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GRAPHICAL ABSTRACT
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NOMENCLATURE

A Alternative

AD Anaerobic digestion

ADM1 Anaerobic Digestion Model No. 1

AER Aerobic section

ANAER Anaerobic section

ANOX Anoxic section

ASM Activated Sludge Model

ASM2d Activated Sludge Model No. 2d

BOD Biological oxygen demand

BSM2 Benchmark Simulation Model No. 2

CBIM Continuity-based interfacing method

COD Chemical oxygen demand

CONVap-as Conversion ADM1 — ASM2d interface
CONVas-am Conversion ASM2d — ADM1 interface

DO Dissolved oxygen

EQI Effluent quality index

Fe Iron

GAO Glycogen accumulating organisms

Gen, Methane production rate (gas) (ADM1) (kg.day
Geo, Carbon dioxide production rate (gas) (ADM1) (kg.dpy
Gy, Hydrogen production rate (gas) (ADM1) (kg.day
Gu,s Hydrogen sulfide production rate (gas) (ADM1) (kayd)
MMP Multiple mineral precipitation

OCl Operational cost index

P Phosphorus

PAO Phosphorus accumulating organisms

PHA Polyhydroxyalkanoates

PP Polyphosphates

PRIM Primary clarifier

PROCES®p.as | Process ADM1- ASM2d interface
PROCES®s ap | Process ASM2d — ADM1 interface

Qintr Internal recycle flow rate (between AER and ANOX} (day™)
S Sulfur

SEC2 Secondary clarifier

SI Saturation index

SRB Sulfate-reducing bacteria

STRIP Stripping unit

S Acetate (ASM2d) (g COD.i)

Saa Amino acids (ADM1) (kg COD.r)

2




Sac Total acetic acid (ADM1) (kg COD.)

San Anions (ADM1) (kmol.n*)

Sbu Total butyric acid (ADM1) (kg COD.ft)

Sca Calcium (ASM2d, ADM1) (g.ri?) (kmol.m®)
Seat Soluble cations (ADM1) (kmol.i)

Sel Chloride (ASM2d, ADM1) (g.1i¥) (kmol.m?®)
Sk Fermentable substrate (ASM2d) (g COD)m
Sta Fatty acids (ADM1) (kg COD.i)

Spez+ Iron (1) (ASM2d, ADM1) (g.m°) (kmol.m®)
Spes+ Iron (1) (ASM2d, ADM1) (g.m°) (kmol.m®)
SH, Hydrogen (ADM1) (kg COD.1)

Sic Inorganic carbon (ADM1) (kmol.i¥)

SIN Inorganic nitrogen (ADM1) (kmol.f)

Sip Inorganic phosphorus (ADM1) (kmol:f

Sis Inorganic total sulfides (ADM1) (kg COD.f
Sk Potassium (ASM2d, ADM1) (g.f) (kmol.m)
Smg Magnesium (ASM2d, ADM1) (g.i) (kmol.ni®)
SNa Sodium (ASM2d, ADM1) (g.i) (kmol.ni®)
SNHy Ammonium plus ammonia nitrogen (ASM2d) (¢°m
SNoy Nitrate plus nitrite (ASM2d) (g.i)

Spro Total propionic acid (ADM1) (kg COD.H)
Spo, Phosphate (ASM2d) (g.f

Seu Sugars (ADM1) (kg COD.f)

Ss, Elemental sulfur (ADM1) (kmol.ir)

Sso, Sulfate (ASM2d, ADM1) (g.n) (kmol.m®)
Sva Total valeric acid (ADM1) (kg COD.i)
THK/FLOT Thickener/flotation

TIV Time in violation

TKN Total Kjeldahl nitrogen

TN Total nitrogen

TP Total phosphorus

TSS Total suspended solids

VFA Volatile fatty acids

WRRF Water resource recovery facility

WWTP Wastewater treatment plant

Xa Autotrophic biomass (ASM2d) (g COD¥n
Xac Acetate degraders (ADM1) (kg CODIn
Xalpo, Aluminum phosphate (ASM2d, ADM1) (g:th (kmol.rmi®)
Xp Total biomass (ADM1) (kg COD.H)

X. Composite material (ADM1) (kg COD:f)
Xca Butyrate and valerate degraders (ADM1) (kg COB).m




Xcacog Calcite (ASM2d, ADM1) (g.i7). (kmol.ni®)

XcaCosq Aragonite (ASM2d, ADM1) (g.i) (kmol.m?)

Xcay(P0y), Amorphous calcium phosphai@SM2d, ADM1) (g.m*) (kmol.m®)

Xcag(Po,)s(0n) | Hydroxylapatitf ASM2d, ADM1) (g.m°) (kmol.ni®)

XCagH, (P04, Octacalcium phosphai(ASM2d, ADM1) (g.nT) (kmol.ni®)

Xon Carbohydrates (ADM1) (kg COD:f

Xrepo, Iron (Ill) phosphate (ASM2d, ADM1) (g./) (kmol.m®)

XFeq(POL), Iron (I1) phosphate (ASM2d, ADM1) (mol) (kmol.m?)

Xres Iron sulfide (ASM2d, ADM1) (mol.[}) (kmol.n®)

Xy Heterotrophic biomass (ASM2d) (g COD3n

Xytrot I3—)|ydrous ferric oxide with high number of activeesitASM2d, ADM1) (g.r) (kmol.mi
Xuro-u,p Xuro—n With bounded adsorption sites (ASM2d, ADM1) (§)ngkmol.ni®)
XHFO-HP,0ld Old Xyro_n p With bounded adsorption sites (ASM2d, ADM1) (g)ngkmol.ni®)
Xiro_L Ig-)lydrous ferric oxide with low number of active sittASM2d, ADM1) (g.nT) (kmol.ni
XHro-Lp Xuro_r, With bounded adsorption sites (ASM2d, ADM1) (§)ngkmol.ni®)

XHFO-LP old Old Xypo_1 p With bounded adsorption sites (ASM2d, ADM1) (g)ngkmol.ni®)
Xuro—old InactiveXgro (ASM2d, ADM1) (g.m°) (kmol.m®)

X Inert particulate organics (ASM2d, ADM1) (g CODr(kg COD.n)

XKNH,PO, K-struvite (ASM2d, ADM1) (g.ri?) (kmol.m?®)

X Lipids (ADM1) (kg COD.n?) (g.m®) (kmol.m®)

Xmgco, Magnesite (ASM2d, ADM1) (g.i) (kmol.m?®)

XmgHpo, Newberyite (ASM2d, ADM1) (g.i) (kmol.nmi®)

XMgNH,PO, Struvite (ASM2d, ADM1) (g.ri?) (kmol.ni®)

Xpao Phosphorus accumulating organisms (ASM2d, ADMIG@P.ni°) (kg COD.n?)
Xpua Polyhydroxyalkanoates (ASM2d, ADM1) (g COD*nkg COD.n?)

