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ABSTRACT
In this paper we investigate how observational effects could possibly bias cosmological in-
ferences from peculiar velocity measurements. Specifically, we look at how bulk flow mea-
surements are compared with theoretical predictions. Usually bulk flow calculations try to
approximate the flow that would occur in a sphere around the observer. Using the Horizon Run
2 simulation we show that the traditional methods for bulk flow estimation can overestimate
the magnitude of the bulk flow for two reasons: when the survey geometry is not spherical
(the data do not cover the whole sky), and when the observations undersample the velocity
distributions. Our results may explain why several bulk flow measurements found bulk flow
velocities that seem larger than those expected in standard � cold dark matter cosmologies.
We recommend a different approach when comparing bulk flows to cosmological models,
in which the theoretical prediction for each bulk flow measurement is calculated specifically
for the geometry and sampling rate of that survey. This means that bulk flow values will not
be comparable between surveys, but instead they are comparable with cosmological models,
which is the more important measure.

Key words: cosmology: observations – cosmology: theory – dark energy – large-scale struc-
ture of Universe.

1 IN T RO D U C T I O N

The term bulk flow in the context of cosmology refers to the average
motion of matter in a particular region of space relative to the dipole
subtracted cosmic microwave background (CMB) rest frame. One
reason why bulk flows are interesting to cosmologists is that by
measuring them we can learn more about the composition of the
Universe, the laws of gravity, and whether our current cosmological
model is a good representation of the actual underlying dynamics.

A bulk flow is induced by density fluctuations, and thus the bulk
motion we observe should match what we expect from the density
distribution. The density distribution is in turn determined by cos-
mological parameters such as the strength of clustering, through
σ 8, and the matter density, �M. The magnitude of bulk flows can
be predicted from theory given a model and set of cosmological
parameters (e.g. σ 8 and �M), some initial conditions (such as a
fluctuation amplitude at the end of inflation), and a law of gravity
(such as general relativity). If the observed bulk flow was to deviate
from that predicted by theory, that would indicate that one or more
of the given inputs is incorrect.

Currently tension exists in measurements of the bulk flow, with
some measurements in apparent agreement with that predicted by

� E-mail: perandersen@dark-cosmology.dk

� cold dark matter (�CDM; Colin et al. 2011; Dai, Kinney &
Stojkovic 2011; Nusser & Davis 2011; Osborne et al. 2011; Turn-
bull et al. 2012; Lavaux, Afshordi & Hudson 2013; Ma & Scott
2013; Feix, Nusser & Branchini 2014; Hong et al. 2014; Ma &
Pan 2014; Planck Collaboration XIII 2014; Carrick et al. 2015;
Hoffman, Courtois & Tully 2015) while others are not (Kashlinsky
et al. 2008; Watkins, Feldman & Hudson 2009; Feldman, Watkins &
Hudson 2010; Abate & Feldman 2012; Watkins & Feldman 2015).
Relieving this tension is important if we are to gain physical insight
into the nature of dark energy and dark matter (DM).

The field of using large-scale bulk flows to constrain cosmol-
ogy has historically been limited by systematics due to the limited
quality and quantity of the data available. Modern data sets now in-
clude peculiar velocity measurements of thousands of galaxies with
moderate precision and hundreds of Type Ia supernovae (SNe) with
excellent precision. These have inspired a new generation of bulk
flow studies. As these new data sets become increasingly abundant
and precise, it is prudent to investigate the observational effects that
may bias a bulk flow measured from one of these data sets.

One such effect is undersampling of the surveyed volume. Un-
dersampling is especially relevant for estimates utilizing a small
number of distance indicators, like many recent estimates of the
bulk flow done with observations of Type Ia SNe (Haugbølle et al.
2007; Jha, Riess & Kirshner 2007; Colin et al. 2011; Dai et al.
2011; Weyant et al. 2011; Turnbull et al. 2012; Feindt et al. 2013).
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Attempts at addressing sampling issues have been proposed, see
e.g. Watkins et al. (2009), Li et al. (2012), or Weyant et al. (2011).
Another such effect is the geometry of a survey – namely whether
the survey covers the whole sky or a narrow cone. Methods such as
the minimum variance method proposed by Watkins et al. (2009)
attempt to weight arbitrarily shaped survey geometries so that the
bulk flow they calculate approximates what would have been mea-
sured if the distribution of data was spherical. Other effects, besides
observational, might also play an important role. See e.g. Huterer,
Shafer & Schmidt (2015) where the effects of velocity correlations
between SN magnitudes are included in the data covariance matrix,
and are found to have a significant impact on the constraints from a
derived bulk flow estimate.

The bias that might arise from estimating the bulk flow magnitude
with a small number of peculiar velocities, effectively undersam-
pling the surveyed volume, and with a non-spherical distribution of
measurements is the focus of this paper. We utilize data from the
Horizon Run 2 (HR2; Kim et al. 2011) simulation to investigate how
strong a bias undersampling introduces for various survey volumes,
from spherically symmetric surveys, to hemispherical and narrow
cone surveys. We focus on the maximum likelihood (ML) estimator
of the bulk flow, as it is computationally cheap to perform, easy
to interpret, and used widely in the literature. Additionally, for a
limited test case, we investigate how successful the minimum vari-
ance (MV; Watkins et al. 2009) estimator is at alleviating the bias
that comes from undersampling. The ML and MV estimators are
described in Appendix A, where we take the opportunity to clarify
some typographic errors and undefined terms in the original papers
that can lead to confusion.

In Section 2 we introduce the HR2 simulation. Then in Section 3
we summarize the theoretical footing of large-scale bulk flows,
and provide an expansion beyond the usual spherical assumptions
so that the theory is also valid for non-spherical geometries. The
theoretical estimate is established as the benchmark against which
we test the effects of undersampling. Then in Section 4 we analyse
the effects of undersampling on the ML estimator, for a spherical,
hemispherical, and narrow cone geometry. Finally in Section 5 we
discuss our findings and the implications for future work using
large-scale bulk flows in cosmology.

