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Quantum optical states are fragile and can become corrupted when passed through a lossy communication
channel. Unlike for classical signals, optical amplifiers cannot be used to recover quantum signals. Quantum
repeaters have been proposed as a way of reducing errors and hence increasing the range of quantum
communications. Current protocols target specific discrete encodings, for example quantum bits encoded on
the polarization of single photons. We introduce a more general approach that can reduce the effect of loss on
any quantum optical encoding, including those based on continuous variables such as the field amplitudes. We
show that in principle the protocol incurs a resource cost that scales polynomially with distance. We analyze the
simplest implementation and find that while its range is limited it can still achieve useful improvements in the
distance over which quantum entanglement of field amplitudes can be distributed.
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I. INTRODUCTION

Quantum communication enables various cryptographic
protocols that outperform their classical counterparts, includ-
ing quantum key distribution (QKD) with its promise of
absolutely secure transmission of information [1]. The use of
quantum optical systems as information carriers is currently
the only practical approach to quantum communication [2].
Nevertheless, one of the biggest challenges facing the real-
ization of long-distance quantum communication is optical
loss due to fiber or free-space attenuation. One proposed
method to enable long-distance transmission of quantum
states is the quantum repeater [3]. In this model, a lossy
quantum channel is segmented into smaller, more manageable
attenuation lengths along which entanglement is distributed
and then purified. Entanglement swapping operations are then
performed resulting in entanglement being held between both
ends of the quantum channel.

There have been a number of proposals for quantum
repeaters that work on discrete variable quantum systems
such as the polarization of single photons, and some ele-
ments of these have been implemented experimentally [4].
However, quantum communication protocols can also be
implemented using quantum continuous variables [5]. In-
triguingly, continuous-variable entanglement swapping pro-
tocols can swap any optical entanglement, whether over
discrete or continuous variables [6,7], and protocols for the
purification of continuous-variable entanglement have been
developed [8,9]. This suggests that continuous-variable (CV)
quantum repeaters may be possible, and more versatile than
discrete variable devices. Indeed, one might expect that a CV
quantum repeater would correct errors on quantum information
sent through optical modes, independently of how it was
encoded. However, significant challenges exist to realizing
such a device.

To date, a complete quantum repeater protocol for contin-
uous variables has not been described, although evidence that
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CV quantum repeaters can increase transmission distances
has been presented [10] and hybrid protocols combining
continuous and discrete states have been proposed [11]. It
is known that regenerative stations containing only Gaussian
elements cannot act as CV quantum repeaters [12].

In this paper, we outline an architecture for a CV quantum
repeater that relies on concatenated error-correction protocols
consisting of continuous-variable teleportation [13] and entan-
glement distillation via noiseless linear amplification [14]. The
paper is arranged in the following way. In Sec. II we review the
continuous-variable error-correction protocol from Ref. [15].
In Sec. III, we will describe how the error correction can be
concatenated in such a way that the same effective transmission
coefficient is maintained even though the physical channel is
growing in length. We show that ideally the overhead for this
concatenation is polynomial in the length of the channel. In
Sec. IV, we numerically evaluate the performance of the CV
quantum repeater assuming the simplest implementation of
noiseless linear amplification. We find the range is limited
under these conditions, however, the device can still distribute
continuous-variable Einstein, Podolsky, Rosen (EPR) entan-
glement over significant distances.

II. ERROR-CORRECTION PROTOCOL

We begin by reviewing the error-correction protocol
for continuous-variable states described in Ref. [15]. This
technique for quantum error correction is effective against
Gaussian noise induced by loss and proceeds by distilling EPR
entanglement and using this entanglement for teleportation.

The aim of the protocol is to improve the effective
transmission of any quantum state passing through a lossy
channel [Fig. 1(a)]. The protocol is pictured in Fig. 1(b)
where an EPR (or two-mode squeezed) state is distributed
through the lossy channel. Distillation is achieved via noiseless
linear amplification (NLA) [14], which is nondeterministic
but heralded. When successful, the effect of the NLA on
the entanglement is to produce an EPR state of higher
purity (for a given entanglement strength) than achievable via
direct transmission through the channel [9]. After successful
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FIG. 1. (a) A lossy channel of transmission η. This channel takes
an input coherent state |α〉 to output state |√ηα〉. (b) Protocol
for quantum error correction against loss from Ref. [15]. EPR
entanglement is distributed through a lossy channel of transmission
η. Noiseless linear amplification is then performed to distill the
entanglement, which is used for teleportation. This protocol takes
an input coherent state |α〉 to output state |g√

ηχα〉.

operation of the NLA, the distilled entanglement is used for
teleportation: the input signal and the arm of the entangled
state that did not pass through the loss are mixed on a 50:50
beam splitter and conjugate quadratures are detected on each
output mode via homodyne detection (also known as dual
homodyne detection); the results of the measurement are sent
via a classical channel to the receiver; and amplitude and
phase modulation proportional to the measurement result are
performed to displace the arm of the entanglement that passed
through the loss and the NLA, producing the output mode.

