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Highlights 

 The weakest link in risk assessments is hazard 

identification/scenario definition. 

 Existing methods, such as HAZOP and FMEA, do not guarantee 

completeness. 

 Attempts to semi-automate HAZOP on plant do not seem to be 

fully satisfactory.  

 Only a system approach can provide completeness on plant, 

people, and procedures. 

 New possibilities are reviewed including an operational use of 

HAZID results. 

 

Abstract 
Hazard identification is the first and most crucial step in any risk assessment. Since the late 1960s 

it has been done in a systematic manner using hazard and operability studies (HAZOP) and 

failure mode and effect analysis (FMEA). In the area of process safety these methods have been 

successful in that they have gained global recognition. There still remain numerous and 

significant challenges when using these methodologies. These relate to the quality of human 

imagination in eliciting failure events and subsequent causal pathways, the breadth and depth 

of outcomes, application across operational modes, the repetitive nature of the methods and 

the substantial effort expended in performing this important step within risk management 

practice. The present article summarizes the attempts and actual successes that have been 

made over the last 30 years to deal with many of these challenges. It analyzes what should be 

done in the case of a full systems approach and describes promising developments in that 

direction. It shows two examples of how applying experience and historical data with Bayesian 

network, HAZOP and FMEA can help in addressing issues in operational risk management. 
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1. Introduction 
All safety considerations start with recognizing possible hazard events, hence the necessity of hazard 

identification (HI) via process hazard analysis (PHA). Hazard identification has the objective of defining 

all possible (non possumus) scenarios or sequences of events in which a hazard with its associated 

chance of realization will generate risks to people, assets, environment or corporate reputation. The 

potential causing the hazardous situation can reside within the system for a long time or could result 

from a set of temporal conditions.  

PHA is a basic step towards risk assessment and risk management of a technical system and its process. 

Throughout the history of process design and operation much was learned by trial and error. Today, 

properties of materials are not regarded as a problem but 50 years ago they were. Many test methods 

did not yet exist. Phenomena such as runaway or vapor cloud explosion were unknown. Although 

sound knowledge of the material properties is a first requirement for a PHA, a conditio sine qua non, 

we shall assume for this paper that it is adequately represented, and we shall focus on finding out 

“how things can go wrong”.   

Early-on, it became already clear that an individual person is not able to think of all possible ways a 

mishap can occur. The first more or less formal method to evaluate plant process safety was 

application of a checklist based on experience. It required investigating properties of substances, 

reaction patterns, equipment hazards, safety devices, storage and loading, plant layout, emergency 

planning and the like. Another, even less formal and perhaps older method is ‘What-if?’ For example: 

what-if valve V1 is shut, while it should be open?  

Subsequently, a systematic, scenario oriented method appeared, which was designated Hazard and 

Operability Study (HAZOP). According to a paper in the 1971 Newcastle Major Loss Prevention in the 

Process Industries Symposium by Houston (1971) of Imperial Chemical Industries (ICI.), UK, in the case 

of a new design, safety was initially judged by “how well it will work”. As existing codes of practice fell 

short, for a new design an “Operability Study” was undertaken. Based on a flow sheet, and later a 

Piping & Instrumentation Diagram (P&ID), a team of experts systematically examined line by line for 

possible process deviations, and if one was found, what would cause it, and what would be the 

consequence. Process deviations from design intent were investigated following a brief checklist of 

guide words, such as More, Less, etc., with the main ones as we know them from today’s HAZOP 

(Hazards and Operability).  

In his 1997 article on HAZOP, Trevor Kletz (1997), also in ICI at the time, mentioned more details. The 

HAZOP inception was in 1963/64 on a new phenol plant design minimized with respect to capital cost, 

and the team that should operate the plant was given the assignment to perform a ‘Critical 

Examination’. The latter was known at the time as a formal method asking questions, what is achieved, 

what else could be achieved, what should be achieved, how, when, and who has achieved it. A team 

of three worked three days a week for four months and found many operating problems and hazards. 

It later turned out that elsewhere in ICI the same critical examination technique had been applied 

before. From this, HAZOP as a formal method emerged and conquered the chemical process world and 

beyond to across a large variety of design activity. However, even in the first journal publication Lawley 

(1974), also at ICI, it was separately called the Operability study method and the Hazard analysis 

method. The method became formalized and an extensive literature evolved on how to efficiently 

apply it. Dunjo et al. (2010) has summarized the history, the literature of how best to perform HAZOP, 

as well as the attempts to include human failure and other aspects and applications.  

Another systematic method that found general application is Failure Mode and Effect Analysis (FMEA) 

to which Criticality Analysis (FMECA) can be added to increase its rigor. The method started in 1949 as 



a military procedure in MIL-P-1629 “Procedures for Performing a Failure Mode, Effects and Criticality 

Analysis”.  Navy-Air converted it to standard MIL-STD-1629 in 1974, being further developed to version 

A in 1980. The method was applied in design in aerospace and then spread to other industries. 

Basically, from a piece of equipment the failure modes and their effects shall be identified, 

subsequently the causes and controls to prevent, and actions to be executed. FMECA, although applied 

basically as a reliability engineering tool according to the standard, found application too in 

maintainability, safety analysis, survivability and vulnerability, logistics support analysis, maintenance 

plan analysis, failure detection, and isolation sub-system design. Hence, where HAZOP is oriented 

towards operational function as seen in the systems states of temperature, pressure, flow and the like, 

FMEA is centered on component function and failure. These two methods overlap. 

There are many more identification methods created for specific system purposes. These include 

approaches such as Taylor’s action error analysis (Taylor, 2013), which is a kind of HAZOP on potential 

operator errors, or sneak analysis developed for electronic circuitry fault finding. A huge range of 

human factors methods have been developed over the last 25 years (Stanton et al., 2005). However, 

these methods have generally never reached the level of application in the process industries as have 

HAZOP and FMEA.  

Meanwhile, in many countries, major hazard facilities and other process installations are required by 

law to not only perform hazard identification before the start of operations but also on a regular, 

repeating basis such as 5 years for the life of the installation. This requirement signifies the importance 

of the activity. Missing a scenario and therefore not being prepared to prevent and counter the 

undesirable outcomes may lead to disaster.   

In summary, process hazard analysis (PHA), hazard identification (HI) and scenario definition form the 

cornerstone of the safety management system, and this is a team effort based on knowledge, 

experience, and human imagination of what can go wrong. In the next section we review the 

limitations of current methods due to the considerable effort, expense and the potential weaknesses 

in human imagination. Following that, we formulate some research questions and ways to improve 

hazard identification and to enhance the effectiveness and efficiency of the effort. 

This paper was inspired by two CET published conference papers for the 15th International Symposium 

on Loss Prevention and Safety Promotion in the Process Industries 2016 in Freiburg, Germany, 

respectively, the one of Pasman and Rogers (2016) and that of Cameron, Németh and Seligmann 

(2016).    

2. Current challenges and limitations 
In considering the question:  

“Are the conventional tools sufficient, or should and can we do much better?”, 

it is helpful to discuss what is meant by “sufficient”, and what constitutes “much better”. 

First, in relation to ‘sufficiency’ or meeting stated needs, practical application of techniques, such as 
HAZOP or FMEA, over many decades have certainly given excellent insights into the integrity of 
process designs and important operational aspects. However, these techniques have often been 
judged as not meeting needs for a variety of reasons, which are inherent in the methodologies and 
the particular manner in which they are applied. This is particularly evident in major accident reviews 
where deficiencies in HI were regarded as a major contributing factor in the accident. 

