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Abstract

In this study, an efficient Discrete Element Lattice Boltzmann Model (DE-
LBM) is introduced to simulate mechanical behaviours of multiphase systems
involving particle-fluid and particle-particle interactions. The LBM is based
on the Multiple Relaxation Time (MRT-LBM) formalism for the fluid phase
and the Discrete Element Method for particle motions. A novel algorithm is
developed for detecting the particle contact base on particle overlapping areas
computed directly from the grid-based LBM data. This contact algorithm
achieves the same accuracy in determining the particle contact as provided
by the Hertz contact model but is far more efficient computationally. The
DE-LBM coupling approach is also modified to unify the different schemes
developed previously. A modified Verlet List method for updating the solid
occupation fraction is proposed to further speed up the simulation. The new
model is validated by a series of simulations including the single particle set-
tling and well-known ‘Drafting, Kissing and Tumbling’ (DKT) phenomenon
found in suspensions. The settling of a large number (2500) of particles in
a still fluid is also simulated with predicted concentration profiles match-
ing well the analytic solution. These applications demonstrate the potential
of the present DE-LBM model as a powerful numerical tool for simulating
multiphase particulate systems encountered in many engineering and science
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disciplines.

1. Introduction

Particles moving in flows are frequently encountered in both natural and
industrial fields. Examples can be found from sediment transport in oceans
and rivers, red cells moving within the blood plasma to particle mixing in a
fluidized-bed reactor used widely in the chemical industry. Particle-fluid and
particle-particle interactions play an important role in these processes, and
underlie complex system behaviours at different scales.

The problem has attracted interests of many researchers and been studied
experimentally [1–16] However, experiments cannot always provide enough
information, particularly about the mechanics occurring at the particle scale,
due to measurement limitations. An alternative approach is through numer-
ical modelling by means of particle-based simulation methods. As compu-
tational resources continue to improve, particle-based methods show great
abilities in replicating details of fluid flows and particle motions at both the
microscopic and macroscopic scales. In solid mechanics, the Discrete Element
Method [17] (DEM) has been successfully applied to predict the behaviours
of granular materials and dry soils [18, 19]. Coupling DEM with the Lat-
tice Boltzmann Method (LBM) has been carried out to enable simulations
of fluid-particle interactions [20]. Ladd [21] modified the original LBM for
spheres settling in a viscous fluid with a lubrication model to avoid colli-
sions between solid particles [22]. Cate et al. [12] reported a good agreement
between simulation results given by Ladd’s method and experimental data
under conditions of relatively low Reynolds numbers with the wall boundary
effect also considered. Cook et al. [23] presented a coupled Discrete Element-
Lattice Boltzmann method where particle collisions are solved by a contact
model. This DE-LBM method was also coupled with the Smagorinsky sub-
grid turbulence module to overcome the low Reynolds number limitation [24].
Spherical particles were employed in these studies. Galindo-Torres [20, 25]
extended the DE-LBM model for general shaped particles (even non-convex
ones) by using the sphero-polyhedron technique [26–29]. Furthermore, mul-
tiphase and multicomponent fluids with particle motions were also consid-
ered [20]. Indeed the DE-LBM has been already applied to many areas: for
example, Zhang et al. [30] studied the settling dynamics of irregularly shaped
particles over a wide range of Reynolds numbers; Wang et al. [31, 32] pre-
sented simulations for the gas-solid fluidization; and soil behaviours due to
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locally injected fluid were modelled by Cui et al. [33]. However a key obstacle
for applying the DE-LBM to a large scale problem is the computation cost
within the limit of available computer resources since both DEM and LBM
are computationally intensive.

The main goal of this study is to develop an efficient DE-LBM where the
particle-particle contact detection and the particle-grid immersion problems
are combined into one, saving greatly the computational time. The solu-
tion uses the information of the overlapping area between the DE particles
and the LBM grid cells to construct the contact area between DE particles
and deduce the contact force. Optimization techniques are also discussed to
further enhance the method.