For an input coherent state |α〉, the action of the lossy
channel causes the transformation:

|α〉 → |√ηα〉, (1)

where η is the transmission of the channel. In contrast, if the
input coherent state is instead teleported using the distilled
EPR state using the gain tuning protocol [6,7] we obtain the
transformation:

|α〉 → |g√
ηχα〉, (2)

where g is the gain of the NLA, and χ is the strength of
the entanglement. By controlling the gain of the NLA, the
effective transmission of the channel can be controlled. In
particular, we will be interested in the case where g is chosen
to be 1

η1/4χ
and the output (2) of the protocol is |η1/4α〉. That

is, the channel of transmission η has been error corrected to
an effective transmission of ηeff = √

η.
It should be noted that the transformation (2) is only exactly

achieved when the NLA operates in an unphysical asymptotic
limit. When implemented with linear optics, the NLA can be
constructed from an array of N modified quantum scissors
devices (a single quantum scissor is shown in Fig. 3) [16].
The input state is split evenly among the N quantum scissors
devices and the state is truncated in the photon number basis to
order N . This inevitably limits the fidelity between the target
and output states of the NLA and hence compromises the
operation of the error correction unless N � 1. In addition, the
success probability of the NLA decreases exponentially with
the number of quantum scissors, thus imposing a significant
resource cost on achieving high fidelity. Nevertheless, as was
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FIG. 2. Structure of the quantum repeater for continuous-variable
states. (a) M = 1. A single iteration of the error-correction protocol
to correct a lossy channel of transmission η. By choosing the gain
of the NLA to be 1

η1/4χ
we can increase the transmission of the

channel to be effectively
√

η. (b) M = 2. Explicit structure of two
links of the repeater for double the distance (initial transmission η2.)
Two error-correction boxes are nested inside a larger error correction,
which represents the replacement of the physical lossy channel within
Fig. 1(b). The two nested protocols error correct to produce effective
channel transmission of η and the larger protocol produce overall
effective transmission of

√
η. (c) M = 4. Another doubling of the

distance results in a channel of transmission η4, which is corrected
by nesting error-correction protocols in each other as shown. In this
diagram we have used the schematic boxes; each box labeled error
correction corresponds to the error-correction protocol depicted in
Figs. 1(b) and 2(a). At the base level, the channel is broken into four
segments each of transmission η and error correction is performed on
each segment (taking individual segments to effective transmission√

η.) Two error-corrected segments effectively produce a channel
of transmission η, which are then nested in larger error-correction
protocol. Overall, this η4 channel has been error corrected to effective
transmission

√
η.

shown in Ref. [15], this protocol can still be effective at
correcting errors induced by loss on field states in the high
loss regime.

III. CV QUANTUM REPEATER

We now construct a quantum repeater by concatenating
these error-correction protocols in such a way that the effective
transmission of the quantum channel is constant with distance.
The repeater is depicted in Fig. 2 where we show the structure
of the protocol for increasing distance. Each individual error-
correction box [representing the protocol shown in Fig. 1(b)]

022312-2



QUANTUM REPEATERS USING CONTINUOUS-VARIABLE . . . PHYSICAL REVIEW A 95, 022312 (2017)

takes the initial transmission of the channel η to an effective
transmission

√
η by using the gain condition:

g = 1

η1/4χ
. (3)

One iteration of the protocol, as shown in Fig. 2(a),
corrects a channel of transmission η to

√
η. To preserve this

transmission over double the distance (initial transmission
of η2), we use the protocol shown in Fig. 2(b). Two nested
protocols take the direct channel transmission η2 to effective
transmission η. These nested error-correction protocols take
the position of the loss channel in shown in Fig. 2(a). The
larger protocol then corrects this to

√
η.

To preserve this transmission
√

η over another doubling
of distance, another two links of the repeater are necessary
as in Fig. 2(c). The four base-level error-correction protocols
work to correct a channel of transmission η4 to η2. These
base-level protocols are nested within two higher-level error-
correction protocols allowing the effective transmission η2 to
be further corrected to η. The last and highest level of error
correction then produces a channel of effective transmission√

η. Concatenation proceeds in this way for increasing distance
where a channel of transmission η2k

requires k levels of
concatenation.

When run in series, two error-correction protocols may op-
erate their NLAs independently and simultaneously. Through-
out this paper we implicitly assume that high-quality quantum
memories are available that can store quantum states without
loss of fidelity until the synchronizing signals arrive from the
various NLAs.

