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Abstract 

The occurrence of natural organic matter (NOM) in source waters presents a concern in water 

treatment plants due to formation of toxic disinfection byproducts (DBPs). In this doctoral thesis, the 

fate of NOM during ozonation, biofiltration, and chlorination was investigated to identify important 

aspects in these processes that can be manipulated for better DBP control. Specifically, this thesis 

studied (1) reaction mechanisms of ozone with dissolved organic nitrogen (DON), an important 

fraction of NOM that forms nitrogenous DBPs, (2) role of ozone and •OH-mediated attack on NOM 

and DBP formation during chlorination, and (3) impact of ozonation on biodegradability of DBP 

precursors.  

The reaction of ozone with DON (Chapter 4) was observed to produce various transformation 

products including nitrate (NO3
-) and ammonium (NH4

+). This observation was shown in batch 

ozonation experiments involving NOM standards, surface water and wastewater effluent samples. A 

strong correlation was found between NO3
- formation and O3 exposure (R2 > 0.82) during ozonation 

of both model DON solutions and real water samples. High NO3
- yields were obtained for solutions 

containing primary amines such as glycine. Experiments with glycine showed that NO3
- was formed 

via an intermediate with a second-order rate constant of 7.7 ± 0.1 M-1s-1 while NH4
+ was formed by 

an electron-transfer mechanism with O3 as confirmed from a •OH yield of 24.7 ± 1.9%. The NH4
+ 

concentrations, however, were lower than the •OH yield (0.03 mol NH4
+/mol •OH) suggesting other 

•OH-producing reactions that compete with NH4
+ formation.  This study showed evidence that NO3

- 

formation during ozonation of DON is induced by an oxygen-transfer to nitrogen forming 

hydroxylamine and oxime, while NH4
+ formation is induced by electron-transfer reactions involving 

C-centered radicals and imine intermediates.  

These reactions of ozone and other generated reactive oxygen species with NOM also affect NOM’s 

reactivity during post-chlorination, consequently affecting formation potentials of nitrogen-

containing and carbon-based DBPs. Chapter 5 presents the effects of varying exposures of O3 and 
•OH on the resulting DBP concentrations and their associated toxicity generated after subsequent 

chlorination. DBP formation potential tests (target Cl2 residual after 24 h = 1 – 2 mg/L) and in vitro 

bioassays were conducted after ozonation of coagulated surface water at O3- and •OH-dominated 

conditions. Although ozonation led to a 24 – 37% decrease in formation of total trihalomethanes 

(THM4), haloacetic acids (HAA8), haloacetonitriles (HAN4), and trihaloacetamides (THAM), an 

increase in formation of total trihalonitromethanes (THNM2), chloral hydrate (CH), and haloketones 

(HK2) was observed. This effect however was less pronounced for samples ozonated at conditions 

favoring ozone (e.g., pH 6 and in the presence of t-BuOH) over •OH reactions (e.g., pH 8 and in the 
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presence of H2O2). Compared to ozonation only, addition of H2O2 consistently enhanced formation 

of all DBP groups (20 – 61%) except trihalonitromethanes. This proves that •OH-transformed NOM 

is more susceptible to halogen incorporation. Analogously, adsorbable organic halogen (AOX) 

concentrations increased under conditions that favor •OH reactions. The ratio of unknown to known 

AOX, however, was greater at conditions that promote O3 reactions. Although significant correlation 

was found between AOX and genotoxicity with p53 bioassay, toxicity tests using 4 in vitro bioassays 

showed relatively small differences between various ozonation conditions.  

Following ozonation, the biodegradability of DBP precursors was investigated in Chapter 6, with 

emphasis on two operational factors: ozone exposure and empty bed contact time (EBCT). Ozone 

exposure was varied through addition of H2O2 during ozonation at 1 mgO3/mgDOC followed by 

biological filtration using either activated carbon (BAC) or anthracite. Ozonation led to a 10% 

decrease in dissolved organic carbon (DOC), without further improvement from H2O2 addition. 

Compared to ozonation without H2O2, raising H2O2 concentrations to 2 mmol/mmolO3 resulted in 

increased DBP formation potentials during post-chlorination of the ozonated water (target Cl2 

residual after 24 h = 1 – 2 mg/L) as follows: THM4 (37%), HAA8 (44%), CH (107%), HK2 (97%), 

HAN4 (33%), trichloroacetamide (TCAM, 43%), and AOX (27%), but a decrease in concentrations 

of THNM2 (43%). Coupling ozonation with biofiltration prior to chlorination effectively lowered the 

formation potentials of all DBPs including CH, HK2, and THNM2, all of which increased after 

ozonation. The dynamics of DBP formation potentials during BAC filtration at different EBCTs 

followed first-order reaction kinetics. Minimum steady-state concentrations were attained at an EBCT 

of 10 – 20 min, depending on the DBP species. The rate of reduction in DBP formation potentials 

varied among individual species before reaching their minimum concentrations. CH, HK2, and 

THNM2 had the highest rate constants of between 0.5 and 0.6 min-1 followed by HAN4 (0.4 min-1), 

THM4 (0.3 min-1), HAA8 (0.2 min-1), and AOX (0.1 min-1). Relative to concentrations after 

ozonation, the reduction in formation potential for most DBPs (e.g., at 15 min EBCT) was less than 

50% but was higher than 70% for CH, HK2, and THNM2. The formation of bromine-containing 

DBPs increased with increasing EBCT likely due to an increase in Br-/DOC ratio. 
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1.1. Background 

Drinking water treatment plants aim to have an efficient removal of dissolved natural organic matter 

(NOM). NOM may not only cause undesirable color, taste and odor, biological instability, but also 

formation of disinfection byproducts (DBPs) (Rook 1977, Sedlak and von Gunten 2011). DBPs may 

occur in different forms at varying concentrations and toxicity, depending on the precursor 

characteristics during disinfection. For example, source waters may form low concentrations of 

nitrogen-containing DBPs (N-DBPs) compared to carbon-based DBPs (C-DBPs) during chlorination. 

But unlike their occurrence levels, N-DBPs are more cytotoxic and genotoxic than C-DBPs (Plewa 

et al. 2008, Richardson et al. 2007). As a result of the possible health implications of these 

compounds, strict water quality regulations or guidelines were implemented to guarantee that the 

resulting DBPs after water treatment are at/below the levels considered safe for human consumption.  

The standard water treatment systems for NOM removal are comprised of coagulation followed by 

sedimentation and filtration (Matilainen et al. 2010). This conventional approach can remove 

hydrophobic NOM fractions by 64 – 84% but can be inefficient for hydrophilic fractions (e.g., 14%  

– 17%) (Bond et al. 2011a). With subsequent chlorination, the post-coagulated NOM is still amenable 

for halogenation, leading to products such as N-DBPs from the hydrophilic NOM fraction. 

Succeeding post-coagulation processes are therefore significant in removing the remaining NOM. As 

shown in our previous study with full-scale plants in South East Queensland (SEQ), effective NOM 

removal may be achieved for water utilities including ozonation and biofiltration in their treatment 

scheme (Lyon et al. 2014a). With ozonation, NOM can be broken down into compounds with low 

molecular weight and high biodegradability (e.g., aldehydes, ketones, and carboxylic acids) (von 

Sonntag and von Gunten 2012). During this process, reactions of hydroxyl radicals (•OH) can also 

take place, especially at conditions that promote ozone decay (e.g., at high ozonation pH, presence of 

H2O2) (von Sonntag and von Gunten 2012). These •OH radicals are non-selective oxidants that may 

contribute in the further transformation of NOM and other ozone recalcitrant compounds (von 

Sonntag and von Gunten 2012). Ozonation is followed by biological filtration to remove various 

products formed during oxidation by ozone and/or •OH. As a final step, chlorination is performed to 

provide residual disinfection in the distribution network. The addition of chlorine however raises 

concerns about DBP formation. In this context, optimal processes for removal of DBP precursors are 

necessary.  

This PhD thesis therefore evaluates ozonation and biofiltration as an effective combined process for 

NOM removal and DBP control. Understanding the factors affecting their treatment performance is 

critical particularly for the SEQ region because of its relatively high levels of source water DON (0.35 
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mg N/L) and DOC (9.2 mg C/L) compared to other studies in the literature (e.g., North America) 

(Lyon et al. 2014a). These concentrations can potentially lead to elevated levels of DBPs during 

chlorination. A few studies on ozonation/biofiltration are also available in the literature, however, 

most of them concentrated mainly on the removal of DOC, biodegradable compounds, and DBPs 

such as trihalomethanes and haloacetic acids (Chaiket et al. 2002, Speitel et al. 1993, Wobma et al. 

2000). Very little is known about the impact of these processes on the precursors of other emerging 

organic pollutants like the N-DBPs.  

This work focuses on understanding the relationships among water quality and NOM, ozonation 

kinetics, oxidation products, biodegradability, and formation of DBPs. The DBPs investigated 

include trihalomethanes, haloacetic acids, chloral hydrate, haloketones, and the less studied 

nitrogenous haloacetonitriles, halonitromethanes, and haloacetamides. In particular, the thesis 

explored the effect of stepwise ozonation-biofiltration-chlorination processes to understand the 

mechanisms involved in the reaction of ozone with NOM. The influence of ozone and •OH reactions 

on NOM removal and DBP formation was also studied. Lastly, the impact of coupled ozonation and 

biofiltration on the abatement of DBP precursors was assessed. The specific objectives addressed in 

this work are presented below. This is followed by the thesis outline explaining the contents of each 

chapter.  

1.2. Objectives of the thesis 

This thesis explored the fundamental processes involved in the reaction of NOM across a treatment 

scheme which uses ozonation, biodegradation, and chlorination. It aims to understand the impact of 

ozonation and biological treatment on formation of oxidation products, and ultimately determine 

suitable treatment conditions for better DBP control.  

The specific objectives of the doctoral thesis include: 

• Investigate the effect of ozone on organic nitrogen moieties of NOM and the subsequent 

formation of oxidation products (e.g., inorganic nitrogen) during ozonation at varying 

conditions.  

• Understand the effect of NOM transformations induced by ozone and •OH radicals on DBP 

formation. 

• Determine the impact of biological treatment on further transformation of pre-ozonated NOM 

and DBP precursors. 
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1.3. Thesis outline 

This doctoral thesis was carried out through collaborations with Water Research Foundation, 

Seqwater, University of Queensland, Swiss Federal Institute of Technology, Lausanne (EPFL), and 

Australia Awards. The study was within the framework of the following research projects: (1) 

“Engineering solutions to minimize nitrogen-containing DBPs” (Water Research Foundation, Project 

4484), (2) “Advanced characterization of raw water and minimizing disinfection byproducts 

(DOM/DBP)” (Seqwater, Project 4), and (3) “Optimization of DBP formation control” (Seqwater, 

Project 5). These projects focused on assessment of formation of N-DBPs and other DBP species in 

SEQ drinking waters. Their scope also include improvements of ozonation procedures as well as other 

treatment processes that can lead to optimal removal of NOM in the product water.  

The joint partnerships have a broader aim of identifying preventive management of known health 

hazards and other aspects that impact the quality of SEQ drinking water. Under this aim, the current 

study was included to particularly investigate the key reactions of NOM that affect subsequent 

formation of DBPs during ozonation, biofiltration, and chlorination. The thesis results are presented 

in the form of papers (3) published in Water Research.  

Chapter 1 provides the context of the study, the main objectives, and organization of the thesis. 

Chapter 2 introduces the issue of DBPs in drinking water, with some emphasis on DBP formation 

in the SEQ region. The properties of NOM which affects DBP formation are first described together 

with the characterization methods employed in the study. This is followed by a review of known DBP 

reaction pathways with chlorine. Strategies for DBP control (i.e., conventional versus advanced water 

treatment using ozone) are also discussed along with some important aspects of ozone chemistry and 

biological filtration. This chapter highlights the combined ozonation and biofiltration processes as a 

promising approach for DBP control. The literature review also identifies some key areas that need 

further investigation. 

Chapter 3 provides a summary of the knowledge gaps on ozonation and biofiltration identified in 

the previous chapter. This chapter includes discussions of the addressed research questions, 

hypotheses, as well as the general approaches used in the study. 

Chapter 4 presents a new concept for ozonation characterization by utilizing the effect of ozone 

reactions with dissolved organic nitrogen (DON). Particularly, this chapter investigated the formation 

of DON-derived inorganic nitrogen products (e.g., nitrate and ammonium) during ozonation of 

different water samples including model solutions (amines), surface water, and wastewater effluent.  
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Based on the results, reaction mechanisms were proposed and their application for ozone exposure 

assessment was also explored.  

The findings of this chapter were published at: de Vera, G.A., Gernjak, W., Weinberg, H.S., Farré, 

M.J., Keller, J., and von Gunten, U. (2017) Kinetics and mechanisms of nitrate and ammonium 

formation during ozonation of dissolved organic nitrogen. Water Research 108, 451-461.   

Chapter 5 focuses on the effects of ozone and •OH on the formation of C-DBPs and N-DBPs during 

post-chlorination. Such effects were investigated as both oxidants could play significant roles in DBP 

precursor transformations. Conditions that favor ozone and •OH reactions were achieved by changing 

the water quality and addition of radical chain promoters and inhibitors. The effects of these reactions 

on DBP formation are presented together with bioassay toxicity data to assess the effect of ozonation 

on the overall quality of the treated water.  

The results of this chapter were published at: de Vera, G.A., Stalter, D., Gernjak, W., Weinberg, 

H.S., Keller, J., and Farré, M.J. (2015) Towards reducing DBP formation potential of drinking water 

by favouring direct ozone over hydroxyl radical reactions during ozonation. Water Research, 87, 49-

58.  

Chapter 6 investigates the effectiveness of combined ozonation and biodegradation processes in 

controlling DBP formation. In this chapter, the importance of operational factors such as ozone 

exposure during ozonation and empty bed contact time (EBCT) during biofiltration was evaluated. 

This chapter highlights the differences of biodegradability of each DBP precursor and demonstrates 

the significance of biofiltration in preventing formation of chloral hydrate, haloketones, and 

halonitromethanes, all of which increased after ozonation.  

The results of this chapter were published at:  de Vera, G.A., Keller, J., Gernjak, W., Weinberg, 

H.S., and Farré, M.J. (2016) Biodegradability of DBP precursors after drinking water ozonation. 

Water Research 106, 550-561.  

Chapter 7 presents the conclusions and overall research findings of this thesis in connection with the 

research hypotheses specified in Chapter 3. From the conclusions drawn, practical applications of the 

results, recommendations for water treatment operators, and opportunities for future research were 

identified. 
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This chapter aims to provide a general understanding of the concepts needed for the succeeding 

chapters on ozonation, biofiltration, and disinfection byproduct (DBP) formation. The properties of 

natural organic matter (NOM), characterization methods, and fate through conventional and advanced 

water treatment plants (WTPs) were first described. These were followed by sections on formation of 

DBPs and the effect of ozone on removal of their precursors. To better understand ozone chemistry, 

discussions on reaction mechanisms and kinetics were also included. As ozonation leads to more 

biodegradable NOM, biological treatment and its effect on DBP formation were also explored. Many 

examples used in this chapter involved results obtained from the following studies on South East 

Queensland (SEQ) drinking waters: 

• Lyon, B.A., Farré, M.J., de Vera, G.A., Keller, J., Roux, A., Weinberg, H.S., and Gernjak,W. 

(2014) Organic matter removal and disinfection byproduct management in South East 

Queensland’s drinking water. Water Science & Technology: Water Supply 14 (4), 681–689. 

• Farré, M.J., Lyon, B., de Vera, G.A., Stalter, D., and Gernjak, W. (2016) Assessing adsorbable 

organic halogen formation and precursor removal during drinking water production. Journal of 

Environmental Engineering, 10.1061/(ASCE)EE.1943-7870.0001022, 04015087.  

• Farré, M.J., de Vera, G.A., Lyon, B.A., Doederer, K., Weinberg, H.S., Gernjak, W., and Keller, J. 

(2016) Engineering solutions to minimize nitrogen-containing DBPs. 2016, Water Research 

Foundation, CO, USA. Available at http://www.waterrf.org/Pages/Projects.aspx?PID=4484 . 

2.1.  Natural organic matter (NOM)  

Dissolved NOM is present in all water sources and comprises a complex mixture of organic 

compounds with different size, structure, and functionalities (Aslam et al. 2013, Leenheer and Croué 

2003). It is derived from degradation products of plants surrounding the water source (allochthonous) 

or of microorganisms within the water source (autochthonous) (Matilainen et al. 2011). In drinking 

water treatment, the efficient removal of NOM is a priority because of its negative impacts including 

DBP formation and biological instability in distribution network. 

Allochthonous organic matter, commonly characterized by a high carbon (50–75% dissolved organic 

carbon) to nitrogen content, is dominated by humic substances (McDonald et al. 2004). Meanwhile, 

autochthonous organic matter is mainly composed of more hydrophilic phenolic and carboxylic 

moieties in amino acids, carbohydrate, and low molecular weight acids (Croué et al. 2000). Unlike 

allochthonous organic matter, this type of NOM has higher nitrogen content because of the presence 
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of more aliphatic nitrogen groups (Boyer et al. 2008). To represent these types of NOM, many 

laboratory studies used NOM standards isolated from Suwannee River and Pony Lake corresponding 

to those with allochthonous and autochthonous origin, respectively (Aeschbacher et al. 2012, IHSS 

2016, Wenk et al. 2013).   

NOM can also be classified into its component fractions like hydrophobic and hydrophilic chemical 

fractions using XAD resins (Croué et al. 2000, Leenheer and Croué 2003, Thurman and Malcolm 

1981). Hydrophobic fractions consist of high molecular weight fulvic and humic acids containing 

aromatic, phenolic, and carboxylic groups which causes yellowish color in water (Kim and Yu 2005). 

In contrast, hydrophilic NOM fraction is composed of smaller and more biodegradable carboxylic 

acids, carbohydrates, amino acids and sugars, and proteins (Nkambule et al. 2009, Yu et al. 2002). 

Compared to the hydrophobic NOM, this fraction is harder to remove via conventional processes of 

flocculation, sedimentation, and filtration (White et al. 1997).  

The character of NOM depends on catchment characteristics, hydrological pathways, biological 

predominance, seasonality and climate conditions (Aslam et al. 2013, Delpla et al. 2009, Teixeira and 

Nunes 2011). For example, the hydrophilic NOM fraction could contain increasing concentrations of 

dissolved organic nitrogen (DON) as a result of shorter water cycles through indirect or direct potable 

reuse (Krasner et al. 2009, Leverenz et al. 2011, Rodriguez et al. 2009). In addition, climate-related 

eutrophication and run-off events in upstream agricultural systems have also been identified to impact 

NOM concentrations (Delpla et al. 2009, Graeber et al. 2015, Westerhoff and Mash 2002).  

2.2. Drinking water treatment  

NOM removal during water treatment can be achieved using the processes summarized in Table 2.1 

(Bond et al. 2011a). Each treatment step is combined with other processes to comprise a multi-barrier 

system not only against NOM but also against other micropollutants and pathogens (NHMRC and 

NRMMC 2011). The success of the overall treatment depends on the effectiveness of each of the 

processes. For the case of SEQ, conventional WTPs mainly involve coagulation, filtration, and 

disinfection while advanced WTPs have additional ozonation and biological activated carbon (BAC) 

filtration steps (Figure 2.1). In some WTPs, pre-oxidation by addition of permanganate, chlorine, or 

ozone is also performed before coagulation to control taste, odor, iron, and manganese.  
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Table 2.1. NOM removal mechanisms in different water treatment process (adapted from Bond et al. 

(2011a), with permission) 

Process Mechanism Selectivity Least treatable 

Coagulation 
Adsorption onto flocs and charge 

neutralization/ colloid destabilization. 
Sweep flocculation 

Large, anionic 
molecules Neutral molecules 

Anion exchange 
Ion exchange (electrostatic), 

adsorption (hydrophobic) and H-
bonding 

Small, anionic 
molecules Neutral molecules 

Membranes 
Size exclusion, differing diffusion 

rates across membranes. 
Electrostatics for charged membranes 

Species>MWCO Species < MWCO 

Ozone Electrophilic addition (oxidation and 
bond cleavage). Also •OH reactions 

Activated aromatic 
compounds and 

amines 

Saturated 
compounds 

AOP 
•OH reactions: electron transfer, H-

abstraction, OH addition Relatively unselective  

Activated carbon Reversible physical adsorption by 
non-specific forces 

Small, neutral, 
hydrophobic 

molecules 

Hydrophilic 
charged molecules 

Biotreatment Enzyme-controlled microbial 
degradation and adsorption 

Low MW polar 
molecules (e.g., amino 

acids, aldehydes) 

Large and 
hydrophobic 

molecules 

 

 

Figure 2.1. Treatment processes employed in conventional and advanced water treatment plants in 

SEQ (Lyon et al. 2014a) 

 

 

Conventional WTPs

Advanced WTPs

Coagulation Pre-
chlorination Filtration

Disinfection:
Chlorine/
Chloramine

Pre-
ozonation Coagulation Ozonation BACFiltration Disinfection:

Chlorine
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During coagulation, the suspended and colloidal NOM particles of the source water are neutralized 

typically using aluminum or iron salts (Edzwald 2010, Matilainen et al. 2010, Xie 2004). These 

coagulants are hydrolyzed forming soluble positively-charged complexes adsorbing to negatively-

charged surfaces of NOM. As reviewed by Matilainen et al. (2010), the aggregation of NOM occurs 

through a combination of charge neutralization, entrapment, adsorption, and complexation with 

coagulant metal ions into insoluble particle aggregates that could settle in the following sedimentation 

basins. Bridging or sweep flocculation is also possible with polymer-based coagulants. Among the 

different NOM components, coagulation was shown to be effective for removal of hydrophobic 

fractions (84%: humic acid; 64%: fulvic acid) than the hydrophilic NOM fractions (<20%) (Sharp et 

al. 2006). Coagulation can be further enhanced and optimized for better removal of NOM and 

microorganisms by adjusting the coagulant dose and type, pH, coagulation aids, mixing speed and time 

(Bell et al. 1998, White et al. 1997). Pre-treatment with anion exchange resins (e.g., magnetic ion 

exchange resin (MIEX®)) is also another option to improve removal of NOM (Singer and Bilyk 2002), 

particularly the transphilic fraction which has high carboxylic acid content (Bond et al. 2011a).  

Following sedimentation is rapid filtration  using sand and/or anthracite as media to separate the non-

settlable particles from the process water (Edzwald 2010). At this step, large particles are removed by 

physical straining, while the smaller particles are removed by adsorption and flocculation (Xie 2004). 

In addition to these filters, some treatment plants also employ membranes where particles with higher 

molecular weight than the molecular weight cut-off (MWCO) are retained. Using this process, Nilson 

and DiGiano (1996) found that nanofiltration using a polysulfone hollow fiber membrane (1000 Da 

MWCO) can be very effective in removing hydrophobic NOM. In that study, NOM rejection decreased 

as follows: hydrophobic (~95%) > unfractionated (77–82%) > hydrophilic (42–66%). This approach, 

however, requires high capital and operation costs and is prone to fouling which is influenced by 

hydrodynamics, electrolyte concentration, pH, and presence of divalent cations (Ca2+) (Hong and 

Elimelech 1997, Seidel and Elimelech 2002). 

For advanced WTPs, ozone can be applied to oxidize many inorganic and organic compounds 

containing phenolic and amino groups of NOM (von Sonntag and von Gunten 2012). Its decomposition 

is also known to generate •OH which can oxidize other recalcitrant compounds (von Sonntag and von 

Gunten 2012). During ozonation, the hydrophobic and aromatic structures of NOM are transformed to 

lower molecular weight, hydrophilic, and biodegradable compounds (Hammes et al. 2006, van der 

Kooij et al. 1989). These oxidation products make a subsequent biofiltration step necessary which is 

commonly performed using activated carbon as the filter media. During initial operation, physical 

adsorption to the carbon acts as the main NOM removal mechanism. However, this removal would 

diminish as adsorption sites become exhausted with continuous operation (Simpson 2008). After such 
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period, NOM concentrations are decreased due to biodegradation of low molecular weight oxidation 

products. 

Prior to distribution, disinfection is performed to inactivate pathogens such as bacteria, viruses, and 

protozoa, while also oxidizing compounds that may not be removed by the prior treatment steps 

(Edzwald 2010). Disinfection can be attained by application of chlorine-based disinfectants such as 

chlorine, chloramine, and chlorine dioxide or by ozone and ultraviolet (UV) irradiation. Disinfection 

is commonly assessed in terms of the required CT (disinfectant concentration ´ contact time; 

mg·min/L) or IT (light intensity ´ contact time; mJ/cm2) to attain the desired level of pathogen 

inactivation. For E. coli (pH 7.1, 20ºC), 1 log inactivation (90% removal) can be easily achieved with 

ozone (0.0021 mg·min/L) followed by chlorine dioxide (0.030 mg·min/L), and free chlorine (0.085 

mg·min/L), while for UV, same inactivation corresponds to 3.5 mJ/cm2 IT (Cho et al. 2010). Microbial 

inactivation may involve attack to cell surface or damage to intracellular components, with the former 

mechanism being more dominant for ozone (i.e., stronger oxidant) and the latter for chlorine (i.e., 

weaker oxidant) (Cho et al. 2010).  For UV, disinfection is known to occur via direct photochemical 

damage to intracellular DNA (Linden et al. 2002). Sequential schemes, such as those described in 

advanced WTP (Figure 2.1), could therefore enhance disinfection. Ozone can damage the cell wall 

making chlorine’s attack to the inner cell components more amenable. The synergistic effect of ozone 

and chlorine has been demonstrated for Cryptosporidium parvum and Bacillus subtilis spores in 

previous studies (Cho et al. 2006, Rennecker et al. 2000). The combined ozone-chlorine treatment is 

also beneficial for residual disinfection, especially for WTPs using ozone as the main disinfectant due 

to ozone’s inability to provide residuals during distribution. In Australia, a residual chlorine of >0.5 

mg/L is required (NHMRC and NRMMC 2011) to avoid bacterial regrowth. Alongside final 

chlorination, however, is the formation of DBPs (Krasner et al. 2006, Rook 1977) from the reaction of 

chlorine with the remaining NOM (see below for further discussion). 

2.2.1. Common NOM characterization methods 

The water treatment processes discussed in the previous section affect the resulting NOM 

characteristics. Monitoring these properties could help evaluate the overall effectiveness of the process 

scheme and evaluate the treatability of the water under the applied treatment conditions. Not having 

sufficient NOM removal, for example, would require process optimization (e.g., adjusting the pH, 

coagulant and oxidant dose, filtration contact time, and other operational parameters). Routinely, 

dissolved organic carbon (DOC) and nitrogen (DON) are measured for quantitative assessment of 

NOM concentrations in WTPs. In the SEQ region, better NOM removal (i.e., in terms of DOC and 

DON) was achieved for advanced WTPs compared to conventional systems (Figure 2.2). Among the 
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treatment processes used, coagulation largely removed DOC (53%), with some additional removal 

during O3/BAC (57%) process. Relative to DOC, removal of DON was somewhat lower (45% from 

coagulation, and 54% from raw to final) (Lyon et al. 2014a). These removals were within the values 

observed in surveyed WTPs in the US employing a combination of coagulation or lime softening, 

ozonation, and filtration. In that study, DOC removal ranged from 39–76% and DON from 29–61% 

(Mitch et al. 2009).   

The DOC and DON values could also be used to indicate the origin of NOM in the source waters 

(Westerhoff and Mash 2002). Waters with high DOC/DON ratios (e.g., C/N of Suwannee River humic 

acid = 44.9 (IHSS 2016)) represent allochthonous NOM while those with low DOC/DON ratios 

represent an autochthonous, microbial-derived NOM (e.g., C/N of Pony Lake fulvic acid = 8.1 (IHSS 

2016)). For the case of SEQ, source waters had an average of 26 mg C/mg N suggesting that these 

waters contain more allocthonous, plant- and soil-derived NOM (Lyon et al. 2014a). 

 

Figure 2.2. Removal of (a) TOC and (b) TON across advanced and conventional water treatment 

plants in SEQ (Lyon et al. 2014a). 
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Other than DOC and DON measurements, parameters such as specific UV absorbance (SUVA), 

fluorescence, and molecular weight also provide complementary information on the transformations 

of NOM during water treatment. Among these, SUVA can be considered as the most widely used 

parameter for NOM characterization. 

2.2.1.1. UV spectroscopy 

SUVA refers to the ratio of absorbance at 254 nm to DOC and represents the the average absorptivity 

at 254 nm of all compounds comprising NOM (expressed as DOC) (Edzwald et al. 1985, Hua et al. 

2015). This parameter provides information about the aromaticity and degree of hydrophobicity of 

NOM, as well as NOM’s amenability for coagulation and DBP formation (Edzwald 1993, Weishaar 

et al. 2003). A SUVA>4 L/mgC·m indicates a NOM composed mostly of hydrophobic fractions 

whereas SUVA<3 L/mgC·m indicates a more hydrophilic NOM (Matilainen et al. 2011). Figure 2.3 

shows the changes in SUVA values across each treatment step in conventional and advanced WTPs in 

SEQ (Farré et al. 2016a). As shown, majority of the SUVA of all the raw water was removed by 

coagulation with further reductions by ozone, demonstrating its selectivity towards aromatic 

compounds leading to ring-opening reactions and less UV absorbing units.  

SUVA can  also be applied to evaluate the reactivity of oxidants towards activated aromatic compounds 

of the source waters. For example, waters with high SUVA values would make ozone more unstable 

and decay faster. Figure 2.4a shows a linear relationship of the first-order rate constant of ozone decay 

in water samples from SEQ in relation to those investigated by Westerhoff et al. (1999). 

 
Figure 2.3. SUVA across advanced and conventional water treatment plants in SEQ (Farré et al. 

2016a) 
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While SUVA can provide useful insights about NOM’s general characteristics, its use as a surrogate 

parameter for reactivity with chlorine applies only to highly hydrophobic waters (SUVA >3 L/mgC·m) 

(Edzwald et al. 1985, Kitis et al. 2001). This limitation is due to SUVA not being able to account for 

compositional differences and other reactive sites responsible for DBP formation (Weishaar et al. 

2003). For example, Figure 2.4b shows that SUVA has poor correlation with formation potentials of 

adsorbable organic halogen (AOX) in SEQ source waters (Farré et al. 2016b). Other studies also 

showed that SUVA of various NOM fractions had weak correlation with the formation of 

trihalomethanes and haloacetic acids (Ates et al. 2007, Hua et al. 2015).  

 
 

Figure 2.4. (a) Linear relationship of ozone decay constant (slow decay phase) with SUVA obtained 

from SEQ, Australia and Westerhoff et al. (1999); (b) plot of specific adsorbable organic halogen 

(AOX) formation potentials versus SUVA (Farré et al. 2016b).  

2.2.1.2. Fluorescence spectroscopy 

Fluorescence methods are based on the excitation of a molecule by absorbing a high energy photon 

and emission of a lower energy photon at a longer wavelength (Chen et al. 2003, Matilainen et al. 

2011). Compared to absorbance, fluorescence spectroscopy is a more sensitive and selective 

characterization method. This technique has evolved from measurements of simple selected excitation 

or emission wavelengths to simultaneous collection of fluorescence measurements in a wide range of 

excitation and emission wavelengths (Bieroza et al. 2010). It is widely applied to get spectral signatures 

or optical maps of water samples through a three-dimensional plot of excitation energy, emission 

wavelength and fluorescence intensity, known as excitation-emission matrix (EEM) (Chen et al. 2003, 

Hudson et al. 2007, Markechova et al. 2013). The spectra generated at 200-500 nm can be used to 
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identify NOM components like humic and fulvic acids, soluble microbial products, and aromatic 

proteins (Chen et al. 2003). Figure 2.5a shows an example fluorescence EEM spectra of a drinking 

water source in SEQ using fluorescence regional integration of  Chen et al. (2003). With this method, 

transformations of NOM during treatment can be monitored by inspecting changes in intensities of the 

different regions. In Figure 2.5b, coagulation was demonstrated to effectively decrease the 

fluorescence of all NOM components, with the largest decrease in the fulvic acid-like region (Farré et 

al. 2016a). This is in agreement with other previous studies where DOC removal by coagulation 

showed linear relationship with the decrease of fluorescence in the humic and fulvic acid regions 

(Bieroza et al. 2010, Gone et al. 2009). Lowest fluorescence was observed after ozonation and BAC 

filtration (Figure 2.5b), suggesting the effectiveness of oxidation in transforming aromatic compounds. 

The application of fluorescence EEM as a monitoring tool for NOM removal was also evaluated in our 

previous study (Farré et al. 2016a) where we showed that fluorescence intensities in the fulvic-acid 

and humic-acid region correlate very well with TOC, TON, as well as demand for chlorine and 

chloramine (R2>0.82)  (Figure 2.6). A similar correlation between these fluorescence regions and DOC 

was also observed in other studies (Baghoth et al. 2011).  

 

Figure 2.5. (a) Fluorescence EEM spectra of a settled water in SEQ; (b) Change in fluorescence 

across an advanced wastewater treatment plant (Farré et al. 2016a) 
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Figure 2.6. Correlations between SEQ water characteristics and UV254 or fluorescence (Farré et al. 

2016a).  Fluorescence EEM regions: FA: fulvic acid, HA: humic acid, SMP: soluble microbial 

product, P1: aromatic protein (tyrosine-like), P2: aromatic protein (tryptophan-like). 

2.2.1.3. Size exclusion chromatography (SEC) 

The molecular weight (MW) and size of NOM strongly influence NOM’s treatability. To determine 

the size and apparent MW profile of NOM, high pressure size exclusion chromatography (HPSEC) 

can be used. In this method, NOM is fractionated based on their molecular size (i.e.,  bigger molecules 

elute out of the column first while smaller molecules elute last). MW of fractions can be evaluated 

using polystyrene sulphonate and polyethylene glycol standards (Her et al. 2002). 

HPSEC can be combined with online UV and organic carbon detectors (UV-OCD) (Huber et al. 2011). 

These detectors allow for characterization of both UV-absorbing (aromatic and double bond 

compounds) and all other non-UV-absorbing NOM fractions. Specifically, NOM can be fractionated 

into biopolymers, building blocks, low molecular weight acids and neutrals as well as hydrophobic 

organic carbon (Chon et al. 2013, Huber et al. 2011). An example chromatogram showing each fraction 

is shown in Figure 2.7. From the measured fractions, HPSEC can provide information about the origin 

and relative removal of NOM fractions during water treatment. For example, microbially impacted 

waters would lead to higher biopolymer fractions, and oxidized NOM can result in decreased humic 

fractions. Using this method, Sohn et al. (2007) demonstrated that coagulation preferentially removed 

large-MW NOM (>1500 Da; humic acids) compared to small-MW NOM (<1500 Da) fractions. This 

is consistent with the results of other studies, with a much better removal across all MW fractions using 

coagulation with MIEX pretreatment (Allpike et al. 2005, Matilainen et al. 2002). Ozonation also 

showed  reduction of larger-MW NOM (>3000 Da), while the subsequent biofiltration process removes 

the small- and intermediate-MW NOM (Sohn et al. 2007). 
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Figure 2.7. HPSEC-UV-OCD chromatogram of a settled water in SEQ  

2.3.  Disinfection byproducts (DBPs)  

The reaction of NOM with disinfectants like chlorine could result in formation of disinfection 

byproducts (DBPs) (Rook 1974). DBPs became a concern to water utilities because many 

epidemiological studies associate lifetime exposure to these compounds with hazardous human health 

outcomes (Hrudey and Fawell 2015, Plewa and Wagner 2015, Richardson et al. 2007). Researchers 

worldwide have consistently found increased risk of bladder cancer to populations exposed to DBPs 

mainly through drinking water supplies (Cantor 2010, Hrudey 2009, Michaud et al. 2007, Villanueva 

et al. 2007). The said association was confirmed using case-control (measure of disease occurrence 

and reconstruction of exposure histories) (Bove et al. 2007b), cohort (measure of disease development 

after DBP exposure) (Doyle et al. 1997), and pooled analyses (combination of data from other studies) 

(Villanueva et al. 2004), among others. The statistically significant association of bladder cancer with 

human exposure to DBPs (mainly THMs) (e.g., odds ratio > 1) was confirmed in critical reviews of 

several case-control and cohort studies by Hrudey (2009) and Hrudey et al. (2015). In the US, such 
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relationship could mean that annually, 2–17% of new bladder cancer cases (Odom et al. 1999) can be 

attributed to THM exposure (i.e., 1580 – 13440 cases per year based on the 2017 estimate (ACS 2017)). 

Exposure to DBPs could occur not only via ingestion of drinking water but also through inhalation and 

dermal absorption during showering, bathing, and swimming in pools (Villanueva et al. 2007). Some 

studies also suggested that genetic factors play an important role in the susceptibility to bladder cancer 

with DBP exposure (Cantor et al. 2006). Evidence for other types of DBP-related cancers and human 

health effects (i.e., reproductive toxicity and developmental effects) remained inconclusive because of 

varying findings in the literature, mostly showing only marginal significant relationship (Hrudey 

2009). For example, previous studies found associations between THM exposure and increased risk of 

adverse reproductive and developmental outcomes such as low birth weight, birth defects, spontaneous 

abortion, and stillbirth (Dodds et al. 2004, Grazuleviciene et al. 2013, Levallois et al. 2012). This 

association, however, did not apply for HAAs (after adjustment for THMs) and stillbirth risks in a 

case-control study by  King et al. (2005). Further, by using a multigenerational reproductive toxicity 

rat bioassay, Narotsky et al. (2015) showed that a mixture of regulated THMs and HAAs (i.e., at levels 

of up to 2000 times their maximum contaminant levels) had no adverse effects on fertility, pregnancy 

maintenance, pre- and postnatal survival, or birth weights. There were also studies on DBPs and 

colorectal cancers. King et al. (2000) found that men exposed to chlorinated surface waters for 35–40 

years had increased risk of colon cancer compared with those exposed for <10 years. This was also in 

agreement with the study of Rahman et al. (2014) which, in addition to a positive association, showed 

higher colon cancer risk in men exposed to bromoform in waters from New South Wales, Australia. 

Hildesheim et al. (1998), on the other hand, reported no important increase in colon cancer risk 

associated with THM exposure. For rectal cancer, some researchers found that exposure to DBPs is 

likely related with the disease (Bove et al. 2007a, Hildesheim et al. 1998), with a higher risk at higher 

bromoform levels in water (Bove et al. 2007a). In contrast, King et al. (2000) observed no relationship 

between rectal cancer risk and THMs in Canadian public water supplies.  

The possible link between DBPs and human health effects, as mentioned above, resulted in 

establishment of regulations or guidelines (Table 2.2). These regulations led the water treatment 

industry to consider using alternative disinfectants other than chlorine (e.g., chloramine, chlorine 

dioxide, ozone). These alternative chemicals, however, were also reported to form their own suite of 

DBPs such as those shown in Table 2.3 (von Gunten and Ramseier 2010). To complement the shift to 

alternative chemicals, water operators utilize physical (filtration) and/or chemical (oxidation) barriers 

to remove or minimize precursors of DBPs prior to final disinfection. In this way, lower DBP formation 

can be expected. An example application of such approach is the use of combined ozonation and 

biofiltration to efficiently remove NOM and inactivate its oxidation sites before chlorine is added for 
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residual purposes during distribution (Figure 2.1). To better understand how to control DBP formation, 

particularly trihalomethanes, haloacetic acids and other nitrogen-containing DBPs (for the structures, 

see Table 2.4), mechanisms of their formation from known precursor compounds are presented in the 

following sections. Knowing such mechanisms could be important in developing removal strategies 

for DBP precursors. Since chlorine remains the most commonly used disinfectant, especially in SEQ, 

DBP formation discussed in the succeeding parts focuses on chlorination DBPs.  

