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Abstract 16 

Background  17 

Starch contributes to barley grain and malt quality which in turn contributes to beer quality 18 

and flavour; through fermentable sugar profiles, rates of fermentation and Mallard reactions. 19 

Both amylopectin and amylose are enzymatically degraded to release maltose, maltotriose and 20 

higher order sugars.  21 

Scope and Approach  22 

Amylopectin is highly branched [α-(1⟶6) glycoside bond branch points] with numerous 23 

short branches while amylose is a long chained polymer with a few side branches. During 24 

grain development, the final level of branching is controlled by two enzymes namely; 25 

isoamylase and limit dextrinase (LD). Mutations in either of these genes can also result in 26 

changes to structure, content, and granule formation and size. During the malting free LD will 27 

to cleave the α-(1⟶6) bonds but during mashing processes, bound LD is release, resulting in 28 

chains of various length available for other starch degrading enzymes to hydrolyse. 29 

Findings and conclusions 30 

While there is a good understanding of most of the individual aspects in amylopectin 31 

formation, structure and degradation; the story remains incomplete, as most of this 32 

understanding has been gained from experiments with only a limited number of barley 33 

varieties, limitations in the technology for structural measurement, and since no data is 34 

available to link structure to fermentable sugar profiles.  35 

 36 

Keywords: 37 

barley; amylopectin; starch structure; isoamylase; limit dextrinase; malting quality; brewing 38 

 39 

Introduction 40 
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Barley (Hordeum vulgare L.) like many other significant cereal crops belongs to the grass 41 

family Poaceae. The species believed to have originated in the Fertile Crescent of the Middle 42 

East, with archaeological evidence suggesting cultivation dated as far back as 7000 to 6000 43 

B.C. (Wendorf, Schild et al. 1979, Zohary and Hopf 2000). Barley has a very wide and 44 

diverse geographical distribution, with cultivation in areas from within the Arctic Circle, to 45 

the tropics and from sea level to the high plains of the Ganges (Körnicke 1985). The 46 

estimated global production area is around 57.2 million ha, yielding approximately 133 47 

million metric ton of grain annually. This makes barley the fourth largest grain crop produced 48 

globally.  49 

Barley is used as a food source for animals and human but the more significant use is in 50 

the production for alcoholic beverages such as beer and whiskey.  Pre-history records suggest 51 

barley was used to make a wine approximately 10,000 years ago.  Regardless of the use, the 52 

primary purpose is to utilize starch as an energy source. While starch is a very simple 53 

molecule in terms of its chemical composition, ie glucose, its structure is more complex, 54 

being comprised of two polymers, amylose and amylopectin with the latter being three times 55 

more abundant.  This review will focus on amylopectin, its structural development in barley 56 

and its influence on malting and brewing. 57 

 58 

Grain quality and end use 59 

Barley is grown for feed, food or used in industrial applications such as malting (Ullrich 60 

2011, Gous, Gilbert et al. 2015). Complex genetic, physiochemical properties, and their 61 

associated interactions have resulted in continued attempts to improve barley grain quality 62 

(Gous, Gilbert et al. 2015). A number of these quality traits directly determine potential end 63 

use. Foremost of these quality traits is grain size, with plump grain desired by both maltsters 64 

and the animal industries alike (Fox, Panozzo et al. 2003, Gous, Gilbert et al. 2015). Grain 65 
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plumpness is determined by the endosperm, which contains starch, non-starch 66 

polysaccharides, protein and lipids (Fox, Panozzo et al. 2003), and is very much influenced by 67 

the genotype and growing environment (Fox, Kelly et al. 2006). As such, plumpness is often 68 

used as a proxy for potential starch content by many users. 69 

Starch and protein are the most important compositional components of the endosperm, 70 

and are often targeted by industry as traits of interest, due to their significant contribution to 71 

nutritional and commercial value (Fox, Panozzo et al. 2003, Gous, Gilbert et al. 2015). Starch 72 

is the most abundant component of the endosperm at around 65% (by weight); with additional 73 

carbohydrates, such as sugars and non-starch polysaccharides (β-glucan and arabinoxylans) 74 

contributing up to approximately 80% of total dry grain weight (Fox, Panozzo et al. 2003, 75 

Gous, Gilbert et al. 2015).  76 

 77 

Starch  78 

Barley starch is a complex polymer comprised of a mixture of amylose and amylopectin, 79 

both of which are built from glucose molecules linked via α-(1⟶4) glycosidic bonds forming 80 

linear chains (for amylose); while some chains have α-(1⟶6) glycosidic branches forming 81 

amylopectin (Vilaplana and Gilbert 2010, Gous, Hasjim et al. 2013) (Figure 1). These 82 

polymers exist in a ratio of approximately 25% amylose and 75% amylopectin of total starch 83 

in the grain (Newman and Newman 1992), but genetic mutations do allow for ‘waxy’ type 84 

varieties which contain 100% amylopectin. While conversely, high amylose barley varieties 85 

exist with amylopectin levels of up to 40% (Swanston, Ellis et al. 1995, MacGregor, Bazin et 86 

al. 2002, Morell, Kosar-Hashemi et al. 2003). Waxy and high-amylose starches have 87 

numerous applications in both industrial and food industries. Waxy starches are used in the 88 

food industry as emulsifiers, thickeners and freeze-thaw stabilizers (Beckles and 89 

Thitisaksakul 2014). However due to the high rate of conversion waxy-starches are also as 90 
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livestock feed (Beckles and Thitisaksakul 2014). Its industrial application is as an additive in 91 

the paper and textile manufacturing process (Beckles and Thitisaksakul 2014). High-amylose 92 

starches on the other hand are used as edible films, confectionary and bioplastics. It also has 93 

health benefits due to its low digestibility, making it ideal as a colon drug delivery system 94 