The following of the paper is organized as follows: Sec. 2 describes the
LBM and DEM. The modified coupling approach is then presented with a
novel contact detection algorithm and contact model. Sec. 3 shows a series
of numerical examples to validate the new DE-LBM model. An application
of this model to the settling of large numbers of particles is elaborated in
Sec. 4. Finally Sec. 5 presents conclusions from the present work.

2. Methodology

2.1. Lattice Boltzmann method for fluid

The Lattice Boltzmann Equation (LBE) is employed to solve the fluid
flow problem [34, 35] using the D2Q9 model with the space divided into four-
square lattices. The velocity domain is discretized into 9 velocity vectors as
shown in Fig. 1. The discrete velocity vectors are defined as follows:

−→e i =





0, i = 0,

(±1, 0, ), (0,±1), i = 1 to 4,

(±1,±1), i = 5 to 8,

Based on the Chapman-Enskog expansion of the Boltzmann equation, an
evolution rule is applied to every distribution function [36]:

fi(
−→x +−→e iδt, t+ δt) = fi(

−→x , t) + Ωcol, (1)

where fi is the probability distribution function, −→x is the position of the local
lattice, δt is the time step and Ωcol is the collision operator. The most widely
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Figure 1: D2Q9 model.

used form of Ωcol is the so-called Bhatnagar-Gross-Krook (BGK) collision
operator: Ωcol = δt

τ
(f eqi − fi), with f eqi the equilibrium distribution given by,

f eqi = ωiρ

(
1 + 3

−→e i · −→u
C2

+
9(−→e i · −→u )2

2C4
− 3u2

2C2

)
, (2)

where C = δx/δt is the characteristic lattice velocity (δx is the lattice size).
The weights are ω0 = 4/9, ωi = 1/9 for i =1 to 4, and ωi = 1/36 for i =5 to
8.

The BGK collision operator assumes that the collision only depends on
a dimensionless relaxation time τ . However, It’s found that the simulations
become unstable when the value of τ is close to 0.5 [20]. Therefore, the
BGK collision operator is only suitable for flow at relatively low Reynolds
numbers. To overcome this limitation, the multiple relaxation time (MRT)
collision operator is adopted in this study as follows:

Ωcol = M̂−1Ŝ(meq
i −mi), (3)

with mi = M̂fi, where M̂ is a matrix used to transform the probability
distribution function fi to velocity moments linearly. For the D2Q9 model,
the moments are arranged as: m0 = ρ; m1 = e; m2 = ε; m3,5 = jx,y are

components of the momentum
−→
j = (jx, jy) = ρ−→u ; m4,6 = qx,y are related to

components of the heat flux −→q = (qx, qy); m7 = pxx; and m8 = pxy are related
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to the components of the strain-rate tensor. The equilibrium moments are

the functions of conserved moments (density ρ and moment density
−→
j ) and

the non-conserved moments are given by [37],

meq
1 = eeq = ρ(−2 + 3

−→
j · −→j ), meq

2 = εeq = ρ(1− 3
−→
j · −→j ),

meq
4 = qeqx = −jx, meq

6 = qeqy = −jy,

meq
7 = peqxx = jx2−jy2

ρ
, meq

8 = peqxy = jxjy
ρ
,

(4)

the transformation matrix is defined as:

M̂ =




1 1 1 1 1 1 1 1 1

−4 −1 −1 −1 −1 2 2 2 2

4 −2 −2 −2 −2 1 1 1 1

0 1 0 −1 0 1 −1 −1 1

0 −2 0 2 0 1 −1 −1 1

0 0 1 0 −1 1 1 −1 1

0 0 −2 0 2 1 1 −1 −1

0 1 −1 1 −1 0 0 0 0

0 0 0 0 0 1 −1 1 −1




(5)

In Eq. 3, Ŝ is the diagonal relaxation matrix in velocity moments. The
kinetic viscosity is related to Ŝ as:

si =





1, i = 0,3,5

1.4, i = 1,2

1.2, i = 4,6
δ2x

δtν+0.5
, i = 7,8

Here the Mach number is defined as the ratio of the maximum velocity
to C. When Ma � 1, the LBE can be used to recover the Navier-Stokes
equation. More detail can be found in [36]. The macroscopic fluid properties
such as density ρ and flow velocity −→u can be determined by the zero-th and
the first order moment of the distribution function:

ρ(−→x ) =
∑14

i=0 fi(
−→x ),

−→u (−→x ) = 1
ρ(−→x )

∑14
i=0 fi(

−→x )−→e i,
(6)
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2.2. Discrete element method for the motion of particles

The motion of particles is simulated by using the DEM [38]. Newton’s
second law is applied to all particles in both the translational and rotational
forms:

mi
−→a i = mi

−→g +
−→
F c
i +
−→
F h
i ,

Ii
d
dt
−→ω i =

−→
T c
i +
−→
T h
i ,

(7)

where mi and Ii are the mass and inertia of particle i, respectively. −→a i is the
acceleration. −→ω i is the angular velocity. Forces acting on particle i include

gravitational force mi
−→g , the hydrodynamic force

−→
F h
i and the contact force−→

F c
i .
−→
T h
i and

−→
T c
i represent torques due to the hydrodynamic and contact

force. g is the gravitational constant.
Within the DE formalism, there are various kinds of contact laws used to

determine the contact Force
−→
F c
i . In most of the DE-LBM studies, the linear

normal contact model is used with the normal component of
−→
F c
i given by:

F cn
i = knδ, (8)

where δ is the particle overlapping distance and kn is the particle contact
spring stiffness. Another widely used contact law, mostly in the context of
uncoupled DE, is the Hertz contact model [39] which takes into account the
elastic deformation at the particle surface a

F cn
i = knδ

3
2 , (9)

All these previous contact models depend on the particle overlapping
distance δ. Here, we develop a contact model based on the overlapping area
Ac since both δ and Ac can be used to determine the magnitude of overlap.

F cn
i = αknAc + η(−→vj −−→vi ) · −→n , (10)

where η is the damping coefficient, η = 2η0

√
kn(mi+mj)

mimj
with η0 set to 0.34

in this study. −→vj and −→vi are translational velocity of contact particles i
and j, respectively. The unit vector −→n points from j to i. An equivalent
coefficient α is used to transfer Ac to δ. The second term on the right hand
of Eq. 10 repesents the energy dissipation due to the frictional contact. The
dissipative force linearly depends on the ralitive velocity. It should be pointed
that η should increases with the ralitive velocity in aboved partly nonlinear
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Figure 2: Dimensionless overlapping area as a function of dimensionless overlapping dis-
tance. Solid lines are regressions with the form of Eq. 11.

model [40, 41]. Kuwabara and Kono proposed a fully nonlinear model which
can be found in [42]. As one can see, the normal contact force depends on Ac
linearly. It can be proved that this model is equivalent to the Hertz contact
model. Fig. 2 shows that the relationship between the overlapping area and
the overlapping distance follows a power law:

A∗c = f(β)δ∗
3
2 (11)

where the overlapping area and overlapping distance are normalized as A∗c =
Ac(R2

i +R2
j )

πRiRj
and δ∗ =

δ(Ri+Rj)

RiRj
. β is the ratio of the particle radius: β =

Rj

Ri
and

here we assume Rj ≥ Ri. With the substitution of Eq. 11, Eq. 10 can be
reduced to Eq. 9 if α = f(β) and the damping force is neglected.

7
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2.3. Coupling approach for LBM and DEM particles

To model the fluid-solid interaction, the hydrodynamic force
−→
F h
i and

torque
−→
T h
i in Eq. 7 should be determined to solve the motion of particles. The

non-slip boundary condition should be imposed on the surface of particles
for the fluid. A modified LBM was introduced by Owen [43] in which the
immersed boundary method [44] is adopted. The LBE is modified as follows:

fi(
−→x +−→e iδt, t+ δt) = fi(

−→x , t) +BnΩs
i + (1−Bn)

[
δt

τ
(f eqi − fi)

]
, (12)

where Bn is a weighting function depending on the occupation fraction εn.
Ωs
i is an additional collision term that accounts for the momentum exchange

between fluid and moving particles. The bounce-back rule is applied to the
interface of fluid and solid. The form of Ωs

i proposed by Nobel [22] is given
by:

Ωs
i =

[
fi′(
−→x , t)− f eqi′ (ρ,−→v p)

]
−
[
fi(
−→x , t)− f eqi (ρ,−→v p)

]
, (13)

where the symbol i′ denotes the direction opposite to the i direction, and −→v p

is the velocity of the particle at position x computed as:

−→v p = −→ω × (−→x −−→x c) +−→v c, (14)

where −→v c and −→ω are the translational velocity and angular velocity at the
particle’s centroid, respectively.