Table 2.2. DBP regulations or guideline values for Australia, the United States, World Health 

Organization and European Union (Farré and Knight 2012) 

  Current regulation or guideline value (µg/L) 

DBP ADWG U.S. EPA WHO EU 

Bromate 20 10 10 10 

Bromoacetic acid  60 as HAA5b   

Bromodichloromethane 250 as THM4a 80 as THM4 60 100 as THM4 

Bromoform 250 as THM4 80 as THM4 100 100 as THM4 

Chlorate   700  

Chloroform 250 as THM4 80 as THM4 300 100 as THM4 

Chlorite 800 1000 700  

Chloroacetic acid 150 60 as HAA5   

Dibromochloromethane  250 as THM4 80 as THM4 100 100 as THM4 

Dichloroacetic acid 100 60 as HAA5 50c  

Trichloroacetic acid 100 60 as HAA5   

Dichloroacetonitrile   20d  

Dibromoacetic acid  60 as HAA5   

Dibromoacetonitrile   70  

N-nitrosodimethylamine 0.1  0.1  

Chloral hydrate 
(trichloroacetaldehyde) 20  10  

Cyanogen chloride (as cyanide) 80  e  

Formaldehyde 500       
aTHM4 = sum of chloroform, bromodichloromethane, dibromochloromethane and bromoform 
bHAA5 = sum of chloro-, dichloro-, trichloro-, bromo- and dibromo-acetic acid 
cProvisional guideline value, based on technical achievability 
dProvisional guideline value, due to limitations of toxicological database 
eGuideline value for cyanogen chloride in 3rd edition was 70 µg/L (WHO 2006), no guideline value set in 4th edition because its 
occurrence in drinking water determined to be below levels of health concern.  
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Table 2.3. Example DBPs formed with different oxidants (obtained from von Gunten and Ramseier 

(2010)) 

Oxidant DBPs 

Chlorine 
Trihalomethanes, haloacetic acids, haloacetonitriles, haloketones, haloaldehydes, 

trihalonitromethanes 

Chloramine Nitrosamines, cyanogen halides, iodinated THMs, haloacetaldehyde 

Chlorine dioxide Chlorite, chlorate, organic acids 

Ozone Bromate, bromoform, aldehydes, aldoketoacids, carboxylic acids, N-nitrosodimethylamine 

 

Table 2.4. DBPs considered in this PhD thesis 

DBP group Structure Example species 

Trihalomethanes (THMs) 

 

Trichloromethane (TCM) 

Bromodichloromethane (BDCM) 

Dibromochloromethane (DBCM) 

Tribromomethane (TBM) 

Haloacetic acids (HAAs) 

 

Monochloroacetic acid (MCAA)  

Dichloroacetic acid (DCAA)  

Trichloroacetic acid (TCAA)  

Monobromoacetic acid (MBAA) 

Dibromoacetic acid (DBAA) 

Haloaldehydes (HAs) 

 

Chloral hydrate (CH) 

Haloketones (HKs) 

 

1,1-Dichloropropanone (DCP) 

1,1,1-Trichloropropanone (TCP) 

Haloacetonitriles (HANs) 

 

Trichloroacetonitrile (TCAN) 

Dichloroacetonitrile (DCAN) 

Bromochloroacetonitrile (BCAN) 

Dibromoacetonitrile (DBAN) 

Halonitromethanes (HNMs) 

 

Trichloronitromethane (TCNM) 

Tribromonitromethane (TBNM) 

Haloacetamides (HAMs) 

 

Trichloroacetamide (TCAM) 

Bromodichloroacetamide (BDCAM) 

Dibromochloroacetamide (DBCAM) 

X = Cl, Br, I, or H. These compounds could be measured using liquid-liquid extraction followed by gas 
chromatography and via other analytical methods (Weinberg 1999, 2009). 
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2.3.1. DBP formation mechanisms  

As shown in Figure 2.8, halogenated DBPs can be formed from the reaction of chlorine (e.g., HOCl) 

with NOM and halides (e.g., bromide and iodide). In this process, HOCl can transform bromide and 

iodide to hypobromous (HOBr) and hypoiodous acids (HOI), which in the presence of NOM induce 

substitution reactions for formation of brominated and iodinated DBPs in addition to the chlorinated 

species (Allard et al. 2015, Hua et al. 2006). Once formed, HOBr plays an important role in DBP 

speciation because of competition reactions with HOCl. It has been reported that compared to HOCl, 

HOBr generally reacts faster with NOM (Westerhoff et al. 2004), with the hydrophilic NOM fraction 

being more amenable to HOBr reactions (Hua and Reckhow 2013). For phenolic moieties, second-

order rate constants with bromine were found to be about 3 orders of magnitude higher than that of 

chlorine (Heeb et al. 2014).  

NOM concentrations also affect the contribution of HOCl, HOBr, and HOI in DBP speciation. For 

example, at low NOM concentrations (or low SUVA), HOBr and HOI reactions would dominate, 

forming brominated NOM moieties and Br-/I-THMs (Allard et al. 2015). For waters with high NOM 

concentrations (or high SUVA), formation of Cl-/I-THMs are more favored because HOCl reactions 

with NOM is preferred over HOCl reactions with bromide to HOBr (Allard et al. 2015).   

  

Figure 2.8. General scheme of the reaction of inorganic and organic DBP precursors with chlorine 

(Gruchlik et al. 2014). 

Other than the presence of halide ions, water quality and reaction conditions such as chlorine dose and 

contact time, pH, temperature, ammonia concentration, type and concentration of NOM are also 

significant factors in DBP formation (Bond et al. 2012, Bond et al. 2011b, Hua and Reckhow 2008, 

Xie 2004). When chlorine dose is increased, the formation of THMs, HAAs, and several other 

chlorinated DBPs also increased (Hua and Reckhow 2008). Extending the chlorine contact time could 

also increase the formation of DBPs considered as end-products (e.g., THMs and HAAs) while 

decreasing the formation of DBPs serving as intermediates of other compounds (e.g., DCAN) (Glezer 

et al. 1999, Hua and Reckhow 2008). DBP formation (e.g., THMs, HAAs) was also found to increase 

with increasing temperature due to faster reaction rates, although some DBPs (e.g., HKs) may also 

degrade faster at higher temperature (Hua and Reckhow 2008). In addition, a higher pH promotes 

Br-, I- HOI, HOCl, HOBr

IO3-

NOM Cl-organic DBPs
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hydrolysis reactions (i.e., to form more THMs), increases the fraction of chlorine as OCl- (pKHOCl, 25ºC 

= 7.54), and makes NOM moieties (e.g., phenols, amines) more reactive towards oxidants (Deborde 

and von Gunten 2008). Ammonia could also affect DBP formation due to its reaction with chlorine to 

chloramine (Diehl et al. 2000, Hua and Reckhow 2008) which is a less reactive oxidant. More 

importantly, increasing NOM levels increases the chlorine demand (i.e., Cl2 dose minus Cl2 residual) 

and DBP concentrations due to high precursor levels (Krasner et al. 1994). Different NOM fractions 

also result in different DBP yields, with the hydrophobic fraction causing higher total DBP 

concentrations (Bond et al. 2009b, Kitis et al. 2002, Reckhow et al. 1990). 

Key functional groups in NOM were found to be responsible for the high yields of DBPs. These include 

m-dihydroxybenzenes (e.g., orcinol), β-diketone (e.g., acetylacetone),  β-diketoacid (e.g., 3-

oxopropanoic acid), and amino acids (e.g., aspartic acid). The reactions of chlorine with these moieties 

are discussed in the following sections. Note that these reactions are presented with HOCl as the 

oxidant. If bromide and iodide are present during chlorination, a mix of Cl-/Br-/I-DBPs can be 

expected.  

 
2.3.1.1. Trihalomethane (THM) formation 

Fast-reacting THM precursors include compounds containing β-diketone and β-diketoacid moieties 

(Gallard and von Gunten 2002). The reaction of chlorine with these carbonyl-containing compounds 

occurs via substitution reactions on the α-carbon to the carbonyl group, consequently producing 

chloroform (i.e., haloform reaction) (Deborde and von Gunten 2008). Electron-withdrawing moieties 

at the acetyl’s carbonyl group make the hydrogen atoms of the α-carbon more acidic, further promoting 

chlorine substitution. This was well observed for β-diketones like acetylacetone (Figure 2.9a).  

m-Dihydroxybenzene structures (e.g., resorcinol) have also been considered as fast-reacting THM 

precursors (Gallard and von Gunten 2002). For the case of  orcinol (Figure 2.9b), the doubly activated 

carbon atom (i.e., carbon ortho to both hydroxyl substituents) is considered to be the main site of attack 

for chlorine followed by a series of hydrolysis and decarboxylation reactions, eventually leading to 

chloroform formation. In addition, slow reacting THM precursors, in the form of phenolic compounds, 

were also observed (Gallard and von Gunten 2002). The different rates of THM formation are 

hypothesized to be caused by the varying reactivity of intermediates formed during chlorination. While 

monohydroxy benzenes lead to chlorinated keto-intermediates, polyhydroxy aromatic precursors can 

generate polyketones and keto-carboxylic acids which have high reactivity with chlorine, resulting in 

higher THM yields (Deborde and von Gunten 2008).  
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Figure 2.9. Chloroform formation: reaction of chlorine with (a) acetylacetone (Deborde and von 

Gunten 2008) and (b) orcinol (Tretyakova et al. 1994) 

Other DBPs such as haloketones and haloaldehydes can also form through the presented mechanisms. 

Aldehydes and ketones, which are commonly formed from oxidation of NOM, can react with HOCl at 

the α-carbon to the carbonyl group, subsequently forming haloaldehydes (e.g., chloral hydrate) and 

haloketones (e.g., trichloropropanone in Figure 2.9a).  

2.3.1.2. Haloacetic acid (HAA) formation 

The formation of haloacetic acids (HAAs) proceeds through initial chlorine substitution at the α-carbon 

to a carbonyl group. High HAA yields were reported for chlorination of β-dicarbonyl species (e.g., β-

diketoacids) (Bond et al. 2012, Dickenson et al. 2008). Similar to THM formation, the electron-

withdrawing effect of the carbonyl group makes the hydrogen atoms of the α-carbon more acidic, and 

hence more reactive towards chlorine. As an example, Figure 2.10 shows the formation of 

dichloroacetic acid (DCAA) from chlorination of 3-oxopropanoic acid.  

 

Figure 2.10. Dichloroacetic acid formation: reaction of chlorine with 3-oxopropanoic acid (Bond et 

al. 2012) 
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Trihaloacetic and dihaloacetic acids were also proposed to come from NOM with different properties. 

Comparing various NOM isolates, Hua and Reckhow (2007a) showed that trihaloacetic acids had 

higher yields with hydrophobic NOM fractions, while dihaloacetic acids had higher yields with 

hydrophilic NOM fractions (<0.5 kDa).  

2.3.1.3. Nitrogenous DBP formation 

Due to the oxidant demand of DON in water (e.g., algal and wastewater-impacted waters), nitrogenous 

DBPs (N-DBPs) could also be formed apart from the carbon-based DBPs (C-DBPs) like THMs and 

HAAs. Although N-DBP concentrations are lower than C-DBPs, increasing concerns on N-DBP 

formation arise because of its higher toxicity compared to C-DBPs (Plewa et al. 2008, Stalter et al. 

2016a). Halonitromethanes (HNMs), haloacetonitriles (HANs), and haloacetamides (HAMs) are 

among the most frequently detected N-DBPs in drinking water. These can be formed from chlorination 

of amines and amino acid moieties of NOM, as shown below.  

2.3.1.3.1.  Halonitromethane (HNM)  

Trichloronitromethane (also known as chloropicrin) is a commonly measured halonitromethane in 

disinfected waters. Using monomethylamine as a model compound (Figure 2.11), Joo and Mitch 

(2007) proposed that trichloronitromethanes can be formed via oxidation of dichlorinated amines and 

sequential chlorination of the nitronate anion. With increasing chlorine substitution, faster addition of 

chlorine occurs due to the increased acidity of halonitroalkanes, as a result of the electron-withdrawing 

chlorines.  

Trichloronitromethane is also a main concern with treatment plants utilizing O3/HOCl (Hoigné and 

Bader 1988). With ozone, halogen reactive nitroalkyl intermediates (e.g., nitroethanol, nitromethane) 

can be formed resulting in high yields of trichloronitromethane during chlorination (McCurry et al. 

2016). For example, glycine was shown to have 22.5% trichloronitromethane yield with O3/HOCl 

treatment (McCurry et al. 2016).  

 

Figure 2.11. Trichloronitromethane formation: reaction of chlorine with monomethylamine (Joo and 

Mitch 2007) 
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2.3.1.3.2.  Haloacetonitrile (HAN) and haloacetamide (HAM)  

Haloacetamides were reported as hydrolysis products of haloacetonitriles. Using aspartic acid as an 

example precursor (Figure 2.12), chlorine quickly reacts with the amine-N (especially at Cl:N >2) to 

initially form N-haloamino acid (Deborde and von Gunten 2008) which undergoes decarboxylation 

leading to 2-cyanoethanoic acid (Shah and Mitch 2012). The presence of the electron-withdrawing 

cyano and carboxylic moieties promote successive chlorination of the central carbon atom. 

Decarboxylation follows forming dichloroacetonitrile (DCAN) and trichloroacetonitrile (TCAN), with 

further chlorination. Hydrolysis of haloacetonitriles forms their corresponding haloacetamides (e.g., 

dichloroacetamide (DCAM) and trichloroacetamide (TCAM)) which can further hydrolyze into 

haloacetic acids (Reckhow et al. 2001). Other than being hydrolysis products of HANs, HAMs can 

also be formed independently from specific precursors. This was demonstrated in a previous study 

where chlorination of wastewater effluents and algal extracellular polymeric substances produced 

more DCAN, while chlorination of humic materials produced more DCAM (Huang et al. 2012). 

 

Figure 2.12. Haloacetonitrile and haloacetamide formation: reaction of chlorine with aspartic acid 

(Shah and Mitch 2012) 

2.3.1.4. Adsorbable organic halogen (AOX) 

Measurement of adsorbable organic halogens (AOX), also known as total organic halogens (TOX), 

can provide an estimate of the level of DBP formation in chlorinated waters. This is useful since current 

analytical and extraction methods for DBPs are somewhat limited to thermally and chemically stable, 

volatile or semi-volatile, neutral organic halogens (e.g., DBPs mentioned in previous section) 

(Weinberg 1999). Current AOX determination involves adsorption of DBPs on activated carbon, 

followed by combustion, and subsequent halide measurement by ion chromatography (Hua 2006). The 

resulting chloride, bromide, and iodide ions correspond to the adsorbable organic chlorine (AOCl), 

adsorbable organic bromine (AOBr), and adsorbable organic iodine (AOI), respectively. Although this 

method does not capture all volatile DBPs and other non-halogenated DBPs, it can provide a general 

idea on the levels of DBPs produced from chlorine-based disinfectants. A mass balance of the halogen 
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halogenated DBPs remains uncharacterized (i.e, unknown AOX = measured AOX minus the sum of 

known individual DBPs) (Krasner et al. 2006, Richardson 2003, Weinberg 1999). These unknown 

compounds, which could have toxicological relevance, are thought to be non-volatile and/or polar and 

are therefore unextractable using traditional liquid-liquid extraction and GC methods (Weinberg 1999). 

In a study of 12 WTPs in the U.S., unknown AOX ranged from 10 – 66% with THMs and HAAs 

accounting for the majority of the known AOX  (Krasner et al. 2006). To investigate the source of the 

unknown AOX, Hua and Reckhow (2007b) evaluated AOX formation from NOM fractions isolated 

using XAD resins and ultrafiltration membranes. The authors found that unknown AOX from 

chlorination are predominantly attributed to hydrophobic and/or high MW NOM (e.g., >0.5 kDa). In 

that study, unknown AOX yields of hydrophilic NOM were only at 1–20% of those from hydrophobic 

NOM.  The ratio of unknown to known AOX of chlorinated hydrophobic and high MW fractions 

ranged from 40–60%, which further increased when chloramination was used instead of chlorination 

(Hua and Reckhow 2007b). For SEQ waters, the levels of unknown DBPs were comparable to these 

previous studies. Unknown AOX of 14.5 – 62% (Figure 2.13a) were found in a survey of 10 water 

samples, with THMs and HAAs also comprising most of the known DBPs (Figure 2.13b)  (Farré et al. 

2016b). In this study, chlorine contact time was found to be a key factor in the resulting AOX 

concentrations. Compared to AOX measured at WTP outlets (AOXo), AOX concentrations could 

increase by up to 170% after 24 h of contact time (AOX24h), which was also confirmed using water 

samples (i.e., non-chlorinated) subjected to lab-scale 24 h AOX formation potential tests (AOXFP) 

(Figure 2.13a). In terms of treatment, coagulation was found to effectively remove 67% of the AOXFP 

across the WTPs (Farré et al. 2016b).  

 
 

Figure 2.13. (a) Known versus unknown AOX in SEQ water samples, (b) Example %AOX accounted 
for by individually measured DBPs (Farré et al. 2016b).  

(b) 
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2.4.  Bioassays for DBP studies 

Previous studies on the biological effects of DBPs have indicated some general trends (Figure 2.14). 

By examining genomic DNA damage in Chinese hamster ovary cells, Plewa et al. (2008) showed that 

the relative genotoxic activities of different DBP classes decreased as follows: 

HNMs>HAMs>HANs>HAAs >THMs. From the results of 18 DBPs with matched halogen analogues, 

it was further observed that the order of toxicity relative to type of halogen atom is  iodinated >> 

brominated >> chlorinated DBPs. That study also compared 26 carbon-based DBPs and 29 nitrogenous 

DBPs (N-DBPs) and found that N-DBPs are the most toxic among all DBPs investigated. These trends 

were also consistent with the recent study by Stalter et al. (2016a) wherein a set of cell-based in vitro 

bioassays was used to assess molecular mechanisms of reactive toxicity of 50 different DBP species. 

These bioassays were based on the specific modes of actions in presence of DBPs including various 

molecular events (e.g., interactions with DNA, proteins/peptides, and membrane lipids) initiating a 

series of effects like gene damage, disruption of redox balance, and enzyme inhibition (Stalter et al. 

2016a).  These effects can then activate a multitude of subsequent adaptive stress responses such as 

oxidative stress response, p53-mediated response (DNA repair), and inflammation, among others 

(Stalter et al. 2016a). The results of these effect-driven bioassays suggest that the genotoxic effect of 

DBPs could occur indirectly through oxidative stress induction and/or enzyme inhibition than direct 

DNA damage. Some of the bioassays used in that study are shown in Table 2.5.  

  

Figure 2.14. Combined toxicity index values for (a) carbonaceous DBPs (C-DBPs) and nitrogenous 

DBPs (N-DBPs), and (b) iodo-, bromo-, and chloro-DBPs (reprinted from Richardson et al. (2007), 

with permission) 

 

(a) (b) 
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Table 2.5. Example bioassays for the effect fingerprinting of DBPs (adapted from Stalter et al. (2016a), 

with permission) 

Bioassay Test species (strain/cell line) Endpoint Signal 

Microtox Aliivibrio fischeri Cytotoxicity Bioluminescence as indicator for 
cell viability 

umuC 
assay 

Salmonella typhimurium 
(TA1535/pSK1002) 

Activation of SOS-
response 

Optical density at 420 nm as 
marker for conversion of 
substrate by the reporter enzyme 

AREc32 
AREc32 cell line, based on 
human breast cancer cell line 
MCF7 

Activation of the 
oxidative stress 
response pathway 
NRf2-ARE 

Bioluminescence as indicator of 
the reporter enzyme luciferase 

p53-bla 
p53RE-bla HCT-116 cell line, 
based on human colon 
carcinoma cell line HCT-116 

Activation of the tumor 
suppressor protein p53 

Ratio of blue (450 nm) to green 
fluorescence emission (520 nm) 
at 405 nm excitation as indicator 
of the reporter enzyme β-
lactamase 

 

2.5. Reduction of DBP formation potentials in water treatment  

The most practical approach in minimizing DBP formation involves reduction of DBP precursors prior 

to chlorination. Precursor removal can be achieved using the treatment processes discussed earlier 

(Section 2.2) which mainly involves coagulation, filtration, and oxidation. The performance of these 

processes could be variable depending on the water quality and treatment conditions. As reviewed by 

Bond et al. (2011a), coagulation could be an effective process to remove humic components of NOM, 

and consequently the DBPs coming from this fraction. These DBPs include HAAs whose precursors 

were shown to be more amenable to coagulation due to their higher aromatic content (Liang and Singer 

2003). The remaining humics (i.e., hydrophobic) can be removed by activated carbon via adsorption 

which is supported by a moderate correlation between logKow (octanol-water partition coefficient; 

measure of hydrophobicity) and Freundlich parameters (measure of adsorbability) (Bond et al. 2011a). 

Anion exchange resins can also be used to remove DBP precursors originating from transphilic 

fractions with high carboxylic acid functionality and charge density (Boyer et al. 2008). Ozonation and 

AOPs can also be utilized to oxidize DBP precursors, although specific DBPs can still increase due to 

DBP-forming oxidation products (e.g., aldehydes, ketones) (Kleiser and Frimmel 2000). Hydrophilic 

DBP precursors like amino acids were found to be reduced well during biological treatment and 

nanofiltration (Bond et al. 2011a).  



Chapter 2 
 

- 29 - 

In our earlier work, we compared the performance of conventional and advanced WTPs in SEQ (Figure 

2.2, Section 2.2). It was shown that WTPs using combined ozonation and BAC filtration results in 

better DOC reductions. As a result, it is expected that the overall DBP formation potentials in the 

product water of advanced WTPs would be lower than those obtained from conventional WTPs as 

shown in Table 2.6. The higher reductions in TOC, TON, and DBP formation potentials were a result 

of more efficient oxidation and breakdown of NOM by ozone followed by consumption of 

biodegradable compounds by BAC. To gain a better understanding of these processes, the 

fundamentals of ozonation and biofiltration are discussed in the following sections. 

Table 2.6. Comparison of average TOC (mg C/L) and TON (mg N/L) in final waters and DBP 

concentrations (µg/L) in finished waters at advanced versus conventional in SEQ (Farré et al. 2016a) 

Parameter Conventional 
(n=13) 

Advanced 
(n=8) 

TOC 4.6 2.3 

TON 0.19 0.09 
Trihalomethanes 105.9 65.1 

Haloacetic acids 71.8 13.5 
Iodinated THMs 3.2 0.4 

Haloacetonitriles 8.0 2.2 
Chloral hydrate 6.5 1.4 

Trichloronitromethane 0.3 0.1 
Tribromonitromethane 0.2 0.1 

1,1-Dichloropropanone 0.8 0.3 
1,1,1-Trichloropropanone 4.2 1.3 

Haloacetamides 1.3 0.1 
AOCl 175 67 

AOBr 50 27 
AOI 2.3 0.7 

 

2.6.  Ozonation  

Ozone (O3) is a strong oxidant and disinfectant. In water treatment plants, it is generated on-site (von 

Gunten 2007) from air or pure oxygen electrochemically or by corona discharge and introduced into 

the water through diffusers, Venturi systems, or by static mixers (von Gunten 2007). It is commonly 

applied for pre-oxidation (before coagulation) and intermediate oxidation (after sedimentation). 
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Compared to chlorine, ozone can inactivate microorganisms at lower exposures (CT value or the time-

integrated concentration of the oxidant). For example, in order to obtain a 99% inactivation of G. 

lamblia cysts (pH 6–7), a chlorine exposure of 47 – 150 mg·min/L is needed, whereas same 

inactivation can be attained by ozone at an exposure of 0.5 – 0.6 mg·min/L (Langlais et al. 1991). It 

also reacts quickly with various inorganic (e.g., Mn(II), Fe(II), cyanide) compounds via oxygen-

transfer reactions. For organic compounds (e.g., taste and odor pollutants, pharmaceuticals, fuel 

additives, pesticides, algal products), ozone selectively oxidizes the double bonds, activated aromatic 

systems, and deprotonated amines (von Sonntag and von Gunten 2012) consequently forming various 

transformation products (for reaction mechanisms, see below).  

Unlike other oxidants in aqueous solutions, ozone can also decompose into hydroxyl radicals (•OH) 

via a series of chain reactions. This •OH yield could be useful in transforming ozone-recalcitrant 

compounds through non-selective reactions with second-order rate constants of >109 M-1s-1 (Buxton 

et al. 1988). However, deliberate production of •OH radicals (i.e., by promoting ozone decay) can 

minimize disinfection efficiency which is more influenced by ozone (von Gunten 2003a). Hence, 

characterization of the ozonation process is essential in determining optimum treatment conditions. 

2.6.1. Characterization of the ozonation process 

The stability of ozone during water treatment is affected by various factors. Waters with high NOM 

concentrations cause a faster ozone decay due to NOM’s abundant reaction sites. The degree of  •OH 

scavenging of the water matrix is also an important consideration (von Sonntag and von Gunten 2012). 

In the presence of •OH inhibitors (e.g., carbonate/bicarbonate), ozone exposure would be higher (i.e., 

slow ozone decay) while  in the presence of •OH promoters like OH- (i.e., at high pH) and H2O2, ozone 

exposure would be lower (i.e., fast ozone decay). In surface waters and wastewaters, ozone 

decomposition involves 2 phases: (1) instantaneous decay phase (<20 sec), and (2) slow decay phase 

which occurs in minutes range, following an empirical first-order rate law (Buffle et al. 2006).  

During oxidation, the contribution of ozone and •OH radicals can be described using equation 2.1 

(Elovitz and von Gunten 1999): 

−" #
"$

= 𝑘#,() 𝑂+ 𝑃 + 𝑘#,•/0 • OH 𝑃    (eq. 2.1) 

where 𝑘#,() and 𝑘#,•/0 correspond to second-order rate constants for the reaction of pollutant, P, with 

ozone and •OH, respectively. [O3] and [•OH] are ozone and •OH concentrations. Integration of equation 

2.1 gives the following form: 
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−𝑙𝑛 [#]
[#]7

= 	𝑘#,() 𝑂+ 𝑑𝑡 + 𝑘#,•/0 • OH 𝑑𝑡 (eq. 2.2) 

The terms 𝑂+ 𝑑𝑡 and • OH 𝑑𝑡 are the exposures of ozone and •OH, respectively. To account for 

the relative contribution of •OH radicals and ozone on the oxidation process, the Rct parameter (Elovitz 

and von Gunten 1999) was introduced. From equation 2.3, high Rct would correspond to the conditions 

favoring fast ozone decay (i.e., low O3 exposure). Rcts in natural waters commonly range from 10-10 – 

10-8 (von Sonntag and von Gunten 2012). 

                                    𝑅<$ =
•/0 "$
() "$

    (eq. 2.3) 

The O3 exposure can be calculated from the area under the O3 decay curve (von Gunten and Hoigné 

1994). Concentrations of ozone can be measured using the spectrophotometric indigo method (Bader 

and Hoigné 1981), which uses indigotrisulfonate, a compound that rapidly reacts with ozone (kapp = 

9.4´107 M-1s-1). The decrease in absorbance at 600 nm (ε= 20,000 M-1cm-1) of the indigo solution is 

directly proportional to the ozone concentration (Elovitz and von Gunten 1999). 

Unlike ozone, •OH concentrations cannot be directly measured due to its low transient concentration 

(<10-12 M). Thus, to measure •OH concentrations, a probe compound like para-chlorobenzoic acid 

(pCBA) can be used (Elovitz and von Gunten 1999). pCBA is unreactive with ozone but very reactive 

with •OH (kpCBA,•OH = 5´109 M-1s-1). The •OH exposure can then be determined from the relative 

decrease of pCBA concentration, [pCBA].  

   𝑙𝑛 [=>?@]
[=>?@]7

= −𝑘=>?@,•/0 • OH dt      (eq. 2.4) 

Substituting equation 2.3 to 2.4 provides a means to experimentally determine the Rct using 

measurements of ozone exposure and relative pCBA decrease. 

𝑙𝑛 [=>?@]
[=>?@]7

= −𝑘=>?@,•/0𝑅<$ 𝑂+ dt         (eq. 2.5) 

The plot of ln[pCBA]/[pCBA]0 versus O3 exposure provides a slope equals to -kpCBA,•OHRct.  

2.6.2. Reactions of ozone with organic compounds 

The reaction kinetics of ozone with NOM is governed by the presence of electron-rich moieties like 

activated aromatic systems, olefins, and amines. The known mechanisms of ozone reactions with these 

compounds are summarized in the following sections. The reactions presented here are based on 

previous extensive studies on ozone chemistry (von Sonntag and von Gunten 2012). Note that the 
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ozonation products could be formed along with the products of •OH reactions since typical treatment 

conditions do not scavenge for these radicals. Addition reactions to C-C and C-N bonds of NOM are 

common with •OH (von Sonntag and von Gunten 2012).  

The reactions of O3 and •OH can also be pH-dependent since electron density in a given molecule 

decreases during protonation (von Sonntag and von Gunten 2012). Figure 2.15 shows the second-order 

rate constants of O3 and •OH with phenol, butenol (olefin), and glycine at different pH (Lee and von 

Gunten 2010). It can be observed that pH effects are important especially for phenols and amines. At 

lower pH, the high reactivity of glycine drops because the lone pair at the amine-N (i.e., ozone’s 

reaction site) are blocked by protons. Similarly, phenol is less activated at lower pH which results in 

lower second-order rate constants. Thus, the degree of dissociation of compounds should be taken into 

account when assessing kinetics of ozonation reactions. 

 
Figure 2.15. pH dependent second-order rate constants (k) for the reaction of O3 and •OH with 

phenol, butenol, and glycine  (adapted from Lee and von Gunten (2010)) 

2.6.2.1. Activated aromatics 

Ozone reacts with phenols and activated aromatic systems via a transient ozone adduct which can 

decompose by various pathways (Figure 2.16, reactions 1–4) (von Sonntag and von Gunten 2012). By 

an oxygen-transfer mechanism (reaction 1), the ozone adduct can release a singlet oxygen (1O2) and 

rearrange into a hydroxylated-ring product. Reaction 2 involves ring-opening into muconic type 

compounds, which can be further oxidized into smaller carbonyl compounds like aldehydes and 
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carboxylic acids. These reactions can also be in competition with electron-transfer reaction which leads 

to an ozonide (O3
•-) and a radical cation product (reaction 3). It is also possible to form a superoxide 

(O2
•-) and an oxyl radical (reaction 4). Further reactions of the radical cation and phenoxyl radical 

result in formation of quinones or dimerized products (Lee and von Gunten 2016). 

 

Figure 2.16. Reaction of ozone with activated aromatic compounds (adapted from von Sonntag and 

von Gunten (2012)) 

2.6.2.2. Olefins 

Ozone reacts with olefins (C=C bonds) through the Criegee mechanism (Figure 2.17) (von Sonntag 

and von Gunten 2012). This pathway involves the formation of ozonide that decomposes into a 

carbonyl compound and a hydroxyhydroperoxide leading to formation of another carbonyl compound 

and H2O2. This reaction is expected to happen for ozonation of the muconic-type compounds formed 

from ring-opening of phenols. 

 

Figure 2.17. Reaction of ozone with olefins (adapted from von Sonntag and von Gunten (2012)) 
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2.6.2.3. Amines 

The reaction of ozone with amines occcur through addition to the deprotonated nitrogen moiety. Ozone 

reacts with the amine functional group via an adduct, leading to formation of N-oxides for tertiary 

amines (Figure 2.18, reaction 1) and to hydroxylamines for primary and secondary amines (Figure 

2.18, reactions 2–3) (von Sonntag and von Gunten 2012). In competition with reaction 3 is an electron-

transfer reaction that releases O3
•- and forms N-centered radical (reaction 4), which can quickly 

rearrange to a C-centered radical (von Sonntag and von Gunten 2012). Since ozonated solutions are 

saturated with O2, peroxyl radicals (R-COO•) can also be produced.  This reaction is followed by the 

decay of peroxyl radicals into an imine after a loss of O2
•-, eventually forming a lower substituted 

amine and carbonyl compounds. Among the possible end-products of this process include nitrate and 

ammonium, as shown in some studies with amino acids (Berger et al. 1999, Le Lacheur and Glaze 

1996). 

 

Figure 2.18. Reaction of ozone with amines (adapted from von Sonntag and von Gunten (2012)) 

2.6.3. Ozonation and DBP formation 

In advanced drinking water treatment, ozone is not commonly used as a final disinfectant due to its 

short lifetime. Instead, chlorination is applied as the final step for residual purposes in the distribution 

network. In this approach, chlorine can react with the remaining and oxidized NOM, as well as with 

inorganic ions (e.g., halides) to form DBPs. It could be assumed, however, that less organic DBPs 

(e.g., THMs  and HAAs) would form with pre-ozonation since ozone also attacks the reaction sites of 

chlorine. This assumption, however, needs to be investigated as oxidation products of ozone as well 

as •OH could also form additional DBP precursors. The effects of O3 and •OH reactions on the overall 

DBP formation are not clear and are therefore worth exploring.  
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Table 2.7 summarizes the results of some available studies on DBP formation which used pre-

ozonation and post-chlorination. As previously discussed in Section 2.3.1, HOCl can transform 

bromide and iodide in water to hypobromous and hypoiodous acids, which in the presence of NOM 

can lead to formation of organic Cl-/Br-/I-DBPs. In the presence of ozone (Figure 2.19), iodinated 

DBPs can be prevented since HOI can quickly transform to iodate. This would leave a mixture of Cl- 

and Br-DBPs. To evaluate the extent of Br-DBP formation brought about by HOBr reactions after 

ozonation, bromine substitution factors (BSF) can be calculated (equation 2.6) (Hua and Reckhow 

2013). Apart from organic DBP formation, ozone and •OH can also compete with NOM to form 

bromate (BrO3
-) in bromide-containing waters.  

 

Figure 2.19. Formation of DBPs during chlorination and ozonation (adapted from Gruchlik et al. 

(2014))  

𝐵𝑆𝐹 = 	 (species	molar	concentration)×(species	#	Br	substituents)species
#halogen	substituents	×	 (species	molar	concentration)species

 (eq. 2.6) 

Ozone breaks down NOM into smaller and more biodegradable compounds like aldehydes, ketoacids 

and carboxylic acids (Hammes et al. 2006). With post-chlorination, these carbonyl-containing 

byproducts may participate in substitution reactions with HOCl forming DBPs such as chloral hydrate 

and 1,1,1-trichloropropanone (Krasner 2009, von Gunten 2003). Ozonation also alters the 

characteristics of NOM and cause the hydrophobic fraction to decrease, consequently decreasing the 

DBPs associated with that fraction (e.g., THMs and trihaloacetic acids (Hua and Reckhow 2007a)). In 

addition, as a result of the increase in bromine-reactive, carboxylate-rich and hydrophilic NOM, 

brominated DBPs were observed to increase after ozonation (Hua and Reckhow 2007b, Hua and 

Reckhow 2013, Liang and Singer 2003). For other DBPs like haloacetonitriles (HANs), the decrease 

in concentration is caused by the reaction of ozone with the amine moieties of NOM which prevents 

Cl transfer reactions with further chlorination. Unlike HANs, ozonation favors halonitromethane 

(HNM) formation through oxidation of amino acids and amino groups of NOM (Hoigné and Bader 

1988, McCurry et al. 2016).  
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Table 2.7. Effect of pre-ozonation on removal of organic DBPs  

DBP General observations and effect of pre-ozonation References 

Trihalomethane 
(THMs) 

§ Dihydroxybenzenes and readily enolizable 
compounds (β-diketones and β-diketoacids) are 
fast-reacting THM precursors; phenolic 
compounds are slow-reacting THM precursors  

§ Could also be formed from DON (e.g., amino 
acids algal cells) and HAN hydrolysis 

§ For SUVA > 2, chlorination THMs are reduced 
by ozone by more than 30% (O3 dose = 1 
mg/mg DOC, pH = 7). For SUVA<2, minimal 
decrease or sometimes increase in THM were 
observed. 

§ Shifts of THMs to more brominated DBPs 
during O3/HOCl treatment 

§ O3/NH2Cl treatment resulted in lower THM 
concentrations than O3/HOCl  

§ Pre-ozonation mitigates iodo-THM formation. 
Iodide is oxidized to iodate. 

Gallard and von Gunten 
(2002); Dickenson et al. 
(2008);Westerhoff and 
Mash (2002); Hua and 
Reckhow (2013); Hua 
and Reckhow (2007b); 
Yang et al. (2012a); 
Allard et al. (2013); 
Bichsel and von Gunten 
(2000);  
 
 
 
 
 

Haloacetic acids 
(HAAs) 

§ β-dicarbonyl acids are major sources of HAAs 
§ DON (e.g., proteins, amino sugars) are 

important DHAA precursors 
§ Waters with SUVA>2, trihaloacetic acids 

(THAA) are decreased by ozone by more than 
30% (O3 dose = 1 mg/mg DOC, pH = 7). 

§ More tribromo- and dibromoacetic acid formed 
during O3/HOCl for water with 800 µg/L 
bromide. 

§ O3/NH2Cl is effective in removing THAA. 
§ Increase in dihaloacetic acids (DHAA) for 

waters with SUVA<2; decrease in DHAA for 
SUVA>2. 

§ Reduced chloramination DHAAs and increased 
bromine substitution.  

§ DCAA is most predominantly formed after 
chlorination.  

§ Preozonation decreased DCAA and 
bromochloro acetic acid BCAA after 
chloramination but did not affect dibromoacetic 
acid (DBAA). 

§ O3/HOCl enhanced DHAA formation (opposite 
trend for THAA) 

§ HAAs could be formed from hydrolysis HANs 
and HAMs 
 

Dickenson et al. (2008); 
Hua and Reckhow 
(2007b); Hua and 
Reckhow (2013); 
Yang et al. (2012a) 
Reckhow et al. (2001); 
Westerhoff and Mash 
(2002) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
(Continued…) 
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DBP General observations and effect of pre-ozonation References 

Haloacetonitriles 
(HANs) 

§ Amino acids and kynurenine (tryptophan 
metabolite) are suitable DCAN precursors 

§ Hydrophilic fractions are most reactive in 
forming HANs 

§ Decreased when HNMs increase. 
§ O3/HOCl reduced DHAN yields. Reduction of 

DHAN was higher than for THMs and HAAs 
(DHANs>THMs and THAAs>DHAAs). 
Typical DCAN FP removal is 50-70% (O3 dose 
= 1 mgO3/mg DOC, pH = 7). 

§ Formation is suppressed by O3/NH2Cl treatment. 
§ O3/HOCl reduced HAN more than 

O3/H2O2/HOCl 
§ For High DOC/DON, N comes from chloramine 

(15N-DCAN). For low DOC/DON, N comes 
from DOM. Preozonation decreased 15N-DCAN. 
 

Westerhoff and Mash 
(2002); Hua and 
Reckhow (2013); Hua 
and Reckhow (2007b); 
Yang et al. (2012a); 
McCurry et al. (2016) 
 
 
 
 
 
 
 
 

Halonitromethanes 
(HNMs) 

§ Increased TCNM concentration during 
O3/HOCl. High concentrations for water with 
low humic content (SUVA<2) 

§ Enhanced formation with increasing ozone dose.  
§ Formed from oxidizing amines to nitro 

compounds. 
§ O3/HOCl and O3/NH2Cl increased TCNM  

formation by 2-5 and 1-2 times, respectively. 
Majority of N comes from DOM. 

§ TCNM was undetectable with O3/H2O2/NH2Cl. 
§ O3/BAC may remove precursors of TCNM 
§ Higher TCNM yield for dipeptide (e.g., ala-ala) 

compared to individual amino acid 

Yang et al. (2012); Hua 
and Reckhow (2007b); 
Krasner (2009); Mitch 
et al. (2009); Bond et al. 
(2014); McCurry et al. 
(2016) 
 
 
 
 

Haloketones 
(HKs) 

§ 1,1,1-Trichloropropanone (TCP) increased with 
O3/HOCl treatment.  

§ Formation enhanced by 3-27% with O3/H2O2 
(DOC = 2 mg/L, O3 dose = 3 mg/L, H2O2 = 1.5 
mg/L). Undetectable using O3/H2O2/NH2Cl. 

§ Increased with increasing ozone dose. 
§ 1,1-Dichloropropanone (DCP) increased by 

preozonation. Highest DCP found with 
O3/NH2Cl treatment. 

Yang et al. (2012); Hua 
and Reckhow (2007b) 
 
 
 
 
 
 

Haloaldehydes 

§ Chloral hydrate  (CH) increased during O3/Cl2 
but not detected in O3/NH2Cl. Formation was 
enhanced by 2-10% with O3/H2O2 but 
undetected using O3/H2O2/NH2Cl (DOC = 2 
mg/L, O3 dose = 3 mg/L, H2O2 = 1.5 mg/L).  

§ Increase with increasing ozone dose. 
§ Acetaldehyde can be removed by BAC which 

results in decrease in chloral hydrate 

Yang et al. (2012) 
Krasner (2009) 
 
 
 
 
 
(Continued…) 
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DBP General observations and effect of pre-ozonation References 

Haloacetamides 
(HAMs) 

§ Known hydrolysis products of HANs, but can be 
formed independently from chlorination of 
humic materials 

§ Can be formed from subsequent 
chlorination/chloramination of ozonation 
byproducts. 

Reckhow et al. (2001); 
Huang et al. (2012); 
Weinberg (2001) 
 

Total organic 
halogen (TOX) 

§ Preozonation led to 36% reduction for TOCl but 
did not decrease TOBr due to shifts to more 
brominated DBPs (DOC = 4.2 mg/L, O3 dose = 
1mgO3/mgDOC, pH = 7). 

§ Unknown TOX (UTOX) generally decreased 
after O3/Cl2 treatment and increase with 
O3/NH2Cl. 

§ UTOX/TOX ratios reached about 85% with 
O3/NH2Cl treatment (O3 dose = 
1mgO3/mgDOC).  

§ 22% decrease in TOX after ozonation at 0.5 mg 
O3/mg DOC. Increased with •OH dominant 
UV/H2O2  
 

Hua and Reckhow 
(2007b); Kleiser and 
Frimmel (2000) 
 
 
 
 
 
 
 
 
 

 
 

2.7. Biological treatment 

2.7.1. Basic principles of BAC filtration 

Biological treatment is applied mainly to remove biodegradable organic matter and to increase 

biostability of water in the distribution system by preventing bacterial growth (Rittmann 1990). In 

ozonation plants, this is often achieved via granular activated carbon (GAC) filtration (Urfer et al. 

1997). GAC is used as filter media for optimal adsorption of NOM because of its large surface area (1 

g GAC = 600 – 1000 m2 or higher ) brought about by its extremely porous shape acting as sieve for 

trapping NOM, nutrients, and other contaminants (Figure 2.20a)  (Simpson 2008). GAC also has an 

inherent electro-positive charge that can attract electron donors such as NOM (Simpson 2008). The 

rich supply of these adsorbed particles results in colonization of heterotrophic bacteria (Servais et al. 

