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Abstract

Deep Brain Stimulation (DBS) surgery for neuro-psychiatric disorders involves the insertion

of Micro Electrode Recording (MER) targeting probes into a specific location in the patient’s

brain to confirm the precise location of the candidate nucleus for the stimulation therapy.

The unique geometry and electrical properties of these MERs probes, when inserted into

neuron dense tissue such as the Sub-thalamic Nucleus (STN) results in the acquisition of

signals which typically contain contributions from the spiking behaviour of multiple nearby

neurons in addition to a low frequency component similar to the Local Field Potentials (LFP)

generated by more distant neurons (over length scales smaller than typical LFPs). We refer

to these signals acquired from the MER probes, which contain both some of the nearby

(resolvable) spikes and these smaller scale LFPs as very Local Field Potentials (vLFPs).

The unique signal contributions to the vLFPs raise the immediate question what con-

tribution of the signal is best used in order to characterise (in terms of identifying the

underlying physiology or detecting changes of) the state of the STN. In this thesis we de-

velop methodologies to analyse vLFPs using both model based and model free analysis of

the entire (nearby spiking, distant spiking and non-spiking contributions) vLFP and only

the nearby spiking neurons.

We apply concepts from Mori-Zwanzig non-equillibrium kinetic theory to develop model-

free estimates of the entire vLFP. With this approach we show that the Non-Markov Pa-

rameter (NMP) can be used to identify statistically significant changes in the electrical

behaviour of the STN when presented with different neuro-linguistic stimuli. We show that

these changes are due to variations in the low frequency bands associated with the power

spectrum of the vLFP.

We then develop a model-based analysis of the entire vLFP using the renewal theory of

stochastic processes. We show that when the ensemble of neural processes forming the vLFP

satisfy the assumptions of an independent renewal process model, given a measurement of
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the power spectrum, the common probability distribution driving the spiking statistics of

the individual neurons can be identified. We show with simulation that, when the assump-

tions of the model are satisfied, this approach can outperform state of the art spike sorting

algorithms in the challenging situation of identifying the spiking statistics when an unknown

number of neurons with near identical spike shapes contribute to the vLFP.

Finally we develop spike-only analysis by constructing spike sorting strategies using con-

vex optimisation and clustering theory to identify the precise timing and shapes of the spikes

associated with individual neurons nearby to the MER probe. With this approach the spike

detection and clustering is performed using a Basis Pursuit De-Noising (BPDN) strategy

which is a subset of ℓ1 regularised least squares techniques. We show that this method out-

performs state of the art spike sorting algorithms for a range of signal to noise ratios. We use

this method to identify Poisson counting statistics with average firing rates between 20-56

Hz for the STN neurons in patients with Parkinson’s Disease during DBS surgery. These

results are consistent with previous studies.

The results of these methods show that information contained in the different scales of

the vLFP can successfully be used to assist in characterising the state of the STN in patients

with Parkinson’s Disease. We conclude that both the BPDN spike sorting methodology and

the NMP approach offer robust performance and require minimal a priori assumptions. The

BPDN approach provides excellent physiological insight (identifying nearby spiking shapes

and timing) whereas the NMP provides a well-tested discriminator of vLFP electrical state.

We recommend that future work explore whether these metrics can be used as biomark-

ers which correlate to the degree of disease state in Parkinson’s disease. The development

and identification of these biomarkers which provide continual and real time analysis of the

patient state will provide a crucial component for the development of future adaptive DBS

systems which can minimise battery expenditure, offer superior symptom amelioration and

provide treatment to patients who have thus far been considered refractory to pharmacolog-

ical or neuromodulation therapy.
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1
Introduction

“When we talk mathematics, we may be discussing a secondary language built on

the primary language of the nervous system.”

– John von Neumann

Therapy for treatment resistant neuro-psychiatric disorders, such as Parkinson’s Dis-

ease, Tourettes & Obsessive Compulsive Disorder involves a procedure known as Deep Brain

Stimulation (DBS) [2], [3], [4]. In the United States DBS was approved by the Food and

Drug Administration (FDA) for essential tremor in 1997, Parkinson’s Disease in 2002 and

was granted humanitarian device exemption for dystonia in 2003 and treatment resistant

Obsessive Compulsive Disorder in 2009 [5]. In DBS the skull and meninges are breached

in a keyhole neurosurgical operation and electrodes are placed into a specific deep brain

nucleus and a high frequency square wave current (typically ≥ 130 Hz [6]) is consistently

1
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Figure 1.1: Micro Electrode Recordings of different nuclear structures on an approach of

the STN. In this image the electrode is passed from the thalamus through the Zona Incerta,

through the second field of Forel (H2) to the STN and then finally out through to the

Substantia Nigra. Notice that as the STN is approached the background noise increases,

and the firing pattern of the neurons becomes more irregular and ‘burst’ like. Identification

of this pattern can be used by the neurosurgeon to confirm the location of the Sub Thalamic

Nucleus. Image from [1].

applied. In many cases this undeniably radical treatment modality been shown to provide

the best symptomatic relief to these debilitating disorders. For example it has been shown

that DBS in conjunction with best medical therapy is superior to best medical therapy alone

for alleviating the symptoms of Parkinson’s Disease [7] [8],[9].

The need for treatment approaches such as DBS is further underscored by the rising

incidence and costs associated with these neuro-psychiatric disorders treatable with stimu-

lation therapies. In Australia alone it is estimated that as of 2014 there were over 65, 000

people suffering from Parkinson’s Disease. This is an increase in incidence of 5, 100 more

patients than in 2011 and 14, 500 more than in 2005. Recent studies [10] have suggested that

50% of Parkinson’s Disease patients (excluding those presenting with atypical varieties of

the illness) are good candidates for DBS. It is estimated that worldwide over 140, 000 people

have benefitted from DBS [11]. The health care (due to aged care facilities, pharmaceuticals,



3

hospital, pathology and imaging) costs in Australia in 2014 were estimated at over $567 mil-

lion and total productivity costs (due to disease impact on both patients and their carers)

were estimated at over $182 million [12]. This is in addition to the incalculable impact of

pain, suffering, psychological distress and reduction in quality of life of those suffering from

Parkinson’s Disease, their families and their carers. When we further consider that this is

only one disease which can be treated with DBS, the therapeutic power of this treatment

modality and the motivation for researching methods to further optimise symptom control

becomes evident.