Xpp Polyphosphates (ASM2, ADM1) (g:th (kmol.ni®)

Xpr Proteins (ADM1) (kg COD.H)

Xpro Propionate degraders (ADM1) (kg COD)n

XsrB Sulfate-reducing bacteria (ADM1) (kg COD¥n

Z Chemical species concentration of species i (aluebariable of the physico-chemistry

module) (kmol.n¥)
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ABSTRACT

The objective of this paper is to report the eBdbiat control/operational strategies may havelantywide
phosphorus (P) transformations in wastewater treatrmlants (WWTP). The development of a new set of
biological (activated sludge, anaerobic digestigat)ysico-chemical (agueous phase, precipitationssma
transfer) process models and model interfaces @metwater and sludge line) were required to desc¢hie
required tri-phasic (gas, liquid, solid) compourghsformations and the close interlinks betweerPtlzend
the sulfur (S) and iron (Fe) cycles. A modifiedsien of the Benchmark Simulation Model No. 2 (BSM2)
(open loop) is used as test platform upon whicleehdifferent operational alternatives,( A,, A3) are
evaluated. Rigorous sensor and actuator modelslaceincluded in order to reproduce realistic aaintr
actions. Model-based analysis shows that the caatibm of an ammoniumsSgy,) and total suspended
solids &rss) control strategy4;) better adapts the system to influent dynamicpraves phosphatei ,)
accumulation by phosphorus accumulating organistago) (41 %), increases nitrification/denitrification
efficiency (18 %) and reduces aeration eney {ion) (21 %). The addition of ironXg,c;,) for chemical

P removal 4,) promotes the formation of ferric oxid€8yo_p, Xuro-1), Phosphate adsorptioRro_p p,
Xuro-1,p), CO-precipitation Xyro—-n poid: Xuro-Lpo1d) @nNd consequently reduces the P levels in theesftl
(from 2.8 to 0.9 g P.i). This also has an impact on the sludge line, \migtlrogen sulfide production
(Gy,s) reduced (36 %) due to iron sulfid&r(s) precipitation. As a consequence, there is alstightly
higher energy productiorEf,,quction) from biogas. Lastly, the inclusion of a strippiagd crystallization
unit (43) for P recovery reduces the quantity of P in thaegiobic digester supernatant returning to therwate
line and allows potential struvit&zn,p0,) recovery ranging from 69 to 227 kg.dagtlepending on: (1)
airflow (Qsripping); and, (2) magnesium@fgon),) addition. All the proposed alternatives are estdd

from an environmental and economical point of viesing appropriate performance indices. Finally, som
deficiencies and opportunities of the proposed @ggr when performing (plant-wide) wastewater tregtim

modelling/engineering projects are discussed.
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RESEARCH HIGHLIGHTS

» Development of a plant-wide model describing Ptbgr with N, S, Fe), including pH prediction

* Operational strategies, such as aeration contrdl dosing of metals, have complex plant-wide
interactions

» Quantification of overall and individual N, P, S ssabalances through the different process units

» Multi-criteria (economic/environmental) analysistbé evaluation results
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1. INTRODUCTION

The importance of plant-wide modelling has beentemsjzed by the chemical engineering community for a
long time and the wastewater industry is also zedi the benefits of this approac8kpgestad, 2000
Gernaey et al., 2019. A wastewater treatment plant should be conslasean integrated process, where
primary/secondary clarifiers, activated sludge t@a&; anaerobic digesters, thickener/flotation gynit
dewatering systems, storage tanks, etc. are libb@ether and need to be operated and controllecdsot
individual unit operations, but taking into accouwtitthe interactions amongst the processepgssonet

al., 2013. For this reason, during the last years wastawatgineering has promoted the development of
integrated modelling tools handling these issizskKer and Dold, 1997 Grau et al., 2007 Ekama, 2009
Nopenset al., 201Q Gernaeyet al., 2014. Plant-wide models substantially increase the bemof potential
operational strategies that can be simulated, harklby enable the study of a new dimension of obntr
possibilities, such as studying the impact of atéd sludge control strategies on the sludge Iepfsson

et al., 2007, the effect of primary sedimentation on biogasdpiction Flores-Alsinaet al., 20143 and the
handling of nitrogen-rich anaerobic digester suptmnt {/olcke et al., 20063 Ruanoet al., 2011 Flores-

Alsina et al., 2014a)

Although being valuable tools, the state of the iarthat these plant-wide models are limited to the
prediction of plant-wide organic carbon and nitnogand they are not properly taking into accoumt th
transformation of phosphorus (P) and its closelinks with the sulfur (S) and iron cycles (Fe)rtaularly in a
plant-wide contextBRatstone et al., 2015. Phosphorus modelling is an essential requirejmeanticularly
considering its role in eutrophication of many batents and its potential re-use as a fertilix&@argtraete

et al., 2009. Therefore, this is an important issue for futuredeloapplication and it will become of
paramount importance during the transition of waater treatment plants (WWTP) to water resource
recovery facilities (WRRFs), which will change tregjuirements for model-based analysis significafuty

wastewater engineering studidatrolleghemet al., 2014 Vanrolleghem and Vaneeckhaute, 2034
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The Activated Sludge Model No. 2d (ASM2d) specificaonsiders the role of phosphorus accumulating
organisms (PAO) in the water linelénzeet al., 200Q. Similar P-related processes should be included i
the Anaerobic Digestion Model No. 1 (ADM1Bdtstoneet al., 2002 as stated by Ikumi and co-workers
(Ikumi et al., 2011, 2014). Potential uptake of organics by PAO to form pgigroxyalkanoates (PHA) with
the subsequent release of polyphosphates (PP)smhave an important effect on the anaerobic tiges
(AD) products (biogas, precipitated)/ang et al., 2016 Flores-Alsinaet al., 2016. Nevertheless the ASM
family (specifically the ASM2d for phosphorusjdnzeet al., 2000 and ADM1 Batstoneet al., 2002 are
inadequate to describe plant-wide P transformatidpart of this is because the physico-chemical
formulations in those models do not consider mamamex phenomena in which P is involved. Indeed, P
trivalence gives a strong non-ideal behaviour, Whiequires amongst other factors, continuous ionic
strength tracking, extensive consideration of @y instead of molar concentrations and inclusodn
complexation/ion pairing processédusvoto et al., 200Q Serralta et al., 2004 Solonet al., 2015 Flores-
Alsina et al., 2015 Lizarralde et al., 2015. The latter is crucial to correctly describe cleahprecipitation
and predict the fate of phosphorus compounds, amtdperly predict nutrient cycling through theient
plant (van Rensburget al., 2003 Barat et al., 2011 Hauduc et al., 2015 Kazadi Mbamba et al., 20153

b). There is also a general lack of consideratiorbiofogical and chemical transformation of Fe and S
throughout both aerobic and anaerobic stages. fgadyi, the sulfur cycle regulates Fe availabilipnd Fe
changes valency through oxidation/reduction) wiien controls iron-phosphate complexi®@utierrez et

al., 201Q Flores-Alsinaet al., 20169. While biological and chemical complexation réacs of P have been
described in the AD unit, these have not genetadlgn considered in plant-wide interactions with FleéS

cycles.