1994, Urfer et al. 1997). During early stage of biological colonization, most bacteria hardly adapt to 

premature attachment as they are first evacuated from GAC instead of building up a fixed biomass 

(Servais et al. 1994). Gradually, select film-forming bacteria attach and accumulate in the GAC 

surface, releasing only a few bacteria (e.g., ~0.5´105 bacteria/mL) in the effluent upon reaching an 

equilibrium (Servais et al. 1994). The resulting biofilm then excretes glue-like exopolymeric 

substances for stronger attachment to the GAC (Simpson 2008). By molecular diffusion and convective 

transport of contaminants across the biofilm, GAC adsorption sites can become saturated with 



Chapter 2 
 

- 39 - 

continuous operation (Simpson 2008). At this stage, NOM removal by the microbial biofilm 

(biodegradation) occurs rather than by adsorption; hence the term biological activated carbon (BAC). 

The shift from adsorption to biodegradation causes a decrease in NOM removal (e.g., from 50% 

removal of non-biodegradable NOM to less than 10% (Servais et al. 1994)). Despite this, BAC filters 

remain widely used since they are commonly applied after ozonation where particles are broken down 

into more biodegradable lower molecular weight compounds. In addition, the use of BAC filters is 

cost-effective as it can operate for over 10 years, while GAC adsorption sites could already be 

exhausted in about 3 months (~3000 bed volumes) (Rattier 2013).  

The transition from adsorption to biodegradation is illustrated in Figure 2.20b (Simpson 2008). Period 

A corresponds to the adsorption phase where DOC removal is highest. This is also the acclimation 

phase of microorganisms in the associated biofilm. Period B happens when GAC adsorption sites 

become saturated with DOC resulting in an increased biological activity. In Period C, DOC removal  

reaches a plateau phase due to biodegradation. This process is facilitated by various ezymes (Gao et 

al. 2010) forming CO2 and other organic compounds that can be assimilated by other bacteria. 

Biodegradation at this period is governed by the following processes (Figure 2.21) as described in 

some mechanistic models (Hozalski and Bouwer 2001, Laurent et al. 1999, Rittmann 1990): mass 

transport to the biofilm, diffusion within the biofilm, utilization kinetics within the biofilm, and growth 

yield of the substrate. As the substrate is consumed, new biomass is produced which could also be lost 

through decay and biofilm detachment by physical means (e.g., fluid shear, backwashing) (Rittmann 

1990). At high biodegradation rates, other researchers aslo suggested that desorption from GAC’s 

pores could also occur consequently regenerating carbon (bioregeneration) (Aktas and Cecen 2007). 

This process is thought to be minimal in BAC systems  due to continuous microbial growth (Aktas and 

Cecen 2007). Microbial growth in BAC, however, should be carefully managed as excessive biomass 

could clog the filter causing pressure drop across the media and lifting of filter beds (Simpson 2008).  

Such events are concerns in distribution systems due to possible release of microorganisms (signaled 

by increased turbidity) that has colonized GAC.  

 

 

 



Chapter 2 
 

- 40 - 

  
 

Figure 2.20. (a) Adsorption and pore entrapment in GAC surface; (b) Representation of DOC removal 

by adsorption and biodegradation as a function of time (reprinted from Simpson (2008), with 

permission) 

 

Figure 2.21. Processes occurring in a biofilter (reprinted from Hozalski and Bouwer (2001) with 

permission) 

2.7.2. Biodegradable organic matter 

Biodegradable organic matter impacts water treatment in several ways (Laurent et al. 1999). This 

fraction could support bacterial growth and also consume the added chlorine destabilizing disinfectant 

residuals in distribution systems. As a consequence, higher chlorine dose would be needed to maintain 

the target residual, subsequently leading to halogenated DBP formation.  

(a) (b) 
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In laboratory settings, the extent of biodegradability of organic matter can be evaluated by determining 

the assimilable organic carbon (AOC) (van der Kooij et al. 1989), biodegradable organic carbon 

(BDOC) (Servais et al. 1989), and/or concentrations of readily biodegradable compounds like 

aldehydes and carboxylic acids (Krasner et al. 1993, Weinberg et al. 1993). In AOC, the growth of test 

organisms (Pseudomonas fluorescence P-17 and Spirillum NOX) is measured and correlated with the 

concentration of biodegradable organic carbon (van der Kooij et al. 1989). The AOC is largely 

comprised of organic acids after ozonation (Hammes et al. 2006). It typically ranges from 0.1 to 9% 

of TOC and is considered a subset of BDOC that represents the most readily biodegradable NOM 

fraction (Escobar and Randall 2001). BDOC, on the other hand, is measured from the difference of the 

initial DOC and refractory DOC of a water sample exposed to an inoculum of bacteria for a pre-

determined time (e.g. 5 days) (Servais et al. 1989). Previous studies have shown that BDOC values are 

in the range of 10–30% of the TOC of a water sample (Escobar and Randall 2001).  Moreover, the 

formation of biodegradable aldehydes and carboxylic acids after ozonation can also be measured by 

gas chromatography after derivatization to pentafluorobenzyl oximes (Weinberg et al. 1993). 

The biodegradable organic matter can be classified generally into fast, slow, and non-biodegradable 

fractions to account for DOC degradation kinetics (Yavich et al. 2004).  The fast BDOC may contain 

the small break down products of oxidation. During ozonation, these products (e.g., aldehydes, organic 

acids, and ketones) are formed extremely rapidly to 60–80% of the AOC and increased continuously 

at higher ozone exposure but with much slower rate (Hammes et al. 2006). Hammes et al. (2006) 

suggest that formation of these compounds are directly produced from ozone reactions. In a pilot study 

of Carlson and Amy (1998), the filter-removable DOC was comprised of aldehydes (formaldehyde, 

acetaldehyde, glyoxal methyl glyoxal; 3%), ketoacids (glyoxylic acid, puryvic acid, ketomalonic acid; 

12%), carboxylic acids (formic acid, acetic acid, oxalic acid; 13–15%), and other unknown oxidation 

products (70–74%). Many studies also reported comparable values, consistently having >50% of 

unknown assimilable organic carbon (Richardson 2003). These biodegradable compounds were found 

to have molecular weights of <0.5 kDa (Zhang et al. 2010). The non-biodegradable organic carbon, on 

the other hand, is associated to compounds with larger molecular weight and high SUVA (Goel et al. 

1995).  

The observations of previous studies that DOC removal occurs with initial rapid decrease followed by 

a period of slow decrease (Yavich et al. 2004) can be modelled using first-order reaction kinetics. Huck 

et al. (1994) showed good linear relationship between influent concentration and removal rate for 

DOC, THMs, AOX, and chlorine demand, with a minimum concentration that could not be reduced 

biologically. The slope of the regression line corresponds to specific removal rate constant of the 

contaminant which varies with respect to characteristics of the source water and the biofilter. Note that 
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the removal rate was calculated from the difference of influent and effluent concentrations divided by 

empty bed contact time (EBCT) (Huck et al. 1994), and EBCT refers to the water detention time in the 

GAC (i.e., ratio of the filter bed volume to the water flow rate). This first-order dependence of DOC 

removal on EBCT was also shown in other studies (Black and Berube 2014, DiGiano et al. 2001). In 

addition, Melin and Odegaard (2000) confirmed the kinetic results using different ozonation by-

products (example plot is shown in Figure 2.22). In that study, the removal of formaldehyde, 

acetaldehyde, acetone, glyoxal, methyl glyoxal, glyoxylic acid, pyruvic acid, and ketomalonic acid 

followed a single exponential decay to the non-biodegradable DOC (non-linear regression R2 > 0.80).  

 

Figure 2.22. Effluent concentration removal efficiency for formaldehyde (reprinted from Melin and 

Odegaard (2000), with permission) 

Having NOM with different biodegradability are expected due to NOM’s complex structure and 

functionality. To be biodegradable, many of the contaminants require oxygenation steps that entail 

oxygen insertion into the compound’s structure (Rittman 1995). Once oxygenated, they can be 

metabolized by pathways common to bacteria (Rittman 1995). This requirement can be attained during 

ozonation (e.g., phenolic compounds to aldehydes, carboxylic acids). Recently, Hubner et al. (2015) 

shows that the probability of biodegradability of ozone transformation products from olefins and ring-

opening of aromatic compounds increases relative to the parent compound. Whereas, oxidation 

products of aromatic compounds that did not undergo ring cleavage were predicted to have no 

enhancement in biodegradability. For amines, the biodegradability of oxidation products such as 

hydroxylamines and N-oxides was also not expected to improve (Hubner et al. 2015). At present, 

experimental information on biodegradability of various ozonation transformation products are still 

lacking. 
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2.7.3. Factors affecting biofiltration performance 

Several factors affect the performance of biofiltration. Some can be controlled quite well by water 

operators (ozone dose, biofilter media, EBCT, backwashing method) while others are mainly 

dependent on the influent water quality (e.g., nutrient load, temperature). As discussed earlier, ozone 

increases the load of biodegradable carbon due to breakdown products of NOM that can be metabolized 

in the biofilter. Enhancing the load of these biodegradable carbon by ozone or •OH  could also affect 

the biofiltration efficiency, although further studies are needed to determine which ozonation 

conditions promote better biodegradability. Without intermediate process between ozone and 

biofiltration, residual ozone can reach the biofilters. This scenario could potentially inhibit biological 

activity especially at high ozone residuals. With GAC,  the presence of ozone seemed not to affect the 

biological removal of ozonation products like aldehydes (Weinberg et al. 1993) because of ozone’s 

rapid decay in GAC’s surface. This could be different in other filters since the reactivity of ozone with 

the media varies as follows: GAC>anthracite>sand (Urfer and Huck 2000). With peroxone (O3 + 

H2O2), H2O2 residuals of about 1 mg/L in the influent of a lab-scale anthracite-sand filter media were 

shown to be rapidly destroyed without impairment of biofiltration efficiency (Urfer and Huck 1997, 

Urfer et al. 1997).  Other than residual oxidant reactivity, GAC, anthracite, and sand could also have 

varying rates for biomass growth. The macroporous structure of GAC offers higher surface area than 

anthracite and sand for biofilm retention that are less prone to fluid shear stress (Urfer et al. 1997). As 

a result, GAC filters forms biological activity faster and develop biofilms that are more stable against 

perturbations (e.g., shutdowns, intermittent chlorination) compared to nonadsorptive media like  

anthracite (Krasner et al. 1993). In a study by Emelko et al. (2006), higher biomass concentrations 

were found with GAC (per unit volume of media) compared to anthracite, especially at the top of the 

filter receiving the influent. Despite differences in biomass concentrations, no significant effect on 

carboxylic acids removal was observed except at low temperature conditions (Emelko et al. 2006). 

Similar observation was reported by Krasner et al. (1993) where aldehyde removals remained at 50–

75% using GAC/sand and anthracite/sand filters. 

EBCT, as discussed earlier, is also a key biofiltration parameter. Removal of the biodegradable fraction 

increased with increasing contact time (Urfer et al. 1997), although a biorecalcitrant NOM fraction is 

left at higher EBCTs (Black and Berube 2014, Melin and Odegaard 2000, Yavich et al. 2004) (see 

previous section). Higher contact times were also required for THM precursors than for the easily 

biodegradable ozonation byproducts such as aldehydes (Urfer et al. 1997). EBCTs can be changed by 

either varying the filter depth or hydraulic loading. Servais et al. (1994) demonstrated that at fixed 

EBCT, biological removal of BDOC in four filters remained relatively the same (40–56%) despite 

having filters operated with varying depths and filtration velocities (6–18 m/h). This suggest that 
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external mass transfer plays a minor role in removal of biodegradable organic matter under conditions 

typical for drinking water treatment (Urfer et al. 1997). 

Filter clogging during biofiltration also needs to be controlled. Because of this, water operators perform 

backwashing on a regular basis (e.g., every week). In this process, bound contaminants and decaying 

microorganisms are exposed to harsh conditions (e.g., high shear stress by air scour and clean water 

rinse) and are washed out through the top of the filter. Despite these conditions, biological activity in 

the filters is retained since biofilms are generally resistant to backwashing conditions (Simpson 2008, 

Urfer et al. 1997). The use of chlorinated waters for backwashing, however, could damage the biofilter 

due to biomass oxidation across the filter bed. Ahmad et al. (1998) showed that initial microbial counts 

in filters backwashed with chlorinated waters were two orders of magnitude lower than those for filters 

not exposed to chlorine. Another approach for controlling filter clogging would be nutrient 

supplementation (phosphate-P, ammonium-N). Lauderdale et al. (2012) reported that a C:N:P ratio of 

100:10:1 is ideal for the filter biofilm. During coagulation, phosphate could be removed leading to 

conditions that are nutrient-limited. As a stress response, microorganisms produce excessive amounts 

of extracellular polymeric substances that clog the filter (Lauderdale et al. 2012). This could also cause 

release of soluble microbial products (SMPs) like carbohydrates, nucleic acids, proteins, and amino 

acids, among others (Rittman et al. 1987, Zevin et al. 2015). Thus, to achieve a nutrient-balanced 

biofilters, phosphate-P, ammonium-N could be dosed based on the BDOC to achieve the ideal C:N:P 

ratio. Nutrient supplemented biofilters were reported to have better removals for DOC, manganese, 

and 2-methylisoborneol compared to nutrient-limited filters (Lauderdale et al. 2012). 

2.7.4. Coupling ozonation and biofiltration for DBP control 

It is clear that oxidation of NOM by ozone increases its biodegradability through formation of low 

molecular weight byproducts which can be subsequently removed during biofiltration (Krasner et al. 

1993, Weinberg et al. 1993). If the oxidation products are significant DBP precursors, biological 

treatment could decrease the resultant DBP formation potentials with chlorine. For example, aldehydes 

and ketones formed after ozonation can be consumed by the biofilters, preventing formation of 

haloaldehydes and haloketones (Krasner 2009). The study by Mitch et al. (2009) showed low removals 

of chlorination formation potentials of THMs and dihalogenated HANs (~3%) during biofiltration of 

ozonated waters. In contrast, high removals were achieved for TCNM and chloral hydrate (42–48%) 

which could be due to biodegradability of precursors formed during ozonation. The low removal of 

THM formation potentials corroborates with the results of Sohn et al. (2007) where aromatic 

components of NOM (precursors of THMs and HAAs) were found to be ineffectively removed during 

sand and BAC filtration. These results were also observed in our study of full scale plants in SEQ. In 
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that study, it is notable that formation potentials of chloral hydrate and 1,1,1-trichloropropanone both 

increased with pre-ozonation and intermediate ozonation, but were minimized after BAC filtration 

(Figure 2.23a – 2.23b) (Lyon et al. 2014a). Moreover, trichloronitromethane decreased but its 

brominated analogue, tribromonitromethane, increased in some instances.  

To date, little is known about the biodegradability of precursors of other emerging DBPs (e.g., 

nitrogenous DBPs). Table 2.8 shows some of the studies which used biofiltration for DBP removal. In 

general, the biofiltration process can reduce DBP precursors formed after ozonation, but studies on 

this process have been limited mostly to THMs and HAAs, thereby requiring further investigations. 

The behavior of precursor molecules of N-DBPs towards these combined systems has not yet been 

studied very well. This provides a strong motivation to evaluate the effect of ozone as well as •OH 

reactions with biofiltration on a wide range of DBPs families.  

 

Figure 2.23. Effect of ozonation and BAC filtration in four advanced water treatment plants on (a) 

choral hydrate, (b) 1,1,1-trichloropropanone (1,1,1-TCP), (c) trichloronitromethane (TCNM) and (d) 

tribromonitromethane (TBNM) formation potential following chlorination (Lyon et al. 2014a).  
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Table 2.8. Use of biological treatment for DBP precursor removal  

Reference Conditions % DBP removal  / other findings 

Akcay et al. 
(2015) 

Bench-scale filtration (EBCT: 30 min) of 
raw water. No ozonation 

Biofilter efficiency: GAC >sand>zeolite 
For BAC: DOC = 64%, THMFP = 68%, 
HAAFP = 64% 

Chu et al. 
(2012) 

Pilot plant:  coagulation, sedimentation, 
sand filtration, ozonation (dose = 1.5 – 2 
mg/L; contact time = 30 min) and BAC 
filtration (EBCT = 15 min); HOCl DBP 
formation potential test 

Better removal with O3/BAC compared to 
conventional processes. 
Overall removals with O3/BAC pilot 
plant: 
DOC = 72%; DON = 74% 
TCM FP= 85%; DCAN FP = 80%  
TCNM FP = 50%; DCAM FP = 60% 

Farré et al. 
(2011) 

Pilot plant wastewater plant: 
denitrification + pre-O3 (2 mg/L) + 
coagulation/ flocculation + dissolved air 
flotation and sand filtration (DAFF) + 
main ozonation (5 mg/L) + BAC (18 min 
contact time) + final ozonation 

NDMA FP = 78%   
THM and HAA: reduced by sand 
filtration and biodegradation; reduction 
proportional to DOC removal; 
brominated species increased 
TCM FP: 54% (from DAFF to BAC)  

Mitch et al. 
(2009) 
 

Full scale plant: O3 /BAC + HOCl 
  

Median removals: 
DOC= 12%; DON = 18% 
THM and DHAN = 3% 
Trihaloaldehyde = 42%; TCNM = 48% 

Chen et al. 
(2009) 

Catalytic ozonation/fluidized bed reactor 
(catalyst: TiO2 on Al2O3) + biofiltration 
column (contact time = 7 days) 

DOC = 81.7%, THM FP = 76.1%, HAA 
FP = 81.3% 

Chen et al. 
(2007) 

Pilot plant: Conventional + O3/BAC 
O3 dose = 2.5 mg/L, filter rate in BAC = 4 
m/h 

Combined conventional + O3/BAC is 
effective over separate conventional and 
advanced treatment. 
TOC = 42%, THMFP = 68%, HAAFP = 
23%, AOC = 67% 

Chaiket et al. 
(2002) 

Pilot plant: Combination of coagulation, 
ozonation (O3 dose: 0.7–3 mg/L), 
biofiltration (anthracite/sand/GAC; EBCT 
= 5 min) 

TOC = 17% 
THMFP = 55% 
HAAFP = 68% 
 

(Continued…) 
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Reference Conditions % DBP removal  / other findings 

 
Wobma et al. 
(2000) 

Pilot plant: rapid mix + flocculation + 
DAF + O3 + biofiltration 
Media: GAC, anthracite (AN) 
Depth: 2.1 m  
Applied O3: 0.3–0.6 mg/L 
Loading rate: 35 m/h 

Post-ozone aldehydes: > 90% (GAC) 
Post-ozone carboxylic and keto acids = 
80–100% (GAC) 
Anthracite filters = 10-40% removal of 
carbonyl byproducts 
Background THM: removed when fresh 
GAC was used (adsorption) 
Background HAAs:  removed by BAC, 
not by anthracite biofilters 

Koffskey and 
Lykins (1999) 
 

Pilot plant: clarifier + 3 stage ozone + 
AN/sand; GAC/ sand + chloramine 
O3 gas flow: 1.2 L/min  
EBCT: 3.5–9.2 min 
 

DOC = 37% (ozone/GAC/sand) 
TOX = ~ 40% (ozone-GAC/sand) 
THM = 48% (ozone-GAC/sand-NH2Cl) 
HAA = 54–63% (ozone-GAC/sand-
NH2Cl) 
Total aldehyde = 89% after GAC; 
increased after chloramination 
HAN = 1.2 ug/L (O3-BAC) 
Chloral hydrate/haloketone/cyanogen 
halide = 0.3–0.5 ug/L (O3/BAC) 
TCNM: 0.3 ug/L (O3/BAC) 
Cyanogen halide: reduced by biofilters 

Siddiqui et al. 
(1997) 

Bench-scale ozonation (2 mg O3/mg 
DOC) + sand filtration  

DOC = 40 – 50%;  aldehydes = 90 – 
100% 
THM FP = 40 – 60% 
Bromate and dibromoacetic acid: not 
removed 
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3.1. Knowledge gaps 

The previous chapter mentioned some key important areas on ozonation of NOM, biological drinking 

water treatment, and disinfection byproduct (DBP) formation that need further investigation. These 

research areas are related to the objectives stated in Section 1.2, summarized in Table 3.1, and 

discussed in more detail in the following sections. The knowledge gaps and research questions 

presented here were divided into 3 parts representing the reaction series of ozonation-biofiltration-

chlorination: (1) reaction of NOM with ozone, (2) reaction of NOM with O3 and HOCl, and (3) 

transformation of NOM with O3 and BAC filtration followed by chlorination. 

1. NOM + O3: In recent years, higher fractions of dissolved organic nitrogen (DON) end up in 

drinking water production as a result of direct or indirect potable reuse, agricultural runoffs, and 

climate related events.  DON moieties of NOM also become increasingly more important as they 

act as precursors of N-DBPs (Section 2.3.1). Although there is already a wealth of knowledge on 

the reactions of ozone with organic compounds (von Sonntag and von Gunten 2012), only a few 

product studies are available to understand the fate of DON during ozonation. Previous 

studies showed that DON can be hardly removed by conventional treatment, allowing it to occur 

across each treatment unit, reaching the ozonation step. This provides a strong motivation to 

evaluate how ozone transforms DON. During this process, ozone can react with DON via oxygen-

transfer and electron-transfer mechanisms (Section 2.6.2) and generate various products including 

nitrate and ammonium. This was shown in ozonation studies of amino acids (Berger et al. 1999, 

Le Lacheur and Glaze 1996). It is very likely that such reactions could also take place in the 

complex structures containing DON moieties. If changes in inorganic nitrogen can be observed 

during ozonation of DON, nitrate and ammonium concentrations may become important 

parameters in evaluating the performance of the oxidation process. It is therefore worth exploring 

to address the following research questions:  

How does ozone react with DON? What transformation products are formed? Can these products 

be used to characterize the ozonation process (e.g., ozone exposure, contribution by O3 and •OH 

during oxidation)?  

2. NOM + O3 + HOCl: The stability of ozone is affected by the water quality and operational 

conditions (Section 2.6.1). Conditions that promote ozone decay (e.g. high pH, in presence of 

H2O2) result in possible formation of higher •OH yields. The opposite happens when water samples 

have •OH scavengers like tertiary butanol and carbonate, or when ozonation is conducted at lower 

pH. Thus, during ozonation, both ozone and/or •OH can participate in the oxidation reactions 
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through different mechanisms. Ozone is selective to electron-rich moieties like phenolic groups 

and deprotonated amines while •OH is non-selective and reacts mainly by addition to C-C and C-

N bonds (von Sonntag and von Gunten 2012).  These reactions can therefore have direct 

consequences on the resultant reactivity of pre-oxidized NOM/oxidation products towards 

chlorine, and subsequently on DBP formation. Current ozonation units in water treatment plants 

were shown to reduce formation of regulated DBPs (e.g., THMs). This is achieved because of the 

attack of ozone to similar reaction centers of chlorine (Section 2.6.2). During this process, 

biodegradable compounds such as aldehydes, ketones, and carboxylic acids can be produced, 

leading to formation of halogenated aldehydes and ketones during chlorination. In bromide-

containing waters, hydrophilic products of ozone are also prone to brominated DBP formation. In 

DON-containing waters, halonitromethanes could also form. The impact of ozone on other 

emerging DBPs, however, remains unclear. To achieve control of both regulated and emerging 

DBPs, evaluation of factors affecting ozone reactions that influence NOM reactivity with chlorine 

is necessary. Evidence is therefore needed to determine optimal ozonation conditions for effective 

DBP control. The following research questions were addressed: 

How can the ozonation process be used to control the formation of DBPs? What are the effects of 

ozone and •OH on transformations of precursors of different DBP families (trihalomethanes, 

haloacetic acids, chloral hydrate, haloketones haloacetonitriles, halonitromethanes, 

haloacetamides, adsorbable organic halogens)? 

3. NOM + O3 + BAC + HOCl:  Answering the previous research questions led to outcomes related 

to ozonation conditions that do not promote DBP formation (i.e., ozone versus •OH reactions). In 

advanced water treatment, ozonation is commonly followed by biofiltration due to formation of 

biodegradable organic matter (Section 2.7). However, it is uncertain whether the predominance 

of ozone over •OH  reactions (or vice versa) would lead to better biofiltration performance. 

The resulting oxidized NOM could also have varying degrees of biodegradability due to its 

different moieties, consequently affecting the formation of DBPs with post-chlorination. 

Biodegradable precursors such as aldehydes are expected to be easily removed but 

information about other precursors are currently lacking. Therefore, the impact of 

biofiltration and operational parameters affecting its performance should be investigated on a wide 

array of disinfection byproducts. These entailed answering the following research questions: 

What is the impact of ozone and •OH reactions on the biodegradability of DBP precursors? What 

key parameters can be used to optimize the biodegradation process following ozonation? 

 



Chapter 3 
 

- 51 - 

Table 3.1. Knowledge gaps identified and addressed in this thesis 

Process Current general knowledge Knowledge gaps 

NOM  
+ O3 

§ O3 is reactive to activated aromatic 
systems, olefins, and deprotonated 
amines of NOM. 

§ Ozonation reactions also produce 
(•OH); reaction kinetics is affected by 
•OH scavenging.  

§ Reaction produces biodegradable 
aldehydes, ketones, carboxylic acids. 

§ Reaction with NOM may happen via 
different mechanisms (e.g., oxygen 
transfer, electron transfer, etc.) 

§ Studies on oxidation products of 
amines are limited to few amino 
acids. 

§ Effects of oxygen transfer and 
electron transfer reactions on DON 
are not well understood. 

§ Potential formation of inorganic 
nitrogen from DON for ozonation 
characterization (e.g., O3 exposures) 
is worth exploring.     

NOM  

+ O3  
+ HOCl  

§ Ozone can effectively remove 
hydrophobic NOM fractions. 

§ Ozonation is effective for reducing 
THM and HAA formation potentials; 
varying effects at different water 
quality. 

§ Treatment increases formation of 
chloral hydrate, haloketones, 
halonitromethanes. 

§ Brominated DBPs may increase after 
ozonation in bromide-containing 
waters; HOBr reacts faster than 
HOCl. 

§ Few studies are available for N-DBP 
formation; mostly on THMs and 
HAAs 

§ Effects of ozone and •OH reactions on 
DBP formation are not clear 

§ Conditions to reduce formation of 
chloral hydrate, haloketones, and 
halonitromethanes during ozonation 
are needed. 

§ Toxicity of mixed DBPs to account 
for overall effect of ozonation 
requires further investigation. 

NOM  
+ O3  

+ BAC  
+ HOCl 

§ BAC is effective for biodegradable 
compounds (e.g., aldehydes, 
carboxylic acids); improves 
biostability of product water 

§ BAC can remove precursors of chloral 
hydrate and haloketones. 

§ DOC comprises of fast, slow, non-
biodegradable fractions. 

§ Empty bed contact time (EBCT) is an 
important operational parameter for 
DOC removal 

§ Bromide remains after biofiltration. 

§ Effects of O3 and •OH on 
biodegradability are not well known. 

§ Limited studies are available for 
removal of precursors of N-DBPs and 
other emerging DBPs by biofiltration. 

§ Kinetic studies on DBP precursor 
removal during BAC are not 
available; No comparison was made 
for biodegradability of different DBP 
precursors. 

§ Optimization of factors affecting 
biofiltration efficiency (e.g., EBCT) 
for DBP removal is needed. 
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3.2. Research hypotheses and corresponding experimental approaches 

The research questions in the previous section can be answered by understanding the processes that 

govern NOM transformation and DBP formation during ozonation and biofiltration. Testing the 

following hypotheses by means of the general research approaches (stated below) addresses these 

important fundamental questions. Details of all the experimental procedures are provided in Chapters 

4 – 6. 

Hypothesis 1: The transformation products that give rise from the reaction of ozone with DON can be 

used to evaluate the characteristics of the ozonation process.  

Approach: To understand the effect of ozonation on DON moieties, ozone dosing and kinetics 

experiments using NOM reference standards, surface water, and wastewater effluent samples were 

conducted. The changes in nitrate and ammonium concentrations were recorded after treatment at 

different ozone doses and exposures. In this study, the characteristics of ozonation were mainly 

described using ozone exposures and Rct (Section 2.6.1). Ozone exposures in the sample solutions were 

varied by the addition of tertiary butanol, methanol, H2O2, as well by changing ozonation pH and 

inorganic carbon concentrations. Using model DON solutions, yields of nitrate and ammonium were 

investigated to assess the main drivers of inorganic nitrogen formation during ozonation. The 

contribution of oxygen-transfer and electron-transfer reactions were also evaluated through kinetics 

experiments and dimethyl sulfoxide assay (Flyunt et al. 2003, Tekle-Rottering et al. 2016). Nitrate and 

ammonium formation were evaluated in synthetic waters mimicking realistic water treatment 

conditions. Lastly, kinetic simulations were performed based on all the observed results to be able to 

propose a possible reaction mechanism for the reaction of ozone with DON.  

Hypothesis 2: Oxidation of NOM by ozone and/or hydroxyl radicals during ozonation will have 

different effects on NOM properties and subsequent reactivity with chlorine and DBP formation. 

Approach: In this study, a holistic approach was applied to determine the overall impact of ozone and 
•OH oxidation on the quality of post-chlorinated water in terms of known DBPs, AOX, and associated 

biological effects. The following DBPs were analyzed: adsorbable organic halogens, nitrogenous-

DBPs such as haloacetonitriles, halonitromethanes, and haloacetamides and the carbon-based DBPs 

trihalomethanes, haloacetic acids, chloral hydrate, and haloketones. Common ozonation DBPs such as 

aldehydes and bromate were also investigated. Batch ozonation experiments were performed on 

samples with and without added tertiary butanol and H2O2, varying pH levels, and different specific 

ozone doses. These conditions were chosen to distinguish the effects of O3 and •OH reactions on DBP 
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formation. After all the ozone had reacted, DBP formation potential tests using HOCl and 

corresponding extraction procedures were conducted. In vitro bioassays were also used to assess 

cytotoxicity, genotoxicity, and induction of oxidative stress of the treated water. Changes in NOM 

properties such as DOC, SUVA, and fluorescence EEM were also determined to complement DBP 

formation results. 

Hypothesis 3: Variations in ozone and hydroxyl radical exposure will impact the performance of 

biological filtration and thereby the final water quality.  Provided that a target water quality is defined, 

it is possible to optimize the oxidation process and biological filtration towards that outcome. 

Approach: This study evaluated the effect of O3 and •OH reactions on the biodegradability of ozonated 

waters and the removal rate of formation potentials of different families of DBPs including 

trihalomethanes, haloacetic acids, chloral hydrate, haloketones, haloacetonitriles, halonitromethanes, 

and trichloroacetamide. Three sets of experiments were performed to investigate the biodegradability 

of DBP precursors at different ozonation and biodegradation conditions. The first set involved water 

samples treated with different O3 doses and subsequently exposed to bioactive anthracite. The second 

set involved column experiments using biological activated carbon (BAC) and bioactive anthracite 

media fed with water ozonated with and without H2O2 (to vary ozone exposures). The third set of 

experiments focused on studying biofiltration performance by varying the empty bed contact time 

(EBCT) of the BAC columns. Kinetics of precursor removal of each DBP were monitored from 3 – 55 

min EBCT to determine the relative biodegradability of the precursors. 
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4.1. Introduction 

Dissolved organic nitrogen (DON) in the aquatic environment commonly occurs as amino acids, 

peptides and proteins and accounts for 0.5 – 10% (by mass) of the dissolved organic matter (Sharma 

and Graham 2010, Westerhoff and Mash 2002). Despite these relatively low concentrations, DON is 

considered an emerging concern for water utilities because it can act as precursor of potentially toxic 

nitrogenous oxidation/disinfection by-products (e.g., nitrosamines, halonitromethanes, 

haloacetonitriles) during chlorination and/or chloramination processes (Krasner et al. 2013, Shah and 

Mitch 2012, Westerhoff and Mash 2002). DON becomes increasingly more important as a result of 

shorter water cycles through indirect or direct potable reuse leading to higher fractions of wastewaters 

in source waters used for drinking water production (Krasner et al. 2009, Leverenz et al. 2011, 

Rodriguez et al. 2009). In addition, climate-related eutrophication and run-off events in upstream 

agricultural systems have also been identified to impact DON concentrations (Delpla et al. 2009, 

Graeber et al. 2015, Westerhoff and Mash 2002). Because nitrogen moieties can form hydrogen bonds 

with the surrounding water molecules, DON moieties can increase the hydrophilic character of NOM 

(Westerhoff and Mash 2002) making it harder to be removed by conventional treatment processes such 

as coagulation and filtration. As a result, DON can persist through various non-oxidative treatment 

schemes and consequently exert oxidant demand and lead to the formation of various measurable 

nitrogenous oxidation by-products.  

Ozone (O3) can selectively oxidize the electron-rich moieties of DON such as amino acid side chains 

in polypeptide structures (Sharma and Graham 2010).  O3 reacts with the amine functional groups via 

adduct formation (Section 2.6.2.3) leading among other products to N-oxides for tertiary amines and 

hydroxylamines for primary and secondary amines (von Sonntag and von Gunten 2012). The adducts 

can also decay by a series of reaction steps to amine radical cations that subsequently produce 

dealkylated amines (von Sonntag and von Gunten 2012). Hydroxyl radicals (•OH) can also be formed 

from the reaction of O3 with DON moieties in addition to other natural or enhanced (e.g., O3/H2O2) O3 

decay processes (von Sonntag and von Gunten 2012).  

During ozonation, amino acids play an important role in the reactivity of DON as they can readily 

react with O3 through their deprotonated amine nitrogen moiety, with higher second-order rate 

constants in the presence of methyl, alkyl, or thiol groups (Neta et al. 1988, Sharma and Graham 2010). 

Glycine, serine, aspartic acid and glutamic acid are the most abundant amino acids in the aquatic 

environment (Westerhoff and Mash 2002). As reported in a few product studies, amino acids react 

with O3 producing nitrate, ammonia, carbonyl and carboxylic acids (Sharma and Graham 2010). Using 
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serine as a model compound, Le Lacheur and Glaze (1996) reported that nitrate and ammonia were 

among the major end-products of amine nitrogen oxidation under O3- and •OH-dominated conditions, 

respectively. A study with glycine also showed that the •OH pathway favors ammonia production while 

O3 produces nitrate (Berger et al. 1999, Karpel Vel Leitner et al. 2002). In these studies, nitrate 

formation is induced from the O3 attack on the amine-nitrogen before cleavage of the C-N bond (Berger 

et al. 1999, Le Lacheur and Glaze 1996). In contrast, the reaction of •OH leads to a nitrogen-centered 

radical which rearranges into a C-centered radical analogous to the 1,2-H shift in reactions of alkoxyl 

radicals. This is followed by oxygen addition and loss of superoxide and imine formation, which finally 

induces a deamination and ammonia production (Berger et al. 1999, Karpel Vel Leitner et al. 2002) 

(Figure 4.1).  

 
 

Figure 4.1. Formation of NH3 and NO3
- during oxidation of glycine by •OH and O3  

(Adapted from Berger et al. (1999), with permission) 
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Although the compounds used in these prior studies were smaller molecules than the complex 

structures of DON moieties, it is worth investigating if the subsequent changes in levels of nitrate and 

ammonia after ozonation can also occur with differing natural and standard NOM sources.  If this is 

observed, nitrate and ammonia may become important parameters in evaluating the characteristics of 

an ozonation process such as disinfection efficiency, O3 exposure (i.e., time integrated concentration 

of O3) and contribution of O3 and •OH to the oxidation. For example, nitrate formed through reactions 

with O3 may serve as a surrogate measure for oxidant exposure or disinfection credit (see below for 

further discussion). Nitrate and ammonia are readily accessible parameters through low cost and low 

maintenance colorimetric methods (APHA et al. 1999), wherefore, this approach is worth exploring.  

This study aims to understand the effect of ozone on DON moieties and the subsequent formation of 

inorganic nitrogen compounds (NO3
- and NH4

+). NOM reference standards, surface water, and 

wastewater effluent samples were treated under varying ozonation conditions and the changes in nitrate 

and ammonium concentrations were recorded. Furthermore, the possible major precursors of inorganic 

nitrogen were identified in experiments using primary, secondary, and tertiary amine model 

compounds. From the observed results and by using glycine as a model compound, a mechanistic 

interpretation of the reactions of O3 with DON was proposed. Lastly, a potential application of the 

results for characterization of ozonation processes (e.g., estimation of O3 exposure) was explored.  

4.2. Experimental Methods 

4.2.1.  Reagents and chemical analyses 

All stock solutions were prepared using Milli-Q Direct ultrapure water (18.2 MΩ-cm, Millipore). 

Ozonation experiments were performed at the University of Queensland (UQ), Australia and the École 

Polytechnique Fédérale de Lausanne (EPFL), Switzerland using ozone generated from pure oxygen 

(99.995%, Carbagas, Switzerland) with an Anseros COM-AD-04 or an Innovatech Type CMG 3-5 

ozone generator, respectively. Ozone stock solutions (1 – 1.3 mM O3) were prepared by sparging O3 

through 1 L of MilliQ water that was cooled in an ice bath. The stock solutions were standardized 

spectrophotometrically using the absorbance at 260 nm (ε = 3200 M-1cm-1) (Shimadzu UV-1800 

Spectrophotometer, Japan) (von Sonntag and von Gunten 2012). Ozone concentrations in samples 

were determined by the indigo method (Bader and Hoigné 1981) (potassium indigotrisulfonate, Sigma-

Aldrich, USA). From these measured concentrations, O3 exposure was calculated from the area under 

the O3 decay curve (von Gunten and Hoigné 1994). 
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The concentrations of para-chlorobenzoic acid (pCBA, 99%, Aldrich, USA) during ozone decay 

kinetics experiments were monitored using high performance liquid chromatography (Dionex Ultimate 

3000, USA) equipped with a Nucleosil 100-5 C18 column (Macherey-Nagel, Germany). pCBA has a 

very low reactivity with ozone and is used as a probe compound for •OH (k·OH+pCBA = 5.0´109 M-1s-1 

(Elovitz and von Gunten 1999)). pCBA was detected at 240 nm using a mobile phase gradient program 

involving (A) acetonitrile (≥ 99.9%, Carlo Erba, Italy) and (B) 10 mM phosphoric acid (≥ 85%, Merck, 

Switzerland) (0–2 min: 5% A/ 95% B; 8–13 min: 55% A/ 45% B) at 0.8 mL/min flow rate and a 100 

µL injection volume. The method detection limit was 0.01 µM (standard deviation = 2´10-4 µM, n = 

9 (0.01 µM), measuring range = 0.01 – 2 µM). The •OH exposure was evaluated from the relative 

decrease of pCBA concentrations as a function of reaction time. 1 mM sodium thiosulfate (from 0.1 

M, Merck, Germany) was used to quench ozone during kinetic experiments with pCBA. 

Nitrate was analyzed using a Lachat QuikChem8500 Flow Injection Analyzer (method 31-107-04-1-

A, method detection limit = 0.10 µM, standard deviation = 0.03 µM, n = 8 (0.4 µM), measuring range 

= 0.1 µM – 60 µM) (Hach Company, CO, USA) or an ICS-3000 ion chromatography system (Thermo 

Scientific, Dionex Products, CA, USA) with an AG11HC pre-column, an AS11HC column, an AERS 

500 suppressor, and 30 mM KOH eluent. The analyses were performed at 1 mL/min flow rate, 25 µL 

injection volume, and 80 mA current. The method detection limit was 0.2 µM (standard deviation = 

0.05 µM, n = 7 (1.6 µM), measuring range = 0.2 – 32 µM). Nitrite produced from ozonation of DON 

is quickly further oxidzed because of its high reactivity with O3 (k = 5.83´105 M-1s-1) (von Sonntag 

and von Gunten 2012).  Ammonium was measured with a Lachat QuikChem8500 Flow Injection 

Analyzer (method 31-107-06-1-B, method detection limit = 0.11 µM, standard deviation = 0.03 µM, 

n = 8 (0.4 µM), measuring range = 0.1 – 64 µM) or with a SEAL analytical autoanalyzer (method no. 

G-171-96, method detection limit = 0.3 µM, standard deviation = 0.1 µM, n = 18 (0.55 µM), measuring 

range = 0.3 – 55 µM) equipped with an AA3 colorimeter and a 10 mm flow cell. The standard stock 

solutions for nitrate (1001 ±5 mg/L), nitrite (1003 ±5 mg/L), and ammonium analyses (1000 ±2 mg/L) 

were obtained from Merck, Germany.  

Details of the flow injection analyses for NO3
- and NH4

+ are as follows. In the Lachat QuickChem 

method, NH4
+ reacts with hypochlorite (2.5%, Domestos, Australia) which, in the presence of phenol 

(0.08 g/L, Univar grade, Ajax Finechem, Australia), catalytic amounts of nitroprusside (0.003 g/L, 

ACS reagent, Merck, Poland) and excess hypochlorite, produces indophenol blue. The absorbance of 

this product at 630 nm is proportional to the original ammonium concentration. This is similar to the 

salicylate method using the SEAL analytical autoanalyzer where a blue-green colored complex is 
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measured at 660 nm. This complex was formed by mixing the NH4
+-containing sample in a segmented 

flow system containing the following: (line 1): 300 g/L sodium salicylate (≥ 99.5%, Sigma-Aldrich, 

China); (line 2): 2 g/L sodium dichloroisocyanurate (≥98%, Aldrich, Japan) + 35 g/L NaOH (≥98%, 

Aldrich, Japan) and (line 3): 30 g/L ethylenediaminetetraacetic acid (>99%, Sigma-Aldrich, Sweden) 

+ 120 g/L sodium citrate (>99%, Merck, Germany) + 0.5 g/L sodium nitroprusside (ACS reagent, 

Merck, Poland) + 1.5 mL Brij-35 solution (30%, Merck, Germany). Nitrate, on the other hand, is first 

reduced to NO2
- by passage of the sample through a copperized cadmium column. The NO2

- is 

determined by diazotization with sulfanilamide (0.04 g/L, GR grade, Merck, Germany) under acidic 

conditions to form the diazonium ion. The resulting diazonium ion was coupled with N-(1-naphthyl)-

ethylenediamine dihydrochloride (0.001 g/L, GR grade, Merck, Germany) and the absorbance of the 

resulting pink dye was measured at 520nm (Lachat) or 550 nm (SEAL). Nitrate concentrations were 

then obtained by subtracting nitrite that was originally present in the solution from the sum of nitrite 

and reduced nitrate.  