The shortcomings can include: a lack of breadth and depth of analysis, a lack of team diversity and 
imagination, tedium, exhaustion, effort and expense, effective capture and communication of 
outcomes, follow through to final consequences, poor prioritization of associated risks, handling 



multiple operating modes, interaction with people and procedures, and the effectiveness of 
outcomes on decision making as HI outcomes are passed across various organizational groups (Kletz, 
2009). All these issues can diminish the ‘sufficiency’ of the method and its applications: in some 
cases, with disastrous outcomes. 

Second, there appears little objection against the idea that we should be doing better than the 
current situation. Past development efforts have focused on some of these issues with varying 
degrees of success. Others have stalled due to internal policies and procedures of companies that do 
not wish to disrupt existing practices and who remain to be convinced of the benefits of change. 

Third, it is evident that with a growing focus on life cycle perspectives, accompanied by significant 
advancement in information and communications technologies (ICT), there are many opportunities 
to “do much better”. Exploiting systems thinking and ICT advancements can drive beneficial change. 
What follows discusses these issues. 

Since HAZOP is the main tool to identify scenarios, we focus on its limitations. In the first place there 

is the limitation in effort capacity. Conducting a HAZOP is labor intensive. To not lose focus, a team of 

five should work only half days on a project. Each P&ID requires about 5×20 hours, and for a plant 

depending on size 1 to 6 weeks may be required for a HAZOP. As this must be performed in the design 

stage, once more before commissioning, and every five years after being in operation, the effort and 

costs add up. Meanwhile the results usually sit on a shelf and are not used in day-to-day operations; 

this also reduces its cost effectiveness. 

Serious, however, are the limitations due to the range of personnel abilities and the quality of effort 

that can lead to the missing of key hazard scenarios. Paul Baybutt (2015a) in one of his numerous 

recent articles on PHA topics described the many different types of weaknesses and failures a HAZOP 

study can suffer from. Baybutt mentions as first contribution the weaknesses due to lack of imagination 

and creativity of the team members, not taking time to self-reflect, misunderstanding of the terms, 

and exhaustion. Further, there are weaknesses in design intent coverage as it appears from the P&ID 

and other information presented, as well as ambiguities in the definitions of related process 

parameters and their lack of completeness. There may be weaknesses in the identification of 

deviations resulting in confusion, because a deviation is not a cause but an intermediate effect of which 

the cause must be inferred and the impact must be deduced, whereas a combination of guide words 

on a parameter may generate different deviations. Some deviations may result only from a 

combination of guide words, while sometimes different guide words lead to the same deviation. Also, 

a small deviation may cause a large, more significant deviation, so the impact must be thought through 

to the final consequence. Guide words may be too restricted, which could lead to initiating events 

missed and in turn to scenarios not identified. On the other hand, deviations will also identify hazards 

that will be of little concern, although focusing only on the known major hazards may lead to 

overlooking not well known but yet serious hazards under certain conditions. Chemical reactivity 

hazards need not be triggered by a common deviation and are of a special kind. Process changes after 

a HAZOP has been completed may lead to a nasty surprise. Incomplete description of scenario 

elements in the HAZOP report may have consequences for measures to be installed. In a further article 

Baybutt (2015b) discusses competency requirements for HAZOP team members. 

So, even if with much effort a HAZOP study has been accomplished, there remains uncertainty in the 

completeness of defined important scenarios, being those conditionally leading to significant upset 

outcome consequences. Yet, the number of possible scenarios is finite. Therefore, as part of a system 

approach, monitoring and learning from system behavior in the operational stage beyond the HAZOP, 

including unusual behavior, near misses, and upsets, is crucial to identify previously overlooked 



scenarios and also to identify newly developed upset scenarios as the system continually changes with 

time.  

In FMEA or FMECA similar weaknesses will exist. A thorough analysis assumes sound knowledge of the 

failure modes of equipment components and the effects these can bring about. A failure mode is the 

observable effect of a failure, which is a failure to perform an intended function. It shall not be 

confused with an underlying or root cause as the cause of the failure is often elsewhere in the system 

or deeper down in the component. Focus bias on lower frequency, large severity consequences shall 

be avoided, because high occurrence rates of effects with smaller severities can cumulatively lead to 

larger significant risk. For evaluating a FMEA score a risk priority number (RPN) is derived, which 

contains not only severity and occurrence rate but also failure detection probability. Uncertainty in 

RPN can be estimated from uncertainties estimated for each of severity, occurrence rate, and failure 

detection probability.  

The previous leads to three questions:  

- How can we improve the effectiveness of hazard identification and scenario definition? 

- How can we enhance the efficiency of the effort? 

- Would it be possible to use the hazards analysis findings in the operational stage and be able 

to correct and augment through operational experience? 

In Section 3 of this paper automation attempts in the last two decades will be briefly reviewed, while 

in Section 4 new approaches will be described, and in Section 5 two recent examples of operational 

use of HAZOP results will be summarized. 

3. HAZOP automation attempts 
Computer assistance of a PHA team has already a long history. Several commercial guidance programs 

are available, such as ABS Consulting LEADERTM and Dyadem (AcuTech Consulting Group) PHA-Pro. 

These administrative support software programs will alleviate the task of a HAZOP team but will not 

replace it.  

Attempts to automate HAZOP started in the mid-1980s with Parmar and Lees (1987), applying a rule-

based approach, and Cameron (1986) using expert systems based on Prolog. A little later this was 

followed by Heino et al. (1988), who used a more advanced rule based expert system making use of 

the artificial intelligence progress in those days. It consisted of a knowledge base of IF-THEN rules and 

an inference engine generating the deviations. Quite a few automation developments, mostly 

following the same principles, have been summarized by Dunjo (2010). A step forward has been to 

include a simulation model of the process to check effects and stimulate the imagination. Figures 1 

and 2 show the significant developments since 1995 towards semi-automated HAZOP. The figures and 

text are based on contributions selected first by Pasman (2015) and further completed for this article. 

All of these developments make use of simulation models of various kinds. Figure 3 is in a way a 

continuation of the history of Figure 2. A rather special one is the Multi-level Flow Model (MFM) of 

Rossing et al. (2010) presented in Figure 4 showing a functional type modeling approach. 

3.1 Khan and Abbasi, and Rahman et al. (1995-2009) 
Figure 1 represents how Khan and Abbasi, and later Khan and coworkers developed semi-auto-mated 

HAZOP. In 1995, the initial step of this progression was to develop HAZEXPT for the fundamental 

HAZOP knowledge-base (Khan and Abbasi, 1997a). This knowledge base consisted of process-specific 

and process-general components. Having developed the knowledge-base, they proposed the 

optHAZOP study procedure to increase efficiency by eliminating repetitive tasks. At the same year, in 

1997, to enable HAZOP automation, TOPHAZOP (Khan and Abbasi, 1997b) advanced in a systematic 



way with three structures (knowledge-base, inference engine, and user interface). TOPHAZOP 

generates deviations and contains rule-based trees linking to process specific attributes, via process 

parameters, and deviations to causes and consequences. Through EXPERTOP (Khan and Abbasi, 2000) 

and ExpHAZOP+ (Rahman et al. 2009), the three structures evolved further to a user-friendly 

environment and larger database. ExpHAZOP+ added an updated feature to the knowledge base and 

introduced a unique fault propagation algorithm, identifying downstream causes and consequences 

from an identified upstream event. 