At the first level of concatenation, the individual error-
correction procedures need to herald successful operation
before error correction at the next level of concatenation can
proceed. Therefore, if P is the success probability for one
iteration of the error-correction protocol Fig. 2(a), then the
entire protocol in Fig. 2(b) operates with success probability
P 2. Similarly, the success probability for the protocol in
Fig. 2(c) is P 3. While the probability of success is dropping
exponentially with the number of concatenations, the distance
doubles. In general, we have:

PM = P log2(2M) = (2M)log2 P , (4)

where M is the number of links of the quantum repeater and
is proportional to distance, and thus we obtain a polynomial
scaling of success probability with distance.

We can estimate P in the following way. For a particular
gain, g, the NLA has a probability of success Pg ≈ 1/(g +
1)2N (see the Appendix). Inserting the gain condition Eq. (3)
and assuming g � 1 we obtain

P ≈ (ηχ4)N/2. (5)

To evaluate the efficiency of the device we can compare the
probability of successfully sending a single photon through
the error-corrected channel,

√
ηPM , to the probability of

successfully sending a single photon through the bare channel,
ηM . In this way we can obtain the desirable condition:

PM ≈ (2M)
N
2 Log2(χ4η) > ηM− 1

2 . (6)

Because of the exponential scaling of the bare channel it is
clear that there will always be an M at which the quantum
repeater will be more efficient than the bare channel, however
whether that break-even point occurs whilst PM still has a
practical value depends on the choice of parameters (and what
one considers a practical value). As an example if we pick
η = 0.04, χ = 0.9, and N = 3 we find the break-even point
is around M = 8. For these parameters, we obtain PM ≈ 3 ×
10−10 >> ηM− 1

2 ≈ 3 × 10−11.
The limitation of this efficiency scaling argument is that it

ignores potential truncation noise that might build with each
level of concatenation. We now examine an example of this
with the simple case of the repeater protocol where the NLA
is implemented with a single quantum scissor.

IV. OPERATION WITH A SINGLE QUANTUM SCISSOR

Of immediate practical interest is the performance of the
system in the simplest case where the NLA is constructed
from a single quantum scissor. For such a situation we expect
truncation noise to be significant. Hence, we now examine
operation of the repeater protocols shown in Figs. 2(a) and 2(b)
for the case where the NLA consists of the single quantum
scissor device shown in Fig. 3. This device performs the
transformation

T̂1(α|0〉 + β|1〉) =
√

1

g2 + 1
(α|0〉 + gβ|1〉) (7)

with all higher-order terms truncated. The effect of this
truncation on the protocol is to increase the variance of
the output state above the quantum noise limit level ex-
pected for a coherent state. We refer to this as truncation
noise.

As a first figure of merit for our protocol we ask if the
level of truncation noise introduced is low enough to allow
entanglement distribution through the channel. A sufficient
condition for entanglement distribution is that the excess noise
δ is bounded by δ < 2η [17]. When the noise added is above
this bound, the state may be separable and so not useful for
quantum communication. We have calculated the variance of
the output state of the protocols in Figs. 2(a) and 2(b). This
is dependent on the entanglement strength of the two-mode
squeezed state, χ , and the transmission of the channel between

0

1

or0 1 1 0

FIG. 3. Structure of the NLA [14] when it consists of a single
modified quantum scissor device [16]. The NLA is successful when
the single photon detectors register one photon at one detector and
zero photons at the other. The beam splitter ratio ξ is related to the
gain of the NLA by g = √

(1 − ξ )/ξ .
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FIG. 4. Variance of the protocol in Fig. 2(a) plotted against the
effective transmission of the channel. This protocol takes a channel of
direct transmission η to one of effective transmission

√
η using χ =

0.7 (blue, dashed) and χ = 0.1 (green, dot-dashed). Also shown is
the entanglement breaking bound (red, solid). The point is achieved
with a success probability of P = 0.06 and the point is achieved
with P = 0.001.

nodes, η. We note that because the truncation noise is non-
Gaussian, δ < 2η is not a necessary condition for entanglement
breaking, a point we will return to later.

The results contained in Fig. 4 show the variance of one link
of the repeater. These calculations are detailed in the Appendix
and assume ideal detectors, and single-photon and EPR
sources. This protocol preserves the effective transmission of
a channel

√
η over double the actual distance η. We observe

here a significant difference in outcome when using a high
strength two-mode squeezed state (χ = 0.7) to that of a weakly
entangled state (χ = 0.1). When using a weakly entangled
state, the excess noise produced is sufficiently small such that
the channel is entanglement preserving for any transmission
η. While this outcome is favorable in terms of excess noise
produced, this requires using a higher gain in the NLA,
and therefore comes with a decrease in success probability.
To illustrate this effect, the two points in Fig. 4 both take
an initial loss channel of 1% and improve it to effectively
10%; using χ = 0.7 this can be done with success proba-
bility P = 0.06 and with χ = 0.1 the success probability is
P = 0.001.

