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Highlights 

 GABAA receptor  subunit expression is altered in the IUGR piglet brain 

 White matter disruption evident in IUGR at multiple gestational time-points 

 GABAA receptor may be a key factor in white matter injury in the IUGR brain 

 Altered GABA system may contribute to cognitive disabilities observed in IUGR 

 Understanding mechanisms of IUGR brain injury essential to identifying treatments  

 

Abstract 

Intrauterine growth restriction (IUGR) is one of the most common causes of perinatal 

mortality and morbidity. White matter and neuronal injury are major pathophysiological 

features of the IUGR neonatal brain. GABAA (-aminobutyric acid type A) receptors have 

been shown to play a role in oligodendrocyte differentiation and proliferation in the neonatal 

brain and may be a key factor in white matter injury and myelination in IUGR neonates. 

Whether there are impairments to the GABAergic system and neuronal cytoskeleton in IUGR 

brain has yet to be elucidated. This study aims to examine GABAA receptor 1 and 3 subunit 

protein expression and distribution in parietal cortex and hippocampus of the IUGR piglet at 

four different ages (term = 115d - days gestational age), 100d, 104d, birth (postnatal day 0 – 

P0) and P7 and to examine neuronal and myelination patterns. Significant alterations to 

GABAA receptor 1 and 3 protein expression levels were observed in the IUGR piglet brain 

of P7 IUGR piglets with significantly greater 3 expression compared to 1 expression in the 

hippocampus while there was virtually no difference between the two subunits in the parietal 

cortex. However a significantly lower 1/3 ratio was evident in P7 IUGR cortex when 

compared with P7 NG cortex. Neuronal somatodendrites studied using MAP2 

immunohistochemistry showed reduced and disrupted somatodendrites while MBP 

immunolabelling showed loss of axonal fibres from gestational day 104d through to P7. 

These findings provide insights into the effects of IUGR on the development of the GABA 

system, altered developmental maturation of GABAA receptor subunit expression in the 

IUGR brain may influence myelination and may partly explain the cognitive disabilities 

observed in IUGR. Understanding the mechanisms behind grey and white matter injury in the 

IUGR infant is essential to identifying targets for treatments to improve long-term outcomes 

for IUGR infants. 
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1. Introduction 

Intrauterine growth restriction (IUGR) is one of the most common causes of perinatal 

mortality and morbidity (Allen, 2001; Gillespie, 2002). In developing countries a high 

prevalence of IUGR is reported with affected infants more likely to develop learning and 

cognitive impairments later in life (Allen, 2001; De Bie, 2010; Gillespie, 2002). Hypoxemia 

and impaired nutrient supply during pregnancy are major contributors to brain 

pathophysiology in IUGR neonates (Cox and Marton, 2009; Economides DL, 1989; 

Nicolaides KH, 1989). 

White matter and neuronal injury are major pathophysiological features of the IUGR neonatal 

brain. Clinical imaging studies demonstrate alterations in brain structure in IUGR infants 

including altered white and grey matter volumes, decreased levels of brain connectivity, 

decreased cortical thickness and delayed cortical development (Esteban et al., 2010; Padilla et 

al., 2015; Tolsa et al., 2004). These alterations that persist at 1 year of age are associated with 

developmental disabilities in the IUGR infant (Esteban et al., 2010; Padilla et al., 2011).   

Myelination of axons, which is critical for effective neuronal communication begins shortly 

after birth and progresses into adulthood (Kinney et al., 1994). Myelination involves a series 

of signals between oligodendrocytes and neurons involving several neurotransmitters and 

growth factors. Adenosine, glutamate, GABA (-aminobutyric acid), and ATP are able to 

modulate oligodendrocyte progenitor proliferation, differentiation, and migration along with 

oligodendrocyte survival and myelination (Arellano et al., 2016). In particular, GABAA 

receptors have been shown to play a role in oligodendrocyte differentiation and proliferation 

in the neonatal brain (Zonouzi et al., 2015). GABAergic signaling regulates oligodendrocyte 

progenitor cell differentiation and proliferation in the preterm neonatal brain and may be a 

key factor in diffuse white matter injury in these neonates (Zonouzi et al., 2015). 

GABA is a major neurotransmitter in the neonatal brain. GABAA receptors are shown to have 

a neurotrophic action complementary to their neurotransmission function, with a role in 

neuronal cell migration in cortical layers (Doris and Arnold, 2009; Lujan et al., 2005). 