The nuclei which are targeted with DBS, and whether the targeting is bilateral or uni-

lateral, is determined by the underlying pathology and the clinical judgement of the neuro-

surgical team. Typical sites for stimulation for Parkinson’s Disease are the Sub Thalamic

Nucleus (STN) or the Globus Pallidus Internus (GPi) [2]. Sites stimulated for Tourette’s

Syndrome are the centromedian-parafascicular (CM-Pfc) and ventralis oralis complex of the

thalamus [3]. For Obsessive Compulsive Disorder the nucleus accumbens [4] is stimulated.

These nuclei are remarkably small. For example, the size of the STN is approximately 6.5

x 7.8 x 9 (W x L x D) mm [13] which is similar to the size of a pea. Targeting these nuclei

is a difficult neurosurgical operation because these small structures deep within the brain

must be targeted without damaging vital adjacent neuro-vascular structures which can lead

to strokes, speech and motor deficits or death.

There are multiple ways to target the candidate nucleus but a commonly used method

[14] is a two stage approach of pre-operative imaging using fused X-Ray Computerized To-

mography (CT) and Fluid Attenuated Inversion Recovery (FLAIR) Magnetic Resonance

Imaging (MRI) scans for the neurosurgeon to plan the surgical approach and then peri-

operative analysis using Micro Electrode Recordings (MER) to confirm the target nucleus.

This use of electrical recordings is employed because certain nuclei generate characteristic

electrical signals which the surgeon can use to confirm the location of the target nucleus to

within sub millimetre accuracy [1] [15], [16]. For example, when targeting the STN, inser-

tion into the STN is associated with an increase in background noise and the appearance
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of irregular burst firing neurons [17],[16]. This change in the behaviour of the electrical

signal is shown in Figure 1.1. In the case of DBS surgery for Parkinson’s Disease, once the

location of the candidate nucleus (described for the STN in [14]) is identified the recording

tip is withdrawn and the distal sheath provides high frequency (≥ 130 Hz) stimulation to

this targeted nucleus. The awake patient 1 is then examined for improvement of the clinical

signs of bradykinesia, tremor and rigidity and an absence of adverse (typically speech and

language) effects. These MERs are then withdrawn and the permanent, larger (∼ 1 mm)

stimulating electrodes are inserted.

This thesis is concerned with analysing the one dimensional voltage signals obtained from

the single channel MER probes which are used to confirm the target nucleus. These elec-

trodes are relatively low impedance (0.5 MΩ @ 1kHz) tungsten probes but have a relatively

large 500 µm diameter conducting tip. The size of this tip is much larger and the impedance

much smaller than the electrodes used for recording the precise activity of single neurons

(∼ 1 − 40µm, 1MΩ [15]). Conversely these MERs also have tips with comparable surface

areas but higher resistance to the so called ‘macro electrodes’ used to measure Local Field

Potentials (LFPs) which have diameters ∼ 50−1270µm [18] and impedances of ∼ 1−100kΩ

@ 1kHz [15]. For the remainder of this thesis we will refer to the smaller high impedance

probes which measure single unit activity as single unit probes, the larger low impedance

probes as macro electrodes and the larger radius but lower impedance probes used to confirm

the candidate nucleus as micro electrodes.

The electrodynamics of the interaction between the neural field and the probe tip is highly

non-trivial, but we can utilise two basic principles of circuit theory to guide our understanding

of what biological processes we expect to identify with these different recording probes:

1. The first principle is that the larger the surface area of the probe, the greater the

charge it can accommodate on the surface and thus the capacitance will be greater.

This larger capacitance will generate a low-pass filtering effect on the recording probe

1The brain does not contain nociceptors (pain receptors), so local anaesthetic can be applied to the scalp

and the patient can be woken up mid operation with minimal distress!
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and therefore will preferentially record the lower frequency aggregate activity of the

neuronal populations. This component of the signal is the LFP. There are a multitude

of neuro-biological processes which contribute to the LFP. Indeed this is an active area

of research as the precise biophysical origins of the LFP are not completely under-

stood [19]. See [20] for an excellent review of these processes contributing to the LFP.

Essentially, the LFP consists of both spiking and non-spiking events. Non-spiking

contributions include synaptic currents [21],[20], and voltage-dependent membrane os-

cillations [22]. The spiking contribution to LFPs includes afterhyperpolarization of

nearby neurons [19], [23] and the spiking patterns of more distant neurons (the electric

fields of which have been heavily attenuated due to the low-pass filtering properties of

the extra-cellar fluid [24],[25] and the geometry of the dendrites [20]). Thus the LFP

records information over a large spatial distribution [26].

Therefore, we expect that the macro electrodes which have a large surface area and low

impedance to primarily record these LFPs. We also expect that the micro electrodes

which have large surface area but (relatively) high impedance to also record a contri-

bution (over a smaller spatial distribution) from the LFPs. These results are indeed

seen experimentally in [15],[27] and specifically for the STN in [28].

2. The second principle is that the larger the impedance, the lower the current source the

probe can record for a given voltage. This is easily seen as a consequence of Ohm’s law.

Thus, we expect that the higher the impedance of the probe - the lower the number

of electrical sources which will contribute to the recording. Therefore, we expect that

the single unit probes having high impedance and low surface areas will, as their name

suggests, primarily record the contribution from a minimal, usually single number of

neurons nearest to the probe. We also expect that the micro electrodes with their

higher impedance than the macro electrodes, but larger surface area than the single

unit recordings, will record the contribution from a potentially larger group of nearby,

resolvable neurons in addition to recording a contribution of the LFPs. This result is

also seen experimentally in [15], [28],[29].
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For all intents and purposes, these different electrodes can be understood as follows. The

single unit probes are excellent at recording the precise electrical signal of a very localised

space of brain tissue which, with appropriate operator skill may be single neuron behaviour.