The advantage of the above equation is that it transforms smoothly be-
tween fluid nodes and solid nodes due to the motion of particles. When
εn = 0, Eq. 12 recovers the original LBE, while εn = 1 gives:

fi(
−→x +−→e iδt, t+ δt) = fi′(

−→x , t) +

[
f eqi (ρ,−→v p)− f eqi′ (ρ,−→v p)

]
, (15)

It should be noticed that Ladd [21] proposed a widely used moving solid-fluid
boundary condition, which is defined as:

fi(
−→x +−→e iδt, t+ δt) = f+

i′ (−→x , t) + 6ωiρ
−→e i · −→v p

C2

= f+
i′ (−→x , t) +

[
f eqi (ρ,−→v p)− f eqi′ (ρ,−→v p)

]
,

(16)
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where f+
i′ (−→x , t) is the distribution function after collision but before stream-

ing.
Ladd’s scheme can be considered as a special case (εn = 1) of the com-

bination of Eq. 12 and Eq. 13. However, comparing Eq. 15 with Eq 16, one
can find a difference concerning whether the distribution function values are
taken after the collision step or not. Thus, without losing the advantage of
Owen’s scheme, a modified form of Eq. 12 and Eq. 13 is introduced here as:

fi(
−→x +−→e iδt, t+ δt) = f+

i (−→x , t) +BnΩs+
i , (17)

Ωs+
i =

[
f+
i′ (−→x , t)− f eqi′ (ρ,−→v p)

]
−
[
f+
i (−→x , t)− f eqi (ρ,−→v p)

]
, (18)

with symbol + denoting after collision and before streaming. It is clear that
Eq. 17 and Eq. 18 can be combined to recover Eq. 16 when εn = 1.

Several forms of the weight function Bn have been discussed in [24]
and [22]; however, the differences of these forms do not significantly affect
the simulation results [24]. In this study, we apply Bn as given by [22]:

Bn(εn) =
εn(s7 − 1/2)

(1− εn) + (s7 − 1/2)
, (19)

The total hydrodynamic force
−→
F h
j and torque

−→
T h
j over particle j covered

by n cells can be calculated as:

−→
F h
j =

δ3
x

δt

∑

n

Bn

(∑

i

Ωs
i
−→ei
)
, (20)

−→
T h
j =

δ3
x

δt

∑

n

[
(−→x −−→x c)×Bn

(∑

i

Ωs
i
−→ei
)]
, (21)

Fig.3 shows a problem which may occur when particles are too close to
each other. If the lattice is covered by two particles, −→v p and εn in Eq. 13
and 19 become non-unique. In such a case, we propose that the weighted
average value is used to replace the original −→v p:

−→v p =
εn(−→x , i)−→v i

p + εn(−→x , j)−→v j
p

εn(−→x , i) + εn(−→x , j) . (22)

εn in Eq 19 also needs to be modified as εn = εn(−→x , i)+εn(−→x , j) correspond-
ingly.

9
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Figure 3: A lattice covered by two particles and εn < 1.

The occupation fraction (εn) plays an important role in the fluid-particles
interaction. Several methods to calculate εn have been investigated in previ-
ous studies [20, 31, 43]: an exact closed-form solution, edges approximation,
cell decomposition and polygonal approximation. To avoid the undesirable
effects arising from the approximations, the exact closed-form solution is
chosen in this study.

To update εn efficiently, a modified Verlet List method is [45] proposed
based on the fact that the displacement of particles cannot be larger than one
lattice size over each time step. Thus, only the εn values for boundary nodes
and neighbouring nodes need to be updated as shown in Fig. 4. The boundary
nodes are defined as −→xb ∈ {−→x | εn(−→x ) ∈ (0, 1)} at the last time step and all
lattices in the set {−→xn | −→xn = −→xb +−→ei , i = 1 ∼ 8} are neighbouring nodes.