GABAA receptor subunits are regulated in a distinctive spatial and temporal manner, both 

during development and into adulthood in the brain (Brooks-Kayal and Pritchett, 1993; Chen 

et al., 2001; Hornung and Fritschy, 1996; Laurie et al., 1992; Montpied et al., 1989; Poulter et 

al., 1992; Takayama and Inoue, 2004). Cerebral function depends on adequate development 
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of essential inhibitory neural circuits and the appropriate amount of excitation and inhibition 

at specific stages of maturation. Early prenatal neuronal synaptic responses to GABA are 

initially excitatory however during the early postnatal period in the rat, GABAA receptor 

responses switch to inhibitory (Ben-Ari, 2002; Plotkin et al., 1997). We have previously 

demonstrated the change in GABAA receptor 3 to 1 subunit expression at birth in the 

normal developing piglet brain (Kalanjati et al., 2011) coinciding with the 

excitatory/inhibitory switch. The timing of the switch in GABAA receptor function in humans 

however has not been firmly established and may not be complete until 3-4 months of age 

(Herlenius and Lagercrantz, 2001; Murphy et al., 2005). Changes in GABAA receptor subunit 

expression alter the receptor composition and modify GABAA receptor function and thus 

GABA neurotransmission (Puia et al., 1991; Sieghart and Sperk, 2002; Verdoorn et al., 

1990). The 1 subunit-containing GABAA receptor has a higher affinity for GABA with a 

faster activation and deactivation period compared to the 3 subunit-containing receptor 

(Keramidas and Harrison, 2010; Verdoorn, 1994; Verdoorn et al., 1990) .  

Normal growth of neurons, neuronal cytoskeletons and myelination are vital for 

synaptogenesis (Stafstrom, 2007). Together, with the evolving balance of the GABA system, 

they play a key role in normal brain maturation and activity (Stafstrom, 2007). In animal 

models of IUGR using diet restriction, vascular ligation or placental embolization, impaired 

GABA, neuronal somatodendritic growth and myelination were observed (Steiger et al., 

2003; Tashima et al., 2001). However, limited research has involved animal models with 

naturally occurring IUGR. Unlike the induction of IUGR through surgery or drugs necessary 

in small animal models, IUGR occurs spontaneously in the pig and therefore serves as an 

excellent pre-clinical model. 

This study aims to elucidate the ontogeny of the GABAA receptor 1 and 3 subunit protein 

expression and distribution patterns in IUGR piglet parietal cortex and hippocampus at four 

different age points, 100 days gestational age ( ~30wk human GA), 104 days gestational age 

(>32wk human GA), birth (P0) and post-natal 7 days (P7) and to examine neuronal and 

myelination patterns in IUGR piglet brains using MAP2 (microtubule-associated protein 2) 

and MBP (myelin basic protein) immunolabelling respectively. Alterations to GABAA 

receptor function via changes to receptor subunit expression in the IUGR brain may lead to 

abnormal neurotransmission. GABA neurotransmission has been shown to impact 

myelination in the developing brain (Arellano et al., 2016; Zonouzi et al., 2015). The 
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newborn piglet is an appropriate model of the human neonate comparing favourably in brain 

development and maturation, lung maturity and cardiovascular function (Dobbing and Sands, 

1979; Eiby et al., 2013; Pond et al., 2000). In the IUGR brain, alterations to the normal 

developmental expression of the GABAA receptor 1 and 3 subunits may impact neuronal 

cytoskeleton development and myelination.  The parietal cortex is part of the central 

somatosensory system which, together with the hippocampus, are vital for perception, 

learning and cognitive functions (Volpe, 2008a). These regions are significantly impaired in 

IUGR animal models (Miller et al., 2014 ).  

 

2. Experimental Procedures 

2.1 Animals and tissue preparation  

Large-white piglets (n=65) were obtained from The University of Queensland Gatton 

Piggery. Approval for this study was granted by The University of Queensland Animal Ethics 

Committee and was carried out in accordance with National Health and Medical Research 

Council (NHMRC) guidelines (Australia). 