Model interfacing is also an important aspect tosider Batstoneet al., 2015 unless integrated plant-
wide models with a single set of state variables wed Barker and Dold, 1997 Grau et al., 2007,
Ekama et al., 2006 Barat et al., 2013. Plant-wide modelling requires elemental masarad verification
(Hauduc et al., 2010 and continuity checking for all the componentsuded in the modeMolcke et al.,

2006k Zaher et al., 2007 Nopenset al., 2009. Therefore, the quantities of C, N, P, Fe anth@&ikl be the
8
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same before and after an interfaEéo(es-Alsina et al., 2019. The main advantage of using an interface-
based approach with respect to other integratethodetogies is that the original model structure ban
used, and there is thus no need for state vari@geesentation in all process units with the rasmlt
increased use of computational power, model coniipglexd adverse model stability characteristiGsalu

et al., 2009.

The main objective of this paper is to present {fferfirst time): (1) an approach for mechanisgsatiption

of all the main biological and physico-chemical qgasses required to predict organic P fluxes
simultaneously in both water and sludge lines i@ YWWTP under different operational modes; (2) an
analysis of the interactions between P, S and Fe plant-wide level; (3) a quantification of thengamound
fluxes and pH variations in each unit and through éntire plant; and, (4) an evaluation of theedéht
operational/control strategies aimed at maximizangrgy production, resource recovery and reductidhe
environmental impact and operating expenses meahagreffluent qualityEQIl) and operational cost indices
(OCl) (Copp, 2002 Nopenset al., 201Q. The paper details the development of the nentplede model by
presenting sequentially the different included sldments as well as the integration/interfacingeetsp The
capabilities/potential of the proposed approadhustrated with several case studies. Lastly, opmities and

limitations that arise from utilization of the nemodel are discussed as well.

2. MODEL DESCRIPTION

2.1. Biological Models

Sections 2.1.1 and 2.1.2 describe the additionatgsses and state variables included in the ADMIL an
ASM2d, respectively, in order to take into accoumologically mediated phosphorus transformations
correctly. Additional modifications, with speciamehasis to link the ADM and ASM with a physico-
chemical model, are described in Section 3 (Moalelgration). Model details, mass balances and rwoityi

verification can be found in the spreadsheet files/ided within the Supplemental Information Seetio



146 2.1.1. Anaerobic Digestion Model (ADM)

147 The ADM1 version, implemented in the plant-wide & provided by the Benchmark Simulation Model
148 No. 2 (BSM2) Batstoneet al., 2002 Rosenet al., 2009 is extended with P, S and Fe interactidflsres-
149 Alsina et al., 2016. Phosphorus transformations account for kineécay of polyphosphates{y) and
150 potential uptake of volatile fatty acids (VFA) toopuce polyhydroxyalkanoateXgy,) by phosphorus
151 accumulating organism&so) (Henzeet al., 200Q Harding et al., 2011 Ikumi et al., 2011 Wang et al.,
152 2016. Biological production of sulfidesS(s) is described by means of sulfate-reducing bactéfirg)
153 utilising hydrogen (autolithotrophically) as elewtr source Batstone, 200§ Potential hydrogen sulfide
154  (Zy,s) inhibition and stripping to the gas phasg (s) are consideredgdorovich et al., 2003 Pokorna-
155 Krayzelova et al., 2019. Finally, chemical iron (Ill) §z.3+) reduction to iron (1) §z.2+) is accounted for

156 by using hydrogens;,) and sulfidess) as electron donor$Summ and Morgan, 1996.

157 2.1.2. Activated Sludge Model (ASM)

158 A modified version of the Activated Sludge Model .Nagl (ASM2d) is selected to describe organic carbon
159 nitrogen and phosphorus transformations in the obiohl reactor Kenze et al., 2000) In this

160 implementation, biomass decay rates are electroephor dependenSS(egrist et al., 1999 Gernaey and

161 Jaergensen, 2004 PotassiumSk) and magnesiumsS{,,) are accounted for as new state variables and are
162 included in the stoichiometry of formation and ese of polyphosphate&{p). Another modification with

163 respect to the original ASM2d is that total sus@ehsdolids is calculated from its constituergsg = Xyss

164 + X;gs are described separatelfdk@ma and Wentzel, 2004Ekama et al., 2009 compared to the previous
165 implementations wherein TSS is calculated as the giuthe assumed TSS content of each of the p&atecu
166 state variables. This is mainly because the camstis of the inorganic suspended soliXigs) are explicitly

167 calculated as state variables with a contributimmf polyphosphateXep) in the activated sludge system.

168 The model is also upgraded to describe the fateldtion/reduction reactions) of sulfufs()4z-, Ssq1 Sis)

169 and iron §g.3+, Sge2+) COMpounds in anaerobic, anoxic and aerobic cimdit Sulfate reduction is assumed

170 to be biologically mediated by means of SRBgg) using two potential electron donot, (Sg ). Sulfide

10
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(S1s) and 6g.2+) oxidation is described as a purely chemical ieactsing different electron acceptors

(S0, Sno,) (Batstone, 2006Batstoneet al., 2015 Gutierrez et al., 201Q Stumm and Morgan, 1996)

2.2. Physico-Chemical Models (PCM)

2.2.1. pH and ion speciation/pairing

In this study a general aqueous phase chemistrghtdascribing pH variation and ion speciation/pegrin

both ASM and ADM is usedSplonet al., 2015 Flores-Alsinaet al., 2015. The model corrects for ionic
strength via the Davies’ approach to consider chamactivities instead of molar concentrations,
performing all the calculations under non-ideal dibons. The general acid-base equilibria are fdatead

as a set of implicit algebraic equations (IAEs) awlved separately at each time step of the ordinar
differential equation (ODE) solver using an extehdeaulti-dimensional Newton-Raphson algorith8olon

et al., 2015 Flores-Alsina et al., 2019. Acid-base parameters and activity coefficiemes eorrected for
temperature effects. The species concentrationexgmessed by a common nomenclatdkg (Solonet al.,
2015 and participate in physico-chemical processe$ siscgas exchange and mineral precipitation (see

Sections 2.2.2 and 2.2.3).

2.2.2. Multiple Mineral Precipitation (MMP)

In this model, precipitation equations are descriag a reversible process using the saturatiorxi(@gas
the chemical driving force. THa represents the logarithm of the ratio betweerpteuct of the respective
activities of reactants that are each raised t@tiveer of their respective stoichiometric coeffidieand the
solubility product constantkg,) (temperature corrected). If SI < O the liquid phas assumed to be
undersaturated and a mineral might dissolve ireditjuid phase, while if SI > 0 the liquid phasessumed
to be supersaturated and mineral precipitation traghur Stumm and Morgan, 1996. The precipitation
reaction rate depends on the kinetic rate coefficihe concentration of the different specigg, (mineral
solid phaseX;) and the order of the reaction (iazadi Mbamba et al., 20153 b). The proposed MMP

model includes the minerals: calcit&c{co,), aragonite Xcaco,,), amorphous calcium phosphate

(Xcaspo,),), hydroxylapatite Xca po,),(on)), OCtacalcium phosphat&d, u,po,),), Struvite Kvgnu,ro,);
11
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219

newberyite Kygnpo,), Magnesite )(MgCO3)’ k-struvite  &xnwu,po,) and iron sulfide Xg.s). A special

formulation is necessary to correctly describe ipration of hydrous ferric oxidesX{iro—n. Xuro-L)
phosphate adsorptioX{ro_p p, Xgro-1,p) @and co-precipitationXyro—n p.oid» Xuro-Lp,01d) (Hauduc et al.,
2019, since this is an adsorption rather than a pitipn reaction. Kinetic parameters were takemmfro

Kazadi Mbamba et al. (20153 b) andHauduc et al. (2015.