10
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Figure 4: A modified Verlet List method.

2.4. An efficient contact detection algorithm for DE-LBM

The contact detection process takes a considerable proportion of the sim-
ulation time in DEM for a large number of particles moving freely in the sys-
tem [46]. Several different contact detection algorithms have been proposed
to speed up simulations [47]. Here we briefly introduce three most frequently
mentioned algorithms: Verlet-Neighbor List [45], Linked Cell Method [48]
and Linked Linear List [49]. In the Verlet-Neighbor method, each particle
only checks the contact with its neighbouring particles at distances smaller
than a cut-off radius. In contrast, the simulation domain is divided into lat-
tices in the Linked Cell method, and the contact detection is only computed
in the same square and the interface between squares. Finally, in the Linked
Linear List method, a bounding box is defined around each particle and the
contact between bounding boxes is determined. Once the contact between

11
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Figure 5: Overlapping area as a function of overlapping distance.

bounding boxes is found, the overlapping of two particles is evaluated. It can
be shown that the computational cost of the Verlet-Neighbour List method
and Linked Cell method present is of O(N2) whereas the cost of the Linked
Linear List is of O(N) (N is the total number of particles) [47].

So far, these methods are designed for DEM. However, within a coupled
DE-LBM model, the existence of a lattice grid can be used to detect the
contact with no additional calculations. As mentioned in 2.3, the occupation
fraction (εn) has to be determined for solving the solid/fluid interaction.
Here εn can also be used to detect the contact. Usually many cells will be
involved for a particle pair, which is different from the condition assumed
by the Linked Cell method where the lattice size is larger than the particle
size. Thus, once a cell is covered by (two) different particles (εn(−→x , i) >
0 and εn(−→x , j) > 0, where −→x is the position of lattice, i and j are the

12
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particles indexes), a contact is detected as shown in Fig. 5. Furthermore, the
overlapping area Ac can be approximated as follows:

Ac =
∑

k∈Γ

Akc (
−→xk) (23)

Akc (
−→xk) =

{
εn(−→xk, i) + εn(−→xk, j)− Am, if εn(−→xk, i) + εn(−→xk, j) > Am

0, else
(24)

where Γ is the set of cells satisfying {k | εn(−→xk, i) > 0, εn(−→xk, j) > 0} and Am
is an approximation parameter (0.95 used in this study).

The execution times of Linked Cell method and present method are shown
in Fig. 6. It is clear that the computational costs of present method do not
depend on the number of particles. In contrast, the execution times of Linked
Cell method increase significantly with the number of particles.

3. Validation

3.1. Validation for motions of single particle

To validate the new method presented above, the settling of a single par-
ticle in a viscous fluid is simulated to examine its dynamic behavior and
associated fluid motion. The domain size is chosen as 100R× 160R to mini-
mize the effect of domain boundaries, with the particle radius R set to the 10
LBM-lattice size. The particle is placed at a height of 144R from the bottom
of the domain. The initial transverse coordinate of the particle is slightly
deviated from the centreline (by 2 LBM lattices) to induce unsteady motion
at high Reynolds number. The density ratio of the particle and fluid is set
as ρs

ρf
= 1.01. The kinematic viscosity ν is varied as 0.05, 0.025, 0.02, 0.01

and 0.005 (in lattice units) to explore a wide range of Reynolds numbers.
Wall boundary conditions are applied at the boundaries. Note that in the
simulations, the gravity is only applied to the particle and thus a relative
gravity given by (1− ρf/ρs)g is used as suggested by Feng [50].

