
Accepted Manuscript 

 
 

Title: A novel model to assess lamellar signaling relevant to preferential 

weight bearing in the horse 

 

Author: A.K. Gardner, A.W. van Eps, M.R. Watts, T.A. Burns, J.K. Belknap 

 

PII:  S1090-0233(17)30046-1 

DOI:  http://dx.doi.org/doi: 10.1016/j.tvjl.2017.02.005 

Reference: YTVJL 4960 

 

To appear in: The Veterinary Journal 

 

Accepted date: 12-2-2017 

 

 

Please cite this article as:  A.K. Gardner, A.W. van Eps, M.R. Watts, T.A. Burns, J.K. Belknap, A 

novel model to assess lamellar signaling relevant to preferential weight bearing in the horse, The 

Veterinary Journal (2017), http://dx.doi.org/doi: 10.1016/j.tvjl.2017.02.005. 

 

This is a PDF file of an unedited manuscript that has been accepted for publication.  As a service 

to our customers we are providing this early version of the manuscript.  The manuscript will 

undergo copyediting, typesetting, and review of the resulting proof before it is published in its 

final form.  Please note that during the production process errors may be discovered which could 

affect the content, and all legal disclaimers that apply to the journal pertain. 

 

 



 Original Article 1 
 2 
 3 

A novel model to assess lamellar signaling relevant to preferential weight bearing in the 4 
horse 5 
 6 
 7 
A. K. Gardner 

a
, A. W. van Eps 

b
, M.R. Watts 

a
, T.A. Burns 

a
, J.K. Belknap 

a, * 
8 

 9 
a 

College of Veterinary Medicine, The Ohio State University, 601 Vernon L. Tharp Street, 10 
Columbus, OH 43210, USA 11 
b 

School of Veterinary Science, The University of Queensland, Gatton Campus, Gatton, QLD 12 
4343, Australia 13 

 14 
 15 

 16 
 17 

*  Corresponding author. Tel.: +1 614 2926661. 18 
  E-mail address: belknap.16@osu.edu (J.K. Belnap). 19 

20 

Page 1 of 24

mailto:belknap.16@osu.edu


Highlights 21 

 A novel model to study lamellar signaling events during preferential weight bearing is presented.  22 

 Lamellar signaling events related to hypoxia and inflammation were assessed. 23 

 Lamellar hypoxia inducible factor-1a was increased in the supporting limb relative to the contralateral hind 24 

limb. 25 

 No differences in lamellar inflammatory signaling were present between the supporting limb and hind 26 

limbs. 27 

 28 

Abstract 29 

Supporting limb laminitis (SLL) is a devastating sequela to severe unilateral lameness in 30 

equine patients. The manifestation of SLL, which usually only affects one limb, is unpredictable 31 

and the etiology is unknown. A novel, non-painful preferential weight bearing model designed to 32 

mimic the effects of severe unilateral forelimb lameness was developed to assess lamellar 33 

signaling events in the SL. A custom v-shaped insert was attached to the shoe of one forelimb to 34 

prevent normal weight bearing and redistribute weight onto the SL. Testing of the insert using a 35 

custom scale platform built into the floor of stocks confirmed increased distribution of weight on 36 

the SL compared with the unloaded forelimb (UL) and the contralateral (CH) and ipsilateral (IH) 37 

hind limbs in six Standardbred horses. In a second part of the study, eight healthy Standardbred 38 

horses were fitted with the insert and tied with consistent monitoring and free access to hay and 39 

water for 48 h, after which the lamellae were harvested. Real-time qPCR was performed to 40 

assess lamellar mRNA concentrations of inflammatory genes and immunoblotting and 41 

immunofluorescence were performed to assess lamellar protein concentration and cellular 42 

localization of hypoxia-related proteins, respectively.  43 

 44 
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Lamellar mRNA concentrations of inflammatory signaling proteins did not differ 45 

between SL and either CH or IH samples. HIF-1 α concentrations were greater (P <0.05) in the 46 