Term (P0 – normally grown (NG) n=10; IUGR n=9) and week-old piglets (P7 – NG n=10; 

IUGR n=10) were born spontaneously. Caesarean sections were performed on pregnant sows 

at 100 days of gestation (NG, n=7; IUGR, n=6) and at 104 days of gestation (NG, n=7; 

IUGR, n=6) (Kalanjati et al., 2011). Both spontaneously born and c-section delivered animals 

were collected randomly across several litters. Following delivery piglets were resuscitated, 

weighed and then euthanased via an intracardiac injection of sodium pentobarbital (650 

mg/kg; Lethabarb, Virbac, Australia). The brain was immediately removed, weighed, 

hemisected and coronally sliced. Parietal cortex and hippocampus from the left hemisphere 

were frozen in 0.32 M sucrose and stored at –80°C while the right hemisphere sections were 

fixed in 4% paraformaldehyde as previously described (Kalanjati et al., 2011). IUGR piglets 

were defined by brain to liver weight ratio at birth (BLR) ≥ 1 and by birth bodyweight (< 10th 

percentile for P0 and P7; < 20th percentile for 100d and 104d) (Bauer et al., 1998; Cox and 

Marton, 2009; Peleg et al., 2006). BLR is used to define asymmetric growth in the IUGR 

neonate. This is the most common form of growth restriction (affecting 70-80%) known as 

‘brain-sparing’ where the body is disproportionately smaller than the head.  
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2.2 Protein preparation and Western blotting 

Brain tissue from the parietal cortex and hippocampus were homogenised in 10x volume 

distilled water, centrifuged at 1400 x g for 5 min at 4°C and supernatant collected as 

previously described (Miller et al., 2016). Protein concentrations were determined by 

bicinchoninic acid (BCA) assay (Thermo Fisher Scientific, Victoria, Australia). Protein 

samples were separated by 10% SDS-PAGE, transferred to PVDF membrane and probed 

with anti-GABAA receptor 1 (1:2000, Millipore, USA) and anti-GABAA receptor3 

(1:1000, Millipore, USA) as previously described (Kalanjati et al., 2011; Miller et al., 2016). 

Following incubation with secondary anti-rabbit IgG-peroxidase antibody (1:30 000, Sigma 

Aldrich, USA) for 1 hour at RT, proteins were visualised on X-ray film with ECL reagent 

(GE Healthcare, Australia) and quantified with Image-J software. A pooled protein sample of 

all samples was used on every gel (5, 10 and 20 µg) as a control for quantification as 

previously described (Goasdoue et al., 2016; Miller et al., 2016). 

2.3 Immunohistochemistry 

Brain slices (in triplicate) containing parietal cortex and hippocampus from the right 

hemisphere (n=3 animals from each time point and group) were embedded in paraffin and 

serially sectioned. For GABA immunohistochemistry sections were cut at 4µm apart and for 

MAP2 and MBP immunohistochemistry sections were cut 8µm apart. Sections were affixed 

to Menzel Superfrost Plus adhesive slides and air-dried overnight at 37ºC. Prior to antigen 

retrieval all sections were dewaxed and rehydrated. For GABAA receptor 1 and 3, and 

MAP2 immunohistochemistry, antigen retrieval was performed at 105ºC for 15–20 min in a 

decloaking chamber (Borg; Biocare Medical, USA). Monoclonal mouse anti-GABAA 

receptor 1 (1:500), polyclonal rabbit anti-3 (1:1500) were applied overnight at RT, mouse 

anti-MAP2 (1:5000; ExBio, Czech Republic) was incubated overnight at 4ºC. The following 

day sections were incubated with secondary anti-mouse antibody (MACH 3 or anti-rabbit, 

Biocare Medical, CA) for 10 min or 60 min at RT as previously described (Lingwood, 2008). 

Labelling was visualised with chromagen 3,3’–diaminobenzidine (DAB, Sigma Aldrich, 

NSW) and sections counterstained with cresyl violet (0.15%).  

For MBP immunohistochemistry sections were placed in an antigen retrieval at 85°C for 10 

min. Rat anti-MBP (1:4000; Sigma-Aldrich, USA) was applied and sections incubated for 72 

h at 34ºC followed by incubation with secondary anti-rat antibody (1:500) for 5 hours at 

34ºC.  
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Analysis of immunolabelled sections was performed using a light microscope (Olympus 

BX41) with a DP70 camera. Image analysis of MAP2 and MBP were performed as 

previously described (Wixey et al., 2011). Briefly, photomicrographs (600 μm x 600 μm) of 

cortical grey matter in the parietal cortex and hippocampus for MAP2 and subcortical white 

matter in the parietal lobe for MBP were taken at 100d, 104d, P0 and P7. Three sequential 

sections from each piglet were analysed using the commercial software National Institutes of 

Health Image J as described (Wixey et al., 2011). The areal density is expressed as a 

percentage of 600 μm2. 

2.4 Statistical analysis 

Normality testing of sample distributions was done for each age group. One-way ANOVA 

with the post hoc Tukey analysis was used to determine differences between NG and IUGR 

animals at each gestational/postnatal age and to assess temporal changes in GABAA receptor, 

MAP2 and MBP expression. p<0.05 was considered significant (Graph Pad Prism 5.0 

software, San Diego, California, USA).  

