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Abstract 

Tumour heterogeneity poses a distinct obstacle to therapeutic intervention.  While the 

initiation of tumours across various physiological systems is frequently associated 

with signature mutations in genes that drive proliferation and bypass senescence, 

increasing evidence suggests that tumour progression and clonal diversity is driven at 

an epigenetic level.  The tumour microenvironment plays a key role in driving 

diversity as cells adapt to demands during tumour growth, and is thought to drive 

certain subpopulations back to a stem cell-like state.  This stem cell-like phenotype 

primes tumour cells to react to external cues via the use of developmental pathways 

that facilitate changes in proliferation, migration, and invasion. Because the 

dynamism of this stem cell-like state requires constant chromatin remodelling and 

rapid alterations at regulatory elements, it is therefore of great therapeutic interest to 

identify the cell-intrinsic factors that confer these epigenetic changes that drive 

tumour progression.  The Nuclear factor one (NFI) family are transcription factors 

that play an important role in the development of many mammalian organ systems.  

While all four family members have been shown to act as both oncogenes and tumour 

suppressors across various cancer models, evidence has emerged associating them as 

key epigenetic regulators during development and within tumours. Notably, NFIs 

have also been shown to regulate chromatin accessibility at distal regulatory elements 

that drive tumour cell dissemination and metastasis. Here we summarise the role of 

the NFIs in cancer, focusing largely on the potential mechanisms associated with 

chromatin remodelling and epigenetic modulation of gene expression. 
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Introduction  

Epigenetics has historically been defined as heritable cellular phenotypes of 

organisms that are independent of alterations in DNA sequence, however as the term 

has continued to evolve, it is now used more to describe changes in cellular and 

molecular phenotype that are associated with alterations to chromatin structure and 

accessibility
1, 2

.  A major substrate of epigenetic change is chromatin, the 

macromolecular complex made up of DNA and histone proteins. Chromatin can be 

modified by four distinct mechanisms; these are DNA methylation, histone 

modification, nucleosome remodelling and RNA-mediated targeting.  While 

epigenetic processing was first described as an important process in development
3
, its 

misregulation is now thought to also be a key component in driving cancer formation 

and tumour progression
4, 5

.  For example, factors associated with tumour progression 

such as aging
6
, chronic inflammation

7
 and environmental exposure such as to 

cigarette smoke
8
 alter the epigenome of cells. 

 

One key aspect associated with cancer progression is tumour heterogeneity
9
.  This 

heterogeneity is not only defined by the various cell types often found within tumours 

(fibroblasts, endothelial cells, pericytes, and immune cells), but also at the genetic and 

phenotypic level within individual cancer cells
10

. Despite many tumours originating 

via irreversible mutations in oncogenes and tumour suppressors derived from a single 

cell, many cancers display large levels of clonal diversity
11

. While the mechanisms 

behind tumour heterogeneity at the genetic and phenotypic level are continually being 

defined, there is a clear epigenetic component that drives this process
12

.  The highly 

proliferative nature of many malignancies makes the tumour microenvironment very 

dynamic during growth and as such, cells must continuously adapt to environmental 

stressors.  Conditions such as nutrient deprivation, hypoxia, immune responses, and 

even treatments aimed at destroying tumours have been shown to induce considerable 

changes in cancer cell DNA methylation status and chromatin remodelling
13, 14

.  Cross 

talk between cellular populations (both cancer and other stromal populations), either 

through direct interaction, or via secretory factors, can also induce changes in cell 

motility and proliferation at an epigenetic level.  An interesting observation 

commonly associated with cellular invasion is the idea that many cancer cells undergo 

a process of de-differentiation to attain a stem cell like phenotype
15, 16

.  Such a cell 

state is extremely dynamic and primed to respond to external cues, allowing it to 
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quickly alter its proliferative and migratory characteristics throughout various 

developmental stages
12, 17

. This dynamism relies heavily on chromatin remodelling 

and changes to histone structure and function, through the combinatorial effect of a 

myriad of histone modifications that can be rapidly altered to facilitate immediate and 

reversible changes to gene expression
18

.   