We refer to these as single unit recordings. The larger macro electrodes record an aggregate

of neuronal activity (the LFP) over a much larger spatial scale which is too complex to iden-

tify the behaviour (e.g. a single neuron) of the contributing processes. The signals, analysed

in this thesis, acquired from the MER probes to confirm the location of the candidate nu-

cleus lie in between these two extremes. They will record the behaviour of a few neurons

(∼ 10 − 100) in a small area (∼ 10 − 100µm) [15] in addition to the background neural

processes. We refer to these signals measured by the MERs which contain both resolvable

single unit recordings and significant contributions to the LFP as very Local Field Potentials

(vLFPs). It is important to realise that there has been much work showing that correlations

exist between the aggregated LFP activity and the spiking activity [19],[30],[27],[31] and as

stated in [20]: “spike ‘contamination’ of the LFP should be regarded as good news, in that

high-frequency LFP power can provide a ‘proxy’ for the assessment of neuronal outputs”.

In a very broad sense, vLFPs therefore may contain similar information over the different

scales of the single unit recordings and the component of the LFPs.

It is important to take a step back and appreciate both the breadth and depth of the

complexity of the ‘system’ we are analysing compared to the vLFP measurements we are

obtaining with the MERs. We are obtaining in-vivo recording from the human STN, a

structure which has a size on the order of millimetres [13] with a single channel probe which

measures the electrical activity on the order of hundreds of micrometres [15]. Thus, we are

not even simultaneously recording the entire STN at any given time. The neurons in the

STN will have an exquisitely complicated set of synaptic dendritic connections to each other

which we cannot hope (especially in the in-vivo situation) to identify [32]. The collection

of neurons comprising the STN will have extensive connections to the other collections of

neurons comprising other nuclei in the Basal Ganglia [33]. The Basal Ganglia itself will have

a multitude of connections to other nuclei, collections of nuclei and cortical structures [34].

The dynamical evolution of each of these neurons is approximated by the Hodgkin-Huxley
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equations [35] which are four coupled non-linear differential equations which are capable of

exhibiting nonlinear behaviour such as bifurcations [36], mode locking [37] and chaotic os-

cillations [37],[38]. The kinetics of the ion channels which regulate the flow of ions and drive

the membrane voltages are intrinsically stochastic [39]. Therefore, there is complexity in the

breadth of how the neurons being measured are connected to each other (both neurons being

measured and not explicitly measured) and complexity in the depth of how the electrical

behaviour of a single one of these neurons evolves.

Given these recordings, a fundamental question is: what can we expect to identify from

these Micro Electrode Recordings ? This is more a question of philosophy than of engineer-

ing science. Clearly we cannot expect from these single channel recordings, to completely

characterise the evolution of all the 1011 neurons in the measured brain. The problem is

intrinsically ill posed. Can we completely identify the firing patterns of a single neuron close

to the recording probe? Can we identify the firing pattern of a collection of neurons near the

probe? Can we characterise the behaviour of at least a portion of the STN with the LFP

signal? Which part of the measured signal should be analysed? For the small and large stim-

ulating recording probes the component of the signal which should be analysed is dictated

by the electrodynamics of the measured process. The single neuron recordings (if correctly

placed) can only provide information about the precise firing patterns of the single identified

neuron. For the larger macro electrode probes, the averaged activity of the behaviour of the

lower frequency LFP is collected and patterns can be attempted to be identified. For the

MERs considered in this thesis, the vLFPs will record a combination of the multiple (and

in theory individually resolvable) spiking patterns of individual neurons and the spatially

averaged activity (although over a smaller length scale compared to the stimulating probes)

of the lower frequency LFP behaviour.

Given the complexity of the problem at hand, another question is: why should we attempt

to identify information about the signal over different scales? Why bother attempting to

isolate and cluster the firing times of individual neurons? Why should we try to characterise

the patterns observed from the LFPs? These are more direct questions of engineering science.
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We argue that this multi-scale analysis of the vLFPs can be used to help construct Closed

Loop DBS (CLDBS) stimulation devices to improve the outcomes of patients suffering from

the wide range of neuro-psychiatric disorders we have discussed. We discuss this motivation

further in the next section.

1.1 Thesis Motivation

Figure 1.2: Schematic difference between closed loop (left) and open loop (right) control

of DBS pacemakers. In the open loop configuration (current DBS scheme) the stimulation

parameters remain the same independent of the MER signal. In closed loop control the

stimulation parameters would alter depending on the MER signal. Image from [40].

The motivation for this work extends beyond exploring the academically interesting prob-

lem of attempting to develop classification schemes for a network of an unknown number

of neurons, with unknown but dense and widely distributed connections which individu-

ally display non-linear dynamics and evolve together with firing patterns best described as

stochastic processes. The analysis of the vLFPs associated with these MERs can be used to

construct biomarkers in CLDBS strategies. For the remainder of this thesis we restrict our

consideration of biomarkers and CLDBS for the treatment of Parkinson’s Disease. Nonethe-

less the general principles discussed can potentially be applied to the development of CLDBS

for any neuro-psychiatric disorder. In this section we do the following:

• Introduce CLDBS and describe its theoretical superiority to current open loop DBS

therapy.
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• Discuss the need for the identification of biomarkers for CLDBS algorithms.

• Argue that analysis of the vLFPs provides a natural, robust and practical framework

for the construction of these biomarkers.

DBS for Parkinson’s Disease is currently implemented as an open loop strategy where

chronic stimulation is provided independent of the recorded state 2. The problem with this

approach, compared to an adaptive DBS stimulating device which could intelligently vary

(or turn off) the delivered stimulation is the sizeable energy expenditure (resulting in an

increased rate of required surgical battery replacements), the onset of more side effects due

(in part) to the large volume of tissue stimulated and stimulation therapy which becomes less

effective (due to static stimulation parameters) as the disease progresses. Since Parkinson’s

Disease is a progressive illness [41] there is a need for the stimulation parameters (stimu-

lation frequency, pulse width and amplitude) to be varied by an expert (guided by clinical

experience) at 3-12 monthly intervals [40]. It is perhaps not surprising that there is im-

proved patient outcomes with more frequent consultations [42]. It is attempting to solve

these problems and utilise the advantages of frequent stimulation parameter variation which

has motivated researchers to explore CLDBS protocols.