 

3. Results 

Body weight and liver weight were significantly lower for IUGR piglets in comparison to NG 

for all age groups (Table 1). Brain weight was only significantly lower in the P0 and P7 

IUGR groups in comparison to respective NG groups. The mean brain to liver weight ratio 

(BLR) was significantly higher in the IUGR piglets in comparison to NG for all age groups 

(Table 1). 

3.1 Switch in GABAA receptor  and protein expression in IUGR piglet brain 

We observed a switch in GABAA receptor 1 and 3 subunit protein expression in IUGR 

parietal cortex and hippocampus between P0 and P7, similar to the NG pattern previously 

reported by us (Kalanjati et al., 2011). In the parietal cortex, the 3 protein showed 

significantly greater expression during gestation compared to 1 from 100d to P0 (birth) 

(p<0.05; Figure 1A). The switch from 3 to 1 expression in the parietal cortex appeared to 

occur at around P4-5 in IUGR animals and, by P7 the cortical expression of the 3 protein 

was lower than the 1 protein, however this difference was not significant (Figure 1A). In the 

IUGR hippocampus, a similar effect was evident at the gestational time-points studied with 

greater 3 expression (although not significant) compared to 1 until P0. Unlike the parietal 
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cortex the switch from 3 to 1 expression in the hippocampus occurred very soon after birth 

at approximately P1, whereupon 3 expression significantly declined compared to 1 by P7 

(p<0.05; Figure 1B). Representative western blots are shown in Figure 1C. 

3.2 Ratio of GABAA receptor 1/ protein expression  

Analysis of the ratio of GABAA receptor protein subunit expression levels 1:3 (1/3) in 

IUGR parietal cortex compared with normally grown animals was not significantly different 

in the 100d, 104d and P0 groups. However, at P7 the 1/3 subunit ratio in IUGR parietal 

cortex was significantly lower when compared with P7 NG cortex (p<0.05) (Figure 2A). In 

hippocampus, the 1/3 subunit ratio in IUGR groups was not significantly different 

compared with NG animals at any time-point studied (Figure 2B). In contrast to the parietal 

cortex, the 1/3 subunit ratio in the P7 IUGR hippocampus was not significant although this 

ratio was increased when compared with P7 NG hippocampus.                                                    

3.3 GABAA receptor 1, and 3 immunolabelling 

There were no obvious differences in the laminar and cellular distributions of GABAA 

receptor 1 and 3 subunits in IUGR piglet parietal cortex and hippocampus across any of the 

age groups studied (Figure 3). The pattern of staining in the IUGR piglet brain was similar to 

our previous observations in the NG piglet brain (Kalanjati et al., 2011). Immunolabelling of 

the 1 and 3 subunits were shown throughout all cortical layers with the 3 subunit 

predominantly observed in layer V-VI.  The 1 subunit was widely distributed in all strata in 

the hippocampus of IUGR piglets, whereas 3 subunit expression was limited. At the cellular 

level, these subunits were observed in the neuropils, cell bodies and processes of pyramidal 

and non-pyramidal neurons in both parietal cortex and hippocampus. Figure 3 shows a visual 

increase in 1 immunolabelling (A-D) and decrease in 3 immunolabelling (F-I) from 100d 

to P7 in the IUGR piglet brain. 

3.4 MAP2 immunolabelling in the parietal cortex and hippocampus 

Impaired MAP2 immunolabelling was observed at all time points in the IUGR parietal cortex 

and CA1 region of the hippocampus when compared to the same regions in the NG piglet 

brain (data only shown for P7 – Figure 4). Compared with NG parietal cortex (Figure 4A), 

the pattern of immmunolabelling in IUGR parietal cortex appeared disrupted showing 

diminished somatodendrites or ‘unhealthy’ broken-looking dendrites (Figure 4B). In the 

hippocampus, there was a distinct loss of somatodendritic labelling by MAP2 in the CA1 
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region in IUGR animals (Figure 4D) when compared with NG animals (Figure 4C). In all but 

one age, there were significant reductions in MAP2-positive immunolabelling in the IUGR 

piglet brain at 104d, P0 and P7 in both the parietal cortex (47.0%, 35.5%, 37.7% respectively; 

Table 2) and hippocampus (39.6%, 29.8%, 36.0% respectively; Table 2) in comparison to NG 

piglets. 