SL compared to the CH. This work establishes an experimental model to study preferential 47 

weight bearing and initial results suggest that lamellar hypoxia may occur in the SL. 48 

 49 

Keywords: Cell signaling; HIF-1 α; Hypoxia; Preferential weight bearing; Supporting limb 50 

laminitis  51 
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Introduction 52 

 Laminitis is a broad term used to describe injury to the digital lamellae occurring 53 

secondary to at least three diverse disease states: systemic sepsis, endocrinopathies (particularly 54 

involving insulin dysregulation), and severe lameness in one limb causing excessive weight 55 

bearing on the contralateral supporting limb (SL; Belknap and Parks, 2010). Over the last two 56 

decades, understanding of both sepsis-related laminitis and endocrinopathic laminitis has 57 

progressed, with much of the information emanating from experimental equine models of these 58 

types of laminitis (Garner et al., 1975; Asplin et al., 2007; Dyson et al., 2011; Leise et al., 2011; 59 

Risberg et al., 2014). However, there is minimal understanding of the pathophysiologic events 60 

occurring in SL laminitis (SLL), primarily due to the lack of a representative and humane animal 61 

model to study this type of laminitis.  62 

 63 

  SLL is a devastating sequela to chronic excessive loading of one limb which occurs 64 

when there is reduced weight-bearing on the contralateral limb due to pain (e.g. fracture, 65 

synovial sepsis), or the inability to support weight on the limb e.g. in traumatic neuropathies (van 66 

Eps et al., 2010). There is limited information published on the prevalence of SLL across such 67 

cases, although it is estimated that between 10 and 27% of horses with conditions involving non-68 

weight-bearing lameness will develop SLL in the contralateral limb, depending on the study and 69 

underlying primary disease (Peloso et al., 1996; van Eps et al., 2010; Virgin et al., 2011). Several 70 

risk factors have been reported in clinical studies, including the weight and size of the horse, and 71 

the severity and duration of lameness (van Eps et al., 2010; Virgin et al., 2011). The 72 

development of SLL is unpredictable, both in regard to which horses will develop the disease 73 

and when it will become apparent, with the average time to onset of clinical signs (measured 74 
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from the time of the initial injury inducing primary non-weight bearing lameness) reported as 75 

days to weeks (Peloso et al., 1996; Richardson, 2008) with a mean of 14.5 days in one study 76 

(Wylie et al. 2015). SLL commonly leads to rapid and severe lamellar failure once signs are first 77 

noted, with subsequent distal displacement of the distal phalanx within the hoof capsule. Due to 78 

this catastrophic structural failure of the lamellae, mortality after development of SLL is high, 79 

with published estimates of at least 50-75% (Peloso et al., 1996; van Eps et al., 2010; Virgin et 80 

al., 2011).  81 

 82 

Pathophysiologic events ranging from inflammation to hyperinsulinemia have been 83 

proposed to play a role in SLL, with minimal to no experimental data to support or refute the 84 

importance of these events. However, cadaver and short-term in vivo studies suggest a possible 85 

role of disrupted lamellar perfusion in SLL (Van Kraayenburg, 1982; van Eps et al., 2010; Sun et 86 

al., 2015), as opposed to endocrinopathic and sepsis-related laminitis (Burns et al., 2014; Pawlak 87 

et al., 2014; Risberg et al., 2014). Disrupted lamellar perfusion would likely create a hypoxic 88 

environment leading to altered cellular energy metabolism and possibly subsequent damage 89 

(Wylie et al., 2015). However, no equine model has been developed to study the effect of 90 

excessive weight bearing on lamellar physiology. The objectives of the current study were to 91 

develop an effective, humane experimental model of preferential weight bearing on one forelimb 92 

and to use this model to evaluate the effect of excessive weight bearing on lamellar regulation of 93 

a marker of tissue hypoxia, hypoxia-inducible factor-1 alpha (HIF-1α; Ho et al., 2006; Pawlak et 94 

al., 2014) and inflammatory markers shown to have increased expression in a model of sepsis-95 

related laminitis (Leise et al. 2010). We hypothesized that cellular signaling consistent with 96 
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lamellar hypoxia would be present in lamellae of the SL of a horse that was unable to place 97 

normal weight on the contralateral limb for a 48 h period. 98 

 99 

Materials and methods 100 

Animal protocols  101 

 The experimental methods were approved by the Ohio State University (project number 102 