Throughout this paper when we refer to the theoretically most
likely bulk flow magnitude it will be denoted the most probable
bulk flow magnitude, Vp, to avoid confusion with bulk flows from
the ML estimator.

2 SI M U L ATI O N : H O R I Z O N RU N 2

Throughout this paper we use the Horizon Run 2 (HR2) cosmolog-
ical simulation (Kim et al. 2011) to investigate how observational
effects, in particular non-spherical survey geometries and under-
sampling, can influence bulk flow measurements in a �CDM uni-
verse. We choose this simulation for the following reason: the bulk
motions of galaxies are primarily sensitive to large-scale density
perturbations, meaning that the bulk flow measured in apparently
distinct patches drawn from a single simulation can remain signifi-
cantly correlated. The HR2 simulation, containing 216 billion parti-
cles spanning a (7.2 h−1 Gpc)3 volume, is large enough that we can
be confident our bulk flow measurements are effectively indepen-
dent. The above simulation parameters result in a mass resolution of
1.25 × 1011 h−1 M�, which allows us to recover galaxy-size haloes
with a mean particle separation of 1.2 h−1 Mpc. The power spec-
trum, correlation function, mass function, and basic halo properties
match those predicted by 5-year Wilkinson Microwave Anisotropy

Probe (WMAP5) �CDM (Komatsu et al. 2009) and linear theory to
per cent level accuracy.

To generate our measurements we first draw spherical subsamples
of radius 1 h−1 Gpc from the full HR2 data set. The origin of each
subset is chosen randomly, so that some will be chosen in higher
than average density regions and some in lower than average density
regions, incorporating the effects of cosmic variance. Knowledge
of our local galactic surroundings could have been folded into the
selection of origins, so that the subsets chosen would more closely
represent the local environment that we find ourselves in. We have
not done this, which means that the results of this work are the zero-
knowledge results with no assumptions made about our position
in the cosmological density field. In essence, we are comparing
our one measurement of the bulk flow of our local universe to
the distribution of bulk flows that �CDM would predict. It would
also be enlightening to investigate whether there are any aspects of
our local Universe that would bias such a measurement, as Wojtak,
Davis & Wiis (2015) did for SN cosmology. However, that is beyond
the scope of this paper.

The HR2 subsets consist of approximately 3.1 × 106 DM haloes,
each with six-dimensional phase-space information. Unfortunately
a mock galaxy survey that fills the entire volume of the simulation
does not exist, so in our analysis we assume that each DM halo
corresponds to one galaxy. The smallest of the DM haloes are of a
mass comparable to that of a galaxy, but the largest DM haloes of
the HR2 simulation have a mass that would be equivalent to hun-
dreds of galaxies. Effectively we are grouping galaxies in massive
clusters into just one data point with the same probability of being
subsampled as any other galaxy.

Fortunately, a limited number of mock Sloan Digital Sky Survey-
III (SDSS-III Eisenstein et al. 2011) galaxy catalogues have been
produced for the HR2 simulation, which allow us to test how this
assumption may affect our results. In Appendix B we perform an
analysis of the bulk flow magnitude distribution of galaxies from one
such mock catalogue, and compare the distributions derived from
the DM halo velocities. Our analysis shows that the distributions
are similar, and, as such, treating each halo as an individual galaxy
has minimal effect on our results.

To look at the effect of undersampling and non-spherical geome-
tries, we wish to compare the actual bulk flow magnitude of a given
number of galaxies within some volume, to the magnitude recov-
ered using the ML and MV estimators. Although a real survey only
has peculiar velocity information along the line-of-sight direction,
both of these estimators attempt to reconstruct the 3D distribution
of velocities and estimate the bulk flow. In this sense a fair com-
parison is then between the output of these estimators and the most
probable bulk flow measured using the full 3D velocity vector for
each galaxy. The method we use to determine the most probable
bulk flow magnitude as well as the upper and lower 1σ limit for a
particular subsample of the simulation is the following.

(i) Randomly place a geometry in the simulation.
(ii) Of total N galaxies within the geometry, randomly draw n.
(iii) Derive the actual bulk flow vector of the n galaxies, using

the 3D velocity vector for each object.
(iv) Store the magnitude of the bulk flow vector.
(v) Repeat the above process until the resulting distribution has

converged.

Analogous to the method above we can determine the most prob-
able bulk flow magnitude and 1σ upper and lower bounds for
a specific bulk flow estimator, e.g. the ML estimator applied in
Section 4.

MNRAS 463, 4083–4092 (2016)



Cosmology with peculiar velocities 4085

(i) Randomly place a geometry in the simulation.
(ii) Of total N galaxies within the geometry, randomly draw n.
(iii) For the n galaxies compute the line-of-sight velocities.
(iv) Apply the ML estimator to the line-of-sight velocities and

derive the ML bulk flow vector.
(v) Store the magnitude of the ML bulk flow vector.
(vi) Repeat the above process until the resulting distribution has

converged.

The uncertainty associated with each peculiar velocity measurement
is calculated as in appendix A of Davis et al. (2011), the implica-
tions of this are discussed in Appendix C. When determining upper
and lower 1σ bounds we apply an equal likelihood algorithm, so
that the 1σ limits are the equal likelihood bounds that encapsulate
68.27 per cent of the normalized distribution.