3.5 MBP immunolabelling in the parietal cortex and hippocampus 

MBP immunolabelling was performed in subcortical whiter matter of the parietal lobe of NG 

(Fig 5A, C, E, G) and IUGR (Fig 5B, D, F, H) piglet brains. In NG brains, MBP 

immunoreactivity was associated with white matter fibres, typical of the myelination pattern 

for a developing brain. In IUGR brains (Fig 5 B, D, F, H), immunoreactivity for MBP was 

decreased and the myelination pattern of the white matter appeared disrupted with marked 

loss of axonal fibres. The myelinated-axonal fibre pattern in the subcortical white matter of 

the parietal lobe of NG piglets was developmentally regulated from 100d to P7, where 

expression increased gradually from 100d to P7 (Fig 5A, C, E, G; Table 2). However, 

significant reductions in MBP-positive immunolabelling of myelinated-axonal fibres in the 

subcortical white matter of the parietal lobe were evident in the IUGR piglet brain at 104d, 

P0 and P7 (51.1%, 22.7%, 32.8% respectively; Table 2) in comparison to NG piglets. 

 

4. Discussion  

A switch in the dominant expression between GABAA receptor 3 and 1 subunits occurs 

around birth in multiple mammalian species including the piglet brain (Brooks-Kayal and 

Pritchett, 1993; Chen et al., 2001; Kalanjati et al., 2011; Laurie et al., 1992; Liu and Wong-

Riley, 2004; McKernan et al., 1991; Takayama and Inoue, 2004). In the current study, we 

report altered GABAA receptor  subunit expression in IUGR animals at birth and at 1 week 

postnatal age as well as changes to neuronal cytoskeletal structure and myelination across 

several gestational time-points. 

Unlike our findings in the parietal cortex of NG animals, which showed a significant 

upregulation of 1 expression by P7, in IUGR animals, 1 expression did not upregulate 

significantly between P0 and P7 congruent with the normal developmental maturation of the 

GABAA receptor neurotransmission system (Kalanjati et al., 2011). The reverse was true 

however for the hippocampus where we found a significant acceleration of 1 expression in 
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IUGR animals from P0 to P7 which was not evident in NG animals. GABAA receptor 3 

subunit expression in the P0 and P7 IUGR parietal cortex did not a downregulation, which is 

present in NG animals at this stage of brain development (Kalanjati et al., 2011); 

hippocampal 3 expression did not differ between IUGR and NG animals. While in the 

parietal cortex there appeared to be a delay in upregulation of the “mature” subunit 1 and/or 

prolonged expression of “embryonic” subunit 3 in IUGR animals, in the hippocampus the 

switch in expression between 1 and 3 appeared to occur faster in IUGR animals. Neither 

subunit appeared to differ in their distribution in the parietal cortex or hippocampus of IUGR 

piglets at any of the age groups studied when compared to our previous findings in NG 

animals (Kalanjati et al., 2011). 

Such alterations to GABAA receptor  subunit expression may have important impacts on the 

developing brain. A switch in the dominance of the  subunit expressed between 3 and 1 is 

in line with the switch in GABA neurotransmission from excitation to inhibition during brain 

maturation. Furthermore, alterations in GABAA receptor subunit protein expression modify 

the receptor subtype, which in turn results in changes to GABAA receptor kinetics, 

pharmacological properties and neurotrophic function (Belhage et al., 1988; D'Hulst et al., 

2009; Doris and Arnold, 2009; Lavoie et al., 1997; Serafini et al., 1998; Verdoorn et al., 

1990) . The altered GABAA subunit expression pattern in P7 IUGR piglet parietal cortex 

found in our study may not only affect GABA neurotransmission but may result in alterations 

to normal cortical development increasing the risk of neuropathological conditions. In 

humans, temporal and regional expression of specific GABAA receptor subunits correlates 

with the development of GABAergic interneurons and their thalamocortical projections 

(Houser et al., 1988; Tiu et al., 2002; Volpe, 2008a; Zecevic and Milosevic, 1997; Zezula et 

al., 1988).  