2011A00000102; Approval date 22 September, 2011) and the University of Queensland 103 

Institutional Animal Care and Use Committees (SVS/098/15/GJCRF; Approval date 5 May, 104 

2015). Two separate experiments were performed.  105 

 106 

Preliminary altered weight bearing study 107 

At the Australian Equine Laminitis Research Unit (The University of Queensland), six 108 

clinically normal mature geldings (five Standardbreds and one Thoroughbred; mean age 9.5 109 

years, range 4-13; mean body mass 458 kg, range 440-480 kg) were restrained in stocks with a 110 

floor that consisted of a custom-built weighing-scale platform capable of recording individual 111 

load on all four limbs over time at a frequency of 20 Hz. Data was examined using commercial 112 

software (LabChart 7, AD Instruments). The shoe insert consisted of a V-shaped metal bar (V-113 

insert) with the apex pointing towards the floor and each arm of the V secured to the branches of 114 

the steel shoe with bolts at points equidistant from the toe on both sides (Fig. 1); the height of the 115 

V-shaped bar at the apex was 7.5 cm from the ground surface of the point of the V to the bars of 116 

the horse’s hoof. The construct necessitated overweighting of the contralateral forelimb due to 117 

the horse only being able to place the toe or the heel of the shod foot on the ground (Fig. 1), but 118 

never the entire sole. The insert did not contact the horse’s hoof. Weigh-scale readings were 119 
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recorded for 1 h without intervention in each horse (control period) before the shoe insert was 120 

fitted to forelimb chosen by convenience sampling and shod with a custom shoe modified to fit 121 

the V-insert. Subsequently, weigh-scale data was recorded for a further 30 min once the V-insert 122 

was applied to the shoe (SL period). In two of the horses, the shoe insert was left on for a further 123 

4 h before a second 30 min data recording was made (extended SL period). The mean body mass 124 

over the recording period for each limb was calculated and expressed as a percentage of the total 125 

body mass (Fig. 2). The horses were returned to the teaching herd after cessation of the weight 126 

bearing study. 127 

 128 

Forty-eight hour insert application with lamellar harvest  129 

  At Ohio State University, eight healthy and clinically normal Standardbred horses 130 

aged 3-15 years old (mean age 9.85 years) and between 400 and 500kg body mass (mean 456 kg) 131 

were used. Lateromedial radiographs of both front feet were performed to determine if there was 132 

any evidence of chronic laminitis; horses were excluded if this was noted. The limb with the 133 

insert applied was designated ‘unloaded limb’ (UL), while the contralateral limb was labeled SL. 134 

The hind limbs were named in accordance with their position compared to the SL: ‘contralateral 135 

hind’ (CH; e.g. the right hind limb was designated CH if the left forelimb was the SL) and 136 

‘ipsilateral hind’ (IH; Fig. 1). 137 

 138 

  For 48 h before V-insert placement, each horse was housed loose in a 12 x 12 m box stall, 139 

and was monitored hourly for general attitude and weight-bearing; physical parameters were 140 

recorded every 6 h. This schedule continued until termination of the experiment (48 h post-insert 141 

application). At the start of the experiment, the V-insert was attached to the shoe, and horses 142 
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were tied to minimize movement in a sparsely bedded stall. The horses had access to a full hay 143 

net and water bucket at all times. After 48 h, horses were administered detomidine (0.01 mg/kg 144 

IV; Dormosedan, Zoetis) and an IV overdose of barbiturate (80mg/kg; Euthasol; Virbac) to 145 

provide humane euthanasia in the stall. 146 

 147 

  Each of the SL, CH, and IH limbs were rapidly disarticulated at the metacarpophalangeal 148 

joint in a non-random order. Each foot was sectioned in a sagittal plane using a band saw in 3-5 149 

cm sections before lamellar samples were sharply dissected away from keratinized hoof wall and 150 

underlying corium. Lamellar samples were either snap-frozen, or placed in optimal cutting 151 

temperature (OCT) medium and frozen on dry ice as previously described (Leise et al., 2012). 152 

