK differences were investigated in 

detail. Studies which did not demonstrate interethnic difference for a specific drug, unless the 

results were contrary to other studies, were not included further. Only studies that recruited healthy 

subjects are included, with the exception of clinical PK studies with comparable illnesses between 

different ethnicities, in which the condition would be specified. 

 

3.2.4 Results – Studies identified 

Studies comparing the PK of antibacterials in different ethnicities are limited. The article selection 

process is shown in Figure 3.1. The initial number of studies identified with the keywords was 

13,767 with only 82 studies deemed suitable for full review. Upon reviewing references of the 

identified articles, 17 further studies became eligible for inclusion. A total of 50 studies have 

demonstrated significant interethnic PK difference and were included for a comparative review (See 

Table 3.1). This includes 32 studies on non-Caucasian subjects and 18 studies from Caucasian 

subjects. Overall, six studies were particularly robust in their design because they have recruited 

ethnicities within the same study (13, 118-122). The article selection process was undertaken by DT 

and JR.  
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Figure 3.1 Flowchart illustrating the selection of studies included in this review 
Abbreviation:  PK, pharmacokinetic.
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Table 3.1 PK of antimicrobials showing interethnic differences in healthy volunteersa  

Antimicrobial Population No. of 
females 

Age 
(y) 

TBW 
(kg) 

PK parameters 

Cmax 
(µg/mL) 

Vd 
(L/kg) 

ke × 102 
(h-1) 

AUC0-∞ 
(µg*h/mL) 

CL 
(mL/min/kg) Tmax (h) T½          

(h) 

Aminoglycosides            

Gentamicin/Tobramycin 
(IV) (123) 

Alaskan 
nativeb  
(n=101) 

44/101 45 ± 21 67 ± 19 5.36 0.3 ± 0.1 26 ± 8 NA 1.2 ± 0.5 NA 3.5 ± 2.0 

Gentamicin (IV) (124) US Americanb 
(n=1369) 842/1369 41 ± 23 65 ± 18 NA 0.2 ± 0.1 46 ± 23 NA 1.3 ± 0.6 NA 2.2 ± 2.1 

Cephalosporins            

Cefdinir 100mg (PO) (125) Chinese 
(n=12) 0/12 23 ± 2 65 ± 4 0.8 ± 0.2 0.4 ± 0.3c NA 5.4 ± 1.2 0.61 ± 0.38c 2.5 ± 0.5 1.7 ± 0.3 

Cefdinir 100mg (PO) (126) Chinese 
(n=20) 0/20 26 ± 2 64 ± 6 0.9 ±0.2 NA 40.5 ± 8.0 4.5 ± 0.8 NA 3.7 ± 1.0 1.8 ± 0.4 

Cefdinir 200mg (PO) (127) Chinese 
(n=12) 0/12 28 ± 2 67 ± 4 1.5 ± 0.3 NA NA 7.2 ± 1.6 NA 4.0 1.9 ± 0.3 

Cefdinir 200mg (PO) (128) Canadian 
(n=16) 0/16 23 ± 4 70 ± 6 1.0 ± 0.3 0.4 ± 0.1 NA 4.1 ± 1.1 0.69 ± 0.15 3.3 ± 0.6 1.4 ± 0.2 

Cephradine 250mg (PO) 
(129) 

Pakistani 
(n=12) 0/12 22 64 11.5 ± 1.7 NA 42 ± 4 17.6 ± 0.4 3.7 ± 0.05 0.8 ± 0.1 1.7 ± 0.2 

Cephradine 250mg (PO) 
(130) 

US American 
(n=20) 0/20 24 ± 2 64-94 NA 0.29 NA 12.10 3.1 1.0 0.85 

Cefroxadine 500mg (PO) 
(131) Korean (n=9) NA 24 ± 2 71 ± 7 17.6 ± 4.9 NA 73 ± 18 48.4 ± 7.2 NA 1.4 ± 0.4 1.0 ± 0.3 

Cefroxadine 500mg (PO) 
(132) Japanese (n=5) NA 20-24 55-66 10.7 ± 1.1 0.36 76.8 ± 10 29.8 ± 2.1 NA 1.5 ± 0.2 1.0 ± 0.1 

Cefroxadine 500mg (PO) 
(133) 

Caucasian 
(n=10) 3/10 26 68 12.3 ± 4.2 NA 86.4 ± 

19.8 23.6 ± 2.9 5.1 ± 0.6 0.8 0.9 ± 0.2 
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Antimicrobial Population No. of 
females 

Age 
(y) 

TBW 
(kg) 

PK parameters 

Cmax 
(µg/mL) 

Vd 
(L/kg) 

ke × 102 
(h-1) 

AUC0-∞ 
(µg*h/mL) 

CL 
(mL/min/kg) Tmax (h) T½          

(h) 
Cefroxadine 424mg (PO) 
(134) French (n=6) 0/6 23-30 73 7.6 ± 2.5 NA NA 21.3 ± 2.3 4.6 ± 0.8 0.8 1.0 ± 0.2 

Fluoroquinolones            

Ciprofloxacin 500mg (PO) 
(135) Chinese (n=6) 3/6 20 ± 1 52 ± 10 4.2 ± 1.1 3.7 ± 0.8 30 ± 3 18.1 ± 2.7 9.0 ± 1.2 1.8 ± 0.4 2.3 ± 0.8 

Ciprofloxacin 500mg (PO) 
(136) 

Indonesian 
(n=24) both 26 ± 5 57 ± 7 2.9 NA NA 16.4 NA 1.3 ± 0.9 5.6 

Ciprofloxacin 500mg (PO) 
(137) Brazilian (n=8) 3/8 28 ± 2 63 ± 3 1.3 ± 0.2 2.1 ± 0.2g 23 ± 4 5.5 ± 0.8 8.5 ± 0.7g 1.2 ± 0.3 3.0 ± 0.6 

Ciprofloxacin 500mg (PO) 
(138) 

Caucasian 
(n=11) both 27 ± 4 70 ± 11 2.1 ± 0.6 NA NA 8.8 ± 2.5 NA 1.1 ± 0.6 4.7 ± 1.1 

Ciprofloxacin 500mg (PO) 
(139) 

German 
(n=10) 5/10 28 66 1.5 ± 0.4 4.7 ± 2.7 NA 6.8 ± 1.3 NA 1.2 ± 0.3 5.4 ± 2.9 

Ciprofloxacin 500mg (PO) 
(140) 

US American 
(n=6) 0/6 30 70 2.6 ± 0.9 1.4 ± 1.8 26 ± 3 11.1 ± 3.3 5.5 ± 2.4d 1.3 ± 0.4 4.2 ± 0.6 

Ciprofloxacin 200mg (IV) 
(141) 

Nigerian 
(n=12) 0/12 23 ± 2 68 ± 8 2.7 ± 1.1 0.4 ± 0.3h NA 8.8 ± 3.2 6.4 ± 2.7 0.8 ± 0.2 7.3 ± 4.7 

Ciprofloxacin 200mg (IV) 
(142) Chinese (n=8) 0/8 21 59 NA 0.8 ± 0.2h NA 7.1 ± 1.2 4.8 ± 1.3d NA 3.9 ± 0.7 

Ciprofloxacin 200mg (IV) 
(139) 

German 
(n=10) 5/10 28 66 NA 3.0 ± 0.5 NA 5.3 ± 1.1 9.9 ± 2.0 NA NA 

Lincosamides             

Clindamycin 150mg (PO) 
(143) 

Jordanian 
(n=24) 0/24 29 ± 8 76 ± 11 4.5 ± 1.3 NA 27 ± 17 22.2 ± 9.9 NA 0.9 ± 0.4 4.1 ± 2.8 

Clindamycin 300mg (PO)  
(144) 

Chinese 
(n=24) 0/24 24 ± 2 64 ± 5 3.0 ± 1.2 NA NA 11.3 ± 5.0 NA 1.0 ± 0.6 2.6 ± 0.7 

Clindamycin 300mg (PO) 
(145) Indian (n=32) 8/32 27 ± 9 62 ± 15 4.1 ± 1.2 NA 26.9 15.5 ± 7.2 NA 1.0 ± 0.5 3.5 ± 3.3 
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Antimicrobial Population No. of 
females 

Age 
(y) 

TBW 
(kg) 

PK parameters 

Cmax 
(µg/mL) 

Vd 
(L/kg) 

ke × 102 
(h-1) 

AUC0-∞ 
(µg*h/mL) 

CL 
(mL/min/kg) Tmax (h) T½          

(h) 
Clindamycin 600mg (PO) 
(146) Korean (n=8) 4/4 22 60 ± 6 6.7 ± 2.1 NA 20.2 ± 6.8 20.4 ± 6.1 NA 1.1 ± 0.3 3.8 ± 1.2 

Clindamycin 600mg (PO)  
(147) 

US American 
(n=16) 0/16 27 ± 4 73 ± 13 5.3 ± 1.0 NA NA 16.9 ± 6.1 NA 0.8 ± 0.4 2.4 ± 0.8 

Clindamycin 600mg (PO) 
(148) 

German 
(n=20) 0/20 29 80 3.4 NA NA 13.1 ± 4.6 NA 0.9 ± 0.3 2.3± 0.6 

Macrolides            

Azithromycin 500mg (PO)  
(149) Thai (n=14) 0/14 21 ± 1 63 ± 8 0.43 ±0.2 NA 3.0 ± 1.4 4.5 ± 2.2 NA 1.5 ± 0.4 28.1 ± 13.1 

Azithromycin 500mg (PO) 
(150) 

Jordanian 
(n=24) 0/24 24 ± 6 73 ± 11 0.33 ± 0.09 NA 2 ± 0.5 4.1 ± 1.1 NA 2.8 ± 1.1 45.0 ± 12.3 

Azithromycin 500mg (PO) 
(151) 

Mexican 
(n=27) 13/27 22 54-77 0.51 ± 0.24 NA NA 4.4 ± 1.4 NA 2.0 ± 0.8 43.4 ± 17.3 

Azithromycin 500mg (PO) 
(152) 

US American 
(n=12) 0/12 29 NA 0.41 NA NA 3.39 NA NA 11-14 

Azithromycin 500mg (PO)  
(153) Chinese (=20) 0/20 NA NA 0.57 ± 0.21 NA NA 5.2 ± 1.3 NA 1.9 ± 0.6 50.1 ± 5.0 

Azithromycin 500mg (PO)  
(154) 

Chinese 
(n=20) 0/20 20-26 57-75 0.41 ± 0.17 NA NA 5.5 ± 1.7 NA 2.5 ± 1.0 38.3 ± 6.0 

Erythromycin 250mg (PO) 
(155) 

Australian 
(n=12) 0/12 21 ± 3 70 ± 5 1.7 ± 0.9 NA NA 4.7 ± 2.0 NA 2.8 ± 0.5 1.5 ± 0.4 

Erythromycin 500mg (PO) 
(156) 

Swedish 
(n=23) 

Mostly 
females 34 61 2.0 ± 0.8 NA NA 6.1 ± 2.4 NA NA NA 

Erythromycin 500mg (PO) 
(119) 

Koreans 
(n=10) 0/10 24 63 ± 4 3.3 ± 1.5 NA NA 13.6 ± 5.0 3.3 ± 1.1i 4.00 1.8 ± 0.5 

Erythromycin 500mg (PO) 
(119) 

Caucasian 
(n=10) 0/10 25 77 ± 9 2.3 ± 0.5 NA NA 8.2 ± 2.1 4.3 ± 1.4i 3.00 1.5 ± 0.5 

Clarithromycin 200mg (PO) 
(157) 

Caucasian 
(n=8) 0/8 NA NA 0.6 ± 0.4 5.4 ± 4.6 NA 3.0 ± 2.0 1645 ± 

1039j 1.6 ± 0.5 2.3 
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Antimicrobial Population No. of 
females 

Age 
(y) 

TBW 
(kg) 

PK parameters 

Cmax 
(µg/mL) 

Vd 
(L/kg) 

ke × 102 
(h-1) 

AUC0-∞ 
(µg*h/mL) 

CL 
(mL/min/kg) Tmax (h) T½          

(h) 
Clarithromycin 250mg (PO) 
(158) Iranian (n=14) NA NA NA 1.1 ± 0.2 NA NA 6.3 ± 1.6 NA 1.6 ± 0.5 4.3 ± 0.9 

Clarithromycin 250mg (PO) 
(159) Korean (n=24) 0/24 30 ± 5 65 ± 5 1.3 NA NA 7.0 NA 1.9 ± 0.4 NA 

Clarithromycin 250mg (PO) 
(160) Turkish (n=24) 0/24 28 67.4 1.2 ± 0.4 NA NA 8.2 ± 3.3 NA 1.6 ± 1.3 4.9 ± 3.0 

Clarithromycin 400mg (PO) 
(157) 

Caucasian 
(n=8) 0/8 NA NA 1.1 ± 0.2 3.7 ± 0.7 NA 8.6 ± 2.4 829 ± 209j 1.9 ± 0.7 3.6 

Clarithromycin 500mg (PO) 
(161) 

Caucasian 
(n=12) 0/12 29 ± 5 82 ± 8 1.8 ± 0.5 NA NA 12.6 ± 3.3 NA 3.4 ± 1.3 3.7 

Clarithromycin 500mg (PO) 
(162) Iranian (n=12) 0/12 29 ± 3 69 ± 6 3.2 ± 0.5 NA NA 31.1 ± 1.0 NA 2.7 ± 1.1 6.9 ± 2.6 

Clarithromycin 500mg (PO) 
(163) 

Norwegian 
(n=16) 0/16 32 ± 5 NA 2.25 ± 0.6 NA NA 19.7 ± 7.9 NA 2.5 ± 1.6 3.8 ± 1.3 

Clarithromycin 500mg (PO) 
(164) 

Pakistani 
(n=14) 0/14 22 66 3.3 ± 0.4 NA NA 20.2 ± 2.4 6.3 ± 1.0 1.5 ± 0.2 3.1 ± 0.6 

Clarithromycin 500mg (PO) 
(165) Thai (n=24) 0/24 21 ± 2 21 ± 2k 3.0 ± 0.8 NA NA 23.1 ± 7.4 NA 2.0 ± 0.9 5.1 ± 4.5 

Clarithromycin 500mg (PO) 
(166) Thai (n=24) 0/24 21 ± 1 21 ± 2k 2.5± 0.7 NA NA 15.8 ± 6.1 NA 2.1 ± 0.7 3.1 ± 0.8 

Clarithromycin 500mg (PO) 
(167) Thai (n=24) 0/24 21 ± 4 20 ± 1k 2.8 ± 1.3 NA NA 17.9 ± 7.4 NA 2.0 ± 0.8 3.6 ± 1.8 

Clarithromycin 500mg (PO) 
(168) Thai (n=24) 0/24 21 ± 1 21 ± 2k 2.4 ± 1.1 NA NA 16.9 ± 8.0 NA 2.2 ± 0.9 3.9 ± 1.1 

Nitroimidazoles            

Tinidazole 1g (PO) (13) Han (n=10) 5/10 23 ± 1 56 ± 5 19.0 ± 2.4 0.9 ± 0.2 4.2 ± 0.6 486 ± 66 0.011 ± 
0.002 2.2 ± 0.5 16.9 ± 2.4 

Tinidazole 1g (PO) (13) Mongolian 
(n=10) 5/10 21 ± 1 56 ± 8 19.2 ± 4.9 0.9 ± 0.2 4.3 ± 0.5 480 ± 100 0.013 ± 

0.002 2.2 ± 0.6 16.4 ± 1.8 
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Antimicrobial Population No. of 
females 

Age 
(y) 

TBW 
(kg) 

PK parameters 

Cmax 
(µg/mL) 

Vd 
(L/kg) 

ke × 102 
(h-1) 

AUC0-∞ 
(µg*h/mL) 

CL 
(mL/min/kg) Tmax (h) T½          

(h) 

Tinidazole 1g (PO) (13) Korean (n=10) 5/10 23 ± 1 57 ± 8 20.8 ± 3.3 0.8 ± 0.1 4.2 ± 0.5 511 ± 54 0.011± 
0.002 2.3 ± 0.6 16.6 ± 1.8 

Tinidazole 1g (PO) (13) Hui (n=10) 5/10 21 ± 2 59 ± 7 20.3 ± 4.1 0.8 ± 0.2 4.2 ± 0.4 514 ± 131 0.010 ± 
0.002 2.1 ± 0.7 16.8 ± 1.6 

Tinidazole 1g (PO) (13) Uighur  (n=10) 5/10 21 ± 1 57 ± 6 18.8 ± 3.1 0.9 ± 0.2 4.9 ± 0.7 389 ± 37 0.014 ± 
0.002 2.3 ± 0.5 14.3 ± 1.9 

Penicillins            

Flucloxacillin 250mg (PO) 
(169) 

Chinese 
(n=20) 0/20 NA NA 13.9 ± 1.6 NA NA 28.8 ± 1.3 NA 0.8 ± 0.4 1.7 ± 0.4 

Flucloxacillin 250mg (PO) 
(170) 

New Zealander 
(n=8) 2/8 20-21 NA 7.4 ± 1.4 NA NA 15.9 ± 2.0 NA 0.9 ± 0.1 1.4 ± 0.2 

 
Abbreviations: Cmax, maximum concentration; Vd, volume of distribution; ke, elimination rate constant; AUC0-∞, area under concentration-over-time curve from time 0 to ∞; 

CL, clearance; Tmax, time to achieve maximum concentration; T½, half-life; PO, oral; IV, intravenous; NA, data not available. 
Data is presented as mean ± standard deviation, unless otherwise stated. Where bioequivalence studies are used, data obtained from the reference arm is included into this 
review. For papers that have performed both compartmental analysis and non-compartmental analysis, data obtained from the non-compartmental analysis are used. 
 
a Subject ethnicity shown unless if not specified, of which the nationality will be recorded 
b Hospitalised patients with infection. Multiple dose administered.  
c Calculated with an oral bioavailability of 0.23 (128) 
d Serum clearance 
e Area under the curve from time 0 to 8 hours (AUC0-∞) 
f Median 
g Calculated with an oral bioavailability of 0.69 (171) 
h Volume of distribution of central compartment (Vc) 
i Calculated with an oral bioavailability of 0.30 from Mather’s study (172) 
j mL/min. 
k Body mass index (in kg/m2)	 	



 48 

Table 3.2: Potential determinants of interethnic PK differences 

PK phases 
Interethnic difference unlikely 

Ref 
Interethnic difference possible 

Ref 
Mechanism Example Mechanism Example 

Absorption Passive diffusion Sparfloxacin, norfloxacina 
(15, 
173, 
174) 

Active transport (also include p-
glycoprotein efflux/secretion) 

β-lactams, macrolides, 
ciprofloxacin 

(114, 175-
183) 

Distribution 
No/low AGP binding 

Albumin binding 

Aminoglycosides, 
carbapenems, linezolid 

ceftriaxone 

(16, 23, 
184-
187) 

AGP binding 
Macrolides�, 
lincosamides 

(11, 16, 
23, 119, 
188-191) 

Different body size Most antibacterials 
(119, 192, 

193) 

Metabolism -  -   
CYP enzyme metabolism, 

acetylation and glucuronidation 

Macrolides, 
ciprofloxacin, 

tinidazole, isoniazid 

(13, 112, 
114, 119, 
182, 194, 

195) 

Elimination Glomerular filtration Glycopeptides and 
aminoglycosides 

(15, 
196, 
197) 

Biliary secretion, 
Active intestinal secretion,  

Active tubular secretion 

Tigecycline, 
fluoroquinolones, 

macrolides, 
cephalosporins, 

penicillins 

(122, 182, 
198-200) 

Abbreviations: PK, pharmacokinetics; Ref, references; AGP, alpha-1-acid glycoprotein; CYP, cytochrome P450.  
a Sparfloxacin and norfloxacin are predominantly absorbed via passive diffusion, however the absorption mechanism of passive diffusion for antibiotics is not extensively 

studied, hence this is more of a theoretical determinant.  
b Erythromycin, azithromycin and clarithromycin. 
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3.2.5 Overview of interethnic physiological differences and physicochemical 

properties of antibacterials 

A number of physiological mechanisms have been identified as potential causes of interethnic PK 

differences when compared with other processes (Table 3.2). 

 

3.2.5.1 Body size & fat distribution 

People from different ethnic backgrounds may have physiological differences due to genetic, 

dietary, lifestyle or environmental factors (201). In particular, body composition, including fat 

percentage, fat distribution, organ size, total body weight (TBW) and height may vary (9, 10, 202-

204). According to the World Health Organization, North American adults (predominantly 

Caucasian) have the highest average TBW of 80.7 kg, with 73.9% of this population defined as at 

least ‘overweight’. In comparison, Asian adults have the lowest average TBW of 57.7 kg (28.5% 

less than North Americans), with only 24.4% of the population considered at least overweight. 

Compared to North American adults – African, European and Oceanic adults weigh 24.8%, 12.3% 

and 8.2% less respectively (204).  