Methanesulfinic (MSIA) and methanesulfonic acids (MSOA) were quantified using the same ion 

chromatography system used for NO3
-. The analyses were performed with a flow of 1 mL/min, 40 µL 

injection volume, 100 mA current, and gradient elution of KOH: 2 mM from 0 – 16 min, 40 mM from 

16 – 22 min. The method detection limits for MSIA and MSOA were 6.5 µM (standard deviation = 2 

µM, n = 7 (10 µM), measuring range = 10 – 100 µM) and 0.22 µM (standard deviation = 0.07 µM, n 

= 7 (10 µM), measuring range = 1 – 100 µM), respectively. MSIA (95%) and MSOA (>99.5%) stock 

solutions were obtained from Alfa Aesar (Germany) and Sigma-Aldrich (France), respectively. 

Dissolved organic carbon (DOC) and dissolved organic nitrogen (DON) were measured using a 

Shimadzu TOC-L total organic carbon analyzer with a TNM-L total nitrogen analyzer and ASI-L 

autosampler (Shimadzu, Kyoto, Japan). Dissolved organic nitrogen (DON) was calculated as the 

difference between total nitrogen and the sum of inorganic nitrogen species (ammonium, nitrite and 

nitrate). To minimize the impact of inorganic nitrogen on the accuracy of DON measurements in the 

wastewater effluent sample, its DON was measured after a 5-day dialysis using cellulose ester dialysis 

membranes (Spectra/Por Biotech, 20 mm diameter, 100-500 Da molecular weight cutoff).  

pH was measured before and after ozonation using a Metrohm 827 pH meter (Metrohm, Switzerland) 

calibrated with Certipur buffer solutions (Merck, Germany). 
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4.2.2. Water samples 

Tables 4.1 – 4.2 show the characteristics of the water samples used in this study. The surface water 

sample was taken after coagulation and sedimentation in a drinking water treatment plant in South East 

Queensland (SEQ), Australia. A wastewater effluent sample was obtained from the conventional non-

nitrifying Vidy plant in Lausanne, Switzerland. This sample was immediately filtered through a 0.45 

µm nylon filter (Membrane Solutions, Switzerland) after collection, and stored at 4 °C until use. NOM 

standard solutions (10 mg C/L) were prepared using Suwannee River humic acid II (SRHA, 2S101H) 

and Pony Lake fulvic acid (PLFA, 1R109F) obtained from the International Humic Substances Society 

(IHSS, MN, USA). These samples were chosen to represent NOM with differing properties. 

Synthetic DON solutions containing a mixture of glycine (≥98.5%, Sigma-Aldrich, USA), tannic acid 

(ACS reagent, Sigma-Aldrich, USA), methanol (MeOH, ≥99.9%, Carlo Erba, Italy) and tertiary 

butanol (t-BuOH, ≥99.7%, Sigma-Aldrich, Germany) were also used (Table 4.3). Solutions with 

trimethylamine (98%, Sigma-Aldrich, USA) and dimethylamine (40% in water, Sigma-Aldrich, USA) 

as DON source were also prepared (Table 4.3). 

Table 4.1. Water sample characteristics 

Source Type DOC,  
mg L-1 

UV 254,  
cm-1 

DON,  
mg/L 

NO2
-,  

mg/L 
NO3

-,  
mg/L 

NH4
+,  

mg/L 

South East 
QLD, 

Australia 

Surface 
water (after 
coagulation) 

18.7  
± 1.0 

0.32  
± 0.02 

0.65  
± 0.04 

0.0018  
± 0.0002 

0.030  
± 0.003 

0.015  
± 0.001 

Vidy, 
Lausanne, 

Switzerland 

Wastewater 
effluent 

10.9  
± 0.2 

0.129 
± 0.003 0.52*   0.025  0.046  

± 0.002 
40.3  
± 0.1 

*measured after dialysis; error depicts standard deviation of triplicate measurements. 

Table 4.2. Selected properties of SRHA and PLFAa 

Properties SRHA PLFA 
%C 52.63 52.47 
%N 1.17 6.51 

% Aromaticity 31 12 
Phenolic content, meq/g-C 3.72 1.75 

Specific UV absorbance,b L/mg-C·m 7.0 2.5 
aTaken from IHSS (2016) http://www.humicsubstances.org/elements.html); 
bTaken from Wenk et al. (2013)   
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4.2.3. Experimental conditions 

This study was composed of three parts as summarized in Table 4.3, where the experimental conditions 

are provided. Further details describing each experiment are provided below.  

4.2.3.1. Ammonium and nitrate evolution during ozonation of real water samples 

Ozone dosing experiments were conducted with waters containing NOM standards (250 mL), surface 

water (250 mL), or wastewater effluent (100 mL) to investigate ammonium and nitrate formation 

during ozonation. The effect of increasing specific ozone doses (0.4 – 1.3 mg O3/mg DOC) was first 

studied using SRHA and PLFA at 10 mg/L DOC at pH 7. In addition to the specific ozone dose, the 

effect of O3 exposure was also investigated for real water samples by applying ozone destabilizing 

(e.g., high pH, addition of radical chain initiators (H2O2) and promoters (MeOH)) and stabilizing 

conditions (e.g., low pH, addition of radical scavengers such as t-BuOH or bicarbonate) (Table 4.3, 

part 1). For the surface water sample, differing ozonation conditions (specific O3 dose (0.4 – 1.0 mg 

O3/mg DOC), pH (6 – 8), inorganic carbon (0.01 – 5 mM HCO3
-), addition of tBuOH (10 mM) and 

H2O2 (0.4 mM)) were applied. For the wastewater effluent, controlling the O3 decay by varying the pH 

was difficult due to precipitation of phosphate salts at buffer concentrations of >1 mM. Thus, to control 

the O3 decay for the wastewater effluent (pH 7), concentrations of t-BuOH (•OH inhibitor) and MeOH 

(•OH promoter) were instead varied at specific O3 doses of 0.7 – 2.9 mg O3/mg DOC. In these 

experiments, concentrations of t-BuOH and MeOH were changed while maintaining a constant •OH 

scavenging rate. The •OH scavenging rate (Elovitz and von Gunten 1999)  is defined as the ∑kSi[Si], 

where kSi is the individual second-order rate constant for the reaction of •OH with a specific scavenger 

(e.g., DOC, t-BuOH, MeOH) and [Si] the scavenger concentration.  The wastewater effluent, for 

example, had a total •OH scavenging rate of 1.4´106 s-1 calculated from the sum of the products of: 

k·OH+DOC (2.5´104 (mg/L)-1s-1) ´ [DOC] (6.7 mg/L) + k·OH+tBuOH (6´108 M-1s-1) ´ [t-BuOH] (1.87´10-

3 M) + k·OH+MeOH (1´109 M-1s-1) ´ [MeOH] (1.2´10-4 M) + k·OH+pCBA (5´109 M-1s-1) ´ [pCBA] (1´10-

6 M). More details are shown in Table 4.4. 

Aside from dosage experiments, kinetic studies to determine the O3 exposure were also conducted for 

the surface water and wastewater effluent samples. O3 exposure of the surface water sample (250 mL, 

pH 7) was determined at various specific ozone doses (0.4 – 1.5 mgO3/mgDOC) and H2O2 

concentrations (0.04 – 0.17 mM H2O2). For the wastewater sample (100 mL, pH 7), O3 decay was 

monitored using the same conditions mentioned earlier (specific O3 dose = 0.7 – 2.9 mgO3/mgDOC, 

pH 7, varying t-BuOH/MeOH). 
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Table 4.3. Summary of experimental conditions  

Sample Baseline conditions Experimental conditions  

1. Nitrate and ammonium evolution during ozonation of NOM standards and real water samples 

SRHA and PLFA 
(IHSS) 

DOC = 10 mg/L  
pH = 7 (1 mM phosphate) 

Specific O3 doses: 0.4, 0.8, 1, 1.3 
mgO3/mgDOC 

Surface water 
(SEQ, Australia) 

DOC = 18 mg/L 
O3 = 0.75 mg O3/mgDOC 
pH = 7 (1 mM phosphate) 
Inorganic carbon = 0.01 mM 
HCO3

- 

Specific O3 doses = 0, 0.4, 0.75, 1 
mgO3/mgDOC 
pH = 6, 7, 8  
Inorganic carbon = 0.01, 5 mM HCO3

- 
t-BuOH = 10 mM; H2O2 = 0.4 mM  

Wastewater effluent 
(Lausanne, Switzerland) 

DOC = 6.7 mg/L (after dilution) 
pH = 7 (1 mM phosphate) 
pCBA = 1 µM 
 

Specific O3 doses = 0.7, 1.4, 1.9, 2.4, 
2.9 mgO3/mgDOC; [t-BuOH 
(µM)]/[MeOH (µM)]= 1870/120, 
1250/500, 840/750, 420/1000 
Constant •OH scavenging rate = 
1.4´106 s-1 

2. Nitrate yield determination from different amines  

Glycine 
(primary amine) 

Amine = 20 µM; O3 = 400 µM 
pH 7 (5mM phosphate)  
tannic acid = 3.3 µM  
pCBA = 1 µM 

[t-BuOH (µM)]/[MeOH (µM)]= 
1870/120, 1250/500, 840/750, 
420/1000 
Constant •OH scavenging rate = 
1.33´106 s-1 

Dimethylamine 
(secondary amine) 

Trimethylamine 
(tertiary amine) 

3. Nitrate and ammonium formation using glycine  

Kinetics of NO3
- 

formation from glycine 

Glycine = 20 µM; O3 = 400 µM 
t-BuOH = 2.1 mM  
pH 7 (10 mM phosphate) 

Samples were obtained and quenched 
with 1 mM thiosulfate at different 
reaction times (until 50 min). 

•OH yield determination 
(DMSO assay) 

Glycine = 100 mM; DMSO = 10 
mM; pH 7 (10 mM phosphate) O3 doses: 100, 175, 250, 325, 400 µM 

Model DON solution  
(high •OH scavenging) 

glycine = 20 µM  
tannic acid = 3.3 µM  
pCBA = 0.5 µM  
pH = 7 (5 mM phosphate) 

Constant •OH scavenging rate = 
1.3´106 s-1 
[t-BuOH (µM)]/[MeOH (µM)] = 
1875/125, 1460/375, 1045/625, 
730/815, 417/1000  
O3 doses: 200, 300, 400 µM 

Model DON solution  
(low •OH scavenging) 

glycine = 20 µM  
tannic acid = 3.3 µM  
pCBA = 1 µM  
pH = 7 (5 mM phosphate) 

Constant •OH scavenging rate = 
1.8´105 s-1 
[t-BuOH (µM)]/[MeOH (µM)] = 
150/10, 116/30, 84/50, 59/65, 43/74 
O3 doses: 200, 250, 300, 350, 400 µM 

*All experiments were performed at 22±1 °C 
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Table 4.4. Wastewater effluent sample composition, their respective •OH scavenging rates and the 

relative contribution of the various components to the overall scavenging. 

Contents Condition 1 Condition 2 Condition 3 Condition 4 

tBuOH, µM 1870 1250 840 420 

MeOH, µM 120 500 750 1000 
DOCa, mg/L 6.7 6.7 6.7 6.7 

pCBA, µM 1 1 1 1 

      
Scavenging ratesb Condition 1 Condition 2 Condition 3 Condition 4 

tBuOH, s-1 1.1´106 7.5´105 5.0´105 2.5´105 

MeOH, s-1 1.2´105 5.0´105 7.5´105 1.0´106 

DOC, s-1 1.7´105 1.7´105 1.7´105 1.7´105 

pCBA, s-1 5.0´103 5.0´103 5.0´103 5.0´103 

total scavenging rate, s-1 1.4´106 1.4´106 1.4´106 1.4´106 
          

% OH scavengingc  Condition 1 Condition 2 Condition 3 Condition 4 
tBuOH 79.3 52.7 35.3 17.7 

MeOH 8.5 35.1 52.6 70.2 
DOC 11.8 11.8 11.7 11.8 

pCBA 0.4 0.4 0.4 0.4 
Total scavenging 100 100 100 100 

a DOC after dilution with O3; b kS+•OH[S]; c100´ (kS+•OH[S])/(total scavenging rate); pH = 7. The 
following rate constants were obtained from von Sonntag and von Gunten (2012): kMeOH+•OH = 
1´109 M-1s-1; kt-BuOH+•OH = 6´108 M-1s-1; kDOC+•OH = 2.5´104 mg·L-1s-1; kpCBA+•OH = 5´109 M-1s-1.  

 

4.2.3.2.  Investigation of the formation of inorganic nitrogen compounds from 

various amines 

The amines (20 µM) glycine, dimethylamine, and trimethylamine were ozonated in excess of ozone 

(400 µM) to determine the main DON moieties for NO3
- and NH4

+ formation (total volume = 100 mL) 

(Table 4.3, part 2). An excess of O3 relative to the amines was used to simulate conditions encountered 

by DON in actual water treatment.  The O3 doses used in these experiments were within the range 

commonly applied in wastewaters (5 – 20 mg/L O3) (von Sonntag and von Gunten 2012). Tannic acid 

(3 mg C/L) was also added to the solutions to mimic the reactivity of phenolic moieties that are present 
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in NOM and to ensure that the amino groups are not the main consumers of O3 similar to real water 

samples. This was demonstrated in the relatively similar O3 decay kinetics of 3 mg C/L tannic acid 

solutions with and without glycine (Figure 4.2). O3 exposure was then controlled by using varying 

ratios of t-BuOH/MeOH. These experiments were performed to identify the main amine precursors of 

NO3
- and NH4

+.  

 

Figure 4.2. Ozone decay in tannic acid solutions with and without glycine. Conditions: O3 dose = 

200 µM, tannic acid = 1 – 3 mgC/L, glycine (only if added, open symbols) = 20 µM, pH = 7 (5 mM 

phosphate), tBuOH = 1.88 mM, MeOH = 0.13 mM, temperature = 20 0C.  

4.2.3.3. Experiments with glycine as DON model surrogate 

This experiment involved 3 components (Table 4.3, part 3): (1) kinetics of NO3
- formation during 

ozonation of glycine-containing water, (2) determination of •OH yield from the reaction of ozone with 

glycine, and (3) NO3
- and NH4

+ formation from glycine at differing ozonation conditions.  

(1) 100 mL solutions containing 20 µM glycine and 2.1 mM t-BuOH (~100% •OH scavenging) were 

ozonated with 400 µM O3 for 50 min. Two 1 mL sample aliquots were obtained (using a bottle-top 

dispenser, Brand Dispensette III, Germany) at every desired reaction time (0.5, 1, 2, 3, 5, 7, 10, 15, 20, 

25, 30, 35, 40, 50 min) in 15 mL centrifuge tubes, one containing indigotrisulfonate for O3 

concentration measurements and the other containing sodium thiosulfate to quench ozone for NO3
- 

analyses. 
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(2) The •OH yield was determined using the dimethylsulfoxide (DMSO) assay (Flyunt et al. 2003, 

Tekle-Rottering et al. 2016). In this assay, methanesulfinic (MSIA) and methanesulfonic (MSOA) 

acids were measured to quantify •OH. The •OH yield was calculated from the slope of the plot of the 

sum of MSIA and MSOA against the O3 dose. Glycine (100 mM) and DMSO (10 mM, ≥99.9%, Sigma-

Aldrich, France) were in large excess over O3 (0.1 – 0.4 mM) (total volume = 100 mL). For these 

conditions, glycine consumed 99.5% of O3 while DMSO scavenged 97.7% of •OH.  

(3) The changes in concentrations of NO3
- and NH4

+ during ozonation were investigated in 100 mL 

solutions containing 20 µM glycine, 3 mg C/L as tannic acid, and varying ratios of t-BuOH and MeOH. 

Two •OH scavenging rates, namely 1.3´106 s-1 and 1.8´105 s-1, were used to test the concept over a 

wide range of •OH scavenging and Rct (10-10 – 10-7). These experiments aimed to mimic •OH 

scavenging rates representative for natural systems. O3 dosing experiments were first performed to 

monitor NO3
- and NH4

+ formation at differing O3 doses (0.2 – 0.4 mM) and •OH scavenging of t-

BuOH. Kinetic experiments were also conducted to determine the pseudo-first-order O3 decay constant 

(kobs) and Rct (equation 4.1; exposure ratio of •OH and O3, section 2.6.1) (Elovitz and von Gunten 1999)  

which are parameters needed for kinetic simulations. The kobs and Rct values from each treatment 

condition were included in the simulation to account for the effect of O3 stability (e.g., rate of O3 decay 

to •OH, O2, and other products) on the elementary reactions of glycine oxidation by O3. Due to 

experimental limitations, kobs and Rct for the fast initial ozone consumption were excluded.  

To determine the O3 decay constant, the logarithm of the relative decrease of the O3 concentration was 

plotted against reaction time. The slope of this plot yields the pseudo-first-order O3 decay constant. To 

calculate Rct (equation 4.1), •OH exposure (∫[•OH]dt) was first determined by following the kinetics of 

pCBA decay (equation 4.2). By substituting equation 4.1 to equation 4.2, the Rct can be calculated 

from a plot of ln[pCBA]/[pCBA]0 versus O3 exposure (∫[O3]dt). Example plots of O3 decay and Rct are 

shown in Figure 4.3.  

R[\ =
∙/0 ^\
/) ^\

      (eq. 4.1) 

−ln [_`ab]
_`ab7

= k(∙/0d_`ab) ∙ OH dt   (eq. 4.2) 

−ln [_`ab]
_`ab7

= k(∙/0d_`ab)R[\ O+ dt   (eq. 4.3) 

Kinetic simulations of NO3
- and NH4

+ concentrations were performed using the Kintecus software 

(www.kintecus.com) (Ianni 2003). 



Chapter 4 
 

 
 

- 66 - 

All experiments were performed in batch systems by injecting the appropriate volumes of an O3 stock 

solution (using a Fortuna Optima glass syringe) into the stirred water samples to reach the desired 

ozone dose. To maintain a constant pH (± 0.2) during ozonation, the samples were buffered with 

phosphate (1 – 10 mM) adjusted to the desired pH. 

 

Figure 4.3. O3 decay kinetics in a synthetic DON water sample. (a) O3 decomposition as a function of 

time (shaded area shows the O3 exposure); (b) determination of pseudo-first-order rate constant (kobs) 

of O3 decay; (c) Rct plot for the ozonation experiment. Rct is equal to the slope divided by –k•OH/pCBA = 

5´109 M-1s-1. Conditions: O3 dose = 400 µM, glycine = 20 µM, tannic acid = 3 mgC/L, pCBA = 2 µM, 

t-BuOH = 150 µM, MeOH = 10 µM, pH = 7 (5 mM phosphate). 
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4.3. Results and Discussion 

4.3.1.  Ozonation of DON and formation of inorganic nitrogen compounds 

Figure 4.4 shows the effects of specific ozone doses (mgO3/mgDOC) and various ozonation conditions 

on NO3
- and NH4

+ formation from NOM standards (SRHA and PLFA), surface water, and wastewater 

effluent samples. Overall, it is apparent that NO3
- generally increases with increasing specific O3 doses. 

For the NOM standards (Figure 4.4a), NO3
- from SRHA (C/N = 44.9 (IHSS 2016)) increased from 0.5 

– 1.3 µM for an increase of the specific ozone dose from  0.4 – 1.3  mgO3/mgDOC. At the same 

specific ozone doses, higher yields of NO3
- were observed for PLFA (1.5 – 4.5  µM) in agreement with 

the higher relative content of DON (C/N = 8.1 (IHSS 2016)). Figure 4.4a shows that NH4
+ in the SRHA 

experiments did not change significantly while for PLFA, NH4
+ increased by 75% when increasing the 

specific O3 doses from 0.4 to 1.3 mgO3/mgDOC. Similar to the results for nitrate, these findings might 

be explained by the higher nitrogen content of PLFA relative to SRFA.  

Previous studies have shown the significance of •OH reactions in driving NH4
+ formation from amino 

acids such as glycine (Berger et al. 1999, Karpel Vel Leitner et al. 2002). However, those studies are 

not comparable to the current study as their •OH transient concentrations were significantly higher 

because of the use of continuous ozonation (combined with H2O2), UV/H2O2, or γ-radiolysis. For 

example, steady-state •OH concentrations of about 5´10-12 – 7´10-12 M were estimated from a γ-

radiolysis study of glycine (i.e., with N2O or H2O2, dose = 2000, 5000, 8000 Gy, average dose rate = 

71.6 Gy/min) for reaction times of about 30 – 110 min (Karpel Vel Leitner et al. 2002). In the current 

study, •OH radicals were only short-lived with expected maximum transient concentrations of about ≤ 

10-12 M (Elovitz and von Gunten 1999) . Due to these low •OH concentrations, combined with the low 

reactivity of amines with •OH at neutral pH (e.g., k(•OH+glycine) = 2.15´107 M-1s-1 at pH 7 (Buxton et al. 

1988)), it is unlikely that •OH from O3 decay significantly contributes to NH4
+ formation. Without 

oxidation by •OH, NH4
+ can be possibly formed from the reaction of O3 via an electron-transfer 

pathway to produce N-centered radicals and an ozonide (RCH2-NH2 + O3 → RCH2-•NH + HO3
•). The 

N-centered radicals could undergo rearrangement to C-centered radicals (RCH2-•NH → R-•CHNH2), 

which in the presence of oxygen form peroxyl radicals (R-•CHNH2 + O2 → R-(•OO)CHNH2) (von 

Sonntag and von Gunten 2012). This is followed by a loss of superoxide, formation of imine 

intermediates (R-(•OO)CHNH2 → R-CH=NH2
+ + O2

•-), and hydrolysis to NH4
+ (R-CH=NH2

+ + H2O 

→ NH4
+ + R-CHO). For both NOM standards, NO3

- concentrations were somewhat lower than NH4
+ 

possibly due to rapid O3 decomposition (i.e., no O3 residual was measured at the first sampling time 
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of 30 s) leaving insufficient O3 exposure for oxidation of intermediates to NO3
-. Because fulvic and 

humic acid standards may not represent O3 decomposition kinetics induced by NOM in real waters 

(Elovitz et al. 2000b), further experiments were performed using surface water and wastewater effluent 

samples. 

 

Figure 4.4. NO3
- and NH4

+ formation during ozonation of various synthetic and natural waters at 
differing (a) specific O3 doses (Suwannee River humic acid (SRHA) or Pony Lake fulvic acid (PLFA)), 
(b) ozonation conditions (surface water), and (c) % •OH scavenging (wastewater effluent). Symbols in 
(c) are corrected NO3

- concentrations (i.e., total measured NO3
- (gray lines) minus predicted NO3

- from 
NH3 oxidation (Table 4.5)). Baseline conditions for NOM standards: DOC = 10 mg/L, DON (SRHA) 
= 0.26 mg/L, DON (PLFA) = 0.95 mg/L; for surface water: DOC = 18.7 ± 1.0 mg/L, DON = 0.65 ± 
0.04 mg/L, specific O3 dose = 0.75 mgO3/mgDOC, pH = 7, inorganic carbon = 0.01 mM HCO3

-, NO3
- 

= 0.03 mg/L, NH4
+ = 0.015 mg/L; for wastewater effluent: DOC = 6.7 mg/L, DON = 0.33 mg/L, pH 

= 7, inorganic carbon = 0.15 mM HCO3
-, NO3

- = 0.03 mg/L, NH4
+ = 25.2 mg/L, •OH scavenging rate 

= 1.4´106 s-1. Error bars depict standard deviations from 3 replicate experiments. 
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For the surface water sample (Figure 4.4b), differing conditions were used to vary the O3 exposure 

including changes of the specific O3 dose, pH, inorganic carbon, and addition of t-BuOH and/or H2O2. 

The results show that when the specific O3 doses are increased from 0.4 – 1.0 mgO3/mgDOC, the NO3
- 

concentrations increase, while NH4
+ concentrations change only slightly. The oxidation of NH3/NH4

+
 

to NO3
- does not occur under these conditions because of the low reactivity of O3 with NH3/NH4

+
  at 

pH 7 (kapp = 9.97´10-2 M-1s-1, pKa = 9.3) (Hoigné and Bader 1983, von Sonntag and von Gunten 2012) 

and low NH3/NH4
+

  concentration of 0.8 µM. Thus, the observed changes in concentrations of inorganic 

nitrogen are assumed to result from the reactions of O3 with DON moieties and the subsequent 

reactions. Conditions such as a decrease in pH, increase in alkalinity or addition of t-BuOH, which 

stabilize O3, resulted in an increase in NO3
-. In contrast, addition of H2O2 leads to a NO3

- decrease 

because O3 is less stable and transformed more quickly to •OH under these conditions. Overall, these 

observations strongly suggest that O3 reactions (and not •OH) are controlling NO3
- formation.  

The wastewater effluent sample had a very high background NH3/NH4
+ concentration of about 1400 

µM and a low NO3
- concentration of 0.5 µM. As such, after ozonation, changes in concentrations were 

only measureable for NO3
- and not for NH4

+. Because of the effluent’s high NH3/NH4
+ concentrations, 

NH3 oxidation was estimated to contribute 32 ± 7% to the observed NO3
- concentrations (Table 4.5). 

The NO3
- concentrations were then corrected (symbols in Figure 4.4c) to show NO3

- evolution from 

the ozone oxidation of DON. Generally, similar trends as for the previous water samples were obtained 

for the corrected NO3
- concentrations, i.e., increasing NO3

- for higher specific O3 doses and for 

increasing O3 exposures, which were achieved by increasing the t-BuOH contribution to the overall 
•OH scavenging. It should also be noted that the wastewater effluent contained NO2

- at a concentration 

of 0.3 µM. However, even for the expected full oxidation of nitrite to nitrate, it has a negligible 

contribution to the observed NO3
- levels in the range of 3 – 20 µM. Therefore, the effluent’s DON is 

the major source of NO3
- during ozonation. 
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Table 4.5. Predicting nitrate formation from ozonation of background ammonia in the wastewater 
effluent. Conditions: O3 dose = 100 – 400 µM, pCBA = 1 µM, pH = 7, µM t-BuOH/ µM MeOH (%•OH 
scavenging by t-BuOH) = 420/1000 (18%), 840/700 (35%), 1250/500 (53%), 1870/120 (79%), total 
measured NH3/NH4

+ = 1397 µM (after dilution). 

Note: The oxidation of NH3/NH4
+ (or [NH4

+]total) is given by: 
e^ f0gh iji

^\
= k∙/0 ∙ OH NHld \m\ + k/) O+ NHld \m\ 

= k∙/0R[\ O+ NHld \m\ + k/) O+ NHld \m\ 

NHld \m\

NHld \m\n

= exp − O+ dt k∙/0R[\ + 	k/)  

where k(O3+NH3) at pH 7 =  9.97´10-2 M-1s-1 (Neta et al. 1988) and k(·OH+NH3) at pH 7 = 4.49´105 M-1s-1 (Buxton et al. 1988). NO3
- 

formed from NH3/NH4
+ was calculated from the difference of NHld \m\n

 – NHld \m\; NHl
d
\m\n

 = 1397 µM. 

(a) 400 µM O3 
% •OH scavenging 

by t-BuOH Rct ∫[O3]dt, Ms 
NHld \m\

NHld \m\n
 [NH4

+]tot,  
µM 

NO3
-, µM  

(from NH3) 
Measured 
NO3

-, µM  

79 1.00´10-9 0.121 0.988 1380 16.9 36.9 

53 1.84´10-9 0.080 0.992 1386 11.3 31.3 

35 2.50´10-9 0.063 0.994 1388 8.9 24.6 

18 4.47´10-9 0.040 0.996 1391 5.6 18.9 

(b) 330 µM O3 
% •OH scavenging 

by t-BuOH Rct ∫[O3]dt, Ms 
NHld \m\

NHld \m\n
 [NH4

+]tot,  
µM 

NO3
-, µM 

(from NH3) 
Measured 
NO3

-, µM 

79 1.23´10-9 0.086 0.991 1385 12.1 32.1 

53 1.76´10-9 0.068 0.993 1387 9.5 24.8 

35 2.25´10-9 0.059 0.994 1389 8.3 20.5 

18 4.27´10-9 0.036 0.996 1392 5.0 14.1 

(c) 270 µM O3 
% •OH scavenging 

by t-BuOH Rct ∫[O3]dt, Ms 
NHld \m\

NHld \m\n
 [NH4

+]tot,  
µM 

NO3
-, µM  

(from NH3) 
Measured 
NO3

-, µM 

79 1.71´10-9 0.050 0.995 1390 7.0 24.6 

53 2.29´10-9 0.044 0.996 1391 6.1 19.9 

35 3.38´10-9 0.035 0.996 1392 5.0 16.6 

18 6.97´10-9 0.020 0.998 1394 2.8 13.4 

(d) 200 µM O3 
% •OH scavenging 

by t-BuOH Rct ∫[O3]dt, Ms 
NHld \m\

NHld \m\n
 [NH4

+]tot,  
µM 

NO3
-, µM 

(from NH3) 
Measured 
NO3

-, µM 

79 1.31´10-9 0.050 0.995 1390 7.0 18.1 

53 1.78´10-9 0.041 0.996 1391 5.7 14.8 

35 3.02´10-9 0.027 0.997 1393 3.9 12.4 

18 5.67´10-9 0.017 0.998 1395 2.4 8.4 

(e) 100 µM O3 
% •OH scavenging 

by t-BuOH Rct ∫[O3]dt, Ms 
NHld \m\

NHld \m\n
 [NH4

+]tot,  
µM 

NO3
-, µM 

(from NH3) 
Measured  
NO3

-, µM 

79 2.23´10-9 0.013 0.999 1395 1.8 7.5 

53 3.01´10-9 0.013 0.999 1395 1.8 6.3 

35 4.10´10-9 0.010 0.999 1396 1.4 5.1 

18 8.48´10-9 0.006 0.999 1396 0.9 3.8 
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4.3.2. NO3
- yields from model compounds (amines) 

Some potential precursors of NO3
- and/or NH4

+ during ozonation of DON were investigated using the 

model compounds glycine, dimethylamine, and trimethylamine, representing primary, secondary, and 

tertiary amines, respectively. The ozone-reactive site for amines is the lone electron pair at the nitrogen 

atom, with a very low reactivity for protonated amines (von Sonntag and von Gunten 2012). At pH 7, 

the apparent second-order rate constants of the selected compounds with O3 (Lee and von Gunten 

2010, Neta et al. 1988) are as follows: glycine: kapp = 1.63´102 M-1s-1 (pKa = 9.3); dimethylamine: kapp 

= 3.79´103 M-1s-1 (pKa = 10.7); trimethylamine: kapp = 6.49´103 M-1s-1 (pKa = 9.8). The higher apparent 

second-order rate constant of trimethylamine over dimethylamine is due to the former’s lower pKa 

(von Sonntag and von Gunten 2012) leading to a higher reactive amine fraction (trimethylamine = 

0.16%; dimethylamine = 0.02%). During ozonation, O3 can add to the amine nitrogen forming an O3-

adduct (R3N + O3 → R3N+OOO-), followed by a release of singlet oxygen (1O2) (Muñoz et al. 2001). 

For tertiary amines, this reaction leads to an N-oxide (R3-N+O-) formation with high yield, while for 

primary and secondary amines (e.g., propranolol), the N-oxide rearranges to a hydroxylamine (R-

NOH) (Benner and Ternes 2009, von Sonntag and von Gunten 2012). Further oxidation of 

hydroxylamine can then produce NO3
-, as observed in the present study. 

Figure 4.5 shows the NO3
- formation for the selected amines as a function of the •OH scavenging rate. 

Glycine has the highest NO3
- yield (i.e., mol NO3

-/mol amine added) followed by trimethylamine and 

dimethylamine. At 85% •OH scavenging by t-BuOH, the NO3
- yield was 85% for glycine, 27% for 

trimethylamine and 24% for dimethylamine. The highest yield for NO3
- was obtained for glycine 

despite having the lowest pseudo-first-order rate constant for its reaction with O3 (k(O3+amine) ´ [amine]) 

and highest Rct (Table 4.6). Dimethylamine and trimethylamine solutions had lower Rct values than 

glycine possibly due to their faster consumption during ozonation, resulting in higher O3 residual 

concentrations and hence higher O3 exposures. The high NO3
- yield for glycine is due to the fact, that 

the reactions of primary amines with O3 nearly exclusively yield NO3
- as final product (Berger et al. 

1999), while the reaction with higher substituted amines also gives rise to other stable nitrogen-

containing products (Elmghari-Tabib et al. 1982, Muñoz and von Sonntag 2000). For secondary 

amines such as diethylamine, it was reported that the O3 reaction occurs predominantly via the 

formation of an amine-oxyl radical (R2-NO•, 80%) (von Gunten 2003a). From this amine-oxyl radical, 

nitrone (R2=N+O-) can be formed which hydrolyzes to ethyl hydroxylamine. This product can be 

further oxidized to NO3
- in excess of O3 (von Gunten 2003a). The slightly higher NO3

- yield of 

trimethylamine compared to dimethylamine could be a result of the compound’s higher apparent 
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second-order rate constant and the predominance of oxygen transfer (N-oxide formation) over 

electron-transfer reactions (amine radical cation formation). The predominance of N-oxide formation 

has also been shown in other tertiary amines such as ethylenediamine tetraacetic acid, nitrilotriacetic 

acid, tramadol, and clarithromycin (Lange et al. 2006, Muñoz and von Sonntag 2000, Zimmermann et 

al. 2012).  

In our experiment, NH4
+ from electron-transfer reactions was only observed for glycine (0.6 – 1.2 µM, 

equivalent to yields of 3% – 6% µM NH4
+/µM glycine added). No NH4

+ was detected for 

dimethylamine and trimethylamine because of the higher degree of alkylation. The hydrolysis of the 

imine intermediate would consequently result in lower substituted amines (e.g., tertiary to secondary 

amines (Muñoz and von Sonntag 2000)) instead of NH4
+. 

 

Figure 4.5. NO3
- formation from the reactions of ozone with glycine, dimethylamine, and 

trimethylamine as a function of the %•OH scavenging by t-BuOH. Conditions: amine concentration = 

20 µM, tannic acid = 3 mg C/L, pH = 7, O3 dose = 400 µM, •OH scavenging rate = 1.33´106 s-1, µM 

t-BuOH/ µM MeOH (%•OH scavenging by t-BuOH) = 420/1000 (19%), 840/750 (38%), 1250/500 

(57%), 1870/120 (85%). Error bars depict the mean absolute deviation (n=2).   
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Table 4.6. Comparison of Rct and NO3
- yield during ozonation of glycine, dimethylamine, and 

trimethylamine. Conditions: amine = 20 µM, O3 = 400 µM, pH = 7. 

 

% •OH scavenging 
by tBuOH 

tBuOH, 
µM 

MeOH, 
µM 

Rct (% nitrate yield (µM NO3
-/µM amine)) 

Glycine Dimethylamine Trimethylamine 
85 1870 120 9.70´10-10 (85) 6.22´10-10 (24) 2.61´10-10 (27) 

57 1250 500 2.42´10-9 (79) 1.08´10-9 (19) 5.64´10-10 (26) 

38 840 750 3.44´10-9 (62) 1.90´10-9 (17) 8.34´10-10 (20) 

19 420 1000 7.08´10-9 (40) 5.19´10-9 (13) 2.10´10-10 (18) 

 
 

4.3.3. NO3
- formation kinetics from glycine 

To further elucidate NO3
- formation from glycine, ozonation was performed with solutions containing 

glycine and t-BuOH (complete scavenging of •OH). As shown in Figure 4.6a, upon ozonation, the 

simulated glycine concentration decreases rapidly (pH 7: kgly,O3 = 1.63´102 M-1s-1, t1/2 = 

0.69/(kgly,O3∫[O3]dt) = 0.02 s), while NO3
- increases only slowly. This indicates that NO3

- is produced 

from an intermediate species (referred to as X) and not directly from glycine. The rate of NO3
- 

formation therefore depends on further oxidation of X. Assuming 100% conversion of glycine to X 

during ozonation, Xmax (the maximal yield of X after glycine decomposition) can be estimated equal 

to [glycine]0. Thus, X at time t (Xt) is equal to Xmax – NO3
-, and the rate constant for X abatement can 

be calculated using second-order kinetics. Plotting ln[X]t/[X]max versus O3 exposure yields a linear plot 

(Figure 4.7) with a slope equal to the second-order rate constant of ozonation of X (k = 7.7 ± 0.1 M-1s-

1), which corresponds to the formation of NO3
-. Using this value, the experimentally measured NO3

- 

was predicted relatively well (dotted line in Figure 4.6a) using kinetic simulations involving the 

following reactions: O3 + glycine → hydroxylamine (kapp = 1.63´102 M-1s-1 (Neta et al. 1988)), 

hydroxylamine + O3 → X (kapp = 2´104 M-1s-1 (Hoigné et al. 1985)), X + O3 → NO3
- (kapp = 7.7 M-1s-

1), and O3 → products (experimental first-order O3 decay = 1.57´10-3 s-1). The NO3
- yield at full O3 

consumption (~50 min) showed a nearly complete mineralization of glycine to NO3
-. Based on the 

mechanistic discussion below (Section 4.3.7), the oxime (HON=CHCO2
-) formed during further 

oxidation of hydroxylamine may be a good candidate for X. This hypothesis, however, needs to be 

validated in future studies. 
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Figure 4.6. Reaction of glycine with ozone. (a) Formation of NO3
- in excess of O3 and complete •OH 

scavenging by t-BuOH. Conditions: glycine = 20 µM, O3 = 400 µM, pH = 7, t-BuOH = 2.1 mM, n = 

2, symbols are the average experimental data and lines are from kinetic simulations (section 4.3.3). (b) 

Ammonium and •OH concentrations for various ozone doses, correlation of NH4
+ with •OH formation. 

(c) Determination of •OH yield by measurement of MSIA and MSOA as a function of the ozone dose. 

Conditions: glycine = 100 mM, DMSO = 10 mM, pH = 7. Error bars depict standard deviations from 

3 replicate experiments.  
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Figure 4.7. Determination of the second-order rate constant for the decrease of intermediate X. 

Assumption: Xmax (maximal X after 100% glycine decomposition) = [glycine]0 and X at time t (Xt) = 

Xmax – experimental [NO3
-]. NO3

- was measured for the following reaction conditions: O3 = 400 µM, 

glycine = 20 µM, pH = 7, t-BuOH = 2.1 mM (complete •OH scavenging). The slope is the second-

order rate constant of the reaction of X with O3.  

4.3.4. •OH yield from the reaction of ozone with glycine 

Figure 4.6b shows the NH4
+ formed when excess of glycine (100 mM) was treated with 0.1 – 0.4 mM 

O3. In contrast to previous product studies with glycine (Berger et al. 1999), NH4
+ in the current study 

is not formed from the reaction of glycine with •OH. This is because at pH 7, the apparent second-

order rate constant for the reaction of glycine with •OH is only at 2.15´107 M-1s-1 (Buxton et al. 1988), 

which is very low compared to commonly encountered diffusion-controlled second-order rate 

constants for reactions with •OH (>109 M-1s-1). Based on this low reactivity and the low steady-state 
•OH concentrations, NH4

+ formation by this pathway can be excluded during ozonation. Instead, we 

propose that NH4
+ is produced through an electron-transfer pathway involving ozone. This pathway 

proceeds via an ozone adduct intermediate (R-NH2
+OOO-) (von Sonntag and von Gunten 2012), a 

subsequent N-centered radical formation followed by an C-N H-shift, oxygen addition to the C-

centered radical, and loss of superoxide (O2
•-) (refer to Fig. 4.10, reactions 1,7, 13-15). These reactions 

would result in an imine intermediate that can hydrolyze to NH4
+. The O3

•- and O2
•- associated with 

these reaction steps cause •OH formation.  For O3
•-, •OH can be formed from the subsequent rapid 

equilibria of O3
•- ↔ O•- + O2 and O•-+ H2O ↔ •OH + OH- (Merényi et al. 2010) whereas for O2

•-, •OH  

can be formed from its reaction with O3 yielding O3
•- (von Sonntag and von Gunten 2012). Since the 
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formation of NH4
+ and •OH occurs simultaneously, a linear correlation between the two parameters is 

observed (Figure 4.6b).  