 

Micro RNAs (miRNA) are another key epigenetic regulator that potentiates tumour 

progression.  They can act as either oncogenes or tumour suppressors and as such, can 

be regulated in a manner that their expression is increased or decreased via 

transcriptional regulation.  There are various mechanisms contributing to miRNA 

deregulation in cancer cells
19

.  Interestingly, while the regulation of cancer cell 

phenotypes via miRNAs is often an intrinsic cellular process, there are various 

mechanisms in which miRNAs can be secreted in the microenvironment to induce 

autocrine and paracrine effects on other tumour cell populations
19

.  They can also play 

a distal role in regulating tumour angiogenesis, immunophenotype, and extracellular 

matrix (ECM) remodelling
19, 20

.  Deregulation of miRNAs within stromal cell 

populations has also been shown to play a large role in promoting initial tumour 

formation and progression
20

, while other microenvironmental factors such as hypoxia, 

nutrient deprivation, and increased acidity also drive aberrant miRNA expression in 

cancer cells 
21, 22

. 

 

Tumour heterogeneity has a clear therapeutic impact
23-25

.  The clonal diversity 

observed in many developed tumours is vast and frequently small clonal subsets will 

confer selective advantages that drive tumour progression or remain refractory to 

therapies that are effective against the majority of cells in the tumour. It is clear that 

modulation of the genome at the epigenetic level plays a major role in heterogeneity 

and is therefore of great therapeutic interest to identify key regulators that confer 

these epigenetic changes throughout tumour progression.   

 

This review will focus one such family of regulators, the NFIs, and their role in 

tumour progression. First described as a host protein required for adenovirus 

replication (Nagata et al., 1982), there have been four NFI transcription factors 

identified in vertebrates, NFIA, NFIB, NFIC and NFIX
26, 27

. NFIs are 

developmentally important proteins that in broad terms drive progenitor cell 
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differentiation within the central nervous system
28-30

, lung
31, 32

 and muscle
33, 34

. After 

early embryonic and postnatal development, NFIs continue to have important roles in 

regulating progenitor cell biology. In adult progenitors cells, within neural tissue, the 

skin, and skeletal muscle, NFIs promote differentiation
35, 36

 but also regulate the 

balance between cell-cycle entry and exit
36-38

, and thereby regulate the homeostasis 

that exists between progenitor pool expansion and tissue regeneration. NFIs have also 

been established as key tumour suppressors and oncogenes across a range of cancers, 

with recent evidence suggesting that they may function as key drivers of tumour 

progression by coordinating changes in the epigenome
39

.  
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NFIs as epigenetic regulators  

Transcription factors are traditionally defined by their ability to coordinate gene  

expression by binding directly to regulatory regions within DNA alone, or via protein  

interactions with transcription co-factors that bind DNA indirectly through interaction  

with transcription factors at cis-regulatory sites.  NFIs for example, can both activate  

or repress gene expression by direct binding to the DNA dyad symmetric consensus  

site or half-site sequence TTGGC(N5)GCCAA on double stranded DNA
40-42

, forming  

homodimers or heterodimers with other proteins.  While this is a key feature of  

transcription factors, evidence reveals that many families are able to alter gene  

expression by modulating chromatin structure directly through nucleosome  

remodelling, or indirectly via interactions with, or the regulation of, epigenetic  

modifiers.  We argue that this may also be true of NFI family members, consistent  

with a number of studies demonstrating that NFIs interact with chromatin and  

chromatin regulators in a variety of ways. Moreover, recent chromatin  

immunoprecipitation sequencing (ChIP-seq) and RNA sequencing (RNA-seq)  

experiments suggest that the net effect of these NFI-chromatin interactions may be to  

increase chromatin accessibility and gene expression 
39, 43

.  

  

NFI activity generally correlates with increased expression of their target genes and  

are associated with higher levels of active promoter methylation marks such as  

H3K4me3 and H3K36me3, implicating them predominantly as activators of  

transcription
44

.  The first evidence implicating the NFI family acting in a  

transcriptionally independent manner found that they were able to bind to GCCAAT  

recognition sites and serve as initiation factors in DNA replication
45

.  Moreover, early  

structural analysis of NFIs identified their potential for chromatin regulation as they  

contained a trans-activation domain that interacts with histone H1 and H3
46, 47

.    