2.2.3. Gas-liquid transfer

In open reactors, gas-liquid transfer is describeda function of the difference between the satmat
concentration and the actual concentration of #eedjssolved in the liquid and the contact areavden the
gaseous and the aqueous phdsadkey et al., 2000. The saturation concentration of the gas in itpeid

is given by Henry's law of dissolution, which stathat the saturation concentration is equal tgptieeuct
of Henry's constantk;) multiplied by the partial pressure of the g&9.(The mass transfer rate constant
(Kya;) is calculated for each gaseous componentics, Zy,s, Znu, andSy,). ThisKja; is calculated with
a proportionality factor relative to the referenmempound oxygenkjaq,). The proportionality factor
depends on the relation between the diffusivityhef gas in the liquidl);) over the diffusivity of oxygen in
the liquid Oo,) (Musvoto et al., 200Q. This does not apply fd,axy; since NH is a highly soluble gas
and thus its mass transfer is controlled by thesfiex rate in the gas phaddaz@arralde et al., 2015. In
closed reactors, mass transfer between the liguidtlae gas volume is described for selected gases (

Zco, Zu,s: Znu,» Scu, andSy,) as described iRosenet al. (2006.
2.3. Model Integration

2.3.1. ASM-PCM interface

The default implementation of the ASM was adjustedrder to include the PCM (additional details &an
found in Flores-Alsina et al. (2015). The main modifications are: (1) the use of gasric carbon )
instead of alkalinity £4.x) as a state variable; (2) the inclusion of maassfier equations fafco,, Zy,s,

Znu, andSy, (Batstoneet al., 2012 Lizarralde et al., 2019; (3) additional (and explicit) consideration of
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multiple cations §ca¢: Sk, Sna: Sca: Smg) and anions,,: S¢;) which are tracked as soluble/reactive states;
and, (4) chemical precipitation using metal hyddes §y.on) and metal phosphateX(.p) are omitted
since the generalised kinetic precipitation modeldascribed irKazadi Mbamba et al. (20153 b) and
Hauduc et al. (2019 is used instead. Communication between the eiffiemodels is straightforward. The
outputs of the ASM at each integration step arel @seinputs for the aqueous-phase module to estiptat
and ion speciation/pairing (works as a sub-rout{sep Section 2.2.1). The precipitation/strippiggations

are formulated as ODEs and included in the ovenalls balance.

2.3.2. ADM-PCM interface

The ADM is slightly modified to account for the wddd physico-chemical model and new processes. The
original pH solver proposed Rosenet al. (2006 is substituted by the approach presente8dlon et al.
(2015 andFlores-Alsinaet al. (2015. C, N, P, O and H fractions are taken frdenGraciaet al. (2006.
Finally, the original ADM1 pools of undefined cat® (S.;;) and anionsy,,) are substituted for specific
compounds (see Section 2.3.1). The existing gasdlifansfer equations are extended to inclégg and
Znu, (Rosenet al., 2009. Similarly as for the ASM-PCM interface, the plidaion speciation/pairing
model works as a sub-routine, while the multipleggitation/stripping models are included withireth

system of ODEs in the ADM.

2.3.3. ASM-ADM-ASM interface

The interfaces between ASM-ADM-ASM are based on dbetinuity-based interfacing method (CBIM)
described in dicke et al. (2006D, Zaher et al. (2007 andNopenset al. (2009 to ensure elemental mass
and charge conservation. The ASM-ADM-ASM interfacesnsider: (1) (instantaneous) processes
(PROCESSas.Ap/PROCESSyp-as); and, (2) (state variable) conversio@ONVas.ap/CONVap-as). On the
one hand, the ASM-ADM interface instantaneous Bsese PROCESS\s.ap) involve (amongst others)
instantaneous removal of COD demanding compounds S5, and Syo,) and immediate decay of
(heterotrophic/autotrophic) biomass. Conversio@ONVas.ap) require the transformation of soluble

fermentable organicsSf), acetate §4) and biodegradable particulate organidg)(into amino acids
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(Saa)/sugars £, )/fatty acids §;,) (soluble) and proteinsX(,)/lipids (X);)/carbohydratesXy,) (particulate),
respectively. On the other hand, the ADM-ASM inded assume$PROCESSyp.-as) that all compounds that
can be transferred into the gas phase §j¢.andScy,) are stripped, and also immediate decay of the AD
biomass takes plac€ONVap.as turns all the biodegradable organic particulatés. (X;, Xcn), organic
solubles £,,, Sta, Ssu) and volatile fatty acidsS(c, Spro, Shus Sva) INt0 Xs, SpandS,, respectively. There is
no variation of Fe and S before and after the fatex A comprehensive description with detailed

explanation of the involved processes, conversant mass balance verification can be founélores-

Alsina et al. (2016.

2.4. Additional Elements

2.4.1. Influent generation/modelling principles

The model blocks for: (1) flow rate generation (FMD (2) chemical oxygen demand (COD), N and P
generation (POLLUTANTS); (3) temperature profilengeation (TEMPERATURE); and, (4) sewer
network and first flush effect (TRANSPORT) definedGernaey et al. (2011 are used to generate the
WWTP influent dynamics (12 months period of outplata for the evaluation period with a 15 minutes
sampling interval). The resulting daily averagdtiefit mass flow rates are 8386 kg COB).#014 kg N.d&
and 197 kg P4 for COD, N and P, respectively (s€&gure SS1in Supplemental Information for the
influent concentrations). The S:COD ratio is 0.¢@3S.kg COD' (note that the S influent load is set to a
high value to have a noticeable effect in the AB)addition, cation and anion profiles had to bdeatl The
resulting pH is close to neutrality (pH ~ 7). Mandormation about the flow rate pollution dynamimsd
how they are handled by the influent generatorlmafound inFlores-Alsina et al. (2014, Martin and

Vanrolleghem (2014 andSnip et al. (2019.

2.4.2. Ancillary processes and sensor/actuator models

Primary clarification is described according @aterpohl and Freund (1992. The model is adjusted to
reflect the experiments carried out MWentzel et al. (2006 where biodegradable/unbiodegradable

compounds show different settling velocities. Toelle exponential velocity function proposedTakacs
14



270 et al. (199]) using a 10-layer reactive configuratioflqres-Alsina et al., 2012 is used as a fair
271 representation of the secondary settling procedsreactions occurring in the settler. Several datiens
272 between sludge settleability parameters (such iegdtspecific volume index, SSVI, and diluted gjad
273 volume index, DSVI) and the Takacs settling paramse{maximum Vesilind settling velocity,,, and
274 hindered zone settling parametey) (Gernaey et al., 2014 have been usedckama et al., 1997. A
275 reduction factor in the process kinetics is apptiedhe reactive secondary settler to obtain meedistic
276 results Guerrero et al., 2013. Flotation and dewatering units are describeddppssonet al. (2007).
277 Biological reactions in both units are includedngsthe simplified approach describedGernaey et al.
278 (2006. Stripping and crystallization units are descrilie&azadi Mbamba et al. (2016. Response time,
279 delay and white noise are included in sensor/agtuabdels in order to avoid creating unrealistiotcol

280 applicationsRiegeret al., 2003.