In the parietal cortex and CA1 hippocampus of IUGR animals, we observed obvious 

impairments to neuronal somatodendrites. A dramatic loss of neuronal somatodendrites 

labelled by MAP2 were observed across several gestational time points (104d, P0 and P7) 

suggesting that chronic growth restriction disrupts neuronal cytoskeletal architecture in 

IUGR. In acute HI, MAP2 is a sensitive marker for cerebral HI damage. Previous work in our 

laboratory in the neonatal HI piglet model showed severe impairments to MAP2 labelling 

with marked loss of dendrites and increased pyknotic neuronal nuclei in almost all layers of 

parietal cortex and hippocampus (Lee A, 2010; Lingwood et al., 2008). In gerbil cortex and 
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CA1 hippocampus, loss of neuropils, cell bodies and dendrites of neurons are seen after 

ischemia for 30 min (Kitagawa et al., 1989), while reduced MAP2 labelling has been found 

after acute HI in rat cortex (Blomgren et al., 1995). A more subtle and longer period of 

hypoxia and nutrient depletion such as is evident in IUGR appears to result in more subtle 

disturbances to neuronal somatodendrites that may impact normal cortical development. 

However in our current study we did not examine beyond postnatal day 7. Examining a later 

time point as well as performing neurobehavioral assessments would reveal whether this 

neuronal injury has long lasting effects and whether these disturbances result in long term 

neurodevelopmental issues.  

Additionally, in mice lacking the GABAA receptor 1 subunit, neuronal dendritic filopodia 

have been reported to be increased although the mature mushroom-shaped spines of these 

dendrites were found to be significantly decreased (Heinen et al., 2003). By binding to 

GABAA receptors, GABA may stimulate the neuritic outgrowth in rat hippocampus and 

modulate the plasticity of superior cervical ganglionic cell dendrites in adult rat (Barbin, 

1993; Wolff, 1978). Thus hypoxia and altered GABAA receptor expression may 

independently and/or together impair the neuronal somatodendritic expressions observed in 

IUGR piglet parietal cortex and hippocampus. 

In our current study we also observed considerable reduction in MBP immunoreactive fibres 

in the subcortical white matter of the parietal lobe of IUGR piglets from 104d, suggesting 

myelination is also susceptible to injury from the effects of IUGR. 104d in the piglet is 

similar to a human preterm infant between 26-28 weeks gestation (Eiby et al., 2013). At this 

time point brain growth and myelination are occurring at a rapid rate (Kinney et al., 1994). In 

fact, myelination in the fetal piglet brain has been shown to increase at a rapid rate between 

100d and 110d (Pond et al., 2000). In preterm human infants an arrested stage of active 

myelination between 23-36 weeks of gestation has been found to correlate with the incidence 

of periventricular leukomalacia (PVL), with death of pre-oligodendrocytes (that are highly 

susceptible to hypoxia) postulated as the underlying mechanism (Back et al., 2002; Back and 

Volpe, 1997; Hagberg et al., 2002; Volpe, 2008b). Selective death of pre-oligodendrocytes 

was previously considered the main mechanism underlying deficits in myelination, however 

recent studies in both premature human infants (Billiards et al., 2008; Verney et al., 2012) 

and in animal models of IUGR (Reid et al., 2012; Tolcos et al., 2011) suggest 

oligodendrocytes are arrested at the premyelinating stage and fail to fully mature into 
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myelinating oligodendrocytes. Furthermore after acute injury such as HI in rats, acute loss of 

oligodendrocytes is followed by proliferation of the oligodendrocyte progenitor cells that 

cannot differentiate further into mature oligodendrocytes (Cheng et al., 2015). 

In accordance with our demonstrated disruption and loss of neurons and white matter, clinical 

imaging studies demonstrate alterations in brain structure in IUGR infants including altered 

white and grey matter volumes, decreased levels of brain connectivity, decreased cortical 

thickness and delayed cortical development (Esteban et al., 2010; Padilla et al., 2015; Tolsa et 

al., 2004). In IUGR infants born preterm (26-34 wks GA), magnetic resonance imaging 

(MRI) at 12 months corrected age shows areas of decreased grey matter and white matter 

volumes  with decreases in the cerebellum and hippocampus (Padilla et al., 2011). These 

abnormal patterns may reflect abnormal neuronal activity and myelination and therefore 

abnormal functionality in the IUGR brain. These abnormal neuronal and/or white matter 

patterns have also been demonstrated in small animal models of IUGR (Wixey et al., 2016) 

with loss of oligodendrocytes, decreased proliferation and differentiation reported (Mazur et 

al., 2010; Olivier et al., 2005; Pham et al., 2015; Tolcos et al., 2011). Yet some studies show 

postnatal restoration of white matter (Olivier et al., 2007; Reid et al., 2012; Tolcos et al., 

2011). However even though myelination abnormalities were resolved, functional deficits 

were still evident in 8 week IUGR rats (Reid et al., 2012). Thus disruption to myelination 

prior to birth may result in ongoing neuropathological effects in the neonate.  