(Beckles and Thitisaksakul 2014).       95 

Amylopectin is a highly branched polymer with numerous short-chained branches with a 96 

high molecular weight of 10
7-9 Da (Vilaplana and Gilbert 2010), making up approximately 97 

35% by weight of total grain composition. This makes amylopectin the most abundant single 98 

component in barley, ahead of protein (approximately 10% by weight) and amylose (10% 99 

weight). Amylose is an almost linear polymer with few long-chain branches and a moderate 100 

molecular weight of 10
5-6 

Da (Vilaplana and Gilbert 2010). 101 

 102 

 103 
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Figure 1: a) Shows glucose molecules linked together with α-(1⟶4) linkages to form 104 

amylose which is cut by α-amylase, β-amylase and α-glucosidase to form maltose (glucose + 105 

glucose) from the non-reducing end. b) Shows an amylopectin chain made up of chains 106 

formed by α-(1⟶4) linkages and branched by α-(1⟶6) linkages. These branches are cut by 107 

debranching enzymes Isoamylase and limit dextrinase, resulting in more straight chains for 108 

hydrolysis by α-amylase and β-amylase.  109 

 110 

Figure 2 shows the development of the amylose and amylopectin from initial chains 111 

(structure level 1) to the final structure of the endosperm (structure level 6). Structure levels 3 112 

and 4; show the lamella layers with amorphous lamella and crystalline lamella that form the 113 

granule. Most of the branch points are located in the amorphous lamellae, while the outer 114 

chains are present in the crystalline lamellae which form double helices (Tester, Karkalas et 115 

al. 2004, Gous, Gilbert et al. 2015).  116 

The branches associated within amylopectin can be categorized into A, B and C chains, 117 

depending on their lengths and relative position (Nakamura 2002) (Figure 2). A-chains are 118 

comprised of short branches found on the outer fringes of the amylopectin molecule, while B-119 

chains are longer with one or more branches occupying the inner molecule. The C-chain 120 

consists of a reducing terminal glucose residue and serves as an important factor in the 121 

production of the B-chains (Wang, Henry et al. 2014, Gous, Gilbert et al. 2015). Although 122 

amylopectin’s shorter branches are confined to a single lamella, some of the longer B-chains 123 

are trans-lamellar and span more than one crystalline lamella (Tester, Karkalas et al. 2004, 124 

Wang, Henry et al. 2014).  125 

Starch granules exist as either large A type granules or smaller B type granules. A type 126 

granule are approximately four times larger than B type, while B type granules are 127 

approximately four times as abundant as A type granules (Figure 2 – Level 5). 128 
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 129 

 130 

 131 

Figure 2: The six levels of starch structure in cereal grain (modified from Gilbert 2014). 132 

Modified with A, B and C chains labelled on the amylopectin polymer and the width of the 133 

crystalline and amorphous layers in nanometers (nm). 134 

 135 

Starch Biosynthesis 136 

The enzymatic stepwise process in which amylose and amylopectin are synthesised is 137 

shown in Figure 3. Since this review is focused on debranching enzymes (iso-amylase and 138 

limit dextrinase), all other starch synthesizing enzymes will only be briefly discussed. Starch 139 

is synthesised and stored in a granular form in plastids during photosynthesis; whereas for 140 

long-term storage, starch is stored in amyloplasts such as those found in the grain endosperm 141 

(Wang, Henry et al. 2014). Starch synthase enzymes elongate chains by catalysing the transfer 142 

of glucose units from ADP-glucose to the non-reducing ends via α-(1⟶4) linkages (Fujita, 143 

Yoshida et al. 2006, Wang, Henry et al. 2014). Starch structure varies between botanical 144 
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organs, plant species and varieties, and environmental conditions, with these structural 145 

differences brought about by differences in starch biosynthesis, involving multiple enzymes 146 

(Gous, Gilbert et al. 2015). These multifaceted biosynthetic pathways involve ADP-glucose 147 

pyrophosphorylase (AGPase), starch synthases (SSs), starch branching enzymes (SBE), and 148 

debranching enzymes (DBE), of which several isoforms play distinct roles (Wang, Henry et 149 

al. 2014) (Figure 3). The presence and pleiotropic effects of these enzymes and isoforms, 150 

complicates starch biosynthetic pathways (Wang, Henry et al. 2014). The biosynthetic 151 

interactions of all starch synthesis genes in a single cultivar, under the influence of external 152 

conditions, are not fully understood due to their complexity, although various relationships 153 

have been proposed (Jane, Chen et al. 1999, Kharabian-Masouleh, Waters et al. 2012, Witt, 154 

Doutch et al. 2012, Syahariza, Sar et al. 2013, Witt and Gilbert 2014).  155 

 156 
 157 

 158 

Figure 3:  Starch synthesis pathway. (key genes: SS starch synthase, BE starch branching 159 

enzyme, DBE starch debranching enzyme, GBSS granule bound starch synthase) 160 

 161 

Debranching enzymes: 

Isoamylase 

Limit Dextrinase 
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Debranching is the last step in the synthesis of amylopectin.  A physiological relationship 162 

between the branching and debranching enzymes has been observed in barley (Sun, Sathish et 163 

al. 1998, Sun, Sathish et al. 1999) which has been proposed to balance the structure when 164 

forming the layers in starch granules (Wu and Gilbert 2010). In barley, the dominant DBEs 165 

are isoamylases. These enzymes are present in all tissues of the developing caryopsis but are 166 

most abundant in the developing endosperm (Radchuk, Borisjuk et al. 2009). Another DBE 167 

also present in the developing endosperm (Sissons, Lance et al. 1992, Sissons, Lance et al. 168 

1992, Radchuk, Borisjuk et al. 2009) or more specifically in barley as limit dextrinase (LD). 169 