Figure 5 shows the variance of the concatenated protocol
shown in Fig. 2(b) (achieving an effective transmission

√
η

from an initial η2). This protocol is also capable of operating
under the entanglement breaking bound albeit in a high loss
regime only. These results were obtained using very weakly
entangled EPR states (χ = 0.01) in the nested error-correction
protocols. Operating the concatenated protocol of Fig. 2(b)
in this way ensures the nested error-correction protocols
contribute minimal excess noise. Then using a higher-strength
EPR state (χ = 0.7) in the larger error-correction protocol
ensures the gain of the final NLA is reduced and thus
avoids amplifying the truncation noise produced by the nested
protocols. This represents a tradeoff in the operation of this
concatenated protocol, where the desired outcome of excess
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FIG. 5. Variance of the protocol for two links of the repeater
shown in Fig. 2(b) (purple) plotted against the effective transmission
of the channel. This protocol takes a channel of direct transmission
η2 to one of effective transmission

√
η. The nested error-correction

protocols use χ = 0.01 and the larger protocol used χ = 0.7. Also
shown is the entanglement breaking bound (red, solid). The point
is achieved with success probability 4 × 10−8.

noise being within the entanglement preserving regime is
only achieved with restrictions on the parameters χ and η.
Employing more quantum scissors in the NLAs would reduce
noise and enable this protocol to be useful at higher effective
transmissions. However, the cost is an exponential decrease
in probability of success with increasing numbers of quantum
scissors.

Now that we have shown that these protocols are useful
for quantum communication, we can also examine how well
this channel reduces entanglement degradation caused by
loss using the logarithmic negativity [18]. This gives us an
unambiguous measure of improvement of the bare channel
achieved by the protocol. Because we assume Gaussian noise,
this represents a lower bound on the protocol’s performance. In
Fig. 6 we compare the logarithmic negativity achieved by the
protocols shown in Fig. 2(a) and Fig. 2(b) (with a single quan-
tum scissor in each NLA) to that of an EPR state distributed
through the same loss in the limit of infinite squeezing. This is
given by E∞

N = − log2
1−η

1+η
[9]. We demonstrate here a region

where our device achieves a significant improvement over that
which would be achieved with a perfect EPR state using direct
transmission.

The device we present here is unfortunately limited in its
operational efficiency by low success probabilities. While an
initial loss channel of 1% can be improved to effectively 10%
with a success probability of 0.06, the concatenated protocol
[Fig. 2(b)] takes an initial loss channel of 5 × 10−5% and
increase it to effectively 2% with a probability of success of
4 × 10−8. As stated earlier, these calculations were obtained
with the minimum number of quantum scissors employed in
the NLAs.

Another problematic aspect of this protocol is the highly
restricted regime in which it is useful to transfer quantum
entanglement, that is, the very high loss regime. In cases
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FIG. 6. Logarithmic negativity of the protocol plotted against
direct channel transmission. One iteration of the repeater shown
in Fig. 2(a) (blue, dashed line) using χ = 0.01. The concatenated
protocol shown in Fig. 2(b) (purple), using χ = 0.01 for the nested
error-correction protocols and χ = 0.7 for the higher-level protocol.
The black (solid) line represents the maximum entanglement that can
be distributed through the bare channel. The region above the black
line is where the protocol outperforms the bare channel.

where it is necessary to operate the device at higher effective
transmissions, one must employ more quantum scissors in the
NLAs and this comes with the unfortunate cost of a reduction
in the probability of success. This signifies the most prominent
limitation in using this repeater; that is, less excess noise comes
at the expense of the probability of success.

While the results presented in this paper were generated
with NLAs containing a single quantum scissor, it may be
worthwhile to consider the outcomes when the devices consist
of two quantum scissors. In this case, the transformation (7)
would be replaced by

T̂2(α|0〉 + β|1〉 + γ |2〉)

= 1

g2 + 1

(
α|0〉 + gβ|1〉 + 1

2
g2γ |2〉

)
, (8)

which now keeps the |2〉 terms in the state (albeit at half
their original amplitude) and truncates higher-order terms.
We can expect a reduction in excess noise when two
quantum scissors are used which is especially important
when the error-correction protocols are concatenated as in
Figs. 2(b) and 2(c). Additionally, by adjusting the value of
χ , adding a single extra quantum scissor can result in a
minimal decrease in success probability. Alternatively, other
schemes that include higher-order terms could be considered
[19–21].

Results with the protocols in Fig. 2(b) and 2(c) using two or
more quantum scissors would be of significant interest. How-
ever, modeling these protocols is computationally intensive
given the complex design of the concatenated error correction.
Ideally, one would like to model these channels as effective
Gaussian channels where the state truncation step introduces
some Gaussian noise. However, when this is done, the results

do not agree with that of the exact output states due to the
NLA performing a non-Gaussian operation. Indeed, typically
the performance is inferior to the exact result. For this reason,
the task of characterizing the performance of the repeater
for higher levels of concatenation and more quantum scissors
remains challenging.