3.2 Venkatasubramanian and coworkers (1990-2005) 
The progression path of contributions by Venkatasubramanian and coworkers with semi-automatic 

HAZOP is shown in Figure 2. The purpose was also to reduce routine and repetitive tasks regarding 

HAZOP analysis. However, Venkatasubramanian and Vaidhyanathan (1994) began early-on with the 

concept of propagation of relevant disturbances downstream to different HAZOP nodes. Srinivasan 

and Venkatasubramanian (1996) also considered batch processes thoroughly dealing with process 

procedures. As a prototype of this development, HAZOPExpert was put forward with a systematic 

framework: Knowledge-base, Inference engine, and Graphical User Interface. The HDG (HAZOP 

DiGraph) model was proposed to qualitatively represent causal structures of chemical process systems 

graphically, and a more user-friendly environment was created. Subsequent to the HDG model, a semi-

quantitative reasoning approach was introduced to reduce ambiguity in the analysis with the previous 

qualitative methodology; the expert system was provided with the semi-quantitative reasoning that is 

checking, whether in the case of loss of containment, conditions surpass the auto-ignition threshold, 

and whether a spill presents a toxicity risk. The semi-quantitative reasoning further checks the 

adequacy of protective As follow-on to continuous processes, Batch ExpertHAZOP evolved for batch 

processes applying Petri Net modeling, which represents tasks regarding procedures and time-

intervals. Venkatasubramanian et al. (2000) presented a summary and evaluation of the work done so 

far. Finally, in 2005 the highly-qualified software tool, PHASuite was launched as an automatic HAZOP 

analysis by combining the previous steps with new methodologies (e.g., the Colored Petri-Nets and 

Batch Plus®). 

3.3 STOPHAZ project (1999-2000) [McCoy  et al., 1999; McCoy  et al., 2000] 
The software system HAZID consists of several modules: AutoHAZID is the heart of the system. The 

description is quite detailed. It has at the start a configuration checker after the program reads in the 

plant description and builds Signed DiGraphs (SDG) of the process units. It further has a qualitative 

effects module. The HAZOP emulation module was developed in the earlier STOPHAZ project, which is 

a rule based inference engine generating scenarios. VTT (Finland) contributed with a fluid library and 

fluid rules distinguishing feasible from infeasible scenarios. Fault propagation was modeled by means 

of SDG. The output is filtered to remove redundant information. 

3.4 Cui et al. (2009-2010), and Zhao et al. (2009) 
As an extension of the methods, in particular for ‘non-routine HAZOP analysis’ of Vaidhyanathan and 

Venkatasubramanian (1996a; 1996b), Cui et al. (2009 and 2010) and Zhao et al. (2009) proposed the 

Layered Digraph Model (LDG), LDGHAZOP with Smart Plant P&ID (SP P&ID®, Intergraph) embedding 

many process and equipment data, and PetroHAZOP, as shown in Figure 3. The Digraph is now three-

dimensional, which enlarged the flexibility and knowledge storage capability. Each layer or workspace 

is associated with a guideword. The workspaces contain nodes representing variables interconnected 

by unsigned directed arcs, implying that the deviation in the ‘parent’ node determines the direction of 

deviation in the ‘child’. Linked nodes can also be in different workspaces. The authors claim that a 

higher degree of completeness of HAZOP scenarios is achieved. Later the same group developed 

PetroHAZOP, an expert system but this time it is learning by Case Based Reasoning (see PHASuite 

 [19][5] 



above), while in Zhao et al. (2005) use is made of CAPE (Computer Aided Process Engineering) ontology 

for process systems. Ontology means in this context a hierarchical structure of concepts describing the 

entities in the domain explicitly. CAPE is explained, e.g., by Bogle and Cameron (2002).   

A case in Case Based Reasoning consists of a problem/situation, solution, and an outcome description. 

A new problem is judged on similarity by an algorithm based on predefined indexes. It is thus highly 

domain dependent. The system functions in the Chinese petrochemical industry with 900+ cases. A 

future effort was announced to combine the two approaches mentioned above. 

3.5 Rossing et al.(2010); Wu et al.(2014) 
The Multi-Flow-Model (MFM) approach described by Rossing et al. (2010) was developed by co-author 

Lind in the early 1990s for nuclear power plants and is applied to describe the plant goal-function 

structure. MFM can be used at various abstraction levels, applies symbols (of which a few resemble 

Petri Net symbols) for objectives (source, transport, storage) and functions (sink, barrier, balance). 

MFM also describes the interactions of mass, energy, and information flows, which are combined to 

flow structures. Symbols are available for functions as management, decision, and actor action. 

Further, a set of so-called means-ends relations (with symbols for produce, producer product, 

maintain, and mediate) and causal roles (with condition, agent, participant symbols) describe 

dependencies among functions. The interconnected flow structures to achieve a goal are represented 

graphically. Combined with a rule based causal reasoning engine, and a quantitative dynamic 

simulation with for example HYSYS, MFM can generate fault/cause and consequence trees/paths for 

a given deviation in a system function, and with a goal reasoning engine to generate goal trees. The 

different trees can be used in reasoning to develop counteraction plans. The produced causal tree 

suggests causes of a deviation. The system is called the MFM workbench, as seen in Figure 4. After 

process variable deviations have been specified, the workbench facilitates HAZOP as a functional 

assistant by diagnosing the causes of abnormal situations. It does not have the aim of fully automating 

HAZOP. The concept is further elaborated, extensively described, and demonstrated on an offshore 

three-phase separator case by Wu et al. (2014)  

3.6 Hu, Zhang and Liang (2012); Hu, Zhang and Wang (2014) 
Having in mind prognosis for enabling predictive maintenance to prevent process upsets, a HAZOP 

method was developed assisted by a Dynamic Bayesian Network (DBN). A Bayesian network is a 

probabilistic acyclic graphical network consisting of nodes representing stochastic variables connected 

by edges or arcs representing conditional dependencies. The net models cause-consequence chains. 

An application was for a gas turbine plant where wear, fouling, and corrosion lead to faults. A DBN 

showing time sequenced changes was chosen because process faults due to degradation often have 

multiple propagation paths to different effects, some of which are propagating to adjacent parts. This 

propagation may lead to fault coupling and disaster. A DBN can represent these interactions in space 

and time by conditional probabilities. Degradation of components is modeled by a distribution, such 

as Weibull. Observable variable values can be obtained from the SCADA (Supervisory Control and Data 

Acquisition) system. Then, DBN-HAZOP can predict failure by inference rather than directly observing 

causes before failure occurs. 

3.7 Rodriguez and De la Mata (2012) 
D-higraphs are yet another way of modeling a process including controls. Developed in the late 1980s, 

D-higraphs represent in states (blobs, being a function effected by an actor - a machine - with an 

optional condition as a Boolean variable) and transitions (edges). Hence, D-higraphs combine in their 

representation both function and equipment/structure, so it is more intuitive as there is more direct 

correlation with the real installation than in the case of MFM. A distinction is made among mass, 



energy, and information edges. There are process (green), control (orange), and mixed (blue) blobs. 

The edges can be triggered or fired resulting in state changes. A blob can contain other (sub-) blobs 

and can also be partitioned to represent an OR-statement. Causal rules have been established. The 

system description is in three layers: structural, behavioral, and functional. Deviations are coded and 

the reasoning engine is constructing cause and consequence trees. For comparison the same 

distillation unit was ‘HAZOP-ed’ as Rossing and coworkers had previously done. The D-higraph HAZOP 

assistant results were the same. 