Limit dextrinase is predominantly involved in debranching amylopectin during germination 170 

and is an important malting quality trait (discussed below). 171 

 172 

The enzymatic steps in the synthesis of typical starch remain fixed. However, changes to 173 

specific enzymes in the starch synthesis pathway, such as in one or more of the starch 174 

synthase genes, may result in a higher amylopectin (waxy) or amylose content. Additionally, 175 

the growing environment can have a major influence on enzyme activity, final granule size 176 

and starch structure. Excessively high field temperatures during grain fill may reduce the size 177 

of the large A granules and/or increasing the ratio of small B granules by either reducing the 178 

activity of the starch synthase enzymesor impacting on starch granule initiation as suggest 179 

previously (MacLeod and Duffus 1988). 180 

 181 

Starch debranching enzymes are involved in both synthesise and degradation 182 

In general, starch debranching enzyme (EC 3.2.1.61) hydrolyses α-(1⟶6) glycosidic 183 

linkages during amylopectin synthesis (Myers, Morell et al. 2000, Wang, Henry et al. 2014). 184 

As mentioned above, two genes for DBE have been identified in barley, the first being 185 

isoamylase and the second being limit dextrinase (Doehlert and C.A. 1991, Wang, Henry et 186 
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al. 2014). At least three different isoforms of the isoamylase (Isa) that can debranch 187 

amylopectin have been identified, and have been classified as Isa1, Isa2, and Isa3 (Nakamura 188 

2002). These differing isoforms have been reported to be present and active in differing barley 189 

tissue including the pericarp, aleurone but specifically the endosperm, during grain filling 190 

(Radchuk, Borisjuk et al. 2009). The Isa1 isoform is the most active in the endosperm and for 191 

the longest period of time during grain filling. The down regulation and absence of Isa1 192 

modifies the well-ordered structure of amylopectin (Nakamura 2002), resulting in the 193 

formation of a ‘sugary’ amylopectin, with lots of short chains (Burton, Jenner et al. 2002).  194 

 195 

The expression of a mutant anti-Isa1 gene has shown to lower starch gelatinization 196 

temperature and viscosity by producing a less crystalline starch structure (Fujita et al. 2006). 197 

However, in contrast to Isa1, the absence of Isa2 does not result in severely abnormal starch 198 

morphology, despite Isa2 being required together with Isa1 for activity of the Isa heteromeric 199 

enzyme (H.S., Iqbal et al. 2009, Kubo, Colleoni et al. 2010). Thus, changes in Isa expression 200 

and subsequently any variation in the regulation of the protein expression, will change the 201 

physiochemical properties of starch. Consequently, these changes may impact on final grain 202 

quality and end use.  203 

 204 

The locus for Isa1 is on 7HS around the centromere (Burton, Jenner et al. 2002) while the 205 

locus for the LD gene is at around 50 centiMorgans also on 7HS (Burton, Jenner et al. 2002) 206 

(Figure 4). 207 

 208 

Starch molecular characterisation  209 

Size exclusion chromatography (SEC), also known as gel permeation chromatography, is 210 

commonly used to characterize starch polymer structure. In SEC, molecules in a mobile 211 
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solvent (eluent) are separated by molecular size, due to their hydrodynamic volume (Vh), or 212 

their corresponding hydrodynamic radius (Rh) (Cave, Seabrook et al. 2009, Gous, Gilbert et 213 

al. 2015). For linear polymers like debranched starch, there is a unique relationship between 214 

Rh and molecular weight, however this does not hold true for complex branched polymers 215 

(Gous, Gilbert et al. 2015).  216 

 217 

To determine the Rh or weight-average molecular weight (–Mw), three different types of 218 

detectors are commonly used in SEC (Vilaplana and Gilbert 2010). The differential refractive 219 

index (DRI), multi-angle laser light scattering (MALLS), and viscometry detector, are either 220 

used individually or in combination to provide comprehensive starch structural information 221 

(Gous, Gilbert et al. 2015). The DRI provides the weight distribution of molecules as 222 

functions of Rh, while MALLS detector provides the –Mw and the z-average size (Rg,z) as the 223 

radius of gyration while the viscometry detector provides the distribution of molecules (Gous, 224 

Gilbert et al. 2015). It is however essential that starch samples used for molecular structural 225 

characterization be prepared without aggregation, loss, degradation or retrogradation. To 226 

prevent these negative effects, samples are dissolved in an eluent comprised of dimethyl 227 

sulfoxide and lithium bromide (Hasjim, Lavau et al. 2010, Vilaplana and Gilbert 2010).  228 

 229 

To accurately determine Vh from elution time, it is essential that calibrations be 230 

performed using narrowly-dispersed linear glucan pullulan or dextran standards with known 231 

molecular weights. Although SEC is commonly used in starch characterization it is restricted 232 

by band broadening, shear scission, and low recovery of larger molecules like that of 233 

amylopectin (Cave, Seabrook et al. 2009). Part of the problem is that the appropriate 234 

standards are not available for molecules greater than ~ 50 nm in size (Gous, Gilbert et al. 235 

2015). It is also problematic that shear scission is unavoidable in SEC, making the data 236 
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generated for large molecules only semi-quantitative (Gous, Gilbert et al. 2015). Regardless 237 

of these limitations, qualitative and semi-quantitative comparisons of size distributions can 238 

still be performed with SEC data. Furthermore, when the SEC samples are analysed under the 239 

same conditions, the effects of shear scission would be similar across all samples (Gilbert, Wu 240 

et al. 2013, Gous, Gilbert et al. 2015), so that relative size distributions are at least 241 

determined. 242 

 243 

Starch and its role in Malting and Brewing quality  244 

The fermentation of sweet liquids into alcoholic beverages such as beer has been 245 

conducted by humans for many millennia (Bamforth 2008).  Thousands of years ago, we 246 

started to understand the process of using germinated grain (malted) to enable this process.  247 