Time from euthanasia to snap-freezing of samples was less than 20 min in all eight horses 153 

(deemed to be important when assessing markers of tissue hypoxia and preserving RNA quality 154 

in the samples). The UL lamellae were not included because: (1) the aim of the study was to 155 

compare lamellar signaling in a limb undergoing preferential weight bearing to limbs undergoing 156 

relatively normal weight bearing (i.e. not decreased weight bearing), and (2) time constraints of 157 

obtaining samples from all limbs (especially a limb which required shoe/insert removal) quickly 158 

to allow accurate assessment of lamellar hypoxia. Lamellar samples were stored at −80 °C. 159 

 160 

Real-time quantitative polymerase chain reaction (RT-qPCR) procedure 161 

 Lamellar samples previously stored at -80 °C were pulverized using a custom dry-ice 162 

cooled Bessman tissue pulveriser to perform total RNA extraction (Absolutely RNA Miniprep, 163 

Agilent) with a DNAse step to degrade any genomic DNA. Poly (A) RNA (mRNA) was isolated 164 

from total RNA using Streptavidin magnetic beads (mRNA isolation kit, Roche). Four hundred 165 
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ng of mRNA was used in complementary (c) DNA synthesis via reverse-transcriptase 166 

(Retroscript, Ambion) PCR on a standard thermocycler. The cDNA was stored at -20 °C until 167 

ready for real-time PCR (RT-qPCR). Prior to RT-qPCR, external standards were created from 168 

equine specific primers (Appendix: Supplementary Table 1) as previously described (Leise et al. 169 

2010).  170 

 171 

 Real-time quantitative PCR (RT-qPCR) was performed in the SYBR green fluorescent 172 

format using a Lightcycler 2.0 thermocycler (Roche) and quantified with external standards as 173 

previously described (Leise et al., 2011). Primers for hypoxia and oxygen-dependent cellular 174 

energy related genes including GLUT1, HIF-1α, NOS2, and PGK1 were examined. Primers for 175 

IL-1 β, IL-6, COX-2, ICAM-1, E-Selectin, ADAMTS4, MMP-2, MMP-9, and MMP-13 were 176 

used due to their documented regulation in experimental models of sepsis-related laminitis (Leise 177 

et al., 2011).  178 

 179 

 Several housekeeping genes, β-Actin, β2 microglobulin (β2M), and glyceraldyhyde-3-180 

phosphate dehydrogenase (GAPDH) were assessed by geNorm (Ghent University) to identify the 181 

two that had the optimal score. Beta-Actin and GAPDH were identified by the geNorm 182 

algorithm as the best candidates to create a normalization factor. The average copy number was 183 

normalized, and fold change of each hind limb copy number over average SL copy number was 184 

calculated.  185 

 186 

Immunoblotting 187 

 Protein was extracted from snap frozen lamellae that were first pulverized on dry ice, 188 
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then homogenized in M-Per lysis buffer, with the addition of 4M NaCl, protease and phosphatase 189 

inhibitors (Halt, Thermo Fisher Scientific), and PMSF as previously described (Leise et al., 190 

2012). After 30 min of incubation on ice, the lysate was separated by centrifugation (18,000 g for 191 

15 min at 4
o
 C) and the supernatant collected. Protein concentration was determined using 192 

Bradford reagent and a spectrophotometer. Samples were aliquoted and stored at −80 
o
C until 193 

immunoblotting. Lamellar protein concentrations of prolyl hydroxylase-2 (PHD2; Santa Cruz 194 