3 LI N E A R TH E O RY

Under the assumption of the cosmological principle that the universe
is statistically isotropic and homogeneous, and assuming Gaussian
density fluctuations, the velocity field at any given location can be
treated as Gaussian random variate with zero mean and variance
given by the velocity power spectrum Pvv(k). Hence the bulk flow
vector measured within some volume can also be described as a
Gaussian random variate with zero mean and variance:

σ 2
V (r) =

∫
d3k

(2π)3
Pvv(k)|W̃ (k; r)|2. (1)

Assuming isotropy, this becomes

σ 2
V (r) = 1

2π2

∫ ∞

k=0
dk k2Pvv(k)|W̃ (k; r)|2

⇒ σ 2
V (R) = H 2

0 f 2

2π2

∫ ∞

k=0
dkP (k)W̃ (k; R)2, (2)

where the Hubble constant, H0, growth rate, f, and velocity and
matter power spectra Pvv(k) and P(k) define a particular cosmol-
ogy. The second equality of equation (2), which is commonly
associated with the rms velocity expected for a bulk flow vector
(Coles & Lucchin 2002) follows from the assumption of a spheri-
cally symmetric window function and the linear approximation that
Pvv = H 2

0 f 2k−2Pθθ (k) ≈ H 2
0 f 2k−2P (k), where Pθθ is the power

spectrum of the velocity divergence field [see chapter 18 of Coles
& Lucchin (2002) for a review of the relationship between the den-
sity, velocity divergence, and velocity fields, and Jennings (2012) for
measurements of Pθθ from simulations]. As can be seen in Fig. 1,
Pθθ (k) = P(k) is typically a good assumption on the large scales
probed by bulk flow measurements.

In equation (2) W̃ (k; r) is the Fourier transform of the window
function, W (r), for the geometry of the specific survey making that
bulk flow measurement. The window function is a function of both
k and the volume in which the bulk flow is being measured. It mea-
sures how sensitive we are to measuring the statistical fluctuations
at a particular scale. If the window function is large for a particular
k it means that we are highly sensitive to measuring fluctuations at
the scale k represents. The window function will be dependent on
the geometry of the measurements taken to derive the bulk flow, and
is therefore unique for each particular survey. For a fully spherical
geometry of radius R the window function takes the form

W̃ (k; R) = 3(sin kR − kR cos kR)

(kR)3
. (3)

How strongly the window function of a particular survey will de-
viate from this spherical case will be determined by the geometry

Figure 1. Window functions for the geometries used in this paper plotted
along with the matter–matter and velocity divergence power spectra from
COPTER. P(k) is the matter power spectrum, and Pθθ (k) the velocity divergence
power spectrum. The geometries used are equal volume spherical cones with
opening angles θ , ranging from fully spherical θ = π to a very narrow cone
with θ = π/8.

of the survey in question. Example window functions for conical
geometries with a variety of opening angles are shown in Fig. 1.
How these were calculated is detailed in Section 3.1.

To calculate all the theoretical values of σ V in this paper we use a
velocity divergence power spectrum, generated with the implemen-
tation of renormalised perturbation theory (Crocce & Scoccimarro
2006) in the COPTER code (Carlson, White & Padmanabhan 2009).
A linear CAMB1 (Lewis, Challinor & Lasenby 2000; Howlett et al.
2012) matter transfer function with the same cosmological param-
eters as HR2 and WMAP5 was used as input. From this COPTER

produces both a non-linear matter power spectrum as well as a non-
linear velocity divergence power spectrum. We found that the differ-
ence between using the COPTER velocity divergence power spectrum,
the non-linear matter power spectrum, or the linear power spectrum
was negligible, except for very narrow or small geometries where
effects at k � 0.05 become important. In Fig. 1 we can see that for
the geometries used in our analysis the differences when using the
three power spectra are small as the spectra only differ in the regime
where the window function vanishes. Nonetheless, throughout this
paper we use the COPTER velocity divergence power spectrum as that
is most appropriate when working with bulk flows.

To calculate the theoretical most probable bulk flow magnitude
Vp(R) we use the fact that the peculiar velocity distribution is
Maxwellian (Li et al. 2012) with rms velocity σ V, which gives
us a probability distribution for the bulk flow amplitude of the form
(Coles & Lucchin 2002)

p(V )dV =
√

2

π

(
3

σ 2
V

)3/2

V 2 exp

(
−3V 2

2σ 2
V

)
dV . (4)

For this distribution the maximum probability value is then given
by the relation

Vp(R) =
√

2/3 σV (R). (5)

1 http://camb.info/readme.html
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When referring to the theoretical most probable bulk flow magni-
tude throughout this paper, it is this value based on a Maxwellian
distribution of velocities that we are referencing. We confirmed that
the velocities of haloes in the HR2 simulation do indeed follow a
Maxwellian distribution.

It is important to note that while the most probable bulk flow mag-
nitude is a discrete value, it is still a value from a distribution with a
variance. Optimally the theoretical distribution should be compared
to an observed distribution of bulk flow magnitudes, but this is not
practical in most situations. The best we can do is to compare our
measured bulk flow magnitude with the most probable bulk flow
magnitude from theory, but importantly remember to account for
the variance on our theoretical prediction in our statistics.