Furthermore, the •OH yield from ozonation of glycine was determined using the DMSO assay (Figure 

4.6c). The •OH yield for glycine was calculated to be 24.7 ± 1.9% (mol •OH/mol O3 consumed), which 

means that about 25% of the consumed O3 produces •OH and possibly NH4
+. The •OH yield is within 

the range determined for triethylamine (15%) (Flyunt et al. 2003) and piperidine (28%) (Tekle-

Rottering et al. 2016). Unfortunately, data for •OH yields for other primary aliphatic amines is lacking 

in literature limiting the options for comparison with previous studies. The measured •OH formation 

confirms that an electron-transfer mechanism occurs during ozonation of glycine. A plot of the NH4
+ 

against the •OH concentration (Fig. 4.6b) gives a linear correlation with a slope of 0.03 mol NH4
+/mol 

•OH, which means that the measured NH4
+ concentrations are much lower than expected from the •OH 

formed. This is a strong indication that other reactions producing •OH compete with NH4
+ formation.  

4.3.5. NO3
- and NH4

+ formation during ozonation of synthetic waters mimicking 

realistic conditions  

Ozonation experiments with synthetic DON solutions (20 µM glycine + 3 mgC/L tannic acid + t-

BuOH/MeOH) were performed with two •OH scavenging rates, which are about a factor of 10 apart 

(high: 1.3´106 s-1 (Figures 4.8a and 4.8b) and low: 1.8´105 s-1 (Figures 4.8c and 4.8d)). The first set of 

experiments was performed using the high •OH scavenging conditions with t-BuOH/MeOH (µM/µM) 

ratios of 417/1000 – 1875/125. Under these conditions, Rct values of 9.70´10-10 – 1.95´10-8 were 

measured for O3 doses of 200 – 400 µM. To evaluate the formation of inorganic nitrogen compounds 

over a wider range of Rcts, the concentrations of t-BuOH/MeOH were decreased by 12.5 times 

resulting in water samples with lower •OH scavenging rates. Therefore, in the second set of 

experiments, using the same O3 doses, higher Rct values (2.03´10-8 – 1.55´10-7) were obtained. 

Overall, Rct values (summarized in Tables 4.7 – 4.10) covered a realistic range of 10-10 – 10-7, which 

are within the range of Rcts reported in various types of water samples and for various treatment 

conditions (Acero and von Gunten 2001, Elovitz et al. 2000b, Shin et al. 2015). 

NO3
- increased with increasing O3 doses for all experimental conditions (Figures 4.8a and 4.8c). For 

an 85% •OH scavenging by t-BuOH, NO3
- increased from 3.6 – 10.6 µM when increasing the O3 dose 

from 200 – 400 µM (Figure 4.8a). A similar trend was also observed at 50% •OH scavenging by t-

BuOH (Figure 4.8c) where NO3
- increased from 3.3 – 8.5 µM for the same increase in O3 doses (200 
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– 400 µM). Several subsequent O3 reactions play a major role in the formation of NO3
-, as demonstrated 

by an increase in NO3
- concentrations for increasing %•OH scavenging by t-BuOH.  

 

Figure 4.8. NO3
- and NH4

+ formation from ozonation of glycine (20 µM) for varying O3 doses and 

levels of •OH scavenging. Conditions for (a-b): •OH scavenging rate = 1.3´106 s-1, tannic acid = 3 mg 

C/L, pCBA = 0.5 µM, µM t-BuOH/ µM MeOH (%•OH scavenging by t-BuOH) = 417/1000 (19%), 

730/815 (33%), 1045/625 (47%), 1460/375 (66%), 1875/125 (85%), pH = 7, T = 21 ± 1°C, error bars 

depict standard deviations of 3 replicate experiments; (c-d): •OH scavenging rate = 1.8´105 s-1, tannic 

acid = 3 mg C/L, pCBA = 1 µM, µM t-BuOH/ µM MeOH (%•OH scavenging by t-BuOH) = 43/74 

(14%), 59/65 (20%), 84/50 (28%), 116/30 (39%), 150/10 (50%), pH = 7, T = 21 ± 1 °C. Symbols 

represent the experimental data; lines represent simulations from the model shown in Table 4.11.   
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Table 4.7. Pseudo-first-order rate constants (kobs, s-1) of O3 decay in high •OH 
scavenging experiments. Conditions: •OH scavenging rate = 1.3´106 s-1, glycine = 20 
µM, tannic acid = 3 mgC/L, pH 7, [t-BuOH (µM)]/[MeOH (µM)] = 1875/125, 1460/375, 
1045/625, 730/815, 417/1000. 

 

O3 dose, µM % •OH scavenging by t-BuOH; kobs, s-1 
85% 66% 47% 33% 19% 

400 2.60´10-3 2.88´10-3 3.29´10-3 4.86´10-3 7.66´10-3 
300 3.20´10-3 4.34´10-3 4.31´10-3 6.16´10-3 8.65´10-3 
200 4.34´10-3 6.45´10-3 5.81´10-3 7.85´10-3 1.52´10-2 

 
Table 4.8. Rct in high •OH scavenging experiments. Conditions: •OH scavenging rate = 
1.3´106 s-1, glycine = 20 µM, tannic acid = 3 mgC/L, pH 7, [t-BuOH (µM)]/[MeOH 
(µM)] = 1875/125, 1460/375, 1045/625, 730/815, 417/1000. 
 

O3 dose, µM % •OH scavenging by t-BuOH; Rct 
85% 66% 47% 33% 19% 

400 9.70´10-10 2.06´10-9 2.77´10-9 4.10´10-9 7.08´10-9 
300 1.05´10-9 3.23´10-9 3.86´10-9 5.28´10-9 1.07´10-8 
200 1.59´10-9 4.13´10-9 5.96´10-9 9.36´10-9 1.95´10-8 

 
Table 4.9. Pseudo-first-order rate constants (kobs, s-1) of O3 decay in low •OH scavenging 
experiments. Conditions: •OH scavenging rate = 1.8´105 s-1, glycine = 20 µM, tannic 
acid = 3 mgC/L, pH 7, [t-BuOH (µM)]/[MeOH (µM)] = 150/10, 116/30, 84/50, 59/65, 
43/74. 
 

O3 dose, µM % •OH scavenging by t-BuOH; kobs, s-1 
50% 39% 28% 20% 14% 

400 4.29´10-3 4.45´10-3 5.19´10-3 6.01´10-3 8.79´10-3 
350 4.16´10-3 5.71´10-3 5.83´10-3 6.40´10-3 8.92´10-3 
300 4.51´10-3 5.81´10-3 6.55´10-3 7.17´10-3 8.94´10-3 
250 5.16´10-3 6.10´10-3 7.00´10-3 7.89´10-3 1.01´10-2 
200 8.40´10-3 8.50´10-3 8.60´10-3 1.01´10-2 1.36´10-2 

 
Table 4.10. Rct in low •OH scavenging experiments. Conditions: •OH scavenging rate = 
1.8´105 s-1, glycine = 20 µM, tannic acid = 3 mgC/L, pH 7, [t-BuOH (µM)]/[MeOH 
(µM)] = 150/10, 116/30, 84/50, 59/65, 43/74. 
 

O3 dose, µM % •OH scavenging by t-BuOH; Rct 
50% 39% 28% 20% 14% 

400 2.03´10-8 2.43´10-8 2.85´10-8 3.61´10-8 5.65´10-8 
350 2.24´10-8 3.09´10-8 3.16´10-8 4.19´10-8 7.72´10-8 
300 2.24´10-8 2.74´10-8 3.20´10-8 5.10´10-8 8.59´10-8 
250 2.45´10-8 2.84´10-8 3.83´10-8 5.60´10-8 1.02´10-7 
200 4.13´10-8 5.21´10-8 5.35´10-8 7.78´10-8 1.55´10-7 
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For NH4
+, higher concentrations were observed at lower O3 doses and only slight changes in 

concentrations were observed at varying t-BuOH concentrations (Figures 4.8b and 4.8d). The latter 

observation supports our hypothesis that the contribution of •OH reactions to the overall NH4
+ 

formation can be neglected. At lower O3 doses, higher NH4
+ concentrations were observed because of 

fast initial O3 reactions (e.g., electron-transfer and radical chain reactions) forming intermediates that 

are reactive to the remaining O3 and O2 in the solution, consequently producing amides and NH4
+, 

respectively (for mechanistic discussion, see below). Briefly, O3 can also react with C-centered 

radicals, however, such reactions would lead to an alkoxyl radical (von Sonntag and von Gunten 2012) 

that will give rise to an amide (not an imine and subsequently NH4
+). Thus, in the context of NH4

+ 

formation, O3 is only important at the initial electron-transfer step while residual O3 will compete with 

O2 for the C-centered radical. This competition reaction could cause the observed higher NH4
+ 

concentration at lower O3 dose (Figures 4.8b and 4.8d). Because O2 is high in ozonated solutions, a 

decrease in available O3 would promote O2 reactions with C-centered radicals that eventually lead to 

NH4
+ formation (see below). 

4.3.6.  Relationship between O3 exposure and NO3
- formation 

So far, it was clearly demonstrated that the NO3
- formation is sensitive to changes in ozonation 

conditions for all investigated water samples. For the applied conditions, it was consistently observed 

that NO3
- increases with increasing O3 doses and exposures. A summary of all the related data is 

presented in Figure 4.9. A similar trend was previously reported, e.g., during continuous ozonation of 

glycine with decreasing H2O2 and increasing bicarbonate concentrations (Berger et al. 1999). 

However, in the previous study, O3 exposures were not measured. In the current study, linear 

relationships (R2 ≥ 0.82) were observed between NO3
- concentrations and O3 exposures in glycine-

containing solutions (both at high and low •OH scavenging), surface water and wastewater samples 

(Figures 4.9a – 4.9d). This direct relationship applies to a wide range of O3 exposure (~0 – 0.12 Ms 

(equivalent to 0 – 96 mg/L·min)), with slopes extending from 51 µM/Ms in surface water to 166 

µM/Ms in secondary wastewater effluent. Standard NOM solutions were not included because of the 

limitation in measuring the fast O3 decomposition. These results indicate that NO3
- formation depends 

on the O3 exposure, which is a measure for the primary and subsequent O3 reactions with amine 

moieties in DON. This also suggests that the conversion of amines to readily oxidizable intermediates 

and NO3
- is a relatively straightforward process in the presence of O3. Intermediates such as 

hydroxylamines and oximes, as seen in other ozonation studies of amines (Elmghari-Tabib et al. 1982), 

can be further oxidized to NO3
- and the corresponding carbonyl compounds (e.g., glyoxylic acid).  
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Figure 4.9. NO3
- formation as a function of the O3 exposure for (a-b) glycine, (c) surface water, and 

(d) wastewater effluent (total NO3
- and corrected for the calculated NO3

- formation from NH3/NH4
+). 

Conditions: (a) •OH scavenging rate = 1.3´106 s-1, glycine = 20 µM, tannic acid = 3 mg C/L, t-

BuOH/MeOH (µM/µM) = 417/1000 – 1875/125, pH = 7; (b) •OH scavenging rate = 1.8´105 s-1, glycine 

= 20 µM, tannic acid = 3 mg C/L, t-BuOH/MeOH (µM/µM) = 43/74 – 150/10, pH 7; (c) DOC = 18.7 

± 1.0 mg/L, DON = 0.65 ± 0.04 mg/L; (d): DOC = 6.7 mg/L, DON = 0.33 mg/L, •OH scavenging rate 

= 1.4x106 s-1, t-BuOH/MeOH (µM/µM) = 420/1000 – 1870/120. 

4.3.7.  Mechanistic interpretations 

The proposed reactions in the glycine-ozone system are summarized in Figure 4.10. They are based 

on the following observations from this study: (a) NO3
- increases with increasing O3 exposures, (b) 

NO3
- is produced from an oxidized glycine intermediate, (c) there is an almost 100% conversion of 

glycine to NO3
- in excess of O3 and for complete •OH scavenging by t-BuOH, (d) NH4

+ yields were 
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higher at lower O3 doses, (e) the O3 reaction with glycine has a •OH yield of about 25%, and (f) 

significantly lower NH4
+ concentrations were observed than expected from the •OH yield. 

Ozone reacts with glycine with the formation of an O3 adduct (reaction 1) which can decompose to an 

N-oxide (reaction 2) and an aminyl radical (reaction 7). The N-oxide can then rearrange to 

monohydroxylamine (reaction 3) (von Sonntag and von Gunten 2012), which leads to 

dihydroxylamine (reaction 4) upon further oxidation by O3. Dehydration then forms an oxime (reaction 

5) that produces NO3
- and glyoxylic acid (reaction 6) in the presence of O3. This series of reactions is 

based on previously reported pathways by Berger et al. (1999).  

Electron-transfer reactions are responsible for the formation of a N-centered radical species (reactions 

7) (von Sonntag and von Gunten 2012). N-centered radicals were reported for similar reactions by 

Bonifacic et al. (1998) although they used •OH as the oxidant and not O3. Nevertheless, such types of 

reactions are plausible for our system as suggested by the measured •OH formation (section 4.3.4). 

O3 can react with the aminyl radical (reaction 8) to form a N-oxyl radical after loss of singlet oxygen 

(reaction 9). The N-oxyl radical undergoes a dismutation (reaction 10) (Jayson et al. 1955) to form an 

oxime and hydroxylamine that can also form NO3
- upon further oxidation (reaction 11). This reaction 

is in competition with reaction of O3 with the N-oxyl radical leading to a N-centered radical and oxygen 

(reaction 12).  To produce NH4
+ over the reaction sequence initiated by reaction 7, a C-N H-shift 

(reaction 13) from the aminyl radical can occur resulting in a C-centered radical (Bonifacic et al. 1998, 

von Sonntag and von Gunten 2012). Since the reaction occurs in presence of O2, a peroxyl radical can 

be produced (reaction 14) (Abramovitch and Rabani 1976, Neta et al. 1990) followed by a release of 

O2
•- to form an imine intermediate (reaction 15) (von Sonntag and Schuchmann 1991). This product 

can then hydrolyze to NH4
+ and glyoxylic acid (reaction 16). Another side reaction can happen through 

the bimolecular decay of the peroxyl radical forming a tetroxide intermediate (i.e., Bennett- and 

Russell-type mechanism, reaction 17) (von Sonntag and von Gunten 2012) and eventually oxamic acid 

(reaction 18) (Berger et al. 1999, Karpel Vel Leitner et al. 2002). Competing with the peroxyl radical 

formation is the reaction of O3 with the C-centered radical forming an adduct (reaction 19). This adduct 

is highly unstable consequently releasing O2 thereby leading to an oxyl radical (reaction 20) (von 

Sonntag and von Gunten 2012). This can be followed by 1,2-H shift (Konya et al. 2000) (reaction 21), 

O2 addition to form an α-hydroxyperoxyl radical (reaction 22), and loss of HO2
• to also form oxamic 

acid (reaction 23). 
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These reactions seem to be quite important in the investigated reaction system because NH4
+ 

concentrations were higher at lower O3 doses suggesting less competition with O2 for NH4
+ formation. 

Based on these reactions, the lower NH4
+ concentrations compared to the formation of •OH (section 

4.3.4) could be caused by: (a) reaction of O3 with RCH2-•NH to form NO3
- (reactions 8 – 11), (b) decay 

of peroxyl radicals through a tetroxide leading to oxamic acid (reactions 17 – 18), and (c) reaction of 

O3 with R-•CHNH2 
 through an oxyl intermediate that also forms oxamic acid (reactions 19 – 23). 

4.3.8. Kinetic simulations of experimental data from model systems  

A kinetic model was set up to simulate the experimental data in Figure 4.8. The symbols are 

experimental results and the lines are derived from kinetic simulations using the reactions (RS) and 

rate constants listed in Table 4.11. The second column of Table 4.11 shows the corresponding reactions 

shown in Figure 4.10. 

The model accounts for the reaction of glycine with O3 via oxygen- and electron-transfer. It is mainly 

composed of 3 components: (1) NO3
--forming reactions (RS1–RS3, RS5–RS6), (2) NH4

+-forming 

reactions and corresponding competing reactions (RS4, RS8–RS14), and (3) O3 decomposition 

reactions (RS15–RS17). A reasonable agreement with the experimental results was obtained for NO3
- 

both for high and low •OH scavenging rates (Figures 4.8a and 4.8c). This suggests that the rate 

constants and reactions considered are reasonable to predict NO3
- formation. Since the model includes 

measured and estimated rate constants, and measurements of Rct and O3 decay constants, the observed 

deviation of the model from the experimental data are not astonishing. Nevertheless, the model was 

able to show trends which are consistent with the experimentally determined NO3
- concentrations.  

In the model, NO3
- is formed from an intermediate (assumed to be HON=CHCO2

-) by RS3 (Table 

4.11; see section 4.3.3) with a second-order rate constant of 7.7 M-1s-1 (Figure 4.7). This reaction is 

preceded by RS1 (O-transfer to N, producing a hydroxylamine) and RS2 (ozonation of 

hydroxylamine). RS2 was included since hydroxylamines are among the known products of ozonation 

of primary amines (kRS2 = 2.0´104 M-1s-1) (Hoigné et al. 1985). It can also be seen that RS1 is in 

competition with RS4, which accounts for electron-transfer reaction. The second-order rate constant 

used for RS1 was equal to 1.23´102  M-1s-1, 75% of the known second-order rate constant for the 

reaction of glycine with O3 at pH 7 (k = 1.63´102 M-1s-1) (Lee and von Gunten 2010, Neta et al. 1988). 

This fraction was used because a 25% •OH yield was measured from the ozone-glycine reaction 

(section 4.3.4). Considering that •OH can be formed from ozonide in reaction 7, a second-order rate 
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constant of 41 M-1s-1 was assigned for electron-transfer reactions (RS4). The relatively good agreement 

of the model and the experimental data supports the mechanistic assumptions in this study. 

The N-centered radical, HN•-CH2CO2
-, would react directly with O3 and indirectly with O2 after 

rearrangement to the corresponding C-centered radical. Since we found earlier that glycine can be 

completely converted to NO3
- (section 4.3.3), it is highly possible that NO3

- can also form from 

reactions involving the N-centered radical. O3 addition to HN•-CH2CO2
- leads to an N-oxyl radical 

(RS5) with subsequent dismutation reaction (RS6). This results in products such as hydroxylamine 

and oxime that forms NO3
- by further oxidation. Rate constants for the reaction of aminyl radicals with 

ozone are still unknown. But for the simulation, a second-order rate constant of 3.0´109 M-1s-1 (i.e., 

close to diffusion-controlled reactions) was assumed to fit the experimental data. For the dismutation 

of the N-oxyl radicals (RS6), a rate constant of 1.0´109 M-1s-1 was assigned which is typical for radical-

radical reactions (Buxton et al. 1988). The N-oxyl radical can also react with O3 (RS7) to form another 

N-centered radical, similar to those reported for 2,2,6,6-tetramethyl-1-piperidinyloxy/TEMPO (k = 

1.3´107 M-1s-1) (von Sonntag and von Gunten 2012). 

In another pathway, rearrangement of HN•-CH2CO2
- to H2N-•CHCO2

- (RS8; k = 2.0´106 s-1 based on 

1,2-H shift in alkoxyl radicals in RS10) results in reactions with O3 (to oxamic acid) and O2 (to NH4
+) 

(RS9 – RS14). O2 addition to H2N-•CHCO2
- results in peroxyl radicals (RS8) that could decay via 

elimination of O2
•- (RS13) forming an imine that hydrolyzes to NH4

+, and/or a tetroxide (Bennett 

mechanism) forming an amide as the final product (RS10). Because of the relatively similar addition 

reactions of O3 (RC-OOO•) and O2 (RC-OO•) for C-centered radicals, second-order rate constants of 

1´109 – 3´109 M-1s-1 were assigned for RS9, RS11, and RS12. These rate constants are typical for 

reactions of C-centered radicals with O2 and O3 (Maillard et al. 1983, Neta et al. 1990, von Sonntag 

and von Gunten 2012). It should be noted that RS9 (reactions 19–20) has a strong influence in NH4
+ 

formation. Decreasing its second-order rate constant overestimates the NH4
+ due to insufficient 

competition with RS12 (reaction 14). Peroxyl radicals derived from glycine eliminate O2
•- (RS13) with 

a first-order rate constant of 1.5´105 s-1 (Neta et al. 1990), whereas their bimolecular decay (RS14) can 

occur with a second-order rate constant of about 1.0´109 M-1s-1 which is similar to the decay of most 

primary peroxyl radicals (Neta et al. 1990, von Sonntag 2006). Although the predicted values for NH4
+ 

fall within the range of experimental values, the deviations from the predicted values suggest the 

possibility of other unknown reactions involving C- and N-centered radicals that are not considered in 

Table 4.11.  
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Table 4.11. Kinetic modeling of NO3
- and NH4

+ formation during ozonation of glycine. Conditions: 

glycine = 0.02 mM, O2 = 0.28 mM, O3 dose = 0.2 – 0.4 mM, pH 7 

Reaction 
No. 

Ref. no. 
for Fig. 

4.10  
Reactions Rate constants Explanation 

RS1 1-3 NH2CH2CO2
- + O3 à HONHCH2CO2

- + O2 123 M-1s-1 

75% of k(O3+glycine, pH 7) = 163 M-

1s-1 (Lee and von Gunten 2010); 
O-transfer reaction, only 75% 
was used due to the measured 
25% •OH yield for e- transfer. 

RS2 4 HONHCH2CO2
- + O3 à HONCHCO2

- + H2O +O2 2.0´104 M-1s-1 
From NH2OH (Hoigné et al. 
1985); intermediate assumed to 
be the oxime. 

RS3 5-6 HONCHCO2
- + O3 à NO3

- + HCOCO2
- + H+ 7.7 M-1s-1 Rate constant determined in this 

study (Fig. 4.7) 

RS4 1, 7 NH2CH2CO2
- + O3 à HN•-CH2CO2

- + HO3
• 41 M-1s-1 

e- transfer reactions (25% of 
k(O3+glycine, pH 7) = 41 M-1s-1), see 
explanation RS1 

RS5 8-9 HN•-CH2CO2
- + O3 à •O-NHCH2CO2

- + O2 3.0´109 M-1s-1 
O3 addition à N-oxyl radical (k 
assumed close to diffusion-
controlled reactions) 

RS6 10 2 •O-NHCH2CO2
- à HONHCH2CO2

- + HONCHCO2
- 1.0´109 M-1s-1 

Dismutation/termination 
reaction (Jayson et al. 1955): N-
oxyl radical à hydroxylamine 
+ oxime (k assumed in this 
study, but common for radical-
radical reactions (Buxton et al. 
1988)) 

RS7 12 •O-NHCH2CO2
- + O3 à HN•-CH2CO2

- + 2O2 1.3´107 M-1s-1 
k based on reaction of O3 with 
nitroxyl radical of TEMPO (von 
Sonntag and von Gunten 2012) 

RS8 13 HN•-CH2CO2
- à H2N-•CHCO2

- 2.0´106 s-1 

Aminyl radical rearrangement 
to C-centered radical (von 
Sonntag and von Gunten 2012) 
(k assumed in the study) 

RS9 19-20 H2N-•CHCO2
- + O3 à NH2CH(O•)CO2

- + O2 3.0´109 M-1s-1 

Ozonation of C-centered radical 
to C-oxyl radical (k assumed 
close to diffusion-controlled 
reactions) 

RS10 21 NH2CH(O•)CO2
- à NH2-•C(OH)CO2

- 2.0´106 s-1 
k taken from 1,2-H shift of 
methoxyl radicals (Naumov and 
von Sonntag 2011) 

RS11 22-23 NH2-•C(OH)CO2
-+ O2 à NH2COCO2

- + HO2
• 3.0´109 M-1s-1 

O2 addition à a-
hydroxyalkylperoxyl radicals 
à oxamic acid (k typical for 
reaction of hydroxyalkyl 
radicals with O2  (Maillard et al. 
1983)  

RS12 14 H2N-•CHCO2
- + O2 à NH2CH(OO•)CO2

- 1.0´109 M-1s-1 
Peroxyl radical formation from 
C-centered radicals with O2; k 
taken from Neta et al. (1990) 

RS13 15-16 NH2CH(OO•)CO2
- à NH4

+ + HCOCO2
- + O2

•- 1.5´105 s-1 

Peroxyl radical decay (O2
•- 

elimination; k taken from Neta 
et al. (1990)) à imine 
hydrolysis to NH4

+ 
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Reaction 
No. 

Ref. no. 
for Fig. 

4.10 
Reactions Rate constants Explanation 

RS14 17-18 2NH2CH(OO•)CO2
- à 2NH2COCO2

- + H2O2 1.0´109 M-1s-1 

Bennett mechanism (tetroxide 
formation is only short-lived) (k 
common for primary peroxyl 
radicals (Neta et al. 1990, von 
Sonntag 2006)) 

RS15 - O3 à •OH 
Rct 

Measured in this study. If kRS15 
is set at 1.0x109 s-1, then kRS16 = 
kRS15/Rct RS16 - •OH à O3 

RS17 - O3 à O2 + products kobs, s-1 Measured in this study 

 

The actual O3 decay characteristics in the synthetic water samples were incorporated using Rct and O3 

decomposition reactions (RS15 – RS17).  The elementary reactions for ozone decomposition can lead 

to formation of ozonide radical that gives rise to •OH and O2 as main products (RS11 and RS13) 

(Merényi et al. 2010, Pocostales et al. 2010). As can be seen in Figure 4.8, even at differing conditions 

(O3 dose and %•OH scavenging by t-BuOH), the simulation can effectively describe the formation of 

inorganic nitrogen species provided that Rct and O3 decay constants are measured for each 

experimental condition. These constants constitute an integral part of the model because they account 

for the decay kinetics of O3 used in reactions RS1–RS5, RS7, and RS9. The experimental first-order 

O3 decay constants and Rct values are presented in Tables 4.7 – 4.10. Initial O2 concentrations of 0.28 

mM (9 mg/L O2) were used to mimic the dissolved O2 at ambient conditions (20 °C, 1 bar) (USGS 

2014). 

4.3.9. Practical implications 

This study gives evidence that formation of inorganic nitrogen species is greatly influenced by the 

ozonation conditions of a water sample. One practical application of the results would be in the context 

of assessment of oxidation/disinfection efficiency during ozonation. Since a strong correlation was 

found between NO3
- and O3 exposure (Figure 4.9), water utilities could continuously monitor NO3

- 

concentrations to evaluate if their treatment plant achieves a required O3 exposure or CT for 

disinfection or for oxidation of micropollutants. This can be achieved by initial calibrations of the 

ozonation process with NO3
- formation, i.e., a measured increase in the NO3

- level would correspond 

to a certain O3 exposure. This approach might be applicable to a wide range of conditions as the direct 

correlation of NO3
- concentrations with O3 exposures applies for different water samples with Rcts 

ranging from 10-10 – 10-7. Hence, the measurement of NO3
- could be a useful parameter to alert 

operators that likely a water quality change has occurred in the treatment plant when the detected NO3
- 

concentrations deviate from typically observed levels. For example, waters that show a sudden increase 
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in NO3
- concentration despite having the same ozonation conditions could indicate that there is a 

significant change in the quantity and quality of the influent DON. Similarly, an increase in NH4
+ and 

decrease in NO3
- concentrations could suggest having lower O3 exposures and that higher ozone doses 

might be needed to achieve the desired disinfection credit. Thus, these results may be useful to 

complement the monitoring tools currently applied in water treatment to assess O3 exposures.   

However, the new concept that we presented also has limitations. For example, the changes in NO3
- 

with O3 exposure was not very apparent when ozonation pH was varied (Figure 4.11). This is due to 

the contrasting effects of O3 exposure and reactivity of amines at differing pH. Despite the increase in 

O3 exposure at lower pH, decreasing the pH from 8 to 6 would result in a 100-fold decrease in the rate 

constant of glycine with O3. Thus, pH needs to be taken into account, when designing an algorithm 

based on the present findings to monitor O3 exposure. In addition, since this approach relies on 

measuring changes in inorganic nitrogen, the necessary high instrument precision is required. This is 

problematic in at least two instances. For example, measurement of DON oxidation in a drinking water 

source in Lausanne (Lake Geneva), Switzerland was not possible due to the low initial NOM 

concentration (DOC = 0.85 mg/L). Typical C:N ratios in natural water (~15 mgC/mgN) (Westerhoff 

and Mash 2002) would put the DON at 0.06 mg/L or less which is well below the instrument reporting 

limit. In contrast, a very high background inorganic nitrogen concentration before ozonation may also 

pose challenges to the analytical determination of the formation of NO3
- and/or NH4

+. 

 

Figure 4.11. Changes in NO3
- concentrations as a function of O3 exposure at differing pHs for 

ozonation. Conditions for (a): glycine = 20 µM, tannic acid = 3 mgC/L, t-BuOH = 84 µM, MeOH = 
50 µM, O3 dose = 400 µM, buffer = 10 mM phosphate; conditions for (b): Specific O3 dose = 0.75 
mgO3/mg DOC, buffer = 1 mM phosphate, DOC = 20 mg/L, DON = 0.7 mg/L, temperature = 22 °C. 
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4.4. Conclusions 

The reactions between O3 and DON in real water samples, standard NOM sources, and model DON 

solutions (e.g., glycine) were investigated. The following conclusions can be drawn from this study: 

• NO3
- and NH4

+ concentrations vary with changing ozonation conditions in model DON 

solutions (e.g., glycine) as well as in real water samples (e.g., surface water and wastewater 

effluent). Increasing NO3
- concentrations were observed with increasing O3 doses while the 

opposite applies for NH4
+. A direct correlation between NO3

- and O3 exposure was apparent 

for the tested synthetic and natural water samples. Primary amines were found to be a potential 

precursor for NO3
- and NH4

+ formation during ozonation. 

• NO3
- formation during ozonation of glycine occurs via an oxygen-containing intermediate from 

the oxidation of glycine. To form NO3
-, an O3 adduct is formed followed by hydroxylamine 

formation, which upon further oxidation leads to an oxime and finally NO3
-.  

• For the ozonation conditions in this study, •OH reactions with glycine can be neglected due to 

the low transient •OH concentrations and the low reactivity of amines at neutral pH. NH4
+ 

formation is hypothesized to occur through an electron-transfer reactions involving O3, which 

produce O3
•- and C-centered radicals that subsequently react with O2. The resulting 

intermediates (e.g., imine compounds) consequently hydrolyze to NH4
+. This pathway was 

confirmed from the measured •OH formed from subsequent reactions of O3
•- and O2

•-. An •OH 

yield of 25% was determined from the ozone-glycine reaction.  
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http://dx.doi.org/10.1016/j.watres.2015.09.007  

 



Chapter 5 

 
 

- 90 - 

 

5.1. Introduction 

Ozonation is used in many drinking water treatment plants because of its efficiency for disinfection 

as well as oxidation of micropollutants and natural organic matter (NOM) (Lee et al. 2013, von 

Gunten 2003b, Westerhoff et al. 1999). It has gained additional attention due to its potential to 

minimize formation of disinfection byproducts (DBPs) from subsequent chlorine disinfection. 

However, like other oxidants, ozone has its own suite of DBPs including bromate in bromide-

containing waters and other organic DBPs from partial oxidation of NOM (von Gunten 2003b). The 

latter is expected as typical ozonation conditions during drinking water treatment are insufficient for 

complete NOM mineralization (Nöthe et al. 2009, Ratpukdi et al. 2010, Zhang and Jian 2006). Since 

ozone is not used as a final disinfectant due to its short lifetime, it is commonly followed by chlorine 

or chloramine which can react with the remaining and structurally altered NOM to form additional 

byproducts.  

Oxidation during ozonation involves reactions of molecular ozone (O3) and/or hydroxyl radicals 

(•OH), the latter of which can be formed from ozone decomposition and reaction with NOM (Elovitz 

and von Gunten 1999).  As discussed in Chapter 4, ozone decomposition is affected by promotion 

and inhibition of •OH chain reactions. Reactions of •OH predominate at conditions that favor ozone 

decay (e.g., high pH or in presence of H2O2). Ozone decay, on the other hand, can be slowed down 

at low pH or in presence of •OH chain inhibitors such as tertiary butanol (Acero and von Gunten 

2001, Elovitz et al. 2000a). To describe the decay kinetics of ozone, the term exposure or its time-

integrated concentration is commonly used, i.e., slower ozone decay corresponds to higher exposure 

and vice versa (see Figure 4.3). Variations in exposures of O3 and •OH may then result in different 

transformations of DBP precursors. In the previous chapter, high ozone exposure conditions results 

in oxygen transfer to amine-N of dissolved organic nitrogen (DON), which upon post-chlorination 

could influence formation of nitrogenous DBPs (N-DBPs) like halonitromethanes (HNMs). These 

conditions could also influence transformations of other DBP precursors (e.g., bromide, activated 

aromatic systems). The formation of bromate, for example, is influenced by both O3 and •OH during 

multi-stage oxidation processes involving bromide, hypobromite, and oxybromine intermediates (von 

Gunten and Hoigné 1994). The presence of bromide can also affect the speciation of organic DBPs.  

Apart from bromate, most studies in the literature have investigated the overall impact of the 

ozonation process on DBP formation without taking into consideration the influence of •OH reactions. 

Limited studies differentiated the effects of changing O3 and •OH exposures especially on organic 

DBP formation. Singer et al. (1999) demonstrated that there was no consistent trend for the effect of  
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ozonation pH on chlorination DBPs such as trihalomethanes (THMs), haloacetic acids (HAAs), 

dichloroacetonitrile (DCAN), trichloronitromethane (TCNM), and chloral hydrate (CH). However, 

Shan et al. (2012) showed an increase in HNMs and THM formation at an ozonation pH of 8 

compared to pH 6. Kleiser and Frimmel (2000) showed a less effective removal of THMs and 

adsorbable organic halogen (AOX) formation potentials in the •OH-dominated H2O2/UV process 

compared to ozonation. In addition, when O3 and O3/H2O2 processes were compared, Yang et al. 

(2012a) showed only a 5% variation in THM formation and an inconsistent trend in HAA and TCNM 

formation. The authors also observed an enhanced formation of haloacetonitriles (HANs), CH, and 

haloketones (HK) with O3/H2O2 treatment followed by chlorination.  

Despite these studies, it still remains ambiguous whether ozonation at conditions of higher O3 or •OH 

exposures would improve removal of DBP precursors. Additional evidence is needed to confirm 

which oxidation pathway will assist water treatment plant operators in improving their control over 

regulated and emerging DBPs. Moreover, there is limited knowledge about the effect of oxidant 

dynamics during ozonation on formation of N-DBPs even though they are identified to be more toxic 

than their carbon-based DBP (C-DBPs) analogues (Plewa et al. 2008). Additionally, although 

ozonation before chlorination has been shown to reduce formation of the regulated THMs and HAAs 

(Hua and Reckhow 2013), it may potentially transform NOM into forms that render them capable of 

producing more toxic DBPs (Stalter et al. 2010) after chlorination. These effects may not be easily 

determined using conventional analytical techniques. For this purpose, recent studies have shown that 

chemical analysis of DBPs can be complemented with bioanalytical tools such as in vitro bioassays 

to gain a better understanding of the transformations and toxicity that may occur after treatment (Farré 

et al. 2013, Lyon et al. 2014b, Neale et al. 2012). These tools may also be useful in determining the 

effects of varying ozonation conditions on the quality of the final disinfected water. 

This chapter shows the effects of changing O3 and •OH exposures prior to chlorination on formation 

potentials of AOX, N-DBPs such as HANs, HNMs, and haloacetamides (HAMs) and the C-DBPs 

THMs, HAAs, CH, and HKs. In vitro bioassays were used to assess cytotoxicity, genotoxicity, and 

oxidative stress of the treated water. Thus, a holistic approach was applied to determine the overall 

impact of ozone and •OH oxidation on the quality of water post-disinfected with chlorine in terms of 

known DBPs, AOX, and associated biological effects.  
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5.2. Experimental methods 

5.2.1. Water sample 

The settled water used in this study was representative of 9 sources with similar character treated at 

drinking water plants throughout South East Queensland (SEQ), Australia (Lyon et al. 2014a)  and 

was collected after coagulation and sedimentation from one of the plants. The treatment plant’s source 

water originates from a catchment area (88 km2) which introduces organic matter comprised mostly 

of allochthonous, plant- and soil-derived material. Across the 9 sources, dissolved organic carbon 

(DOC) and specific UV absorbance (SUVA) were 3.9 ± 0.5 mg/L and 1.6 ± 0.1 L/mg-C·m, 

respectively. Differences in DBP formation potentials were also minimal (e.g., THMs and HANs had 

relative standard deviations of 22 and 30%, respectively) as shown in Figure 5.1. Thus, it is likely 

that the findings from the study of this water would be applicable across the SEQ region. 

 

Figure 5.1. Comparison between DBP formation potentials of settled water sample used in this study 

and of samples taken from 9 different drinking water treatment plants (WTPs) in South East 

Queensland, Australia.  
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To obtain a stock solution of organic matter that could be used for a series of ozonation experiments, 

the settled water was concentrated by reverse osmosis (RO). The RO system (Biopure 962, QLD, 

Australia) included two polyamide spiral wound membranes (RE-2521BE, Biopure, QLD, Australia), 

three polyspun sediment filters (0.5, 1, 5 µm) (Hydrotwist, Australia) and two cation exchange resin 

cartridges containing Tulsion T-42 strong cation exchange resin in Na+ and H+ form (Thermax, India). 

Prior to use of the system, cation exchange resins were rinsed with deionized water for about one 

week until no impurities were detected in the filtered water by absorbance and fluorescence 

measurements. The 1000 L settled water was first passed through the sediment filters once and 

collected in 200 L reservoirs. The RO system was operated until 20 L of concentrate was collected. 

The concentrate was then stored in high density polyethylene bottles (QHFSS, QLD, Australia) and 

frozen until use. The characteristics of the source settled water and RO concentrate are shown in 

Table 5.1. The RO concentrate contained 181 ± 3 mg/L DOC, 6.0 mg/L DON, and 3.2 ± 0.1 mg/L 

bromide. Iodide was below the reporting limit of 0.1 mg/L. Because of the decrease in pH with use 

of cation exchange resins in H+-form, no inorganic carbon was detected in the concentrate. To show 

that the concentration process did not significantly alter the characteristics of DBP precursors in the 

source settled water, volatile DBP formation potentials (in µmol/mmol C) of a reconstituted RO 

concentrate were compared to those in the settled water sample (Table 5.2). It can also be noted that 

concentration factors of dissolved organic carbon and nitrogen are 37 and 20, respectively. The lower 

concentration factor for organic nitrogen is possibly due to loss of low molecular-size organics during 

NOM isolation (Gjessing et al. 1999, Sun et al. 1995). The lost organic nitrogen fractions could also 

be precursors of HANs as observed in the lower DBP formation potential compared to the actual 

sample. 

 

Table 5.1. Settled water and RO concentrate characteristics*  

Parameter (units) 
Original settled water sample 

(feed water) 
RO concentrate 

DOC (mg C/L) 4.8±0.1 181±3 
DON (mg N/L) 0.3 6.0 

SUVA 254 (L/mg-C·m) 1.7 1.9±0.1 
Inorganic carbon (mg C/L) 2.5±0.1 <0.5 

Bromide (mg/L) 0.1 3.2±0.1 

Iodide (mg/L) <0.1 <0.1 

*error bars correspond to mean absolute deviation from duplicate measurements 
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Table 5.2. Comparison of volatile DBP formation potentials (µmol/mmol C×102) of original settled 

water (4.8 mg/L DOC) and reconstituted water samples (19.5 mg/L DOC) 

DBPs 
Original settled water 

sample 
Reconstituted sample 

Trihalomethanes (THM4) 295 280 
Trichloromethane (TCM) 206 201 

Bromodichloromethane (BDCM) 74 68 
Dibromochloromethane (DBCM) 15 11 

Tribromomethane (TBM) 0.8 0.4 
Haloacetonitriles (HAN4) 30 17 

Trichloroacetonitrile (TCAN) 0.8 0.3 
Dichloroacetonitrile (DCAN) 23 13 

Bromochloroacetonitrile (BCAN) 5.0 3.7 
Dibromoacetonitrile (DBAN) 1.0 0.5 

Chloral hydrate (CH) 16 16 
Halonitromethanes (THNM) 1.4 0.7 

Trichloronitromethane (TCNM) 0.9 0.5 
Tribromonitromethane (TBNM) <0.02 0.2 

Haloketones (HK) 16 11 
1,1-dichloropropanone (11DCP) 1.0 0.8 

1,1,1,-trichloropropanone (111TCP) 15 11 
Trihaloacetamides (THAM) 6.6 7.1 
Trichloroacetamide (TCAM) 3.5 3.6 

Bromodichloroacetamide (BDCAM) 3.1 2.0 
Dibromochloroacetamide (DBCAM) < 0.1 1.5 

 

5.2.2. Batch ozonation experiments 

Experiments were performed as batch experiments mixing 1.2 µm GF/C (Whatman, UK) filtered 

reconstituted water with ozone stock solutions. Reconstituted water was prepared by mixing 

deionized water (MilliQ A10 Advantage, Millipore, Australia) with RO concentrate to a DOC 

concentration of 17 ± 2 mg/L, a level that helped to improve detection of all targeted DBPs. The 

samples were buffered with 1 mM phosphate to ensure relatively constant pH (± 0.2 pH units) during 

ozonation. All ozonation experiments were carried out in triplicate and results are reported as mean 

± standard deviation. For this study, the following baseline conditions were defined: specific ozone 

dose = 0.75 mgO3/mg DOC, inorganic carbon concentration = 0 mg/mg DOC, pH = 7, temperature 
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= 22°C and bromide concentration = 20 µg Br-/mg DOC. Details on preparation of ozone stock 

solutions (1 – 1.3 mM O3) are discussed previously in Section 4.2.1. 