281 2.4.3. Plant layout

282 The presented set of models is implemented in rat pdgout that consists of a primary clarifier (RBJ an
283 activated sludge unit (AS), a secondary settlerQ&8E a sludge thickener (THK/FLOT), an anaerobic
284  digester (AD), a storage tank (ST) and a dewatenimg (DW). The main modification with respect teet
285 original designopenset al., 2010 relies on the activated sludge (AS) configuratidn anaerobic section

286 (ANAER1, ANAER?2) without oxygenp,) and nitrate {yo,) is needed to promote anaerobic phosphorus

287 release and to provide the phosphorus accumulatiggnisms Xpso) With a competitive advantage over
288 other bacteria. Phosphorus release from the breakdaf polyphosphatesXfp) provides the energy
289 required for anaerobic uptake of polyhydroxyalkaeedXpy). Next, PAO grow using intracellular storage
290 products (i.eXpya) as a substrate while taking up N and P as nugrienthe anoxic (ANOX1, ANOX2)
291 and aerobic (AER1, AER2, AER3) reactors with oxygg#,) or nitrate {no,) (With less efficiency) as
292 electron acceptors, respectively (see schematicEignre 1). It is important to highlight that this
293 configuration does not represent an optimal desmmemove P, because the biological P removal is
294  dependent on the N removal via the nitrate conagatr recycled to the anaerobic reactor via theediwiv

295 recycle (i.e. nitrates overflow may cause the aoi@ier reactors to become anoxic). Nevertheless, it
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exemplifies the retrofit of many (C, N removal) pig adapting their plant layout to satisfy new atretter
effluent requirements (the authors do not presumaé the given plant layout is the best configuratior
retrofit situations; a Modified UCT or a Johannesgpoonfiguration may be more appropriate). Addiéibn
details about the WWTP plant design and defaulraipaal conditions can be found @®ernaey et al.

(2014 and in the software implementation (see Sectjon 6

2.4.4. Evaluation criteria

To assess the performance of combined N and Pat@ttategies, an updated set of evaluation caitere
necessaryJeppssonet al., 2013. The effluent quality indexdQI) (a weighted sum of effluent TSS, COD,
BOD, TKN and nitrate) is updated to include theiaddal P load (organic and inorganic). Additiorial
upgrades have been necessary to include effluetdtaans (frequency and magnitude) and percenfilbs.
cost of additional recycles (anoxic, anaerobicyawmes (CQ stripping) and chemicals (in case the user
wants to evaluate chemical P precipitation andveig) are also added within the operational codexn
(OCI). A detailed description of the additional evaloatcriteria is given in the Supplemental Inforroati

Section.

3. RESULTS AND DISCUSSION

3.1. Steady-State Simulations

The steady-state simulations for the open loopigardtion are summarized figure 1 in terms of the
plant-wide overall mass balances and the individmais for C, P, N, S, as well as for pH (plant-witgut
and output mass flows in bold). Around 49 % oftibtal incoming P load leaves the plant throughvtiager
line (mainly as soluble phosphasgy,). The remaining P (51 %) goes to the sludge lgzeticulate). In the
AD unit, solubleSpg, is substantially increased as a result of bionf&gs X, Xpao) and polyphosphates
(Xpp) decay. A fraction (78 %) of the incoming P to tigester precipitatesX¢,,ro,),» Xmgnn,po,) OF
becomes part of the organic§,(Xs). This will be disposed with the sludge. The remrag P is returned to
the water line as soluble phosphafgy() (22 %). This increases the influent P load byath?0 % (see

Figure 1). As a consequence of this extra load the ovelalht performance (in terms of phosphorus
16



321 removal) for the open loop scenario is not goodingi effluent quality values (TP = 4.6 g P)hwell above
322 the standards (assumed;iP= 2.0 g P.n).

323

324 Most of the nitrogen is depleted before reaching shudge line (23 % remaining) through nitrificatio
325 denitrification, assimilation with the biomass agds stripping. More specifically, around 32 % oé th
326 incoming N is converted to nitrogen gag {) and 45 % leaves the plant in formSfy, or Syo, . Simulated
327 (N) effluent values (TKN = 2.97 g N:Amnd TN = 9.13 g N.f) are well below the limits fixed by the BSM
328 evaluation limit (TKNimit = 4 g N.m*and TNmit = 15 g N.n¥). The N load going to the sludge line (23 %)
329 s basically associated with particulate organiGs Xs) and biomassXg, Xa, Xpao). Around 14 and 222 kg
330 N.day" are returned to the water line after flotatiorekieining and dewatering, respectively, adding 2% t
331 the influent N load.

332

333  Sulfur arrives to the WWTP under study as sulf&tg ) and sulfides;s) (S in the influent is set to a high
334 value for demonstration purposes). In the anaerséition of the activated sludge process theresimall
335 reduction ofSgg, to S;s by SRB. In the anoxic/aerobic section most ofrétdtuced S is re-oxidized 8,
336 that becomes part of the effluent (93 %), a pasdtigpped to the atmosphere (5 %) and a smallitnaaif
337 Sso, (2 %) is transported to the AD unit where it isieerted to hydrogen sulfide gaSy(s) (65 %) and
338 dissolved sulfidesS(s) (25 %) with a concentration of 32 g S’rthiogas composition by voluméey, =
339 62.00 %, Geo, = 37.46 %, Gy,s = 0.54 %). A small fraction of sulfate remains unconver(gg,,) (10 %).
340 The soluble S fractions are returned to the waer &nd are re-oxidized to sulfate in the activatkedige
341 reactor. Compared to the N and P streams, thetirgguihcrease in the influent S load is not verghi
342 (increase of 2 %).

343

344 Influent pH is close to neutrality (pH = 7.06). this particular case, at the end of the water pheis
345 increased mainly due to carbon dioxidgd,) stripping. Nevertheless, in other cases for systertts low

346 buffer capacity, the loss of alkalinity via nitgation might decrease the pH far more stronbligrzeet al.,
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2008. The almost anaerobic conditions in the firsttsinof the sludge line (secondary settler and
thickener/flotation units) promote: (1) fermentatiof organic soluble substratf:] to acetateS,); and, (2)
decay ofXpp and subsequent releaseSgf. As a consequence, there is a decrease of pHelAD, pH is
slightly reduced again as a result of multiple mah@recipitation. In the dewatering unit, pH isseal again
due toZco, stripping. There is no effect on the influent eimgrthe primary clarifier. Similar observations
about pH behaviour through the different plant siite reported ihizarralde et al. (2015 and Kazadi

Mbamba et al. (2019.

3.2. Dynamic Simulations

All dynamic simulations (609 days) are precededst®ady-state simulations (300 days) but only tha da
generated during the final 364 days are used fantpperformance evaluation. Default (open loop)
operational conditions@ernaey and Jgrgensen, 2004represent the baseline configuratiot,)( upon
which the different operational/control/recoveryagtgies will be implemented, simulated and evaldiat
(seeTable 1). Figure 2 shows dynamic profiles for selected influeRigures 23 b), effluent Eigures 2d

e) and operationaigures 2¢ f, g, h) variables.