Biotechnology), the most ubiquitous regulator of HIF-1α concentrations (Berra et al., 2003; Fong 195 

and Takeda, 2008) and HIF-1α (Novus Biologicals), a commonly used marker of hypoxia were 196 

assessed. As previously described by Leise et al. (2011), protein (30μg) from individual horses 197 

was loaded on a 26 well Criterion SDS-PAGE gel (Bio-Rad), separated by electrophoresis, 198 

transferred onto a polyvinyldifluoridine (PVDF) membrane (Bio-Rad), blocked in 5% milk in 199 

Tris-buffered saline plus 0.1% Tween-20 (TBST) for 1 h at room temperature, then hybridized at 200 

4 
o
C overnight in primary antibody (PHD2, 1:1000; HIF-1α 1:750), washed in TBST, incubated 201 

with the appropriate horseradish peroxidase (HRP)-linked secondary antibody (1:15000); and the 202 

chemiluminescent signal captured on Biomax light film (Carestream). After detection, the 203 

membranes were stripped for 15 min in a commercially available buffer (Restore, Pierce) and 204 

subsequently probed in the same manner against β-Actin as a loading control. Band intensities 205 

were calculated with ImageJ (NIH) and relative intensity was determined against β-Actin. 206 

 207 

 Hind limb and forelimb lamellar samples collected in a similar manner to that described 208 

for this study from control horses in a separate study on sepsis-related laminitis were used to 209 

perform a supplemental HIF-1α Western blot to ensure changes in protein concentration were not 210 

merely a normal physiologic difference between hind and forelimb weight bearing (Leise et al., 211 
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2012).  212 

 213 

Immunofluorescence 214 

 To visualize cellular localization of HIF-1α in lamellar tissues in the 48 h altered weight-215 

bearing study, 10µm-thick frozen sections were made from lamellar tissue preserved in OCT and 216 

affixed to slides, fixed for 15 min in 4% formaldehyde, washed in phosphate buffered saline 217 

(PBS), and blocked for 1 h at room temperature in PBS containing 5% normal goat serum and 218 

0.3% Triton X-100 (Sigma Aldrich). Sections were incubated at 4 
o
C overnight in a 1:100 219 

dilution of primary antibody (Santa Cruz Biotechnology) in PBS containing 1% bovine serum 220 

albumin and 0.3% Triton X-100. After three washes, slides were incubated with a 1:200 dilution 221 

of a flourochrome-conjugated secondary antibody (Thermo Fisher Scientific) at room 222 

temperature for 1 h 30 min. The slides were then washed, air dried, cover- slipped with a 223 

mounting media containing 4, 6-diamidino-2-phenylindole (DAPI), cured overnight, and imaged 224 

on a DM IRE laser-assisted confocal microscope (Leica) equipped with digital imaging software.  225 

 226 

Statistical analysis 227 

Preliminary altered weight bearing study  228 

 Mean % body mass was compared between limbs for both the control (no V-insert) and 229 

the SL (V-insert applied) periods using one-way ANOVA for repeated measures, and between 230 

the control and SL periods for each limb using paired student’s t tests.  231 

 232 

RT-qPCR and immunoblotting data  233 

 Data were assessed via the D'Agostino-Pearson test for normality. Log and square 234 
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transformations were attempted to normalize non-normally distributed data. Further 235 

transformations were not performed if these did not achieve normal distribution, and the data 236 

were then assessed with non-parametric statistical tests. Normally distributed samples were 237 

assessed using a one-way repeated measures ANOVA with Dunnett’s multiple comparisons 238 

post-test, and the non-normally distributed data were assessed using a Friedman's test with 239 

Dunn’s multiple comparisons post-test. An α-error of 5% (P <0.05) was designated statistically 240 

significant. All statistics were performed using GraphPad Prism (GraphPad Software).  241 

 242 

Results 243 

 All horses throughout the two parts of this study (preliminary and 48 h insert application) 244 

presented normal attitude, appetite and manure production. 245 

 246 

Preliminary altered weight bearing study (pilot study) 247 

Evaluation of model 248 

 The horses in the pilot study had a greater variation in weight-bearing on the IH than the 249 