Differences in fat composition between ethnic groups have been widely investigated (202, 203, 205, 

206). Body mass index (BMI) is the most commonly used surrogate measure (207, 208) but it does 

not account for differences in body proportion and fat distribution. In general, Asian adults are of 

smaller stature, smaller BMI but have higher body fat percentage compared with Caucasian adults. 

Chinese, Thai and Indonesian adults have a body fat percentage that is 96, 118 and 108% of 

Caucasians, but is only 92, 95 and 93% of their BMI. African adults have higher BMI but less body 

fat percentage. Polynesian adults have 23% higher BMI and a body fat percentage only 4% greater 

than Caucasians (208). Australian Indigenous adults also display significantly different body 

composition when compared with their non-Indigenous counterparts. Though they have, in general, 

smaller body mass, they have a higher proportion of central fat as well as longer extremities (46, 

209).  
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3.2.5.2 Mechanisms of altered antibacterial PK in different ethnicities 

3.2.5.2.1 Absorption – Interethnic differences for drug absorption by passive diffusion in the 

absorption phase are considered unlikely (15). On the other hand, differences related to active 

transporters are considered likely and are discussed in detail in section 3.3. 

3.2.5.2.2 Metabolism – Most hepatically metabolised drugs will undergo phase I and/or II 

metabolism. Different ethnicities are associated with different levels of enzymatic metabolism and 

may be subject to polymorphism, dividing a population into fast, moderate or slow metabolisers 

(19, 114, 210, 211). CYP3A4 is the CYP450 enzyme which metabolises the most hepatically 

cleared antibacterials and Asians generally exhibit less CYP3A4 activity compared to Caucasians 

(212). CYP3A4 is also expressed in the intestinal epithelium (213), where decreased activity may 

increase the absorption of its substrates (214). Acetylation is a phase II metabolic process which 

displays interethnic differences in a number of antituberculosis drugs (33, 215, 216).   

3.2.5.2.3 Renal Excretion – For drugs predominantly cleared renally, the subject’s renal function 

and the unbound drug fraction remain the most important determinants of CL (15, 217). Interethnic 

differences are thus considered unlikely for passive processes like glomerular filtration (15). On the 

other hand, drug secretion in renal tubules involves active transport is a possible source for 

interethnic differences as demonstrated for ciprofloxacin and cephalosporins (15, 17, 182, 200, 218, 

219).  

3.2.5.2.4 Environmental factors that can influence PK – Different types of food ingested (220-222), 

cigarette smoking (223, 224) and living in higher altitudes (225, 226) may alter PK parameters of 

drugs and antibacterials. It is also recognised that diseases like diabetes that are widespread in a 

patient group, may affect the results of an interethnic PK study. For example, for groups like the 

Australian Indigenous where high burden of diabetes exists, comorbidities like gastroparesis may 

affect drug absorption, peripheral vascular disease may cause reduced drug distribution into tissues 

and we would expect that reduced drug CL of renally cleared drugs may be associated with 

nephropathy (227-233). 

 

3.2.5.3 Active transport and relevance to antibacterial PK 

Active transporters such as organic anionic transporters (OATP) and p-glycoproteins in the gut 

epithelium are subject to polymorphisms which may influence the rate and extent of drug 
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absorption (15, 175, 234-237). P-glycoprotein is more likely to transport positively charged or 

neutral drugs that are hydrophobic (238). In vitro and animal studies have suggested that 

fluoroquinolones, trimethoprim, cephalosporins and amoxycillin are subject to active transport, 

especially in the small intestine (177, 179, 239, 240), and hence are likely to be subject to 

interethnic PK differences because of genetic polymorphisms. These genetic differences are 

considered to be independent of environmental effects on PK and support the importance of 

pharmacogenomics in characterising and predicting interethnic PK differences (175, 182, 241-243).  

Active transporters reside in various organ tissues, their influx/efflux mechanisms influence 

antibacterial penetration into tissues such as pulmonary epithelial cells and brain capillary 

endothelial cells (179, 219, 244, 245). This may also influence a drug’s PD, but unfortunately 

antibacterial PD studies comparing ethnic groups are rarely carried out.   

Lastly, active transporters can also be found in epithelial cell membranes of renal cells and 

hepatocytes (clarithromycin and erythromycin are substrates) and can influence the drug 

CL/reabsorption of these organs (200, 234, 246, 247). A number of haplotypes of PEPT2 (a carrier 

mediated protein responsible for renal reabsorption) have been described in three different Asian 

ethnic groups, although these appear of academic interest only with no PK differences evident for 

the PEPT2 substrate cephalexin (118).  

 

3.2.5.4 Antibacterial physicochemical characteristics – hydrophilicity and AGP binding 

Antibacterials with higher lipophilicity (eg. macrolides, fluoroquinolones and lincosamides) are 

considered to exhibit more extensive tissue penetration (248). Upon dosing a lipophilic antibacterial 

in an obese patient, it has been postulated that patient’s TBW can be used to calculate the dose 

regardless of the body fat percentage (248). Whilst this is likely to be an oversimplification, this 

general approach can be logically applied to interethnic differences in body weight. On the other 

hand, hydrophilic antibacterials (eg. aminoglycosides, glycopeptides and β-lactams) are thought to 

only penetrate into extracellular fluid. It may mean that giving a conventional dose to a smaller 

patient that has a higher body fat percentage will increase drug exposure (determined by area under 

the concentration-over-time curve [AUC]) due to the smaller Vd. In those cases, dosing according to 

patient’s lean body weight would seem more appropriate for such hydrophilic drugs. However, due 

to the small interethnic body fat percentage differences observed, the literature does not report 
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significant PK differences between ethnicities for Vd at this time. Hydrophilic agents still exhibit at 

least some level of adipose penetration (approximately 30% of adipose tissues are water) (249) and 

studies have shown that antibacterial concentrations in subcutaneous tissues are comparable to those 

measured in deeper tissues in many cases where tissue perfusion is not compromised (250). 

AGP is the second most important drug-binding plasma protein after albumin and has high affinity 

for basic and neutral drugs (251-253). Antibacterials such as clindamycin, erythromycin and 

rifampicin have approximately 70-80% AGP binding, whereas vancomycin and daptomycin have 

20-40% (188, 189, 251, 254-257). Asian, Iranian and African people have approximately 10-20% 

less AGP than Caucasians, whereas no interethnic differences have been reported in these subjects 

for albumin (14, 16, 23, 115, 258). For AGP-bound drugs, an increased unbound drug fraction is 

observed in populations with lower AGP concentration and this increase in unbound drug available 

for distribution around the body leads to an overall increase in Vd and CL (14, 23, 115, 253).  

 

3.2.6 Antibacterial PK/PD 

Antibacterials can generally be considered as having one (or more) of the three PK/PD bacterial kill 

characteristics: time dependent, concentration dependent and concentration dependent with time-

dependence (18). Bacterial killing is maximised when an antibacterial is administered in accordance 

with these characteristics (6, 259, 260). As such, changes in PK due to a patient’s ethnicity will 

affect the killing of the targeted pathogen and may also influence clinical outcome in selected 

instances. For example, a reduced CL can lead to drug accumulation and toxicity, whereas 

increased CL and Vd can cause sub-therapeutic drug concentrations, subsequently leading to 

treatment failure.  

Given that most antibacterials have a wide therapeutic range and are generally used with a ‘one-

size-fits-all’ or weight-based dosing regimen, should profound interethnic PK differences be 

present, such a simplified approach to dosing would risk failure. 
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3.2.7 Pharmacokinetic studies of different classes of antibacterials in different 

ethnicity 

Table 3.1 describes the comparative PK parameters of single dose antibacterials in different ethnic 

groups. Unless stated otherwise in the table, study participants included in these PK studies are 

healthy subjects that have fasted overnight with the age, sex, weight and ethnicity (nationality is 

used if ethnicity is not revealed) specified in the table.  

 

3.2.7.1 Aminoglycosides – These antibacterials are hydrophilic and are mainly eliminated renally, 

hence the patient’s glomerular filtration rate, age and body size remain the predominant 

determinants of their PK (124). To date, no studies have identified any PK differences between 

African-American, Caucasian, Asian and Hispanic hospitalised patients for aminoglycosides (120, 

196, 261) with renal function and body weight the most important determinants. However, a 

population PK study performed on hospitalised Alaskan natives has identified a longer T½ and 

larger Vd compared with the American data after being adjusted for age and weight (123, 124). In 

summary, with the possible exception of Alaskan natives, there appear to be no important 

interethnic PK differences for aminoglycosides. 

 

3.2.7.2 Glycopeptides – These antibacterials share similar physicochemical and PK properties with 

the aminoglycosides, although have a larger molecular size and a larger Vd (197, 262). The PK of 

teicoplanin is similar between hospitalised Japanese, Caucasian and African-American subjects 

(263), and vancomycin between hospitalised Japanese, Chinese and Caucasian subjects (264, 265).  

3.2.7.3 β-lactams – This class of antibacterials are eliminated by glomerular filtration, renal tubular 

secretion and, to a lesser extent, hepatic metabolism. A higher AUC from zero to infinity (AUC0-∞) 

and slightly longer T½ have been observed in a number of Asian and Hispanic subjects when 

compared with Caucasian data for cefdinir, cephradine, cefroxadine and flucloxacillin (125-134, 

169, 170). A population PK study observed a 16% higher CL of doripenem in Hispanic/Latino 

study subjects compared with Caucasians (121), another study found no difference between 

Japanese and Caucasians (266). No significant PK differences have been identified for cephalexin, 

cefotetan, cefpodoxime, cefaclor, ampicillin, piperacillin/tazobactam and meropenem between 

various ethnicities after adjusted for weight (118, 125, 184, 192, 193, 267-281). In summary, there 

is little evidence for clinically significant interethnic differences in the PK of most β-lactams. 
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3.2.7.4 Fluoroquinolones – Ciprofloxacin is moderately lipophilic and undergoes hepatic 

metabolism, glomerular filtration and tubular secretion. It is a p-glycoprotein and active transport 

substrate in various drug disposition pathways (173, 175, 178, 282). After an administration of a 

single oral dose (500mg), the AUC0-∞ observed in Brazilian subjects was 1.5 to 4-fold smaller than 

that observed in German, Caucasian, US American, Indonesian and Chinese subjects (135-140). A 

significantly higher ciprofloxacin AUC0-∞ has been observed in Nigerian and Chinese compared 

with German subjects as well when administered intravenously (139, 141, 142). Interethnic PK 

differences have not been described for levofloxacin, gatifloxacin and moxifloxacin (161, 283-287).  

 

3.2.7.5 Lincosamides – Clindamycin binds extensively to AGP and is predominantly metabolised in 

the liver (188, 288, 289). When given orally, Jordanians achieve a 3-4 fold greater AUC0-∞ than 

Chinese, Indians and Koreans, and 5-6 fold greater than US American and German volunteers after 

adjusted for dose (143-148).  

 

3.2.7.6 Macrolides – Erythromycin and clarithromycin are both extensively metabolised by 

CYP3A4 and are highly AGP bound (189, 191, 290). They are substrates for various active carrier 

proteins such as OATP and p-glycoprotein (234). Yu et al. (119) compared the PK parameters of 

Korean and Caucasian healthy subjects for a single oral dose of erythromycin and found a 65% 

higher AUC0-∞ in Koreans. Interethnic PK differences have also been described for oral 

clarithromycin across a number of ethnicities including Caucasian, Iranian, Korean, Turkish, 

Norwegian, Pakistani and Thai (157-168, 291, 292). Azithromycin has been shown to have a greater 

AUC0-∞ and longer T½ in Mexican, Thai, Chinese, Japanese and Jordanian subjects compared to 

equivalent Caucasians and US Americans (11, 149-154).  

 

3.2.7.7 Nitroimidazoles – Tinidazole undergoes extensive liver metabolism, about 77% of the drug 

is cleared by the CYP3A4 enzyme (13). An oral dose of 1g showed higher CL, shorter T½ and lower 

AUC0-∞ in Uighur people when compared with four other Asian groups – Han, Mongolian, Korean 

and Hui (13). Uighur people have closer genetic characteristics to Caucasians (293), which also has 

higher CYP3A4 metabolic activity. 

 

3.2.7.8 Anti-mycobacterials – Isoniazid, dapsone and pyrazinamide undergo acetylation.  

Acetylation polymorphisms lead to significant interethnic PK differences and chances of toxicity 

for these anti-mycobacterials (195, 294, 295). Rifampicin undergoes extensive hepatic metabolism 
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and has been shown to have a significantly higher maximum concentration (Cmax) and greater 

AUC0-∞ in Indonesians compared with British, Italian, Japanese, Indian and Mexican subjects (296-

298).  

 

3.2.7.9 Other antibacterials – Tigecycline is cleared predominantly by biliary excretion and 

glucuronidation (12). A meta-analysis has revealed that healthy and young black subjects have 33% 

higher CL than their Caucasian counterparts (122). A lower Vd at steady state and shorter T½ was 

also reported in this study (122). However no significant PK differences were found between 

Japanese and Caucasians in another study (299). Daptomycin is cleared predominantly by 

glomerular filtration and exhibits no PK differences when compared between Taiwanese and 

Caucasian subjects (300). Renal excretion is the main route of elimination for colistin 

methanesulfonate sodium and linezolid, with no PK differences identified between Japanese and 

Caucasian subjects (301-303).  

 

3.2.8 Clinical implications of interethnic PK differences  

Most antibacterial dosing recommendations are based on studies performed in Caucasian healthy 

volunteers and do not account for interethnic differences in PK. However, due to the wide 

therapeutic range of most commonly used antibacterials, adverse drug effects are probably unlikely 

in short term treatment courses within recommended doses, provided the differences in patient 

weight have been taken into account. Exceptions may be for antibacterials with a narrow 

therapeutic range, dose-dependent adverse effects, or in specific patient groups that are more 

vulnerable to excessive drug exposure (eg. the elderly, renal failure) or those that are experiencing 

physiological changes that may already have increased drug exposure (eg. hypoalbuminaemia).  

Our review has found that most of the antibacterial PK data has been described across Caucasian 

and Asian populations. However, other ethnic groups under these generalised categories may also 

display different PK. Examples of this include the 40% reduced AUC0-∞ of cefroxadine in Japanese 

compared with Korean subjects. Nonetheless, Caucasian subjects appear to generally have a lower 

AUC0-∞. This phenomenon is likely to a higher Vd resulting from higher concentrations of AGP and 

a larger TBW as well as a higher CL from higher levels of metabolism and/or renal excretion. These 

differences appear to be more prominent in lipophilic antibacterials.  
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On the other hand, ethnic groups of Asian origin achieve higher drug exposures. For time-

dependent β-lactams, this effect is advantageous as can result in a higher percentage of time above 

MIC (Table 3.3) thereby increasing the likelihood of optimal antibacterial effects. However, this PK 

characteristic also means that these Asian ethnic groups are at greater risk of drug accumulation and 

potentially concentration-related adverse drug effects. Such adverse effects are unlikely in short-

term antibacterial courses.  

For antibacterials used over a long-term course, the clinical relevance of interethnic PK differences 

becomes more significant. Ethnicity-related prolonged and elevated drug exposures have been 

described for some antituberculosis agents (195, 241, 295).  

 

Table 3.3 Percentage of time above MIC in a dosing interval for selected time-

dependent antibacterials 

Antibiotic Population 
Weight 

(kg) 
DI  
(h) 

Vd 
(L/kg) 

T½ 

(h) 
F 

%T>MIC
a 

MIC 
0.25mg/L 

MIC 
0.5mg/L 

MIC 
1.0mg/L 

Cephalosporins           

Cephradine 
250mg (PO) (129) 

Pakistani 
(n=12) 64 6 33.80 1.66 1b 100 100 80 

Cephradine 
250mg (PO) (130) 

US American 
(n=20) 64-94 6 22.53 0.85 1b 77 63 49 

Cefroxadine 
500mg (PO) (132) 

Japanese 
(n=5) 55-66 6 20.99 0.97 1c 100 90 74 

Cefroxadine 
500mg (PO) (133) 

Caucasian 
(n=10) 68 6 23.86 0.9 1c 96 81 66 

Macrolides          

Erythromycin 
500mg (PO) (119) 

Koreans 
(n=10) 63 6 31.28 1.75 0.3d 100 95 66 

Erythromycin 
500mg (PO) (119) 

Caucasian 
(n=10) 77 6 42.19 1.48 0.3d 94 70 45 

Abbreviations: DI, dose interval; Vd, volume of distribution; T�, half-life; F, bioavailability; T>MIC, duration 
of time above the minimum inhibitory concentration. 
a %T>MIC is worked out by the equation – ln #$%&	×	)

*+	×,-.
	×	 /½	

12 3
	× 455

#-
	, modified from Turnidge’s publication, 

1998 (304) 
b Rattie 1976 (130) 
c Bergan. 1980 (133) 
d Mather 1981 (172) 
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AGP concentrations can increase up to 5-fold in acute and chronic inflammatory diseases (305). 

Whether the interethnic difference in AGP concentration is diminished or amplified is unknown in 

such cases and remains largely unexplored. 

Most of the differences identified in this review are from studies of orally administered drugs and 

highlight the importance of gastrointestinal absorption and first-pass metabolism in interethnic 

differences. Where oral administration of flucloxacillin was compared between Chinese and 

Caucasian subjects, the Chinese demonstrated a 33% longer T½ (169, 170). However, this 

difference was not replicated when flucloxacillin was administered intravenously highlighting that 

the interethnic altered PK is driven by absorption and first pass metabolism differences (275, 306). 

Similar findings have been observed for ciprofloxacin (135, 139, 142), with these differences likely 

explained by transporter and metabolising enzyme polymorphisms (307). 

Furthermore, many of the antibacterials that have exhibited interethnic PK differences have 

relatively low bioavailability. Ciprofloxacin, clindamycin, erythromycin, azithromycin, 

flucloxacillin and clarithromycin have bioavailabilities of 0.69, 0.53, 0.25, 0.37, 0.54 and 0.55 (147, 

171, 191, 308, 309) respectively, comparing to amoxycillin, linezolid, levofloxacin and 

moxifloxacin of 0.77, 1.0, ≥0.99 and >0.91 (310-313), respectively. This supports the hypothesis 

that the presence of significant first pass metabolism and active transport mechanisms predominate 

in interethnic differences. Unfortunately, we could not find any research that specifically examined 

interethnic differences in antibacterial bioavailability to test this hypothesis. 

There are still many questions that need to be answered for the identified PK differences – whether 

these differences will persist, increase or decrease as the dose escalates, duration of treatment 

lengthens, AGP concentrations increase or based on the severity of the patient’s infection.  

 

3.2.9 Limitations of data 

Given that this area is not well recognised, there are a number of limitations with the available 

literature that has been used for this review. Many studies did not specify the ethnicity for 

individual subjects and in such cases the nationality was used. The results are further complicated 

by gender related PK differences. Furthermore, most of the studies are based on Asian and 
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Caucasian subjects and there is a lack of study performed in other common ethnic groups such as 

African, African/American, Hispanic and Australian Indigenous subjects.  

 

The majority of studies included in this review are performed on healthy volunteers, and the clinical 

relevance of the interethnic difference identified in cases of severe pathology is unknown. 

Most interethnic PK differences of antibacterials identified in this review are based on small PK and 

bioequivalence studies conducted in different ethnic groups. Differences in study methods, 

apparatus used, assaying techniques, methods and drug formulations may form a source of error, 

and because of the small sample size, none of the studies are sufficiently powered to advise on dose 

adjustment. 

 

3.2.10 Conclusion 

Interethnic PK differences exist for many antibacterials. Although there are limited direct 

comparative PK studies between ethnic groups, we found that upon comparing between different 

studies on healthy volunteers, significant differences in antibacterial exposure are likely for 

ciprofloxacin, macrolides, various cephalosporins, clindamycin and tinidazole. Body mass, active 

transport in the gut, metabolism, AGP binding and active processes for renal secretion appear to be 

the sources of these interethnic PK differences. On the other hand, other antibacterials including the 

carbapenems, most β-lactams, aminoglycosides, glycopeptides, most fluoroquinolones, linezolid 

and daptomycin, have little or no interethnic PK differences.  