In this study, the first set of experiments used samples with and without added tertiary butanol (t-

BuOH; 10 mM; Sigma-Aldrich, 99.6%, St. Louis, MO, USA) and hydrogen peroxide (H2O2; 15 mg 

O3/L; Merck, 30%, Darmstadt, Germany) to distinguish the effects of O3 and •OH reactions on DBP 

formation. To confirm these results, the second set studied the effect of varying pH levels (6, 7, 8) on 

ozonation using samples buffered with 1 mM phosphate (NaH2PO4·2H2O (>99%, Ajax Finechem, 

NSW, Australia) and Na2HPO4·2H2O (≥99.5%, Merck, Darmstadt, Germany)). The third set varied 

specific ozone dose (0, 0.4, 0.75, 1 mgO3/mg DOC) to determine the impact of having both O3 and 
•OH reactions on DBP formation. Ozone doses were adjusted in each experiment to simulate actual 

O3/DOC ratios of water utilities in SEQ. After all the ozone had reacted, samples were stored 

headspace free at 4°C for no more than 24 hours until conducting DBP formation potential tests.  

5.2.3. Characterization of water samples  

Dissolved organic carbon (DOC): The DOC was measured with a Shimadzu TOC-L total organic 

carbon analyser with a TNM-L total nitrogen analyzer unit and ASI-L autosampler (Shimadzu, Kyoto, 

Japan). The method reporting limit for DOC was 0.3 mg/L (measuring range = 0.3 to 25 mg/L). 

UV-Visible absorbance: UV-visible absorbance was measured from 600-200 nm in a quartz cuvette 

with a Varian Cary 50 Bio UV-Visible spectrophotometer. SUVA254 was calculated by multiplying 

the UV absorbance at 254 nm (cm-1) by 100 and then dividing by the DOC (mg-C/L) to obtain units 

of L/mg-C·m.  

Excitation Emission Matrix (EEM) fluorescence: Fluorescence measurements were performed in a 

quartz cuvette using a PerkinElmer LS-55 luminescence spectrometer (Perkin Elmer, Australia). 

EEM measurements were made from 200 – 400 nm excitation wavelengths and 280 – 500 nm 

emission wavelengths. Regional integration of the fluorescence spectra using R statistical software 

(R Foundation for Statistical Computing, Vienna, Austria) was used to classify components of NOM 

according to the regions of Chen et al. (2003).  

Aldehyde analysis: Formaldehyde, acetaldehyde, glyoxal and methyl glyoxal were extracted within 

1 week after ozonation of the sample. These aldehydes were extracted using EPA Method 556 

(Munch et al. 1998).  The following standards were used: formaldehyde (36.5 – 38% in water, Sigma-

Aldrich, St. Louis, MO, USA), acetaldehyde (≥99.5%, Sigma-Aldrich, Switzerland), glyoxal (40% 

in water, Sigma-Aldrich, Germany), methylglyoxal (40% in water, Sigma, Germany), 4-

fluorobenzaldehyde (surrogate standard, 98%, Aldrich, Hong Kong), and 1,2-dibromopropane 
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(internal standard, 97%, Aldrich, USA). In this method, the analytes were derivatized in aqueous 

solution to their corresponding pentafluorobenzyl oximes using O-(2,3,4,5,6-pentafluorobenzyl 

hydroxylamine hydrochloride (≥99.0%, Fluka, Switzerland) and were extracted using hexane (B&J 

GC2, Honeywell, Muskegon, MI, USA). The extracts were analyzed by GC/ECD. The method 

detection limit for the 4 aldehydes was 2 µg/L with recoveries ranging from 80 – 120%. 

Inorganic nitrogen: Ammonia, nitrite and total NOx were measured on a Lachat QuikChem8500 Flow 

Injection Analyzer (Hach Company, CO, USA) using Lachat QuickChem method 31-107-06-1-A. 

For further details, refer to Section 4.2.1.  

5.2.4. DBP Formation potential tests 

Formation potential tests were carried out in 250 mL headspace-free samples buffered at pH 7 with 

10 mM phosphate. The buffer was prepared from a mixture of KH2PO4 (99%) and NaOH (98%) both 

purchased from Chem-Supply, SA, Australia. The concentration of sodium hypochlorite (reagent 

grade, available chlorine 4 − 4.99%, Sigma-Aldrich, St. Louis, MO, USA) added was based on 

chlorine demand tests with the same water and aimed to have a residual of 1 – 2 mg/L as Cl2 after 24 

h to simulate realistic conditions. Prior to this, residual H2O2 for samples treated with O3/H2O2 was 

quenched using either equimolar concentrations of sodium sulfite (≥98%, Sigma-Aldrich, Japan) or 

excess sodium hypochlorite (Liu et al. 2003). The latter was used simultaneously for quenching H2O2 

and the excess for DBP formation potential tests. Chlorine residual in samples was measured using 

the N,N-diethyl-p-phenylenediamine (DPD) free chlorine colorimetric method (Hach, Loveland, CO, 

USA). After one day of contact time, samples were quenched of chlorine depending on the subsequent 

analytical fraction (i.e., L-ascorbic acid (≥99%, Sigma-Aldrich, China), sodium sulfite (≥98%, 

Sigma-Aldrich, Japan), and ammonium chloride (99.5%, Sigma-Aldrich, Japan) prior to extraction 

of neutral-extractable DBPs, AOX, and haloacetic acids, respectively). DBP formation potentials 

were normalized to the measured DOC of the water samples before ozonation and reported in 

µmol/mmol DOC to account for possible variability in preparing reconstituted water samples. For 

bioassays, 500 mL of ozonated samples were also subjected to 24-h formation potential tests with 

chlorine. The residual chlorine was quenched with equimolar concentrations of sodium thiosulfate 

(Na2S2O3·5H2O; 99.5%, Sigma-Aldrich, USA) (Farré et al. 2013, Yeh et al. 2014). 
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5.2.5. Analysis of disinfection byproducts 

The following volatile DBPs were analyzed in aqueous samples at pH 7 after duplicate extractions 

with methyl tert-butyl ether (MtBE; 99.9%, Sigma-Aldrich, USA): (a) four trihalomethanes (THM4: 

trichloromethane (TCM), dibromochloromethane (DBCM), bromodichloromethane (BDCM), 

tribromomethane (TBM)), four haloacetonitriles (HAN4: trichloroacetonitrile (TCAN), 

dichloroacetonitrile (DCAN), bromochloroacetonitrile (BCAN), dibromoacetonitrile (DBAN)), two 

haloketones (HK2: 1,1-dichloropropanone (DCP), 1,1,1-trichloropropanone (TCP)), two 

trihalonitromethanes (THNM2: trichloronitromethane (TCNM), tribromonitromethane (TBNM)), 

chloral hydrate (CH), and three trihaloacetamides (THAM; trichloroacetamide (TCAM), 

bromodichloroacetamide (BDCAM), and dibromochloroacetamide (DBCAM)). Iodinated DBPs 

(e.g., dichloroiodomethane, bromochloroiodomethane, dibromoiodomethane, chlorodiiodomethane, 

bromodiiodomethane, triiodomethane, chloroiodoacetamide, bromoiodoacetamide, and 

diiodoacetamide), and most other haloacetamides (e.g., dichloroacetamide, bromochloroacetamide, 

dibromoacetamide, and tribromoacetamide) were also measured but not detected in samples 

chlorinated after ozonation. The standards were purchased from different suppliers: THM4 

calibration mix (TCM, DBCM, BDCM, and TBM; 2000 µg/mL each in methanol, Supelco, 

Bellefonte, PA, USA), EPA 551B halogenated volatiles mix (BCAN, DBAN, DCAN, 1,1-DCP, 

1,1,1-TCP, TCAN, and TCNM; 2000 µg/mL each in acetone, Supelco, Bellefonte, PA, USA), CH 

(>99.5%, Sigma-Aldrich 15307, Belgium), and TCAM (99%, Aldrich 217344, Switzerland). The 

standards for TBNM and other THAMs were purchased with >99% purity from Orchid Cellmark, 

Canada. 1,2-dibromopropane (97%, Aldrich, USA) was used as the internal standard.  

As described by Farré et al. (2013), MtBE extracts containing the volatile DBPs and the internal 

standard were injected into an Agilent 7890A gas chromatograph equipped with two independent 

electron-capture detector (GC/ECD) (Agilent, USA) connected to a separate DB-5 and a DB-1 

Agilent column (30 m length ´ 0.25 mm inner diameter ´ 1.0 µm film thickness each) and two 

injectors. Pulsed splitless injection was used at 140 ºC. The oven temperature program started at 35 

ºC for 25 min, followed by three ramps to have a total analysis time of 81 min: (1) 100 ºC at 2 ºC/min 

(2 min holding time), (2) 200 ºC at 5 ºC/min, and (3) 280 ºC at 50 ºC/min. The ECD temperature was 

set at 300 ºC. The method reporting limit for all volatile DBPs was 0.1 µg/L (measuring range = 0.1 

– 200 µg/L) with recoveries normally ranging from 80% to 120%. Table 5.3 provides more details on 

the DBPs used. 
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Table 5.3. List of volatile DBPs analyzed in this study 

Compound Abbreviation Compound class GC retention 
time, min* 

trichloromethane TCM 

trihalomethane 
(THM) 

9.3 
dibromochloromethane DBCM 17.3 
bromodichloromethane BDCM 32.7 

tribromomethane TBM 44.8 
bromochloroiodomethane BCIM 48.1 

dibromoiodomethane DBIM 57.5 
dichloroiodomethane DCIM 37.0 
chlorodiiodomethane CDIM 60.2 
bromodiiodomethane BDIM 66.8 

triiodomethane TIM 72.4 
trichloroacetonitrile TCAN 

haloacetonitrile (HAN) 

13.9 
dichloroacetonitrile DCAN 18.8 

bromochloroacetonitrile BCAN 35.6 
dibromoacetonitrile DBAN 47.7 

chloral hydrate CH haloaldehyde 18.4 
1,1-dichloropropanone DCP haloketone (HK) 21.3 

1,1,1-trichloropropanone TCP 39.7 
trichloronitromethane TCNM halonitromethane (HNM) 30.6 
tribromonitromethane TBNM 50.0 

dichloroacetamide DCAM 

haloacetamide (HAM) 

59.5 
bromochloroacetamide BCAM 65.8 

trichloroacetamide TCAM 67.7 
dibromoacetamide DBAM 69.9 

chloroiodoacetamide CIAM 71.4 
bromodichloroacetamide BDCAM 71.6 

bromoiodoacetamide BIAM 74.6 
dibromochloroacetamide DBCAM 75.0 

tribromoacetamide TBAM 78.0 
diiodoacetamide DIAM 78.7 

* from DB-5 column; method reporting limit = 0.1 µg/L 

The haloacetic acids (HAAs) were classified into (i) trihaloacetic acids (THAAs) which included 

trichloroacetic acid (TCAA), bromodichloroacetic acid (BDCAA), and chlorodibromoacetic acid 

(CDBAA), and (ii) dihaloacetic acids (DHAAs) which included dichloroacetic acid (DCAA), 

bromochloroacetic acid (BCAA), and dibromoacetic acid (DBAA). These together with 

monochloroacetic acid (MCAA) and monobromoacetic acid (MBAA) were measured at Queensland 

Health Forensic and Scientific Services (QHFSS) based on EPA Method 552.3 (Domino et al. 2003) 

using an acidic, salted microextraction followed by derivatization with acidic methanol and GC/ECD 

analysis (Xie et al. 2002). The method reporting limit for all HAA species was 5 µg/L. Tribromoacetic 

acid was not analyzed because of its low stability during extraction with MtBE. 
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The analysis of AOX was based on previously reported methodologies (Farré et al. 2013, Stalter et 

al. 2016b, Yeh et al. 2014). In this method, 10 mL of quenched aqueous sample was first acidified 

with 10 µL of concentrated HNO3 (70%, Sigma-Aldrich, Australia). The acidified sample was then 

passed through two consecutive activated carbon cartridges (50 mg C in 3 mm ID Euroglass, CPI 

International, USA) using a 10 mL gas-tight Hamilton syringe. The cartridges were washed with 8.2 

g/L potassium nitrate (≥99%, Sigma-Aldrich, Australia) at a rate of about 5 mL/min to remove 

inorganic halides. The activated carbon was next transferred to sample boats for pyrolysis at 1000 ºC 

(in the presence of oxygen) using a Mitsubishi AQF-2100 Automated Quick Furnace unit connected 

to a Dionex ICS-2100 Dual Channel Ion Chromatograph system (Thermo Fisher Scientific, 

Australia). Using argon as a carrier gas, the halogens produced from pyrolysis were then reduced to 

halide ions in a 10 mL absorption solution (0.003% H2O2 with 1 mg/L phosphate). Chloride, bromide, 

and iodide ions were quantified by ion chromatography with method reporting limits of 12, 6, and 15 

µg/L, respectively. The commonly used linear range was up to 800 µg/L for bromide, 2000 µg/L for 

chloride, and 400 µg/L for iodide.  AOX is reported as a Cl equivalent concentration (µM as Cl), 

which refers to the sum of the equivalent concentrations of adsorbable organic chlorine, bromine, and 

iodine multiplied by the atomic mass of Cl.  

Bromide, iodide, and bromate were measured at QHFSS with a Metrohm 861 Advanced Compact 

Ion Chromatograph (Metrohm, Switzerland) equipped with a CO2 suppressor, a Thermo AS23 

column, Thermo AG23 guard column and a 50 µL sample loop. The eluent was a carbonate (4.5 mM 

Na2CO3)/bicarbonate (0.8 mM NaHCO3) mixture with a 1 mL/min flow rate and its conductivity 

suppressed using Metrohm’s chemical (100 mM H2SO4) and CO2 suppression modules. The method 

reporting limit for bromide, iodide, and bromate of QHFSS were 5, 100, and 10 µg/L, respectively.  

5.2.6. Sample preparation for bioassays  

The quenched chlorinated 500 mL samples were first acidified to pH 1.5 using sulfuric acid (98%, 

Merck, Darmstadt, Germany) followed by a solid phase extraction (SPE) using TELOS ENV 1g/6ml 

cartridges (Kinesis, QLD, Australia). It should be noted that samples used here (DOC = 19 mg/L) 

were already enriched 4 times compared to DOC of actual water samples (4.8 mg/L). The cartridges 

were conditioned with 20 mL each of MtBE, methanol (≥99.8%, Merck, Darmstadt, Germany), and 

MilliQ water adjusted to pH 1.5 with sulfuric acid, respectively. After sample loading, cartridges 

were dried with >99.998% nitrogen gas. The retained compounds were eluted with 20 mL methanol 

followed by 20 mL MtBE. The eluates were blown down to 200 µL, which generates a 2,500 

concentration factor for those DBPs completely recovered through the process. This extraction 
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procedure enriched only non-volatile DBPs while the more volatile compounds were likely lost 

during the blow-down step  (Neale et al. 2012). With the initial ~4-fold enrichment of DOC, the 

effects of treatment on the original settled water were highly magnified to the point of making any 

differences in biological effect more discernible. Extracts were stored at -80 °C and analyzed within 

4 weeks.  

5.2.7. Bioassays 

Four types of in vitro bioassays were used to target nonspecific and reactive endpoints. These together 

with the relevant reference compounds were the bacterial cytotoxicity (Microtox) or bioluminescence 

inhibition assay with V. fischeri using phenol  (Tang et al. 2013), the umuC bacterial reporter gene 

assay for genotoxicity using 4-nitroquinoline-1-oxide (Reifferscheid et al. 1991), the AREc32 MCF7 

human cell reporter gene assay for oxidative stress using t-butylhydroquinone (tBHQ) (Escher et al. 

2012), and the p53RE-bla HCT-116 human cell reporter gene assay for genotoxicity using 

benzo(a)pyrene (Yeh et al. 2014). 1% Methanol was used as negative control in the assay medium. 

Relative enrichment factors (REF) were calculated from the ratio of a 10,000 enrichment factor of 

sample (representing the combination of 4-fold DOC enrichment and 2,500 concentration factor by 

SPE) to the bioassay dilution factor (i.e., dilution of SPE extracts with assay medium by factor of 

100). Each sample was analyzed in an 8-point serial dilution. For Microtox, the 50% effect 

concentration (EC50) was derived from a log-logistic concentration-effect curve and corresponds to 

an REF which induces 50% of the maximum effect. For other bioassays, effect concentration (EC) is 

defined as induction ratio (IR) of 1.5 (ECIR1.5) which corresponds to the REF needed to elicit 1.5 

times induction of effect (e.g., production of luciferase for the AREc32 assay) compared to the 

negative control. Thus, water samples that have lower ECs are more toxic. The contribution of t-

BuOH to toxicity was not measured since it is expected to have been lost during SPE. Further details 

on the bioassays were reported previously (Farré et al. 2013, Neale et al. 2012, Yeh et al. 2014). 

5.3. Results and Discussions 

5.3.1. Effect of ozonation conditions on formation of known DBPs 

Figure 5.2 compares DBP formation potential of samples collected for three replicate experiments 

with and without previous ozonation at a specific O3 dose of 0.75 mg O3/mg DOC and pH 7 (columns 

labelled as “O3” and “No O3”). As expected, ozone increased the formation potentials of CH, HKs, 

and THNMs (Bond et al. 2011b, Krasner 2009, Singer et al. 1999, Yang et al. 2012a) by 192%, 133%, 

and 1079%, respectively.  
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Figure 5.2. Formation potentials (FP) of (a) C-DBPs and (b) N-DBPs in the presence and absence of 

t-BuOH and H2O2. Conditions: DOC = 17.2 ± 2.0 mg/L, specific ozone dose = 0.75 mgO3/mg DOC, 

pH = 7 (1 mM phosphate), t-BuOH = 10 mM, H2O2 = 1 mg/mg O3, temperature = 22±1 °C. HOCl 

DBP 24 h formation potentials tests at pH 7 were targeted to have a 1 – 2 mg/L Cl2 residual. Error 

bars depict standard deviation of 3 replicate experiments.  

 

The average concentration of other DBPs decreased in the following order: HAN4 (37%) ≈ THAA 

(37%) > THAMs (28%) ≈ THM4 (25%) > DHAAs (11%). Iodinated DBPs (I-DBPs) were all below 

detection limits which is in agreement with the study of (Allard et al. 2013) which showed ozonation 

of iodide to iodate preventing I-DBP formation.  

Differences in DBP formation are dependent on precursor characteristics and their reactivity towards 

O3. When ozone reacts with nitrogen-containing moieties such as amines, oxygen transfer 

intermediates (see Chapter 4) and possibly R-NO2 (McCurry et al. 2016) are formed which are 

potential THNM precursors. These remove the nitrogen source for HAN4 and THAM formation 

explaining the observed trends in these experiments. Moreover, an increase in NO3
--N concentrations 

(7.6 – 44.5 µg/L) was observed during ozonation, indicating the attack of ozone on the nitrogen atom 

of DON yielding a mixture of products including hydroxylamine, and nitrate, among others. This 
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observation is consistent with what was shown in the previous chapter. Ozonation of C-DBP 

precursors (e.g., phenol-type entities), on the other hand, occurs via a Criegee-type reaction where 

aromatic rings are cleaved forming muconic-type and aliphatic products (Wenk et al. 2013) including 

precursors of CH and HKs (see Section 2.6.2). This is reflected in a measured decrease in SUVA 

from 1.88 L/mg-C·m in the source water down to 0.88 L/mg-C·m after ozonation at 0.75 mg O3/mg 

DOC (Figure 5.3a). At this same specific ozone dose, an 80% decrease in fluorescence intensities of 

humic and fulvic acid-like peaks was also observed (Figure 5.3b). During this process, electron-rich 

constituents of NOM are oxidized leading to fewer halogenation sites (Westerhoff et al. 2004) that 

are necessary for THM and HAA precursors. The oxidized NOM also becomes more hydrophilic 

resulting in a large decrease in THAAs whose precursors are known to be more hydrophobic 

compared to those of THMs and DHAAs (Hua and Reckhow 2007a). This increase in hydrophilicity 

also enhanced formation of bromine-containing DBPs such as DBCM, TBM, DBAA, CDBAA, 

DBAN, TBNM, and DBCM (Table 5.4) from oxidation by both O3 and •OH. The influence of each 

oxidant on DBP formation was then distinguished by addition of t-BuOH and H2O2 to represent O3-

and •OH-dominated conditions, respectively. 

5.3.1.1. Addition of tertiary butanol and H2O2 

Figure 5.2 shows that ozonation of water samples in the presence of t-BuOH decreased the formation 

potentials of both C- and N-DBPs compared to O3 with H2O2 and O3 alone, the latter containing a 

mixture of molecular ozone and •OH. The results confirm that reactions of ozone decreased 

nucleophilic centers of NOM available for chlorine substitution (Westerhoff et al. 2004). They also 

support the observations of Wenk et al. (2013) that O3 reactions resulted in NOM with lower electron-

donating capacity compared to non-selective oxidation with •OH. The average formation potentials 

of each DBP species are presented in Table 5.4. It should be noted that in the presence of NOM, t-

BuOH is less likely to react with ozone (k = 3´10-3 M-1s-1)  (Reisz et al. 2014). This was apparent 

from lower DBP formation potentials produced from samples treated with O3/t-BuOH compared to 

O3 only and O3/H2O2. Control experiments using ozonated t-BuOH in pure water were performed to 

investigate DBP formation related to t-BuOH. In pure water, TCM and AOX concentrations produced 

from ozonated t-BuOH were only about 15% of the formation potentials observed for water samples 

treated with O3/t-BuOH. In the presence of NOM, this percentage is expected to be much lower. 

Ozonation of t-BuOH alone, however, may form acetone and butan-2-one (Reisz et al. 2014) and •OH 

scavenging may form formaldehyde (Nöthe et al. 2009). These compounds can possibly act as 

precursors of HKs including 1,1,1-TCP and 1,1-DCP whose respective concentrations after ozonation 
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Figure 5.3. Changes in (a) SUVA, (b) fluorescence of fulvic acid- (FA) and humic acid (HA)-like 

EEM regions, and (c) chlorine demand of samples after ozonation for different oxidant exposures. 

Error bars depict the standard deviation of 3 replicate experimental results. Reported fluorescence 

measurements (R.U. = Raman Units) were taken from samples diluted 4-fold.  
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of t-BuOH in pure water were 72% and 21% higher than the formation potentials of water samples 

treated with O3/t-BuOH. As can be seen from Figure 5.2, this possible increase in DBP formation 

potentials was not apparent in the actual water sample due to competing reactions with more reactive 

NOM, producing less HKs compared to O3 only and O3/H2O2 conditions. This strongly suggests that 

t-BuOH does not contribute to further DBP formation in our water sample. 

In terms of THM4, addition of t-BuOH caused a further 34% decrease in their formation potential 

compared to ozonation without t-BuOH. This implies that t-BuOH improved the reaction of O3 

towards THM precursors which are often correlated with hydrophobic fractions containing aromatic 

carbon and this is reflected in decreased fluorescence at the humic and fulvic acid-like regions (Figure 

5.4). When O3/H2O2 was used, THM4 formation potentials after subsequent chlorination increased 

by 50% relative to O3 only and were almost equal to those in samples without O3. Such an increase 

is consistent with the increased SUVA and fluorescence observed in O3/H2O2 treatments compared 

to ozone alone (Figures 5.3a and 5.3b).  

The results for HAAs were similar to those observed for THM4. Relative to ozonated samples without 

H2O2, THAA and DHAA formation potentials were higher by about 50% after O3/H2O2 treatment. 

On the other hand, addition of t-BuOH during ozonation lowered THAA and DHAA formation 

potentials by 50% and 35%, respectively. These findings are reflected in the decrease of chlorine 

demand when O3 reactions were favored over •OH reactions (Figure 5.3c). For example, ozonated 

samples without t-BuOH had a chlorine demand of 12.3 mg/L while this value was reduced to 10.1 

mg/L in those ozonated samples to which t-BuOH was added.    

Although the levels of CH and HKs after chlorination increased with ozonation as a result of increased 

aldehyde and methyl ketone species, their formation potentials were still lower with O3/t-BuOH 

(CH=0.09; HK=0.17 µmol/mmol C) than those treated with O3/H2O2 (CH=0.64; HK=0.36 

µmol/mmol C). In the presence of t-BuOH, CH decreased by 79% and HKs by 35% compared to 

samples ozonated without t-BuOH. These findings suggest that •OH radicals are able to react with 

O3-refractory moieties of NOM leading to formation of more CH and HK precursors. This is 

demonstrated in lower acetaldehyde concentrations measured after ozonation in the presence of t-

BuOH than with H2O2 (Figure 5.5).  
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Figure 5.4. Example fluorescence EEM plots showing the influence of O3 and •OH on NOM 

characteristics. 

 

Figure 5.5. Correlation between acetaldehyde formation after ozonation and chloral hydrate 

formation after subsequent chlorination of the same sample. Conditions: DOC = 18 mg/L; specific 

ozone dose = 0.75 mg O3/mg DOC. 
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The observed trends for THM4, HAAs, CH, and HKs also occurred for N-DBPs pertaining to the 

groups of HAN4 and THAMs. The formation potentials of HAN4 were reduced by 53% in the 

presence of t-BuOH while in presence of H2O2, the reduction was 29% lower. The results shown here 

were consistent with the findings of Molnar et al. (2012b) who showed that •OH reactions generated 

from TiO2-catalyzed ozonation resulted in an increase in hydrophilic NOM fractions, which are 

known to contain HAN precursors. In terms of THAMs, which can be formed from hydrolysis of 

HANs (Glezer et al. 1999) or from other HAN-independent reactions (Huang et al. 2012), addition 

of t-BuOH tends to improve reduction of THAM formation potentials relative to ozonation without 

t-BuOH. With O3/H2O2, the formation potentials were even higher compared to samples not treated 

with ozone. The differences between these treatments, however, showed weak statistical significance 

due to large deviations arising from relatively low THAM concentrations.  

The differences between THNM formation potentials (sum of TCNM and TBNM) in samples treated 

with and without t-BuOH and H2O2 were not markedly significant (p=0.06) due to contrasting 

changes in concentrations of TCNM and TBNM (Table 5.4). TCNM concentrations were lower in 

ozonated samples with either t-BuOH or H2O2. At these conditions, a rupture of the C-N bond to form 

inorganic nitrogen is likely such that HNM formation is minimized regardless of whether the reaction 

proceeds via the O3 or •OH pathways. This mechanism is supported by previous studies where 

ozonation reactions with organic nitrogen were observed to yield nitrate and ammonia as end 

products, respectively (Berger et al. 1999, Le Lacheur and Glaze 1996) (see also Chapter 4). The 

results here also demonstrate that O3 reactions are mainly responsible for formation of TCNM 

precursors (e.g., nitroalkanes), mostly coming from primary and secondary amines (McCurry et al. 

2016). At high ozone exposures, the nitromethane intermediate can decrease with concomitant 

production of NO3
-, resulting in lower TCNM formation potential with O3/t-BuOH compared to 

ozonation without t-BuOH. With the addition of H2O2, TCNM levels were lower (compared to both 

O3 and O3/t-BuOH) due to the limited O3 exposure for reaction of primary oxidation intermediates to 

produce nitromethane. At that condition, TCNM formation was still formed likely due to C-C 

cleavage from •OH reactions consequently releasing chloropicrin precursors (McCurry et al. 2016) 

and/or reactions of other oxidizing radical species from O3 decomposition (e.g., O•-) as proposed by 

Shan et al. (2012). Significant differences were observed for TBNM (p<0.05). Compared to ozonation 

alone and in the presence of H2O2, TBNM formation potential was higher for ozonated samples 

containing t-BuOH. This is a result of an increased HOBr/OBr- concentration, which enhances 

bromine substitution into nitroalkane groups. The changes in percent bromine substitution factors 

after ozonation are illustrated in Figure 5.6. These values were calculated from the ratio of the molar 

concentration of bromine incorporated in one DBP group to the total molar concentration of chlorine 
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and bromine in that group (Hua and Reckhow 2013). Less TBNM was found in samples containing 

H2O2 most likely due to the reduction of HOBr/OBr- to Br- by H2O2
 as reported by von Gunten and 

Oliveras (1998). Similar trends were observed for other bromine-containing DBPs including DBCM, 

TBM, DBAN, TBNM, DBCAM, DBAA, and CDBAA. 

 

Figure 5.6. Effect of ozone and •OH pathways on percent bromine substitution of C- and N-DBPs 
following subsequent chlorination. %Bromine substitution (Hua and Reckhow 2013) for each DBP 
group was calculated as follows: 

THM4		 = 	
BDCM + 2 DBCM + 3 TBM

3	×	 TCM + BDCM + DBCM + TBM
×	100 

HAN4			 = 	
BCAN + 2 DBAN

3	×	 TCAN + 2	×	 DCAN + BCAN + DBAN
×	100 

THNM2 = 	
3×[TBNM]

3×( TCNM + TBNM )
×	100 

THAA		 = 	
BDCAA + 2 DBCAA

3	×	 TCAA + BDCAA + DBCAA
×	100 

DHAA		 = 	
BCAA + 2 DBAA

2	×	 DCAA + BCAA + DBAA
×	100 

THAM		 = 	
BDCAM + 2 DBCAM

3	×	 TCAM + BDCAM + DBCAM
×	100 

 

5.3.1.2. Ozonation pH 

The changes in formation potentials with varying ozone and •OH exposures were confirmed using 

ozonation conditions at differing pH. Consistent with our earlier results, formation potentials of C-

DBPs were found to be lower at pH 6 where O3 exposures are higher compared to pH 8 (Figure 5.7). 

Unlike with the addition of t-BuOH and H2O2, changes in C-DBP formation potentials as a result of 
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varying ozonation pH were relatively small. This is due to the opposing effects of O3 exposure and 

reactivity of C-DBP precursors (e.g., phenol moieties) with O3 at differing pH (see Section 2.6.2). It 

is expected that O3 would be more reactive with phenolic moieties at higher pH, but such reaction 

will be limited by the fast hydroxide-initiated O3 decomposition reactions (von Sonntag and von 

Gunten 2012).  

Compared to chlorination of non-ozonated samples, THM4 formation potentials decreased by 35% 

when samples ozonated at pH 6 were subsequently chlorinated to achieve the same target residual. 

When ozonation was carried out at pH 8, THM4 formation potential was 20% higher than at pH 6. 

This could be the result of having low O3 exposures, •OH reactions with aromatic structures in NOM 

(kapp(•OH+phenol) = 1´1010 M-1s-1 (Buxton et al. 1988)), and transformation products that are more 

susceptible to halogenation with chlorine (Kleiser and Frimmel 2000, von Gunten 2003b). Kleiser 

and Frimmel (2000) also proposed that •OH attack on NOM via H-abstraction of aliphatic structures 

and reactions with oxygen and peroxyl radicals may produce alcohol or keto-groups which react with 

chlorine to form THMs (Kleiser and Frimmel 2000).  

A similar trend was observed for HAAs but with a higher increase at pH 8 for DHAAs (31%) 

compared to THAAs (21%). This difference could be related to the change in content and structure 

of HAA precursors. At higher ozonation pH, more hydrophilic NOM fractions could form which are 

known precursors of DHAA. In a study by Molnar et al. (2012a), ozonation at 3 mg O3/mg DOC of 

a raw water sample at pH 10 compared to pH 6 increased the hydrophilic NOM fraction to 90%. This 

fraction may contain β-dicarbonyl acid species which are important in DHAA formation (Bond et al. 

2009a, Dickenson et al. 2008). 

The degradation products of •OH reactions with NOM (e.g., saturated compounds like aldehydes and 

ketones) are also important for formation of CH and HK as shown in the previous section. The 

formation potentials of these groups increased after ozonation, with this increase being stronger at 

pH 8 compared to lower pH. This provides further evidence that a shift from O3 to •OH pathway 

promotes formation of precursors of halogenated aldehydes (Figure 5.5) and ketones.  

After ozonation, HAN4 and THAM formation potentials decreased with concurrent increase in 

THNM formation potential. However, across the ozonation pH levels used in this study, no significant 

differences were observed for the N-DBPs analyzed. The results may imply that the change in O3 and 
•OH exposures at the pH 6 – 8 may be insufficient to cause dramatic change in precursor 

concentrations as compared to exposures obtained through addition of t-BuOH and H2O2. The results 

were also an indication of the contrasting effects of O3 exposure and reactivity of N-DBP precursors 

(e.g., amines). Lower pH would mean an increase in O3 exposure but a decrease in rate constant of 
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amines with ozone (von Sonntag and von Gunten 2012) (Section 2.6.2). The results may also have 

an implication on the nature of organic nitrogen present in the sample. Shan et al. (2012), for example, 

showed that most amino acids (except glycine and lysine) and amino sugars did not cause an apparent 

increase in the yield of HNMs when ozonation pH was increased from pH 6 to 8.  

 

Figure 5.7. Formation potentials of (a) C-DBPs and (b) N-DBPs at different ozonation pH. 

Conditions: DOC = 17.2 ± 2.0 mg/L, specific ozone dose = 0.75 mgO3/mg DOC, buffer = 1 mM 

phosphate, temperature = 22 ± 1 °C. HOCl DBP 24 h formation potentials tests at pH 7 were targeted 

to have a 1 – 2 mg/L Cl2 residual. Error bars depict standard deviation of 3 replicate experiments. 

5.3.1.3. Transferred ozone dose 

Figure 5.8 shows the effect of increasing specific ozone dose on formation potentials of C- and N-

DBPs. It should be noted, however, that increasing the ozone dose may not completely differentiate 

the effects of ozone and •OH because, as shown in Figure 5.9, the exposures of both oxidants increase 

with dose. Thus, this section demonstrates the combined effects of ozone and •OH on formation 

potentials of DBPs. 

Ozonation at an initial low specific dose of 0.4 mg O3/mg DOC led to 20 – 40% lower formation of 

THM4, THAAs, DHAAs, HAN4, and THAMs after chlorination compared to non-ozonated samples 

that were chlorinated to achieve the same target residual. When the ozone dose was increased, no 

statistically significant effect was observed for THM4. This could be a result of complete 
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consumption of chlorine’s reactive sites at the lowest specific O3 dose as well as the competing effects 

of O3 and •OH reactions, (i.e., O3 reactions minimize THM formation while •OH reactions form more 

precursors). Although bromine-containing THMs increased after ozonation, only slight variations in 

their formation potentials were observed when ozone dose was increased (Table 5.4).  

HAA precursor concentrations were also reduced during initial low dose ozonation. However, at 

higher specific ozone doses, THAA and DHAA formation potentials appeared to increase slightly. 

From 0.4 to 1 mg O3/mg DOC, concentrations of THAAs increased by 15% while those of DHAAs 

increased by 22%. Between the two groups and at all specific ozone doses, THAA formation 

potentials were lower than those of DHAAs because of the more hydrophobic nature of the former 

(Hua and Reckhow 2007a). The same rationale applies for higher reduction of THAA formation 

potentials at the same 0.75 mg O3/mg DOC ozone dose (37%) compared to THM4 (25%). 

 

Figure 5.8. Formation potentials of (a) C-DBPs and (b) N-DBPs at different specific ozone doses. 

Conditions: DOC = 17.2 ± 2.0 mg/L, pH =7 (1 mM phosphate), temperature = 22 ± 1°C. HOCl DBP 

24 h formation potentials tests at pH 7 were targeted to have a 1 – 2 mg/L Cl2 residual. Error bars 

depict standard deviation of 3 replicate experiments. 



Chapter 5 

 
 

- 112 - 

 

Figure 5.9. Increase in O3 and •OH exposures during ozonation of reconstituted  RO concentrate with 
increase in specific ozone dose. Conditions: DOC = 20 mg/L, DON = 0.7 mg/L, pH = 7, temperature 
= 22 ± 1°C; Ozone exposures were measured using the indigo method while •OH exposures were 
indirectly determined through decay of para-chlorobenzoic acid (1 µM) (Elovitz and von Gunten 
1999). 
 
The formation potentials of CH and HK were shown to increase at higher ozone doses. Compared to 

samples without ozone, CH and HK increased by 137 to 209% and 64 to 190% from 0.4 to 1 mg 

O3/mg DOC, respectively. These results demonstrate the strong contribution of both O3 and •OH in 

the formation of aldehydes and methyl ketone precursors which caused an increase in CH and HK 

formation. The increases in aldehyde concentrations are presented in Figure 5.10. These results, 

together with those observed at different ozonation pH, show that ozonation at lower doses and pH 

may be necessary for better control of C-DBP formation.  

Ozonation of dissolved organic nitrogen with increasing dose may result in a mixture of oxidized 

amines, nitriles, and amides (Chapter 4). The formation potentials of HAN4 and THAMs decreased 

30 to 41% and 20 to 32%, respectively, when the specific ozone dose increased from 0.4 to 1 mg 

O3/mg DOC. Although the differences in concentrations after ozonation did not reach statistical 

significance (p>0.05), the decreasing trend in formation potentials at higher ozone dose suggests 

favorable oxidation of HAN4 and THAM precursors to nitroalkane groups which in turn promotes 

THNM formation (Huang et al. 2012, McCurry et al. 2016, Yang et al. 2012b). These reactions may 

explain the significant increase in THNM formation potentials from 0.005 to 0.060 µmol/mmol C 

when ozone dose was increased.  
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Figure 5.10. Aldehyde formation as a function of specific ozone dose.  

Since bromate formed during ozonation is among the DBPs of most interest, it was also measured 

after ozonation at different conditions. Both O3 and •OH radical reaction pathways were reported to 

significantly affect bromate formation through mechanisms involving oxidation of bromide and 

bromite by molecular O3 and oxidation of intermediate oxybromine species by •OH (von Gunten and 

Hoigné 1994). Figure 5.11 shows bromate concentrations during ozonation at various specific ozone 

doses, bromide and inorganic carbon concentrations, and in the presence of t-BuOH and H2O2. 

Bromate increased with increasing specific ozone dose and bromide concentrations. When inorganic 

carbon was increased from 0 to 6 mg/mg DOC at the same specific ozone dose (0.75 mg O3/mg DOC) 

and bromide concentration (20 µg Br-/mg DOC), bromate increased from 0.01 to 0.05 mg/L due to 

reactions of bromide and hypobromite with ozone, •OH, and carbonate radicals formed from •OH 

scavenging by HCO3
-/CO3

2- (von Gunten and Hoigné 1994). In natural waters, a higher inorganic 

carbon can elevate pH which might favor bromate formation by the •OH pathway. In the presence of 

t-BuOH and H2O2 at 0.75 mg O3/mg DOC and the same bromide concentration (20 µg Br-/mg DOC), 

no bromate was formed which is similar to the observations of Gillogly et al. (2001). H2O2 reduces 

HOBr to Br- while t-BuOH can scavenge available •OH. Since no bromate was found after ozonation 

with t-BuOH, the •OH pathway, therefore, played an important role in bromate formation in our water 

sample. It should be noted that the reported bromate concentrations in our study came from 

reconstituted water samples (DOC = 18 mg/L) which are about 4 to 10 times more concentrated than 
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commonly encountered in water treatment plants where the resulting bromate concentrations would 

typically be much lower.  

 
Figure 5.11. Bromate concentrations at different specific ozone dose (0 – 1.3 mgO3/mg DOC), 

bromide concentrations (20 – 70 µg Br-/mg DOC), inorganic carbon (IC) concentrations (0 – 6 mg/mg 

DOC), and in the presence of t-BuOH (10 mM) and H2O2 (1 mg/mg O3). Baseline conditions: DOC 

= 18 mg/L as C, pH = 7 (1 mM phosphate), temperature = 22±1 °C, bromide = 20 µg Br-/mg DOC, 

IC = 0 mg/mg DOC, specific ozone dose = 0.75 mgO3/mg DOC. Bromide and IC concentrations were 

varied by spiking NaBr and NaHCO3, respectively. MRL = method reporting limit.  

 

5.3.2. Effect of ozonation conditions on formation of unknown byproducts  

One of the concerns during ozonation is the formation of unknown transformation products that may 

be associated with certain toxic effects. To address this, AOX and in vitro bioassays were conducted 

after the ozonated water had been chlorinated in the formation potential tests. 

Figure 5.12a shows the changes in AOX at different ozonation conditions which could be partially 

attributed to the largest constituents: THM4 at 29 – 42% and total HAAs at 16 – 22% across all 

experimental conditions in this study. The results were generally consistent with those observed for 

the sum of the measured DBPs, i.e., conditions that favor ozone over •OH reactions led to lower AOX 

formation potentials.  Figure 5.13 shows examples of changes in AOX distributions as a function of 

different oxidant exposure. After chlorination of O3/t-BuOH treated water, the AOX concentration 

(12.1 µmol/mmol C) was found to be lower than AOX from ozonation at ambient conditions (20.5 

µmol/mmol C). Higher AOX was found for O3/H2O2 treatment (25.0 µmol/mmol C) which was 11% 
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higher than AOX from samples not treated with ozone. AOX at pH 8 (21.4 µmol/mmol C) was also 

higher than AOX at pH 6 (18.0 µmol/mmol C). AOX formation potentials also had an initial decrease 

of 30% at 0.4 mg O3/mg DOC followed by an increase in concentrations in the range of 15.7 – 23.3 

µmol/mmol C with increasing specific ozone dose. This supports our hypothesis that the increase in 

DBP formation potentials with increasing ozone dose is due to •OH induced formation of halogen 

reactive organic matter fractions. This can be seen from a linear relation of AOX formation potentials 

with chlorine demand of samples ozonated at different conditions (Figure 5.14).  