3.1 Non-spherical geometries

As well as investigating the effects of undersampling on a spherical
geometry, we wish to additionally develop a theoretical estimate for
non-spherical geometries, that is we wish to break the assumption
of spherical symmetry used to derive equation (3). For uniformly
distributed surveys the window function takes the form

W̃ (k; r) = 1

V

∫
V

exp (ik · r)dr, (6)

where exp (ik · r) can be expanded to (Coles & Lucchin 2002)

exp (ik · r) =
∑
l,m

jl(kr)il(2l + 1)P |m|
l (cos θ ) exp (imφ), (7)

where P |m|
l are the associated Legendre polynomials. The integral

of equation (6) then becomes∫
V

exp (ik · r)dr

=
∑
l,m

il(2l + 1)
∫ φmax

0
exp (imφ)dφ

×
∫ θmax

0
P |m|

l (cos θ ) sin θ dθ

∫ R

0
jl(kr)r2 dr (8)

which for the spherical case where (θmax, φmax) = (π, 2π) reduces
to equation (3). For a spherical cone geometry, with radius related
to volume and opening angle by

r =
(

3V

2π(1 − cos θ )

)1/3

, (9)

we can set φmax = 2π but let θmax vary in the interval (0; π]. Regard-
less of the values of l, all terms of m vanish except for the m = 0 term.
Therefore for non-spherical geometries we have to sum over l to
infinity. Although this approach is theoretically correct, in practice
we would sum over l only until the function value had converged
to within computational accuracy. This is however very impractical
since the complexity of the terms increase rapidly with l making
it difficult to include terms above l ≈ 20. Unfortunately, we find
that for our geometries that are very non-spherical only using terms
l ≤ 20 is not sufficient to guarantee convergence. Hence this ap-
proach is still only practical for geometries close to a sphere.

Another approach to solving the window function for a given k
is to reformulate the volume integral in Cartesian coordinates:

W̃ (k; r) = 1

V

∫ X

0

∫ Y

0

∫ Z

0
w(x, y, z)ei(kx+ky+kz)dx dy dz. (10)

The triple integral is over a cube that is at least large enough to
contain the volume V from equation (6). The w(x, y, z) function is

Figure 2. The most probable measured bulk flow magnitude as a function
of opening angle for a spherical cone geometry. The tested geometries
vary in opening angle from the fully spherical situation where θ = π, over
a hemisphere to the most narrow geometry tested being θ = π/16. The
distributions from the simulation, theory, MV estimator, and ML estimator
are shown with the dashed line being the most probable bulk flow magnitude
and the coloured band showing the upper and lower 1σ limits. For both the
ML and MV estimators the sampling was fixed at n = 500. For the MV
estimator the ideal radius RI was set to 50 Mpc h−1.

introduced, defined as being one inside the volume and zero oth-
erwise, which makes sure the volume integrated over is conserved.
The conversion to Cartesian coordinates makes it simpler to solve
the integral numerically. It should be noted that even though we
only consider rotationally symmetric windows with constant num-
ber density in this study, the above equation can be extended to
include surveys of arbitrary geometry and non-constant number
density, simply by choosing a suitable function w(x, y, z).

Based on equation (10) we developed two pieces of code to solve
the problem numerically, one calculating the integral using Markov
chain Monte Carlo (MCMC) methods and the other applying a
trapezoidal volume integral.2 The independence of the two codes is
used to confirm the validity of the results; the outputs from the two
codes are consistently within 3 per cent of one another.

To see how this theoretical prediction compares with the actual
underlying bulk flow of the HR2 simulation, we plot the most prob-
able bulk flow magnitude as well as the upper and lower 1σ limits
as a function of geometry in Fig. 2. The geometry in this case is a
spherical cone where the opening angle θ is varied. It is worth not-
ing that the volume of the geometry is kept constant as the opening
angle θ is varied. This is achieved by varying the radial extent of
the geometry along with θ according to equation (9). Keeping the
volume constant helps keep the simulation and theoretical results
almost constant as θ is varied. For all opening angles we see that
our theoretical value matches that measured from the simulations
extremely well.

4 G EOMETRY AND SAMPLI NG EFFECTS

In this section we present how non-spherical geometries and un-
dersampling of the cosmological volume can impact the results

2 For details and link to the source code see https://github.com/per-andersen
/MV-MLE-BulkFlow
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of the ML and MV estimators. We use the theoretically predicted
most probable bulk flow magnitude as a benchmark; the closer the
estimator comes to replicating the theoretical distribution the better.

We first investigate the scenario where we use a fixed number
of objects (n = 500) and compare both the performance of the
ML and MV estimator. The results can be seen in Fig. 2. Both
the ML and MV estimator have a bias towards measuring larger
bulk flow magnitudes on average than the actual underlying bulk
flows. As the survey geometry becomes narrower, however, this bias
increases, with the most narrow geometry having the strongest bias.
The behaviour of the ML and MV estimators is very similar.

In the narrow cone regime, both the ML and MV estimators
predict significantly larger most probable bulk flows than would
be expected from theory. Hence, incorrectly accounting for non-
spherical geometries in the ML and MV estimators could potentially
lead one to conclude they had measured a larger bulk flow than
would be expected in a �CDM universe.

Next we investigate how the sampling rate can create biases
in the most probable bulk flow calculated using the ML and MV
estimates for a fixed geometry. For the values n ∈ [50, 500, 1000,
2000, 4000] and opening angles θ ∈ [π/8, π/2, π], corresponding
to a narrow spherical cone, a hemisphere, and a full sphere, we
apply the ML estimator as described in Section 2. The results can
be seen in Fig. 3. There are two noteworthy trends from this plot.
The first is that for all geometries the estimated most probable
value is shifted to be 1σ away from the actual most probable value
when the sampling is less than n � 500. The second is that this
effect is stronger for narrow geometries, in our case the geometry
with opening angle θ = π/8 is much more adversely affected by
undersampling than the hemispherical or spherical case. What this
means in practice is that estimates of the bulk flow magnitude that
utilize a small number of peculiar velocities are likely to be biased
by undersampling effects in such a way that we would measure on
average a larger bulk flow magnitude than the actual underlying
bulk flow being probed. Of particular interest is the fact that this
remains true even for spherical geometries if the number of objects
is small.