3.2.1. Control strategy (A,): Cascade ammonium + wastage controller

The first alternative control strategyl,) is based on a cascade Pl ammoniuigy() controller that
manipulates theSg,) set-point in AER2 (and also the airflow in AERIdaAERS3 by a factor of 2.0 and 0.5,
respectively) Figure 3a). TheS,, concentration in AER2 is controlled by manipulgtthe air supply rate.
The second controller regulates the total suspeadids §1ss) in AER3 by manipulating the wastage flow
(Qy,) (Vanrolleghem et al., 201Q. The set-point changes (set-point = 3000 gTSS:m15C / 4000
gTSS.n?® < 15C) are made according to temperature (T) in ordeset a longer SRT to maintain the
nitrification capacity during the winter perio&igure 3b). Additional details about the simulated control
strategies can be found Trable 1 TheSy, and T sensor are assumed to be close to idealavéisponse
time of 1 minute in order to prevent unrealistioiwol applications. On the other hand, thg;, sensor has

a time delay of 10 minutes, with zero mean whitsedstandard deviation of 0.5 g N*jn(Rieger et al.,
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2003. The aeration system and the wastage pumpingeraysire defined with significant dynamics
assuming a response time of 4 minuiesble 2 summarizes the values for the different evaluatioteria.
The implementation of these controllers improvég,, accumulation by Xp,o and increases
nitrification/denitrification efficiency. This is minly due to a better aeration strategy in the dgial
reactors. As a side effect, operational co4ll| is reduced and there is a substantial reductidheoenergy
consumed (SseE,qration Values inTable 2). As a further consequence, effluent quality val(®& a1, Protal»
EQI) are improved. Indeed, the open loop aeratioreayss highly inefficient (not sufficient during daye
and excessive at night) (segure 20. Summer/winter wasting schemes cause variatiotisa quantity of
sludge arriving to the AD and therefore changethenbiogas production. This is translated intoestdht

potential energy recovery efficiencies (¥88,quction Values inTable 2).

3.2.2. Control strategy (A,): Fe chemical precipitation in the AS section

The second alternativelf) involves the addition of iron (2%.c),, the model assumes a liquid solution of
Xrec1,) IN the AS section in addition #, (seeTable 1). TheSpp, concentration in AER3 is controlled by
manipulating the metal flow rateQf.c,) (Figure 4a). Additional details about the simulated control
strategies can be foundTiable 1.TheSpo, andSyy, sensors have similar characteristics (10 minugésyd
and zero mean white noise with a standard deviatidh5 g P or N.A{ ). Response time fdPpec, is also

10 minutes (avoiding unrealistic control actions).

Results reported ifiable 2 show a reduction iR, time in violation TIV) Py, as well as th&QI due

to chemical P precipitation (s€égures 2eand4a, respectively). On the other hand, there is aregmse in
sludge productionSP;,.,) and theOCI as a trade-off. The aeration energy.f.:ion) also slightly increase
from scenaridd; to A, mainly due to reduced PAO activity brought aboutbemical phosphorus removal,
less organics are taken up by in the anaerobic gdaitte activated sludge unit in scenadg and, as a
consequence, more organics need to be oxidizedv@naerobic part. It is important to highlight the

additional beneficial effect ofgec), addition in the sludge line. Indeed, under anderobnditions hydrous

19



397

398

399

400

401

402

403

404

405

406

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

ferric oxides Kypo-u, Xuro-1) are chemically reduced to Fe (Jp.z+) using hydrogeiiSy,) and/or
sulfides §;s) as electron donors. Also, iron phosphaf§s:§_u p, Xuro-1p) formed in the activated sludge
process water line might re-dissolve under anaerobnditions in the digesters to precipitate witlifide
(XFes)- This is due to the much lower solubility of irsalfide as compared to iron phosph&&i(mm and
Morgan, 1996. The control strategy reduces undesirable inbivibdour/corrosion problems, as well as
risks for human health, as indicated by the highgy, andlower Gy, s values compared tel() (seeFigures

2h and4b, respectively). Similar conclusions were reachedhgy experimental campaigns/measurements

run byMamais et al. (1994, Geet al. (2013 andZhang et al. (2013.

It is important to highlight that the addition of Bubstantially changes the whole P and S cycteigiir the
entire plant while N fluxes are barely affectedeTraction of P sent to the sludge line is incredasem 51

to 67 % (94 to 127 kg P.ddy(mainly asXyro_n p» Xaro-Lp» XHFO-H,polds XHFO-Lpold) (SEEFigure SS2

in Supplemental Information). This Fe addition regithe quantity of¢,, po,), aNdXmgnu,po, formed in
the AD which, from a practical point of view, leatis less problems with their deposition in the pipe
Similar findings are also found in the followingidies:Luedeckeet al. (1989; Doyle and Parsong2002
andMamais et al. (1994. When it comes to S, there is a substantial realuof the quantity ofy,s in the
AD due to the preferential binding with Fe (from0B1to 4400 ppm). As a result, there is a lower tjtyaof
H,S in the gas phase and therefore the quantity afaSig the plant via sludge disposal (as precmpitat
Xres) INCreases. There is a slight decrease of pH duket increase of the contra-iGh™ added as part of

the iron precipitation.

3.2.3. Control strategy (As): Potential P recovery as struvite in the digester
supernatant
The last alternative implies a modification of thrgginal plant layout by adding a stripping uniff¢&IP) for

pH increase, a crystallizer (CRYST) to facilitateusite recovery, a magnesium hydroxide dosage tank

(XMg(OH)Z) and a dewatering unit (DEW?2) for potential P remry (Kazadi Mbamba et al., 201§. The

assumed hydraulic retention times (HRT) of the STBhd CRYST units are approximately 2 h and 18 h,
20
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respectively Tchobanoglouset al., 2003. Figure SS3(in Supplemental Information) shows the effect of
the extra units on the total P fluxes. Simulatiesults indicate that the quantity of returning Nl & from
the AD supernatant is reduced from 221 to 201 kdpit: and 30 to 1.3 kg P.dayrespectively (as a result

of recovering P aXyignu,po,). The latter leads to a reduction of the nutrileretd to be treated in the
biological reactor and decreases the quantity loBPin the effluent (from 96 to 60 kg P.d8yWhen this is
translated to evaluation indice$aple 2), a substantial reduction in the effluent relatederia (Viotar,
Pioral, EQI) can be seen. The@cCI is lower compared tal, due to: (1) the lower price of magnesium

hydroxide Q(Mg(OH)Z) compared to iron chlorideXfec;,); and, (2) the potential economic benefit resgltin

from selling struvite Xmgnu, ro,)-

Additional simulations show that these values camrdified by changing the airflov@{;i,ping) and the
chemical dosageQg(on),) in the stripping unit. At high airflow§Qsripping) the quantity oz, stripped
increases and consequently the pH £{Cfas acidifying behaviour)F{gures 5a h). The latter favours
struvite vgnu,po,) Precipitation Figures 5k g). A higher quantity of Mg Qugon),) also drives the pH
higher Figures 53 f). These results show th&sgny,po, Precipitation is mainly limited byy,z+ rather
thanZNHI andzpoi-. This explains the substantial increas&@fnu,po, When the quantity of Mg is higher
(note that an overdose of magnesium is also natflmesd due to possible precipitation of dolomiegg.).
The latter has an effect on P in the AD superndtegtre 5€) and consequently th&QI (Figure 5¢). High
Qmg(on), decreases th@CI since the struviteXvgnu,ro,) IS accounted for as a potential benefig(re
5d). Above the P/Mg stoichiometric ratios, additioM is just increasing the cost without further &fn
Qmgeon), > 40 kg Mg.day. Figures 5e f, g and h show the dynamic profiles of pH at different
Qstripping/ @mg(on),- ONe might notice the effect that th&gss controller has on the quantity of sludge

leaving the AD as a result of changing the TSSosétt in AER3.
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446 3.2.4. Environmental/economic evaluation summary