In CLDBS the stimulation parameters (and indeed whether stimulation is provided at all)

are determined in real time by some controller based on the physiological state of the mea-

sured system. In a sense, the CLDBS represents the parameter changes by the clinician in

the limit of updates in differential steps of time, with the parameter choice dictated by signal

processing not by clinical acumen and the parameter variation performed by a microproces-

sor not a medical specialist. The difference between an open and closed loop DBS system

is illustrated schematically in Figure 1.2. An ideal CLDBS controller would use information

about the state of the patient to only provide stimulation when clinically necessary, provide

the minimal stimulating current required and constantly update the stimulation parameters

to provide optimal symptomatic relief. The advantages of CLDBS would therefore include:

2There are some newer devices which allow the user the option to turn the stimulation on and off and

vary the intensity of injected current within a range preset by the treating clinician.
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constant adaptation to deal with habituation and tolerance to the parameter settings [43],

minimisation of side effects with lower amplitude current stimulation, maximisation of bat-

tery life (and subsequent delay in operations to replace the battery), reducing the burden on

the health care system by reducing required neurology consultation visits and introducing

treatment strategies which work for people who have thus far been refractory to open loop

DBS.

Central to the development of these CLDBS systems is the need to characterise the phys-

iological state of the patient in order to determine when the stimulation should be provided

and with what stimulation settings. In classical control engineering we would refer to this

as identifying the state estimator of the system [44]. These physiological characterisations

of the patient are referred to as biomarkers [5], [43], [45]. There is a very large class of

biomarkers which could be employed to ‘measure’ the state of the patient for a CLDBS

algorithm and they can be broadly classified as internal or external biomarkers [43]. The

internal biomarkers are based on direct measurements of the neuro-dynamics and candidates

include the LFP, individual spiking patterns, electroencephalograms, magnetoencephalogra-

phy, near infrared spectroscopy and functional magnetic resonance imaging [43] and even

chemical analysis of neurotransmitter metabolites [46]. The external biomarkers are based

on measurements of the clinical sequelae Parkinson’s Disease such as accelerometers [47] or

even video based monitoring systems [48] [43] which observe the motor pathology.

For a thorough review of candidate biomarkers for closed loop DBS see [43], [45]. In

effect, all the candidate biomarkers have advantages and disadvantages. Nonetheless, we

argue on engineering grounds that the biomarkers for CLDBS based on MERs (either the

LFP or the individual neuronal spikes) have the most practical advantages for the reasons

outlined below:

• The vLFPs measured with the MERs provide real time recordings with high temporal

resolution.
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• The MERs provide continuous recordings which are readily available. This is in con-

trast to other considered biomarkers such as fMRIs, infrared spectroscopy, accelerom-

eters, EEGs or video based monitoring systems which are only feasible to record for

discrete periods of time in the hospital or laboratory setting.

• The MERs which measure the vLFP provide robust and relatively cheap sensors com-

pared with the chemical sensors, such as the silicon electrodes with microdialysis tubes

considered in [49], which as discussed in [45] may be susceptible to tube blockage and

difficulty in miniaturizing the chemical analysis hardware for implementation in per-

manently implanted devices. This is in addition to the concerns regarding the temporal

resolution of these chemical sensors [45].

• There is a large body of work which has explored whether patterns in the signals mea-

sured by MERs can detect Parkinson’s Disease pathology. There has been considerable

interest exploring whether the emergence of β band (10-35Hz) synchrony in LFPs is

linked to the motor disorders of Parkinson’s Disease [50], [51], [52], [53], [54], [55], [56].

• Prototype CLDBS systems using biomarkers derived from components of the vLFP

have previously been constructed using the power in the β band of the LFP as the

biomarker [56] and using identified single unit events in deep brain and cortical nuclei

as the biomarker [40].

• Since the MER probes are also capable of providing stimulation we argue that a CLDBS

system which can provide both stimulation and recording (although not necessarily

simultaneously) from the same location would provide a simplified design and minimise

neuro-surgical incisions. This will decrease surgical operation times, decrease costs

associated with the operations and minimise adverse outcomes such as breaching vital

neuro-vascular structures. In addition a single stimulating and recording site is likely

to be more robust to errors introduced by effects such as electrode drift [57].

Past construction of biomarkers based on MERs for CLDBS systems have followed two

distinct paths, utilising different components of the vLFPs which we discuss below:
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Low frequency LFP content: The first approach is based on the previously mentioned

approach of removing β (10 − 35 Hz) band peaks from the power spectrum of the

measured LFPs.

In [56] a CLDBS system which used the amplitude in the β band (measured in real

time from the stimulating electrode) as the biomarker to determine when to deliver

stimulation to the STN of eight human patients with advanced Parkinson’s Disease was

developed. The details are provided in [56], but we briefly discuss the methodology of

this CLDBS system and its clinical outcomes. For each patient the frequency within

the β band with the greatest amplitude was determined, and the LFPs measured from

the stimulating electrode were filtered in real time using a Moving Average around this

frequency. Whenever the energy at this specific frequency in the β band went above

a predetermined threshold, a DBS pulse (at 130 Hz) of predetermined amplitude was

applied until this energy fell below the threshold. When the energy in this specific

frequency of the β band was below the threshold value, the stimulator remained quies-

cent. This CLDBS system was compared to the standard open loop DBS system, and

a DBS system which randomly applied stimulation with the same parameters as the

CLDBS system. This random stimulation DBS system was developed such that, on

average, it was in the stimulating and quiescent phases for the same lengths of time as

the CLDBS system. This CLDBS showed marked improvement in the tremor, rigidity

and bradykinesia of patients compared to the open loop and randomly stimulating

DBS systems, as judged by both blinded and unblinded clinicians using the Unified

Parkinson’s Disease Rating Scale (UPDRS), and (unsurprisingly) less energy usage

than the open loop DBS system. Interestingly, as the CLDBS stimulations progressed

the emergence of β bursts above threshold became less frequent.