Further functional analysis demonstrated that NFIs were able to alter the interaction  

of reconstituted nucleosomal cores with DNA in vitro in a growth factor-dependent  

manner
47

. In vivo evidence also revealed that NFIs are able to alter native chromatin  

structure at yeast origins of replication
48

 and other promoter regions through direct  

interaction with histone proteins
49

.  NFIs were also shown to activate simian virus 40  

(SV40) DNA replication in vivo by interacting directly with histone H3 and relieving  

nucleosomal repression at the SV40 origin
50
. Indeed, there are many other examples  

of NFI directly interacting with the nucleosomal architecture.   Studies in yeast cells  
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for example, show that NFI was able to delimit chromatin domain boundaries by 

binding histone H3, thereby preventing epigenetic teleomeric silencing by forming a 

partition between the gene and telomere and blocking silent information regulator 

(SIR) proteins involved in the de-acetylation of histone tails
51

.  More recently, 

genome wide mapping analysis of NFI DNA binding sites within mouse embryonic 

fibroblast confirms that there is a clear association between NFI and histone H3
44

. 

Consistent with this, NFI globally associates with chromatin domain boundaries, 

separating permissive and silent chromatin markers as defined by localisation with 

H3K27me3 and H3K36me3 boundaries of opposite polarities, and they were further 

found to directly interact with positioned nucleosomes
43

.   

 

Crucially, NFIs have also been shown to interact with chromatin in human cells.  

NFIs are able to prevent the silencing of transgenes upon chromosomal integration in 

a histone dependant manner, however they were unable to activate transcription alone 

in HEK293 cells
52

. Studies performed in HeLa cells investigating mechanisms 

underlying the boundaries between euchromatic (active, permissive chromatin) and 

heterochromatic (silent, condensed chromatin) domains confirmed that NFI proteins, 

or fusions containing the histone binding domain of NFIs, can partition two genes 

colocalized at a telomeric locus into active and inactive chromatin structures
53

.  These 

findings suggest a mechanism whereby NFI interacts directly with nucleosomes in a 

transcriptional independent manner to establish a chromosomal structure that blocks 

silencing signals emanating from the telomere, while maintaining a permissive 

chromatin state to allow for increased gene expression within these regions. It also 

provides further mechanistic evidence to explain the previous findings that NFIs can 

induce a permissive chromatin state to reverse chromatin-mediated gene silencing 

without being able to activate transcription of these genes alone
52

. 

 

In depth analysis of NFI interactions with chromatin and their role in remodelling 

have also been performed using long terminal repeat (LTR) regulatory sequences of 

the mouse mammary tumour virus (MMTV) (for an in depth review on this, see
54

).  

NFI-binding sites were found on B nucleosomes in the MMTV promoter in the 1980s, 

with research showing that there is a functional synergism between NFI and the 

glucocorticoid receptor (GR) in binding to a chromatin template and activating the 

promoter, which was abrogated in a nucleosome depleted environment
55

.  Follow up 
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studies in this model system using linker-scanning mutants of transcription factor 

binding sites found that NFIs were required for hormone-dependent chromatin 

remodelling, as they found that binding site mutations substantially decreased 

hormone-mediated remodelling of nucleosome B and that NFI was also necessary for 

the association between the BRG1 chromatin remodelling complex and GR on the 

promoter in vivo
56

.  Studies into S. cerevisiae looking at minichromosomes assembled 

on MMTV LTR are consistent with a role for NFIs in chromatin remodelling, as they 

act as classical transcription factors in a relaxed chromatin context, whereas in a wild 

type chromatin confirmation, NFI cooperates with steroid hormone receptors to 

stabilize an open chromatin confirmation by interacting with the nucleosome
56

. 