Where today, commercial malting is an industrial process carried out in nearly every country 248 

of the world where there are breweries. Malt is derived from the germination and then drying 249 

of cereal grain in a process that takes between 6 to 8 days, depending upon the type of cereal 250 

and malt quality required (Figure 5a). During this process, some internal components such as 251 

proteins are reduced to amino acids and cell wall components (β-glucan and arabinoxylan) are 252 

reduced to their base sugar units. More importantly, starch degrading enzymes (SDE) are 253 

released and/or synthesised. These enzymes include  254 

i. limit dextrinase to cut α-(1⟶6) linkages on amylopectin or amylose,  255 

ii.  α-amylase to hydrolyse chains into smaller fragments,  256 

iii.  β-amylase cut maltose and, to a minor extent, 257 

iv.  α-glucosidase cut glucose from the non-reducing ends of the chain fragments 258 

(respectively).  259 

 260 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

13 
 

However, during malting the master’s objective is to have as little starch as possible degraded 261 

to minimize malting losses.  The majority of starch hydrolysis occurs during the first stage of 262 

brewing, called mashing where the starch has been gelatinized to enable the efficient access of 263 

the starch hydrolysing enzymes (Figure 5b). The enzymic breakdown of starch into simpler 264 

sugars including maltose and glucose provides a major part of the food-energy source for 265 

yeast and the fermentation process (Figure 5b). 266 

 267 
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Figure 5: Flow diagrams for the (a) malting and (b) brewing processes. Figure 5a sourced 268 

from www.scitechconnect.elsevier.com and Figure 5 b sourced from www.ibdasiapac.com.au.  269 

  270 

A number of parameters indicate malt quality including hot water extract (the amount of 271 

available solubilised material); diastatic power (combined measure of starch degrading 272 

enzyme activity) and fermentability of the wort (extract sugars utilized by yeast for 273 

fermentation). Extract and diastase can be predicted somewhat from the analysis of the barley 274 

grain (MacGregor 1996), which would suggest a probable association with starch and protein 275 

content, respectively. For the following discussing, only the above three parameters 276 

mentioned above will be discussed as they relate most to the hydrolysis of starch and the final 277 

profile of the important fermentable sugars. 278 

 279 

Hot Water Extract 280 

The hot water extract (HWE), or wort, produced from the mashing and lautering stages, is 281 

the one of most important brewing traits as it contains numerous sugars, amino acids, 282 

peptides, lipids, vitamins and minerals that could be used by the yeast and or contribute to 283 

beer quality (Figure 5b). The quality of the HWE is influenced by a number of factors. Firstly, 284 

barley grain composition is a contributing factor but composition is affected by numerous 285 

environmental factors including; growing conditions, temperature, fertiliser use, nitrogen 286 

availability and moisture.  In general, it is well known that higher protein is negatively 287 

correlated with extract (Bishop 1930, Briggs 1978). These factors do not directly impact on 288 

HWE, however their effect is observed on the content and compositions of components that 289 

do contribute to HWE, such as starch quality and presumably access of starch hydrolysing 290 

enzymes to starch during mashing.  291 

 292 
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Secondly, both physiological and biochemical components of the grain can influence 293 

HWE.  The type of barley i.e. two or six rowed, with the plumper two rowed having higher 294 

level of extract. The husk thickness, grain size, protein, starch, non-starch polysaccharide 295 

contents all impact on extract levels. Also high protein content is related to higher enzyme 296 

production (Arends, Fox et al. 1995). Barley cultivars with the optimum combination of these 297 

traits consistently produce higher extract.  298 

 299 

Thirdly, the malting process (grain modification) is singularly the greatest aspect 300 

affecting hot water extract. During malting, enzymes that degrade proteins, non-starch 301 

polysaccharides and starch, are either synthesised or released from their bound forms. The 302 

objective during the malting process for most maltsters is to maintain high extract levels and 303 

yet achieve this at low levels of protein modification to ensure the desirable foam stability in 304 

the resultant beer.  305 

 306 

Finally, the mashing process influences HWE, where there are a number of variables 307 

that affects the level of extract, such as pH, mash time, mash temperature, grist (particle) size 308 

and grist to liquor ratio. While these aspects determine the quality of the final HWE (and 309 

fermentable sugar profiles), most these aspects are determined by the genetic attributes of the 310 

starting barley. For example, high diastatic power (DP) barley varieties produce high levels of 311 

malt DP under optimal conditions. 312 

 313 

Diastatic Power 314 

Diastatic power is the term used to describe the collective activity of SDE in malt. Four 315 

enzymes, α-amylase, β-amylase, limit dextrinase and α-glucosidase, have been identified 316 

during malting and mashing (Osman 2002, Briggs, Boulton et al. 2004), although little 317 
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attention has been paid to α-glucosidase. There are genetic and environmental effects on α-318 

amylase, β-amylase and limit dextrinase (Arends, Fox et al. 1995) with each having an 319 

optimal pH and temperature range. Industry methods used to measure DP vary considerably 320 

in a number of aspects including; substrate, pH and assay temperature which may in turn 321 

differing impacts one or more enzyme. Most methods only provide data on the enzymatic 322 

potential under these conditions, which are far removed from industrial mashing conditions 323 

(Henry and McLean 1984). The relationships between DP level, individual DP enzymes and 324 

either HWE and/or fermentability have been shown (Evans, van Wegen et al. 2003, Evans, Li 325 

et al. 2008, Evans, Dambergs et al. 2010). These studies did demonstrate that multi linear 326 

equations of parameters including Kohlbach Indext (KI), α-amylase, LD, β-amylase and its 327 

thermostability could predict 70-90% of variation in fermentability compared to <50% or less 328 

for DP.  These results explain why DP has been found to be potentially a misleading measure 329 

of fermentability in commercial brews (Evans, Li et al. 2007).  It is clear that the prediction of 330 

fermentability will be further improved by inclusion of measures of starch structure and 331 

complexity, as well as inclusion of sugars produced from non-starch components. 332 