3.8 Conclusion for semi-automated HAZOP 
Full-automation has never been achieved, but by applying qualitative process modeling and through 

reasoning by expert system semi-automation has been possible. Process models range from relatively 

simple digraphs to more sophisticated process simulation approaches enabling the disclosure of up- 

and downstream causes and consequences. Expert systems used are either rule-based inference 

engines, or case based reasoning ones. When rule-based, they must be fully programmed for a task; 

in contrast, given experience in a domain, case-based ones continue learning by modeling via neural 

networks of genetic algorithms.  

It would be desirable to determine the quality gained by automation and the reduction in effort. Fair 

comparisons, though, are hardly possible. The modeling of a process will require quite some time, for 

example D-higraph requires more effort than MFM, but both are less than the effort to develop an 

expert system not supported by a model. McCoy et al. (1999; 2000) applying the signed digraph 

approach for the HAZOP system named HAZID, reported the rather poor result of roughly 10 - 30% of 

scenarios, identified by the system, as assessed to be correct and useful. Other researchers claimed 

better results.  

It can be concluded that to make progress, a round robin must be held. This would require defining a 

test case just as for the Tennessee Eastman process in control theory, but here for HAZOP-ing a real 

plant is required to compare the performance of conventional HAZOP teams with promising semi-

automated systems. The number of statistically needed trials will depend on the magnitude of 

differences found, but the larger the number of trials the lower the uncertainty in the result. 

4 New extended systems methods 

4.1 Why a system approach 
Many accidents have occurred according to a scenario that no one had conceived. Clearly, scenario 

identification is the Achilles heel of risk assessment. It should be considered an important initial step 

to be followed by continuous or frequent monitoring to track system behavior and to respond and 

learn from periodic unusual system behavior. This is identified as newly developed scenarios paths, as 

the system changes with time, resulting in new failure outcomes. In process safety with the present 

experience of “black swans”, low probability but high consequence severity events are extremely rare 

Taleb (2010). This is because following many such accidents information emerges from investigations 

to show that such outcomes should have been conditionally foreseen and therefore were not “black 

swans”. Problematic are the coincidental confluences of rare conditions, the so-called “perfect 

storms”, causing disaster as described for a case of a tragic shipwreck by Sebastian Junger (2012) and 

remarked by Elisabeth Paté-Cornell (2012). Nobel Prize winner economics, psychologist Daniel 

Kahneman (2011) in his book ‘Thinking, Fast and Slow’ attributes the missing of scenarios by analysts 

to the effect of WYSIATI, or rather What You See Is All There Is. In other words, when asked to generate 

one, there is a certain scenario one thinks of first and due to the laziness of what Kahneman calls our 



System 22, the rational thinking, no other scenario will come to mind. This is apart from effects that we 

don’t like to think of what can go wrong, and the ‘it will not happen to us’ attitude, which is an example 

of certainty seeking where there is no certainty. We avoid certainty delusion by investigating, learning 

from, and making adjustments following near misses and unusual system behavior that show new 

scenarios with potential upset outcomes developing as the system changes with time. 

Process Flow Failure Mode (PFFM) analysis 

A certainly more comprehensive alternative method to HAZOP is the Process Flow Failure Modes 

(PFFM) analysis developed in Canada and first published by Ego and MacGregor (2004), not using the 

name and acronym PFFM at that time. In brief, the method is a structured, systematic ‘What-if’ 

technique following the direction of flow. MacGregor skilled in HAZOP gained more than a decade of 

further experience with PFFM, describing the method in MacGregor (2013) and reporting recently 

(MacGregor, 2016) about three cases in which HAZOP results are compared with PFFM. The results 

show that PFFM yields many more scenarios. Averaged over three in-depth cases, PFFM found twice 

as many scenarios as HAZOP and in addition within a shorter time spent on the exercise. Some 

scenarios that were not in a HAZOP could, when realized, have a disastrous effect. A number of reasons 

are given. In the first place PFFM is intuitive and starts the scenario development with a possible cause, 

then in thinking moves on to a potential consequence (an uncontrolled loss of containment, LoC), and 

identifies whether adequate controls are present to prevent this LoC and if not give a 

recommendation. To enable this, from a P&ID a somewhat simpler, so-called safeguarding flow 

diagram (SFD) is derived and as in HAZOP divided in sections or nodes (with the flows indicated in 

different colors). The SFD contains more information than a process flow diagram (PFD) though. All 

stream deviations and equipment in a process plant of which failure has an effect on the process are 

given with the possible failure modes in a master list assembled over a period of more than 15 years. 

Incoming flows in a section may show deviations up or down of pressure, temperature, flow rate or 

concentration outside the design envelope. Flows exiting a node are queried for blockage and 

reversing. Prior to the team meeting one determines in flow direction which equipment failures or 

operator errors will disturb the process and collects the causes contained in the list to prepopulate a 

worksheet. The analysis in the subsequent team meeting follows again the direction of flow to a next 

component (valve, pump etc.) considers the causes in the worksheet, if detected adds additional ones, 

evaluates potential consequences and controls (safeguards/barriers, such as pressure relief or check 

valves) and so proceeds from section to section. This method hinges on the list of causes assembled 

over many years of experience and which therefore can be considered as a check-list. Hence, it is a 

good step forward but does not guarantee completeness. Of course, a highly experienced HAZOP team 

with specialized knowledge of a certain type of plant may have an even longer “checklist”. Even if that 

checklist is not written down, they may do better than PFFM. 

Need of a scenario database and inclusion of non-continuous operations 

We avoid certainty delusion by investigating, learning from, and making adjustments following near 

misses and unusual system behavior that show new scenarios with potential upset outcomes 

developing as the system changes with time. But that assumes we have a data base system of potential 

scenarios that can be easily updated in the operational stage. This should include the start-up, 

shutdown and turnaround operations of continuous processes. A high fraction of total accidents occurs 

during these non-continuous activities. Batch operation manipulations repeat themselves rather well 

                                                           
2 According to Kahneman and his late colleague and friend Amos Tversky, System 1 is the old cave man part of 
our brain warning us for instant hazard. The rational prefrontal cortex part of System 2 is slow and energy-
intensive. It also shows that we have a problem understanding the concept of probability, and among others 
easily under-or overestimating risk depending whether the probability is high or low. 



so there is a one-time HAZOP that is useful, but successive turnarounds of continuous processes may 

be similar but not the same. There are few studies on these non-continuous or transient operations, 

but one that is providing a HAZOP-type procedure is by Ostrowski and Keim (2010). The guide words 

are in this case: who, what, when, and how long. The team will search for deficiencies in the sequence 

of actions potentially leading to higher consequences, evaluate whether procedural control is sufficient 

and if needed the team will recommend to improve the procedures followed in the operation and will 

suggest phrases. 

Dynamic Procedure for Atypical Scenarios Identification (DyPASI) 

Cues can trigger our imagination. This can be due to recent experiences or observations. In that 

connection brainstorming helps, as a suggestion by one will cue another. In this context also the 

concept of DyPASI (Dynamic Procedure for Atypical Scenarios Identification) shall be mentioned as 

developed by Paltrinieri et al. (2012) with results shown in bowtie diagrams. By applying a similarity 

algorithm Paltrinieri et al. (2013) showed how accident data bases can be more effectively searched 

for possible hazard scenarios given a process with its materials, conditions, and dimensions. With the 

developing abundance of data, and with methods such as data and text mining, effective search will 

become much more common.  