Moreover, in vivo studies using Xenopus oocytes uncovered a role of NFIs in 

initiating nucleosome remodelling independent of these chromatin-remodelling 

complexes
57

. NFIs have also been shown to interact with Octamer Factor 1 (OCT1) 

and form a present chromatin structure through remodelling
58

. This study found that 

both transcription factors were able to bind to their cognate sites within the MMTV 

promoter to alter chromatin structure from randomly positioned nucleosomes to 

induce a partial translational positioning that enhances the hormone-induced response 

of the receptor and correlates with increased basal transcription
58

.  Overall these 

model systems have defined a clear role where NFIs can act in a transcriptionally 

independent manner to regulate gene expression by altering chromatin structure 

through direct remodelling and induce a permissive chromatin state via nucleosomal 

interaction. 

 

NFIs have also been shown to affect chromatin remodelling in a more indirect manner 

by regulating the expression of numerous chromatin-modifying genes and by 

interacting with chromatin modifiers.  The Enhancer of zeste homolog 2 (EZH2) is a 

histone-lysine N-methyltransferase enzyme that represses transcription by catalysing 

the addition of methyl groups to histone H3 at lysine 27. NFIB has been shown to 

directly repress EZH2 during development of the cerebral cortex to promote neurone 

differentiation
59

.  The genome-wide mapping study previously discussed by Pjanic 

and colleagues
43

 correlated NFI with histone methylation modifications H3K4me3 

and H3K36me3 at markers of transcribed genes and even outside annotated 

transcribed loci, suggesting NFIs may facilitate these modifications. NFIs have also 
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been show to interact with histone deactylases such as BAF at various promoter  

regions
60, 61

 and other transcriptional activators such as BRG1
56

.    

  

  

Epigenetic mechanisms of NFIs in cancer  

In light of these findings, it is clear that the NFI family have dual functionality in  

acting as classical transcription factors, but also as epigenetic modifiers.  In addition  

to development and maintenance of normal cellular physiology, NFIs have been  

shown to act as tumour suppressors and oncogenes across a wide range of cancer  

types (see Table 1 for a brief overview).  Within the context of cancer, chromatin  

accessibility studies are regarded as one of the most relevant genomic characteristics  

that correlate with activity at specific loci, and efforts to characterize changes in  

global chromatin structure between normal cells, cancer cells and lines differing in  

metastatic potential have become a considerable focus of cancer research 
62-64

.  Recent  

high-impact studies examining NFIB function in small cell lung cancer (SCLC)  

suggest that in this context, NFIs might modify chromatin architecture in a manner  

that results in increased tumour heterogeneity
39, 65

.  The most prominent study  

implicating NFI as an epigenetic driver of cancer progression found that NFIB  

promotes metastasis through a wide spread increase in chromatin accessibility
39

.  In  

this study, primary and metastatic tumours were isolated from genetically engineered  

mice, and genome-wide characterization of chromatin accessibility (ATAC-seq) was  

used to identify global changes throughout the different tumours. These studies  

demonstrate that there was a dramatic increase in chromatin accessibility that occurs  

during malignant progression.  The most highly enriched motif identified between the  

differentially accessible regions was the binding site for the NFI family, with the  

hyper-accessible samples also showing genomic amplification of the NFIB locus.   

Crucially NFI motifs in hyper-accessible samples had increased promoter occupancy,  

depleted nucleosomes, and exhibited a significant change in local chromatin  

architecture, the maintenance of which was dependent on NFIB expression.  While  

the mechanistic basis of the NFIB driven hyperaccessibile chromatin state was not  

reported in this study, the data was suggestive of SCLCs containing a “preset”  

configuration during early malignant transformation that permits initial binding of  

these motifs following NFIB up regulation.  This proposed mechanism suggests an  

intrinsic NFI driven signal can promote metastasis irrespective of genetic mutation  
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and warrants further investigation into other cancer subtypes. Analysis of DNA foot-

printing showed NFIB had a long half-life upon binding to consensus sites and it was 

suggested that this long residency allows adaptation of nearby chromatin to enforce 

an opened architecture, which is further stabilized by binding of other motifs to the 

enriched regions in the newly open sites.  Analysis of NFIB interacting directly with 

histones H1 and H3 or recruiting chromatin-modifying complexes was not 

investigated but was suggested to potentially complement the study’s proposed 

mechanism. Further research investigating these potential interactions would provide 

a greater mechanistic insight of NFIs in remodelling chromatin within a cancer 

context, and may provide scope for therapeutic targets against chromatin modifiers. 