CH after insert placement. On assessing the effect of the insert on weight bearing, horses in the 250 

control period of the preliminary study (no V-insert) bore 58% (standard deviation, SD 0.53%) 251 

of the weight in the forelimbs and 42% (SD 0.53%) in the hind limbs, consistent with previously 252 

published studies (Hood et al., 2001). Following the placement of the V-insert on the shoe of one 253 

forelimb, average weight borne was 43.2% (interquartile range [IQR] 34.5%-51.9%; SD 7.8 %) 254 

on the SL relative to 10.1% (IQR 2.0%-18.3%; SD 8.3%) on the UL limb. The CH bore 25.9% 255 

(IQR 22.3%-29.5%; SD 3.4 %), and 20.8% was borne on the IH (IQR 14.2%-27.4%; SD 6.3 %). 256 

This indicated that horses in the preliminary study bore 33% more weight on the SL than the UL 257 
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after V-insert attachment to one forelimb and 17% and 22% more on the SL than the CH and IH, 258 

respectively.  259 

 260 

Forty-eight hour insert application with lamellar harvest 261 

Evaluation of model 262 

 Physical examination parameters were not significantly different for the 48 h period after 263 

insert placement compared with the 48 h period before insert placement.  264 

 265 

RT-qPCR procedure 266 

 There were no differences in lamellar mRNA concentrations of hypoxia/cellular energy-267 

related genes GLUT1, HIF-1α, NOS2, PGK2, VEGF, or inflammatory genes ADAMTS4, COX-268 

2, E-selectin, IL-1 β, IL-6, MMP-2, MMP-9, and MMP13 between SL, CH and IH samples 269 

(Appendix: Supplementary Table 2). 270 

 271 

Immunoblotting 272 

 There was no difference in HIF-1α protein concentrations between fore and hind limbs in 273 

archived lamellar samples from control horses (n = 6) from a previous study (P = 0.23). A visible 274 

difference in band intensity was visualized on the immunoblot (Fig. 3). There was an increase in 275 

HIF-1α protein concentrations in the SL individual lamellar samples compared to the CH, but not 276 

the IH samples (P = 0.026, Table 1). PHD2 concentrations were not different between sample 277 

groups (P = 0.13; Supplementary Material 3). 278 

 279 

Immunofluorescence 280 
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 On immunofluorescence of lamellar samples in the SL, CH, and IH feet for HIF-1α, 281 

signal was localized primarily to the epidermal lamellae in all samples (Fig. 4). No stretching or 282 

elongation of lamellae or separation of secondary lamellae from primary was noted on the 283 

samples, as reported on histological samples in previous studies (Van Eps and Pollitt, 2009). 284 

 285 

Discussion  286 

 Although previous studies of SLL have included cadaver studies and in vivo studies in 287 

which transient episodes of preferential weight bearing on one limb have been induced (Sun et 288 

al., 2015), this study is the first to establish an in vivo model for studying preferential weight 289 

bearing in which the horses undergo increased weight bearing on one forelimb relative to the 290 

other for an extended period of time. Overall, the model was well tolerated by the horses with no 291 

change in demeanor or physical exam parameters during the two-day time course. Although 292 

there are flaws in the protocol used which should be improved (discussed below), the significant 293 

increase in HIF-1α, a marker of hypoxia, in the SL (vs. CH), with no changes observed in 294 

markers of inflammation, indicates that the preferential weight bearing model is possibly of 295 

value in the study of SLL and that lamellar hypoxia may occur in the SL in horses undergoing 296 

preferential weight bearing. 297 

 298 

 HIF-1α is commonly used as a marker of hypoxia due to a well-documented increase in 299 

the protein in hypoxic cells/tissue, primarily due to decreased cellular oxygen resulting in 300 

decreased activity of prolyl hydroxylase-2 (PHD2; Fong and Takeda, 2008), the primary enzyme 301 

which hydroxylates proline residues on HIF-1α leading to proteasomal degradation of the protein 302 