Socio-technical system 

The previous sections showed that improvement of conventional methods is possible but the only 

fundamentally right way to try avoiding the mentioned failure of scenario prediction is a holistic, 

rigorous system approach. In that respect the socio-technical system must be considered, as it 

represents, in the context of work, the interaction of people, individually and in teams, within an 

organization and its levels, engaged in operating and managing a technical installation. The first to 

describe the socio-technical system regarding work safety in some detail was Jens Rasmussen (1997). 

He depicted it as a number of hierarchical layers with government at the top, followed by regulating 

authority and associations, then company board level, management, staff, and finally a work level. 

Such a system is however complex as the many possible interactions are not immediately clear to an 

observer. In a convincing way, Johansen and Rausand (2014) argued though, that complexity is not a 

system property but is perceived by us as such due to our limitation to capture the system’s many 

possible interactions. Interactions are cause-effect chains in a safety context, which usually are linear 

and single, but there may be parallel chains, splits, and mergers leading to non-linear effects, even 

tightly coupled and resulting in fully surprising consequences. Hence, one needs conceptually to 

decompose a system and unravel the interactions to capture all the possibilities that are not intended 

and which may constitute a hazard. Such an approach is called reductionism, and it can certainly work 

well in a static situation. But, as complexity science is postulating, this approach will not fully cover and 

predict a complex adaptive/dynamic system. A larger organization with all interactions of, and among 

people, procedures, and plant behaves seemingly like a living organism. Not by chance, it has been 

biologists that have done the ground-breaking work in complexity theory. In such systems depending 

on conditions small changes at certain spots and times may trigger through feedback an instability 

possibly leading to an emerging unexpected systemic failure. This kind of non-linearity is hard to 

identify and the 2007/8 financial collapse has already been often mentioned as an example. 

The socio-technical system concept has been expanded to design and maintenance by Nancy Leveson 

(2011) at MIT and published in her many articles over the last 15 years and summarized in her book 

‘Engineering a Safer World’, as seen in Figure 5. She applied the approach to develop a new accident 

analysis model, STAMP (System-Theoretic Accident Model and Processes), and a hazard investigation 

and scenario identification tool derived from STAMP, called STPA (System-Theoretic Process Analysis). 

The latter shall be able to analyze hazardous non-linear cause-effect interactions in a system, for 



example giving rise without notice under certain, unforeseen conditions to dysfunctional interaction 

of humans, organizational units, and technical components, which are each functioning perfectly as 

designed. STPA will further be described in the next sub-section. This will be followed by describing a 

different system-based methodology developed by Cameron et al. (2008) and coworkers at The 

University of Queensland in Australia, co-author of this article, from a CAPE perspective. This 

methodology is called Blended Hazard Identification, or BLHAZID for short. 

4.2. System-Theoretic Process Analysis, STPA 
Nancy Leveson looks at a system from a control point of view. Safety of a system is therefore emergent, 

and an accident is a failure of system control. For STPA the system shall be defined with its boundaries 

and hierarchical levels. Next, unacceptable losses will be identified as well as the safety constraints 

within which the system is operating safely. In other words, instead of failure events the variable value 

combinations are defined that form the borderlines of a system’s safe state. Such constraints can be 

physical such as pressure, temperature or flow, organizational (e.g., procedural), or social (think of 

acceptable risk limit). Control loops will be on all levels of the system, down to the component parts. 

Guide words can then be applied to control loops. The guide word queries for each control loop are 

four, as presented in the center of Figure 6 with corresponding examples. 

The hazards identified this way shall include not only operational failures but also design error, 

software flaws, human and organizational failures, and faulty sub-system and component interactions. 

The parameter ‘time’ in queries 3 and 4 reveal also chemical failure. STPA looks therefore very 

promising as a generally applicable and comprehensive tool to identify hazards. The magnitude of the 

hazard and the potential damage it can cause can for a risk assessment be calculated in the 

conventional way by consequence analysis. However, in safety the ‘devil is in the detail’ and a plant 

consists of many details. Although John Thomas (2013) made a start in designing a software 

infrastructure to handle details, it will require much development work to make STPA practical. 

Domino effects due to blast, fragments/projectiles, and/or jets/flooding originating from a primary 

event should in a risk assessment be handled in a subsequent analysis. 

4.3. Blended Hazard Identification (BLHAZID) 
A blended hazard identification methodology BLHAZID applied to process systems as published by 

Seligmann et al. (2012) blends two different types of HAZID methods: the function-driven and 

component-driven approach exemplified by HAZOP and FMEA respectively. A foundational conceptual 

framework, called the Functional Systems Framework (FSF) (Cameron et al., 2008; Seligmann et al., 

2010) was developed and used to classify and understand the fundamental concepts of hazard 

identification methods, thus providing a consistent framework for how to identify their fundamental 

elements and blend them.  

The FSF represents the way function arises in complex processes from the interplay of capabilities 

associated with plant, people and procedural components (called P3). In the FSF, the capability is “the 

ability to affect the states of the system”, the function is “the intended effects of the capabilities”. 

These concepts provide the base for understanding and building up the function and other important 

properties such as resilience of the system. The FSF describes the structure–function–goal 

relationships within a process system and is shown in Figure 7. 

The function-driven analysis investigates how the intended function of the system is lost or degraded, 

while the component-driven analysis considers failures in the structure, that is, the components, and 

seeks to ascertain the effects of these failures on the system function. Function-driven and 

component-driven HAZID approaches are both complementary and overlapping (both identify failure 

causation in the same system). Failure events and their causes and implications are fundamentally the 



same no matter which method is used to identify them. Also, certain failure events are more easily 

identified with particular methods. 

The BLHAZID workflow has 3 main steps: (i) decomposing the system into subsystems, as the analysis 

is done at subsystem level; (ii) functional failure analysis looks for deviations from intended functions, 

their causes and implications; (iii) component failure analysis identifies failures in each component of 

the subsystem and elicits the causes and effects of component failures on the function of the system. 

During the analysis, four types of failures are identified: functional failures, component failures, 

environmental failures, and part failures. Causality relations are described as triplets, and the structure 

built into the triplets provides an opportunity to transform the BLHAZID result into HAZOP-like tables. 

More details about the BLHAZID methodology are given in Seligmann et al. (2012). 

A structured language has been developed in order to express the knowledge used and generated in 

the BLHAZID method so that this knowledge can be effectively reused for a number of applications, 

including fault diagnosis. A so-called generic knowledge base is established to store static knowledge, 

like equipment class related failure modes with their failure mode causes, local implications, and 

failure rates in different operation modes. The content of the generic knowledge base is utilized as an 

a priori information during the BLHAZID workflow to facilitate the component-driven side of the 

analysis. 

In BLHAZID methodology, time scale is introduced to provide extra information about the failure 

propagation rate. A qualitative causal time instance can be attached to each causal pair during the 

BLHAZID analysis to indicate the speed of the failure propagation and help predict implications with 

time. Causal time can provide better information to operators for decision making, strategizing and 

execution. 