Our understanding of the signaling mechanisms mediated by GABA in the role of 

myelination in the IUGR brain is poor. We can gather information from recent neonatal 

studies where GABAA receptors have been shown to play a role in oligodendrocyte 

differentiation and proliferation in the neonatal brain (Zonouzi et al., 2015). GABAergic 

signaling regulates oligodendrocyte progenitor cell differentiation and proliferation in the 

preterm neonatal brain and may be a key factor in diffuse white matter injury in these 

neonates (Zonouzi et al., 2015). Therefore it seems plausible GABA could play a similar role 

in the IUGR brain. However the white matter disruption in the IUGR piglet brain preceded 

the disruption to GABAA  subunit expression which was not observed until after birth at 

postnatal day 7. Functional GABAergic studies and GABAA and oligodendrocytes co-

localisation studies would be beneficial to determine the mechanisms behind this disruption. 

Nonetheless, with altered GABAA receptor actions and disruption to myelination during a 

critical window of development this may impair functional outcomes in IUGR neonates. 
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The parietal cortex contains the somatosensory cortex and the hippocampus is important for 

memory function and forms part of the limbic system (Volpe, 2008a). Significant alterations 

to GABAA receptor 1 and 3 protein expression levels were observed in the IUGR piglet. 

Additionally, we found that neuronal somatodendrites and myelinated-axonal fibres are 

impaired in IUGR brain at certain gestational time-points, with the parietal cortex and CA1 

hippocampus showing a higher vulnerability. These cellular impairments may disrupt proper 

synaptogenesis and neurotransmission crucial to normal brain function. Elucidating the 

mechanisms behind grey and white matter injury in the IUGR infant may help our 

understanding of the cognitive impairment in IUGR and is essential to identifying targets for 

treatments to improve long-term outcomes for IUGR infants. 
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Figure Legends 

Figure 1. GABAA receptor subunit 1 and 3 protein expression in IUGR cerebrum between 

100d and P7 in the parietal cortex (A) and hippocampus (B) in IUGR piglets. A switch of 

predominant expression between these two subunits occurs around birth (P0) in the NG piglet 

brain (Kalanjati et al., 2011), however this switch was not significant at P7 in the IUGR 

parietal cortex (A). In the hippocampus the switch after birth resulted in a significant increase 

in α1 and decrease in α3 expression (B; p<0.05). (C) Representative western blots of 1 (lane 

1: P-10 NG hippocampus; lane 2: P-10 IUGR hippocampus; lane 3: P7 NG hippocampus; 

lanes 4-6 are standards: 20, 10, 5 g) and 3 (Lane 1: P7 NG hippocampus; lane 2: P0 NG 

hippocampus; lane 3: P7 IUGR parietal cortex; lanes 4-6 are standards: 20, 10, 5 g). Values 

are the mean ± S.E.M. *p < 0.05 1 versus 3. 

 

Figure 2. The 1/3 subunit ratio in 100d, 104d, P0 and P7 NG and IUGR parietal cortex (A) 

and hippocampus (B) in NG and IUGR piglets. The 1/3 ratio was significantly lower in 

IUGR cortex compared to NG cortex in the P7 group (p<0.05). There were no significant 

differences between NG and IUGR groups at all ages. Values are the mean ± S.E.M. *p < 

0.05, IUGR versus NG. 

 

Figure 3. GABAA receptor 1 and 3 subunit distribution in IUGR piglet brains at 100d 

(A&F), 104d (B&G), P0 (C&H) and P7 (D&I) respectively. Greater grey matter 1 

immunolabelling was present in the cortex (arrow, D) compared to the white matter. At a 

cellular level 1 immunolabelling was observed throughout cortical layers (inset, E) with 

labelling seen in neuropils, cell bodies and membranes of pyramidal and non-pyramidal 

neurons (arrows, E). In the hippocampus, 1 immunolabelling was shown in CA1, CA3 and 

the dentate gyrus (* in B). Greater grey matter α3 immunolabelling was shown in the cortex 

(arrow, F) compared to white matter. α3 immunolabelling  was predominant in the deeper 

layers (V-VI) compared with the more superficial layers (arrowhead inset, J) from neuropils, 
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neuronal membranes and processes labelling from layers V-VI. A streaky fibre labelling 

pattern was also seen from the neuronal processes in layers V-VI to the more superficial 

layers (arrow, J). In the hippocampus, α3 immunolabelling was sparse (* in I). Scale bar: 0.5 

cm (A-D, F-I); 200 µm (E&J) 

 

Figure 4. MAP2 immunolabelling in P7 piglet parietal cortex and CA1 hippocampus. In NG 

piglets, the immunolabelling was observed on the somatodendrites of neuronal cells (arrow, 

A-D). In IUGR piglets, the MAP2 immunolabelling pattern in the cortical layers was 

impaired, demonstrated either as a diminished somatodendritic pattern of the neurons or as an 

unhealthy-broken looking pattern of the dendrites (arrow, B).  Fewer somatodendrites of 

neuronal cells were seen in IUGR CA1 layers (arrow, D) when compared to NG CA1 (E&G). 