(Forsythe et al., 1996; Huang et al., 1998; Semenza, 2011). Because HIF-1α activity is primarily 303 
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regulated at the post-translational level in hypoxia via proteosomal degradation, cellular/tissue 304 

protein concentrations of HIF-1α can change with no corresponding change in mRNA 305 

concentrations. However, HIF-1α can also be induced at the transcriptional level by 306 

inflammatory signaling, as reported in an experimental model of sepsis-related laminitis (Pawlak 307 

et al., 2014). Thus, lamellar inflammation, using markers of inflammatory gene expression 308 

previously documented to increase in models of sepsis-related laminitis, was also investigated in 309 

the present study. The significant increase in lamellar concentration of HIF-1α protein in the SL 310 

compared to the hind limb, with no evidence of inflammatory signaling in the same samples, 311 

indicates that increased lamellar HIF-1α protein concentration in the current study is most likely 312 

due to hypoxia. Whereas lamellar HIF-1α concentrations appeared increased in the SL (vs. hind 313 

limbs) in 6/8 horses (Fig. 3), two horses appeared to be non-responders, with higher HIF-1α 314 

concentrations in other limbs. A similar incidence of non-responders is common in models of 315 

sepsis-related laminitis (Leise et al., 2011), suggesting an inherent genetic variability in some 316 

horses, possibly genetically resistant to endotoxemia/sepsis in an outbred population of horses 317 

(Belknap and Black, 2012). It is possible that genetic variability played a role in the variability of 318 

the data between horses in the current study, but it is also possible that the difference is due to 319 

variability between horses regarding the preferential use of one or the other hindlimb for 320 

increased support in this model. Lamellar concentrations of PHD2 were assessed due to the 321 

possibility that changes in cellular PHD2 activity not related to hypoxia (i.e. decreased PHD2 322 

concentrations via TGFβ-mediated inhibition of PDH2 expression (McMahon et al., 2006) may 323 

affect HIF-1α protein concentrations. The lack of change in lamellar PHD2 concentrations 324 

unaccompanied by change in concentrations of inflammatory signaling molecules investigated in 325 

the present study further indicates that HIF-1α signaling was not affected by inflammation and 326 
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that the changes in lamellar HIF-1α concentrations were likely due to decreased cellular 327 

concentrations of oxygen (Berra et al., 2003; Fong and Takeda, 2008). 328 

 329 

 Weight distribution with the V-insert applied was assessed in the preliminary study at the 330 

University of Queensland, confirming greater weight bearing in the SL compared with either 331 

hind limb (Fig. 1), however the equipment to record weight distribution on each limb for the 48 h 332 

period was not available at Ohio State University, which is a limitation of the current study. If 333 

available, this methodology would have assisted in determining any effect of disparate weight 334 

bearing on the two hind limbs on the data obtained. The preliminary weight bearing study using 335 

the same custom shoe indicated that the shoe does not induce symmetric weight bearing loads on 336 

the hind limbs (more weight was consistently borne on the CH relative to the IH). However, both 337 

hind limbs supported much less weight than the SL after insert placement on the UL (Fig. 2). 338 

Another limitation of this study is its relatively short duration of 48 h. Although we were 339 

interested in establishing a humane model to determine the effect of preferential weight bearing 340 

on lamellar signaling and not attempting to induce laminitis, the lack of signs of laminitis in 341 

these horses at the time of termination of the study therefore does not establish that this model 342 

would inevitably lead to SLL. 343 

 344 

Another concern is that, although this model provides a mechanical impetus for the horse 345 

to not place normal weight on one limb, for humane reasons, the study design dictated that  346 

horses were not sensing the pain that drives the preferential weight bearing that leads to SLL in 347 

most clinical cases. Horses in the current study still periodically shifted weight off of the SL, 348 

possibly due to sensory input from the foot (i.e. perhaps a similar sensation that humans feel of a 349 
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foot ‘falling asleep’ when weight is borne on one foot for extensive periods of time). In clinical 350 

cases, it is likely that the pain in the opposite limb overrides that sensation in the SL. Thus, it 351 

might have been better to also provide local anesthesia to the distal part of the SL during the 352 

protocol to allow consistent preferential weight bearing (and minimal movement) for the short 353 