Until the clinical relevance of any antibacterial PK differences can be described, optimised 

antibacterial dosing should be considered imperative for the treatment of infections. PK studies of 

antibacterials in specific ethnic populations are suggested to procure doses that will maximise 

patient outcome, especially in the clinically vulnerable groups.  
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3.3 Conclusion 

The systematic review performed in this Chapter has found that significant interethnic PK 

differences are likely for antibiotics with higher hepatic CL such as ciprofloxacin, macrolides, 

clindamycin, tinidazole and some cephalosporins. Interethnic PK differences are negligible for 

carbapenems, most β-lactams, aminoglycosides, glycopeptides, most fluoroquinolones, linezolid 

and daptomycin. Where interethnic differences were identified, subjects of Asian ethnicity 

generally manifested higher drug exposures when compared with the Caucasian counterparts. This 

difference is caused by a comparatively lower Vd and/or drug CL. The clinical relevance of these 

differences is unknown and warrants further research. 
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Chapter 4 Creatinine clearance of critically Ill Australian Indigenous patients 

 

4.1 Synopsis 

Drastic fluctuations observed in critical illnesses can lead to undesired pharmacological outcomes 

for antibiotics that are predominantly eliminated via the renal route. ARC can lead to sub-

therapeutic antibiotic concentrations in the plasma, whereas AKI increases the risk of toxicity from 

higher concentrations. This Chapter investigates the prevalence of ARC in the critically ill 

Australian Indigenous compared against non-Indigenous patients, and assesses the accuracy of 

various CrCL equations. Factors which correlate with ARC in the critically ill Australian 

Indigenous patients are also described.   
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4.2 Submitted manuscript entitled “Augmented renal clearance is common in 

Australian Indigenous patients requiring ICU admission” 

 

The manuscript entitled “Augmented renal clearance in Australian Indigenous patients requiring 

ICU admission” has been submitted for publication. 

The co-authors contributed to the manuscript as follows: The conducting of this observational study 

was performed by the PhD Candidate, Danny Tsai under the supervision of Prof. Jason A. Roberts 

and A/Prof. Andrew Udy. Data collection was performed by the PhD Candidate, Danny Tsai under 

the guidance of Prof. Jason A Roberts and A/Prof. Andrew Udy. Data analysis and statistical 

analysis were predominantly performed by A/Prof. Andrew Udy. The PhD Candidate, Danny Tsai, 

took the leading role in manuscript preparation and writing. Prof. Jason A. Roberts and A/Prof. 

Andrew Udy took the leading role in critical review and revision of the manuscript. Critical review 

was performed by A/Prof. Andrew Udy, Dr Penelope Stewart, Dr Stephen Gourley, Ms Naomi 

Morick, Prof. Jeffrey Lipman and Prof. Jason A. Roberts. 

The manuscript is presented as per the submitted manuscript. The figures and tables have been 

inserted into the text in locations close to where they were referred to in the text. The abbreviations 

and numberings of pages, figures and tables have been adjusted to comply with the format of this 

thesis. The references can be found in the references section of the thesis.  
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4.2.1 Abstract  

 

Objectives ARC refers to the enhanced renal excretion of circulating solute commonly 

demonstrated in numerous critically ill sub-groups. This study aimed to describe the prevalence of 

ARC in critically ill Australian Indigenous patients and explore the accuracy of commonly 

employed mathematical estimates of glomerular filtration. 

 

Design Single-centre, prospective, observational study. 

Setting ICU, Alice Springs Hospital, Central Australia.  

Participants Critically ill adult Australian Indigenous and non-Indigenous patients with a urinary 

catheter in situ. Exclusion– anuria, pregnancy or the requirement for renal replacement therapy.   

Main outcome measures Daily eight-hour CrCLm were collected throughout the ICU stay. ARC was 

defined by a CrCLm ≥130mL/min/1.73m2.  The Cockcroft-Gault and Chronic Kidney Disease 

Epidemiology Collaboration equations were also used to calculate mathematical estimates for 

comparison. 

Results A total of 131 patients were recruited (97 Indigenous, 34 non-Indigenous) and 445 samples 

were collected. The median (range) CrCLm was 93.0 (5.14-205.2) and 90.4 (18.7-206.8) 

mL/min/1.73m2 in Indigenous and non-Indigenous patients, respectively. Thirty-one of 97 (32.0%) 

Indigenous patients manifested ARC, compared to 7 of 34 (20.6%) non-Indigenous patients 

(p=0.21). Throughout the ICU stay, ARC was detected more frequently in Indigenous patients (24.7% 

vs 12.8% of samples, p<0.01). Younger age, major surgery, higher baseline renal function and an 

absence of diabetes were all associated with ARC.  Both mathematical estimates manifest poor 

accuracy. 

Conclusions ARC was highly prevalent in critically ill Indigenous patients, which places them at 

significant risk of underdosing with renally excreted drugs. CrCLm should be obtained wherever 

possible to ensure accurate dosing.   
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4.2.2 Introduction  

Fluctuation in renal function is commonly observed in critically ill patients (64, 314), and can lead 

to detrimental clinical outcomes. An acute reduction in renal function, commonly referred to as 

AKI, is a form of end-organ dysfunction which is associated with a worse prognosis (315). From a 

pharmacological perspective, it leads to accumulation of renally eliminated drugs and increased risk 

of toxicity. On the other hand, compelling data over the past decade describes a phenomenon in 

critical illness termed ARC, which is characterised by an increase in renal solute excretion (64).  

The prevalence of ARC is reported between 30-65% in those with normal SCr (102).  ARC is of 

particular interest, as it is associated with low serum concentrations for renally eliminated drugs 

(69, 77, 316, 317). Commonly used antibiotics in the ICU such as beta-lactams and glycopeptides 

are susceptible to such an effect, resulting in sub-therapeutic drug concentrations (317-319) and 

potentially worse clinical outcomes (320).  

Critically ill Australian Indigenous patients with sepsis are a major health concern, with high 

morbidity and mortality rates (29). They are generally younger and have greater sickness severity 

(321). However, the prevalence of ARC has not been described in this population, although 

Indigenous Australians are reported to have 30% fewer nephrons as compared with their non-

Indigenous counterparts (44). This is theorised to be a leading cause of the high prevalence of 

chronic kidney disease (CKD) in this population, and may impact the development of ARC.  

In addition, numerous methods to determine the glomerular filtration rate (GFR) are available.  

Over the last decade various mathematical equations to estimate GFR (eGFR) have been widely 

implemented, despite concerns about their application in specific populations (322, 323).  Indeed, a 

recent study has suggested the Chronic Kidney Disease Epidemiology Collaboration (CKD-EPI) 

equation manifests the greatest accuracy in non-critically ill Australian Indigenous patients (324), 

although no data are availble for this group in the ICU. 

Therefore the aims of this study were to (1) describe the prevalence of ARC in critically ill 

Australian Indigenous patients, (2) identify risk factors for ARC in this group and (3) study the 

accuracy of various existing eGFR equations.  
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4.2.3 Participants and methods 

This was a prospective, observational cohort study of critically ill Australian Indigenous and non-

Indigenous patients admitted to a general 10-bed ICU in Alice Springs Hospital, Australia. 

Approximately 85-90% of patients admitted to this hospital are Indigenous. Common characteristics 

of patients admitted to this ICU include sepsis, major trauma, exacerbation of heart failure, multiple 

medical complications (eg. cardiovascular, renal, hepatic, pancreatic and respiratory), alcohol 

related illnesses, and major surgery.  Patients who are not routinely admitted include those requiring 

specialised surgery (eg. complex neurosurgery, cardiothoracic, head and neck, complex vascular 

surgery and organ transplantation), specialised medical services (eg. extra-corporeal membrane 

oxygenation, plasmapheresis and induction of chemotherapy) and those with spinal, head or pelvic 

injuries requiring specialised interventions. Ethical approval was granted by the local (Central 

Australian Human Research Ethics Committee, approval code HREC-15-309) and university (the 

University of Queensland Human Research Ethics Committee, approval code 2015000820) ethics 

committees. 

 

4.2.3.1 Study population  

The inclusion criteria were: (1) ≥18 years of age; (2) admitted to ICU; (3) an indwelling urinary 

catheter in situ; and (4) expected ICU stay for ≥24 hours. The exclusion criteria were (1) anuria; (2) 

requiring haemodialysis or continuous renal replacement therapy (CRRT); (3) pregnancy; (4) 

treating clinician considered the patient unsuitable for enrolment; and (5) participant chooses to opt 

out.  

 

4.2.3.2 Study protocol 

All patients were screened upon ICU admission. In those meeting the inclusion criteria, and none of 

the exclusion criteria, the total amount of urine excreted between 3 am and 11 am everyday was 

collected via the urinary catheter and sent to the local hospital pathology laboratory. The volume of 

urine and exact duration of urine collection were recorded. The creatinine concentration in the urine 

sample was assayed using the VITROS® CREA slide method with the Vitros fusion 5.1 analyser.  



 67 

Demographic and clinical data collected include age, ethnicity, gender, height, weight, diabetes 

status, baseline SCr, baseline glomerular filtration rate according to the CKD-EPI equation 

(eGFRCKD-EPI), 24-hour fluid balance, inotrope usage, APACHE II score, SOFA score, length of 

ICU and hospital stay, and admission diagnosis.  

 

4.2.3.3 Calculation of CrCLm and eGFR/CrCL 

CrCL was both measured (CrCLm) and calculated using the Cockcroft-Gault equation (CrCLCG).  

eGFR was also calculated using the CKD-EPI equation.  Table 1 describes each method in detail.  

The SCr used in these calculations was extracted from the routine laboratory test performed 

between 5 am and 6 am on each sampling day. All values were normalised to a body surface area of 

1.73m2.  

 

4.2.3.4 Data analysis  

ARC was defined as a CrCLm ≥130mL/min/1.73m2 as it is correlated with sub-therapeutic antibiotic 

concentrations when conventional doses are used (64, 69). Different levels of renal dysfunction 

were categorised in accordance with the RIFLE criteria (325). Risk of AKI (rAKI) was defined as a 

1.5 to <2 x increase from baseline SCr; AKI was defined as 2 to <3 x increase from baseline SCr; 

and acute renal failure (ARF) was defined as ≥3 x increase from baseline SCr or SCr >354 µmol/L 

with an acute rise of >44 µmol/L. Where a baseline SCr was not available, this was ‘back-

calculated’ using the CKD-EPI equation. The prevalence (based on the number of patients who met 

these criteria on at least one occasion during the ICU stay) and frequency (based on the number of 

samples where these criteria were met) of ARC, rAKI, AKI and ARF were compared between 

Indigenous and non-Indigenous patients. Demographic and clinical data associated with ARC in 

Indigenous patients were also assessed.   
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Table 4.1. Mathematical equations used to calculate eGFR/CrCL 

Name of 
equation 

Mathematical formula Notes 

CrCLm  (UCr/SCr) x (VUr/T x 60) x 1.73 / BSA 

UCr is urine creatinine, (µmol/L) 
SCr is serum creatinine (µmol /L) 
VUr is urine volume (L) 
T is time (h) 
BSA is body surface area (m2) 

CrCLCG    (140- age) x (TBW or LBW) [x 0.85 for 
females] / (SCr x 0.813) x 1.73/BSA 

Age (yr) 
TBW is total body weight (kg) 
LBW is lean body weight (kg) 

eGFRCKD-

EPI 

141 x minimum(SCr x 0.0113/k, 1)α x 
maximum(SCr x 0.0113/k, 1)-1.209 x 
0.993Age [x 1.018 for female] 

k is 0.7 for female, 0.9 for male 
α is -0.329 for female, -0.411 for 
male 

Abbreviation: CrCLm, measured creatinine clearance; CrCLCG, creatinine clearance calculated by the 
Cockcroft-Gault equation; eGFRCKD-EPI, estimated glomerular filtration rate calculated by the Chronic 
Kidney Disease-Epidemiology collaboration equation.  

All creatinine clearance/estimated glomerular filtration are represented in mL/min/1.73m2 

 

4.2.3.5 Statistical analysis 

Data were analysed using SPSS 23.0 for Windows (SPSS, Chicago, IL). Continuous data are 

presented as the median (interquartile range) or mean (standard deviation), and categorical data 

presented as counts (%), as appropriate. Between patient differences were assessed using a 

Student’s T-test, Mann-Whitney U-test, or Chi-squared test. Bland-Altman plots were used to 

assess the precision and bias of different mathematical equations using CrCLm as the reference. 

These mathematical equations include eGFRCKD-EPI and CrCLCG calculated using total body weight 

(TBW) and lean body weight using the James, Boer and Hume formulae (LBWJ, LBWB and LBWH, 

respectively) (326-328). A p-value of <0.05 was considered as statistically significant.  
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4.2.4 Results 

Study recruitment was conducted over the 5-month period 1st June to 31st October 2015. The 

process for patient enrolment is presented in Figure 4.1. A total of 131 patients (97 Indigenous and 

34 non-Indigenous) were included, providing 445 urine samples. Demographic and clinical data are 

presented in Table 4.2. Indigenous and non-Indigenous patients provided a similar number of 

urinary collections (median of 2 (1-4) per Indigenous patient, and 2 (1-5) per non-Indigenous 

patient). The Indigenous patient group had more males, was significantly younger and had a higher 

prevalence of sepsis and diabetes.  

 

 

 

Figure 4.1 Participant inclusion processes 

Abbreviation: ICU, intensive care unit; HD, haemodialysis; CRRT, continuous renal replacement 
therapy; ESKD, end stage kidney disease 
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4.2.4.1 Prevalence and frequency of ARC rAKI, AKI and ARF  

The prevalence of ARC, rAKI, AKI and ARF are presented in Table 4.3. A higher rate of ARC was 

observed in the Indigenous group, although this was not statistically significant (p=0.21). The 

frequency (per urinary sample) of ARC, rAKI, AKI and ARF are presented in Table 4.4. There 

were significantly more occasions of ARC in the Indigenous patient group (p<0.01). Twenty-nine 

of the 66 (43.9%) Indigenous patients admitted with baseline eGFRCKD-EPI >90mL/min/1.73m2 

manifested ARC during their ICU stay.  

 

4.2.4.2 Determinants of ARC in Indigenous patients and assessment of accuracy of eGFR 

equations 

A comparison of demographic and clinical characteristics between Indigenous patients with and 

without ARC is presented in Table 4.5. Indigenous patients who developed ARC were significantly 

younger, had a higher baseline eGFRCKD-EPI, were more likely to have had major surgery and less 

likely to have diabetes.     

Statistical comparison of various mathematical equations versus CrCLm for the first sampling 

occasions is presented in Table 4.6. All tested equations show poor agreement with CrCLm. Figure 

4.2 presents the Bland-Altman plots which compare the CrCLm against eGFRCKD-EPI and CrCLCG 

calculated from TBW, LBWJ, LBWB and LBWH. Overall, CrCLCG calculated with TBW showed 

the lowest bias and highest precision. However, eGFRCKD-EPI has the narrowest 95% confidence 

interval for limits of agreement in the Bland-Altman analysis.  
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   Table 4.2 Demographic and clinical information 

Variable  All (n=131) Indigenous 
(n=97) 

Non-Indigenous 
(n=34) p-value 

Age, years# 50 [18] 47 [17] 61 [18] <0.01� 
Male gender 60 (46) 38 (39) 21 (62) 0.02� 
Anthropometrics# 

Weight (kg) 
Height (m) 
BSA (m2) 

 
81 [28] 

1.67 [0.09] 
1.87 [0.28] 

 
79 [27] 

1.66 [0.08] 
1.85 [0.27] 

 
86 [32] 

1.70 [0.08] 
1.94 [0.31] 

 
0.24� 
0.02� 
0.10� 

Admission category 
Sepsis 
Trauma 
Major surgery 

 
67 (51.1)  
16 (12.2) 
26 (19.8) 

 
59 (60.8) 
10 (10.3) 
12 (12.4) 

 
8 (23.5) 
6 (17.6) 
14 (41.2) 

 
<0.01� 
0.28� 

<0.01� 
Diabetes 57 (43.5) 49 (50.5) 8 (23.5) <0.01� 
Baseline eGFRCKD-EPI 

>90 mL/min/1.73m2 
61-90 mL/min/1.73m2 
30-60 mL/min/1.73m2 
<30 mL/min/1.73m2 

 
86 (65.5) 
23 (17.6) 
15 (11.5) 
7 (5.3) 

 
66 (68.0) 
11 (11.3) 
13 (13.4) 
7 (7.2) 

 
20 (58.8) 
12 (35.3) 
2 (13.3) 
0 (0.0) 

 
0.33� 

<0.01� 
0.35� 
0.19� 

Baseline eGFRCKD-EPI 
(mL/min/1.73m2) 

99 [81-115] 102 [74-118] 93 [83-108] 0.21 

APACHE II score on admission 22 [18-27] 22 [18-27] 21 [18-30] 0.72 
SOFA score on admission 6 [4-10] 7 [4-10] 6 [4-9] 0.50 
Baseline SCr (µmol/L) 66 [55-87] 65 [55-93] 70 [60-77] 0.79 
ICU length of stay (days) 4 [2-6] 4.0 [2.0-6.5] 4.5 [3.0-6.3] 0.49 
Hospital length of stay (days) 9 [5-19] 9 [5.0-17] 8 [5-23] 0.98 
ICU mortality 4 (3) 2 (2) 2 (6) 0.28� 
Hospital mortality 8 (6) 5 (5) 3 (9) 0.43� 
Abbreviation: BSA, body surface area; eGFRCKD-EPI, estimated glomerular filtration rates calculated 
from the Chronic Kidney Disease Epidemiology collaboration equation; APACHE II score, Acute 
Physiology and Chronic Health Evaluation II score; SOFA score, Sequential Organ Failure 
Assessment score; SCr, serum creatinine concentration; ICU, intensive care unit 
Data is presented in median [interquartile range] and n (%); p-values were obtained from Mann 
Whitney U-test unless otherwise stated 
#Data is presented in mean [standard deviation] 
*p-values were obtained from Student’s T-test  
�p-values were obtained from Chi-squared test 
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Table 4.3 Prevalence of ARC, rAKI, AKI and ARF   

 All 
(n=131) 

Indigenous 
(n=97) 

Non-indigenous 
(n=34) p-value 

ARC (%) 38 (29.0) 31 (32.0) 7 (20.6) 0.21 
ARF 11 (8.4) 9 (9.3) 2 (5.9) 0.54 
AKI 13 (9.9) 11 (11.3) 2 (5.9) 0.36 
rAKI 19 (14.5) 14 (14.4) 5 (14.7) 0.97 
Abbreviation: ARC, augmented renal clearance; ARF, acute renal failure; AKI, acute kidney injury; 
rAKI, risk of AKI 
p-values were obtained from Chi-squared test 

 

 

Table 4.4 Frequency of ARC, rAKI, AKI and ARF 

 All samples 
(n = 445) 

Indigenous 
(n = 328) 

Non-Indigenous 
(n = 117) p-value 

ARC (%) 96 (21.6) 81 (24.7) 15 (12.8) <0.01 
ARF 24 (5.4) 20 (6.1) 4 (3.4) 0.27 
AKI 31 (7.0) 24 (7.3) 7 (6.0) 0.63 
rAKI 35 (7.9) 28 (8.5) 7 (6.0) 0.38 
Abbreviation: ARC, augmented renal clearance; ARF, acute renal failure; AKI, acute kidney injury; 
rAKI, risk of AKI 
p-value was obtained from Chi-squared test 
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Table 4.5 Comparison of Indigenous patients with and without ARC 

Abbreviation: ARC, absolute augmented renal clearance; APACHE II, Acute Physiology and Chronic Health 
Evaluation II; SOFA, Sequential Organ Sequential Assessment; SCr, serum creatinine concentration; 
eGFRCKD-EPI, estimated glomerular filtration rate calculated from the Chronic Kidney Disease – 
Epidemiology Collaboration equation; ICU, intensive care unit 
Data is presented in median [interquartile range] or n (%) unless otherwise stated; p-values were obtained 
from Mann Whitney U-test unless otherwise stated 
Data in italics are statistically significant  
#Data is presented in mean [standard deviation] 
*p-values were obtained from Student’s T-test  
�p-values were obtained from Chi-squared test 
  

Variable  All 
(n=97) 

ARC 
(n=31) 

No ARC 
(n=66) p-value 

Age (y)# 46.8 [16.9] 37.3 [14.8] 51.3 [16.0] <0.01* 
Male gender 38 (39.2) 16 (51.6) 22 (33.3) 0.09� 
Weight (kg)# 79.0 [26.7] 73.5 [20.0] 81.6 [29.2] 0.17* 
Diabetes 49 (50.5) 9 (29.0) 40 (60.6) <0.01� 
Sepsis admission 59 (60.8) 18 (58.1) 41 (62.1) 0.70� 
Trauma admission 10 (10.3) 5 (16.1) 5 (7.6) 0.28� 
Major surgery 12 (12.4) 8 (25.8) 4 (6.1) 0.02� 
APACHE II Score on admission 22 [18-27] 23 [19-27] 22 [18-26] 0.28 
SOFA Score on admission 7 [4-10] 8 [5-11] 6 [3-10] 0.29 
Baseline SCr (µmol/L) 65 [55-93] 59 [50-66] 71 [59-130] <0.01 
Baseline eGFRCKD-EPI 
(mL/min/1.73m2) 

102 [74.2-
118] 

117 [107-
129] 

94 [45-113] <0.01 

Baseline eGFRCKD-EPI 
> 90ml/min/1.73m2 
61-90 ml/min/1.73m2 
30-60 ml/min/1.73m2 
< 30 ml/min/1.73m2 

 
66 (68.0) 
11 (11.3) 
13 (13.4) 
7 (7.2) 

 
29 (93.5) 
2 (6.5) 
0 (0.0) 
0 (0.0) 

 
37 (56.1) 
9 (13.6) 
13 (19.7) 
7 (10.6) 

 
<0.01� 
0.49� 

<0.01� 
0.09� 

ICU length of stay (days) 4.0 [2.0-6.5] 4.0 [2.0-8.0] 4.0 [2.8-6.3] 0.82 
Hospital length of stay (days) 9.0 [5.0-

16.5] 
9.0 [6.0-13.0] 10.0 [5.0-

17.8] 
0.61 

ICU mortality 2 (2.1) 0 (0.0) 2 (3.0) 1.00� 
Hospital mortality 5 (5.2) 0 (0.0) 5 (7.6) 0.17� 
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Table 4.6. Comparison of different methods of determining CrCL for the first occasion 

of sampling 

Abbreviation: LOA, Limits of Agreement; CrCLm, measured creatinine clearance; eGFRCKD-EPI, estimated 
glomerular filtration rate calculated from the Chronic Kidney Disease – Epidemiology collaboration 
equation; CrCLCG (TBW), creatinine clearance calculated from the Cockcroft-Gault equation based on 
patient’s today body weight; CrCLCG (LBWJ /LBWB/LBWH), creatinine clearance calculated from the 
Cockcroft-Gault equation based on patient’s lean body weight, using James, Boer and Hume’s formula, 
respectively 

 

 

 

 

 

 

 

 

 Reference 
Method Comparator Bias Precision 95% LOA - 

Lower 
95% LOA - 

Upper 
Non-indigenous 
 CrCLm eGFRCKD-EPI 16.3 29.6 -41.6 74.3 
 CrCLm CrCLCG (TBW) 8.2 43.1 -76.2 92.7 
 CrCLm CrCLCG (LBWJ) 39.7 33.1 -25.2 104.7 
 CrCLm CrCLCG (LBWB) 26.5 37.6 -47.1 100.2 
 CrCLm CrCLCG (LBWH) 39.4 32.8 -25.0 103.7 
Indigenous 
 CrCLm eGFRCKD-EPI 10.0 29.6 -48.1 68.1 
 CrCLm CrCLCG (TBW) -3.2 41.4 -84.4 78.0 
 CrCLm CrCLCG (LBWJ) 27.6 31.1 -33.3 88.5 
 CrCLm CrCLCG (LBWB) 10.3 34.1 -56.4 77.1 
 CrCLm CrCLCG (LBWH) 27.4 32.9 -37.0 91.8 
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Figure 4.2. Bland-Altman plots for comparison of measured CrCL with A) eGFRCKD-EPI, B) 

CrCLCG (TBW), C) CrCLCG (LBWJ); CrCLCG (LBWB), D) CrCLCG (LBWJ) and E) CrCLCG 

(LBWH), on the first sampling day.   