  333 

Low DP barley varieties only produce low to moderate levels of SDE which also affects 334 

the fermentable sugar profile and may leave a higher level of unfermentable dextrins. Such 335 

varieties are being increasingly sought after by craft brewers and brewers that brew with 336 

100% malt and do not include starch adjuncts such as rice or corn grits. The basis for this low 337 

DP malt selection is that dextrins and limit dextrins may have a positive effect on the 338 

mouthfeel of the beer (Langstaff and Lewis 1993).  339 

 340 

While there is a synergistic relationship between the individual DP enzymes in mashing 341 

(Evans 2012), LD is critical for maximising fermentability as it is responsible for the 342 
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hydrolysis the branches of amylase and amylopectin. This results in shorter chains which can 343 

then be hydrolysed by both the amylases. As previously indicated, the role of this debranching 344 

enzyme is to hydrolyse α-(1⟶6) linkages. This follows from LD’s physiological role which 345 

is to produce suitable substrates for amylases, to ensure the complete hydrolysis of starch into 346 

sugars to supply the growing embryo during germination. Humans have learned to co-opt this 347 

perfectly designed hydrolysis of starch into sugars for fermentation. Specific information on 348 

LD is discussed below.  349 

 350 

Fermentability 351 

The fermentation of wort is probably the most critical phase of the brewing process as 352 

uncontrolled or slow fermentations cause delays in the final processing of beer. Several 353 

factors impact wort fermentability, but the main purpose of fermentation is the utilisation of 354 

the fermentable sugars to produce alcohol. Maltose is usually the most abundant sugar 355 

produced during mashing, followed by maltotriose. The particular mashing style can 356 

influence the sugar profile with the lower temperature congress mash (45oC ramp to 70oC) 357 

resulting in a higher lower level of maltose compared to the high temperature infusion style 358 

(constant 65oC) (Evans et al. 2005). In addition, grist:liquor ratio and pH also impact on sugar 359 

production. A recent studied showed little difference between fermentability and individual 360 

fermentable sugars when derived from low and high temperature mash under varying grist to 361 

liquor ratios (1:2, 1:3 and 1:4) (Fox 2016). All these factors, ie.grist:lqiour, pH, mash 362 

temperature, also influence the activity of the individual DP enzymes. However, current malt 363 

parameters (such as HWE and DP) are unreliable indicators of fermentability during actual 364 

brewing conditions. To account for other possible variables, recent efforts have identified a 365 

number of other malt factors to predict fermentability, where α-amylase and total LD (activity 366 

and thermostability), Kolbach Index, and the total β-amylase (activity and thermostability) 367 
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were combined (Evans et al. 2005, 2008, 2010). However, from these studies, LD and it 368 

thermostable isoform, failed to show any contribution to fermentation. While these studies 369 

showed several malt parameters that could give an indication of proved to be important 370 

variables that influences fermentable sugar production, there was no measure of fermentable 371 

sugars. Further these  studies did not quantify the barley starch structure, which would help 372 

explain the level of efficiency of the enzymes in producing fermentable sugars. 373 

 374 

Limit dextrinase 375 

Compared to Isa, there is less information available on the role of LD in starch 376 

biosynthesis. Its bi-functional role in starch synthesis and then degradation has been reported 377 

in barley (Dinges et al. 2003). The primary function of LD is the hydrolysis of α-(1⟶6) 378 

linkages in α-limit dextrins of amylopectin (Bojstrup et al. 2014; Huang et al. 2014). In 379 

barley, three different isoforms of LD are found which are (i) insoluble when bound, (ii) 380 

inactive when soluble (latent) and (iii) active when free, where only active free LD 381 

contributes to starch mobilization and digestion (MacGregor 2004).  382 

 383 

Limit dextrinase expression is regulated by a single gene (Burton, Zhang et al. 1999, 384 

Kristensen, F. et al. 1999), with peak expression five days post germination. An extended 385 

germination period may however be required for optimal LD expression and mobilisation 386 

during malting (Kristensen, F. et al. 1999), resulting in superior wort sugars and 387 

fermentability (Bamforth 2003). Without free LD available in the HWE, excessive levels of 388 

branched dextrins could slow fermentation (MacGregor 2004). During germination LD level 389 

increases, with maximum activity reached after eight days. Limit dextrinase will survive 390 

kilning with up to around 80% activity. The observed increase in total limit dextrinase activity 391 

during germination is due to a bound form being released by the action of proteinase 392 
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(Longstaff and Bryce 1993). Purified limit dextrinase has an optimal pH of 5.5 and 393 

temperature at 50°C (Sissons, Lance et al. 1992), while under Congress mashing conditions, 394 

LD has a similar pH optimum but higher temperature optimum of between 60°C to 63°C 395 

(Stenholm and Home 1999).  396 

 397 

to 75°C, which is comparable to a kilning regime for lager malt, with up to 75% of viable 398 

enzyme remaining in solution (Bamforth 2003). However, only 13% of LD survived kilning; 399 

comparable to ale malt production with a maximum temperature of 95°C is reached 400 

(Bamforth 2003). Purity of the unbound enzyme form may influence activity; with a near total 401 

loss in LD activity in under 10 min at 65°C when pure. Low level of free LD activity is 402 

attributed to a combination of endogenous inhibitors and a limit dextrinase inhibitor (LDI) 403 

bound in key endosperm components (Huang et al. 2014). The release of LD from its inhibiter 404 

promotes starch digestion and increases fermentable sugars formation. It is suggest that LD 405 

bound to the LDI is the a limiting factor for complete starch digestion during brewing 406 