The most probable bulk flow velocities for the distributions in
Fig. 3, as well as a few additional configurations of sampling rate
and opening angles, are listed in Table 1. The absolute differences
between the most probable bulk flow values derived from simulation
and theory are also listed. This absolute difference is an indicator
of how strong a bias we might expect in the distribution of bulk
flows derived for a particular sampling rate and survey geometry. A
small absolute difference between most probable bulk flow veloc-
ities from simulation and theory indicates that the sampling rate is
sufficient, and that minimal bias is to be expected for that particular
survey geometry. In using Table 1 it is important to note that not
only the most probable bulk flow velocity, Vp, is shifted towards
larger values. Rather, the entire distribution of bulk flow velocities
is shifted, including the 1σ and 2σ limits. Looking at e.g. line seven
of Table 1 where n = 50 and θ = 0.125 π we see that even though
the theory predicts something close to ∼100 km s−1 a measured
bulk flow value of ∼500 km s−1 is still within the 1σ confidence
limits, and hence is still well within the expectations of a �CDM
cosmology.

The cause for the bias from poor sampling is the increased
variance of the bulk flow velocity components; in Fig. 4 the
x-components of the bulk flow velocities from the top panel of
Fig. 3 are plotted for the various sampling rates. When sampling
decreases variance increases, which in turn causes the most proba-
ble bulk flow value to shift according to equation (5). Note that σ V

Figure 3. Distributions of ML bulk flow magnitudes for various sampling
rates, n. The top/middle/bottom distributions correspond to a geometry with
opening angle π

8 / π
2 /π. The volume is kept constant as opening angle is

varied, resulting in a radius of 631/267/210 Mpc h−1.

in equation (5) denotes the variance of the bulk flow vector, which
is equal to the rms because the distribution of bulk flow vectors is
Gaussian. The variance in any one Cartesian component of the bulk
flow vector is then σV /

√
3. For the bulk flow magnitude σ V refers

only to the rms, due to the relationship between Maxwellian and
Gaussian distributions. The variance of the bulk flow magnitude is
then given by3 σ 2 = σ 2

V (1 − 8
3π

).
Another way to illustrate this effect is to imagine a large volume

where the galaxies within obey the cosmological principle such that
if you sum over the velocities of all N galaxies you will derive a
bulk flow magnitude of exactly zero. This will be true even if only
the line-of-sight components of the peculiar velocities are observed.
If then only n < N peculiar velocities are observed, it is very likely
that a non-zero bulk flow magnitude will be measured, and since a

3 To derive this use p(V)dV from equation (4) in the definition of variance

σ 2 ≡ ∫ ∞
0 p(V )(v − v̄)2dV , where the standard integral

∫ ∞
0 xne−bx2

dx =
(2k−1)!!
2k+1bk

√
π
b

with n = 2k and b > 0 comes in handy; note (2k − 1)!! ≡
�k

i=1(2i − 1) = (2k)!
2kk!

.
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Table 1. Vp is the most probable bulk flow for the distribution of bulk flows derived from simulation using the ML estimator, for the given survey geometry,
defined by the opening angle θ , and sampling rate, given by n, which is the number of peculiar velocities per derived bulk flow estimate. The upper and lower
1σ equal likelihood limits encapsulating 68 per cent of the likelihood are also listed. |Vp − VVp, theory| is the absolute difference between the most probable
bulk flow velocity derived from estimate and from linear theory. A small absolute difference indicates that the sampling rate is sufficient for the given geometry,
such that the derived distribution matches the actual underlying distribution. In the final column the survey sample density is listed for reference.

θ Vp 68 per cent limits |Vp − Vp, theory| Sample density
(km s−1) (km s−1) (km s−1) (h−1 Mpc)−3

n : 8000 0.125π 132+73
−61 71–205 26 200 × 10−6

n : 4000 0.125π 136+75
−63 73–210 29 100 × 10−6

n : 2000 0.125π 142+79
−66 75–221 35 50 × 10−6

n : 1000 0.125π 153+86
−72 80–238 46 25 × 10−6

n : 500 0.125π 173+97
−81 92–269 66 12 × 10−6

n : 100 0.125π 257+143
−119 137–399 150 2 × 10−6

n : 50 0.125π 326+203
−166 160–528 219 1 × 10−6

n : 8000 0.5π 131+74
−62 68–205 21 200 × 10−6

n : 4000 0.5π 131+74
−61 69–204 22 100 × 10−6

n : 2000 0.5π 132+75
−63 69–207 22 50 × 10−6

n : 1000 0.5π 133+76
−63 69–208 23 25 × 10−6

n : 500 0.5π 136+77
−64 72–213 27 12 × 10−6

n : 100 0.5π 158+89
−74 84–247 49 2 × 10−6

n : 50 0.5π 180+96
−81 99–275 70 1 × 10−6

n : 8000 1.0π 110+58
−49 61–168 3 200 × 10−6

n : 4000 1.0π 110+58
−49 61–167 3 100 × 10−6

n : 2000 1.0π 111+59
−49 61–169 2 50 × 10−6

n : 1000 1.0π 113+59
−50 62–171 0 25 × 10−6

n : 500 1.0π 116+61
−51 64–176 3 12 × 10−6

n : 100 1.0π 138+72
−61 77–210 25 2 × 10−6

n : 50 1.0π 159+83
−70 89–241 46 1 × 10−6

Figure 4. The distribution of the x-components of the bulk flows from the
top panel of Fig. 3 where the opening angle is θ = π/8. Poorer sampling
leads to a larger variance in the Gaussian-distributed velocity components,
which in turn causes the most probable bulk flow to shift to a larger value.

magnitude can only ever be positive we are now dealing with some
non-zero positive number. We might redraw a new set of n galaxies
and derive a different magnitude, but it is still going to be some
non-zero positive number. If n ≈ N then we are likely to measure
a magnitude that is closer to zero than if we only draw n � N
galaxies. In other words, undersampling always increases our rms

velocity and skews the most probable measured magnitude towards
larger values.