V. DISCUSSION

In summary, we have proposed a method to concatenate
error-correction protocols to produce a quantum repeater
that works with CV states. The error correction relies on
continuous-variable teleportation and entanglement distilla-
tion through noiseless linear amplification. Teleportation of
CV states is advantageous because of its deterministic opera-
tion, but it also limits the channel transmission improvement
achievable between input and output states. Importantly, the
use of CV teleportation means the protocol will work on any
field state and is therefore not limited to a particular optical
encoding of quantum information.

The repeater protocol we present here does have a poly-
nomial efficiency scaling in the ideal case of the NLA.
However, it is limited in practice due to the tradeoff between
probability of successful operation and noise added from state
truncation.

This noise penalty due to state truncation is inevitable with
the linear optics construction of the NLA. To this problem,
we have shown that our protocol with a single quantum
scissor in the NLA for M = 2 links of the repeater [Fig. 2(b)]
can operate with sufficiently low added noise such that it
can transmit entanglement of higher quality than the bare
channel.

It is important to consider more generally under what
conditions the repeater may be more efficient than direct
transmission while simultaneously adding low enough noise so
that the channel can be used to transmit entanglement. These
conditions remain an open question because characterizing
the performance of our repeater for higher concatenation
levels represents a computationally intensive task due to the
structural complexity and the inability to model the device
using Gaussian operations.

As such, there remains significant room for improvement
with this protocol. It remains an open question as to how the
protocol may be amended to be useful at higher effective trans-
missions while maintaining (or improving) the probability of
success. It is possible that nonlinear optical techniques for
implementing the NLA are needed to realize the full scaling
potential of our device [22]. We note that a somewhat different
approach to a CV quantum repeater has recently been proposed
in Ref. [23].
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APPENDIX

1. Error-correction protocol

In this Appendix we provide details on the error-correction protocol of Fig. 2(a). The continuous-variable teleportation protocol
uses shared entanglement of the form:

|χ〉RB =
√

1 − χ2
∞∑

n=0

χn|n〉R|n〉B. (A1)

An arbitrary input state |ψ〉A is mixed on a 50:50 beam splitter with mode R and dual homodyne detection is performed. Here
β1 is detected, where

β1 = X− + iP+ (A2)

with

X̂− = X̂A − X̂R (A3)

P̂+ = P̂A + P̂R. (A4)

This measurement projects onto the eigenstate [24]

|β1〉AR = 1√
π

∞∑
n=0

D̂A(β1)|n〉A|n〉R. (A5)

The output state conditioned on the measurement result β1 is therefore

|ψ(β1)〉 = AR〈β1|ψ〉A|χ〉RB (A6)

=
√

1 − χ2

π

∑
n,m

χm
A〈n| R〈n|D̂†

A(β1)|ψ〉A|m〉R|m〉B (A7)

=
√

1 − χ2

π

∑
n

χn|n〉B A〈n|D̂A(−β1)|ψ〉A, (A8)

where the measurement probability P (β1) is given by 〈ψ(β1)|ψ(β1)〉.
For an input coherent state |ψ〉A = |α〉A

A〈n|D̂A(−β1)|α〉A = A〈n|α − β1〉A = e−|α−β1|2/2 (α − β1)n√
n!

(A9)

|ψ(β1)〉 =
√

1 − χ2

π
e−|α−β1|2/2

∑
n

(χ (α − β1))n√
n!

|n〉B︸ ︷︷ ︸
e|χ(α−β1)|2/2|χ(α−β1)〉

(A10)

=
√

1 − χ2

π
e

1
2 |α−β1|2(χ2−1)|χ (α − β1)〉. (A11)

The state then passes through a lossy channel of transmission η

|ψ(β1)〉 =
√

1 − χ2

π
e

1
2 |α−β1|2(χ2−1)|√ηχ (α − β1)〉. (A12)

The action of the NLA with N quantum scissors can be described by the following operation:

T̂N = �̂Ngn̂, (A13)

where �̂N is the truncation operator defined as

�̂N =
(

1

g2 + 1

) N
2

N∑
n=0

N !