The outcome of the BLHAZID method provides a powerful, graphical representation of causality 

pathways, leading to cause-implications diagrams (Németh and Cameron, 2013), shown in Figure 9. It 

is possible to generate a cause-implication diagram that can trace specific failures through to a 

potential set of causes, as well as generating possible implications from that failure of interest. It is 

also possible to attribute causal time to causal pairs, thus providing temporal information within the 

graph. The cause-implication diagrams can provide further advantages to operators and for other 

process risk management tasks. Such as the graphs can be used for verifying the PHA results, checking 

consistency of BLHAZID result, and auditing hazard identification. In operational use it can guide an 

operator to a possible cause set in the case of a process upset, and can forecast possible implications 

and consequences, or alternatively it can be used to train operators and make them aware of what 

could happen and how to respond. In online/offline diagnostics and failure investigations and 

prediction, the pathways of the causal graphs will facilitate these activities. In the design phase causal 

graphs will support design decisions. The more powerful ways of reusing the BLHAZID generated 

knowledge for different purposes during the system lifecycle are highlighted and discussed in Németh 

and Cameron (2013). 

Extensions to people and procedures 

The basic concepts that lead to the FSF, such as capabilities, function and failure allow the framework 

to address a range of performance issues within procedures as well as people. Work done on human 

factors related to the FSF led to the development of the methodology known as Strategies Analysis for 

Enhancing Resilience (SAfER): see Hassall, Sanderson and Cameron (2014, 2016). This methodology 

explores how human performance can be enhanced across a range of tasks to drive increased 

resilience of systems. 



Associated with the FSF is the analysis of procedures, and their potential failure. This approach 

provides formal analysis of procedures as represented by BLHAZID type outcomes. See Németh et al. 

(2007). 

Thus, the FSF permits a common framework, based on fundamental concepts of capabilities, function 

and failure to look at system designs and operational issues.  

5 Use of identified scenarios in design and in operations 

5.1 Causal relationships visualized 
 

The FSF and general system approaches entail the distinction of four hierarchical classifications of 

causal relationships. Each is encapsulated within the higher hierarchical space. As Cameron et al. 

(2016) describe, there are 4 key spaces: 

 the Lawful State Space (LSS): this is the outer one determining what is possible according to 

the laws of physics, thermodynamics, chemistry, biology, etc.,  

 the Capability State Space (CSS): within which for the given design, states can be reached due 

to all the component capability sets. Here, a capability of a component consists of a property 

(process variable) on which within a certain range an action is exerted, e.g., the three 

capabilities of a pump are <hold><mass>, <permit><forward flow>, <increase><pressure>, and 

so on for a valve, a pipe section, and other equipment. An important latent capability is 

<withstand> in combination with pressure or temperature. A capability can be lost (“fail”), but 

when intact it creates for a component a function that permits the component to affect the 

system states,  

 the Functional State Space (FSS): represents the potential state-space region that results from 

activation of particular component capabilities that generate all system functions, with the 

deepest space being,   

 the Operational State Space (OSS): represents the state space within which the operational 

normally resides. This is due to ‘back-off’ from various hard and soft constraints. 

 

Components and process plant can have operational modes, such as a pump being ‘on’ or ‘off’. In both 

those modes the activated capability <hold><mass> could fail through external leakage or rupture, 

while <permit><forward flow> can fail because of partial or full blockage. The activated capability 

<increase> <pressure> can fail in the ‘on’ mode as it is not pumping sufficiently, fails completely, or its 

operation is improper, while in the ‘off’ mode it could still be pumping.  

A capability can be visualized by a line interval with constraints depending on the capability’s range, 

while for a specific case a table can contain the numeric values of the ranges. Then, for a line section 

of a plant one can draw for each property a cross-section or profile over the components in the 

functional and operational state space. So, if a failure of a component is introduced the profile shows 

quickly the changes and possible critical situations. A very simplified example of a line segment is 

shown in Figure 8. For a more extensive, differentiated and interesting version, see Cameron et al. 

(2016). The effect on pressure of an emergency shut down valve that fails ‘closed’ is shown. Similar 

drawings can be generated for flow and mass. Altogether, the visualization shows the effects of failures 

and therefore will support design decision making. It will also show the role of latent capability in a 

design and thus will provide insight into the resilience of a design solution.  



As previously mentioned in the BLHAZID discussion, visualization can be used to quickly obtain an 

overview of the situation and the possible causes of a developing mishap. An example of a guard bed 

capture unit to remove mercury and arsenic hydride from an olefin feed, which at the exit shows an 

increasing concentration of the contaminants, can be checked for possible causes, as shown in Figure 

9. This causal graph visualization is common to a number of developments over the last 25 years. 

5.2 Bayesian network modeling and use 
Bayesian networks (BNs) are an ideal infrastructure to model cause-effect chains. The chains consisting 

of nodes representing random variables, connected by arcs (edges) representing causal relation can 

be branched and intertwined but the chain must be acyclic, as an effect cannot influence its own 

cause3. Hence, fault and event trees and so bowties can be exceptionally well modeled by BNs. A 

variable (node), e.g., 𝐴, can be in different states and can change with a certain probability from one 

to another state, often simply binary, e.g., from functional to failed, or from normal state to initiating 

event causing effect event 𝐵. State change probability can be expressed as a discrete value, 𝑃(𝐴), but 

current software allows variables to be represented by continuous probability distributions (and also 

multi-state). Basic failures, the root causes, are unconditioned. All node variables directed by arcs 

down the chain are conditional on their direct predecessors (parents), hence dependent on the nodes 

connected with arcs pointing to the node under consideration, yielding: 𝑃(𝐵|𝐴), probability of 

uncertain event 𝐵 given an instantiated (hence observable, but may be for direct observation hidden) 

initiating event  𝐴. The node at the end of a chain is called leaf node. Calculation is accomplished 

applying the Bayes Theorem: 𝑃(𝐵|𝐴)  = 𝑃(𝐴|𝐵)𝑃(𝐵)/𝑃(𝐴), deriving the resulting (posterior) 

probability distribution 𝑃(𝐵|𝐴) from the (prior) variable probability 𝑃(𝐵), multiplied by the likelihood 

𝑃(𝐴|𝐵). The product represents the intersection, or co-occurrence of the likelihood with the prior, or 

new evidence of (observable) event 𝐴 occurring given the link with 𝐵. There will exist general prior 

(historical) information on, e.g., low pressure occurrence probability of 𝐵, sometimes even as a 

probability distribution, or if not, the prior will be represented by a uniform or flat distribution range, 

i.e., with all values within the estimated range considered equally probable. The product shall be 

normalized by the total probability of the variable 𝐴, which is 𝑃(𝐴) = 𝑃(𝐴|𝐵)𝑃(𝐵) +

𝑃(𝐴|𝑛𝑜𝑡𝐵)𝑃(𝑛𝑜𝑡𝐵). This is to restrict the resulting value of the posterior probability between 0 and 

1, which is consistent with the first axiom of probability. Small networks consisting, e.g., of four nodes 

can in discrete form still be evaluated by hand. But, because the evaluation effort increases 

exponentially with the number of nodes, BNs attribute their practical application to software 

developed over the last 15 years, see, e.g., Fenton and Neil (2013). A BN also can be made dynamic by 

updating (part of) input data at each time step.  