In [58] a theoretical closed loop controller was constructed where the input-output

relationship between the stimulation current and the resulting LFPs was determined
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using an Auto Regressive Exogenous (ARX) model where the parameters were de-

termined by minimising the mean squared prediction error using a Recursive Least

Squares (RLS) algorithm. A generalised minimum variance control law was imple-

mented which attempted to determine the current amplitude that would provide mini-

mum mean squared error between the predicted next value of the LFP (using the ARX

model) and a predetermined reference LFP (indicative of no tremor) defined using an

Auto Regressive (AR) model. The parameters of the ARX model were updated online

using the RLS algorithm. The success of the controller was judged on how similar the

power spectra from the LFPs resulting from the neurons exhibiting tremor stimulated

with the closed loop DBS protocol were to the spectra from the LFP of the ‘tremor

free’ neurons.

The advantage of working with the LFP is that it requires minimal signals processing

effort to obtain properties such as the peaks in different spectral bands. The disad-

vantage of this approach is that due to the complexity of LFPs there are few ‘simple

models’ of their behaviour and thus it is difficult to predict how the measured LFP will

evolve when stimulated with a specific current. For example, in [58] statstical ARX

models without recourse to the underlying biology were employed.

High frequency individual spike content: The second approach is based on identifying

the firing patterns of individual neurons near the recording probe. This involves re-

moving the lower frequency LFP content and employing signals processing intensive

spike sorting algorithms to identify action potentials and grouping them to the correct

neuron.

In [40] a physical closed loop DBS controller was tested on ‘Parkinsonised’ green rhe-

sus monkeys where a pulse train (of seven or one pulses) of stimulation was applied

to the GPi following detection of a spike at an electrode in the primary motor cortex

or the GPi. This closed loop scheme was shown to provide superior improvement of

the akinesia symptoms, reduce GPi neuron discharge rates, alter the discharge pattern



14 Introduction

and remove or attenuate oscillatory activity (as measured with wavelet spectrograms)

of neurons at the motor cortex and GPi.

The work of [40] raised interesting questions about where biomarkers based on MERs

should be measured from. It was shown that superior amelioration of akinesia was

demonstrated when the stimulus was applied to the GPi but the signal was measured

from the motor cortex rather than simultaneously recording and stimulating the GPi.

Furthermore, recording from a site distant to the location of stimulation has advantages

in terms of minimising stimulus artefact [43],[45] but signals processing techniques can

be applied to reduce this [59]. We argue that the benefits of recording from a sec-

ondary location must be balanced against the increased surgical risk of introducing a

second incision site in an area of such neuro-vascular sensitivity. We also mention that

biomarkers based on estimation the LFP are largely robust to the presence of stimula-

tion [43] because the low frequency content of the LFP [20] has minimal overlap with

the high frequency stimulation.

More recently [5] have used advanced multi electrode hardware (originally used for

spinal cord stimulation) to record the response of neural tissue in the area of stim-

ulation with minimal latency (≤ 0.5 milliseconds) after stimulus onset. This work

showed that the morphology of the late ( ∼ 3 milliseconds after stimulation) response

of Evoked Compound Action Potentials (ECAPs) correlated well with therapeutic re-

lief from rigidity symptoms, and it was suggested that this shape could be used as a

CLDBS biomarker.

The advantage of working with the individual neuron firing patterns is that the ob-

served behaviour is well understood in terms of the underlying biology and relatively

simple phase oscillator (typically leaky integrate and fire) models of neurons can be

used to predict how the firing patterns of the measured neurons will respond to input

stimulus current. The disadvantage of this approach is that it requires more intensive
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signals processing in order to identify the spikes and group them to their appropriate

neuron.

In this section we have introduced CLDBS and justified why it would provide superior

therapeutic treatment than the currently available chronically applied open loop DBS. We

have suggested that the construction of a CLDBS system will require a biomarker to act as an

estimator of the state to determine the specific stimulation parameters when the CLDBS is

activated. We have argued that one of the most practical, robust and time tested biomarkers

for a CLDBS system is based on the vLFPs obtained from MERs. We have surveyed the

literature and shown that previous biomarkers based off MERs have used information across

different length scales: using the low frequency contribution from the LFP to identify β

band oscillations and using the high frequency contribution from the individual spike trains

of nearby neurons.

1.1.1 Thesis Motivation In A Nutshell

In effect, the analysis of the STN using transformations of the vLFP over different scales

(individual neuron behaviour or spectral bands of the LFPs) may generate biomarkers which

can assist in the development of future closed loop DBS algorithms. These adaptive DBS sys-

tems offer the exciting prospect of simple (from a surgical perspective) devices which record

and stimulate from the same deep brain region which provide superior clinical amelioration

of Parkinson’s Disease symptoms, minimal side effects and have longer lasting battery life.
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1.2 Thesis Hypothesis

Figure 1.3: Micro Electrode Recording of a human Sub Thalamic Nucleus from a patient

with Parkinson’s Disease. Notice that the signal detected by the MER probe consists of both

individual, resolvable spikes of nearby neurons (red boxes) and the Local Field Potential

(green box) which is the localized spatially averaged aggregate of distant spiking neurons

and non spiking neuro-biological processes. We refer to this signal as the Very Local Field

Potential (vLFP).

The research question addressed with this thesis is to explore whether vLFPs measured

from single channel targeting MERs during DBS can be used to characterise the state of the

human Sub Thalamic Nucleus. The concept of ‘characterising the state of the STN’ refers to

the development of transformation operations applied to the MER which can either detect

changes in the electrical activity of the STN or reveal information about the underlying

activity of some subset of the constituent neurons in the STN. The recordings which we

analyse in this thesis were obtained from patients with Parkinson’s Disease. We envisage

that these identified transformations used to ‘characterise the state of the STN’ could be

considered in future work as potential biomarkers for CLDBS strategies. The previously

discussed electrodynamic nature of the MER is such that the vLFP is unique (compared to

macro electrodes and single unit recordings) insomuch that it contains contributions from

both the LFP and (potentially multiple and resolvable) spike trains of single neurons near
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to the recording probe. This contribution over multiple scales is shown in Figure 1.3. Thus

in order to explore this problem we analyse the vLFP on multiple different scales:

1. Model-free analysis of the entire vLFP (spikes + LFP) using complexity metrics.

2. Model-based analysis of the entire vLFP (spikes + LFP) assuming it consists of an

ensemble of similar, independent, stochastic processes.