(Bamforth 2003, Huang, Cai et al. 2014).  407 

 408 

The LDI is synthesised during grain fill and later than the synthesis of LD with a decrease 409 

in the free LD form and an increase in the bound LD form (MacGregor 2004). .  and is 410 

gradually degraded during malting. However, during malting, LD activity is not only 411 

determined by enzyme concentration but also by the presence of the LDI (MacGregor 2004). 412 

When LD was inhibited, there was a reduced number of B granules formed and changes to the 413 

chain length of the amylopectin molecule (Stahl, Coates et al. 2004). LD inhibition also 414 

effects of the expression of starch synthases and starch degrading amylases (Stahl, Coates et 415 

al. 2004), supporting the concept of a physiological balance between the genetic control of 416 

genes involved in starch synthesis and degradation.  417 
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In-vitro experiments showed the release of LD can be promoted by the addition of a 418 

reducing agent such as dithiothreitol, which is not feasible in brewing because of its toxicity 419 

and its strong foul odour. The addition of exogenous protease may however remove LDI 420 

(Longstaff and Bryce 1993). It was also demonstrated an increase in LD release was 421 

attainable by decreasing the mash pH; with significantly increased LD activity obtained with 422 

pH less than 5.0 (Longstaff and Bryce 1993). Although LD may increase starch hydrolysis, 423 

resulting in improved fermentable sugar profiles, high dextrin levels may alter starch 424 

gelatinisation properties which may have a negative impact on wort filtration and final 425 

product quality (Bamforth 2003).  426 

 427 

Genetic Variation in Isa and LD 428 

Both the Isa and LD genes are located on chromosome 7HS (Li et al. 1999). In addition, 429 

this region has been associated with increased HWE and DP in molecular mapping 430 

populations (Elia et al. 2010) (refs), regardless of which marker technology was applied. This 431 

locus has been identified in a number of diverse populations including those where a wild 432 

parent was used. Nevertheless, there can be some inconsistency in the identification of the 433 

QTL between populations. Interestingly, where a QTL for HWE was reported, it was for an 434 

infusion style of HWE method (high temperature mashing style) (Islamovic, Obert et al. 435 

2014).  436 

In two feed grain studies, Abdel-Haleem, Bowman et al. (2010) identified a QTL for total 437 

starch content; while in a similar region Gous, Lawson et al. (2012) identified a QTL for dry 438 

matter disappearance. The same region has been associated with increased grain size in 439 

barley, presumably through increased total starch content. This region has also been 440 

associated with QTL for a combined measure of starch degrading enzymes namely diastatic 441 
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power, specifically β-amylase. but QTL for neither of the individual amylases have been 442 

reported at this loci. It could be then proposed this diastatic power QTL could be LD.  443 

 444 

At the gene level, single point mutations (single nucleotide polymorphism [SNP]) as well 445 

as sequence deletions have been identified for Isa1, resulting in changes in starch tructure and 446 

granule size. As the Isa1 is responsible for hydrolysising the α-1,6 branches from 447 

amylopectin, changes in amylopectin structure have been identified in wild types where there 448 

was a deletion in the Isa1 gene (Burton, Jenner et al. 2002). The limit dextrinase gene LD 449 

form also has single point mutations resulting in an amino acid substitution giving increased 450 

thermostability in an in-vitro assay although this has yet to be confirmed under mashing 451 

conditions in the mash (Yang, Westcott et al. 2009). Figure 4 shows the amino acid sequence 452 

from studies sequencing the limit dextrinase gene. Substitutions at 233 Thr/Ala and 885 453 

Ala/Ser resulted in an increase thermostability of approximately 10oC. However, the samples 454 

tested were all from a single field experiment and the LD activity was assayed at 57oC and not 455 

during a mashing experiment, so variation in expression in the same varieties from differing 456 

locations would be expected due to environmental influence on protein and diastase (Arends, 457 

Fox et al. 1995). While LD thermostability was assayed in many barley varieties, the 458 

thermostable form seems to be less common in barleys bred specifically for malting quality. 459 

The thermostable LD form coupled with the thermostable β-amylase form, such as Sd2H, 460 

could provide malts with increased total enzymatic power (diastase) but also allow the 461 

thermostable enzymes to be more active in high temperature mash systems. In addition, they 462 

could provide a higher level of fermentable sugars and also be more suited to high gravity 463 

mashing where the ratio of malt grist to water can be as low as 1:1.9. 464 

 465 
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With regards to gene expression, a single study of LD expression during germination 466 

(four days) of four USA malting varieties (of which two were 2-rowed and the other two were 467 

6-rowed), showed LD expression levels differed between four varieties. LD was positively 468 

correlated with fine extract, based on a ramping style method (Congress), using long term 469 

malting quality data of the four varieties. While the two 6-rowed varieties had the highest 470 

level of diastase, they didn’t have the highest level of α-amylase. This may have been due to 471 

either a lower starch to protein ratio or higher protein. The former wasn’t reported. Both the 472 

two 2-rowed varieties had the highest level of amylase and one of these, Harrington, had the 473 

highest level of LD (Lapitan, Hess et al. 2009). Harrington has the low thermostable allele 474 

(Yang, Westcott et al. 2009), however in any low temperature mashing, the slow ramping 475 

could be conducive for optimal activity of LD. But the major drawback with this mashing 476 

style is the low temperature hasn’t provided conditions for starch to gelatinise, hence there is 477 

no starch degrading enzyme activity.  This was suggested in a study where the same samples 478 

used in the Yang, Westcott et al. (2009) study had previously been tested for malting quality 479 

using a Congress or infusion mash (Evans, van Wegen et al. 2003). However, individual 480 