447 In all cases, the proposed alternativasg, (A,, A;) result in substantial improvements with respecthie
448 open loop default configuratioM{). The implementation of a better aeration stratagg time-varying
449  sludge wasting schemd,() results in a favourable alternative. Simulatieaults show that this option leads
450 tolarger N and P effluent reductions, but alsoaartost-effective way to operate the plant. BbtlandA,
451 substantially reduce the quantity of effluent Pe Thain difference between the two relies on thdtnplies
452 a major modification of the plant layout. Capitadpenditures of the CRYST, STRIP, blowers, civil,
453 electrical and piping works should be included rdev to make a more complete assessment. In cgntras
454  alternatived, can be arranged easily with an extra dosing taakn though the potential benefit that comes
455  from struvite §ecovereq) F€COVery is very uncertain and these results lshioel taken with careShu et al.,
456 2006 Vaneeckhauteet al., 2015, the cost for each kg N and P removed is muclhéridor A, (see
457  Nremoved/OCI andP..moveq/OCI values inTable 2). The latter means that the cost is dramaticallyelr for
458 A5 and payback time for the new installation shoutdshort. It is important to highlight that a thogbu

459 economic study is not carried out in this papecsiihis not within the scope of the study.

460 4. CHALLENGES AND LIMITATIONS OF THE PROPOSED APPROACH

461 The model results presented in this paper demdestine effects that different operational modeshtig
462 have on the physico-chemical and biological tramségions of P in a WRRF. The observations notedv@bo
463 also suggest the importance of linking the P vin$ and Fe cycles since this paper identifiesgbiantial

464  control strategies not only address the primary,dna have an effect that is cycled throughoutpghscess

465 (seeFigures 1, SSJ. This is critical to enable the development, itestand evaluation of phosphorus
466 control/recovery strategies in the context of waésource recovery facilitieS€ppssonet al., 2013. In the

467 following section, we discuss the applicability the model assumptions made to describe P, S and Fe
468 interactions, the suitability of the number of ddesed processes and some practical implicationplémt-

469 wide modelling/development of resource recovergtsties.
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470 4.1. Selection of the Relevant Process and Interpretation of the Results

471 The model presented in this paper accounts for sairtfee most important factors affecting the Pn8 ke
472 cycles in a wastewater treatment faciliafstone et al., 2019. Additional processes may be added to
473 consider novel control strategies. For examplefidailcan be directly controlled in the digesterotigh
474  microaeration, which converts sulfide to elemestdfur (Krayzelova et al., 2019. The approach taken in
475 this paper in describing sulfide oxidation to elemaé sulfur in the anaerobic zone of the activatkdige
476 process is directly applicable to this problem.

477

478 When it comes to P recovery, important assumptwee made in order to run the third alternativg)(
479 For example, calcium precipitation is not assumedhe crystallizer. This is due to the low amouoits
480 calcium in this scenario, and because calcium gdlgeaomplexes with carbonat&gzadi Mbamba et al.,
481 20159. In high-calcium (hard) waters, it may becomeical. Another important factor is that ideal sslid
482 separation in the crystallizer is assumed. This @apend on the specific implementation of the &diger
483 and crystal recovery. Precipitate dissolution (@adicularly Mg dissolution) is currently simplifie The
484 latter may have an important effect on the ovegyadcess performanc&gmero-Guizaet al., 2015. In the
485 water line, competition between PAO and Glycogewrukaulating Organisms (GAO).¢pez-Vazquezet
486 al., 2007 2009 Oehmenet al., 2010 is not accounted for. This may have a strongierfice on the overall
487 biological P removal. S and Fe oxidation processe® been modelled chemically, but there are nuasero
488 studies demonstrating that these processes ardialsgically mediatedXu et al., 2013. In any case, the
489 oxidation processes goes to completion. This ma himited impact on the overall process, due ® th
490 ubiquitous capability of sulfur oxidation/reductioapability in heterotrophic organisms.

491

492 The alternating aerated/non-aerated periods migithpte the formation of nitrous oxide gashs ¢t al.,
493 2014 Ni and Yuan, 2015. When evaluating the suitability of different ¢mi/operational strategies, this
494  factor is not included in the study, and if it wasnight partly change the overall discussiond tesults
495 (Flores-Alsina et al., 20143 Sweetappleet al., 2015 Mannina et al., 2016. Closely related to that, it is

496 important to point out that aeration energy cowddbktter estimated with a more detailed pipingyithstion
23



497 model Beltran et al., 2017). In addition, the aeration model could be furtiraproved using a detailed
498 mass transfer model which might change the quaatistripped gas (that might be overestimated with
499 current model)(izarralde et al., 2015. All these options, including evaluating the impaf influent flow
500 equalization basins, are identified as promisirgeagch avenues that will be further studied inrbar
501 future Jeppssonet al., 2013. The latter could be combined with proper eledtyitariff models Aymerich
502 et al., 20195 and dramatically change the way how energy masbftimized. In this case study relative
503 costs have been useteppssonet al., 2007 due to the volatility of the prices (chemicalgotricity, sludge
504 disposal, ...). Proper cost estimates and variafjonsertainty ranges) will provide customized san$ for

505 a particular case.

506 4.2. General Applicability of the Presented Model

507 Even though the shown numeric results are casefispeioe presented tools are generally applicabie]
508 an earlier version has been successfully appliedreal plantazadi Mbamba et al., 201§. The influent
509 characteristicsGernaeyet al., 201) can be scaled to different situatiofréofes-Alsinaet al., 2014h Snip
510 et al., 2016 Kazadi Mbamba et al., 2016. The original BSM2 (only carbon and nitrogen)ntlaas been
511 adapted to simulate the dynamics of some SwedhtplArnell et al., 2013. The ASM2d and ADM1
512 (separately) have been applied to multiple casgietisuccessfully describing plant dynamiGginaey et
513 al., 2004 Batstone et al., 2015. The P principles upon which the new AD modelcanstructed are
514 experimentally validated in different studidkumi et al., 2011 Wang et al., 2016. The same applies to
515 the S module in both ASGtierrez et al., 2010 and AD Batstoneet al., 2006 Barrera et al., 2015
516 models. As stated above, expansion to consides ssh as microaeration in anaerobic digestersdean
517 done through direct adaptation of the approachntakéhe activated sludge process.