In Figure 10 the causal graph of Figure 9 is translated into a BN with mock-up probability values as 

given in the table next to the network. The possible initiating events are modeled by normal 

distributions of probabilities per day, the others are reliability figures that are expert estimates and 

therefore cast into a triangular distribution form. With additional recorded observations the latter 

could also be normal or fully different distributions to represent skewness and peaks in the data. The 

output event distribution mean has an occurrence probability of 0.001 per day (std. dev. resulting from 

the estimated spread in the data according to the BN is 0.00036 per day). Hence the event, assuming 

constant failure rates and normally distributed errors in the estimation, is expected to occur on 

average once in 1000 days with a 95% confidence interval ranging from 373 – 1753 days.  

To receive early warning that an abnormal situation is expected to develop so that early-on measures 

can be taken is preferable over a situation in which safety integrity systems are initiated. In the 

                                                           
3 Thus, a BN cannot model feedback. For that purpose and also for random time delays a Petri Net is suited. 



following, two research cases are reviewed in which a combination of HAZOP results and dynamic 

Bayesian networks generate such early warning alerts. The first is by making use of operator 

experience to trigger at a certain risk level, and the second is using process historical upset data for 

that purpose.  

5.3 Example of applying operator experience 
Naderpour et al. (2015) conducted a study motivated by the CSB investigation (2011) of a run-away 

pressure vessel explosion in 2008. This concerned treatment of a solvent containing the very toxic 

residue of the methomyl pesticide production. The main part of the product was centrifuged off in a 

previous step. The solvent treatment consisted of decomposing the toxic substance at an appropriate 

elevated temperature by recirculating the residue mixture through a reactor vessel until it is below a 

certain percentage level.  

The residue in the solvent must be reduced to below 0.5% before the solvent can be burned. This 

occurs via decomposition into gaseous products in a 50% full tank at 135oC and 20 psig (1.4 bar 

overpressure). To start the reaction the mixture is heated with steam, and subsequently cooling water 

removes reaction heat, as shown in Figure 11, left. The operator monitors four process variables: the 

liquid level in the residue treating reactor, the recirculation flow, the temperature of the liquid, and 

the vessel pressure. The operators were asked to give limits on what they would call a low, normal, 

and high level (L); a very low, low, and normal recirculation flow (F); a normal and high temperature 

(T); and a normal, high, and very high pressure (P). From this information, fuzzy membership functions 

for each variable were derived, but used as probability distributions. It means that at the highest level 

of the process parameter the probability of alerting the operator is 1 and at the lowest is 0. Next, with 

the aid of HAZOP results seven abnormal situations were defined, of which the first three are 

independent and the other four are dependent:  

• SVC: situation of vent condenser failure allowing decomposition gases to enter the vapor 

stream entering the flare. By deposition of solids this flow could be blocked increasing 

pressure in the vessel. 

• SHL: situation of high liquid level 

• SAR: situation of abnormal recirculation (hi or lo) 

• SHP: situation of high pressure 

• SHT: situation of high temperature 

• SHC: situation of high concentration of methomyl in the residue in case the liquid had been 

heated first to 135oC but for some reason then cools below 130oC. In such a case the incoming 

high concentration in the feed is not quickly decomposed, and by accumulation the 

concentration increases. To avoid runaway when reheating the mixture, the concentration 

should be measured and the heating adapted. 

• SRR: situation of runaway reaction. 

The main threat is the runaway, SRR. Equipment component failures capable of causing abnormal 

situations were determined, so that a Bayesian network could be constructed in which the component 

failure probabilities are embedded (see Figure 12). In the case of SRR, four consequence reducing 

measures, called safety barriers, can become active: an air monitor (triggers at concentration >1 ppm), 

an alarm, an ignition barrier, and several fire extinguishing cannons. The whole system is configured 

as a Dynamic Bayesian Network (DBN) with the components as the static nodes while the SCADA 

observable P, T, F, and L -values are updated at each time step with renewed probability values. The 

net is then evaluated (a BN can also be inferred based on new evidence at a leaf node against the 

direction of the arcs) and the probability of a consequence event and hence a risk level is calculated.  



The risk level follows from the fuzzy product of consequence severity and probability depicted in Figure 

11, bottom right. The consequence of an abnormal situation exhibits itself at five levels of severity 

from negligible to catastrophic, based on damage in units of $106 ranging from 0-104. Component 

failure probabilities have been specified. Event probability ranges from 0 to 1 in five classes of very 

unlikely to very likely. Based on the fuzzy product of probability and consequence the acceptability 

matrix has been defined (Figure 11, right middle). Tolerable, not acceptable risk (TNA) is reached at 

risk level 3. When the DBN results in a risk of level 3, the operator is alerted. 

Given the definitions reaching the level TNA, a developing abnormal situation is still in an early stage, 

and when alerted an operator can diagnose and take corrective action. The situation as reflected in 

the DBN can be followed in real time on an operator panel. Because the alert arrives ahead of process 

alarms, an acute problem is then still quite some time away. Possible causes and component failures 

follow from affected abnormal situation nodes observed, or of their combinations. A sensitivity 

analysis on the parameters enabled by the model showed as most hazardous situation a high pressure, 

and even more so, a high pressure together with a high reactor liquid level. The article presents an 

example of a high pressure resulting from a high concentration due to a cooling water isolation valve 

that was inadvertently closed (node CWC connected to SVC in Figure 12). 

5.4 Example of applying historical process data for enhancing hazard identification 
Hu et al. (2015) followed a different approach. These authors worked on a continuous process, a 

Fluidized Catalytic Cracking Unit (FCCU). Pre-operational HAZOP results were used for revealing and 

tracking fault propagation paths, possible coinciding of faults and associated consequences. However, 

for finding causes of abnormal situations, the information from HAZOP results appeared not to be 

sufficiently comprehensive and reliable. Equipment failures may not be specified by HAZOP, although 

BLHAZID which incorporates component failure will be less affected from this deficiency. To solve this 

lacuna, historical data on abnormal situations were used to analyze deviation patterns of observables 

and associated causes. In the mid-1990s Cooper and Herskovits (1992) developed an algorithm to 

extract from data the most probable cause-effect structure. This K2-algorithm was developed for the 

purpose of artificial intelligence and medical diagnostics. Later, Heckerman (March 1995; revised 

November 1996) reviewed the algorithm and suggested the Bayesian information criterion (BIC) to 

determine the likelihood of a model structure.  

Hu and coworkers applied this algorithm and the criterion on the process data to derive the most 

probable Bayesian network structure describing the dependencies. As a further step using the historic 

data the probability density functions of the network parameters were derived. By turning the static 

Bayesian network into a dynamic one (DBN), the temporal dependencies of failing components can be 

incorporated. A two-step forwards-backwards algorithm (Murphy, 2002) was applied in order to infer 

probable fault root causes by failing equipment components which remained hidden to the operator. 

Given the observed process variables sequence of the operating unit up to and including time 𝑡, a 

forwards inference calculation yields the probability of state transitions of components at time 𝑡  given 

the state at 𝑡 − 1. Next, a backwards calculation produces a predicted probability of the observed 

variable values at time 𝑡 + 1 and recursively later, given the state of components at 𝑡. Once a 

significant deviation is found, an alert is presented showing the most probable causes with the highest 

updated probabilities. 

Hu et al. (2015) described a case representing part of an FCCU, namely the catalyst regenerator in 

which coal deposits on the catalyst are burned with air flowing in at the bottom of the regenerator 

                                                           
4 Damage in case of SRR is $3.106; in other cases it is $104 or below, hence this falls within the first unit of 106. 



vessel. The partial HAZOP results show that two deviations can appear: air flow low and air flow stops. 