Another notable outcome of ozonation at different O3 exposures is the change in unknown to known 

AOX ratio (UAOX/AOX) (Figure 5.12b). UAOX refers to the difference between the measured AOX 

and the organic halogen content of the measured DBPs. It was clearly shown that conditions that 

promote ozone reactions have higher UAOX/AOX values compared to conditions that promote •OH 

reactions. For example, samples ozonated with t-BuOH had a UAOX/AOX value of 50% while those 

treated with O3/H2O2 only had 27%. Ozonation at pH 6 resulted in a UAOX/AOX value of 60% while 

at pH 8, this ratio decreased to 52%. The gap between the total AOX and known AOX became closer 

when the %AOX accounted for by the measured THMs and HAAs was higher (Figure 5.15).  

 
Figure 5.12. Changes in (a) AOX and (b) unknown/known AOX after ozonation and subsequent 

chlorination (n=2). DOC = 16.4 ± 2.0 mg/L; first set of bars in each plot correspond to samples 

ozonated with and without t-BuOH and H2O2; the second set were treated at different ozonation pH 

values (buffered with 1 mM phosphate); the third set were ozonated with increasing specific ozone 

dose (0.4 – 1 mg O3/mg DOC). Error bars depict the mean absolute deviation. 
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Figure 5.13. Comparison of AOX distribution for samples treated with (a) no O3, (b) O3/t-BuOH, 

and (c) O3/H2O2. 
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Figure 5.14. Linear relationship of AOX formation potential (AOXFP) with chlorine demand 

 

 

Figure 5.15. Dependence of unknown AOX on %AOX accounted for by THMs and HAAs 
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The changes in reactivity of the organic matter towards chlorine after ozonation may also influence 

the overall toxicity of the treated water sample. A summary of the bioassay responses are presented 

in Figure 5.16. Symbols E1 – E6 correspond to the toxicity and AOX data of 6 ozonation experiments 

at different pH (6, 7, and 8) and specific ozone dose (0, 0.4, 0.75 and 1 mgO3/mg DOC). The points 

for O3/t-BuOH and O3/H2O2 were not included in the linear regression so as to have responses from 

water samples with relatively constant characteristics. Among the bioassays, the p53 assay was the 

only test to show a significant correlation between AOX and genotoxicity (p = 0.006; R2 = 0.87), i.e., 

the higher the AOX, the more genotoxic the water becomes. Since less AOX was produced when 

conditions favored ozone reactions, it also follows that genotoxicity could be lower at similar 

conditions. Other than non-volatile DBPs, genotoxicants causing the response may also include other 

oxidation products such as aldehydes and aldehyde-containing moieties which may potentially 

damage DNA and enzymes (Magdeburg et al. 2014, Petala et al. 2008).  

 

Figure 5.16. Relationship of AOX formation potentials to bioassay results (Microtox, umuC, 

AREc32, p53) of samples ozonated at different conditions prior to chlorination (n=2). Bioassay 

results show the range of effect concentrations (EC50 and ECIR1.5) in units of relative enrichment 

factor (REF). Numbered symbols (E) correspond to the results of 6 experiments, namely ozonation 

at different specific O3 doses (0, 0.4, 0.75 (also for pH 7), 1 mg O3/mg DOC) and pH (6, 8). Circle 

and inverted triangle symbols correspond to samples treated with O3/t-BuOH and O3/H2O2, 

respectively. Error bars depict the mean absolute deviation. 
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Despite the correlation found for the p53 assay, the differences in toxic response from the other 

bioassays were generally less pronounced. The toxicity of all O3/HOCl treated waters in our study 

remained relatively constant and within the commonly encountered precision of bioassay responses 

despite observed changes of AOX concentration with varying oxidant exposures. This suggests that 

the toxicological impact of AOX generated by a combination of ozone and chlorine compared to 

chlorine alone is insignificant. This is in contrast to studies evaluating other water treatment 

combinations (Farré et al. 2013, Reungoat et al. 2010). The study of Farré et al. (2013), for example, 

showed less variability in toxicity between samples treated with HOCl and NH2Cl. When source 

waters with different organic matter characteristics and concentrations were used (e.g., samples from 

conventional drinking water treatment plant and a desalination plant), large differences in effect 

concentrations were observed. Hence, neither organic matter changes nor DBP formation brought 

about by different ozone exposures is sufficient to elicit a statistically significant trend in toxicity or 

the toxicity assays used in this study are not as sensitive as AOX measurements when it comes to 

evaluating ozonation effects on organic matter transformation. 

5.4. Conclusions 

This study evaluated the effects of ozonation conditions on formation potentials of C-DBPs, N-DBPs, 

AOX, and associated toxicity after chlorine disinfection. From this study, the following conclusions 

can be drawn: 

• Ozonation at conditions favoring ozone over the •OH pathway promotes reduction of 

halogenated DBP formation potentials with subsequent chlorination. This observation also 

applies to DBPs that are known to form as a result of pre-ozonation and subsequent 

chlorination such as CH and HKs. Table 5.5 provides a summary of percent removals of DBP 

formation potentials during ozonation under ozone- and •OH-dominated conditions.  

• Increasing ozone dose without changing other conditions (e.g., pH, no addition of t-BuOH or 

H2O2) resulted in a mixture of effects brought about by additional O3 and •OH reactions. DBP 

formation potentials first decreased at the initial O3 dose but increased at higher doses due to 

the contribution of •OH in organic matter oxidation. 

• The results for AOX followed the trend for the known DBPs analyzed. Subjecting samples to 

conditions favoring ozone reaction pathway resulted in lower AOX formation potentials but 

a higher percentage of UAOX.  
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• In vitro bioassay results for p53 showed significant correlation with AOX formation. 

Although the toxic effects were not very prominent in this study, the observed differences 

imply that the degree of oxidation prior to chlorine disinfection could influence the overall 

toxicity of the treated water. No significant changes in toxicity were observed using Microtox, 

umuC and AREc32 bioassays.  

 

Table 5.5. Average percent removal of DBP formation potentials under ozone- and OH-dominated 

conditions* 

DBP 
O3 pathway Control (ozonated, pH 7, 

no t-BuOH and H2O2) 

•OH pathway 
pH 6 O3/t-BuOH pH 8 O3/H2O2 

THM4 35 50 25 22 -13 
HAN4 39 53 37 37 25 

CH -94 37 -192 -215 -361 
THNM -1028 -945 -1079 -915 -706 

HK -91 -51 -133 -131 -219 
THAM 37 35 28 18 -16 
THAA 43 68 37 32 4 
DHAA 20 42 11 -4 -34 
AOX 20 46 9 5 -11 

*calculated from DBP formation potentials of non-ozonated water sample 
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Biodegradability of DBP precursors after drinking 

water ozonation 

 

 
 

 

The results of the present chapter are based on the following peer-reviewed publication: 

de Vera, G.A., Keller, J., Gernjak, W., Weinberg, H.S., and Farré, M.J. (2016) Biodegradability of 

DBP precursors after drinking water ozonation. Water Research 106, 550-561. 

http://dx.doi.org/10.1016/j.watres.2016.10.022   
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6.1. Introduction 

Ozonation can be applied as an intermediate process to reduce organic disinfection byproduct (DBP) 

formation associated with drinking water chlorination (Hua and Reckhow 2013, Sedlak and von 

Gunten 2011). In Chapter 5, it was demonstrated that DBP precursor removal can even be enhanced 

using high ozone exposure conditions. During this oxidative treatment, ozone can significantly alter 

the structure and reactivity of natural organic matter (NOM) (Wenk et al. 2013) resulting in the 

formation of a mixture of compounds with lower molecular weight and aromaticity, and higher 

carboxylic acid functionality (Carlson and Amy 1998, Urfer et al. 1997). This treatment then increases 

the assimilable organic carbon (AOC) content (Hammes et al. 2006, Ramseier et al. 2011) which is 

of great concern for water utilities because of increased bacterial regrowth potential in distribution 

systems. On the other hand, biofiltration can take advantage of this process as a means of removing 

additional DBP precursors from the water prior to final disinfection, while at the same time reducing 

AOC. 

Several studies have shown that biofiltration can remove some DBP precursors and the associated 

chlorine demand as well as biodegradable organic carbon which includes products formed by 

ozonation in water such as aldehydes and carboxylic acids, among others (Chu et al. 2012, Gagnon 

et al. 1997, Krasner 2009, Speitel et al. 1993, Weinberg et al. 1993). This can be achieved because of 

the presence of biofilm (i.e., heterotrophic bacteria attached to a media) that utilizes biodegradable 

NOM as a carbon source for energy production (Urfer et al. 1997). The degree of NOM removal is 

affected by the characteristics of both the influent ozonated water and the biofilter. As clearly shown 

in the previous chapter, the ozonated water quality varies depending on whether ozonation conditions 

promote O3 over hydroxyl radical (•OH) reactions or vice versa. However, information about the 

effects of these conditions on biofiltration is currently missing in the literature. Moreover, filter 

media, biomass, and operational parameters such as empty bed contact time (EBCT) can impact the 

biofilter performance. For example, Melin and Odegaard (2000) evaluated the removal rate of influent 

ozonation byproducts aldehydes and aldo- and keto-acids as a function of EBCT. Several modelling 

studies attempted to gain a mechanistic understanding of the biodegradation kinetics of NOM 

(Gagnon and Huck 2001, Huck and Sozanski 2008). Huck et al. (1994) reported a linear relationship 

between the removal rate and filter influent concentrations (i.e., a first-order process) of the following: 

biodegradable and assimilable organic carbon, chlorine demand, and precursors of trihalomethanes 

(THMs) and adsorbable organic halogen (AOX). There are no published kinetic studies, however, in 

the literature describing the impact of combined ozone/biofiltration on the formation potentials of 

chloral hydrate (CH), haloketones (HKs) and the more toxic nitrogen-containing DBPs (Plewa et al. 

2008) such as halonitromethanes (HNM) which are the organic DBPs most commonly elevated when 
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treating ozonated waters with chlorine. If a first-order kinetics would hold true for these DBPs as 

well, water utilities might be able to predict and set biofiltration conditions that could control DBP 

formation during drinking water treatment. 

This chapter, therefore, evaluated (1) the effect of O3 and •OH reactions on the biodegradability of 

ozonated waters and (2) the reduction in formation potentials of different families of DBPs including 

THMs, haloacetic acids (HAAs), CH, HKs, haloacetonitriles (HANs), HNMs, and trichloroacetamide 

(TCAM) by ozone-biofiltration treatment with varying EBCT. These objectives were achieved by 

conducting ozone dosing experiments followed by batch biodegradation and once-through column 

experiments using anthracite and biological activated carbon (BAC) as media and subsequent 

chlorination. As little is known about biodegradation of DBP precursors and most biofiltration studies 

have only focused on removal of biodegradable organic carbon and ozonation by-products, this study 

provides important novel insights on the impact of ozonation and biofiltration on DBP precursors  

and subsequent byproduct formation in chlorinated drinking water. 

6.2. Materials and methods 

6.2.1. Water sample and bioactive media 

The water and bioactive media used in this study were obtained from drinking water treatment plants 

in South East Queensland, Australia (SEQ). The water sample was a reconstituted reverse osmosis 

(RO) concentrate of coagulated and settled surface water as described in Section 5.2.1. The 

concentrate was reconstituted to the desired dissolved organic carbon (DOC) for batch ozonation 

experiments prior to biodegradation. Reconstituted reverse osmosis water was used with the aim of 

having a more constant water quality throughout all ozonation and biofiltration experiments as water 

quality changes substantially in the region depending on rainfall events. The water sample showed 

similar characteristics (e.g., SUVA and specific DBP formation potentials) to other settled water 

samples taken from other treatment plants in the SEQ region (de Vera et al. 2015).  Two types of 

bioactive media were used: (i) anthracite (AN) with an effective size of about 1.2–1.3 mm and 

apparent density of 650 kg/m3 taken from the top layer of a rapid media filter which had been used 

for more than 5 years and (ii) granular biological activated carbon (BAC) with an effective size of 

0.7–0.9 mm and apparent density of 435 kg/m3  (ACTICARB GA1000N, Activated Carbon 

Technologies Pty Ltd, Australia) taken from the top layer of the post-O3 filter that had been in 

operation for more than two years. Adsorption would not, therefore, be expected to play a major role 

on NOM removal in either of these media. The filter media was taken from a plant which treats 

gravity fed water from a reservoir using the following process scheme: pre-ozonation, coagulation, 
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sedimentation, rapid media filtration, ozonation, BAC filtration, and chlorination. The schematic of 

the treatment plant is shown in Figure 6.1. 

 
Figure 6.1. Treatment processes employed in the advanced water treatment plant in South East 

Queensland supplying the biofilter media 

6.2.2. Experiments carried out 

Three sets of experiments were performed to investigate the biodegradability of DBP precursors at 

different ozonation and biodegradation conditions. The first set involved water samples treated with 

different O3 doses and subsequently exposed to bioactive anthracite. Details on preparation of ozone 

stock solutions (1 – 1.3 mM O3) are presented in Section 4.2.1. Appropriate volumes of the ozone 

stock solution were spiked into the water samples (pH = 7) to obtain the desired specific ozone dose, 

assuming 100% transfer efficiency. Ozone was allowed to fully decay prior to biological treatment. 

Bioactivity in these batch biodegradation tests was confirmed by measuring consumption of 

biodegradable organic carbon. A control experiment with 0.3 mM sodium acetate (DOC = 7.2 mg/L; 

>99%, Ajax Finechem, Australia) showed an 84% DOC removal after 8 days of exposure with the 

bioactive anthracite (Figure 6.2a). The second set involved column experiments using BAC and 

bioactive anthracite media fed with water ozonated with and without H2O2. These two sets of 

experiments evaluated optimization of the ozonation process for better NOM biodegradability. The 

third set of experiments focused on studying biofiltration performance by varying the EBCT of the 

BAC columns. For these column experiments, bioactivity was confirmed by constantly monitoring 

dissolved oxygen consumption by the bioactive media and removal of influent DOC. Similar to other 

studies (Evans et al. 2013, Liao et al. 2016, Persson et al. 2007, Pipe-Martin 2008, Rattier et al. 2014), 

DO measurements served as the indicator of oxygen consumed by microorganisms during respiration 

and an indirect proof of aerobic biological activity in the filters. 
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Figure 6.2. Effect of (a) phosphate and (b) bicarbonate addition on DOC removal during batch 

biodegradation tests. Conditions: specific O3 dose = 0.75 mgO3/mgDOC, volume of water sample = 

500 mL, mass of bioactive anthracite = 170 g, temperature = 22 ± 1 °C. Solutions were contained in 

amber-colored glass bottles.  

 

6.2.2.1. Batch biodegradation and column filtration 

Prior to biodegradation, ozonation experiments (pH 7) were performed on the water sample by adding 

ozone to create ozone to DOC ratios (mg/mg) ranging from 0.4 to 1. These samples were not buffered 

since preliminary results revealed that 1 mM phosphate (NaH2PO4·2H2O, >99%, Ajax Finechem, 

Australia and Na2HPO4·2H2O, ≥99.5%, Merck, Germany) and 4–9 mM NaHCO3 (>99.5%, Sigma-

Aldrich, USA) inhibited biodegradation of NOM (Figure 6.2a and 6.2b). Instead, the pH of the 

ozonated aqueous samples was readjusted to pH 7 using small quantities of 0.5 M HCl (Merck, 

Germany) prior to contact with the bioactive anthracite in order to mimic the actual influent pH during 

biofiltration in a full-scale plant. 500 mL of ozonated water sample was mixed with 170 g of bioactive 

anthracite with contact time of 7 days at ambient temperature.  

Column experiments (Figure 6.3) were also performed using bioactive anthracite and BAC. Filtration 

was carried out upflow to avoid bed compaction, clogging, and to obtain a more uniform distribution 

of organic matter through the filter media. The biofiltration system was comprised of 4 glass columns 

(two each for columns of non-ozonated and ozonated feed lines; internal diameter: 1 cm; length: 12 

cm; manufactured at University of Queensland Glassblowing Services) containing the bioactive 

media (bed volume = 6.5 mL), a multi-channel peristaltic pump (Sci-Q 323, Watson Marlow, USA), 

a dissolved oxygen (DO) probe (WTW, Germany), ozonated water as feed, and effluent collection 

bottles. The specific ozone dose employed for these experiments was 1.2 mgO3/mgDOC. Each 

biofiltration line was connected to the columns using Norprene tubing (Cole-Palmer, USA). 
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Biofiltration experiments were performed at room temperature (22 ± 1°C), influent water DO of 9.0 

± 0.8 mg/L and an EBCT of 11 minutes. To condition the media and equilibrate influent 

concentrations through the filter, 100 bed volumes of the ozonated water sample were pumped at a 

rate of 0.6 mL/min prior to sampling. The effluent for this conditioning step was discarded.  

D
O

 probe

DO probe

BAC/AN columns

Ozonated
water sample

Effluent collection bottles 

1 2 3

 

Figure 6.3. Schematic diagram of the bench-scale biofiltration column system. BAC = biological 

activated carbon, AN = anthracite. Performed under dark conditions (i.e., bottles and columns were 

completely covered with aluminum foil). 

6.2.2.2. Biofiltration of samples treated with O3/H2O2 

Ozone decomposition was varied by adding increasing H2O2 concentrations. Ozonation was 

conducted at a specific O3 dose of 1 mgO3/mgDOC with H2O2 concentrations ranging from 0 to 2 

mmol H2O2/mmol O3. Stock solutions of H2O2 (30%, Merck, Germany) were previously standardized 

spectrophotometrically at 240 nm (ε = 40 M-1cm-1) (Bader et al. 1988) while the H2O2 concentration 

in samples was determined using the method described by Nogueira et al. (2005). Prior to DBP 

formation potential tests and/or biofiltration, H2O2 was quenched by adding 1.4 g of MnO2 (≥ 99%, 

Sigma-Aldrich, Australia) to 1 L ozonated sample (Sarathy 2004). MnO2 was chosen as an adequate 

H2O2 quencher since it has been reported to not affect bacterial growth. For example, MnO2 

quenching of H2O2 did not interfere with AOC measurements, unlike other common quenchers such 

as catalase and sodium thiosulfate (Sarathy 2004). Figure 6.4 illustrates the removal of H2O2 after 

addition of MnO2. Bioactive anthracite and BAC were used separately as biofiltration media each 

with a 7 mL bed volume and 11 min EBCT. 
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Figure 6.4. Removal of H2O2 by addition of MnO2. Conditions: MnO2 = 1.4 g to 1 L sample treated 

with O3/H2O2; mixing time = 90 min; [H2O2]0 = 2 mmol H2O2/mmolO3; O3 dose = 10 mg/L. H2O2 

concentrations before and after MnO2 addition were confirmed from the absorbance at 450 nm which 

indicates the formation of red-orange peroxovanadium cation from the reaction of peroxide and 

vanadate (Nogueira et al. 2005).  

 

6.2.2.3.  Biofiltration at different EBCT values 

Each biofiltration line was connected to two BAC columns with a total bed volume of 12 mL. Three 

parallel lines were used for replicate measurements. Although the biomass concentration in the 

biofilters was not measured, bioactivity was confirmed through measurements of DO consumption 

and NO3
- evolution (Figure 6.5) due to the presence of nitrifiers as observed in a preliminary study. 

Effluent collection was performed at the lowest flow rate first (0.22 mL/min) and increased 

successively to the highest flow rate (4.0 mL/min) which corresponds to filtration at decreasing EBCT 

(ratio of bed volume to influent flow rate). Samples were collected before biological filtration and at 

the following EBCTs: 3, 5, 8, 11, 15, 19, 30, 39, and 55 min. In between sampling at the different 

EBCTs, mild backwashing was done using a sample-containing syringe connected online. After this 

step, at least 3 bed volumes of the ozonated sample were pumped through the columns and discarded. 

This volume was assumed sufficient to flush the sample used in a previous condition out of the 

columns. Biofiltered samples (250 mL) were collected in acid-washed amber-colored glass bottles 

and stored at 4 °C prior to subsequent analyses. Sample collection during column experiments was 

performed within a week to avoid possible changes in biomass and biofilm characteristics that may 

be a significant variable on NOM removal. A constant biological activity in the media was desired to 

be able to compare the reactivity of different precursors with changes in EBCT. 
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Figure 6.5. Changes in (a) oxygen consumption, and (b) inorganic nitrogen during biofiltration of 
ozonated water at different EBCTs. Conditions: ozone dose = 15 mg/L; bed volume = 12 mL; media 
= BAC; pH = 6.9; temperature = 22 ± 1 °C.  

6.2.3. DBP formation potential tests and analyses 

DBP formation potential tests were as described in previous studies (de Vera et al. 2015, Doederer et 

al. 2014, Farré et al. 2013) and elaborated in Section 5.2.4. In this test, sodium hypochlorite was 

added to samples buffered at pH 7 with 10 mM phosphate (target Cl2 residual after 24 h = 1 – 2 mg/L). 

After one day of contact time, residual chlorine was quenched with either L-ascorbic acid, ammonium 

chloride, or sodium sulfite depending on the subsequent extractions for volatile neutral-extractable 

DBPs, HAAs, or AOX, respectively. Volatile DBPs and HAAs in these aqueous samples were 

subsequently extracted with methyl tert-butyl ether (i.e., after acidic methanol methylation for 

HAAs). AOX was solid-phase extracted using activated carbon cartridges. Analyses of THMs and 

HAAs were done using gas chromatography with electron-capture detector, while analyses of AOX 

were performed using a combustion ion chromatography system. All procedures described here are 

presented in more detail in Section 5.2.5. Throughout this chapter, DBP formation potentials are 

reported as the average, with intervals corresponding to either standard deviation (n=3) or mean 

absolute deviation (n=2). 

6.2.4. Analytical methods 

6.2.4.1. Dissolved oxygen and inorganic nitrogen 

Influent and effluent DO concentrations were measured on-line in a gas tight flow through cell using 

a WTW Multi 3420 meter equipped with DO probe FDO 925 (DO measuring range specified by 

manufacturer = 0 – 20 mg/L, WTW, Germany). Ammonia, nitrite and total NOx (i.e., sum of NO2
- 

and NO3
-) were measured on samples collected before and after biofiltration by a Lachat 

QuikChem8500 Flow Injection Analyzer (Hach Company, USA) using Lachat methods 31-107-06-
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1-B (NH4
+), 31-107-04-1-A (NOx), and 31-107-05-1-A (NO2

-) (see Section 4.2.1 for more details).  

The method reporting limits (MRL; 3 ´ method detection limit (MDL) (NATA 2013); MDL = 

standard deviation of  at least 7 replicate analyses  of the lowest laboratory standard in reagent blank 

´ Student’s t-statistic for a 99% confidence level and n-1 degrees of freedom (USEPA 2010)) were 4 

µg/L for NH4
+-N (measuring range = 4 – 900 µg/L), 0.6 µg/L for NO2

--N  (measuring range = 0.6 – 

72 µg/L), and 4 µg/L for NOx-N (measuring range = 4 – 900 µg/L).  

6.2.4.2. Size exclusion chromatography (SEC) 

The molecular weight distribution of NOM in each water sample (untreated, ozonated, and 

biofiltered) was evaluated using a Shimadzu prominence LC-20AT high performance liquid 

chromatograph (HPLC, Shimadzu, Japan) equipped with a SIL-20A HT autosampler and a Toyopearl 

HW-50S SEC column (250 mm ´ 20 mm packing material; Tosoh, Japan). The unit was connected 

to a SPD-M20A diode array detector (UVD) and a GE Sievers 900 portable online total organic 

carbon analyzer (OCD) with an inorganic carbon remover (GE, USA). The retention times of eluted 

volumes were calibrated against polyethylene glycol standards (Agilent, UK) in order to convert to 

molecular weight. The analyses used a 25 mM phosphate mobile phase (pH 6.85), 1 mL/min flow 

rate, 1100 µL injection volume, 35 °C oven temperature, and 100 min analysis time. 

Separate measurements of DOC and UV absorbance at 254 nm were also performed with the water 

samples to complement the SEC results using the procedures described in Section 5.2.3.  

6.3. Results and Discussions 

6.3.1. Effect of ozonation and biodegradation on formation potentials of 

halogenated DBPs produced by subsequent chlorination  

6.3.1.1.  Ozonation 

Ozone is known to significantly alter NOM characteristics because of its reaction towards their 

electron-rich moieties which include activated aromatic systems, olefins, and non-protonated amines. 

These reactions favor the effectiveness of biofiltration if it follows ozone treatment and impact DBP 

formation by post-chlorination. The reactions of ozone with such moieties have been extensively 

studied in the literature (von Gunten 2003a, von Sonntag and von Gunten 2012) (see also Section 

2.6.2). Briefly, ozone reacts with phenolic compounds (Figure 6.6a) via an ozone adduct which 
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proceeds primarily to ring cleavage, formation of muconic-type compounds, and eventually resulting 

in aliphatic aldehydes and ketones (Hammes et al. 2006, Ramseier and von Gunten 2009).  

 

Figure 6.6. Impact of chlorination, ozonation, and biodegradation on DBP precursors: (a) phenolates, 
(b) olefins, and (c) amines. Biotransformation rules were taken from the University of Minnesota 
Biocatalysis/Biodegradation Database (https://umbbd.ethz.ch/)  (Gao et al. 2010). THMs = 
trihalomethanes, HAAs = haloacetic acids, CH = chloral hydrate, HK = haloketones, HANs = 
haloacetonitriles, TCAM = trichloroacetamide, THNM = trihalonitromethanes. Reactions were based 
on the following references: Deborde and von Gunten (2008), Hubner et al. (2015), McCurry et al. 
(2016), Wenk et al. (2013), Ramseier and von Gunten (2009), von Sonntag and von Gunten (2012). 

In our study, ozonation of the water sample (1 mgO3/mgDOC) caused an 11% decrease in DOC and 

a 56% decrease in SUVA (Figure 6.7). These results were consistent with the typical degree of 

mineralization of NOM (~10% at 1 mgO3/mgDOC) (Nöthe et al. 2009) resulting from 

decarboxylation reactions that occur during further oxidation of substantially oxidized NOM (von 

Sonntag and von Gunten 2012). The high decrease in SUVA supports the likelihood that the ring-

opening mechanism shown in Figure 6.6a for phenolic compounds occurred in our reactions. These 

observations were in agreement with the SEC images that show significant removal of NOM (humics 

and building block region) by ozone with the UV254 detector (Figure 6.8a) but barely any with the 

organic carbon detector (Figure 6.8b; OCD). The results indicate that certain UV absorbing units of 
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NOM were partially oxidized and transformed to lower molecular weight compounds rather than 

being mineralized since the overall DOC was mostly unchanged. Minor pathways could generate 

products such as catechol, hydroquinone, and quinones (Ramseier and von Gunten 2009) especially 

at lower O3 doses (Chon et al. 2015).  

For olefins (Figure 6.6b), the ozone reaction occurs via a Criegee mechanism that involves cleavage 

of the C=C double bond and formation of carbonyl compounds (Criegee 1975). For amines (Figure 

6.6c), an ozone adduct on the nitrogen atom leads to formation of N-oxide for tertiary amines and 

hydroxylamine for primary and secondary amines (von Gunten 2003a) (see also Chapter 4). A recent 

study also reported formation of nitromethane from ozonation of methylamine (McCurry et al. 2016). 

Amine radical cations can also be formed leading to dealkylated amines and ketones or aldehydes 

(von Sonntag and von Gunten 2012). These ozonation transformation products could be formed along 

with products from •OH reactions since ozonation conditions at treatment plants do not scavenge for 

these radicals. Addition reactions are very common for •OH since the radicals readily add to C-C and 

C-N bonds (von Sonntag and von Gunten 2012).  

These transformation products can affect the subsequent DBP formation potentials during post-

chlorination, as shown in this study. Consistent trends were observed for all the DBPs presented in 

the following sections. Results are presented as relative residual concentrations (C/C0) to show the 

extent of the change in concentrations with respect to C0 or the concentration resulting from 

chlorination alone (i.e., without prior ozonation and biodegradation). The average analyte 

concentrations are provided in Tables 6.2 – 6.5, and 6.7.  

 

Figure 6.7. Changes in specific UV absorbance (SUVA) after ozonation and batch biodegradation. 

Conditions: specific ozone dose = 0.4–1 mgO3/mgDOC; water sample/bioactive anthracite (AN; 

volume/mass) = 500 mL/170 g; contact time = 7 days; temperature = 22 ± 1 °C. 
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Figure 6.8. Size exclusion chromatogram of O3/BAC treated water samples obtained with (a) UV 
detector (UVD) and (b-c) organic carbon detector (OCD). Conditions: DOC before treatment = 15.1 
mg/L, specific O3 dose = 1 mgO3/mgDOC, BAC filtration EBCT = 15 min. Molecular weight was 
determined using polyethylene glycol standards. 



Chapter 6 
 

 
 

 
- 133 - 

The mechanisms of Figures 6.6a and 6.6b show example precursors for aliphatic aldehydes and 

ketones formed from ozone. In this study CH and HK2 were found to more than double in 

concentration at 1 mgO3/mgDOC that could have resulted from ring-opening of phenolic groups in 

NOM (see decrease in SUVA in Figure 6.7). THM4 and HAA8 decreased by about 30% and 10% 

respectively after ozonation at the same O3 dose because reaction sites for chlorine such as those in 

activated aromatic systems, β-diketones and β-diketoacids will have already been oxidized by O3. 

HAN4 and TCAM (Table 6.2, 1 mgO3/mgDOC) also decreased in concentration (HAN4 = 0.13 to 

0.11 µM; TCAM = 0.014 to 0.006 µM) most likely because of the oxidation of the precursor amino 

groups (Figure 6.6c), leading to pronounced formation of THNM2 especially with increasing O3 dose 

(0.007 to 0.068 µM). Lower AOX (19.7 to 15.7 µM Cl-, Table 6.3) was also observed which suggests 

the benefit of ozonation in decreasing formation potentials of other non-volatile DBPs that were not 

measured. Consistent with the previous chapter, after O3/HOCl treatment, bromine-containing DBPs 

namely tribromomethane (TBM), dibromochloromethane (DBCM), dibromoacetic acid (DBAA), 

dibromoacetonitrile (DBAN), and tribromonitromethane (TBNM) also increased (Tables 6.2 and 6.3) 

because of the production of more hydrophilic NOM during ozonation which are more amenable to 

HOBr than HOCl reactions (Hua and Reckhow 2013, Westerhoff et al. 2004). HOBr, produced from 

oxidation of bromide during chlorination and ozonation, can react with NOM to form the previously 

mentioned bromo-organic DBPs (Gruchlik et al. 2014). Under the conditions used, no bromate was 

observed above the method reporting limit (10 µg/L).  

6.3.1.2.  Biodegradation 

The impact of ozonation on biodegradability of the water samples was evaluated using (1) batch 

experiments with bioactive anthracite and (2) biofiltration columns containing either anthracite or 

BAC. The results of batch biodegradation experiments using bioactive anthracite (contact time = 7 

days) are shown in Figure 6.9 while biofiltration experiments (EBCT = 11 min) are shown in Figure 

6.10.  

6.3.1.2.1.  Biodegradation before ozonation  

Biodegradation experiments without pre-ozonation (“No O3” in Figures 6.9 and 6.10) yielded notably 

different results for anthracite batch and column filtration experiments, likely due to differences in 

contact time (i.e., 7 day exposure with anthracite for batch biodegradation and 11 min for column 

experiment). This longer contact time may explain the higher DOC removals (38%) and better 

reduction of formation potentials of THM4 (51%), CH (52%), and HK2 (76%) in Figures 6.9a – 6.9d 

(batch biodegradation) compared to their equivalents using the biofilter columns (Figures 6.10a – 
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6.10d; % removal: DOC = 12%, THM4 = 30%, CH = 34%, HK2 = 32%). After batch biodegradation, 

higher HAN4 formation potentials were observed which could have been caused by release of soluble 

microbial products  (SMPs) (e.g., nucleic acids, proteins, amino acids) (Rittman et al. 1987) during 

long contact times.   

 

Figure 6.9. Effect of batch biodegradation (O3+AN) on water samples ozonated (O3) at different 

doses on (a) dissolved organic carbon (DOC) and formation potentials of (b) trihalomethanes 

(THM4), (c) chloral hydrate (CH), (d) haloketones (HK2), (e) haloacetonitriles (HAN4), (f) 

trihalonitromethanes (THNM2), and (g) trichloroacetamide (TCAM). Conditions: Sample/bioactive 

anthracite (volume/mass) = 500 mL/170g; empty bed contact time = 7 days; pH = 7; temperature = 

22 ± 1 °C, chlorine residual = 3.4 ± 0.9 mg/L as Cl2. “No O3” represents formation potentials of non-

ozonated samples. Error bars depict mean absolute deviation obtained from experiment (n=1) with 2 

DBP extractions per sample. C0 = contaminant concentration before ozonation and biodegradation, 

C = contaminant concentration after treatment. 
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Figure 6.10. Effect of ozonation and biofiltration with anthracite (AN) and activated carbon (BAC) 
media on (a) dissolved organic carbon (DOC) and formation potentials of (b) trihalomethanes 
(THM4), (c) chloral hydrate (CH), (d) haloketones (HK2), (e) haloacetonitriles (HAN4), (f) 
trihalonitromethanes (THNM2), (g) trichloroacetamide (TCAM), and (h) adsorbable organic halogen 
(AOX). Conditions: specific O3 dose = 1.2 mgO3/mgDOC; bed volume = 7 mL; empty bed contact 
time = 11 min, pH = 7; temperature = 22 ± 1 °C; chlorine residual = 1.5 ± 0.6 mg/L as Cl2. Error bars 
depict mean absolute deviation of duplicate experiments (n=2, with 2 DBP extractions per sample; 
for AOX, n=1). C0 = contaminant concentration before ozonation and biodegradation, C = 
contaminant concentration after treatment. 

THNM2 precursors (Figures 6.9f and 6.10f), which were present at very low concentrations (~0.01 

µM) before ozonation, had low removals of less than 6% which suggests that non-ozonated THNM 

precursors were not readily biodegradable. This result was in agreement with the observations by 

Wadhawan et al. (2014) who demonstrated the importance of ozonation in increasing the 

concentrations of biodegradable DON. Biofiltration of non-ozonated samples did not change the 

resultant TCAM levels (Figure 6.10g) whereas at the longer contact times in batch biodegradation 

tests (Figure 6.9g), removals of 50% were achieved indicating the presence of TCAM precursors that 

biodegrade slowly. The relatively high error bars for TCAM are a result of its concentrations near the 

MRL. Because of the contrasting effects of TCAM and HAN4 in Figures 6.9e and 6.9g, it is likely 

that TCAM precursors are independent from HAN4 precursors in the biodegraded water sample. The 

SMP released during batch biodegradation could be a major contributor to HAN4 formation, while 

TCAM could predominantly come from humic substances of the water sample (Huang et al. 2012). 

For AOX, biofiltration of non-ozonated precursors only resulted in a 2 – 13% decrease in formation 

potentials. 
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6.3.1.2.2. Biodegradation after ozonation 

Combining ozonation (1 mgO3/mgDOC) with batch anthracite biodegradation resulted in an overall 

reduction of 54% of DOC (Figure 6.9a, Table 6.2: No O3 = 9.8 mg/L DOC; No O3 + AN = 6.0 mg/L 

DOC; O3 only = 8.7 mg/L DOC; combined O3 + AN = 4.5 mg/L DOC). The observed better DOC 

removal (O3 + AN versus O3 only) is most likely due to the formation of smaller, more hydrophilic, 

and readily biodegradable compounds following ozonation such as aldehydes, ketones, and 

carboxylic acids (Figure 6.6) (Hammes et al. 2006). For aromatic compounds, ring cleavage products 

have been estimated to be more biodegradable compared to their parent compounds (Hubner et al. 

2015, Weinberg et al. 1993). These products are reported to be biodegraded via a pathway that leads 

to carboxylate as shown in the University of Minnesota biocatalysis/biodegradation database (Gao et 

al. 2010) (refer to Table 6.1 for a list of different biotransformation (bt) rules relevant to this study). 

No significant change in biodegradability was associated for possible aromatic hydroxylation 

products such as catechols (Hubner et al. 2015). These observations support the increase in SUVA 

after biodegradation (Figure 6.7) since compounds with low UV absorbance are consumed, 

decreasing the DOC and leaving behind other UV absorbing aromatic compounds (Figure 6.8). The 

improved biodegradability of NOM also translated to a decrease in THM4, CH, and HK2 formation 

during post chlorination (shown in Figures 6.9b, 6.9c, and 6.9d respectively) with the most notable 

effects on CH and HK2 because of the readily biodegradable aldehyde and ketone precursors.  

Table 6.1. Biodegradation rules for selected compounds obtained from Gao et al. (2010)  
 

Possible DBP precursors  Aerobic likelihood Biodegradation rule 
hydroquinone → cis,cis-4-hydroxymuconic semialdehyde likely Bt0297 

catechol → cis,cis-muconate likely Bt0254 
1,4-benzoquinone derivative →1,4-dihydroxybenzoid likely Bt0107 

4,4-dimethyl-3-oxopentanoate → 3,3-dimethyl-2-butanone neutral Bt0051 
1,3-diketone → ketone + carboxylate neutral Bt0373 

2-ketocarboxylate → carboxylate + CO2 neutral Bt0082 
methyl ketone → alkyl acetate neutral Bt0423 

aldehyde → carboxylate likely Bt0003 
tri-substituted amine N-oxide → tertiary amine neutral Bt0408 

aromatic hydroxylamine → aromatic amine likely Bt0035 
primary nitroalkane → aldehyde + nitrite neutral Bt0086 

nitrile → carboxylate neutral Bt0030 
nitroaromatic → aminoaromatic neutral Bt0080 

primary amine → aldehyde or ketone likely Bt0063 
secondary amine → amine + aldehyde or ketone likely Bt0063 

tertiary amine → secondary amine + aldehyde or ketone likely Bt0063 

 
 



Chapter 6 
 

 
 

 
- 137 - 

 

Aerobic biodegradation of amine compounds is expected to form aldehydes and ketones through 

oxidative removal of an alkyl substituent from an amine using dehydrogenase enzymes (Gao et al. 

2010). In this biodegradation pathway (biotransformation rule bt0063 of the biodegradation database 

shown in Table 6.1), aldehydes and ketones are produced if the leaving substituent is attached to a 

primary or secondary carbon, respectively. Other N-DBP precursors formed by ozone containing N-

oxide, hydroxylamine, and nitromethane moieties can also be biodegraded accordingly 

(biotransformation rules bt0408, bt0035, bt0086). These transformations resulted in decreased 

HAN4, THNM2, and TCAM concentrations as shown in Figures 6.9e, 6.9f, and 6.9g, respectively. 

Precursors of THNM2 were observed to be very biodegradable with a decrease in formation potentials 

of up to 98%. This decrease was mostly caused by the removal of trichloronitromethane precursors. 

Although formed at low concentrations, total trihalonitromethanes was found to increase because of 

higher bromine substitution (Figure 6.11) with subsequent chlorination of biodegraded water 

samples. This was also observed for other brominated THMs and HANs confirming the known 

influence of the bromide to carbon ratio in DBP speciation. Since bromide was not consumed as DOC 

decreased during biodegradation, the bromide to carbon ratio increased leading to the formation of 

more available HOBr in relation to the reduced NOM concentration. Due to the higher electrophilicity 

of HOBr compared to HOCl (Heeb et al. 2014, Symons et al. 1993, Westerhoff et al. 2004), 

halogenation by HOBr is favored resulting in formation of more brominated DBPs. The apparent rate 

constants of bromine reactions (pH 7) were reported to be up to 3 orders of magnitude higher than 

those of chlorine reactions (Heeb et al. 2014) . In addition, better bromine substitution occurs 

especially for ozonated waters since hydrophilic organic materials (e.g., aliphatic products of ozone) 

were found to be more reactive to HOBr compared to hydrophobic fractions (Hua and Reckhow 

2007a, Liang and Singer 2003). 

 



Chapter 6 
 

 
 

 
- 138 - 

 
Figure 6.11. %Bromine substitution after batch biodegradation of water samples before and after 
ozonation. Conditions: specific ozone dose = 0.4 – 1 mgO3/mgDOC; water sample/bioactive 
anthracite (AN) (volume/mass) = 500 mL/170 g; contact time = 7 days; pH = 7; temperature = 22 ± 
1 °C.  

To simulate conditions commonly encountered in actual water treatment conditions, the results of the 

batch biodegradation experiments were confirmed using bench-scale columns with anthracite and 

BAC (Figure 6.10, Table 6.3).  The extent of DOC removal using both biofilters was similar (33–34 

%) after an EBCT of 11 min, despite the filter media having different surface areas and possibly 

biological activity. The results of SEC with either a UV or organic carbon detector (Figure 6.8) 

showed that this DOC decrease was a result of removal of low molecular weight compounds (ca. 103 

g/mol) consistent with their transport across cell membranes and attack by metabolic enzymes during 

biodegradation (Nishijima and Speitel 2004). Similar trends were observed for the DBP formation 

potentials suggesting that comparable enzymatic functions were responsible for biodegradation in 

both media. All DBPs, including those that increased after ozonation (e.g., CH, HK2, and THNM2), 

decreased compared to their initial DBP formation potential after biofiltration. For AOX, a reduction 

of about 45% compared to non-ozonated and non-biofiltered conditions was observed for samples 

treated with combined ozonation and biofiltration (Figure 6.10h).
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6.3.2. Process improvement 

6.3.2.1. Ozonation: Use of O3/H2O2 before biofiltration 

Since DBP formation potentials can be affected differently by ozone and •OH reactions as presented 

in Chapter 5 (de Vera et al. 2015), the effect of ozone exposure on the biodegradability of DBP 

precursors was investigated. This was achieved through batch experiments involving ozone with and 

without addition of H2O2 to the water samples. Although no •OH concentration measurements were 

made in this study, it has been well-established that the presence of H2O2 accelerates O3 decay through 

formation of •OH and superoxide radical (O2
•-) which further reacts with O3 (von Gunten 2003a, von 

Sonntag and von Gunten 2012). Thus, at conditions with higher H2O2 concentrations, O3 would decay 

faster and be transformed more quickly to •OH.  