Fig. 7 show the drag coefficient CD of the single particle as a function of
Reynolds number Re. For comparison, experiment results from Tritton [51]
and Fornberg et al. [52] are also plotted. The Reynolds number and drag

coefficient are defined as Re = 2vpR

ν
and CD =

8Rg(ρs−ρf )

3ρfv2p
, respectively. Over-

all, the simulation results agree well with the experimental data. When Re

13
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Figure 6: Comparison of the computational efficiency for Linked Cell method and present
method. The domain size is 1000×1000 which is divided to cells with size of 200×200.
The number of time steps is 100.

is larger than 100, our model predicts slightly higher values than the ones
from Fornberg’s experiments since the particle is in a state of free settling in
fluid during the simulations in contrast to the controlled motion of a fixed
cylinder used in the experiments. The vorticity fields around the particle for
ν = 0.05, 0.01 are shown at Fig. 8. The size of vortices behind the particle
increase with Re. The structure of these vortices play an important role in
particle-fluid interactions [30].

Simulations of a rotating particle immersed in a uniform flow are also
carried out to further validate this model. Boundary conditions are set as
the velocity inlet on the left side and zero velocity gradient outlet for the right
side. The top and bottom boundaries are set as solid walls. The particle is
set to spin with a constant angular velocity ω. An additional lift force acts on
the particle due to the rotation. This phenomenon is due to the well-known
Magnus effect. A lift coefficient, which indicates the magnitude of the lift

14



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T
20 50 100 200 500

0.5

1

1.5

2

2.5

Re

C
D

Present study
Tritton
Fornberg et al.

Figure 7: Drag coefficient CD of a single particle as a function of Re.

force, can be obtained as CL = Fy

ρfU2R
depending on the lift force Fy. Here,

the Reynolds number is defined as Re = 2UR
ν

, where U is the unperturbed
mainstream speed (along the x-direction). Another dimensionless number is
the spin number Spa = ωR

U
. Fig. 9 shows the lift coefficient varying with the

spin number linearly at Re = 20. It also shows an excellent agreement with
the results of Kang et al. [53] and Ingham and Tang [54].

3.2. Validation for the settling of two in-line particle with the contact model

In order to validate the contact model presented in 2.2, we conduct a
simulation of the settling of two particles. The same particle radius R and
density ratio ρs

ρf
are used as in 3.1. The domain size is 20R × 80R and the

kinetic viscosity ν = 0.05. Two particles are placed at 72R and 68R from
the bottom initially, and the higher particle is placed 0.1 LBM lattice size off

15
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(a) (b)

Figure 8: Vorticity fields for (a) ν = 0.05, and (b) ν = 0.01.

the centreline. The stiffness is set to kn = 0.25 and the equivalent coefficient
α = 0.3.

These two particles are driven by gravity and undergo a motion often
referred to as ”drafting, kissing and tumbling” (DKT), which was first nu-
merically studied by Feng et al. [50]. Fig. 10 and Fig. 11 show time series
of vertical coordinate of particle centre and particle vertical velocity in com-
parison with the results of [50]. It can be seen that the DKT motions are
successfully simulated with the presented method, indicating that the present
overlapping area contact model gives similar results to those of the overlap-
ping distances contact model. The minor differences between the present
model predictions and Feng’s results may be due to the different ways of solv-
ing particle-fluid interactions and hence a slightly different hydraulic forces
in both studies (as evident in Fig. 11 where differences between the veloci-
ties calculated from both methods can be seen before the particles come in
contact with each other).

4. Application examples

4.1. The settling of a large number of particles

In this section, the settling of a large number (2500) of particles in a
closed box is simulated. Particles have a size of R = 5 cells to reduce the
computational cost. A larger domain (200R × 200R) is chosen and the pa-
rameters are the same as in the last section. Random initial positions for
the particles are set as follows: the domain is divided into squares of L = 4R
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Figure 9: Lift coefficient CL as a function of the spin number Spa.

and every square only contains one particle with a random inside position
as shown in Fig. 12(a). This gives a solid volume (area) fraction φ0 = 0.196.
Fig. 12 shows snapshots of the velocity field at different times of the simula-
tion. After a short free settling stage, the particles tend to move in clusters
due to the collision and KDT motions. Complex fluid structures can be found
at different scales, with several paths being created by leading and following
particles preferring to move along those trails of reduced drag. Fig. 13 shows
that the settling interface position depends on the time linearly, indicting a
relatively constant settling speed. The interface position is determined by
the average height of the highest particles cross the domain. The vertical
concentration φ profiles is presented in Fig. 14. To calculate this profile, the
domain is divided into several layers in the vertical direction and the con-
centration of each layer is calculated as the solid volume (area) fraction in
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Figure 10: Time series of vertical coordinate of particle centre. Red and blue color repre-
sent the leading particle and the following particle, respectively.