3. Spike-only scale of identifying the precise firing statistics of the neurons closest to the

recording probe.

More specifically, the entire vLFP is analysed in a model-free framework using the non-

Markov family of parameters and a model-based approach where the measured system is

modelled as an ensemble of independent renewal processes. The spike-only scale is analysed

using a spike sorting approach based on applying Basis Pursuit De-Noising to separate and

sort the spiking behaviour of the closest neurons from the entire measured signal.

1.3 Thesis Approach

In this thesis we aim to analyse the vLFP signals measured from the MER over the different

scales below:

• Model-free entire vLFP (LFP + neuronal spikes) analysis using the Non-Markov Pa-

rameter. This approach requires minimal a priori assumptions but provides little in-

sight into the underlying neuro-physiology of the recorded process.

• Semi-parametric Model-Based entire vLFP (LFP + neuronal spikes) analysis using

transformation operators in the spectral domain. In this approach the measured neu-

rons are modelled as an ensemble of independent stochastic renewal oscillators. This

approach introduces a series of a priori assumptions but uses all the information in the

entire signal and provides excellent insight into the underlying spiking statistics of the

contributing neurons (if the assumptions are satisfied).



18 Introduction

• Spike-only analysis using Basis Pursuit De-Noising: This approach introduces minimal

a priori assumptions, and provides deep neuro-physiological insight by identifying the

spike times and shapes of the observed resolvable neurons. The disadvantage of this

approach is that only the behaviour of the neurons nearest to the probe are considered

while the LFP component of the signal is not analysed.

The scales we choose to analyse the vLFP over, from the broadest (model-free entire

vLFP) approach to the most localised (spike-only) analysis span the range of scales which

were considered for past biomarkers based on the MERs for CLDBS systems in section 1.1.

At each of these scales we characterise the signal using a transformation operator derived

from solving for the inverse of different linear response problems. The methodology we use

to analyse the vLFPs over the different scales is described in more detail in the following

section. We delay more technical descriptions of these approaches until section 1.4.

It is important to stress that this analysis over multiple scales of the vLFP is performed

from MER signals acquired from the (previously discussed) temporarily inserted targeting

electrodes, not the permanently inserted chronically stimulating electrodes.
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1.3.1 Entire vLFP (LFP + Neuronal Spikes) Model-Free Analysis

Figure 1.4: Analysis of the entire vLFP (spikes + LFP) using the Non-Markov Parameter.

The entire one dimensional vLFP consisting of both the LFP and the neuronal spikes is

mapped to a single positive number on the positive real number line.

Starting with the broadest model-free entire vLFP scale - we use all of the signal available

to us: the individually resolvable spikes and the spatially averaged LFP, without recourse

to relying on models for these components which reduce the validity of this approach in

the general case. This approach of analysing the entire signal in a model-free framework

certainly contains the most information available about the neural state, but the price for

this is the difficulty of unravelling what this information is telling us about the underlying

neuro-biology. It is unlikely that we can identify the precise, individual behaviour of any of

the constituent neural processes contributing to this signal with this approach, but we can

hope to detect patterns in the signal. That is detect, either directly or by transformations of

the signal, the presence of some emergent phenomena in the bulk behaviour (at the level of

the MER probe tip) of these strongly interacting neurons. This is in a sense the philosophy

of other clinical techniques such as Electroencephalograms (EEGs) where repeatable electri-

cal rhythms can be identified from the ensemble behaviour of billions of neurons measured

by only dozens of electrodes at the level of the scalp [60], or the Electrocardiogram (ECG)

where cutaneous electrical measurements of millions of myocytes and electrical pacemaker

cells generate predictable complexes, with changes that can be identified with the onset of

specific pathologies. [61]
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In previous model-free approaches to analyse vLFPs, the LFP is separated from the spik-

ing activity detected in the MER by low-pass filtering. The LFP is then characterised by

some transformation operator. Typically this operator attempts to characterise the low-pass

filtered one dimensional signal by a single number. The most popular linear transformation

approach has been to assume stationarity of the signals and analyse the power spectrum

to observe how the energy of the signal is distributed across frequencies. This approach

has yielded insight into the association of peaks in the β (13-30Hz) band of the power spec-

trum of the LFP and associated movement disorders in Parkinson’s Disease [50],[51],[52],[53].

More specifically, there is evidence that peaks in the β band are associated with akine-

sia/bradykinesia [51],[54], whereas suppression of these peaks may be associated with tremor

[55]. As with all LFP analysis it is difficult to relate these identified changes of the β band

to the underlying biology. The current consensus opinion is that the rise in β band activity

is related to synchronous oscillatory activity in the cortico-basal ganglia circuits [62].

More sophisticated approaches based on nonlinear transformation operators have also

been applied to low-pass filtered MER signals. Bispectral analysis of the STN LFPs of

patients with Parkinson’s Disease was introduced in [63], which identified a correlation be-

tween low β (13-20 Hz) and high β (20-35 Hz) bands which was attenuated with the medical

treatment of Levodopa. Lempel Ziv Complexity (LZC) analysis of the STN LFPs in the β

(13-35 Hz) band of Parkinson’s Disease patients was performed in [64], which showed that

there was a strong negative correlation between the LZC and the degree of akinesia-rigidity

as measured by the Unified Parkinson’s Disease Rating Score (UPDRS).

The approach we undertake to analyse the system on this entire vLFP (spikes+LFP)

scale is to perform a nonlinear transformation using the Non-Markov Parameter, which is

developed from the Mori-Zwanzig framework [65] of non-equilibrium statistical mechanics.

This approach belongs to the subset of statistical complexity metrics, which is a measure of

the correlation structure of an interacting system and its subsets [66]. The motivation for

using the NMP is based on its previous success of differentiating states of complex biologi-

cal systems, such as healthy and post-myocardial infarction hearts based on ECG recordings
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[67] and, more saliently for this thesis, attempting to differentiate Parkinsonian tremor under

different treatment modalities (Levodopa and DBS) based on signals obtained from velocity

transducing laser recordings [68].