HWE or LD results were not reported.  481 

 482 

Challenges and implications   483 

Grain quality and composition plays an integral role in brewing and often determines 484 

malt quality. Initially, plump grained varieties are selected, in order to obtain the best quality 485 

malt, with relatively high levels of SDE activity (e.g. α-amylase, β- amylase and LD) for 486 

fermentable sugar production (Fox, Panozzo et al. 2003). Breeders have selected genotypes 487 

with plump grain kernels conferring high starch and relatively low protein content, with 488 

commercial cultivars receiving a premium for grain size and protein, but not directly starch. 489 

Starch is readily hydrolysed into maltose, maltotriose, sucrose, glucose and fructose by Isa1 490 
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and LD during mashing. It is these wort sugars that are fermented by yeast during 491 

fermentation. As indicated in earlier sections, numerous studies have investigated the impact 492 

of SDE on fermentability (Buttimer and Briggs 2000, Kanauchi and Bamforth 2008). 493 

However, little is still known on how allelic variation in SDE expression impacts on starch 494 

structure and the variation in structure on fermentability; with starch structural studies 495 

predominantly focused on SSs. Alternatively, some studies have attempted to quantify and 496 

understand the impact of starch structural changes on malt quality and brewing efficiency 497 

(MacGregor 1996, MacGregor, Bazin et al. 1999, Izydorczyk, MacGregor et al. 2001).  498 

 499 

In depth studies on starch structure in brewing have been restricted by several limitations, 500 

both technical and environmental. Barley grain quality is in largely determined by genotype, 501 

environmental conditions and their subsequent interactions, which also contribute to potential 502 

starch structural changes (Gous, Hasjim et al. 2013, Gous, Gilbert et al. 2015). 503 

Characterisation of these structural changes is complicated by technical limitations resulting 504 

in the incomplete starch dissolution, retrogradation and shear scission etc. It was shown 505 

however that an increase in LD release by the endosperm during mashing malting will result 506 

in an increase in fermentable sugar production. An extensive search of the literature could not 507 

identify any discernible information linking SNP in LD and SDE expression, starch molecular 508 

structure and properties. Most of the studies focused on either how starch structural changes 509 

affected functional properties; or the identification of SNPs and their impact on fermentation. 510 

With the notable absence of comprehensive studies on allelic variation on LD and SDE 511 

expression, their impact on starch structure, and how these structural changes impact on grain 512 

quality. At most, studies on LD focused on fermentable sugar production without linking its 513 

function to Isa and SDE expression and activity.  514 

 515 
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Conclusions 516 

The basis for amylopectin composition is the linkage of thousands of glucose molecules but 517 

the final structure can be extremely variable in the number of branches and length of chains.  518 

Environment has a major influence on the structure, but of most interest is the action of limit 519 

dextrinase in controlling the level of branching during amylopectin synthesis and then needed 520 

for complete debranching to assist amylases to hydrolysis the chains into smaller, fermentable 521 

glucose based sugars such as maltose and maltotriose.  While the relationship between limit 522 

dextrinase and amylopectin structure is starting to be understood, understand, there is still a 523 

significant gap in the knowledge of any environmental impact of amylopectin structure, the 524 

possible rate of hydrolysis and final profile of fermentable sugars for brewing.  The efforts by 525 

barley breeders to increase SDE has been done with little attention paid to the substrates.  It 526 

will now possible to understand structure and the full process of amylopectin synthesis and 527 

degradation into fermentable sugars.  528 

 529 

530 
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 Table 1. Abbreviations and definitions 745 

AA α-amylase 
Enzyme that cuts randomly along the chains of 
amylose and amylopectin 

AM Amylose 

Straight chain polymer with glucose unit, linked 
with α-(1⟶4) links. Can be over 10000 glucose 
molecules in a single chain. One of two polymers 
that make starch in plants. 

AP Amylopectin 

Large branched polymer mostly α-(1⟶4) glucose 
links, with braches through α-(1⟶6) linkage. The 
larger polymer to make starch in plants. When 
100% amylopectin, the starch is termed ‘waxy’. 

BA β-amylase 
Enzyme that cuts maltose from the glucose chains 
(maltose - two glucose joined together) 

CLD 
Chain length 
distribution 

Distribution of glucose chains of varying lengths 

DB 
Degree of 
branching 

Number of branches on amylopectin 

DBE 
Debranching 
enzymes 

Enzymes that cut (cleave) the α-(1⟶6) linkage 
from the α-(1⟶4) chains 

DPn 
Degree of 
polymerization 

Number of glucose molecules joined together  

DP Diastatic Power 
Combined activity of starch degrading enzymes in 
malt. These enzymes are α-amylase, β-amylase, 
limit dextrinase and -glucosidase. 

GBSS 
Granule bound 
starch synthase 

Enzyme that adds glucose molecules to lengthen 
the chains, specifically amylose. 

HWE Hot-water extract 
Concentration of solutes extracted from malt in 
hot water, measured using specific gravity (oPlato 
and % sucrose equivalent) 

Isa Isoamylase One of the α-(1⟶6) debranching enzymes, active 
during grain filling.  

LD Limit dextrinase 
Another of the α-(1⟶6) debranching enzymes, 
active during grain filling but more active during 
germination. 

SBE 
Starch branching 
enzymes 

Enzyme that attaches chain in the 6 position to 
form the branches on amylopectin 

SDE 
Starch degrading 
enzymes 

 

SEC 
Size-exclusion 
chromatography 

Method to measure the number of glucose 
molecules in a chain, specifically amylose 

SS Starch synthases 
Enzyme that adds? glucose molecules to lengthen 
the chains. Makes amylopectin specifically. 