 

A potential tumour suppressor role has also been identified for NFIA and NFIC in 

breast cancer through the epigenetic repression of a disintegrin and metalloprotease 

domain-containing protein 12 (ADAM-12)
66

.  ADAM-12 levels in urine have been 

correlated with disease progression in breast and bladder cancer, have been shown to 

be up regulated in many cancers, and also promote cancer metastasis.  The chromatin 

modifier methyl CpG binding protein 2 (MeCP2) is a transcriptional repressor that is 

associated with DNA methylation, histone deacetylation, and with the recruitment of 

chromatin remodelling complexes
67-69

.  Ray and colleagues
66

 identified a novel 

interaction between NFIs with MeCP2 at Z-DNA elements of ADAM-12 to induce its 

repression.  Z-DNA forming regions and promoter sites for NFI have previously been 

highly correlated with the transcriptional start site of many genes
70

,  and this study 

demonstrated that the MeCP2-NFI interaction at Z-DNA elements is necessary for 

repression, and that MeCP2 deficiency in breast cancer cells results in ADAM-12 

overexpression and tumour progression
66

.  Another study focusing on the epigenetic 

regulation of the tumour suppressor gene hDAB2IP in prostate cancer lines found that 

there was an increase in acetylhistone H3 levels associated with the promoter in PCa 

prostate cancer lines
71

. ChIP assays identified several NFI binding motifs associated 

with this region, potentially implicating a functional role in nucleosomal binding of 

NFIs in this cancer context. 

 

In addition to altered expression, numerous examples of NFI fusion proteins have 

been reported in a number of cancer subtypes.  Cases have been documented across 
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acute erythroid leukaemia, adenoid cystic carcinomas, breast cancer, and pilocytic  

astrocytoma, all with different protein fusion targets
72-76

.  While the prevalence of  

such changes is well documented, the functional nature of these lesions has yet to be  

explored.  Consistently, NFIs as fusion proteins appear to increase the activity of their  

respective fusion partners’ downstream signalling pathways, but do not appear to  

effect NFI regulatory target gene expression
72, 73

.  Fusion proteins have been reported  

with transcription factors (NFIB-MYB), chromatin modifying complexes (NFIA- 

CBFA2T3), and kinases (NFIA-RAF1) and usually contain only a partial form of  

NFI
72, 74, 75

.  Studies discussed previously in this paper highlight NFIs role in forming  

a chromatin domain barrier/boundary that blocks propagation of silencing signals  

emanating from heterochromatic silent regions within the telomere
53

.  The formation  

of these domains allowed NFI to maintain a permissive open chromatin state upon  

binding to histone regions, which allowed for active gene expression within that area.  

Esnault and colleagues (2009) found that only the histone-binding domain of NFI was  

necessary to perform this function. They employed the use of NFI fusion proteins  

with GAL4 and found that they performed this barrier function irrespective of the  

reporter gene identity or its transcriptional orientation and distance from the promoter,  

and also did not affect genes adjacent to the telomere.  These findings highlight the  

potential of NFI genes implicated as fusion proteins in cancer to remodel chromatin  

areas in a transcriptionally independent manner and to allow a permissive open  

chromatin state for increased binding of their fusion counterpart to regulatory  

genomic regions.           

  

Conclusions  

Genome wide analysis of global changes in chromatin landscape and architecture  

within cancer is a relatively new field.  There is great scope for studies investigating  

NFIs as potential chromatin regulators at both a global and local level across various  

cancers, as they have clearly been implicated as epigenetic modifiers during  

development and homeostasis.  The study conducted by Denny and colleagues
39

, is  

one of the first showing that a single transcription factor is capable of inducing  

chromatin state changes globally upon high expression, and also highlights the  

capability of hyperaccessible genomic regions in driving a metastatic phenotype
39

.   
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The finding that there appears to be a ‘preset’ configuration in malignant transformed 

cells for the binding of NFI motifs to induce chromatin hyperaccessibility shows that 

NFIs are key in inducing the switch necessary for metastatic progression in SCLC. It 

is highly suggestive of a novel, pre-defined intrinsic mechanism in driving metastasis 

in cancer cells that occurs at an epigenetic level, as opposed to tumour cells 

progressing via the accumulation of genetic mutations from genomic instability.  