periods for which the horse could be used (for humane reasons) in this model. In addition to 354 

causing preferential weight bearing, a recent study indicated that lack of limb movement may be 355 

more important than the actual weight bearing, thus accurate assessment of limb movement in 356 

future studies is important (Sun et al., 2015).  357 

 358 

Conclusions 359 

 The current data provide preliminary evidence to support the hypothesis that lamellar 360 

hypoxia may occur during preferential weight bearing. However, further studies are required to 361 

more thoroughly assess both hypoxia-related signaling and other signaling associated with 362 

lamellar damage that could play a role in SLL. With improvements in study design, it is likely 363 

that the preferential weight bearing model with the V-insert can be used in the future to more 364 

accurately assess lamellar events leading to failure. 365 
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 488 

Fig. 1. The V-shaped insert attached to a traditional steel shoe (a). With this insert, horses either 489 

kept the limb in mild flexion or in extension (b), but the insert prevented normal weight bearing. 490 

The limbs were designated as follows: the unloaded limb (UL) was the limb with the V-insert 491 

shoe. The contralateral forelimb was designated the supporting limb (SL). The hind limb 492 

contralateral to the SL was designated CH, and the hind limb ipsilateral to the SL was designated 493 

the IH (c). 494 

 495 

Fig. 2. Mean percentage of body mass supported by each limb for 1 h without a V-insert (control 496 

period) and for 30 min following attachment of the V-insert. In the control period, the forelimbs 497 

bore significantly (P < 0.05) more weight than the hind limbs, but after V-insert placement, the 498 

supporting limb (SL) bore significantly more weight than the unloaded limb (UL) and the 499 

contralateral and ipsilateral hindlimbs (CH and IH, respectively). An asterisk indicates 500 

statistically significant difference vs. UL (P < 0.05). 501 

 502 

Fig. 3. HIF-1α protein concentrations were assessed against the housekeeping gene β-actin via 503 

immunoblot. In pooled lamellar samples of supporting limb (SL), contralateral hindlimb (CH) 504 

and ipsilateral hindlimbs (IH), the SL sample presented greater intensity than either hindlimb 505 

sample (a). On graphical representation of HIF-1α immunoblot results of the individual samples 506 

from each limb, SL and hindlimb samples present distinct differences in relative intensity (b). 507 

The immunoblot of the samples from individual horses (c) illustrates the greater intensity of HIF-508 

1 in all horses except Horses 6 and 7 (HIF-1α represented as 1 or 2 bands on immunoblots 509 
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depending on percentage of acrylamide in gel). An asterisk indicates significant difference vs. 510 

SL (P < 0.05). 511 

 512 

Fig. 4. Cellular localization of HIF-1α using immunofluorescence. Immunofluorescence for HIF-513 

1 α of the primary and secondary epidermal lamellae and surrounding dermis supporting limb 514 

(SL; a) and contralateral limb (CL; b) samples. Note in both the lower magnification views and 515 

higher magnification (insets), HIF-1 α protein (red signal) was primarily localized to epidermal 516 

lamellar tissue (solid arrows), with little staining in the dermis (open arrows). No difference in 517 

cellular localization is detectable between SL and CL samples.  Blue stain indicates nuclear 518 

material (4, 6-diamidino-2-phenylindole [DAPI] stain). 519 
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Table 1 Protein concentrations of proteins/genes of interest in supporting limb (SL) samples 521 

compared to samples from contralateral (CH) and ipsilateral (IH) hind limbs 522 

 523 

Protein SL  CH IH P 

HIF-1α
a
 

1.83 

(1.07-2.59) 

0.70* 

(0.42-0.98) 

1.16 

(0.84-1.49) 

0.026 

PHD2
b
 

0.64 

(0.50-0.70) 

0.78 

(0.67-0.97) 

0.75 

(0.57-0.82) 

0.13 

a 
Normally distributed data presented as mean (95% confidence interval of the mean) 524 

b
 Non-normal distributed data presented as median (25%-75% interquartile range) 525 

An asterisk indicates significant difference on post hoc testing vs. SL samples 526 
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