Abbreviation:  CrCLm, measured creatinine clearance; eGFRCKD-EPI, estimated glomerular filtration 
rate calculated with the Chronic Kidney Disease – Epidemiology collaboration equation; CrCLCG 
(TBW), creatinine clearance calculated with the Cockcroft-Gault equation based on total body 
weight; CrCLCG (LBWJ), creatinine clearance calculated with the Cockcroft-Gault equation based 
on lean body weight (James equation); CrCLCG (LBWB), creatinine clearance calculated with the 
Cockcroft-Gault equation based on lean body weight (Boer equation); CrCLCG (LBWH), creatinine 
clearance calculated with the Cockcroft-Gault equation based on lean body weight (Hume equation) 
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4.2.5 Discussion 

4.2.5.1 Key Findings 

To our knowledge, this is the first study to describe CrCLm in critically ill Australian Indigenous 

patients. We observed a high prevalence of ARC in this group; thirty-one of 97 (32.0%) Indigenous 

patients manifested ARC, despite the fact this cohort is known to have a significantly fewer 

nephrons.  Furthermore, we identified significant associations between ARC and younger age, 

major surgery, the absence of diabetes, and a baseline eGFRCKD-EPI >90mL/min/1.73m2. All 

mathematical equations exhibited poor accuracy in comparison to CrCLm, suggesting limited utility 

in the critical care setting. 

 

4.2.5.2 Relationship with Previous Studies 

The prevalence of ARC detected in the Indigenous group is consistent with that reported in other 

critically ill populations (30-65%), albeit at the lower range (64). A probable explanation is that 

patients with CKD or high SCr were excluded in most other studies exploring the epidemiology of 

ARC. Approximately 2% of the Australian Indigenous population self-report to have CKD, which 

is 10 times more than non-Indigenous Australians (329). The unusually high prevalence of CKD in 

this unique population may further contribute to the relatively low prevalence of ARC reported in 

our data.   

Numerous risk factors for ARC have been identified, including: male gender, younger age, multiple 

trauma, mechanical ventilation, sepsis and use of inotropes (318, 320). In our study, we found a 

significant association between ARC and younger age, major surgery, the absence of diabetes, and 

baseline eGFRCKD-EPI >90mL/min/1.73m2. The exceptionally high prevalence of diabetes in the 

Australian Indigenous population is likely to explain its inverse association with ARC, as poorly 

controlled diabetes is commonly associated with CKD. Of note, critically ill Indigenous patients in 

the Australian ICU setting are 10-15 years younger compared with non-Indigenous comparators 

(321), and was a consistent finding in our study. 

The limited accuracy of the eGFR equations in comparison to CrCLm is in agreement with 

previously published data (330). The mathematical equations are heavily dependent on SCr, which 

does not immediately reflect the transient fluctuations of renal function observed in critical illness. 
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The precision and bias are similar between most equations, although CrCLCG marginally manifests 

the lowest bias and highest precision. However, a recent study suggested eGFRCKD-EPI as the most 

accurate formula for optimising vancomycin therapy in critically ill patients, as compared with 

CrCLCG and modification of diet in renal disease (MDRD) eGFR (67).  Of note, eGFRCKD-EPI is 

likely to underestimate the GFR in critically ill patients and its accuracy worsens significantly with 

higher CrCL (67, 102, 331).  

 

4.2.5.3 Study implications 

ARC was identified in approximately 1 in 3 Indigenous patients, reminding the clinician that any 

wholesale assumptions about renal function in this group are likely to be flawed.  As such, 

obtaining routine CrCLm for all critically ill Indigenous patients without overt AKI or CKD, appears 

warranted, in order to ensure the clinician has accurate knowledge of renal function. 

Traditionally, a reduction in renal function (identified by a rise in SCr) in the setting of critical 

illness, triggers dose adjustment for renally eliminated drugs according to recommendations from 

available evidence-based guidelines. However, a SCr in the normal laboratory range usually does 

not lead to further investigation of its pharmacological implications. Indeed, most Australian ICU 

laboratory reporting systems currently provide  eGFR results greater than 90mL/min/1.73m2 just as 

‘>90mL/min/1.73m2’, indicating the patient has ‘adequate’ renal function. However, as described in 

this study, the prevalence of ARC was not insignificant in critically ill Indigenous patients. This 

information would not be routinely reported in a clinical setting, with some CrCLm being as high as 

205 mL/min/1.73m2, which clearly mandates differing dosing requirements to 90 mL/min/1.73m2.  

Such findings require greater attention in clinical practice as the presence of ARC has been 

correlated with sub-therapeutic levels of drugs that are predominantly renally eliminated, which 

encompasses most commonly used antibiotics in the ICU (77, 317). ARC has also been reported in 

studies describing the PK of commonly used antibiotics in critically ill Australian Indigenous 

patients with severe sepsis, where significantly higher doses and/or dosing frequencies are 

recommended (332, 333). Such dose optimisation should be considered imperative, as the presence 

of ARC in critically ill patients requiring antibiotics has been correlated with worse clinical 

outcomes (320). Nonetheless, a consensus has yet to be reached regarding the best approach to 

antibiotic dosing in the presence of ARC.  
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4.2.5.4 Strengths and Limitations 

There are some limitations to this study. CrCLm includes creatinine excreted by tubular secretion, 

creating a source of error when compared with actual GFR, especially for patients with low CrCLm 

(102). While it would have been ideal to use an exogenous filtration marker (such as inulin or 

radionucleotide analogues), the application of such is not practical in the ICU.  Furthermore, CrCLm 

is widely recommended for use in critical illness (322, 334), and is often considered a surrogate of 

GFR in routine clinical practice.   

The sample size in our study is not large enough to investigate further sub-groups or undertake 

longitudinal analyses.  In this case, it may be that the difference in prevalence of ARC between 

Indigenous and non-Indigenous patients would reach statistical significance using a larger sample.  

In this fashion, our study still provides compelling observational data concerning renal function in 

critically ill Indigenous patients, representing an at-risk group for which there is a paucity of 

contemporary data.  In particular, our study provides unique data comparing the accuracy of varying 

methods to estimate GFR in this setting. 

Finally, as this is not a PK/PD study, alterations of PK or clinical outcomes due to the presence of 

ARC for patients requiring pharmacotherapy cannot be assessed.  Importantly however, a large 

number of studies have previously established the association between ARC and sub-optimal drug 

exposure. 

 

4.2.5.5 Future Studies 

A large prospective multi-centre study is needed to clarify the relationship between the 

manifestation of ARC and clinical outcomes in critically ill Australian Indigenous patients requiring 

antimicrobial therapy. Furthermore, PK studies are also needed to describe optimal antimicrobial 

doses for different levels of ARC.  
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4.2.6 Conclusion  

Critically ill Australian Indigenous patients have a high prevalence of ARC, leading to a significant 

risk of underdosing with renally excreted drugs. Risk factors of ARC in critically ill Indigenous 

patients include younger age, the absence of CKD, the absence of diabetes and recent major 

surgery. All mathematical equations tested demonstrated limited accuracy in comparison with 

CrCLm, and hence urinary CrCLm should be obtained whenever ARC is suspected.  
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4.3 Conclusion 

This Chapter has described the high prevalence of ARC in critically ill Australian Indigenous 

patients. A numerically higher prevalence of ARC is observed when compared with the non-

Indigenous patients, which was likely due to their younger age. The factors correlated with ARC 

include younger age, the absence of CKD, the absence of diabetes and recent major surgery. Since 

all tested CrCL equations manifested limited correlation with CrCLm, urinary CrCLm should be 

obtained whenever ARC is suspected to optimise drug dosing. When obtaining CrCLm is not 

possible, eGFRCKD-EPI can be considered to estimate patient’s renal function. 
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Chapter 5 Optimising meropenem dosing in critically ill Australian Indigenous 

patients with severe sepsis 

 

5.1 Synopsis 

Currently, there is no available PK data for meropenem in the critically ill Australian Indigenous 

patients. The aim of this Chapter was to describe the population PK of meropenem in severely 

septic Australian Indigenous patients in comparison to non-Indigenous patients. The Monte Carlo 

dosing simulations performed in this Chapter also provides a set of dosing recommendations for 

critically ill Australian Indigenous patients which aimed to optimise PK/PD target attainment.   
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5.2 Published manuscript entitled “Optimising meropenem dosing in critically ill 

Australian Indigenous patients with severe sepsis” 

   

The manuscript entitled “Optimising meropenem dosing in critically ill Australian Indigenous 

patients with severe sepsis” has been published in International Journal of Antimicrobial Agents. 

The co-authors contributed to the manuscript as follows: The conducting of this population PK 

study was performed by the PhD Candidate, Danny Tsai under the supervision of Prof. Jason A. 

Roberts. Data collection was performed by the PhD candidate, Danny Tsai under the guidance of 

Prof. Jason A Roberts. Drug assay was performed by Dr Steven Wallis and the PhD candidate 

Danny Tsai. The description of the drug assay methods in the manuscript was written by Dr Steven 

Wallis. PK modelling was performed by Prof. A Roberts. The PhD Candidate, Danny Tsai, took the 

leading role in manuscript preparation and writing. Prof. Jason A. Roberts took the leading role in 

critical review and revision of the manuscript. Critical review was performed by Dr Penelope 

Stewart, Dr Stephen Gourley, Dr Rajendra Goud, Dr Saliya Hewagama, Dr Sushena 

Krishnaswamy, Dr Steven Wallis, Prof. Jeffrey Lipman and Prof. Jason A. Roberts. 

 The manuscript is presented as per the accepted manuscript. The figures and tables have been 

inserted into the text in locations close to where they were referred to. The abbreviations and 

numberings of pages, figures and tables have been adjusted to comply with the format of this thesis. 

The references can be found in the references section of the thesis.  
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5.2.1 Abstract 

Objectives Currently there are no PK data to guide antibiotic dosing in critically ill Australian 

Indigenous patients with severe sepsis. This study aimed to determine whether the population PK of 

meropenem were different between critically ill Australian Indigenous and critically ill Caucasian 

patients. 

Methods Serial plasma and urine samples as well as clinical and demographic data were collected 

over two dosing intervals from critically ill Australian Indigenous patients. Plasma meropenem 

concentrations were assayed by validated chromatography. Concentration-time data were analysed 

with data from a previous PK study in critically ill Caucasian patients using Pmetrics. The 

population PK model was subsequently used for Monte Carlo dosing simulations to describe 

optimal doses for these patients.   

Results Six Indigenous and five Caucasian subjects were included. A two compartment model 

described the data adequately with meropenem CL and Vc described by CrCL and patient TBW 

respectively. Patient ethnicity was not supported as a covariate in the final model. Significant 

differences were observed for meropenem CL between the Indigenous and Caucasian groups, 

median 11.0 (range 3.0–14.1) vs 17.4 (4.3–30.3) L/h, p< 0.01, respectively. Standard dosing 

regimens (1g IV 8-hourly 30-min infusion) consistently achieved target exposures at the MIC 

breakpoint in the absence of ARC. 

Conclusion No significant interethnic differences in meropenem PK between the Indigenous and 

Caucasian groups were detected and CrCL was found to be the strongest determinant of appropriate 

dosing regimens.  
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5.2.2 Introduction   

Sepsis has been a major health issue in the Australian Indigenous population and is associated with 

a high morbidity and mortality rate (2, 4, 30). It remains one of the highest health concerns of which 

about 60% of deaths in the Indigenous patient population of the largest Central Australian remote 

hospital were related to infection, in comparison to 25% in the non-Indigenous patient population 

from 2000 to 2005. Fifty-six per cent of the infection-related deaths were attributed to bacterial 

sepsis (3).  

Meropenem is a broad spectrum antibiotic commonly used in the ICU (335). Its PK/PD properties 

show a time dependent bacterial kill characteristic with a target of maintaining free drug 

concentration above the MIC for at least 40% of the dosing interval (>40%fT>MIC). (336). However, 

significant changes in Vd) and drug CL observed in critically ill patients can alter the possibility of 

achieving this target (18). These PK changes are difficult to predict, especially in the absence of 

TDM.  

Conventional dosing guidelines are usually followed in critically ill Indigenous patients, however, a 

recent systematic review suggested described PK differences between ethnicities for some 

antibiotics (337). Indeed, young and healthy Indigenous adults are reported to have 30% less 

nephrons than non-Indigenous comparators, as well as having a mean kidney volume which is 27% 

greater (44). From an anthropometrics perspective, the Australian Indigenous have lower body 

mass, higher central fat and slimmer limbs (338). Furthermore, they were shown to have similar 

allele frequency as South Asians for some cytochrome P450 enzymes (45). Whether these 

physiological differences affect meropenem PK in the acute setting is unknown. Currently there is 

no available data on the antibiotic PK of critically ill Indigenous patients in Australia. 

This study aims to compare the population PK of meropenem in Australian Indigenous patients 

with severe sepsis and critically ill Caucasian patients with sepsis. 
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5.2.3 Materials and methods 

5.2.3.1. Institution where this work was carried out 

Department of Intensive Care Medicine, Alice Springs Hospital, Alice Springs, Northern Territory, 

Australia. 

 

5.2.3.2 Setting  

This was a prospective, observational cohort study investigating the PK of meropenem. Ethical 

approval was obtained from local (Central Australian Human Research Ethics Committee, approval 

code HREC-13-149) and university (The University of Queensland Human Research Ethics 

Committee, approval code 2013000904) Ethics Committees.  

 

5.2.3.3 Study population  

The inclusion criteria were: (1) Australian Indigenous; (2) ≥18 years of age; (3) confirmed or 

suspected severe sepsis within the previous 48 hours; (4) prescribed meropenem; and (5) an arterial 

line in situ. The exclusion criteria were (1) CrCL <15 mL/min; (2) requiring haemodialysis or 

CRRT; and (3) pregnancy.  

 

5.2.3.4 Study protocol 

The dose of meropenem (DBL Meropenem®; Hospira Australia, Melbourne, Australia) was 

determined by the treating clinicians and was made up in 100 mL sodium chloride 0.9% and infused 

intravenously over 30 minutes. Ten blood samples were collected in 2 mL lithium heparin tubes 

from the existing arterial line over one dosing interval at the following time-points 0, 15, 30, 45, 60, 

90, 120, 180, 360 and 480 minutes from initiation of infusion. A second set of samples following 

the same regimen was obtained the next day. Demographics, clinical information, and routine 

laboratory test results performed on the study days were also collected. 
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5.2.3.5 Sample handling and storage  

Blood samples were placed in a drug refrigerator at 2-8 °C immediately after sampling. Samples 

were then centrifuged at 5000 rpm for 6 minutes within 8 hours of collection. Both plasma and 

urine samples were aspirated into cryovials and stored in a freezer at -70 °C. Samples were packed 

with dry ice, and freighted to the Burns Trauma & Critical Care Research Centre, The University of 

Queensland for drug assay.  

 

5.2.3.6 Drug assay 

Plasma concentrations of meropenem were determined by validated high performance liquid 

chromatography with ultraviolet detection (HPLC-UV) on a Shimadzu Prominence instrument. 

Sample analysis was conducted in batches with calibration standards and quality controls in which 

batch acceptance criteria were applied.  Before the chromatographic analysis was performed, 

acetonitrile was added to 100 µL aliquots of plasma combined with internal standard (cefotaxime) 

to precipitate proteins. Following centrifugation, the supernatant was isolated and washed with 

dichloromethane to remove acetonitrile and lipophilic components. Following centrifugation, the 

upper layer was isolated for chromatographic analysis.  

For the chromatography, the stationary phase was a Waters XBridge C18 2.1 x 50 mm column.  The 

mobile phase was 4% acetonitrile / 96% 50 mM phosphate buffer at pH 2.5 delivered isocratically.  

The eluent was monitored at 304 nm. For sample validation, the calibration curve was linear with a 

weighing of 1/x2 over the range 0.2 to 100 mg/L. The precision and accuracy at the LLOQs were 

≤5.9%.  The assay was validated against matrix effects (precision and accuracy within 4% at high 

and low concentrations).  The assay’s precision and accuracy was determined at both within-day 

and between-day, and was within 6.5% at all three concentrations tested. 

 

5.2.3.7 Population PK modelling 

Data collected from 6 Indigenous patients’ plasma samples were combined with 5 critically ill 

Caucasian patients from a previously published study with a similar study protocol including 

concentration-time data that were available to us, and so that ethnicity of the patient group could be 

tested whether it significantly influences meropenem PK as a covariate (339). A two-compartment 
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model was developed with Nonparametric Adaptive Grid (NPAG) algorithm using the Pmetrics® 

software package (340) for R® (version 3.2.2). Demographic and clinical data (age, ethnicity, sex, 

weight, CrCL, SOFA score, serum albumin, SCr and vasopressor therapy requirement) which may 

influence meropenem PK were tested for inclusion into the model as covariates. If the covariate 

inclusion resulted in an improvement in the log likelihood (p<0.05) and/or improved the goodness 

of fit plots, they were included in the model.  

 

5.2.3.8 Model diagnostics  

Model evaluation was assessed by visual assessment of goodness of fit of the observed-predicted 

plots and the coefficient of determination of the linear regression of the observed-predicted values 

(r2 close to 1, intercept close to 0) from each run. The predictive performance was assessed on mean 

prediction error (bias) and the mean biased adjusted squared prediction error (imprecision) of the 

population and individual posterior predictions.  

 

5.2.3.9 Dosing simulations  

Probability of target attainment (PTA) was obtained from Monte Carlo simulation (n = 1000) in 

Pmetrics®. This assesses the likelihood of achieving 40% fT>MIC (considering 2% protein binding) 

over the first 24 hours of various dosing regimens and levels of CrCL for MIC values between 

0.125 to 32 mg/L. Results were then used to make dosing recommendations based on the lowest 

dosing regimen that still achieved 90% PTA.  

 

5.2.3.10 Statistical analysis 

Continuous data were presented in median (range) and categorical data presented as counts (%). 

Statistical difference was assessed for the demographic data and PK parameters between the 

Indigenous and Caucasian population by using Pearson’s Chi-squared and Mann-Whitney U-tests in 

R®. A p value of <0.05 was considered as statistically significant. 
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5.2.4 Results 

Six Indigenous and 5 Caucasian patients were included providing 216 plasma samples for analysis. 

The demographics and clinical information are presented in Table 4.1. In general, the Indigenous 

group was younger, had a lower CrCL and had more patients requiring vasopressor therapy, though 

not statistically significant. They also have significantly higher SOFA scores.  