the layer. Two sudden jumps of concentration are found between the differ-
ent layers. From the top to the bottom, the concentration increases sharply
from 0 to φ0 and the value of φ is mostly kept constant until particles ap-
proach the bottom. Then φ linearly increases to the maximum concentration
πmax = 0.785. Bürger and Tory [55] reported seven different settling modes
for homogeneous suspensions based on the analytical analysis of Kynch’s
theory [56]. Our results show qualitatively an agreement with the ‘MS-3’
mode (the embedded figure of Fig. 14). An interesting difference between
the simulation and analytical results is: the concentration in the dense layer
is a constant for the ‘MS-3’ mode; however our simulation shows a linear
dependence of the concentration with the height. In Fig. 12, different colors
of particles are used to indicate their initial positions. The final positions of
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Figure 11: Time series of particle’s vertical velocity.

particles do not follow the order of the initial conditions, indicating strong
mixing of particles from different layers during the settling. To study the
mixing process, we define a mixing index as

Λl =

∑
i∈Γl

ζ initi

Npl

(25)

where Γl is the set of all particles belonging to the lth layer (same layers as
used for calculating the vertical concentration profile) and Npl is the number
of particles in Γl. ζ initi is a dimensionless number given by l0

Nl
, where Nl is

the total number of layers and l0 indicate the initial layer of particle i at
the beginning of the simulation. Fig. 15 shows the profiles of Λ at different
times. A clear stratification is found during the sedimentation: Λ linearly
increases with the height from the bottom; however, above the dense layer,
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Figure 12: Snapshots of 2500 particles settling at different times. The color of particles
indicates the initial position. The colourmap is proportional to the fluid velocity.
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Figure 13: Time evolution of the interface position.

Λ is not as sensitive to the height. It may be concluded that all particles in
this section are well mixed due to the observed flow patterns. The mixing
appears to have occurred over a much larger scale compared to the particle
size.

5. Concluding remarks

An efficient DE-LBM scheme has been developed in this study. We intro-
duce a novel contact detection algorithm based on the occupation fraction
(εn) for both the particle-fluid and particle-particle interaction, which re-
quires no additional calculations. This method can reduce the DE-LBM
simulation time significantly. Instead of using the overlapping distance, the
contact model is modified to be based on the particle overlapping area (cal-
culated from εn). The modified contact model is shown to be equivalent
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Figure 14: Vertical concentration profiles at different times.

to the classical Hertz contact model. The multiple relaxation time (MRT)
collision operator is employed to increase the numerical stability of LBM.
The coupling approach is also constructed to unify the different treatments
made in Ladd’s and Owen’s schemes. To further speed up the simulation, a
modified Verlet List method is introduced.

The model was first validated for the settling of a circular particle im-
mersed in fluid. The simulated drag coefficient shows a good agreement with
experimental results of Tritton [51] and Fornberg et al. [52] for flows passing
a fixed cylinder. The lift coefficients acting on a rotating cylinder are also
simulated well and agree with previous studies [53, 54]. Moreover, the present
model successfully simulates the DKT motions. The proposed overlapping
area contact model gives similar results to those predicted by the overlapping
distance contact model.
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The present DE-LBM model is applied to simulate the settling of a large
number (2500) of particles. With a large number of particles far smaller
than the ones commonly found in settling experiments, the concentration
profiles given by the DE-LBM simulation match well with the analytical
solution. Details provided by the simulation allow us to quantitatively study
the particle-mixing process during settling. A clear stratification is found for
the mixing index, providing details on the different phases involved in the
mixing process.

The presented results demonstrate the potential of the new DE-LBM
model as a powerful numerical tool for simulating a wide range of particulate
systems that can be found in many engineering and science disciplines. Fu-
ture studies will focus on extending this method to 3D as well as for general
shaped particles.
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