(N − n)!Nn
|n〉〈n|. (A14)

We are interested in the case where the NLA consists of a single quantum scissor, N = 1:

�̂1 =
√

1

g2 + 1
(|0〉〈0| + |1〉〈1|). (A15)
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The state after action of the NLA is

|ψ(β1)〉 =
√

1 − χ2

1 + g2
1

1√
π

e
1
2 |α−β1|2(χ2−1−ηχ2)(|0〉 + g1

√
ηχ (α − β1)|1〉). (A16)

The last step in this protocol is a displacement by the measurement result β1 scaled by the gain of the NLA g1, the strength
of entanglement χ and transmission of the channel η. The output state of the protocol is

|ψout(β1)〉 =
√

1 − χ2

1 + g2
1

1√
π

e
1
2 |α−β1|2(χ2−1−ηχ2)D̂(g

√
ηχβ1)[|0〉 + g1

√
ηχ (α − β1)|1〉]. (A17)

The probability of success is

P =
∫

〈ψout(β1)|ψout(β1)〉d2β (A18)

P = − (χ2 − 1)[χ2(ηg2 + η − 1) + 1]

(g2 + 1)[(η − 1)χ2 + 1]2
. (A19)

The variance is

V =
∫

〈X̂2〉d2β −
(∫

〈X̂〉d2β

)2

(A20)

V = χ2(η{g2 + χ2[4ηg4 + (η − 1)g2 + η − 2] + 2} + χ2 − 2) + 1

[(η − 1)χ2 + 1][χ2(ηg2 + η − 1) + 1]
. (A21)

2. Concatenated protocol

We now proceed to derive the exact output state of the concatenated error-correction protocol shown in Fig. 2(b). For this
task, we begin by feeding the output state of the first protocol (A17) into a second protocol.

The first step is the joint measurement of X̂ and P̂ projecting the product state |ψout(β1)〉A ⊗ |χ〉RB onto the state of mode B

|ψ(β1,β2)〉 =
√

1 − χ2

π

∑
n

χn|n〉B A〈n|D̂A(−β2)|ψout(β1)〉A. (A22)

For the output state given in (A17), we have

A〈n|D̂A(−β2)|ψout(β1)〉A =
√

1 − χ2

1 + g2
1

1√
π

e
1
2 |α−β1|2(χ2−1−ηχ2)

A〈n|D̂A(−β2)D̂A(g
√

ηχβ1)(|0〉A + g1
√

ηχ (α − β1)|1〉A).

(A23)

Using the following property of the displacement operator:

D̂(α)D̂(β) = e(αβ∗−α∗β)/2D̂(α + β), (A24)

we may combine the displacements on mode A as

D̂A(−β2)D̂A(g
√

ηχβ1) = eg
√

ηχ(β1β
∗
2 −β∗

1 β2)/2D̂A(g
√

ηχβ1 − β2), (A25)

where β1β
∗
2 − β∗

1 β2 is purely imaginary.

A〈n|D̂A(−β2)|ψout(β1)〉A =
√

1 − χ2

1 + g2
1

1√
π

eg
√

ηχ(β1β
∗
2 −β∗

1 β2)/2e
1
2 |α−β1|2(χ2−1−ηχ2)

× A〈n|D̂A(g
√

ηχβ1 − β2)[|0〉A + g1
√

ηχ (α − β1)|1〉A] (A26)

A〈n|D̂A(g
√

ηχβ1 − β2)|0〉A = A〈n|g√
ηχβ1 − β2〉A = e−|g√

ηχβ1−β2|2/2 (g
√

ηχβ1 − β2)n√
n!

(A27)

A〈n|D̂A(g
√

ηχβ1 − β2)|1〉A = e−|g√
ηχβ1−β2|2/2

⎛
⎜⎜⎜⎝√

n
(g

√
ηχβ1 − β2)n−1

√
(n − 1)!︸ ︷︷ ︸

n�1

+(−g
√

ηχβ∗
1 + β∗

2 )
(g

√
ηχβ1 − β2)n√

n!

⎞
⎟⎟⎟⎠ (A28)
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A〈n|D̂A(−β2)|ψout(β1)〉A

=
√

1 − χ2

1 + g2
1

1√
π

eg
√

ηχ(β1β
∗
2 −β∗

1 β2)/2e
1
2 |α−β1|2(χ2−1−ηχ2)e−|g√

ηχβ1−β2|2/2

×

⎛
⎜⎜⎜⎝[1 + g1

√
ηχ (α − β1)(−g

√
ηχβ∗

1 + β∗
2 )]

(g
√

ηχβ1 − β2)n√
n!

+ g1
√

ηχ (α − β1)
√

n
(g

√
ηχβ1 − β2)n−1

√
(n − 1)!︸ ︷︷ ︸

n�1

⎞
⎟⎟⎟⎠. (A29)

The state after measurement of β2 is

|ψ(β1,β2)〉 = 1 − χ2

π

1√
1 + g2

1

eg
√

ηχ(β1β
∗
2 −β∗

1 β2)/2e
1
2 |α−β1|2(χ2−1−ηχ2)e−|g√

ηχβ1−β2|2/2

×
∞∑

n=0

χn[1 + g1
√

ηχ (α − β1)(−g
√

ηχβ∗
1 + β∗

2 )]
(g

√
ηχβ1 − β2)n√

n!
|n〉B

+
∞∑

n=1

χng1
√

ηχ (α − β1)
√

n
(g

√
ηχβ1 − β2)n−1

√
(n − 1)!

|n〉B. (A30)

The state then passes through a lossy channel of transmission η. Here the loss mode is mode C.