 
5.2.4.1 Population PK model building 

A two compartment model was found to describe the data adequately, with CrCL and patient’s 

actual body weight being the only tested covariates which significantly improved the PK model. 

The final model is described as:  

TVCL = CL	x
CrCL
100

 

TVVc = Vc	x	
TBW
80

5.DE

 

Where TVCL is the typical value of meropenem CL in the population (includes Indigenous and 

non-Indigenous patients), CL is the population parameter estimate of meropenem CL, TVVc is the 

typical value of Vc, Vc is the population parameter estimate of volume of the central compartment 

and TBW is total body weight. The goodness of fit for the individual and population predicted vs 

observed plots were acceptable (Figure 4.1).  

The combined and comparative population PK parameter estimates from two-compartment model 

are also presented in Table 4.1. CL was significantly lower for the Indigenous patients compared 

with the Caucasian patients (p-value 0.004). However, this difference in CL was well described by 

CrCL but not ethnicity, hence ethnicity was not included as a covariate in the final model. 

 

 



 90 

Table 5.1 Demographics, clinical data and PK parameter estimates from two-

compartment model 

 Total 
(n=11) 

Indigenous 
(n=6) 

Caucasian 
(n=5) 

p value# 

Age (y) 48 (22-76) 45 (22-76) 55 (29-69) 0.329 
Female 6 (55) 4 (67) 2 (40) 0.782† 
Weight (kg) 80 (60-110) 73 (60-104) 80.0 (60-110) 0.519 
Height (cm) 170 (157-185) 167.5 (157-176) 170 (165-185) 0.231 
BMI (kg/m2) 26.6 (23.7-34.1) 26.4 (23.7-34.1) 26.6 (20.8-30.3) 1.000 
SrCr (µmol/L) 73 (37-301) 76 (37-301) 73 (43-109) 1.000 
CrCL (mL/min) 105.7 (15.5-164.0) 98.2 (15.5-164.0) 105.7 (19.6-144.3) 0.662 
Albumin (g/L) 32 (20-39) 32 (26-39) 28 (18-37) 0.782 
Vasopressors 8 (73) 6 (100) 2 (40) 0.122† 
SOFA score 10 (2-15) 11 (10-15) 3 (2-11) 0.007 
Vc (L) 13.6 (9.7-18.4) 11.0 (9.8-17.0) 15.3 (9.7-18.4) 0.082 
CL (L/h) 14.1 (3.0-30.3) 11.0 (3.0-14.1) 17.4 (4.3-30.3) 0.004 
Kcp (h-1) 1.49 (0.57-5.32) 1.25 (0.57-1.73) 1.91 (0.69-5.32) 0.247 
Kpc (h-1) 2.38 (0.77-16.6) 1.41 (1.07-2.37) 5.89 (0.77-16.6) 0.017 

Abbreviation: BMI, body mass index; SrCr, serum creatinine; CrCL, creatinine clearance; SOFA, sequential 
organ failure assessment; Vc, central volume of distribution; CL, meropenem clearance; Kcp, distribution rate 
constant from central to peripheral compartment; Kpc, distribution rate constant from peripheral to central 
compartment. 
Data is presented in median (range) or counts (%) 
# p value was obtained from Mann-Whitney U test unless otherwise specified. 
† p value was obtained from Pearson’s Chi-squared test  
Figures in bold and italic are statistically significant  
 

 

5.2.4.2 Dosing simulations 

Dosing recommendations for specific CrCL against different MICs were performed using the 

results of PTA for various regimens (different doses, dosing intervals and intermittent and 

continuous infusions) are presented in Table 4.2.  Continuous infusions of the same daily dose 

achieved higher PTA when compared with 30-min infusion regimens, whereas an increase in CrCL 

resulted in a decline in PTA.  
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Figure 5.1. Diagnostic plots for the final covariate model. Observed versus population 

predicted concentrations (left) and individual predicted concentrations (right) in plasma. Data 

are presented in mg/L 

 

 

 

Table 5.2. Dose recommendations for critically ill patients  

CrCL 
(mL/min) 

Minimum Inhibitory Concentration 

£0.25mg/L 2mg/L 

£20 0.5g 24-hourly 0.5g 24-hourly 

21-50 0.5g 12-hourly 0.5g 12-hourly 

51-100 0.5g q8h 1g q8h 

101-130 1g q8h 1g q6h or 3g CI 

131-170 1g q8h 1g q6h or 3g CI 
Abbreviation: CrCL, creatinine clearance; CI, continuous infusion; q8h, eight hourly; q6h, six hourly. 
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5.2.5 Discussion 

To our knowledge, this is the first study to investigate the population PK of meropenem in 

Australian Indigenous patients with severe sepsis. Our results suggest that Meropenem PK were not 

significantly different in Australian Indigenous patients relative to Caucasian comparators.  

The principle difference between the two groups related to drug CL, which was adequately 

described by patient renal function defined as CrCL. This demonstrates that renal function remains 

the most important determinant of meropenem PK, and dosing regimens should be guided in 

accordance with the patient’s CrCL. Although the median CrCL between the two groups was not 

significantly different, two of the Indigenous patients had a CrCL of 15-20 mL/min, which may 

have contributed to the significant difference in meropenem CL observed between the two groups. 

The estimated meropenem CL (11.0 L/h) in our Indigenous patients was also similar to results from 

previous studies in septic and critically ill patients with comparable CrCL (CL 7.8-11.5 L/h (341-

343)). Of note, our Indigenous group was 10-30 years younger when compared with the patients in 

the previous studies (341-343), although the level of renal function was similar. This observation 

supports previous data reporting the significantly higher prevalence of chronic kidney diseases and 

poorer renal function in the Australian Indigenous population when compared to age-matched 

Caucasians (344).  

The absence of interethnic differences in meropenem PK in our study aligns with previous 

observations demonstrating that interethnic PK differences are unlikely in antibiotics that are 

predominantly eliminated via glomerular filtration (337).  

Importantly, in this study we have found a large interindividual variability in the meropenem PK in 

the studied patients. Significant fluctuations of drug CL and Vd is common in critically ill patients 

(345), and has been reported in other studies investigating meropenem PK (341, 343). These studies 

generally conclude that this profound variability in PK increases the likelihood of sub-therapeutic 

concentrations or drug accumulation and associated toxicities.  

Our dosing simulations aiming for the 40% fT>MIC target revealed that a regimen of 500 mg twice 

daily gives an acceptable PTA for pathogens with an MIC of 2 mg/L (clinical breakpoint for most 

non-resistant Gram negative bacteria such as Pseudomonas aeruginosa, Acinetobacter spp., 

Haemophilus influenzae and Moraxella catarrhalis) in patients with CrCL 20-50 mL/min. 
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However, 1 g thrice daily is needed in patient with CrCL of 100 mL/min. 1 g four times daily is 

likely required in patient with CrCL of 130mL/min.  

Continuous infusions, however, consistently achieved better PK/PD target attainment as has been 

shown in previous studies (80). As expected, with increasing CrCL, higher daily doses or use of 

continuous infusion is required to achieve PK/PD targets. We would note that a standard dose of 1g 

thrice daily would be insufficient for patients with CrCL >100 mL/min for pathogens with a MIC of 

2 mg/L or greater. 

This study has some limitations. Specifically, the small sample size limited our power to detect 

other potential covariates affecting meropenem PK and also determine whether failure to achieve 

PK/PD targets was associated with an altered clinical outcome. Secondly, we collected samples on 

two dosing intervals and so may not have been able to describe all of the perturbations in PK that 

occurred over the duration of treatment. Finally, we did not collect samples from the site of 

infection (e.g. epithelial lining fluid in pneumonia) and therefore our dosing recommendations 

relate to achievement of target exposures in blood only. 

 

5.2.6 Conclusions 

This study has highlighted that CrCL remains the strongest determinant of meropenem PK in 

patients with severe sepsis. Although, we did not demonstrate any interethnic differences in 

meropenem PK between Indigenous and Caucasian Australians in this study, this may be, at least in 

part due to the low number of patients recruited and high interindividual PK variability.  
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5.3 Conclusion  

This Chapter describes the population PK of meropenem in severely septic Australian Indigenous 

patients. There were no clinically relevant differences in the meropenem PK observed when 

compared with non-Indigenous comparators. Although a large interindividual variability was 

observed in the meropenem PK in this patient group, it is well described by the CrCL and patient’s 

TBW. A dosing regimen defined using Monte Carlo simulations is provided in the Chapter to guide 

dosing at various levels of CrCL.   
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Chapter 6 Optimising piperacillin dosing in critically ill Australian Indigenous 

patients with severe sepsis 

 

6.1 Synopsis  

Currently, there are no available PK data for piperacillin in the critically ill Australian Indigenous 

patients to inform appropriate dosing. The first section of this Chapter is a published manuscript 

aimed to describe the population PK of piperacillin in severely septic Australian Indigenous 

patients. The second section of this Chapter describes the probability of PK/PD target attainment 

with various dosing regimens using Monte Carlo dosing simulations.   
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6.2 Published manuscript entitled “Pharmacokinetics of piperacillin in critically 

ill Australian Indigenous patients with severe sepsis” 

  

The manuscript entitled “Pharmacokinetics of piperacillin in critically ill Australian Indigenous 

patients with severe sepsis” is published in Antimicrobial Agents and Chemotherapy.   

The co-authors contributed to the manuscript as follows: The conducting of this PK study was 

performed by the PhD Candidate, Danny Tsai under the supervision of Prof. Jason A. Roberts. Data 

collection was performed by the PhD Candidate, Danny Tsai under the guidance of Prof. Jason A 

Roberts. Drug assay was performed by Dr Steven Wallis. The description of the drug assay methods 

in the manuscript was written by Dr Steven Wallis. PK modelling was performed by the PhD 

Candidate Danny Tsai under the guidance of Prof. A Roberts. The PhD Candidate, Danny Tsai, 

took the leading role in manuscript preparation and writing. Prof. Jason A. Roberts took the leading 

role in critical review and revision of the manuscript. Critical review was performed by Dr Penelope 

Stewart, Dr Stephen Gourley, Dr Rajendra Goud, Dr Saliya Hewagama, Dr Sushena 

Krishnaswamy, Dr Steven Wallis, Prof. Jeffrey Lipman and Prof. Jason A. Roberts. 

The manuscript is presented as per the accepted manuscript. The figures and tables have been 

inserted into the text in locations close to where they were referred to. The abbreviations and 

numberings of pages, figures and tables have been adjusted to comply with the format of this thesis. 

The references can be found in the references section of the thesis.  

  



 98 

Pharmacokinetics of piperacillin in critically ill Australian Indigenous patients 

with severe sepsis 

 

Danny Tsai1,2,3; Penelope Stewart2; Rajendra Goud2; Stephen Gourley4; Saliya Hewagama5,6; 

Sushena Krishnaswamy5,7; Steven C. Wallis1; Jeffrey Lipman1,8; Jason A. Roberts1,8,9 

 

1. Burns, Trauma and Critical Care Research Centre, School of Medicine, The University 

of Queensland, Brisbane, Queensland, Australia 

2. Department of Intensive Care Medicine, Alice Springs Hospital, Alice Springs, Northern 

Territory, Australia 

3. Pharmacy Department, Alice Springs Hospital, Alice Springs, Northern Territory, 

Australia 

4. Emergency Department, Alice Springs Hospital, Alice Springs, Northern Territory, 

Australia 

5. Department of Medicine, Alice Springs Hospital, Alice Springs, Northern Territory, 

Australia 

6. Department of Infectious Diseases, The Northern Hospital, Epping, Melbourne, Victoria, 

Australia 

7. Monash Infectious Diseases, Monash Health, Clayton, Melbourne, Victoria, Australia 

8. Department of Intensive Care Medicine, The Royal Brisbane and Women’s Hospital, 

Brisbane, QLD, Australia 

9. School of Pharmacy, The University of Queensland, Brisbane, QLD, Australia 

 

Corresponding author: 

Danny Tsai 

Burns, Trauma and Critical Care Research Centre,  

The University of Queensland, Level 3, Ned Hanlon Building, Royal Brisbane and Women’s 

Hospital, Herston, Brisbane, QLD 4029, Australia 

Email: d.tsai@uq.edu.au 

Tel: +61 7 3646 4108  Fax: +61 7 3646 3542  



 99 

6.2.1 Abstract 

 

Objectives There are no PK data available to guide piperacillin dosing in critically ill Australian 

Indigenous patients despite numerous reported physiological differences. This study aimed to 

describe the population PK of piperacillin in critically ill Australian Indigenous patients with severe 

sepsis. 

Methods A population PK study of Indigenous patients with severe sepsis was conducted in a 

remote hospital ICU. Plasma samples were collected over two dosing intervals and assayed by 

validated chromatography. Population PK modelling was conducted using Pmetrics®.   

Results Nine patients were recruited and a two compartment model adequately described the data. 

Piperacillin CL, Vc, distribution rate constant from central to peripheral compartment and from 

peripheral to central compartment (Kcp and Kpc) were 5.6 ± 3.2 L/h, 14.5 ± 6.6 L, 1.5 ± 0.4 h-1 and 

1.8 ± 0.9 h-1 respectively, where CL and Vc were found to be described by CrCL and TBW 

respectively.    

Conclusion In this patient population, piperacillin demonstrated high interindividual PK variability. 

CrCL were found to be the most important determinant of piperacillin PK.   
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6.2.2 Introduction  

Critically ill Australian Indigenous patients have a high mortality rate (2, 28, 321). They are 

reported to be younger, have greater disease severity and more co-morbidity upon admission into 

the ICU, of which sepsis and severe sepsis are common admission diagnoses (2, 28, 321). 

Unfortunately, the lack of evidence-based antibiotic dosing guidelines in the Indigenous population 

makes prescribing a significant challenge for clinicians.  

The Australian Indigenous are reported to have various physiological differences when compared 

with non-Indigenous Australians. For instance, young and healthy Indigenous adults have 

approximately 30% less nephrons compared with the non-Indigenous counterparts (44). From an 

anthropometric perspective, they generally have slightly smaller total body weight (TBW), higher 

central fat and slimmer extremities (46). Whilst strong comparative data of interethnic antibiotic PK 

generally remains elusive, a recent systematic review has suggested the possibility of interethnic 

differences in antibiotic PK for numerous antibiotics (337). 

Piperacillin is a broad spectrum antibiotic commonly used in the critically ill, and is considered to 

have time dependent bacterial kill characteristics. Its hydrophilic physicochemistry makes it prone 

to PK fluctuations in critically ill patients (346). To date, there is no data on piperacillin PK in 

critically ill Indigenous Australians. 

The aim of this study was to describe the population PK of piperacillin in critically ill Australian 

Indigenous with severe sepsis.  

 

6.2.3 Materials and methods 

6.2.3.1 Setting  

An observational population PK study was conducted in a 10 bed ICU at a teaching hospital in 

remote Central Australia. Ethics clearance was obtained from the local and university Ethics 

Committees (Central Australian Human Research Ethics Committee, approval HREC-13-149; The 

University of Queensland Human Research Ethics Committee, approval 2013000904).  
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6.2.3.2 Study protocol 

The dosing regimen of piperacillin which was co-administered with tazobactam (Tazopip®; Aspen 

Pharmacare, Sydney, Australia) was at the discretion of the treating intensivist.  Inclusion and 

exclusion criteria, details of sampling, demographic data collected and sample handling were 

previously published (333).  

 

6.2.3.3 Drug assay 

Piperacillin was measured in plasma (0.5 - 500 mg/L) by a validated ultra-high pressure liquid 

chromatography–mass spectroscopy/mass spectroscopy (UHPLC-MS/MS) method on a Shimadzu 

Nexera2 UHPLC system coupled to a Shimadzu 8030+ triple quadrupole mass spectrometer 

(Shimadzu, Kyoto, Japan). The methods for this assay have been described previously (347). The 

assay method was validated for linearity, matrix test, selectivity, lower limit of quantification, 

recovery, reinjection stability and precision and accuracy using the Food and Drug Administration 

criteria for bioanalysis (348). Precision was within 5.8% and accuracy was within 10.0% at the 

tested plasma quality control piperacillin concentrations of 1.5, 50 and 400 mg/L.  

 

6.2.3.4 Population PK modelling 

Concentration-time data obtained from the plasma samples were described by compartment models 

using the Pmetrics® software package (340) for R® (version 3.2.2). Demographic and clinical data 

collected were tested for inclusion into the PK model as covariates. The covariates which 

statistically improved the log likelihood (p<0.05) and/or improved the goodness of fit plots were 

retained in the final model.  

 

6.2.3.5 Model diagnostics  

Model evaluation was performed by visually assessing the goodness of fit of the observed-predicted 

plots and the coefficient of determination of the linear regression of the observed-predicted values 

(r2 close to 1, intercept close to 0) from each run. The predictive performance was assessed on mean 

prediction error (bias) and the mean biased adjusted squared prediction error (imprecision) of the 
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population and individual posterior predictions. Visual predictive check plots (VPC) generated from 

the final model were also visually assessed whether the observed data were appropriately 

distributed within the simulated model.  

 

6.2.3.6 Statistical analysis 

Continuous data were presented in mean ± standard deviation or median ± interquartile range and 

categorical data presented as counts (%). 

 

6.2.4 Results  

Ten Indigenous patients were recruited and one patient was excluded due to inappropriate storage of 

samples. The demographics and clinical information are presented in Table 6.1. In total 139 plasma 

samples were available for PK analysis. 

 

Table 6.1 Demographic and clinical data 

 n=9 
Age (y) 43 ± 11 
Female 4 (44%) 
Weight (kg) 76 ± 11 
Height (cm) 170 ± 17 
BMI (kg/m2) 27 ± 7 
SrCr (µmol/L) 95 ± 69 
CrCL (mL/min) 91 ± 46 
Albumin (g/L) 27 ± 5 
Vasopressor use 8 (89%) 
APACHE II score 23 ± 6 
SOFA score 8 ± 2 

Abbreviation: BMI, body mass index; SrCr, serum creatinine; CrCL, creatinine clearance; APACHE II, acute 
physiological and chronic health evaluation II; SOFA, sequential organ failure assessment score. 

Data is presented in mean ± standard deviation or counts (%) 
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6.2.4.1 Population PK model building and model diagnostics  

A two compartment model was found to describe the data adequately. Elimination from the central 

compartment (represented by CL) and intercompartmental distribution (represented by Kcp and Kpc) 

were modelled as first order processes using differential equations. CrCL and patient’s TBW were 

the only covariates tested which significantly improved the PK model. The final model was 

described as:  

TVCL = CL	x	 	
CrCL
55

+ 0.45	  

TVVc = Vc	x	
TBW
76

5.DE

 

Where TVCL is the typical value of piperacillin clearance, CL is the population parameter estimate 

of piperacillin clearance, TVVc is the typical value of volume of distribution of the central 

compartment, Vc is the population parameter estimate of volume of the central compartment and 

TBW is total body weight. The final covariate model had a decrease in -2 log-likelihood of 33.6 

from the base model and improved the goodness of fit plots. The population PK parameter estimates 

obtained the two-compartment model are presented in 6.2.  

 

Table 6.2 PK parameter estimates from two-compartment model 

 Total 
(n=9) 

CV 
(%) 

Variance Median 

Vc (L) 14.5 ± 6.6 45.7 44.0 12.2 

CL (L/h) 5.6 ± 3.2 57.0 10.4 4.6 

Kcp (h-1) 1.5 ± 0.4 28.2 0.2 1.5 

Kpc (h-1) 1.8 ± 0.9 47.5 0.7 1.7 
Abbreviation: Vc: volume of distribution in the central compartment; CL: drug clearance; Kcp: distribution 
rate constant from central to peripheral compartment; Kpc: distribution rate constant from peripheral to 
central compartment; CV: coefficient of variation.  
Data is presented in mean ± standard deviation. 
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The goodness of fit for the individual and population predicted vs observed plots and the VPC were 

considered acceptable (Figure 6.1). The VPC showed an even distribution of the observed data 

across the percentiles of the simulated data.  

Table 6.3 compares the PK parameter estimates observed in our study with other published data 

from various patient populations (8, 317, 349-359). The parameter estimates from the present study 

generally show a lower mean piperacillin CL when compared with data on healthy volunteers and 

critically patients when CrCL were taken into consideration. On the other hand, Vc was similar 

across all patient groups.     

 

6.2.5 Discussion 

To the best of our knowledge, this is the first study to examine the population PK of piperacillin in 

critically ill Australian Indigenous patients with severe sepsis. We found that piperacillin PK in this 

population has high interindividual variability compared to healthy volunteers (349, 350), but 

similar compared to other critically ill or hospitalised patients (8, 317, 351-359). Nonetheless, we 

have also found that renal function, i.e. CrCL, remains the most important determinant of 

piperacillin dosing requirements.  