Figure 6.12a shows the changes in DOC resulting from O3/H2O2 and biofiltration treatment and the 

impact of these treatments on DBPs formed by subsequent chlorination. At all H2O2 doses, source 

DOC decreased by no more than 10% after ozonation, similar to the values obtained in Figures 6.9 

and 6.10.  After biofiltration of the ozonated waters using both anthracite and BAC, a ~30%  DOC 

removal was achieved. The remaining ~6 mg/L DOC (Tables 6.4 and 6.5) represents the non-

biodegradable fraction of NOM as classified by Yavich et al. (2004). While the DOC remained 

relatively unchanged at all H2O2 concentrations, a different behaviour was observed for DBPs 

(Figures 6.12b – 6.12i; Tables 6.4 and 6.5). Addition of H2O2 during ozonation confirmed the results 

of the previous chapter showing that •OH reactions increased the DBP formation potentials of THM4, 

HAA8, CH, HK2, HAN4, TCAM, and AOX (de Vera et al. 2015) (Chapter 5). For THNM2, an 

opposite trend (i.e., lower formation potentials at higher H2O2 concentrations) was observed which 

shows that THNM2 precursors are predominantly formed through O3 reactions (McCurry et al. 2016). 

When biofiltration was employed after the oxidation process, a dramatic drop in DBP formation 

potentials was observed in the column effluent especially for CH, HK2, and THNM2 suggesting the 

high biodegradability of their precursors. The slightly better removal of formation potentials of DBPs 

with BAC over AN may be attributed possibly to the different surface area and biological activity of 

each filter media. 
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Figure 6.12. Changes in (a) dissolved organic carbon (DOC) and formation potentials post-
chlorination of (b) trihalomethanes (THM4), (c) haloacetic acids (HAA8), (d) chloral hydrate (CH), 
(e) haloketones (HK2), (f) haloacetonitriles (HAN4), (g) trihalonitromethanes (THNM), (h) 
trichloroacetamide (TCAM), and (i) adsorbable organic halogen (AOX) as a result of O3/H2O2 
treatment and subsequent column biofiltration with anthracite (AN), and biological activated carbon 
(BAC). Conditions: specific ozone dose = 1 mgO3/mg DOC mg/L; bed volume = 7 mL; empty bed 
contact time = 11 min, pH = 7; influent DO = 11.5 ± 0.7 mg/L; effluent DO = 6.6 ± 0.2 mg/L; 
temperature = 22 ± 1 °C; chlorine residual = 1 – 2.7 mg/L as Cl2. “No O3” at x-axis are formation 
potentials of non-ozonated samples. Error bars depict mean absolute deviation of experiments (BAC: 
n=2, AN: n=1, with 2 DBP extractions per sample; for HAA, n=1). n.a. = no test done at the specific 
experimental condition
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6.3.2.2.  Biofiltration: Variation of empty bed contact time (EBCT) 

To optimize biofiltration, column experiments using BAC were performed at different EBCTs (3 – 

55 min). Bioactivity of the columns was confirmed from the increase in oxygen consumption and 

nitrate concentration with increasing EBCT (Figure 6.5). BAC filtration resulted in about 30% 

decrease in DOC as shown in Figure 6.14a, which is within the range of removal efficiencies reported 

in the literature (Juhna and Melin 2006). This decrease mostly happened within the first 20 min, with 

the largest decrease happening within the first three minutes. Such observation supports previous 

studies (Black and Berube 2014, Carlson and Amy 1998, Yavich et al. 2004) where a characteristic 

initial period of fast DOC decrease followed by a period of slow decrease was observed. The 

remaining DOC corresponds to the slowly biodegradable to non-biodegradable DOC. A similar trend 

was also observed for the formation potentials of all the DBPs studied (Figures 6.14b – 6.14i). These 

results followed first-order reaction kinetics, with biofilm being in excess compared to the influent 

biodegradable DOC or DBP precursor (Black and Berube 2014, Huck et al. 1994), and can be 

modelled using equation 6.1:  

𝑃$ = 𝑃{|}"~�𝑒e�$ + 𝑃�  (eq. 6.1) 

where t is the EBCT (min), k is the specific first-order rate constant (min-1), Pt is the concentration at 

time t (µM), Pbiodeg is the biodegradable concentration (µM), and Pf is the minimum contaminant 

concentration or DBP formation potential (µM) after a certain EBCT. The parameters shown in 

equation 6.1 are illustrated in Figure 6.13.  

 

Figure 6.13. Model parameters used in the decay kinetics of contaminant (DOC or DBP precursor) 

during BAC filtration at different EBCT   
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The model fit (single exponential decay to Pf) for DOC and DBP formation potentials was carried out 

using the software SigmaPlot, version 13.0 (Systat Software, Inc.) and resulted in the kinetic 

parameters (± standard error) summarized in Table 6.6. Residuals from the model fit showed a normal 

distribution (P values > 0.05, Shapiro-Wilk test). It should be noted that the kinetic parameters 

reported in this study could be site-specific due to differences in water quality, type of filter media, 

and nature of bacterial community as previously described by others (Huck et al. 1994, Melin and 

Odegaard 2000). All measured formation potentials at different EBCTs are presented in Table 6.7.  

Following ozonation, THM4 formation potential was reduced by 46% after a BAC EBCT of 15 min 

(i.e., 2.70 µM down to 1.47 µM) and remained at almost the same level up to 55 min. This indicates 

that THM precursors, mostly for TCM and BDCM, were not completely degraded even at extended 

EBCTs. In terms of speciation, the decrease in TCM and BDCM was also accompanied by an increase 

in the more brominated THM species, namely DBCM and TBM. TBM formation potentials increased 

from 0.003 ± 0.001 to 0.022 ± 0.002 µM in 15 min and continued to increase to 0.031 ± 0.001 µM in 

55 min, while DBCM started to slightly increase at 15 min (i.e., 0.20 ± 0.02 µM to 0.24 ± 0.01 µM 

in 55 min). These observations can be understood as a result of increased HOBr availability relative 

to DOC during chlorination since the bromide to DOC ratio increases with increasing EBCT (Figure 

6.15). The increase in brominated DBPs (between 0 to 55 min EBCT) was also observed with other 

DBP groups such as DBAN (0.010 to 0.018 µM), TBNM (0.010 to 0.016 µM) and CDBAA (0.028 

to 0.050 µM). Hence, an increase in the levels of bromine-containing DBPs with O3/BAC treatment 

may occur, especially in source waters containing high bromide concentrations.  

The concentrations of other non-bromine-containing DBPs such as HK2 and CH were reduced 

significantly after biofiltration at 10 min EBCT. While their formation potentials increased after 

O3/HOCl treatment (i.e., by 73% for HK2 and 111% for CH), their BAC effluent formation potentials 

of about 0.06 µM for both CH and HK2 appeared to be the lowest attainable during biofiltration. 

These concentrations were lower than those obtained without ozonation (i.e., HK2 = 0.14 µM and 

CH = 0.17 µM) which confirms the benefit of combined O3/BAC in reducing formation potentials of 

these DBPs. The calculated rate constants for these C-DBPs (after ozone/BAC treatment) were 0.50 

± 0.07 min-1 for HK2 and 0.58 ± 0.07 min-1 for CH, which were highest among the rate constants 

determined for other DBP groups suggesting the high biodegradability of CH and HK2 precursors.  
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Figure 6.14. Effect of biofiltration EBCT on changes in (a) DOC and formation potentials of (b) 

trihalomethanes (THM4), (c) haloacetic acids (HAA8), (d) chloral hydrate (CH), (e) haloketones 

(HK2), (f) haloacetonitriles (HAN4), (g) trihalonitromethanes (THNM2), (h) trichloroacetamide 

(TCAM), and (i) adsorbable organic halogen (AOX) of ozonated water sample. Conditions: specific 

ozone dose = 1 mgO3/mg DOC, DOC = 15 mg/L, bromide = 300 µg/L, bed volume = 12 mL, media 

= BAC, pH = 6.9, temperature = 22 ± 1 °C, chlorine residual = 3.1 ± 0.8 mg/L as Cl2. The symbols 

are the experimental data, broken lines correspond to formation potentials measured without 

ozonation, and solid lines present model fits (single exponential decay to Pf). Residuals from the 

model fit shows a normal distribution (P values > 0.05, Shapiro-Wilk test, excluding the last point for 

THNM2 and HAN4). Error bars depict standard deviation of 3 replicate experiments (with 2 DBP 

extractions per sample). 
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Table 6.6. Model parameters for reduction in DBP formation potentials after BAC filtration of 
ozonated water samplesa 

DBP Pf
b, µM Pbiodeg

c, µM kd, min-1 R2e Syǀx
f ng 

THM4 1.45 ± 0.04 1.22 ± 0.09 0.28 ± 0.05 0.9657 0.0840 10 

HAA8 0.69 ± 0.06 0.93 ± 0.10 0.15 ± 0.04 0.9688 0.0860 6 

CH 0.074 ± 0.004 0.284 ± 0.012 0.58 ± 0.07 0.9877 0.0113 10 

HK2 0.068 ± 0.003 0.176 ± 0.009 0.50 ± 0.07 0.9808 0.0087 10 

HAN4 0.068 ± 0.001 0.037 ± 0.002 0.33 ± 0.04 0.9844 0.0018 9 

THNM2 0.0171 ± 0.0002 0.0597 ± 0.0006 0.48 ± 0.01 0.9993 0.0006 9 

TCAM 0.0050 ± 0.0002 0.0046 ± 0.0004 0.16 ± 0.03 0.9561 0.0004 10 

AOX 12.86 ± 0.34 13.03 ± 0.46 0.11 ± 0.01 0.9904 0.5113 11 

DOC 10.14 ± 0.17h 3.57 ± 0.38h 0.26 ± 0.06 0.9268 0.3646 10 

Cl2 demand 3.77 ± 0.13h 3.03 ± 0.23h 0.13 ± 0.02 0.9621 0.2272 10 

aobtained from non-linear regression, ± depicts the standard error (SigmaPlot 13.0); bPf = final steady state concentration 
(EBCT > 20 min); cPbiodeg= DBP formation potential from influent - Pf; dk = specific first-order rate constant; eR2 = 
coefficient of determination; fSyǀx (standard error of the estimate) = (SS/df)1/2 where SS is the sum-of-squares of the 
distance of the linear regression from the data points and df is the degrees of freedom (i.e. n-2); gn = number of data points 
(each data point is the average of 3 replicate experiments); hunits = mg/L as C for DOC and as Cl2 for chlorine demand. 

 
Figure 6.15. Influence of bromide on DBP formation after biofiltration and subsequent chlorination. 
(a) change in bromide to carbon ratio, (b) change in bromine substitution factor before and after BAC 
filtration at 55 min EBCT, (c) relative residual formation potentials of brominated DBPs as a function 
of Br-/DOC ratio, and (d) increase in formation potentials (FP) of brominated DBPs after biofiltration 
at EBCTs of 15 and 55 min.  
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In terms of the HAA species, dihaloacetic acid (DHAA) precursors were removed faster (k = 0.18 ± 

0.05 min-1) than those of trihaloacetic acids (THAA) (k = 0.06 ± 0.02 min-1) (Figure 6.16). At the 

highest EBCT (55 min) there was a reduction of 58% in DHAA and 47% in THAA in the chlorinated 

column effluent.  The slightly better removal of DHAA than THAA may suggest having more 

biodegradable precursors (i.e., hydrophilic, low molecular weight) consistent with the findings of Hua 

and Reckhow (2007a).   

Similar features to those presented for other DBPs were observed for HAN4, with DCAN being the 

most dominant HAN produced during chlorination. Low TCAN concentrations were observed due to 

this compound’s low stability (Glezer et al. 1999). Despite HAN4 having the lowest reduction in 

formation potential (24%, compared to formation potentials after ozonation) after biofiltration at 55 

min EBCT, they had a higher k value (0.33 ± 0.04 min-1) than THM4 which had a higher removal 

(47%) at the same EBCT. This suggests that the biodegradable HAN4 precursors (e.g., aliphatic 

dissolved organic nitrogen) can be removed faster than their THM4 counterparts. 

 
 

Figure 6.16. Changes in (a) trihaloacetic acid (THAA) and (b) dihaloacetic acid (DHAA) formation 

potentials after biofiltartion at different EBCTs. Conditions: ozone dose = 15 mg/L, DOC = 15 mg/L, 

bromide = 300 µg/L, bed volume = 12 mL, media = BAC, pH = 6.9, temperature = 22 ± 1 ºC, chlorine 

residual = 1–2 mg/L Cl2. Broken lines correspond to conditions without ozonation and solid lines 

present model fits.  
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TCNM formation potentials were found to decrease after BAC filtration confirming results from 

previous studies (Krasner 2009, Lyon et al. 2014a). Lowest total concentrations were already 

achieved at 12 min EBCT and were almost equal to the levels before ozonation. At this EBCT, about 

90% of the TCNM formation potential present after ozonation was removed. While good TCNM 

removals were observed, an increase in TBNM formation potentials became apparent after 5 min 

EBCT. A similar increase in TBNM formation potentials was observed by Lyon et al. (2014a) in full-

scale plants in SEQ that utilized O3/BAC. At the highest EBCT tested in the current study, TBNM 

increased by 52% relative to its formation potential before biofiltration. Despite the contrasting trends 

of TCNM and TBNM, the sum of their concentrations (THNM2) could still be modelled with a k = 

0.48 ± 0.01 min-1, where TBNM accounted for 77% of the remaining Pf.  

TCAM formation potentials also decreased with first-order kinetics (k = 0.16 ± 0.03 min-1) although 

at a rate that was lower than for HAN4 and THNM2, suggesting differences in biodegradability of 

their precursors. Based on the calculated rate constant, THNM2 precursors were more readily 

biodegradable than those of HAN4 and TCAM. This supports the results of Mitch et al. (2009) who 

showed a higher removal of TCNM compared to DHANs after sequential ozonation, biofiltration, 

and chlorination. In their study, the median reduction of TCNM formation potentials was 48% while 

for DHAN it was only 3%.   

The change in effluent AOX formation potential and chlorine demand followed the trends discussed 

above. Their first-order reaction kinetics were relatively close (between 0.11 and 0.13 min-1 (Table 

6.7)). This similarity confirms the intuitive direct relationship of AOX and chlorine demand (slope = 

0.17 mg AOX/mg Cl2 demand, R = 0.99, P=1.2x10-9) as shown in Figure 6.17a. AOX formation was 

also found to correlate well with DOC (Figure 6.17a, slope = 0.15 mg AOX/mg DOC, R = 0.98, 

P=3.7x10-7) which was in agreement with previous studies (Farré et al. 2016b) . The x-intercept of 

the AOX versus DOC plot gives a DOC (6.4 mg/L) which is equivalent to 42% of the DOC before 

ozonation and represents the non-reactive NOM fraction of the water sample. 
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Figure 6.17. Correlations involving AOX formation potentials (FP). (a) AOX FP as a function of 

DOC and chlorine demand. (b) Relationship of THM4 and HAA8 FP with AOX FP.  Conditions: 

ozone dose = 15 mg/L; bed volume = 12 mL; pH = 7; temperature = 22 ± 1 °C; chlorine residual = 

3.1 ± 0.8 mg/L as Cl2 
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Following biofiltration, AOX in the chlorinated water decreased from 21.7 µM (3 min EBCT) to 12.5 

µM (55 min EBCT). At all conditions (i.e., before and after O3 addition, and after biofiltration from 

3 – 55 min EBCTs), the percentage of known and unknown AOX remained relatively constant as 

depicted in Figure 6.18a. Unknown AOX was calculated by subtracting AOX equivalents accounted 

for by the individually measured DBPs from the measured AOX. In this study, while AOX formation 

potentials decreased with ozonation and increasing biofiltration EBCTs, the percentage of known 

AOX remained at 48 ± 4% and the unknown AOX at 52 ± 4 %. These results were comparable to 

many other studies that reported unknown AOX concentrations of about 50% during chlorination 

(Reckhow and Singer 1984, Richardson 2003, Singer et al. 1995). As shown in Figure 6.18b, the 

measured AOX in the current study was largely attributed to THM4 (30 ± 3%) and HAA8 (13 ± 

0.8%) at all applied experimental conditions. These findings are similar to those in a study by Hua 

and Reckhow (2007b) where they found 25.2% of the total AOX attributed to THMs and 14.4% 

attributed to HAAs after ozonation (1mgO3/mgDOC) and subsequent chlorination of a raw water 

sample. Other DBP groups only had minor contribution. In the current study, THNM2, HAN4, HK2, 

CH, and TCAM could only explain 0.4%, 0.9%, 1.5%, 2.1%, and 0.1%, respectively, of the measured 

AOX. As the AOX attributed to both THM4 and HAA8 remained relatively constant despite 

differences in the measured AOX concentrations, formation potentials of these two DBP groups were 

in a linear relationship (i.e., R = 0.98, P <1.5x10-4) with AOX formation potentials (Figure 6.17b). In 

addition to THM4 and HAA8, the AOX values were also strongly correlated with HAN4 (R=0.92, 

P=6.2x10-5) and TCAM (R=0.98, P=3.7x10-7). The relation of CH and HK2 with AOX was not 

markedly significant (R=0.65 – 0.71, P = 0.01 – 0.03) since their formation potentials increased after 

ozonation. THNM2 had no significant relationship (R=0.21, P = 0.541) with AOX which is also a 

result of its increase after ozonation. Such correlations might be useful predictors of AOX formation 

in chlorinated biofilter effluents of water treatment plants.  
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Figure 6.18. AOX formation after BAC filtration at different EBCTs and subsequent chlorination. 

(a) Sum of known and unknown AOX as a function of EBCT. (b) % AOX attributed to each measured 

DBP group. Conditions: ozone dose = 15 mg/L; bed volume = 12 mL; pH = 7; temperature = 22 ± 1 

°C; chlorine residual = 3.1 ± 0.8 mg/L as Cl2. 
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6.4. Conclusions 

Coupling ozonation with biological treatment was found to be beneficial for DBP control. In this 

study, we investigated the biodegradability of DBP precursors using batch biodegradation 

experiments with bioactive anthracite and column experiments with bioactive anthracite and BAC. 

The following conclusions from this study confirm previously published literature: 

• Ozonation decreased the formation potentials of THM4, HAA8, HAN4, TCAM and increased 

formation potentials of THNM2, CH, and HK2 with subsequent chlorination. 

• Compared to conditions that favor •OH reactions (i.e., high H2O2 concentrations), O3 reactions 

resulting from the lowest H2O2 concentrations led to lower formation potentials of the 

following DBPs: THM4, HAA8, CH, HK2, HAN4, TCAM, and AOX. The opposite was 

observed for THNM2. 

The following novel conclusions can be drawn from this study: 

• For the water sample tested, the increase in formation potentials of CH, HK2, and THNM2 

after ozonation was effectively offset by biodegradation at typical contact times regardless of 

the initial concentration of precursors in the influent. 

• The dynamics of removal of DOC and DBP formation potentials by biofiltration at different 

EBCTs followed first-order reaction kinetics with a plateau of residual biorecalcitrant 

concentration attained after approximately 10 – 20 min of EBCT. This study highlighted the 

importance of EBCT as a key design parameter for biofiltration. The experimentally 

determined rate constants may be useful in prediction of DBP formation potential reductions 

and determine the EBCT required to attain a target DBP concentration in the treated drinking 

water.  

• The reduction in DBP formation potentials varied with respect to species, indicating the 

influence of DBP precursor structure and reactivity on biodegradability. The measured rate 

constants of DBP formation potential before reaching the steady-state concentration followed 

this order: CH > HK2 ≈ THNM2 > HAN4 > THM4> TCAM > HAA8. 

• Due to the increase in bromide to DOC ratio after ozonation and biofiltration, the 

concentrations of bromine-containing DBPs (e.g., TBM, DBAN, TBNM) increased after 

these sequential treatments followed by chlorination. Thus, conditions promoting strong DOC 

removal such as longer EBCTs (e.g., > 20 min) can promote the formation of bromine-

containing DBPs in bromide-containing waters. Treatment engineers should take this risk into 

account on a case-by-case basis.
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This doctoral thesis aimed to develop an improved understanding of the fundamental processes that 

govern the fate of natural organic matter (NOM) as it undergoes ozonation (Chapter 4), ozonation 

with chlorination (Chapter 5), and ozonation/biofiltration with subsequent chlorination (Chapter 6). 

These processes were investigated successively (Figure 7.1) to determine the effect of ozone on each 

treatment step to provide useful insights for water treatment plants in improving their ozonation 

process. Dissolved organic nitrogen (DON) was also highlighted as it acts as precursor of potentially 

more toxic nitrogenous disinfection byproducts (N-DBPs) (e.g., halonitromethanes, haloacetonitriles, 

haloacetamides) compared to carbon-based DBP (C-DBPs). The N-DBP results were reported in 

conjunction with other DBP families including trihalomethanes, haloacetic acids, chloral hydrate, and 

haloketones. Several DBP groups were used to understand the impact of ozonation, biofiltration, and 

chlorination on a wide array of pollutants, with an ultimate aim of identifying critical points in water 

treatment that can be exploited for better DBP control. The following sections provide the 

conclusions, potential applications of results in water utilities, and other opportunities for future 

research. 

 

Figure 7.1. Processes investigated in this study 

7.1. Conclusions and overall findings  

Several conclusions about the reaction of ozone with NOM and subsequent DBP formation can be 

drawn from this study: 

First, a fundamental understanding of the reaction of ozone with DON was achieved through 

experiments with real water samples, standard NOM sources, and model DON solutions (e.g., 

glycine). Ozonation of DON moieties showed formation of nitrate (NO3
-) and ammonium (NH4

+), 

O3/  OH

NOM (DON)

NOM + HOCl

NOM + biofiltration + HOCl

transformation products (e.g., NO3- and NH4+)

DBP formation potentials

DBP formation potentials

1

2

3

(Chapter 4)

(Chapter 5)

(Chapter 6)
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which are parameters that are quite easily accessible to water treatment operators for characterization 

of the ozonation process. It was observed that the formation of these inorganic nitrogen species is 

greatly influenced by the ozonation conditions, i.e., more NO3
- and less NH4

+ was formed when higher 

ozone doses were applied. Based on O3 dosage experiments, kinetic studies, and hydroxyl radical 

(•OH) yield determinations (25%), this study provides evidence that NO3
- is formed via amine 

nitrogen oxidation from oxygen transfer and NH4
+ via electron-transfer reactions involving ozone. O3 

exposure also showed good correlation with NO3
- formation, which could be essential in monitoring 

contributions of ozone and •OH in oxidation reactions.  

Second, treatment conditions that favor oxidation by ozone reactions (i.e., high ozone exposure) were 

found to be advantageous for DBP control. Modifying treatment conditions to promote O3 decay 

consistently increased formation of all studied DBPs (e.g., trihalomethanes, haloacetic acids, 

haloacetonitriles, chloral hydrate, haloketones, trihaloacetamides, and bromate) except 

trihalonitromethanes. The results for AOX also followed the trend for the measured known DBPs. 

However, a higher percentage of unknown AOX was observed. Using in vitro bioassays, the 

associated toxic effects of the treated water samples were not very prominent. 

Third, the combination of ozonation and biodegradation was  effective in minimizing DBP formation 

potentials. Ozonated DBP precursors were reduced well during biofiltration, regardless of the 

ozonation conditions favoring either O3 or •OH reactions. The efficiently removed DBP precursors 

include those for trihalonitromethanes, chloral hydrate, and haloketones, all of which increased after 

ozonation. The reduction of DBP formation potentials was also found to follow first-order kinetics 

with respect to EBCT reaching a plateau of residual biorecalcitrant DBP precursors at 10 – 20 mins 

EBCT, depending on the DBP species. Highest rate of reduction was observed for 

trihalonitromethanes, chloral hydrate and haloketones, suggesting the high biodegradability of their 

precursors. The formation of bromine-containing DBPs, however, increased with increasing EBCT, 

most likely due to an increase in Br-/DOC ratio.  

To summarize, Table 7.1 presents the research highlights of this PhD thesis. The impacts and 

implications of these research findings on drinking water treatment plant operations are further 

discussed below. 
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Table 7.1. Research highlights of the PhD thesis 

Chapter  
(system) Research Highlights 

Chapter 4 

(DON + O3) 

• Ozonation of dissolved organic nitrogen forms NO3
- and NH4

+ 

• NO3
- concentrations correlate with O3 exposures 

• Lower O3 doses cause higher NH4
+ concentrations 

• Amine-N oxidation from oxygen transfer induces NO3
- 

formation 

• NH4
+ formation is induced from electron-transfer reactions 

involving ozone 

Chapter 5  

(NOM + O3 + chlorine) 

• Compared to •OH, oxidation by O3 led to less C-DBPs and AOX 
formation potential  

• Haloacetonitriles and haloacetamides showed opposite trends to 
halonitromethane formation when modifying O3/•OH ratio  

• 4 bioassay tests showed low differences in toxicity between 
different O3/•OH exposures 

Chapter 6  

(NOM + O3  

+ biofilter + chlorine) 

• Biofiltration reduces DBP FP with 1st-order dependence on 
filter contact time 

• NOM removal by biofiltration increases Br substitution in 
subsequent disinfection 

• Combined O3 + biofiltration (EBCT: 10 – 20 min) effectively 
controlled DBP formation 

• DBP precursor removal by BAC was highest for CH, THNM2, 
and HK2 

• Biofiltration attenuates effects of varying O3 exposures on DBP 
formation 
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7.2. Revisiting the research hypotheses 

1. The transformation products that give rise from the reaction of ozone with the DON fraction of 

NOM can be used to characterize the ozonation process.  

It was clearly demonstrated in Chapter 4 that ozonation of DON resulted in formation of inorganic 

nitrogen, NO3
- and NH4

+, which are easily measurable in water treatment plants. The NO3
- formation 

was found to be sensitive to changes in ozonation conditions for every water sample investigated 

including surface, wastewater effluent, and model NOM solutions. For all the applied conditions, it 

was consistently observed that NO3
- increases with increasing O3 doses and exposures (R2 ≥ 0.82). 

Formation of NH4
+, on the other hand, was found to decrease with higher ozone doses. These 

relationships could be used to characterize the ozonation process and to predict the desired O3 

exposure required for a target disinfection credit or removal of DBP precursors.  

2. Oxidation of NOM by ozone and/or hydroxyl radicals during ozonation will have different effects 

on NOM properties and subsequent reactivity with chlorine and DBP formation. 

The reaction of ozone and •OH resulted in different effects on NOM properties and DBP formation 

potentials (Chapter 5). Lower specific UV absorbance and fluorescence intensities at the humic/fulvic 

acid-like regions were observed at conditions of higher ozone exposures. Compared to •OH, ozone-

dominated reactions resulted in lower DBP formation potentials of trihalomethanes, haloacetic acids, 

chloral hydrate, haloketones, haloacetonitriles, haloacetamides, and AOX which proves that •OH-

transformed organic matter is more susceptible to halogen incorporation. The opposite trend for 

trihalonitromethanes was observed indicating that intermediates from ozone reactions (not •OH 

reactions) promote halonitromethane formation.  

3. Variations in ozone and hydroxyl radical exposure will impact the performance of biological 

filtration and thereby the final water quality.  Provided that a target water quality is defined, it 

will be possible to optimize the oxidation process and biological filtration towards that outcome. 

The variations in ozone and •OH exposure were found to be significant when followed directly by 

post-chlorination (i.e., higher DBP formation potentials formed with •OH-dominated reactions). 

However, different oxidant exposures seemed not to cause substantial impact on biodegradability of 

DBP precursors. In this study, it was shown that DBP formation potentials can be reduced well (even 

the DBPs that increased after ozonation like trihalonitromethanes, chloral hydrate, and haloketones) 

regardless of the effect of O3 and •OH reactions as long as biofiltration uses sufficient EBCT (~ 10 – 

20 min) (Chapter 6). The biofiltration process can also be optimized by manipulating the EBCT, 

which was highlighted as a key design parameter for biofiltration. Since the reduction of DBP 
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formation potentials in the biofilters showed a first-order dependence on EBCT, it could be possible 

to predict the removal of DBP precursors based on the kinetic results. 

7.3. Practical applications and recommendations to drinking water utilities 

The research outcomes of this PhD thesis provide significant contributions to the field of drinking 

water treatment, particularly in controlling formation of chlorination DBPs using ozonation and 

biofiltration. The results could have potential applications at different points (shown in arrows) in 

drinking water treatment plants (Figure 7.2).   

Ozone exposures can be adjusted at Points 1 and 2 of Figure 7.2. Point 1 refers to pH adjustment  

which could be by addition of lime, CO2, or NaOH and Point 2 is where ozone is added for oxidation 

purposes. Since the results from Chapter 5 showed that minimal DBP formation could be at conditions 

that favor ozone reactions (except for halonitromethanes), these points can be exploited to adjust the 

ozone exposure by varying the pH and the specific O3 dose. Lowering the pH at Point 1 in tandem 

with the pH effects during coagulation may result in better reductions of DBP formation potentials 

compared to conditions at higher pH. However, a drawback of this approach would be addition of 

more reagents prior to distribution to bring the pH back to neutral. Carbonate alkalinity could also be 

increased at Point 1 to have a higher ozone exposure, although this may be disadvantageous for 

bromide-rich waters because of bromate formation (Figure 5.11). These tradeoffs can be site-specific 

and can therefore be addressed with prior source water characterization.  

 

Figure 7.2. Engineering schematic of a drinking water treatment plant and points of potential 

applications of the thesis results 

Source water

Flash mixer

+ Coagulant

Flocculator Sedimentation basin

Distribution
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It was also shown that increasing ozone doses resulted in a mixture of effects caused by O3 and •OH 

reactions. DBP formation potentials first decreased at the initial O3 dose (0.4 mg O3/mg DOC) but 

increased at higher doses due to the contribution of •OH in organic matter oxidation. From these 

results, together with those observed at different ozonation pH, the study showed that ozonation at 

lower doses and pH may be necessary for better control of formation of C-DBPs, N-DBPs, AOX, and 

bromate in ozonation plants. These operational adjustments should be made while maintaining a 

target CT to ensure that disinfection will not be compromised. 

Ozone exposures, which are not only relevant for DBP control (Chapter 5) but also for assessment of 

disinfection efficiency, could be constantly monitored by measuring inorganic nitrogen (NO3
- and 

NH4
+). Since a strong correlation was found between NO3

- and O3 exposure (Chapter 4), water 

utilities could monitor NO3
- concentrations at Point 3 (Figure 7.2) to verify the prevalent reaction 

mechanisms taking place in ozone contactors and to evaluate if their treatment plant achieves the 

required O3 exposure for disinfection or oxidation of micropollutants and DBP precursors. This can 

be attained by initial calibrations of the ozone exposure with NO3
- formation (see Figure 4.9). This 

approach might be applicable to a wide range of conditions as the direct correlation of NO3
- with O3 

exposures shows for various types of water samples and treatment conditions (Rcts = 10-10–10-7). 

Thus, NO3
- could be a valuable parameter to signal water treatment operators of possible water quality 

changes occurring at the source water (e.g., varying DON concentrations). For example, waters 

showing a decrease in NO3
- concentration despite having the same ozonation conditions could 

indicate having lower O3 exposures and that higher ozone doses might be needed to reach the target 

disinfection credit. Thus, NO3
- measurements after the ozone contactor may be useful to complement 

the monitoring tools currently applied in water treatment to assess O3 exposure.  However, this new 

concept has some limitations related to the analytical determination of the formation of NO3
- and/or 

NH4
+. Prior source water characterization is also needed before applying this approach as monitoring 

formation of inorganic nitrogen is a challenge with waters having very high background inorganic 

nitrogen or very low DON concentrations.  

Following ozonation would be biofiltration (Point 4, Figure 7.2). To improve biofiltration, EBCT 

could be optimized by water treatment operators. For the experimental conditions used, an EBCT of 

10 – 20 min following ozonation ensured near maximum possible removal of DBP precursors in 

biofilters including those for regulated DBPs such as trihalomethanes and those that increased after 

ozonation (e.g., chloral hydrate, haloketones, trihalonitromethanes). However, it was also observed 

that brominated DBPs, which are relatively more toxic than chlorinated DBPs, increased after 

biofiltration, with a much higher increase at longer EBCTs. Thus, treatment engineers should take 

this into account especially when dealing with waters containing high bromide concentrations. In 
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addition, the observed first-order removal kinetics of DBP precursors before reaching a plateau of 

residual biorecalcitrant concentration could also be used to predict reductions in DBP formation 

potentials and determine the EBCT required to attain low DBP concentrations in the treated water. 

The needed EBCT for DBP precursor removal, however, should also be considered along with the 

cost associated with increasing the EBCT (e.g., larger filters). Shorter EBCTs may potentially be used 

when biofiltration is combined with enhanced pretreatment processes. For example, if coagulation is 

performed to sufficiently remove DBP precursors, biofilter contact time could be shortened since 

bulk of the precursors is already removed during this pretreatment. Optimization of the filter 

characteristics versus NOM/DBP precursor removal requirement is therefore necessary to arrive at 

cost-effective solutions involving biofiltration.  

7.4. Opportunities for future research 

The results of this thesis also gave rise to a number of opportunities for future studies. These include 

the following: 

1. NO3
- measurement as surrogate parameter for disinfection efficiency and micropollutant 

removal during ozonation 

It was demonstrated in Chapter 4 that NO3
- formation has a direct correlation with O3 exposure. In a 

follow-up test using a South East Queensland water, it was observed that the NO3
- formation in lab-

scale studies was relatively close to those measured before and after full-scale drinking water 

ozonation (Table 7.2). Consistent with the thesis results, NO3
- levels in the full-scale plant also 

increased after ozonation. This shows that NO3
- monitoring might be feasible in this water treatment 

plant. In applying this concept, however, it is important to know the properties of the source water  

(i.e., in terms of DON and background NO3
-) to determine whether NO3

- formation can be reliably 

measured. As O3 exposure (CT value) in water treatment plants is constantly measured to assess 

inactivation of microorganisms (e.g., C. parvum oocysts), it would be worth exploring if NO3
- 

concentrations would be an appropriate surrogate parameter for log removals of microorganisms. 

This approach may also be useful in predicting the abatement of micropollutants. Previous studies 

have shown that micropollutant elimination could be predicted  from the Rct of an ozonation process 

(Elovitz and von Gunten 1999). For water samples whose Rcts are mainly dominated by changes in 

O3 exposure (e.g., at relatively constant •OH exposure), it would be possible to relate the changes in 

NO3
- concentrations with the Rct. 
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Table 7.2. Comparison of NO3
- concentrations measured before and after pre- and 

intermediate-ozonation in full-scale plant and lab-scale experiment. Conditions: pre-
ozone dose = 2.1 mg/L, pH=7.4, intermediate ozone dose = 0.5 mg/L, pH = 6.8, 
DOC = 4.5 mg/L, DON = 0.2 mg/L* 

Sampling points 
NO3

--N, µg/L 

Laboratory Full-scale 

Before pre-O3 Same as full-scale 13.5 ± 0.5 
After pre-O3 23.7 ± 0.7 24.9 ± 0.6 

Before inter-O3 Same as full-scale 69.9 ± 0.5 
After inter-O3 73.4 ± 0.9 77.4± 0.1 

*± standard deviation of 3 measurements 

2. Understanding the reactions of DON intermediates during ozonation  

In the kinetic simulations of glycine ozonation (Section 4.3.8), the rate constant of the reaction of N-

centered radicals and ozone was assumed based on the experimental NO3
- and NH4

+ concentrations. 

Thus, further investigations are necessary to confirm the assigned rate constants along with 

verification of intermediates formed during ozonation of DON. In addition, about 25% •OH yield was 

determined for the reaction of glycine and ozone, but data on •OH yields for other aliphatic amines 

are lacking in the literature. These rate constants and •OH yields are essential for a better 

understanding of electron-transfer reactions during ozonation of amines. Moreover, with oxygen 

transfer reactions, intermediates such as hydroxylamines are formed which could be essential for the 

formation of N-DBPs like halonitromethanes. Evaluating NO3
- concentrations might provide useful 

insights in the formation of halonitromethanes as well as removal of haloacetonitriles.   

3. Surrogate measurements for NOM reactivity and DBP formation 

This study also highlighted that DBP formation varies depending on the reactivity of NOM. For 

example, lower DBP formation was found after pre-ozonation, and chlorine demand was higher for 

waters treated at conditions favoring O3 decay. It is worth studying if the reactivity of the water 

samples towards oxidants can be predicted. On-going work is being conducted for rapid measurement 

of NOM reactivity in terms of its electron donating capacity (EDC) using an electrochemical 

approach developed by Aeschbacher et al. (2010). In this study, model compounds namely resorcinol, 

tannic acid, vanillin, and cysteine were used to represent the reactive moieties of complex DOM 

mixtures. The EDC was determined by mediated electrochemical oxidation (MEO) which involves 

the use of 2,2′-azino-bis(3-ethylbenzthiazoline-6-sulfonic acid) (ABTS) as an electron shuttle. The 



Chapter 7 
 

   
 

 
- 168 - 

Cl2 demand of these readily oxidizable compounds (resorcinol, tannic acid, vanillin, and cysteine) 

was found to correlate well with EDC (R2 = 0.98) which could potentially be used in predicting 

chlorine demand of water samples (Figure 7.3a) (de Vera et al. 2017). After ozonation (Figure 7.3b), 

the UV absorbance, EDC, and chlorine demand of resorcinol and tannic acid also decreased at a 

relatively the same extent due to ring opening mechanisms of the phenolic groups. 

 

Figure 7.3. (a) Linear relationship of chlorine demand with electron-donating capacity (EDC) of 
tannic acid, vanillin, resorcinol, and cysteine (b) Relative residual UV absorbance (at 220 nm for 
recorcinol, 278 nm for tannic acid), EDC, and chlorine demand of resorcinol and tannic acid (3.2 mM 
DOC) after ozonation (0.1 mol O3/mol DOC) at pH 7 (de Vera et al. 2017). 

4. Measures to prevent brominated DBP formation during O3/BAC 

As demonstrated in this study, one of the drawbacks of ozone and BAC treatment is the increase in 

brominated DBP formation potentials (e.g., bromoform, tribromonitromethane, dibromoacetonitrile, 

chlorodibromoacetic acid) which are potentially more toxic than chlorinated DBPs (Section 2.4). For 

ozonation, this is due to the formation of hydrophilic NOM fractions which are more amenable for 

bromine reactions, while for biofiltration, this is due to the increase in bromide/DOC ratio. Further 

toxicity tests would therefore be of interest to assess the impact of Br-DBP increase in the overall 

effect of O3/BAC treatment. More importantly, measures to minimize bromide prior to oxidation 

should be investigated. Previous studies reported the use of ion exchange resins, membranes, silver-

impregnated activated carbon and aerogels, electrochemical processes (e.g., electrodialysis reversal), 

among others, to remove halide ions in drinking water sources (Watson et al. 2012). Thus, these 

processes could be further optimized and developed (e.g. into hybrid/combined systems) for efficient 

removal of bromide, and consequently Br-DBPs.  
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5. DBP precursor removal through the GAC-BAC filter lifetime 

In this study, the filter media used for biofiltration have been in operation for more than 2 years, 

minimizing the role of adsorption in DBP precursor removal. Water treatment plants, however, 

occasionally replace portions of their BAC filters with new GAC, while some retrofits their existing 

processes to incorporate a GAC filter. These changes make adsorption an important NOM removal 

mechanism. It is worth exploring to differentiate the effects of adsorption and biodegradation on the 

removal of DBP precursors from GAC, to saturation of adsorption sites, until the filter becomes 

biological (Simpson 2008). Preliminary results in our group shows that biodegradation constantly 

removes about 40% of THM precursors, and adsorption provides an additional 40% removal (i.e., 

only at the beginning of GAC operation) (Doederer et al. 2016). Since DBP precursors have different 

physicochemical properties (e.g., aromaticity, functional groups, size, solubility, charge), precursor 

removal by adsorption of other DBPs could also be different.  

In addition, during extended BAC filtration periods, leaching of soluble microbial products (SMPs) 

containing N-DBP precursors is possible. This could be due to detachment of dead bacteria from the 

biofilm matrix and/or degradation of extracellular polymeric substances (EPS) over time. These 

SMPs were thought to have contributed in haloacetonitrile formation in batch biodegradations tests 

in Section 6.3.1.2. Future studies are needed to identify the factors affecting biofilm integrity, EPS 

formation, as well as SMP release, and determine how these factors affect DBP formation during 

effluent chlorination. Such studies may involve examining the interplay of substrate utilization rate, 

accumulated biomass (e.g., concentration, thickness, composition), and hydraulic action (e.g., 

backwashing regimes), among others. Media type and surface characteristics as well as influent water 

quality (e.g., nutrient (C/N/P) content) may also play a significant part in the release of potential 

SMP-derived DBP precursors.  
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