Given that this work only focused on SCLC, it remains to be determined if similar 

changes in chromatin accessibility driven by NFIs is relevant in other cancer 

subtypes, or whether other transcription factors are capable of a similar function.  

Certain events imposed on cells by the tumour microenvironment (hypoxia, nutrient 

deprivation, increased acidity etc.) are key drivers of tumour heterogeneity
12

 and may 

be capable of driving changes in NFI expression and as such, may have the potential 

of inducing this hyperaccessible state following increased NFI expression.  This 

warrants further investigation into the potential heterogeneity of NFI transcription 

factor expression and cellular function across various tumours, and whether the 

microenvironment is capable of altering NFI expression. 

 

Future studies using single cell sequencing approaches will provide improved 

resolution as to whether NFIs drive epigenetic changes uniformly across cellular 

populations, or if this differs vastly on a per cell basis. For example, there exists the 

potential for single cell ATAC-Seq technology as an approach for profiling single 

cells at an epigenetic level
77

.  Given the cell-cell variability within tumours and the 

potential for a pre-set epigenetic state to drive metastasis, this methodology may be 

useful in further uncovering epigenetic changes associated with heterogeneity and 

metastatic progression.  These data can be enhanced further by the addition of 

expression profiling of individual cells by Drop-Seq analysis, where thousands of 

single cells, originating from dissolved in vivo tissues are forced into miniscule 

droplets before RNA-Seq analysis
78

.  If this technology can further extend to ATAC-

Seq or histone modifications, it would become a useful tool in further defining 

epigenetic differences in heterogenous tumour populations. 

 

The mechanism through which NFIs promote chromatin accessibility in SCLC and 

potentially, other cancers, remains to be defined.  A fascinating proposition could be 

that like in normal cellular physiology, NFIs function to inhibit silencing signals 
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emanating from telomeric ends
51-53

. Telomeres and associated proteins form a unique 

DNA-protein structure that protects chromosome ends from being recognised as DNA 

double stranded breaks, and are well documented tumour suppressors
79

.  As 

mentioned, telomeres have previously been thought to regulate proximal gene 

expression, as the heterochromatic nature of their structure coupled with the 

recruitment of SIR and other histone deacetylase (HDAC) enzymes results in the 

short range spreading of a hypoacetylation signal
53

.  A recent study however, has 

demonstrated that chromosome looping can induce telomeric silencing up to 10 Mbs 

away from the telomere, implicating their role in the regulation of a large number of 

genes at each chromosomal end
80

.  The potential genes and the significance behind 

their regulation during homeostasis and within cancer has yet to be defined, however 

given NFIs previously defined mechanism, one would predict to see an increased 

accessibility of chromatin and expression of genes close to telomeric regions in SCLC 

if they displayed this functionality. Evaluation of existing ATAC-seq and RNA-seq 

datasets in SCLC
39

 could provide this answer. Given NFIs ability to affect chromatin 

structure in a multitude of ways however, it is important to consider that other 

mechanisms (both direct and indirect) may be key in driving this hyperaccessible 

phenotype. 

 

Research implicating the importance of epigenetics in cancer has made chromatin-

modifying enzymes an attractive therapeutic target.  Several HDAC and DNA 

methyltransferase (DNMT) inhibitors are undergoing clinical trial and are now 

recognised as effective and well-tolerated treatments both alone and in combination 

with other therapies
81-83

.  Transcription factors are notoriously difficult to target 

therapeutically, and despite recent advances
84

, targeting of NFI proteins may be 

challenging in certain tumour contexts. NFI members are very similar in terms of 

sequence homology and DNA binding and there are several documented cases where 

certain members act in opposite tumourigenic roles 
66, 85, 86

.  Given the extensive 

history of NFIs acting as chromatin regulators during development and homeostasis, 

studies investigating a similar role for NFIs within cancer may highlight potential 

therapeutic candidates downstream that may be targeted more effectively.  The 

potential for NFI to alter global chromatin architecture within a subset of cancers to 

drive metastasis may also a make it a great prognostic marker for tumour progression.  
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Table.1 NFI family in cancer 