The mean CL estimate observed in this study was 5.6 L/h, which is lower than previously described 

for healthy volunteers (12-14 L/h). However, individual estimates in our study group ranged from 

2.8 to 14.2 L/h, which is not dissimilar to the range of other published data in critically ill or 

hospitalised patients (3 to 40 L/h) (8, 317, 351-359). Regarding piperacillin Vd, the Vc in this study 

was similar to other published data for both healthy volunteers and critically ill (8, 317, 350, 355). 

These data highlight why there is such high variability in piperacillin PK, where both supra and 

sub-therapeutic concentrations were common.  
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a.        b.              c.   

  

 

Figure 6.1 Diagnostics of final PK model – (a) Population predicted concentrations vs observed concentrations plot, (b) Individual predicted 

concentrations vs observed concentrations plot (where data presented on both x- and y-axes are Concentration in mg/L), (c) VPC plot (where 

Output on the y-axis is Concentration in mg/L) 
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Table 6.3 PK parameter estimates of piperacillin from published studies   

Abbreviation: CrCL, creatinine clearance; SOFA, sequential organ failure assessment score; APACHE II, acute physiologic assessment and chronic health 
evaluation II score; Vc, volume of distribution of the central compartment; CL, drug clearance; NA, data not available. 
Data presented as mean ± standard deviation or median (interquartile range)/[95% confidence interval/{range}]. 
Data in italics were not directly reported but calculated from PK data in the study .

Dose regimen Population No. of 
females 

Age 
(y) 

TBW 
(kg) 

CrCL 
(mL/min) SOFA APACHE 

II 
PK parameters 

Vc (L/kg) CL (L/h) 
4g 30 min infusion 
(present study) 

Severe sepsis Australian 
Indigenous 

4/9 43 ± 11 76 ± 11 91 ± 46 7.8 ± 1.7 23 ± 6 0.19 ± 0.09 5.6 ± 3.2 

60mg/kg 3 min bolus 
(349) 

Healthy volunteers 0/12 20 - 30 69 NA NA NA NA 11.3 ± 1.3 

4g 3 min bolus  (350) Healthy volunteers 0/5 22 ± 0.4 70 ± 1.4 87 ± 5 NA NA 0.16 ± 0.03 15.3 ± 1.2 

4g 30 min infusion  (351) Abdominal infection 1/18 31 ± 9 76 ± 17 98 ± 26 NA NA NA 14.8 ± 4.0 

4g 30 min infusion  (352) Elective colorectal surgery 9/18 67 ± 12 72 ± 11 72 ± 21 NA NA NA 11.6 ± 2.6 

4g, administration 
duration not specified 
(353) 

Community acquired 
pneumonia 

14/53 65 ± 17 56 ± 12 81 ± 47 NA NA NA 8.2 ± 2.6 

4g bolus  (354) Hospitalised patients 2/12 60 ± 12 70 ± 13 60 ± 31 NA NA NA 5.7 

4g 20 min infusion  (355) Sepsis, critically ill 3/8 38 (22-65) 80 (74-86) 88 (53-101) 3 (3-3) 24 (18-26) 0.09 [0.07-0.12] 17.1 [14.4-20.6] 

4g 20 min infusion  (8) Ventilator associated 
pneumonia, critically ill 

3/7 42 (23-65) 85 (72-90) 166 (103-237) 3 (2-3) 24 (16-27) 0.17 [0.14-0.19] NA 

30 min infusion, dose not 
specified (356) Sepsis/severe sepsis ?/14 NA NA` 52 (21-123) 9 (5-14) NA NA 6.2 (1.1-30.7) 

4g 20 min infusion  (317) Sepsis, critically ill 21/48 47 ± 18 88 ± 24 122 ± 59 3.5 (2-6) 19 ±7 0.23 16.3 

30 min infusion, dose not 
specified (357) Critically ill 26/38 62 (54-68) 70 (60-81) 47 (29-87) 11 (8-13) 20 ± 6.0 NA 2.3 (1.7-3.7) 

4g 30 min infusion (358) Critically ill ?/19 NA NA NA NA NA NA 3.2 {0.8-32.8} 
30 min infusion, dose 
varied  (359) Surgical critically ill 5/13 45 ± 19 79 ±18 139 ± 44 6 ± 2 15 ± 5 NA 40.4 
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It is likely that the high interindividual PK differences observed in this study prevented 

identification of any interethnic differences, if such an effect is indeed present. This conclusion is 

supported by a recent systematic review that suggests antibiotics which are eliminated 

predominantly via glomerular filtration are less likely to display interethnic PK differences (337), in 

part because the differences can be readily explained by renal function estimates. Whether the lower 

mean piperacillin CL observed in our study group, when CrCL was taken in consideration, is 

caused by a lower non-renal CL requires further investigation (351-353, 355, 356).  

This study has some limitations. Firstly, only plasma piperacillin concentrations were assessed in 

this study, which do not reflect piperacillin concentration achieved in other tissue sites (360). 

Secondly, the study was not designed to investigate the unbound piperacillin concentration, and an 

assumption of 30% albumin binding was made for our dosing simulations. This is supported by 

previous literature (54). Lastly, patients recruited in this study met the severe sepsis criteria defined 

by the American College of Chest Physicians/Society of Critical Care Medicine Consensus 

Conference Committee (361), and the study recruitment took place prior to the publication of the 

new definition for ‘sepsis’ (362). We would like to acknowledge that the two definitions may result 

in slightly different patient groups, and there is little data currently available to define how different 

the groups may be. 

In conclusion, this study has highlighted that CrCL is the strongest determinant of piperacillin PK 

in severely septic Australian Indigenous patients. Therefore, it should be considered essential to 

select the dosing regimens for individual patients according to their measured CrCL.  
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6.3 Monte Carlo dosing simulation and dosing recommendations 

Based on the final two-compartment model described in section 6.2.4.1, a series of Monte Carlo 

dosing simulations have been performed to assess the PTA for various dosing regimens against 

different probable parameters. Subsequently, a set of dosing guideline was formulated based on the 

simulation results.  

    

6.3.1 Methods 

PTA was obtained from Monte Carlo dosing simulations (n = 1000) in Pmetrics® with the 

assumption of free drug ratio of 0.7 (54). PTA assesses the likelihood of achieving ≥50% fT>MIC 

over the first 24 hours of various dosing regimens and CrCL for MIC values between 0.125 to 64 

mg/L. Dosing regimens used for simulation were 2 g 8-hourly, 2 g 6-hourly, 4 g 12-hourly, 4 g 8-

hourly, 4 g 6-hourly and 4 g 4-hourly as 30 minute infusions; 8 g, 12 g, 16 g and 24 g as 24-hour 

continuous infusions. A total body weight of 80kg and CrCL of 20, 50, 100, 130 and 170 mL were 

used for the dosing simulation, which were a random selection of CrCL distribution seen in our 

patient population. 

 

6.3.2 PTA results 

Results of the dosing simulations for various dosing regimens against different CrCL are presented 

in Fig. 6.2. When compared with the 30-minute infusion regimens, the equivalent daily dose as a 

24-hour continuous infusions achieved a higher PTA. An increase in CrCL resulted in a lower PTA 

especially at higher MICs.  

 

 

 



 110 

 

 

Figure 6.2 PTA for piperacillin dosing regimens comprising 30 minute intermittent infusions 

and 24 hour continuous infusions against CrCL of (a) 20, (b) 50, (c) 100, (d) 130 and (e) 170 

mL/min 

Abbreviation: q24h, twenty-four hourly; q12h, twelve hourly; q8h, eight hourly; q6h, six hourly; q4h, four 

hourly; CI, continuous infusion.  
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FIG 2 Probability of target attainment for piperacillin dosing regimens comprising 30 minute 
intermittent infusions and 24 hour continuous infusions against creatinine clearances of (a) 20, 
(b) 50, (c) 100, (d) 130 and (e) 170 mL/min  

	

CI: continuous infusion.  
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Table 6.4 Recommended piperacillin dosing regimen for various CrCL against MIC   

CrCL 
(mL/min) 

Minimum inhibitory concentration 

£2mg/L 4mg/L 8mg/L 16mg/L 

£20 4g q12h 4g q12h 4g q12h 4g q12h 

21-50 4g q12h 4g q12h 4g q8h 4g q8h 

51-100 4g q8h 4g q8h 4g q6h 4g q4h or 16g q24h CI 

101-130 4g q8h 4g q6h 4g q6h 4g q4h or 16g q24h CI 

131-170 4g q8h 4g q6h 4g q4h 24g q24h CI 

Abbreviation: CrCL, creatinine clearance; q24h, twenty-four hourly; q12h, twelve hourly; q8h, eight hourly; 
q6h, six hourly; q4h, four hourly; CI, continuous infusion. CI, continuous infusion.  

 

6.3.3 Discussion 

Given the high variability in piperacillin PK observed in this study, it is not possible to devise a 

one-size-fits-all dosing regimen for this patient population. Our dosing simulations described that 

different dosing regimens are required to treat infections caused by pathogens with different clinical 

MIC breakpoints (e.g. 16, 8, 4 and 2 mg/L for non-resistant Pseudomonas aeruginosa, Gram-

positive/negative anaerobes, Enterobacteriaceae, Entercocccus spp. and Haemophilus influenzae 

respectively) (363). Piperacillin dosing regimens suitable for this patient population are listed in 

Table 4. We would note that a regimen of 4 g 4-hourly is needed for a pathogen with a MIC of 16 

mg/L in patients with a CrCL 51 – 130 mL/min. A continuous infusion of 24 g 24-hourly is needed 

when CrCL ≥130mL/min. 

We would further note that TDM has previously been shown to improve PK/PD target attainment 

for piperacillin therapy (99, 364). Although most ICUs do not have access to such facilities to 

perform drug monitoring for penicillins, it should be used where possible (335).  
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6.4 Conclusion 

This Chapter has highlighted that CrCL is the strongest determinant of piperacillin PK in severely 

septic Australian Indigenous patients. Therefore, it should be considered essential to select the 

dosing regimens for individual patients according to their measured CrCL whilst being aware of the 

MIC of the target bacteria to ensure maximal PK/PD target attainment. Our study also highlights the 

need to investigate the same for other commonly used antibiotics to enable us to optimise dosing 

and ultimately outcomes for Indigenous Australians with severe sepsis.   
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Chapter 7 Optimising ceftriaxone dosing in critically ill Australian Indigenous 

patients with severe sepsis 

 

7.1 Synopsis 

The aim of this Chapter was to describe the PK of total and unbound ceftriaxone in severely septic 

Australian Indigenous patients and compare to published data in other critically ill populations. A 

commonly used regimen in Central Australia, 1 g IV twelve-hourly, was assessed for its adequacy 

in attaining the PK/PD targets of typical targeted pathogens. 
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7.2 Published manuscript entitled “Total and unbound ceftriaxone 

pharmacokinetics in critically ill Australian Indigenous patients with severe 

sepsis” 

 

The manuscript entitled “Total and unbound ceftriaxone pharmacokinetics in critically ill Australian 

Indigenous patients with severe sepsis” is published in the International Journal of Antimicrobial 

Agents. 

The co-authors contributed to the manuscript as follows: The conducting of this PK study was 

performed by the PhD Candidate, Danny Tsai under the supervision of Prof. Jason A. Roberts. Data 

collection was performed by the PhD Candidate, Danny Tsai under the guidance of Prof. Jason A 

Roberts. Drug assay was performed by Dr Steven Wallis. The description of the drug assay methods 

in the manuscript was written by Dr Steven Wallis. PK analysis was performed by the PhD 

Candidate Danny Tsai under the guidance of Prof. A Roberts. The PhD Candidate, Danny Tsai, 

took the leading role in manuscript preparation and writing. Prof. Jason A. Roberts took the leading 

role in critical review and revision of the manuscript. Critical review was performed by Dr Penelope 

Stewart, Dr Stephen Gourley, Dr Rajendra Goud, Dr Saliya Hewagama, Dr Sushena 

Krishnaswamy, Dr Steven Wallis, Prof. Jeffrey Lipman and Prof. Jason A. Roberts. 

The manuscript is presented as per the accepted manuscript. The figures and tables have been 

inserted into the text in locations close to where they were referred to in the text. The abbreviations 

and numberings of pages, figures and tables have been adjusted to comply with the format of this 

thesis. The references can be found in the references section of the thesis.   
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7.2.1 Abstract 

 

Objectives In the absence of specific data to guide optimal dosing, this study aimed to describe the 

PK of ceftriaxone in severely septic Australian Indigenous patients and assess the achievement of 

PD target of regimens prescribed. 

Methods A PK study was conducted in a remote hospital ICU in patients receiving 1g 12-hourly 

dosing. Serial blood and urine samples were collected over one dosing interval on 2 consecutive 

days. Samples were assayed using a validated chromatography method for total and unbound 

concentrations. Concentration-time data collected were analysed with a non-compartmental 

approach.  

Results One hundred plasma samples were collected from 5 included subjects. Ceftriaxone CL, 

volume of distribution at steady state (Vdss), elimination T½ and elimination rate constant estimates 

were 0.9 (0.6-1.5) L/h, 11.2 (7.6-13.4) L, 9.5 (3.2-11.2) h and 0.08 (0.07-0.21) h-1 respectively. The 

unbound fraction of ceftriaxone ranged between 0.14 and 0.43, with a higher unbound fraction 

present at higher total concentrations. The unbound concentration at time 720 minutes for the first 

and second dosing intervals were 7.2 (4.8-10.7) and 7.8 (4.7-12.1) mg/L respectively, which 

exceeds the MIC of all typical target pathogens.  

Conclusion The regimen of ceftriaxone 1 g twelve hourly is adequate for critically ill Australian 

Indigenous patients with severe sepsis caused by non-resistant pathogens.   
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7.2.2 Introduction  

Sepsis and severe sepsis are two of the commonest ICU admission diagnoses for the Australian 

Indigenous population (2, 29). Up to 60% of all hospital deaths for Indigenous patients are related 

to infection, 56% of which were associated with bacterial sepsis (3).  

A recent systematic review documented the significant differences in antibiotic PK that may occur 

between different ethnic groups (44). In relation to the Australian Indigenous, physiological 

differences which can alter antibiotic PK include having 30% less nephrons (44), sharing similar 

allele frequencies of some cytochrome P450 enzymes with the East Asian population (45) and 

having smaller body mass, higher central fat and thinner extremities when compared with the non-

Indigenous (46).  

Ceftriaxone is a third generation cephalosporin and is a commonly used antibiotic in the ICU. It 

shows a time dependent bacterial kill characteristic (38), where maximum bacterial kill effects are 

anticipated when plasma free drug concentration exceeds the MIC (fT>MIC) for at least 60-70% of 

the dosing interval (339). It has mixed renal and biliary elimination, however, due to its uncommon 

PK properties of having a high binding to serum albumin (83-95%) and a relatively long T½ of 6-8 

hours, renal impairment rarely warrants dose adjustment (54, 365). The presence of 

hypoalbuminaemia, like numerous other conditions which are commonly seen in the critically ill, 

may lead to altered plasma ceftriaxone concentrations (18). In the absence of TDM, it can be 

difficult to prescribe drugs like ceftriaxone with confidence for critically ill patients and know that 

dosing is adequate.  

There are very limited data on the effect of critical illness on the disposition of ceftriaxone, 

especially in the Australian Indigenous, hence this study aims to describe the PK of total and 

unbound ceftriaxone in critically ill Australian Indigenous patients with severe sepsis.   
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7.2.3 Material and methods 

7.2.3.1 Setting  

A prospective, observational PK study was conducted in the ICU of Alice Springs Hospital, a 

remote hospital in the Northern Territory of Australia. Ethics approval was granted from the local 

and university Ethics Committees (Central Australian Human Research Ethics Committee, approval 

HREC-13-149; The University of Queensland Human Research Ethics Committee, approval 

2013000904) and written consent was obtained from all participants/next of kin.  

 

7.2.3.2 Study population  

The inclusion criteria were: (1) Australian Indigenous; (2) ≥18 years of age; (3) confirmed or 

suspected severe sepsis within the previous 48 hours; (4) clinical indication for ceftriaxone; and (5) 

arterial line and an indwelling urinary catheter in situ. The exclusion criteria were (1) CrCL <15 

mL/min; (2) requirement of haemodialysis or CRRT; and (3) pregnancy.  

 

7.2.3.3 Study protocol 

The ceftriaxone (Ceftriaxone Sandoz®; Sandoz Pty Ltd, Sydney, Australia) dose and frequency 

were determined by the treating physician. Ceftriaxone was then reconstituted in 100 mL sodium 

chloride 0.9% and infused intravenously via a central venous catheter over 30 minutes. Ten 2mL 

blood samples were collected from the existing arterial line over the 12 h dosing interval at 0, 30, 

60, 75, 90, 120, 180, 360, 480 and 720 minutes from initiation of infusion. A second set of samples 

with the same regimen was obtained the next day. Urine was collected throughout the duration of 

both dose intervals via an indwelling catheter. Demographics, clinical information and routine 

laboratory test results performed on the study days were also recorded. 

All plasma samples were assayed for total ceftriaxone concentration (unbound and bound), and five 

plasma samples for each dosing interval (30, 90, 180, 360 and 720 minutes from initiation of 

infusion) were assayed for the unbound concentration.    
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7.2.3.4 Sample handling and storage 

Immediately after blood and urine samples were collected, they were stored at 2-8 °C. One mL of 

collected urine sample was pipetted into a cryovial. Within 8 hours of sampling, the blood 

containing sampling tubes and the urine containing cryovials were centrifuged at 5000 rpm for 6 

minutes. Plasma samples were then aspirated into cryovials and batched with the urine cryovials. 

They were then stored at -70 °C. The total urine sample was used for creatinine assay in Alice 

Springs Hospital pathology, with the measured CrCL subsequently determined. Upon completion of 

recruitment, plasma and urine samples were packed with dry ice and freighted to the Burns, Trauma 

& Critical Care Research Centre, The University of Queensland for drug assay.  

 

7.2.3.5 Drug assay 

7.2.3.5.1 Plasma samples 

Total and unbound concentrations of ceftriaxone in plasma were measured by a validated ultra-high 

pressure liquid chromatography–mass spectroscopy/mass spectroscopy (UHPLC-MS/MS) method 

on a Shimadzu Nexera connected to a Shimadzu 8030+ triple quadrupole mass spectrometer.  

Clinical samples were assayed in batches alongside calibrators and quality controls and results were 

subject to batch acceptance criteria. 

The free fraction was first isolated by ultrafiltraion at 37°C with Centrifree Ultrafiltration Device 

(Merck Millipore, Tullagreen, Ireland), and the ultrafiltrated plasma was then processed as a typical 

plasma sample in order to obtain the unbound concentration. Ionisation was by positive mode 

electrospray. Detection was monitored by MRMs at m/z 554.7→396.1 (ceftriaxone) and 

557.7→399.1 (d3-ceftriaxone). Linearity was validated over the concentration range 2 to 200 mg/L 

(total) and 0.2 to 200 mg/L (unbound).  Precision and accuracy was within 8.4% for total analysis 

and 12.3% for unbound analysis at all three concentrations tested. The unbound fraction of QCs 

(total ceftriaxone concentration) were 8.3% (low: 3 mg/L), 9.0% (med: 10 mg/L) and 12.6% (high: 

80 mg/L).  Unbound concentrations were measured with precision (n=6) of 9.2% (low), 4.1% (med) 

and 3.5% (high). 
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7.2.3.5.2 Urine samples 

Concentrations of ceftriaxone in urine were measured from 10 to 10,000 mg/L by a validated high 

pressure liquid chromatography-ultra violet (HPLC-UV) method on a Shimadzu Prominence HPLC 

system. Urine samples were filtered and diluted with water in preparation for instrumental analysis. 

Ceftriaxone was monitored at 304 nm, and the assay method was validated for linearity, LLOQ, 

matrix effects and precision and accuracy using the Food and Drug Administration criteria for 

bioanalysis (348).  The precision and accuracy were within 0.9% and 7.9%, respectively. 

 

7.2.3.6 PK analysis 

Data collected from plasma samples were analysed using a non-compartmental approach with the 

Pmetrics® software package (version 1.4.2) for R® (version 3.2.2). The unbound ceftriaxone 

samples were also contrasted with the corresponding total ceftriaxone concentration to determine 

the unbound fraction of ceftriaxone (described as a percentage) at different times over the dosing 

interval. 

 

7.2.3.7 Statistical analysis 

Continuous data were presented in median (range) and categorical data presented as counts (%). 

The amount of ceftriaxone recovered in urine was tested for correlation with the measured CrCL 

data using linear regression with Microsoft® Excel for Mac.  
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7.2.4 Results 

Five Indigenous patients were included in this study and contributed a total of 100 blood samples. 

All patients received a dosing regimen of 1 g 12-hourly. The demographics, clinical information 

and PK parameter estimates are presented in Table 7.1. The concentration-time profile for the 

sampling occasions is shown in Figure 7.1, and the unbound fraction of ceftriaxone concentration 

throughout the dosing interval is presented in Figure 7.2, which shows a trend of a decreasing 

unbound fraction throughout the dosing interval that corresponds with decreasing drug 

concentrations. Figure 3 describes the correlation between unbound fraction and total ceftriaxone 

concentration for each individual patient. In general, higher ceftriaxone concentrations were found 

to correspond with higher unbound fractions.  