5 D I S C U S S I O N A N D C O N C L U S I O N

After reviewing linear theory we showed how it can be expanded to
be valid for non-spherical geometries, developing code that numeri-
cally calculates the theoretical bulk flow magnitude for any arbitrary
survey geometry. To test the validity of the developed code, the de-
rived theoretical bulk flow magnitude was compared to that of a
variety of spherical cone geometries in the HR2 cosmological sim-
ulation and found to be within 5 per cent or better agreement for all
tested geometries.

However, when simulating more realistic surveys and applying
the ML estimator we found that undersampling effects severely bias
measurements of the bulk flow magnitude when a small number (n �
500) of peculiar velocities are used in the bulk flow estimate. On
average, undersampling pushes the measured bulk flow to higher
values, with the bias being amplified when narrower survey geome-
tries are used.

For our fixed volume of 40 × 106 (h−1 Mpc)3 using 500 SNe cor-
responds to a sampling density of ∼13 SNe/106 (h−1 Mpc)3. Hence
we expect undersampling could affect many recent measurements
of the of the bulk flow magnitude utilizing Type Ia SNe as a dis-
tance indicator (e.g. Haugbølle et al. 2007; Jha et al. 2007; Colin
et al. 2011; Dai et al. 2011; Weyant et al. 2011; Turnbull et al. 2012;
Feindt et al. 2013) where the number of SNe are well below 300 and
the sampling density is also well below 13 SNe/106 (h−1 Mpc)3.
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Without a detailed analysis of each of the previous bulk flow
estimates, which is beyond the scope of this paper, it is hard to
determine whether or not a particular result is affected by under-
sampling. However, some examples that might deserve attention
include e.g. Feindt et al. (2013) where the SNe are subdivided into
four shells, and for the SNe in each shell a bulk flow is estimated.
We would expect the bulk flow to converge to the CMB frame as
we go to higher redshifts and larger volumes, and yet Feindt et al.
(2013) find that in shells of both increasing redshift and increasing
volume there is no clear trend in the magnitude of the bulk flow.
Instead, the trend they see could potentially be explained by un-
dersampling. Their bins contain varying numbers of SNe, namely
n = [128, 36, 38, 77], in which they find bulk flows of Vp = [243,
452, 650, 105] km s−1. So there is a trend by which the bins with
fewer SNe find larger bulk flows (e.g. compare the middle two bins
with the outer two bins).

Similarly, Turnbull et al. (2012) provide two measurements of
the ML bulk flow: one with all 245 SNe from the First Amendment
compilation, the other with a subset of 136 SNe that excludes the
nearby ones (excludes z < 0.02). Naive expectations would suggest
that the sample focusing on higher redshift SNe should be closer
to converging on the CMB and thus have a lower bulk flow, how-
ever they find the opposite. The higher redshift-only sample has a
higher bulk flow, but since it has fewer data points than the full sam-
ple that would be consistent with our finding that undersampling
overestimates the bulk flow.

Both Feindt et al. (2013) and Turnbull et al. (2012) found bulk
flows that exceeded the predicted flow based on known density
distributions in the nearby Universe, so whether the estimates are
inflated by undersampling is potentially an interesting question (al-
though neither claimed significant deviation from �CDM). While
we have selected these two as the most significant examples that
could be affected by the sampling biases we discuss in this paper,
we note that this trend is pervasive, as no other samples show signif-
icant opposing trends. Some show slight reduction in bulk flow with
smaller samples, but it is much less significant than the positively
correlated examples above (and much smaller than the uncertain-
ties), e.g. in Colin et al. (2011) increasing the sample from 61 to
109 SNe increases the estimated bulk flow from 250 to 260 km s−1,
an effect of less than 5 per cent.

For bulk flow estimates where the typical number of observed pe-
culiar velocities in a survey is n � 3000, i.e. most estimates using the
Tully–Fisher or Fundamental Plane relation (Nusser & Davis 2011;
Ma & Pan 2014; Watkins & Feldman 2015; Scrimgeour et al. 2016),
we found no bias from undersampling. It is however important to
note that the analysis of this paper assumes Type Ia SNe are used as
distance indicators, and therefore the uncertainties in each distance
measurement are small (Appendix C). The typically larger uncer-
tainties derived from Tully–Fisher or Fundamental Plane estimates
would increase the variance in the individual bulk flow components,
which in turn could mean we require larger numbers of objects to
avoid biases than is found here.

Effects from uneven sampling have previously been discussed
in the literature. One example is equation (10) of Li et al. (2012)
where a method of dividing the measured peculiar velocities by
their selection function is proposed. In Aaronson et al. (1982) and
Haugbølle et al. (2007) Monte Carlo simulations of observations
are used to better understand systematic effects, including sampling
effects. Other works (Watkins et al. 2009; Weyant et al. 2011)
develop new estimators such as the weighted least squares (WLS),
the coefficient unbiased (CU), or the MV estimators, with the MV
estimator being the most popular alternative to the ML estimator.

The MV estimator is constructed in part to account for sampling
bias (with the motivation to be able to compare measurements of
bulk flow between surveys); in our work we found that the MV
estimator suffered the same bias as the ML estimator, again with
the bias increasing for narrower geometries.

A number of recent papers compare a measured bulk flow directly
to a �CDM prediction based on linear theory and an assumption
of spherical symmetry. For example Colin et al. (2011), Dai et al.
(2011), and Scrimgeour et al. (2016) plot bulk flow measurements as
a function of redshift compared to a generic �CDM prediction. Our
analysis suggests that such a comparison between bulk flows derived
from different surveys, and therefore different survey geometries
and sampling rates, is potentially problematic.