518

519 The model may also be applied to integrated urbatemsystems, wherein, chemicals added/presehgein t
520 sewer network or during drinking water productiomyrhave an impact on the downstream wastewater
521 treatment processes (particularly for systems wttesee is no primary sedimentatio®iKaar et al., 2014

522 Nielsenet al., 2005 Geet al., 2013.

24



523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

4.3. Optimization tool for resource recovery

The described approach has strong potential famaphg resource recovery (i.e. biogas and phogmhor
recovery) in a plant-wide context, and possiblyoails the larger sewage catchment. For example, the
potential energy/financial benefits of an improu®dgas production can be balanced with the addibion
selected chemical$-lores-Alsina et al., 2016 or substrates for co-digestioAr(ell et al., 201§. Another
potential option is P recoveryéneeckhaute, 201p Results presented in Section 3.2.3 show thatataé
quantity of recovered P is rather small (31.8 kgj*A.96.6 kg P.d). This is mainly due to the different P
losses/transformations through the different uinithe plant. Different operational conditioriddrti et al.,
2008, 2010 Latif et al., 2019 could reduce the quantity of P lost in the effiijecould minimize
uncontrolled phosphorus precipitation in the anlieraligester and enhance phosphorus recovery in the
crystallizer. In a similar way, smarter dosing w&gges (similarly tod,) could be evaluated in order to
reduce the use of chemicals and to adapt to changebe P loads due to operational changes
(summer/winter). Airflow in the stripping unit calbe adjusted in order to reach a desired pH (fddb

controller).

5. CONCLUSIONS

The main findings of this study are summarizechimfollowing points:
1) A plant-wide model describing the main P transfdiores and the close interactions with the S and
Fe cycles in wastewater treatment systems is piegen
2) Operational conditions have a strong effect onfdte of P compounds: accumulation Ey,o,

adsorption into FeXyro-np, Xgro-Lp) and co-precipitation with different metal¥yro_pp olg;

XHFO-1,P,0lds XCa3(P0,),» XMgNH,PO,);

3) Overall and individual mass balances quantify thsridution of P (as well as N and Fe) in both
water and sludge line;

4) The set of models presented in this study makes wseful engineering tool to aid decision
makers/wastewater engineers when upgrading/impgovine sustainability and efficiency of

wastewater treatment systems (e.g. reduce consumgatid increase recovery).
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6. SOFTWARE AVAILABILITY

The MATLAB/SIMULINK code of the models presentedtims paper is available upon request, including
the implementation of the physico-chemical anddmgaal modelling framework in BSM2. Using this code
interested readers will be able to reproduce thelt® summarized in this study. To express intepstse
contact Dr. Ulf Jeppsson (ulf.jeppsson@iea.lthatelund University (Sweden), Prof. Krist V. Gernaey
(kvg@kt.dtu.dk) or Dr. Xavier Flores-Alsina (xfa@dkiu.dk) at the Technical University of Denmark
(Denmark) or Dr. Damien Batstone (damienb@awmcdigael) at The University of Queensland

(Australia).
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Table 1. Main characteristics of the implemented control/operational strategies

Characteristics DO controller Ammonium TSS controller Phosphate Airflow in Magnesium
controller controller STRIP controller
Measured So, in AER2 Snuy in AER2 TSS in AER3 Spo, I AER3
variable(s)
Controlled So, in AER2 So, INAER1,2 &3 TSS in AER3 Spo, I AER3 Sco, in STRIP XMg(OH)Zin
Variable(s) STRIP
Set point/critical - 2gN-m”® 4000 g TSS-m™ 1gP-m® - -
value (if T < 15°C)
3000 g TSS-m™*
(if T> 15°C)
Manipulated Q.ir INn AER1, So, set point in Qw Qrecl, Qstripping Qmg(om),
variable 2&3 AER2
Control algorithm Pl Cascade PI Cascade PI PI - -
Applied in control A Ay & A Ay Ay & Ag A Ay & A A, As As

strategies A;




Table 2. Evaluation criteria for the three evaluated control/operational strategies

Operational alternatives > default Ay A, A;
Nijeldan! 35 3.6 3.6 37 gN.m*
Neotal 11.2 9.2 9.1 8.5 gN.m®
Pinorg 5.95 2.9 0.9 0.6 gP.m’>
Peotal 6.4 3.7 1.7 15 gP.m®
EQI 18 234 12 508 8237 7766 kg pollution.d™
TIV Syux (= 4 g N.m™) 0.95 0.07 0.08 0.08 %
TIV Noial (= 14 g N.m™) 0 0 0 0 %
TIV Pioar (=2 g P.m™) 100 75 13.4 15.7 %
Eqeration 4000 3146 3218 3194 kwh.d™
Eproduction - 5955 6054 6150 6038 kwh.d™
SPdisposal 3461 3538 3730 3487 kg TSS.d™
QFecl, - - 169 - kg Fe.d™
Qmg(oH), - - - 40 kg Mg.d™
Srecoveredd - - - 206 kg struvite.d™
ocr* 10 201 9495 13770 8912 -
Gen, 992 1009 1025 1006 kg CHa.d™
Gu,s 17.4 19.2 12.1 19.2 kg H,S.d™
Nremovea/OCI 0.079 0.089 0.062 0.097 kg N (removed).OCI™
Premoved/OCI 0.007 0.013 0.012 0.019 kg P (removed).OCI™

! The electr|C|ty generated by the turbine is calculated by using a factor for the energy content of the methane gas (50.014 MJ (kg
CH4) ) and assuming 43 % efficiency for electricity generation.

SPd,Sposal refers to the amount of solids which accumulate in the plant over the time of evaluation combined with the amount of
solids removed from the process (i.e. dewatered sludge). See Gernaey et al. (2014) for a more detailed description.
3 Srecovered efers to the amount of recovered struvite. See Supplemental Information for a more detailed description.

Relative costs for chemicals are calculated assuming 2400 $/ton as Fe (ICIS, 2016), 600 $/ton as Mg (ICIS, 2016) and 200 $/ton
as struvite (value) (Prasad & Shih, 2016 ; Jaffer et al., 2002; Minch and Barr, 2001 ).
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Figure 1. Block flow diagram including overall and individual (N, P, S, pH) balances for the WWTP under study (scenario A).
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Figure SS1. Block flow diagram including overall and individual (N, P, S, pH) concentrations for the WWTP under study (scenario A).
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Figure SS2. Block flow diagram including overall and individual (N, P, S, pH) balances for the WWTP under study (scenario A,).
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Figure SS3. Block flow diagram including overall and individual (N, P, S, pH) balances for the WWTP under study (scenario A3).

Values in between parentheses represent: H,S gas that is stripped (REC) and minor flow due to metal addition (DEW).
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» Development of a plant-wide model describing Ptbgr with N, S, Fe), including pH prediction

» Operational strategies, such as aeration contrdl dosing of metals, have complex plant-wide
interactions

» Quantification of overall and individual N, P, S ssabalances through the different process units

* Multi-criteria (economic/environmental) analysistbé evaluation results