There was no clear association observed between CrCL and the amount of ceftriaxone recovered in 

the urine over the dose interval (r2 = 0.570). Furthermore, total ceftriaxone CL was not associated 

with changes in CrCL (r2 = 0.227).   

 

7.2.5 Discussion 

We have found a high individual variability of PK parameter estimates. The median unbound 

trough concentration (fC720) were 7.2 (4.8-10.7) and 7.8 (4.7-12.1) mg/L on first and second dosing 

intervals respectively, with no study participant manifesting a fC720 of less than 4 mg/L, which is 

higher than 4 x MIC breakpoint of all typical target pathogens (0.125, 0.125, 0.25, 0.5, 1 and 1 

mg/L for Neisseria gonorrhoeae, Haemophilus influenzae, Streptococcus pyogenes, Streptococcus 

pneumoniae, Enterobacteriaceae., and Moraxella catarrhalis respectively, in accordance to the 

European Committee on Antimicrobial Susceptibility Testing data (363)). Ceftriaxone is commonly 

prescribed as a once daily regimen, however, it has been reported that an improvement in clinical 

cure for critically ill patients receiving a continuous ceftriaxone infusion compared with those 

prescribed daily intermittent infusions of the same dose (7). Our study has demonstrated that a 

regimen of 1 g 12 hourly maintains PK/PD exposure above 4 x target MIC for all typical pathogens.   
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Table 7.1 Demographic, clinical data and PK parameter estimates 

  

 Subject 
1 

Subject 
2 

Subject 
3 

Subject 
4 

Subject 
5 Total* 

Age (y) 28 39 28 53 29 29 (28-53) 
Female Yes No Yes No No 2 (40%) 
Weight (kg) 109 106 62 107 56 106 (56-109) 
Height (cm) 165 172 165 181 174 172 (165-181) 
BMI (kg/m2) 40 36 23 33 18 33 (18-40) 
CrCL (mL/min) 99 190 104 78 91 99 (78-190) 

Bilirubin (µmol/L)  5 22 8 4 27 8 (4-27) 

ALT (µmol/L) 29 145 21 304 1152 145 (21-1152) 

Albumin (g/L) 28 23 24 23 27 24 (23-28) 
APACHE II score 27 21 12 26 18 21 (12-27) 
SOFA score 10 10 5 10 7 10 (5-10) 

CL (L/h) 0.6 1.5 0.9 1.5 0.6 0.9 (0.6-1.5) 
Vdss (L) 8.4 13.4 11.6 11.2 7.6 11.2 (7.6-13.4) 

Vdss (L/kg) 0.08 0.13 0.19 0.10 0.14 0.13 (0.08-0.19) 
ke (h-1) 0.07 0.13 0.07 0.21 0.07 0.07 (0.07-0.21) 
T½ (h) 9.8 5.4 10.2 3.2 9.5 9.5 (3.2-10.2) 

AUC0-∞ (mg.hr/L) 1788 664 1120 683 1763 1120 (664-1788) 

C720A (mg/L) 56.7 21.8 15.3 25.2 52.8 31.0 (15.3-56.7) 
C720B (mg/L) 60.8 22.6 30.4 36.1 - 33.2 (22.6-60.8) 
fC720A (mg/L) 10.7 4.8 5.9 7.6 7.2 7.2 (4.8-10.7) 
fC720B (mg/L) 12.1 4.7 5.0 10.7 - 7.8 (4.7-12.1) 
Unbound fraction (%) 22 28 20 34 23 23 (20-34) 
	

*Data presented in median (range) 

Abbreviation: BMI, body mass index; CrCL, measured creatinine clearance; ALT, alanine 
transferase, APACHE II score, acute physiological and chronic health evaluation II score; SOFA 
score, sequential organ failure assessment score; CL (drug clearance); Vdss, volume of distribution 
at steady state; ke, elimination rate constant; T½, elimination half-life; AUCinf, area under the 
concentration-time curve to time infinity; C720A, total plasma ceftriaxone concentration 720 minutes 
from infusion of first dosing interval; C720B, total plasma ceftriaxone concentration 720 minutes 
from infusion of second dosing interval; fC720A, unbound ceftriaxone concentration 720minutes 
from infusion of first dosing interval; fC720B, unbound ceftriaxone concentration 720minutes from 
infusion of second dosing interval; -, data not available. 
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Figure 7.1 Total and unbound plasma ceftriaxone concentrations after initiation of 

intravenous infusion on the first dosing occasion (n=5) 

Data is presented in median ± range 

 

                

Figure 7.2 Ceftriaxone unbound fraction throughout a dosing interval on first and second 

dosing occasions 

Data is presented in median  
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Figure 7.3. Ceftriaxone unbound fraction for different total ceftriaxone concentrations for 

each subject throughout a dosing interval on first and second dosing occasions 
Abbreviation: Subj, subject.  

Black lines represent data from the first sampling occasion, and grey lines represent data from the second 
sampling occasion.  
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This study may need to be repeated in a larger sample size to further mechanistically characterise 

any differences in CL.     

A dramatically lower Vdss was observed in our subjects when compared with other published data 

on critically ill patients (10.4 vs 20.2, 20.0 L) (368, 369). When compared with healthy volunteers, 

the unbound fraction in our group was significantly higher (14-43% vs 5-15%) (370), but lower 

than other published data on critically ill patients (23% vs 33%) (369). Higher unbound 

concentration was seen in our patients with hyperbilirubinaemia and diabetes, which is in agreement 

with previous studies (369, 371), however, we did not find a correlation between 

hypoalbuminaemia and unbound fraction. The lower CL and Vdss seen in our group may have 

provided an explanation for the high fC720 observed.   

There are a number of limitations to this study. Firstly, although this is the first study of ceftriaxone 

in this population, there were only five patients available for recruitment and a larger study may be 

needed to clarify the effect of hypoalbuminaemia, hyperbilirubinaemia and diabetes on the PK of 

unbound ceftriaxone in this patient group. Secondly, we did not collect samples from the site of 

infection, hence results concluded from this are restricted to ceftriaxone concentrations in the blood. 

Lastly, the study was not powered to test the effect of ceftriaxone exposure on clinical outcome.   

 

7.2.6 Conclusions 

There is a large interindividual variability in total and unbound ceftriaxone PK in this population, 

which may be driven by one or more different conditions including hyperbilirubinaemia, diabetes, 

hypoalbuminaemia and CrCL. Nonetheless, a regimen of 1 g 12-hourly is adequate to treat all 

typical pathogens. 
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7.3 Conclusion 

This Chapter describes the PK of total and unbound ceftriaxone in Indigenous patients with severe 

sepsis and confirmed the regimen of 1 g IV 12-hourly was adequate in attaining the PK/PD target 

for pathogens typically targeted during systemic infections.  

Overall, a large interindividual variability in PK was described. The CL and Vd in this study group 

were slightly lower than published data in other critically ill populations. All patients achieved the 

highest PK/PD target, which is maintaining the unbound plasma concentration for greater than 4x 

the MIC of all typical pathogens for the entire duration of each dosing interval.  It follows, that the 

current regimen can be recommended in the study population.   
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Chapter 8 Optimising vancomycin dosing in critically ill Australian Indigenous 

patients with severe sepsis 

 

8.1 Synopsis 

Currently, there are no available PK data for vancomycin in the critically ill Australian Indigenous 

patients to inform dosing. This Chapter aims to describe the population PK of vancomycin in 

severely septic Australian Indigenous patients. The PK parameter estimates obtained from the final 

PK model were compared with published data from other critically ill populations. Furthermore, the 

PTA for various regimens was assessed with Monte Carlo dosing simulation. Subsequently, a set of 

dosing recommendation was presented.   
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8.2 Submitted manuscript entitled “Pharmacokinetics and optimised dosing of 

vancomycin in critically ill Australian Indigenous patients with severe sepsis” 

 

The manuscript entitled “Pharmacokinetics and optimised dosing of vancomycin in critically ill 

Australian Indigenous patients with severe sepsis” has been submitted for publication. 

The co-authors contributed to the manuscript as follows: The conducting of this PK study was 

performed by the PhD Candidate, Danny Tsai under the supervision of Prof. Jason A. Roberts. Data 

collection was performed by the PhD candidate, Danny Tsai under the guidance of Prof. Jason A 

Roberts. Drug assay was performed by Dr Steven Wallis. The description of the drug assay methods 

in the manuscript was written by Dr Steven Wallis. PK modelling was performed by the PhD 

Candidate Danny Tsai under the guidance of Prof. A Roberts. The PhD Candidate, Danny Tsai, 

took the leading role in manuscript preparation and writing. Prof. Jason A. Roberts took the leading 

role in critical review and revision of the manuscript. Critical review was performed by Dr Penelope 

Stewart, Dr Stephen Gourley, Dr Rajendra Goud, Dr Saliya Hewagama, Dr Sushena 

Krishnaswamy, Dr Steven Wallis, Prof. Jeffrey Lipman and Prof. Jason A. Roberts. 

The manuscript is presented as per the submitted manuscript. The figures and tables have been 

inserted into the text in locations close to where they were referred to in the text. The abbreviations 

and numberings of pages, figures and tables have been adjusted to comply with the format of this 

thesis. The references can be found in the references section of the thesis.  
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8.2.1 Abstract 

 

Objectives Vancomycin is a commonly used antibiotic due to the high burden of methicillin-

resistant Staphylococcus aureus infections. This study aimed to describe the population PK of 

vancomycin in Australian Indigenous patients with severe sepsis. 

 

Methods A population PK study was conducted in a remote Australian ICU. Serial plasma samples 

were collected over one to two dosing intervals and assayed by validated chromatography. 

Concentration-time data collected were analysed using Pmetrics software. The final population PK 

model was then used for Monte Carlo dosing simulations to determine optimal loading and 

intermittent maintenance doses.   

Results Fifteen Indigenous subjects (8 females) were included for analysis with a median (IQR) age, 

weight and CrCL of 43 (34-46) years, 73 (66-104) kg and 99 (56-139) mL/min respectively. A two-

compartment model described the data adequately. Vancomycin CL and Vc were described by 

CrCL and patient weight respectively. Median CL, Vc, Kcp and Kpc were 4.6 (3.8-5.6) L/h, 25.4 

(16.1-31.3) L, 0.46 (0.28-0.52) h-1 and 0.25 (0.12-0.37) h-1 respectively. Therapeutic loading doses 

were significantly dependent on both TBW and CrCL, whereas maintenance doses were dependent 

on CrCL.  

Conclusions This is the first report of vancomycin PK in this patient group. Descriptions of patient 

weight and CrCL were the most prominent determinants of optimised dosing regimens.  

. 
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8.2.2 Introduction 

Critically ill and septic Australian Indigenous have high hospital morbidity and mortality rates 

(321). Empirical vancomycin therapy is commonly used in Indigenous patients presenting with 

sepsis in rural and remote health centres. This is due to the high prevalence of community acquired 

methicillin resistant Staphylococcus aureus (MRSA) colonisation and infections in patients from 

remote communities, especially in Central Australia (372, 373). 

TDM is almost always utilised for vancomycin therapy in the ICU due to its narrow therapeutic 

window (335). Vancomycin exhibits a mixed concentration dependent and time dependent bacterial 

kill characteristic, that appears best  represented by the AUC0-24:MIC (38), and the commonly 

accepted PK/PD target is an AUC0-24:MIC ratio of ≥400.  Vancomycin is subject to significant PK 

changes in critical illness such as increases in Vd and increases or decreases in vancomycin CL due 

to ARC or AKI, respectively. These scenarios can dramatically complicate vancomycin dosing (18, 

65).  

A recent systematic review identified interethnic differences in PK for numerous antibiotics (337). 

Various physiological characteristics reported in the Australian Indigenous people raises the 

question whether PK differences exist when compared with the non-Indigenous populations. 

Relative to non-Indigenous comparators, young Indigenous adults are reported to have 30% less 

nephrons (44), smaller body mass, slimmer extremities and higher central fat (46) which together 

may be associated with altered CL and Vd of renally cleared drugs. As current guidelines are 

predominantly extracted from studies performed in Caucasian and Asian populations, the PK of 

antibiotics need to be described to ensure current dosing regimens are optimal for other patient 

populations.  

This study aimed to describe the population PK of vancomycin in Indigenous Australians with 

severe sepsis and develop optimised dosing regimens that maximise the probability of PK/PD target 

attainment.   
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8.2.3 Participants and methods 

A prospective, observational, population PK study was conducted in the ICU of an Australian 

remote teaching hospital.  

 

8.2.3.1 Ethics 

Ethical clearance was approved by the local (Central Australian Human Research Ethics 

Committee, approval HREC-13-149) and university (The University of Queensland Human 

Research Ethics Committee, approval 2013000904) Ethics Committees. Written consent was 

obtained from all participants/next of kin.  

 

8.2.3.2 Study population  

The inclusion criteria were: (1) Australian Indigenous; (2) ≥18 years of age; (3) confirmed or 

suspected severe sepsis (374) within the previous 48 hours; (4) prescribed with vancomycin; and (5) 

an arterial line in situ. The exclusion criteria were (1) CrCL <10 mL/min; (2) requiring 

haemodialysis or CRRT; and (3) pregnancy.  

 

8.2.3.3 Study protocol 

The vancomycin (DBL Vancomycin®; Hospira Australia, Melbourne, Australia) dose and dosing 

interval were determined by the treating physician and was administered via a central venous 

catheter. Blood samples were collected in lithium heparin tubes from patient’s arterial line over one 

dosing interval at the following time-points: 0, 90, 180, 210, 240, 300, 360, 420, 480 and 720 

minutes from initiation of infusion. A second set of samples was obtained the next day if feasible. 

Demographics, clinical information, and routine laboratory test results performed on the study days 

were also recorded. 
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8.2.3.4 Sample handling and storage  

Blood samples were placed in a drug refrigerator at 2–8 °C after sampling. They were then 

centrifuged at 5000 rpm for 6 minutes within 8 hours of collection. The plasma supernatant was 

pipetted into 1 mL cryovials and stored in a freezer at -70 °C. At the end of subject recruitment, 

samples were packed with dry ice and freighted to the Burns Trauma & Critical Care Research 

Centre, The University of Queensland for drug assay.  

 

8.2.3.5 Drug assay 

Vancomycin was measured in plasma (0.2 to 100 mg/L) by a validated high pressure liquid 

chromatography-mass spectroscopy/mass spectroscopy (HPLC-MS/MS) method on a Shimadzu 

Nexera2 ultra-high pressure liquid chromatography (UHPLC) system coupled to a Shimadzu 8030+ 

triple quadrupole mass spectrometer (Shimadzu, Kyoto, Japan). For routine analysis, separations 

were performed using validated hydrophilic interaction liquid chromatography (HILIC), however a 

reverse phase chromatography was also validated to enable orthogonal analysis in cases of 

suspected chromatographic interference. 

Sample (100 µL) was spiked first with internal standard (teicoplanin) and then treated with 

acetonitrile to precipitate proteins. Dichloromethane was then used to remove lipid soluble 

components from the aqueous supernatant. An aliquot of 0.5 µL of the aqueous supernatant was 

injected onto the HPLC-MS/MS. 

Two separate, orthogonal chromatographies (HILIC or reversed phase columns with different 

gradients of the same mobile phase components) were validated for the measurement of 

vancomycin.  Mobile Phase A was 0.1% formic acid in water (v/v), and Mobile Phase B was 100% 

acetonitrile with 0.1% formic acid (v/v).   The default (HILIC) chromatography used a SeQuant zic-

HILIC 2.1 x 20 mm (5.0 µm) analytical guard column and a gradient going from 80% B to 0% B 

and back again for a 5.5 min run-time.  The alternative (reverse phase) chromatography used a 

Restek Pinnacle DB IBD column, 2.1 x 50 mm (1.9 µm) and the gradient went from 5% B to 95% 

B and back again for a 6.5 min run-time.   

Vancomycin was monitored by positive mode electrospray at MRMs of 746.1�144.2 and 725.6�

144.1. Teicoplanin was monitored in positive mode at 940.8→316.1. 
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The assay method was validated for linearity, LLOQ, matrix effects, recovery, reinjection stability 

and precision and accuracy using the Food and Drug Administration criteria for bioanalysis (348). 

The precision and accuracy were within 2.2% and 9.1% for the default HILIC chromatography.  

 

8.2.3.6 Population PK modelling 

Concentration-time data from the plasma samples were described by compartment models using the 

Pmetrics® software package (version 1.4.2) for R® (version 3.2.2). Various demographic and 

clinical data collected (e.g. weight, measured CrCL, sickness severity scores) were tested for 

inclusion into the model as covariates. The covariate was included into the model if it improved the 

log likelihood (p<0.05) and/or the goodness of fit plots.  

 

8.2.3.7 Model diagnostics  

Model evaluation was performed by visual assessment of goodness of fit of the population and 

individual predicted concentration vs observed concentration plots. The predictive performance was 

assessed on mean prediction error (bias) and the mean biased adjusted squared prediction error 

(imprecision) of the population and individual posterior predictions. Finally, VPC plots were 

generated from the final model. Appropriate distribution of the observed data within the simulated 

data was visually assessed.  

 

8.2.3.9 Monte Carlo dosing simulation  

Monte Carlo simulation was performed to determine optimal loading doses for various doses (15, 

20, 25, 30, 35 and 40mg/kg), weights (60, 80 and 100kg) and CrCL (20, 50, 100, 130 and 

170mL/min). The infusion rate used for all doses during simulation was 1000 mg/h. The 

simulations measured the probability of maintaining vancomycin concentration between 15 and 25 

mg/L for a minimum of 80% of the dose interval from time 0 to 720 minutes. 

The doses which achieved the highest PTA were subsequently incorporated into specified 

maintenance dosing regimens (500 mg 8, 12 and 24-hourly; 1000 mg 6, 8, 12 and 24-hourly; 2000 
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mg 8, 12 and 24-hourly) for further simulations. PTA of the maintenance regimens assessed the 

likelihood of maintaining the vancomycin concentration between 15 - 25 mg/L for at least 80% of 

24 hours, 24 hours post end of loading dose interval.  

Dosing simulations were repeated for the likelihood of attaining AUC:MIC ≥400 against different 

MICs (0.125 to 4 mg/L) for 24 hours, 24 hours post end of loading dose interval (36-60 hours post 

commencement of dosing for a CrCL of 20mL/min; 32-56 hours post commencement of dosing for 

CrCL ≥50 mL/min). The dosing regimens with the highest PTA were compared with the two 

different simulations for maintenance doses.  

 

8.2.3.10 Statistical analysis 

Continuous data were presented in median (IQR) and categorical data presented as counts (%).  

 

8.2.4 Results 

Fifteen Australian Indigenous patients were available for analysis inclusive of 216 blood samples. 

The demographics and clinical information are presented in Table 8.1.  
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Table 8.1 Demographic and clinical data 

 n=15 
Age (y) 43 (34-46) 
Female 8 (53%) 
Weight (kg) 73 (66-104) 
Height (cm) 168 (160-172) 
BMI (kg/m2) 25 (24-34) 
SrCr (µmol/L) 72 (58-98) 
CrCL (mL/min) 99 (56-139) 
Albumin (g/L) 26 (23-31) 
Vasopressor 14 (93%) 
APACHE II score 22 (19-27) 
SOFA score 10 (6-10) 

Abbreviation: BMI, body mass index; SrCr, serum creatinine; CrCL, creatinine clearance; APACHE II score, 
acute physiology and chronic health evaluation II score; SOFA score, sequential organ failure assessment 
score. 

Data presented in median (interquartile range) or counts (%) 
 

 

 

8.2.4.1 Population PK model building 

A two-compartment model described the data adequately. CrCL and total body weight (TBW) were 

the only covariates which improved the population PK model significantly. The final model is 

described as:  

TVCL = CL	x CrCL100  

TVVc = Vc	x	 TBW80
/.1

 

Where TVCL is the typical value of vancomycin clearance, CL is the population parameter estimate 

of vancomycin clearance, TVVc is the typical value of Vc, Vc is the population parameter estimate 

of volume of the central compartment and TBW is total body weight. The goodness of fit for the 

individual and population predicted concentrations vs observed concentrations plots and VPC were 

considered acceptable (Figure 8.1). The population PK parameter estimates described by the final 

model are presented in Table 8.2.  
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(a)                        (b)   

 

                                               (c)       

 

Figure 8.1 Diagnostics of the final population PK model – (a) Population predicted 

concentrations vs observed concentrations plot, (b) Individual predicted vs observed plot 

(Concentration in mg/L), (c) VPC plot (where Output on the y-axis is Concentration in mg/L) 
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Table 8.2 PK parameter estimates from two-compartment model 

 n=15 CV (%) 
Vc (L) 25.4 (16.3 - 31.3) 43.3 
CL (L/h) 4.6 (3.8 - 5.6) 26.2 
Kcp (h-1) 0.46 (0.28 – 0.52) 73.0 
Kpc (h-1) 0.25 (0.12 - 0.37) 159.4 

Abbreviation: Vc, volume of distribution in the central compartment; CL, drug clearance; Kcp, distribution 
rate constant from central to peripheral compartment; Kpc, distribution rate constant from peripheral to 
central compartment; CV, coefficient of variation.  