ÛBS[|n〉B |0〉C] =
n∑

k=0

√(
n

k

)
ηk/2(1 − η)(n−k)/2|k〉B |n − k〉C (A31)

|ψ(β1,β2)〉 = 1 − χ2

π

1√
1 + g2

1

eg
√

ηχ(β1β
∗
2 −β∗

1 β2)/2e
1
2 |α−β1|2(χ2−1−ηχ2)e−|g√

ηχβ1−β2|2/2

×
∞∑

n=0

χn[1 + g1
√

ηχ (α − β1)(−g
√

ηχβ∗
1 + β∗

2 )]
(g

√
ηχβ1 − β2)n√

n!

n∑
k=0

√(
n

k

)
ηk/2(1 − η)(n−k)/2|k〉B |n − k〉C

+
∞∑

n=1

χng1
√

ηχ (α − β1)
√

n
(g

√
ηχβ1 − β2)n−1

√
(n − 1)!

n∑
k=0

√(
n

k

)
ηk/2(1 − η)(n−k)/2|k〉B |n − k〉C. (A32)

Truncate to order 1 in χ , this is a good approximation as long as χ is kept small (χ � 1):

|ψ(β1,β2)〉 = 1 − χ2

π

1√
1 + g2

1

eg
√

ηχ(β1β
∗
2 −β∗

1 β2)/2e
1
2 |α−β1|2(χ2−1−ηχ2)e−|g√

ηχβ1−β2|2/2

× ([1 + g1
√

ηχ (α − β1)(−g
√

ηχβ∗
1 + β∗

2 )]|0〉B |0〉C + χ{g1
√

ηχ (α − β1)

+ [1 + g1
√

ηχ (α − β1)(−g
√

ηχβ∗
1 + β∗

2 )](g
√

ηχβ1 − β2)}((1 − η)1/2|0〉B |1〉C + η1/2|1〉B |0〉C)). (A33)

We then act an NLA on the state (mode B), with gain g2:

|ψ(β1,β2)〉 = 1 − χ2

π

1√
1 + g2

1

1√
1 + g2

2

eg
√

ηχ(β1β
∗
2 −β∗

1 β2)/2e
1
2 |α−β1|2(χ2−1−ηχ2)e−|g√

ηχβ1−β2|2/2

× ([1 + g1
√

ηχ (α − β1)(−g
√

ηχβ∗
1 + β∗

2 )]|0〉B |0〉C
+χ{g1

√
ηχ (α − β1) + [1 + g1

√
ηχ (α − β1)(−g

√
ηχβ∗

1 + β∗
2 )](g

√
ηχβ1 − β2)}(

√
1 − η|0〉B |1〉C

+ g2
√

η|1〉B |0〉C)). (A34)
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We then perform a displacement by the measurement result β2 scaled by the gain of the NLA g2, the strength of entanglement χ

and transmission of the channel η. The output state (un-normalized) after two iterations of the protocol is

|ψ(β1,β2)〉 = 1 − χ2

π

1√
1 + g2

1

1√
1 + g2

2

eg1
√

ηχ(β1β
∗
2 −β∗

1 β2)/2e
1
2 |α−β1|2(χ2−1−ηχ2)e−|g1

√
ηχβ1−β2|2/2

× D̂B(g2
√

ηχβ2)([1 + g1
√

ηχ (α − β1)(−g1
√

ηχβ∗
1 + β∗

2 )]|0〉B |0〉C
+χ{g1

√
ηχ (α − β1) + [1 + g1

√
ηχ (α − β1)(−g1

√
ηχβ∗

1 + β∗
2 )](g1

√
ηχβ1 − β2)}(

√
1 − η|0〉B |1〉C

+ g2
√

η|1〉B |0〉C)). (A35)

We now proceed to derive the output state of the complete concatenated protocol in Fig. 2(b). This involves taking the state
after the first dual homodyne measurement, feeding it into two iterations of the error-correction protocol and then acting an NLA
and displacement. Results will also have to be averaged over the three complex valued measurement outcomes β1, β2, and β3.