Cancer type Gene Oncogene/Tumour suppressor Reference 

Acute erythroid 

leukaemia 

 

NFIA Oncogene, forms 

NFIA/CBFA2T3 fusion protein  

75
 

Adenoid cystic 

carcinomas 

NFIB Oncogene, forms a fusion protein 

with MYB oncogene 
72, 73

 

Breast cancer NFIA 

 

 

 

 

 

NFIB 

 

 

NFIC 

 

 

 

 

 

 

NFIX 

Oncogene and tumour suppressor, 

regulates SULT1A1 levels, 

increases cancer risk, drug 

resistance.  Inhibits ADAM12 

expression 

 

Oncogene, associated with HER2 

overexpression and survival.   

 

Tumour suppressor and oncogene, 

suppresses EMT, migration, and 

invasion through KLF4-E-cad 

axis.  Also regulates SULT1A1 

levels.  Inhibits ADAM12 

expression 

 

Oncogene, forms fusion protein 

with Mast kinase, promotes 

proliferation. 

66, 72, 76, 85-88
  

Cutaneous 

squamous cell 

carcinoma 

NFIB Tumour suppressor, targeted by 

onco-miR-365 

89
 

Cervical 

carcinoma 

NFIA

NFIB

NFIC

NFIX 

Oncogene, NFI-SKI interaction 

drives TGF-β inhibition in 

HPV16, drives tumour 

progression. 

 

90
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Diffuse gastric 

cancer 

NFIX  Tumour suppressor, NFIX 

potentially binds to CDH1 risk 

polymorphism. 

91
 

Oesophageal 

squamous cell 

carcinoma 

NFIA 

 

 

NFIX 

Oncogene, drives proliferation 

and migration 

 

Tumour suppressor, MIR-1290 

targets NFIX, promotes 

proliferation, invasion. 

92, 93
  

Glioblastoma NFIA 

 

 

 

NFIB 

Oncogene, down regulates P53, 

P21, and PAI1 to drive growth 

and migration. 

 

Tumour suppressor, associated 

with improved survival, ectopic 

expression inhibits 

tumourigenesis 

94, 95
 

Glioma  NFIA Oncogene, Inhibits p21 required 

for tumourigenisis 

96
 

Hepatocellular 

carcinoma 

NFIB Oncogene, up regulated in HCC 

and drives survival 

97
 

Lung 

adenocarcinoma 

NFIB Tumour suppressor, low 

expression associated with more 

aggressive subtype, poor survival 

98
 

Osteosarcoma NFIB Tumour suppressor, SNP 

rs7034162 in NFIB significantly 

associated with lower NFIB 

expression, increased metastasis 

 

99
 

Pilocytic 

Astrocytoma 

NFIA Oncogene, NFIA:RAF1 fusion 

activates the MAPK pathway 

74
 

Small cell lung 

carcinoma 

NFIB Oncogene, increases chromatin 

accessibility, marks metastatic 

disease 

39, 65, 100
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Abbreviations  
  
ADAM12  Disintegrin and Metalloprotease domain-containing protein 12 

ATAC-seq Assay for Transposase-Accessible Chromatin with high throughput 

sequencing 

ChIP-seq Chromatin immunoprecipitation sequencing 

DNMT DNA methyltransferase 

ECM Extracellular matrix 

EZH2  Ehancer of Zeste Homolog 2 

GR Glucocorticoid Receptor 

HDAC Histone Deacetylase 

LTR Long Terminal Repeats 

MeCP2  Methyl CpG binding protein 2 

miRNA micro RNA 

MMTV Mouse Mammary Tumour Virus 

NFI Nuclear Factor One 

NFIA Nuclear Factor One A 

NFIB Nuclear Factor One B  

NFIC Nuclear Factor One C 

NFIX Nuclear Factor One X 

OCT1a Octamer Factor 1 

RNA-seq RNA sequencing 

SCLC Small Cell Lung Cancer 

SV40 Simian Virus 40 
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