The latter is due to a failing compressor, but the former has five possible causes: 

• The main fan shut down;  

• Anti-surge valve has opened;  

• The main fan entrance filter net has been choked with adsorbate;  

• Filter is sucked into the pipeline reducing the primary air flow; 

• The flow control valve is faulty. 

Based on the HAZOP results, a number of DBN structures were configured. From the historical data 

100,000 samples with fault data were extracted and with the K2 algorithm and BIC the DBN structure 

with the highest score was selected and the probability densities of the network parameters were 

derived. Over the course of time while operating the unit, further updating was possible. 

 

 

The FCCU and a DBN representation are shown in the top of Figure 13, in the middle a table with DBN 

node designations (dynamic D is a component possibly failing as a ‘hidden’ cause, and static S are 

observable process variables) and at the bottom a reproduction of the interface of the Intelligent 

Online Early Warning System, IOEWS developed by Hu et al. (2015). The starting point of a run is all 

normal. In the example presented after some time, K, both the regenerator temperature and air flow 

dropped below the safe threshold and the alarm was triggered. However, all other process variables 

had normal values. From the DBN output it immediately followed that D1_4, the flow of the main air 

blower, is likely the problem. It was concluded that the most probable causes are failure of the blower 

or a partly shut down valve in the air pipeline. Following this diagnosis, a field operator was instructed 

to examine the blower system. 

6 Conclusions 
Process hazard identification and possible scenario definition is subject to failure. It is mainly that 

current methods such as HAZOP and FMEA, given human limitations, are not providing confidence 

that these will lead to a complete inventory of all significant possibilities. Besides, the methods are 

labor-intensive. Three questions have been formulated: 

- How can we improve the effectiveness of hazard identification and scenario definition? 

- How can we enhance the efficiency of the effort? 

- Would it be possible to use the hazards analysis findings in the operational stage and be able 

to correct and augment through operational experience? 

Answers to the questions must be sought employing a systems approach and a computer 

supported/semi-automated methodology. In principle, systems approaches are able to address all 

possible deviations but the sheer number of possibilities require computerization. Semi-automation 

using emerging, intelligent tools and a process plant model such as a layered digraph or similar that 

relates failing equipment and operator functions with process deviations, or the reverse, promises to 

both improve effectiveness and efficiency. It is further shown that once causation trees are construed, 

developing abnormal situations during operations can be corrected more effectively and in a timely 

manner. In addition, scenarios not foreseen in the design or commissioning stage can be added to the 

system during the operational stage thus enhancing operational safety. 

However, it will take considerable effort to obtain a system with sufficient reliability. Cooperation 

between industry and research is therefore needed. Given a working system, a round robin and a 



comparison with results of current practice will help to support a business case for adoption and 

continued development of a system approach using these methods. 
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Figure captions: 

Figure 1. The progress of semi-automatic HAZOP by Khan et al. 

Figure 2. The progress of semi-automatic HAZOP by Venkatasubramanian et al. 

Figure 3. The progress of semi-automatic HAZOP by Cui and Zhao et al. 

Figure 4. Multi-Flow-Model (MFM) Workbench functional HAZOP assistant developed by Rossing et 

al. (2010). On the right, a MFM sample is shown of the reflux part of an advanced distillation column 

with component functions (sou = source; tra = transport; sto = storage; bal = balance; sin = sink), flow 

structure, causal roles, and so-called means-ends. JESS means Java Expert System Shell. Left below is 

an example of a causal tree produced by the system. For a full symbol explanation the reference 

should be consulted. 

Figure 5. Leveson’s representation of a socio-technical system and the various communication lines 

and categories of communication media (Leveson, 2011). 

Figure 6. Generic control loop schematic with four control action queries (center) and corresponding 

failure examples, adapted from Leveson (2011). 

Figure 7. Generic process Functional Systems Framework (FSF) for hazard identification by function-

driven analysis (e.g., HAZOP) and component-driven analysis (e.g., FMEA), according to Seligmann et 

al. 

Figure 8. Top: Small part of a line section, with below capability ranges indicated of the various 

components (L = pipe; ESDV = emergency shut down valve; V = gate valve; S = line strainer; P = pump; 

FM = flow meter; c.m = contain mass; p.F = permit flow; s.F = stop flow; rd.Xs = reduce concentration 

of solids; i.P = increase pressure). Bottom: Pressure profiles in FSS and OSS before and after 

emergency shut down valve fails ‘closed’. The figure is a much simplified version of those in Cameron 

et al. (2016), but it shows the principle. 

Figure 9. Cause-implication diagram of a guard bed for removing mercury and arsenic hydride from 

an olefin feed. The P&ID of the 4 sub-system sections of the guard bed is shown in the top left 

corner. The concentration of the contaminant in the output reached a ‘High’. The diagram provides a 

quick reference to possible causes, according to Németh and Cameron (2013).  

Figure 10. Left: Bayesian network representing the Guard bed case of Figure 9. The applied BN 

software is GeNIe 2.0 developed by Decision Systems Laboratory of the University of Pittsburgh, but 

licensed to BayesFusion LLC, in 2015. Right: Mock-up probability values are shown in the table. 

Figure 11. Left is shown the reactor. Circled are sensor locations; on top right is as example of the 

fuzzy membership of the observables taken L, reactor liquid level, in the middle the decision risk 

matrix, and at the bottom the resulting fuzzy risk level range. Adapted after Naderpour et al. (2015). 

Figure 12. Dynamic Bayesian network of possible failing components of a residue treating reactor 

causing abnormal situations represented by nodes SAR, and/or SHT, SHL, SHC, SVC, SHP, and SRR (see 

text for these latter acronyms) after Naderpour et al. (2015). Observables L, T, P, and F provide 

updated evidence for each time step. The operator is alerted when the risk level reaches TNA (see 

Figure 11, middle right). A corresponding change in an abnormal situation node value indicates the 

direction the faulty component should be sought. The consequence of run-away can be mitigated by 

AM (air monitoring), AL (alarming), FC (fire cannons), and IB (ignition barriers) in parallel. 



Figure 13. An impression of the work of Hu et al. (2015). On top left: Fluidized Catalytic Cracking Unit 

with the catalyst regenerator as the large vessel at left, and at right the riser reactor, connecting 

piping and designated HAZOP nodes; on top right is the Dynamic Bayesian net with its nodes 

specified in the table below the net. The net is an adaptation for the situation of main air blower 

failure D1_4 between time steps K-1 and K. At the bottom is reproduced the main interface of their 

Intelligent Online Early Warning System, IOEWS. 
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DBN Node Equipment component State set

D1_1 Regenerator 1.normal; 2.incrustation; 3.leakage; 4.failure

D1_2 Slide valve at the regenerator output 1.normal; 2.large opening; 3.small opening

D1_3 Slide valve at the regenerator input 1.normal; 2.large opening; 3.small opening

D1_4 Main air blower 1.normal; 2.fault

DBN Node SCADA observable State set Safe range

S1_1 Regenerator reserves 1.normal; 2.more; 3.less  6 - 54

S1_2 Regenerator temperature 1.normal; 2.more; 3.less  80 -720

S1_3 Regenerator pressure 1.normal; 2.more; 3.less  0.1 - 0.4

S1_4 Pressure difference over the slide valve at output 1.normal; 2.more; 3.less   8 -72

S1_5 Pressure difference over the slide valve at input 1.normal; 2.more; 3.less  10 - 80

S1_6 Flow of the main air blower 1.normal; 2.less > 6000