Data presented in median (interquartile range) 

 

 

8.2.4.2 Monte Carlo dosing simulation  

The dosing simulations revealed the loading doses with highest PTA are dependent on both CrCL 

and TBW, whereas the maintenance dose associates significantly with CrCL. The PTA of a 

maintenance dosing regimens for a trough concentration within 15-25 mg/L 24 hours post the 

loading dose against various CrCL is presented in Table 8.3. Regimens with the highest PTA were 

then selected for the dosing table presented in Table 8.4.   

The dosing simulations demonstrate that patients with lower TBW achieved slightly lower 

vancomycin concentrations when compared with higher TBW. Furthermore, the highest PTA of 

trough concentrations within 15-25 mg/L 24 hours post loading dose are mostly between 50-70%.  

When comparing the PTA from the two dosing simulation targets (trough concentrations and 

AUC:MIC), we found a high correlation of dosing regimens with highest PTA between the two sets 

of simulations for an MIC of 1 mg/L. Regimens with the same total daily dose but different dosing 

intervals manifested similar PTA, and regimens with less dosing frequencies generally 

demonstrated a slightly lower PTA (eg. 1 g 8-hourly comparing to 1.5 g 12-hourly).    
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Table 8.3. PTA of achieving a trough concentration of 15-25mg/L 24 hours post dose interval of loading dose for various clinical 

scenarios based on patient weight and renal function    

 

CrCL 20 mL/min 50 mL/min 100 mL/min 130 mL/min 170 mL/min 

TBW 60kg 80kg 100kg 60kg 80kg 100kg 60kg 80kg 100kg 60kg 80kg 100kg 60kg 80kg 100kg 

0.5g 24-hrly 0.53 0.68 0.73 0.01 0.02 0.04 - - - - - - - - - 

0.5g 12-hrly 0.243 0.21 0.18 0.21 0.30 0.41 - - - - - - - - - 

0.5g 8-hrly 0.03 0.04 0.04 0.69 0.70 0.69 0.04 0.06 0.08 - - - - - - 

1g 24-hrly 0.35 0.28 0.22 0.09 0.15 0.23 0 0 0.01 - - - - - - 

1g 12-hrly 0.01 0.02 0.03 0.57 0.52 0.48 0.08 0.11 0.17 0.02 0.03 0.04 0 0 0.01 

1g 8-hrly - - - - - - 0.48 0.57 0.63 0.16 0.23 0.28 0.04 0.05 0.07 

1g 6-hrly - - - - - - 0.53 0.53 0.44 0.49 0.49 0.61 0.20 0.26 0.30 

1.5g 12-hrly - - - 0.13 0.08 0.06 0.31 0.39 0.48 0.08 0.13 0.18 0.02 0.03 0.04 

2g 12-hrly  - - - - - - 0.46 0.50 0.53 0.24 0.33 0.39 0.06 0.09 0.13 

2g 8-hrly - - - - - - - - - 0.49 0.42 0.38 0.42 0.52 0.57 

 
Abbreviation: CrCL, creatinine clearance; TBW, total body weight; -, simulation not performed.  
Figures in bold represented dosing regimens with the highest PTA.  
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Table 8.4 Vancomycin dosing algorithms recommended for various CrCL  
CrCL 

(mL/min) Loading dose Time to next dose Maintenance regimen 

≤20 15mg/kg 12 hours 500mg 24-hourly 

21-50 20mg/kg 8 hours 500mg 8-hourly 

51-100 30mg/kg 8 hours 1g 8-hourly 

101-130 35mg/kg 8 hours 1g 6-hourly 

131-170 40mg/kg 8 hours 2g 8-hourly 

Abbreviation: CrCL, measured creatinine clearance  

 

8.2.5 Discussion 

8.2.5.1 Summary of principal findings 

A large interindividual variability was observed in the vancomycin PK which was significantly 

associated with differences in patient’s TBW and CrCL. We found that optimal loading doses are 

heavily dependent on both TBW and CrCL, whereas maintenance doses are dependent on CrCL. 

We have presented a dosing table that can be used to maximise achievement of therapeutic 

concentrations for the first 24 hours post loading dose. 

 

8.2.5.2 Findings of the present study in light of what was published before 

The estimated median CL (4.6 L/h) in the Indigenous patients was similar to other published data in 

critically patients with comparable CrCL (3.5-5.9 L/h), and like previous studies, CrCL remained 

the most important determinant of vancomycin PK (375-377). This supports the finding highlighted 

in a recent systematic review, that interethnic differences in PK are unlikely for the CL of an 

antibiotic where glomerular filtration is the predominant mechanism of elimination (337). 

Furthermore, we observed a large interindividual variability for Vc in our patient group. The median 

Vc is 0.35 L/kg, which is similar to critically ill patients in other populations (0.19 - 0.41 L/kg) 

(375, 376). These results do not support the presence of interethnic PK differences for vancomycin, 

or that at the very least, they suggest that any population-level difference is not clinically 

significant. 
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Loading doses are now considered important for rapidly achieving effective vancomycin exposures 

in critically ill patients. This practice is supported by data demonstrating that low vancomycin 

exposure (AUC:MIC ratio <430 for Etest and <398.5 for broth microdilution methods of MIC 

determination) for the first 24-48 hours of therapy is an independent factor for higher mortality and 

treatment failure in MRSA bacteraemia (76, 378).  In our dosing simulations, we found that the 

magnitude of loading dose required is affected by TBW and CrCL. The importance of CrCL is a 

novel observation, in some ways, with patients with a higher CrCL requiring the first maintenance 

dose to be administered earlier than in patients with lower CrCL. We proposed a first maintenance 

dose at 8 hours in these scenarios. The major output from our dosing simulations was the 

development of a dosing algorithm which incorporates loading doses and maintenance dosing 

regimens with the highest PTA.  

 

8.2.5.3 Strengths and limitations 

The Indigenous Australians are a unique ethnic group with very distinctive physiology. This study 

was able to recruit 15 Indigenous patients with severe sepsis, which is highly prevalent in 

Australian remote communities. There is currently very limited PK data available to guide optimal 

antibiotic dosing.  

On the other hand, an association of PK/PD target attainment with an altered clinical outcome could 

not be assessed due to the small sample size. Furthermore, samples were not collected from the site 

of infection (e.g. epithelial lining fluid in pneumonia) and thus, our dosing recommendations relate 

to the achievement of target exposures in blood only. Finally, a larger sample size may have 

enabled other covariates to be included in the final model, although it is unlikely they would 

significantly alter the dosing algorithm. 

 

8.2.5.4 Understanding possible mechanism 

The impact of drug CL on loading doses for vancomycin therapy is usually neglected. However, the 

process of vancomycin elimination would have initiated shortly after it reaches a detected 

concentration in the plasma. For a drug that is predominantly eliminated via the renal route and with 
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a mixed concentration and time dependent PD property, CrCL naturally becomes a significant 

determinant of early achievement of therapeutic target.  

 

8.2.5.5 Meaning of this study and implications for practice 

It is generally accepted that a TDM target for vancomycin intermittent infusions is a trough 

concentration between 15-20 mg/L. However, this target has also been shown to poorly correlate 

with an AUC of 400 mg.h/L due to high interindividual variability (379). In our simulations, 

however, we have found a high correlation between PTA of AUC of 400 mg.h/L and trough 

concentration between 15-25 mg/mL. To some extent, this result supports the ongoing use of trough 

concentration measurements for TDM where it is not possible to more accurately characterise 

AUC:MIC in individual patients.  

We would also point out that the commonly used empirical regimen of 1 g 12-hourly only achieved 

acceptable PTAs for patients with a CrCL of 50mL/min in our dosing simulations.  Furthermore, 

the PTA of 50–70% for most recommended regimens denotes the requirement of dose adjustments 

for 30–50% of patients. Due to changes in renal function and PK alterations in critical illnesses, 

continuous TDM throughout the course of vancomycin therapy is still recommended.  

Our dosing simulations have demonstrated drastically low PTA of AUC:MIC for MICs ≥1.5 mg/L 

for most maintenance dosing regimens, which is consistent with the association of a MIC ≥1.5mg/L 

and higher mortality (378). This observation emphasises the challenges in the treatment of MRSA 

infections with high MICs. Whilst the risk of toxicity also needs to be considered, unusually high 

doses may be required to attain the PK/PD target for increasing clinical cure and potentially 

survival in the presence of less susceptible pathogens. 

 

8.2.5.6 Implications for future research  

The dosing algorithm proposed in this study was aimed to achieve early PK/PD target attainment in 

the critically ill setting. A study is needed to compare the PTA of this algorithm with conventional 

dosing guidelines. Furthermore, multicentre clinical trials may also be needed to assess the clinical 
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outcomes in patients with confirmed MRSA infection, comparing those who have achieved early 

PK/PD target attainment to those who have not.  
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8.3 Conclusion 

This Chapter describes the PK of vancomycin in Indigenous patients with severe sepsis. Despite a 

large interindividual variability in the PK, the variability was adequately described by variations 

between patients in CrCL and TBW. PK parameter estimates obtained from the final model are 

comparable to data published in other critically ill populations. From the Monte Carlo dosing 

simulations, we have found that loading doses were heavily dependent on weight and CrCL, 

whereas maintenance doses were highly dependent on CrCL. As such, a table of different loading 

doses based on the patient’s total body weight as well as CrCL have been proposed. This dosing 

algorithm aims to maximise early PK/PD target attainment and will be very useful for the Central 

Australian region where a high burden of MRSA is present.  
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Chapter 9 Summary of findings and future directions 

 

9.1 Summary of findings and discussion 

The overall aim of this thesis was to optimise commonly used antibiotics in critically ill Australian 

Indigenous patients with severe sepsis. The following is a summary of the major findings from 

projects conducted. 

 

9.1.1 Interethnic differences in PK of antibiotics  

The structured systematic review included in Chapter 2 investigates the presence of PK differences 

of antibiotics in different ethnic groups, as well as the probable mechanisms causing these 

differences.  

Fifty articles were included in this analysis. We found that most differences were identified in 

antibiotics that are orally administered and are significantly eliminated via the hepatic route. 

Antibiotics with likely interethnic PK differences include ciprofloxacin, macrolides, clindamycin, 

tinidazole and some cephalosporins. On the other hand, PK differences were negligible for !-

lactams, aminoglycosides, glycopeptides, most fluoroquinolones, linezolid and daptomycin. 

Furthermore, where a difference has been identified, it was most commonly found in the Asian 

population which generally manifested higher drug exposures up to 2-3 fold greater than Caucasian 

comparators. Such differences were mostly caused by a lower Vd and/or drug CL.  

The PK mechanisms which contributed to these identified PK differences are most likely the 

polymorphisms associated with hepatic metabolism and active transporters in different parts of the 

body; different body size and composition; and high AGP binding fraction. On the other hand, 

interethnic PK differences are unlikely for antibiotics that are predominantly absorbed by passive 

diffusion and/or predominantly eliminated by glomerular filtration. 
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9.1.2 CrCL of critically ill Indigenous patients 

The manuscript incorporated in Chapter 4 studied the CrCLm of 131 critically ill patients (97 

Indigenous and 67 non-Indigenous). This prospective observational cohort study described the 

incidence of ARC and AKI in the two patient groups. Possible determinants of ARC in the 

Indigenous patient group were also examined. The accuracy of various mathematical equations 

calculating the eGFR and CrCL was also assessed, using CrCLm as reference.  

Eight-hour urine was collected daily for all recruited patients, and CrCLm subsequently determined. 

A significantly higher prevalence of ARC (defined as ≥130mL/min) was detected in the Indigenous 

patient group (24.7% vs 13.7% of samples, p<0.01) while AKI was similar between the two groups 

(8.5% vs 8.5%, p=1.00). Up to 44% of Indigenous patients without CKD had ARC. Demographics 

associated with ARC include younger age, absence of diabetes, major surgery and higher baseline 

eGFR. All mathematical equations demonstrated limited correlation with CrCLm.  eGFR calculated 

with the CKD-EPI equations marginally manifests the highest correlation with CrCLm.   

Overall, the incidence of ARC in critically ill Indigenous patients was higher than non-Indigenous 

comparators, which was likely due to their younger age. CrCLm should be performed wherever 

possible to optimise dosing of renally cleared drugs.  

 

9.1.3 Optimising meropenem dosing in critically ill Australian Indigenous 

patients with severe sepsis 

The study incorporated in Chapter 5 is an observational population PK study performed on 

meropenem. Six Indigenous patients were recruited, and concentration-time data collected from 

serial plasma samples was combined with data obtained from 5 critically ill Caucasian patients with 

sepsis from a previously published study for PK analysis. Meropenem CL and Vc were described by 

CrCL and patient weight respectively. Patient ethnicity was not supported as a covariate in the final 

model, and was not included in the final model.  

Although the CL was significantly lower in the Indigenous patient group when compared with the 

non-Indigenous patient group (median 11.0 (range 3.0–14.1) vs 17.4 (4.3–30.3) L/h, p< 0.01, 

respectively), the difference is described by lower CrCL in the Indigenous group rather than due to 
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the interethnic differences. A set of dosing guidelines was presented for patients with different 

CrCL against MICs for different typical pathogen targeted. 

Thus, no clinically relevant interethnic differences in meropenem PK between the Indigenous and 

Caucasian groups were detected and CrCL was found to be the strongest determinant of appropriate 

dosing regimens. This finding supports the hypothesis suggested in Chapter 2, where interethnic PK 

difference is unlikely for antibiotics that are predominantly eliminated by glomerular filtration.  

 

9.1.4 Optimising piperacillin dosing in critically ill Australian Indigenous 

patients with severe sepsis 

The study incorporated in Chapter 6 is an observational population PK study performed on 

piperacillin. Nine Indigenous patients were recruited, and concentration-time data collected from 

serial plasma samples was used for PK analysis. The final model was used for Monte Carlo 

simulation with Pmetrics® to describe optimal doses of piperacillin. CL and Vc were 5.6 ± 3.2 L/h, 

14.5 ± 6.6 L respectively, and were described by CrCL and total body weight respectively. A 

slightly lower CL in this population was found when compared with other published data, however, 

whether this difference is of any clinical significance is unclear. The dosing simulations concluded 

that a regimen of 4 g piperacillin 4-hourly is needed for a MIC of 16 mg/L for those with CrCL of 

51–130 mL/min. A continuous infusion of 24 g/24 hours is needed when CrCL ≥130mL/min.    

In conclusion, a lower mean CL in the Indigenous group was detected for piperacillin, although its 

clinical significance cannot be assessed. CrCL was found to be the strongest determinant of 

appropriate dosing regimens as piperacillin is predominantly renally eliminated. This finding 

supports the hypothesis suggested in Chapter 2, where interethnic PK difference was less likely for 

antibiotics that are predominantly eliminated via the kidneys. The small difference in piperacillin 

CL observed in this study may be contributed by differences in the hepatic CL. In this patient 

population, piperacillin demonstrated high interindividual PK variability, but it is well described by 

the CrCL. A dosing algorithm was suggested to optimise PK/PD target attainment.   
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9.1.5 Optimising ceftriaxone dosing in critically ill Australian Indigenous 

patients with severe sepsis 

The study incorporated in Chapter 7 is an observational PK study performed on ceftriaxone. Five 

Indigenous patients with severe sepsis were recruited. Concentration-time data collected from serial 

plasma samples for a regimen of 1 g 12-hourly were analysed with a non-compartmental approach. 

The regimen of 1 g IV 12-hourly is a commonly used regimen in critically ill patients in Central 

Australia.  

CL, Vdss, T½ and elimination rate constant estimates were 0.9 (0.6-1.5) L/h, 11.2 (8.0-12.5) L, 9.5 

(4.3-10.0) h and 0.07 (0.07-0.17) h-1 respectively. The unbound fraction of ceftriaxone ranged 

between 0.14 and 0.43, with a higher unbound fraction present at higher total concentrations. The 

CL and Vdss observed in this population were lower than data published in other populations. 

Furthermore, the median (range) unbound concentration at time 720 minutes for the first and second 

dosing intervals were 7.2 (5.9-7.6) and 7.8 (4.9-11.0) mg/L respectively, which exceeds 4x MIC of 

all typical target pathogens. 

In conclusion, the regimen of ceftriaxone 1 g IV twelve-hourly is adequate for critically ill 

Australian Indigenous patients with severe sepsis caused by non-resistant pathogens.  

 

9.1.6 Optimising vancomycin dosing in critically ill Australian Indigenous 

patients with severe sepsis   

The study incorporated in Chapter 8 is an observational population PK study performed on 

vancomycin. Fifteen Indigenous patients were recruited, and concentration-time data collected from 

serial plasma samples was used for PK analysis. A two-compartment model described the data 

adequately. CL and Vc were described by CrCL and patient weight respectively and were 4.6 (3.8-

5.6) L/h and 25.4 (16.1-31.3) L respectively. The PK parameter estimates obtained from our study 

were similar to data published in other populations. Hence any interethnic differences in the PK of 

vancomycin are unlikely to be of a high clinical significance.   
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Results from the Monte Carlo dosing simulations showed that therapeutic loading doses were 

significantly dependent on both weight and CrCL, whereas maintenance doses were dependent 

predominantly on CrCL.  

In conclusion, these results suggest an absence of interethnic PK differences for vancomycin, or that 

at the very least, that any population-level difference is not clinically significant. Although high 

interindividual variability exist in the population PK of vancomycin, the variation was well 

described by CrCL. A dosing algorithm was proposed to maximise early PK/PD target attainment in 

the critically ill Australian Indigenous patients. 
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9.2 Future directions for research 

 There are a number of areas which may require further attention for future research: 

- A vancomycin dosing algorithm was recommended for Indigenous patients with severe sepsis in 

Chapter 8. This algorithm was based on a series of Monte Carlo dosing simulations. A clinical 

trial should be considered to compare the PK/PD target attainment rate between the regimens 

recommended in this thesis and those from existing dosing protocols. Furthermore, patient 

clinical outcome can also be assessed against PK/PD target attainment.   

- A series of clinical trials could be conducted to assess the correlation between PK/PD target 

attainment and clinical outcome for commonly used antibiotics in the ICU for critically ill 

Australian Indigenous patients.  

- In Chapter 6 and 7, a slightly lower mean drug CL was observed in the severely septic 

Indigenous patients for piperacillin and ceftriaxone. This results in slightly higher drug 

concentrations. Although this may increase the PTA, the incidence of toxicity is unknown. A 

large epidemiological study should be considered to describe the incidence of adverse drug 

events between Indigenous and non-Indigenous patients for conventional and optimised dosing 

regimens.   

- All PK studies included into this thesis describe the antibiotic concentrations achieved in the 

plasma. However, antibiotic concentration achieved in the plasma cannot be directly 

extrapolated to other parts of the body. Studies exploring into antibiotic concentration in 

specific tissue sites are suggested for the Indigenous population.  

- Approximately 20-25% of Indigenous patients admitted into the Central Australian ICU have 

end-stage renal failure, and RRT is required for these patients. As different types and modes of 

RRT can have different effects on the PK of the antibiotics used, PK studies in the critically ill 

Indigenous patients receiving RRT should be considered.    

- Numerous anti-human immunodeficiency virus drugs were made into lower strength 

formulations in Thailand due to the significantly higher drug concentrations observed in Thai 

subjects compared with published data in other ethnic groups. This may be due to a lower 

hepatic CL (cytochrome P450) observed in Thai patients. PK studies in antimicrobials used for 
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chronic infections should also be considered for further study, especially those with a significant 

hepatic CL component.  

- Gentamicin is a common antibiotic used in Indigenous neonatal patients. However, higher drug 

concentrations are commonly observed when conventional dosing regimen is used in clinical 

practice. A population PK study for this patient group can be considered to develop evidence-

based dosing regimens for this important drug.  
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9.3 Conclusion 

Optimisation of antibiotic dosing regimens can maximise PK/PD target attainment. Numerous 

factors may influence the probability of attaining these targets such as the physiological changes 

associated with critical illness. In our studies, we have demonstrated that there are likely no 

significant interethnic PK differences between the critically ill Australian Indigenous and non-

Indigenous patients for meropenem, ceftriaxone, piperacillin and vancomycin. Although there is a 

possibility of interethnic PK differences in drug CL for antibiotics that are significantly eliminated 

via the hepatic route, it is unlikely to be clinically relevant. Furthermore, techniques which can 

improve PK/PD target attainment can be employed to maximise the anticipated clinical benefit. 

These techniques include accurate assessments of CrCL, evaluating risk factors for ARC, identify 

the MIC of the pathogen and use TDM. Nonetheless, extensive efforts are still required for future 

research in optimising antibiotic dosing in the critically ill Australian Indigenous patients.   
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