 746 

 747 
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                          10                        20                           30                             40                         50                          60                        70                      80                       90                   100 748 
MAVGETGASV  SAAEAEAEAT  QAFMPDARAY  WVTSDLIAWN  VGELEAQSVC  LYASRAAAMS  LSPSNGGIQG  YDSKVELQPE   SAGLPETVTQ  KFPFISSYRA 749 
MAVGETGASV  SAAEAEAEAT  QAFMPDARAY  WVTSDLIAWN  VGELEAQSVC  LYASRAAAMS  LSPSNGGIQG  YDSKVELQPE   SAGLPETVTQ  KFPFISSYRA    750 
                      110                       120                        130                      140                       150                      160                       170                      180                        190                      200 751 
FKVPSSVDVA  SLVKCQLVVA  SFGADGKHVD  VTGLQLPGVL  DDMFAYTGPL  GAVFSEDSVS  LHLWAPTAQG  VSVCFFDGPA  GPALETVQLK  ESNGVWSVTG  752 
FRVPSSVDVA  SLVKCQLVVA  SFGADGKHVD  VTGLQLPGVL  DDMFAYTGPL  GAVFSEDSVS  LHLWAPTAQG  VSVCFFDGPA  GPALETVQLK  ESNGVWSVTG   753 
                      210                       220                       230                      240                       250                      260                      270                   280                      290                      300 754 
PREWENRYYL  YEVDVYHPTK  AQVLKCLAGD  PYTRSLSANG  ARTWLVDINN  ETLKPASWDE  LADEKPKLDS  FSDITIYELH  IRDFSAHDGT  VDSDSRGGFR  755 
PREWENRYYL  YEVDVYHPTK  AQVLKCLAGD  PYARSLSANG  ARTWLVDINN  ETLKPASWDE  LADEKPKLDS  FSDITIYELH  IRDFSAHDGT  VDSDSRGAFR 756 
                       310                       320                      330                      340                       350                      360                       370                          380                       390                      400 757 
AFAYQASAGM  EHLRKLSDAG  LTHVHLLPSF  HFAGVDDIKS  NWKFVDECEL  ATFPPGSDMQ  QAAVVAIQEE  DPYNWGYNPV  LWGVPKGSYA  SDPDGPSRII  758 
AFAYQASAGM  EHLCKLSDAG  LTHVHLLPSF  HFAGVDDIKS  NWKFVDECEL  ATFPPGSDMQ  QAAVVAIQEE  DPYNWGYNPV  LWGVPKGSYA  SDPDGPSRII 759 
                         410                       420                      430                     440                      450                      460                       470                     480                         490                       500 760 
EYRQMVQALN  RIGLRVVMDV  VYNHLDSSGP  CGISSVLDKI  VPGYYVRRDT  NGQIENSAAM  NNTASEHFMV  DRLIVDDLLN  WAVNYK VDGF  RFDLMGHIMK  761 
EYRQMVQALN  RIGLRVVMDV  VYNHLDSSGP  CGISSVLDKI  VPGYYVRRDT  NGQIENSAAM  NNTASEHFMV  DRLIVDDLLN  WAVNYK VDGF  RFDLMGHIMK 762 
                       510                       520                      530                      540                       550                     560                      570                     580                       590                      600 763 
RTMVTKSALQ  SLTTDAHGVD  GSKIYLYGEG  WDFAEVARNQ  RGINGSQLNM  SGTGIGSFND  RIRDAINGGN  PFGNPLQQGF  NTGLFLEPNG  FYQGNEADTR  764 
RTMVTKSALQ  SLTTDAHGVD  GSKIYLYGEG  WDFAEVARNQ  RGINGSQLNM  SGTGIGSFND  RIRDAINGGN  PFGNPLQQGF  NTGLFLEPNG  FYQGNEADTR 765 
                    610                      620                      630                     640                      650                     660                    670                      680                    690                        700 766 
RSLATYADQI  QIGLAGNLRD  YVLISHTGEA  KKGSEIHTFD  GLPVGYTASP  IETINYVSAH  DNETLFDVIS  VKTPMILSVD  ERCRINHLAS  SMMALSQGIP  767 
RSLATYADQI  QIGLAGNLRD  YVLISHTGEA  KKGSEIHTFD  GLPVGYTASP  IETINYVSAH  DNETLFDVIS  VKTPMILSVD  ERCRINHLAS  SMMALSQGIP 768 
                  710                      720                       730                          740                      750                        760                     770                    780                  790                      800 769 
FFHAGDEILR  SKSIDRDSYN  SGDWFNKLDF  TYETNNWGVG  LPPSEKNEDN  WPLMKPRLEN  PSFKPAKGHI  LAALDSFVDI  LKIRYSSPLF  RLSTANDIKQ  770 
FFHAGDEILR  SKSIDRDSYN  SGDWFNKLDF  TYETNNWGVG  LPPSEKNEDN  WPLMKPRLEN  PSFKPAKGHI  LAALDSFVDI  LKIRYSSPLF  RLSTANDIKQ 771 
                     810                       820                      830                       840                      850                      860                         870                    880                       890                      900 772 
RVRFHNTGPS  LVPGVIVMGI  EDARGESPEM  AQLDTNFSYV  VTVFNVCPHE  VSMDIPALAS  MGFELHPVQV  NSSDTLVRKS  AYEAATGRFT  VPGRTVSVFV  773 
RVRFHNTGPS  LVPGVIVMGI  EDARGESPEM  AQLDTNFSYV  VTVFNVCPHE  VSMDIPALAS  MGFELHPVQV  NSSDTLVRKS  AYEASTCRFT  VPGRTVSVFV 774 

Figure 4. Protein sequence for LD. Highlighted amino acids show thermolabile (top) and thermostable (bottom) sequence. 775 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

• Amylopectin is the most abundant polymer in barley 

• Amylopectin is highly branched as a results of branching and debranching enzymes 

• Limit dextrinase is one of the debranching enzymes  

• Limit dextrinase acts during grain filling and post-harvest germination  

• The role of limit dextrinase in both these modes is yet to be clearly defined  