In Park et al. (2012) the HR2 simulation was used to show
that the size of the large-scale structure known as the Sloan Great
Wall (SGW) is in agreement with what we statistically expect from
�CDM cosmology, something that had previously been disputed.
Similarly, as early as Aaronson et al. (1982) simulations were be-
ing used to compare measured bulk flows to theoretical predictions.
Analogous to their arguments, our study highlights the importance
of considering the full distribution of bulk flow magnitudes from
theory, including sampling effects, rather than focusing on only the
most probable bulk flow magnitude. That is, we propose that bulk
flows should not be compared to the prediction from linear theory,
but with the bulk flow magnitude distribution derived from a cos-
mological simulation using the method described above, with the
actual survey geometry given as input.
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APPENDIX A : ML AND MV BU LK FLOW
ESTIMATO RS

To compare the measured bulk flow with theoretical predictions,
it is necessary to have a method to turn the individually observed
peculiar velocities into a bulk flow. In this paper we focus on two
estimators, the ML and the MV estimators. In the original paper
introducing the MV estimator (Watkins et al. 2009) there were a
few typographic errors and unexplained terms; for completeness
and to help others avoid confusion the procedures used to carry
out the ML and MV estimators in this work are explained in this
appendix.

A1 Maximum likelihood

The ML estimator is by far the easiest of the two to implement and
is computationally much cheaper than the MV estimator. The result
of the ML estimator is a vector containing the velocity components
corresponding to each of the three spatial dimensions. Each of the
three components is given by a sum over the individual peculiar
velocity components multiplied by some weight. The sum has the
form

ui =
∑

n

wi,nSn, (A1)

where i is the placeholder for either the x, y, or z index and the sum
goes over all n peculiar velocities. Sn is the nth measured peculiar
velocity, wi, n is the associated weight for that peculiar velocity, and
ui is the calculated bulk flow where again i = (x, y, z). This equation
holds true for both the ML and the MV estimators. Where they
differ is how they go about calculating the wi, n weights.

For the ML estimate the weights are given by

wi,n =
∑

j

x̂j · r̂n(
σ 2

n + σ 2
�

)A−1
ij . (A2)

The sum is over the j = (x, y, z) components, and x̂j · r̂n is the
projection of the unit vector r̂ pointing from the observer to the
galaxy in question. σ n is the uncertainty on the velocity of the nth
measurement, and σ � is a constant of order 250 km s−1 meant to

account for the non-linear flows on smaller scales. Finally A−1
ij is

the inverse of matrix Aij given by

Aij =
∑

n

(x̂i · r̂n)(x̂j · r̂n)

(σ 2
n + σ 2

� )
. (A3)

In practise when calculating the ML weights the first step is to calcu-
late the Aij matrix, taking advantage of the symmetry Aij = Aji. The
inverted matrix A−1

ij is then computed, and the weights wi, n are cal-
culated. This is a fairly simple process, and is cheap in computation
time needed.

A2 Minimum variance

For the MV estimator, first an ideal survey is constructed by
generating x, y, z coordinates uniformly randomly in the range
[ − 4RI; 4RI] and then drawing points according to the distribution
n(r) ∝ r2 exp (−r2/2R2

I ). This constructed ideal survey is spheri-
cally symmetric and isotropic. It is constructed such that the window
function of the MV method is sensitive in the range where we wish
to probe the bulk flow, namely on scales of RI. In order to stay con-
sistent RI will be set to 50 Mpc h−1 in this work, unless otherwise
stated. The number of points in the constructed ideal survey is set to
1200 throughout this work. It was found that increasing the number
of points in the ideal survey beyond 1200 did not contribute to the
stability of the MV method but only served to increase the already
considerable computation time.

For readability matrix notation is used so that wi, n becomes col-
umn matrix wi of n elements. wi is computed with

wi = (G + λP)−1Qi . (A4)

G is a symmetric square n by m matrix where n and m correspond
to the nth and mth measurement. The matrix G is the covariance
matrix for the individual velocities Sn and Sm. In linear theory we
can write the matrix elements Gnm as a sum of two terms:

Gnm = 〈SnSm〉 (A5)

= 〈vnvm〉 + δnm

(
σ 2

� + σ 2
n

)
. (A6)

The second term is known as the noise term and is the Kronecker
δ function; 0 for n �= m but σ 2

� + σ 2
n when n = m. The first term is

the geometry term which is given by

〈vnvm〉 = �1.1
m H 2

0

2π2

∫
dk P (k) fmn(k), (A7)

where H0 is the Hubble constant in units4 of h km s−1 Mpc−1, and
�1.1

m is the growth of structure parameter f 2 ≈ �1.1
m . P(k) is the mat-

ter power spectrum, which in this work is calculated using COPTER

(Lewis et al. 2000; Carlson et al. 2009; Howlett et al. 2012). The
function fmn(k) is the angle averaged window function which is
explicitly given as

fmn(k) =
∫

d2k̂

4π
(r̂n · k̂)(r̂m · k̂) × exp[ik k̂ · (r̂n − r̂m)]. (A8)

Although equation (A8) is often quoted in the literature as the
function used to calculate fmn(k) it is far from being a practical
expression and in reality the expression used is from Ma, Gordon &
Feldman (2011) who showed that we can express the angle averaged

4 Which is always 100, per definition of h = (H0/100) km s−1 Mpc−1.
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window function as

fmn(k) = 1

3
cos(α(j0(kA) − 2j2(kA))) + 1

A2
j2(kA)rnrmsin2(α),

(A9)

where

A = (
r2
n + r2

m − 2rnrmcos(α)
)0.5

(A10)

and α is the angle between the nth and mth galaxy given by

α = arccos(r̂n · r̂m). (A11)

The j0(x) and j2(x) functions are spherical Bessel functions given
by

j0(x) = sin(x)

x
, j2(x) =

(
3

x2
− 1

)
sin(x)

x
− 3 cos(x)

x2
. (A12)