We begin with the state after the first dual homodyne measurement where β3 is the measurement outcome:

|ψ(β3)〉 =
√

1 − χ2
3

π
e

1
2 |α−β3|2(χ2

3 −1)|χ3(α − β3)〉, (A36)

which is a coherent state with amplitude χ3(α − β3). With input |α〉, the output state (un-normalized) after two iterations of the
protocol is (A35). With input state (A36), the state after two iterations of the protocol is

|ψ(χ (α − β3),β1,β2)〉 =
√

1 − χ2
3

π
e

1
2 |α−β3|2(χ2

3 −1) 1 − χ2

π

1√
1 + g2

1

1√
1 + g2

2

eg
√

ηχ(β1β
∗
2 −β∗

1 β2)/2e
1
2 |χ3(α−β3)−β1|2(χ2−1−ηχ2)

× e−|g√
ηχβ1−β2|2/2D̂B(g2

√
ηχβ2)[{1 + g1

√
ηχ [χ3(α − β3) − β1](−g1

√
ηχβ∗

1 + β∗
2 )}|0〉B |0〉C

+χ (g1
√

ηχ (χ3(α − β3) − β1) + (1 + g1
√

ηχ (χ3(α − β3) − β1)(−g1
√

ηχβ∗
1 + β∗

2 ))

× (g1
√

ηχβ1 − β2))(
√

1 − η|0〉B |1〉C + g2
√

η|1〉B |0〉C)]. (A37)

We define the following variables:

κ = {1 + g1
√

ηχ [χ3(α − β3) − β1](−g1
√

ηχβ∗
1 + β∗

2 )} (A38)

λ = χ (g1
√

ηχ (χ3(α − β3) − β1) + (1 + g1
√

ηχ (χ3(α − β3) − β1)(−g1
√

ηχβ∗
1 + β∗

2 ))(g1
√

ηχβ1 − β2)) (A39)

C =
√

1 − χ2
3

π
e

1
2 |α−β3|2(χ2

3 −1) 1 − χ2

π

1√
1 + g2

1

1√
1 + g2

2

eg
√

ηχ(β1β
∗
2 −β∗

1 β2)/2e
1
2 |χ3(α−β3)−β1|2(χ2−1−ηχ2)e−|g√

ηχβ1−β2|2/2. (A40)

This simplifies the output state which can now be written as

|ψ(β3,β1,β2)〉 = CD̂B(g2
√

ηχβ2)

[
κ|0〉B |0〉C + λ(

√
1 − η|0〉B |1〉C + g2

√
η|1〉B |0〉C).

]
(A41)

Acting the displacement operator D̂B(g2
√

ηχβ2) on the photon number states:

D̂B(g2
√

ηχβ2)|0〉B = |g2
√

ηχβ2〉B = e−|g2
√

ηχβ2|2/2(|0〉B + g2
√

ηχβ2|1〉B + . . . ) (A42)

D̂B(g2
√

ηχβ2)|1〉B = e−|g2
√

ηχβ2|2/2(−g2
√

ηχβ∗
2 |0〉B + (1 − |g2

√
ηχβ2|2)|1〉B + . . . ) (A43)

|ψ(β3,β1,β2)〉 = Ce−|g2
√

ηχβ2|2/2[(κ|0〉B |0〉C + κg2
√

ηχβ2|1〉B |0〉C + . . . )

+ (λ
√

1 − η|0〉B |1〉C + λ
√

1 − ηg2
√

ηχβ2|1〉B |1〉C + . . . )

+ (−λg2
√

ηg2
√

ηχβ∗
2 |0〉B |0〉C + λg2

√
η(1 − |g2

√
ηχβ2|2)|1〉B |0〉C + . . .)]. (A44)

Acting the third NLA with gain g3:

|ψ(β3,β1,β2)〉 = 1√
g2

3 + 1
Ce−|g2

√
ηχβ2|2/2[(κ|0〉B |0〉C + κg2

√
ηχβ2g3|1〉B |0〉C + . . .)

+ (λ
√

1 − η|0〉B |1〉C + λ
√

1 − ηg2
√

ηχβ2g3|1〉B |1〉C + . . .)

+ (−λg2
√

ηg2
√

ηχβ∗
2 |0〉B |0〉C + λg2

√
η(1 − |g2

√
ηχβ2|2)g3|1〉B |0〉C + . . .)]. (A45)
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Displace state by D̂B(g3
√

ηχβ3) to give the final output state of the entire concatenated protocol shown in Fig. 2(b):

|ψ(β3,β1,β2)〉 = 1√
g2

3 + 1
Ce−|g2

√
ηχβ2|2/2D̂B(g3

√
ηχ3β3)[(κ − λg2

√
ηg2

√
ηχβ∗

2 )|0〉B |0〉C

+ (κg2
√

ηχβ2g3 + λg2g3
√

η(1 − |g2
√

ηχβ2|2))|1〉B |0〉C + λ
√

1 − η|0〉B |1〉C
+ λ

√
1 − ηg2

√
ηχβ2g3|1〉B |1〉C]. (A46)

The success probability and variance were calculated following the same formula as (A18) and (A20), this time using the
output state (A46). Numerical integration was performed to average the result over β1, β2, and β3.
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