Scale 100 µm. 

 

Figure 5. Representative photomicrographs of MBP-immunolabelling in piglet subcortical 

white matter of the parietal lobe at 100d NG (A), 100d IUGR (B), 104d NG (C), 104d IUGR 

(D), P0 NG (E), P0 IUGR (F), P7 NG (G), and P7 IUGR (H). In NG brains (A-D), MBP 

immunoreactivity was associated with white matter fibres, typical of the myelination pattern 

for a developing brain. In IUGR brains (E-F), immunoreactivity for MBP was decreased and 

the myelination pattern of the white matter appeared disrupted with marked loss of axonal 

fibres. Scale bar 200 µm. 
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Table 1. Piglet bodyweight, brain weight and liver weight. IUGR piglets in all groups had 

significantly lower mean bodyweight and liver weight when compared to NG piglets from 

each respective age group (p<0.05). When compared to NG groups, significantly lower mean 

brain weight was observed in only the P0 and P7 groups (p<0.05); but not in the preterm 

groups. However IUGR piglets in all age groups demonstrated significantly higher brain to 

liver weight ratio in comparison to respective NG groups (p<0.05). Values are the mean ± 

S.E.M. *p < 0.05 lower value in IUGR versus NG. †p < 0.05 higher value in IUGR versus 

NG. 

 

Piglet groups Bodyweight in 

grams 

(mean ± SD) 

Brain weight in 

grams 

(mean ± SD) 

Liver weight in 

grams 

(mean ± SD) 

Brain:liver 

ratio 

(mean ± SD) 

100d 

NG (n=7) 

IUGR (n=6) 

 

981.4 ± 171.8 

619.2 ± 65.9* 

 

24.6 ± 3.7 

23.8 ± 2.6 

 

23.6 ± 5.3 

15.8 ± 3.9* 

 

1.06 ± 0.15 

1.55 ± 0.29† 

104d 

NG (n=7) 

IUGR (n=6) 

 

1281.3 ± 136.1 

815.0 ± 127* 

 

26.4 ± 1.8 

25.0 ± 1.4 

 

28.6 ± 4.6 

18.7 ± 2.8* 

 

0.95 ± 0.17 

1.37 ± 0.21† 

P0 

NG (n=10) 

IUGR (n=9) 

 

1406.9 ± 221.2 

769.2 ± 117.8* 

 

32.3 ± 1.9 

29.4 ± 3.2* 

 

51.6 ± 8.6 

24.5 ± 7.7* 

 

0.64 ± 0.09 

1.34 ± 0.31† 

P7 

NG (n=10) 

IUGR (n=10) 

 

2710 ± 303.5 

1374.1 ± 451.5* 

 

39.4 ± 2.7 

34.1 ± 2.5* 

 

108.1 ± 24.2 

48.4 ± 26.7* 

 

0.38 ± 0.23 

1.30 ± 0.46† 
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Table 2. Area density measurements of MAP2 and MBP immunolabelling in parietal cortex 

and hippocampus. Data are expressed as percentages of 600µm2 area. *p<0.05, **p<0.01, 

***p<0.001 IUGR versus NG 

 

Gestational 

Age 

MAP2 parietal cortex MAP2 hippocampus MBP parietal cortex 

  NG 

n=3 

IUGR 

n=3 

NG 

n=3 

IUGR 

n=3 

NG 

n=3 

IUGR 

n=3 

100d 

 

16.62±1.26 11.16±1.99 16.01±2.77 10.35±1.45 18.41±1.98 12.5±1.58 

104d 

 

17.14±0.57 9.09±0.54*** 16.08±1.09 9.719±1.07* 19.64±1.84 9.61±1.45** 

P0 

 

17.35±0.75 11.19±1.25* 14.9±0.89 10.46±0.52** 23.45±1.77 18.13±0.58* 

P7 

  

20.42±1.56 12.72±1.40* 21.18±1.18 13.55±2.25* 29.75±2.41 19.99±0.93* 

 

.  

 