Putting all this together gives us the Gnm elements. Finding the Pnm

elements of P is then fairly simple as it is simply the k = 0 limit of
fnm which is

Pnm = 1

3
cos(α). (A13)

The principal idea of the MV method is to minimize the variance
between the bulk flow measured by the galaxy survey and the bulk
flow that would be measured by an ideal survey. The G and P
matrices are the components of the weight that take as input the
measured data. The last component, the Q matrix, takes as input the
position and peculiar velocities from the galaxies of the constructed
ideal survey. It is calculated in much the same way as the Gnm

elements with the Qi, n elements being given by

Qi,n =
N ′∑

n′=1

w′
i,n′ 〈vn′vn〉 (A14)

and

〈vn′vn〉 = �1.1
m H 2

0

2π2

∫
dk P (k) fn′n(k), (A15)

where fn′n(k) is analogous to equation (A9) but with the difference
that n′ and n run over the galaxies in the constructed ideal survey,
in contrast to n and m that run over the galaxies from the actual
observed galaxies of our survey. The ideal weights w′

i,n′ will be
given by

w′
i,n′ = 3

x̂i · r̂n

Nideal
, (A16)

where Nideal is the total number of galaxies in the constructed ideal
survey.

The final step is to solve for the value of λ, which is a Lagrange
multiplier inherent from the minimization process. It enforces the
normalization constraint∑

m

∑
n

wi,nwi,mPnm = 1

3
. (A17)

A simple method to solve for λ is to vary λ and calculate the above
sum, until a value for λ that makes the above equality true is found.

Calculating the MV bulk flow vector is a rather involved process
and is orders of magnitude more expensive computationally than
the ML estimator. In this work the analysis is done using mainly the
ML estimator, with the MV estimator only being tested in a more
limited scenario. If computation time was no concern, then the full
analysis could be carried out for the MV estimator as well.

The implementation of the MV estimator used in this work
is based on that of Dr Morag Scrimgeour which is available at
https://github.com/mscrim/MVBulkFlow.

A P P E N D I X B : MO C K G A L A X Y S U RV E Y S
V E R S U S DA R K M AT T E R H A L O E S

As explained in Section 2 the full HR2 data set consists of DM
haloes, not individual galaxies. To test that this does not affect our
results, we apply a mock SDSS-III galaxy catalogue produced from
the HR2 cosmological DM halo simulation. This mock catalogue
lies in a sphere with radius 1 Gpc h−1 and origin at (x, y, z) = (1.8,
1.8, 1.8) Gpc h−1. From the full HR2 DM halo simulation we slice
a sphere that also has radius 1 Gpc h−1 and origin at (x, y, z) = (1.8,
1.8, 1.8) Gpc h−1. The distributions of bulk flow magnitudes using
the ML estimator are then calculated for both the SDSS-III mock
catalogue and the sliced sphere of DM haloes. The distributions are
shown in Fig. B1 and the most probable and rms values are shown in
Table B1. We see that for the same number of galaxies per bulk flow,
n, the distributions look very similar. From Fig. B1 and Table B1
we can see that the distributions of bulk flow magnitudes, as well as
their most probable values and rms values, are in good agreement.
This shows that it is indeed possible to use the DM haloes of the
full HR2 simulation to perform our analysis, including investigating

Figure B1. ML bulk flow magnitude distributions for SDSS-III mock
galaxy catalogue subsamples and DM halo subsamples, both taken from
the same position in the full HR2 simulation. The bulk flow magnitude
distributions for the DM halo subsamples are labelled ‘DM Halo’, with the
distributions for the SDSS-III mock catalogue samples labelled ‘Mock’.
The individual pairs of bulk flow magnitude distributions (e.g. n = 500,
n = 100, and n = 50) all show similar behaviour in their bulk flow velocity
distributions.

Table B1. Most probable bulk flow with upper and lower 1σ bounds for
bulk flow magnitude distributions of SDSS-III mock survey galaxy cata-
logue and DM halo slice of the full HR2 simulation, for varying number
of galaxies per bulk flow calculation, n. The numbers should be compared
across horizontally. All the numbers are within 0.1σ of each other, which
shows that using DM haloes gives comparable results to using a mock galaxy
catalogue.

SDSS-III mock DM halo

n : 50 – (180+99
−83) km s−1 (180+99

−83) km s−1

n : 500 – (101+52
−44) km s−1 (145+77

−65) km s−1

n : 100 – (147+79
−66) km s−1 (110+55

−47) km s−1
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the effects of survey geometry on the measurements of bulk flow
magnitudes.

APPENDIX C : ESTIMATING PECULIAR
V E L O C I T Y M E A S U R E M E N T U N C E RTA I N T Y

To estimate the peculiar velocity measurement uncertainty, σv, Ia, as
a function of redshift we follow the approach of Davis et al. (2011).
Using the terminology of Davis et al. (2011) the measurement un-
certainty is

σv,Ia = c σz = c σμ

ln (10)

5

z̄(1 + z̄/2)

1 + z̄
, (C1)

where c is the speed of light in vacuum, z̄ is the recession redshift,

and σμ is the uncertainty on the distance modulus measurement. To
obtain an estimate for the peculiar velocity measurement uncertainty
one has to assume a value for σμ, we have chosen to set σμ = 0.1
throughout this paper, as it is the optimistic value of σμ that modern
Type Ia SNe surveys can achieve, although it is a bit lower than what
was possible for legacy surveys where a value of σμ = 0.15 would
be more appropriate. To reiterate the point made in Section 5, using
a larger uncertainty in the peculiar velocity measurements will only
increase the variance in each component of the bulk flow vector,
and any potential biases. Hence by adopting an optimistic error, we
are in fact being conservative in our estimates of potential biases.
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