Using the NMP, the one dimensional vLFP signal is mapped to a single number on the

positive real line, R+, as shown in Figure 1.4. It is shown that the transformation applied

by this mapping requires solving for the inverse of the linear integro-differential Langevin

equation. We show that this metric can be used to differentiate the state of the STN in pa-

tients when presented with different neuro-linguistic stimuli during lexical decision making

tasks. We also show with aid of the Weiner-Khinchtine theorem that this NMP complexity

metric has an explicit link to the transformation operators based on feature selection of the

power spectrum.

The primary advantages of this model-free analysis of the entire vLFP is two-fold. Firstly

this approach uses the entire signal, both the spiking structure of nearby spikes and the neural

aggregate LFP behaviour to characterise the state of the STN. In a general sense, using the

entire signal guarantees that the contribution of the entire neural ensemble being measured

is used to characterise the state of the system, not just the neurons that happen by chance to

be closest to the probe. Secondly,this approach is model-free and thus is reliant on a minimal

set of assumptions. The disadvantage of this approach is also the model-free nature, as it is

not possible to relate any changes identified to the behaviour of the underlying neurons.

1.3.2 Entire vLFP (LFP + Neuronal Spikes) Model-Based Anal-

ysis

This approach is based on trying to incorporate information from all of the vLFP (spikes

+ LFP) and relating the observed signal to the underlying physiology. In order to perform

this step we must introduce a model of the portion of the STN analysed and relate this to

either the measured signal or the signal under an appropriate transformation. The model we

introduce is to approximate that the rich behaviour of the entire (LFP and neuronal spikes)
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Figure 1.5: Analysis of the entire vLFP (spikes + LFP) by modelling the measured sys-

tem as a stochastic ensemble of independent filtered renewal processes with similar spike

shapes. Using spectral analysis the one dimensional time series is mapped to the probability

distribution driving the renewal process.

strongly interacting neuronal system being measured is dominated by the spiking patterns of

the nearby neurons (the neuronal spikes) and the more distant neurons (the filtered neuronal

spikes contributing to the LFP). More specifically, we model the portion of the STN mea-

sured by the probe tip as an ensemble of independent stochastic processes following renewal

statistics with similar (but linearly filtered) spike shapes.

The use of renewal theory in neuroscience is widespread in both experiment [69], [70],

[71] and theory [72], [73], [74]. There is evidence that the discharge patterns of neurons in

certain anatomical zones of lower order mammals such as the spike trains from the retinal

ganglion cells to the Lateral Geniculate Nucleus (LGN) of the thalamus in cats [75] and the

responses of neurons in the Antero-Ventral Cochlear Nucleus [76] follow renewal statistics.

More recently, [77] has shown that the dopaminergic neurons of the Substantia Nigra Pars

Compacta in rhesus macaques follow different classes of renewal statistics while performing

saccadic eye movements in response to different visual stimuli. The popularity of renewal

theory models, where the gap between firing times are statistically independent, is consis-

tent with the Hodgkin-Huxley Na+,K+ channel model, where the equations governing these

variables is reset after each spike [72]. Obviously, this model is not always valid and there

are many examples in the literature where non-renewal statistics have been identified. See
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[78] for a detailed review of these examples and proposed mechanisms for the generation of

non-renewal statistics.

There has been an interest recently in modelling the behaviour of neurons in models

of sparse neural networks using renewal theory [79],[80],[81]. In these works the statistical

behaviour of a single neuron in the network is analysed with the other neurons connected in

the network altering its voltage by a sequence of synaptic bombardments which follow either

renewal [79] or pooled renewal [80] statistics. In these works the analysed neuron is modelled

as a Leaky Integrate and Fire (LIF) neuron. It is important to realise in this model that the

non-spiking effects (i.e. the non-spiking component of the LFP) are ignored. The model we

incorporate for the neural field-probe tip interaction is similar to this described work, but

instead of considering the voltage evolution of a single neuron in the network we consider

the voltage evolution of the probe tip embedded in the network. Also, instead of considering

the inputs to a modelled neuron being a barrage of synapses from connected neurons which

follow pooled renewal statistics, we consider the inputs to the modelled probe tip as the

voltages generated from the barrage of electric fields, propagating through the extra-cellular

fluid, associated with the action potentials of the nearby neurons.

The methodology we employ to develop this model-based transformation operator, termed

the Spectral Density Estimator, is described in chapter 3. Briefly, we mention that we trans-

form the measured signal to its power spectrum and then use the Weiner-Khincthine theorem

to identify the systems’ correlation structure. The assumptions of the ensemble of renewal

oscillators are then introduced and specific mathematical properties of renewal processes are

used to construct the probability distribution describing the timing between the spikes from

the power spectrum.

Using these approximations we introduce a series of (inverse) transformation operators to

map the observed signal to the probability distribution driving the duration of the gaps be-

tween spikes for a single spike train, referred to as the Inter-Spike-Intervals (ISI). Notice that

this effectively maps the one dimensional measured electrical signal to the one dimensional
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Probability Distribution Function (PDF) describing the ISI. This methodology is illustrated

in Figure 1.5. This PDF can then be used to characterise the measured system by con-

struction of the appropriate statistical moments of the ISI such as the mean firing rate, the

coefficient of variation or the information entropy associated with the spike times (assuming

they exist). Notice that similar to the model-free approach using the NMP this approach

maps the one dimensional measured electrical signal to a (series of possible) single number(s).

This model-based entire vLFP approach can be considered the ‘middle ground’ between

the entire vLFP model-free approach using the NMP, which uses the entire measured signal

and the spike-only approach which, as the name suggests, only uses information from the

spikes of the closest neurons. In this approach the entire vLFP is used, but it is assumed

that the dominant effect is the spiking activity (both of the nearest neurons and the spiking

component of the LFP). The advantage of this approach is being able to relate the entire

measured signal to the underlying physiology of the PDF driving the spiking patterns of the

neurons without explicitly detecting the spikes and measuring their ISI. The disadvantage

is that unlike the other two methods, there are a series of a priori assumptions introduced

in this model-based approach which will not always be necessarily valid. Indeed, in section

3.5.4 we identify degenerate cases where this method does not work at all.

1.3.3 Spike-Only analysis of the vLFP

In this approach we consider the spike-only scale analysis, characterising the vLFP by the

identified spike times of the neurons closest to the recording probe. One of the primary

objectives of neuroscience is attempting to understanding how neurons encode information

[82],[83], [84], [85], [86], [87]. Due to the assumed stereotyped shape of the action potential

associated with a neuron, it is frequently assumed that the information is encoded in the

patterns of the spike trains [88], [89], [85], [90]. This philosophy of the importance of timing

is all pervasive through neuroscience: ranging from the debate of rate [88] or temporal [89]

codes for information transmission of a stimulus to Hebbian learning models where neural
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Figure 1.6: Analysis of the subsection of the vLFP (neuronal spikes only) using spike sorting.

Using the spike sorting algorithm the one dimensional time series is mapped to a sequence

of identified spike times and associated spike shapes.

connections strengthen based on increased firing rates [91] to Spike Timing Dependent Plas-

ticity [92] where connections between neurons are strengthened or weakened based on the

order of pre and post-synaptic firing times within small timing windows.

In order to identify the spike times associated with the neurons around the probe tip we

use spike sorting algorithms. These algorithms strip all of the information from measured sig-

nal away except for the times and shapes of the different action potentials identified which are

then appropriately clustered into groups associated with individual neurons. This approach

is illustrated in Figure 1.6. The problem of spike sorting in extracellular recordings (such as

the recordings considered in this thesis) is a highly non-trivial problem [93]. There are mul-

tiple spike sorting algorithms available for single channel recordings (many with extensions

to multi channel recordings) which all have limitations with regard to what spikes they can

identify amongst noise [94], how well they can be correctly clustered into their correct groups

[95] and how many of the different neurons they can actually detect [96]. We review multiple

different spike sorting algorithms and how they perform the task of spike sorting in chapter 4.

The problem with spike sorting is that it is almost always easiest to detect and separate

spikes from neurons which have larger amplitudes and higher firing rates (as better estimates

of the shape can be constructed). Unfortunately, sometimes the neuron conveying the most
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information about a process or a stimulus is a quiescent or sparsely firing neuron [93] which

may have a reduced amplitude because it is further away from the recording probe than

other neurons. Thus, a constant problem in spike sorting is developing more accurate spike

sorters which can detect more than just the neurons associated with the loudest and largest

action potentials.

The methodology we employ to generate a more accurate spike sorting algorithm is to

introduce techniques from Basis Pursuit De-Noising (BPDN), which are a subset of ℓ1 min-

imization techniques, that have shown great success in constructing accurate and sparse

estimates to linear problems in signals processing [97],[98] statistics [99] and compressed

sensing [100],[101]. The motivation for applying these BPDN methods is that if we assume

a linear model for the measured spike trains and certain conditions described by the Re-

stricted Isometry Property (see section 4.4) are satisfied, this method is guaranteed to give

the optimally sparse accurate estimation of the different neuron spiking times.

The advantage of this spike-only approach is that we are able to understand the under-

lying biological processes we are measuring by accurately identifying the firing patterns of

the nearby individual neurons in a (nearly) model-free fashion with minimal a priori require-

ments. The disadvantage of this approach is that the majority of the information in the

vLFP (the LFP portion) is discarded and only the behaviour of the nearest neurons (which

happen to be nearest to the probe purely by chance) are recorded. We mention however that,

as discussed in [96], these spike sorting methodologies which are developed for single channel

recordings can easily be applied to multiple recording probe systems [102], where different

regions in a similar area (e.g. different regions of the Sub Thalamic Nucleus) are recorded

concurrently. Applying these accurate spike sorting algorithms to all the individual probes

in the system could provide spike timing information for potentially hundreds of different

neurons in the system. This would allow for a microscopic classification (in terms of spike

times and shapes) of neural structures over meso-scopic length scales using minimal a priori

assumptions about the measured system.
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1.4 Thesis Structure Overview

Figure 1.7: Breakdown of the thesis chapter content and their inter-relationships.

The organisation of the subsequent chapters and their relationship to each other is shown

in Figure 1.7. The content of these chapters is summarised below:

Chapter 2 develops the entire vLFP model-free approach discussed in Section 1.3.1. Specif-

ically, the following is performed:

• The family of Non-Markov Parameters (NMP) from the Mori-Zwanzig theory of

non-equilibrium statistical mechanics is introduced. This family of parameters is

analysed in a signals processing framework, showing with the Weiner-Khinchtine

theorem that the set of NMP for a system can be constructed as nonlinear func-

tions of the measured power spectrum. This is achieved in part by solving an

inverse problem based on the integro-differential Langevin equation. It is then

argued that only the first NMP contains useful information about the measured

system.
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• Closed form expressions for the zero frequency value of the first NMP is deter-

mined for a series of instructive physical systems in order to identify parametric

sensitivity.

• The NMP in different frequency bands (zero frequency, β (13-35Hz) and fast (80-

200Hz) bands) is applied to vLFPs obtained from MERs of the STN obtained

from patients with Parkinson’s Disease while undergoing neuro-linguistic testing.

It is shown, with two separate experimental data sets, that the NMP is able to

identify different neural states under the different experimental conditions.

Chapter 3 develops the entire vLFP model-based approach discussed in Section 1.3.2.

Specifically, the following is performed:

• Renewal stochastic processes are introduced and their application to neuroscience

is discussed.

• The spectral properties of renewal processes and pooled independent renewal pro-

cesses is discussed. It is the spectral properties of these pooled processes which

forms the basis for the model-based analysis of this chapter.

• The Spectral Density Estimator (SDE) which allows estimation of the ISI PDF

of an ensemble of independent renewal oscillators given an estimate of the power

spectrum is developed and discussed. The construction of this estimator requires

the serial solution of two linear inverse integral equations of renewal theory.

• The SDE is compared to the spike sorting algorithm Osort on simulated datasets

of vLFPs. It is shown through extensive Monte-Carlo simulation that the SDE is

superior to the classical spike sorting algorithm Osort when the individual spike

trains are renewal processes and the action potentials of different neurons are

sufficiently similar.

• In the Appendix it is shown that the renewal theory model of a neuronal spike

train is equivalent to the Digital Pulse Interval Modulation (DPIM) coding scheme

(frequently used in fibre-optics and communications theory) in the limit of the

allowed pulse times occurring on the continuous time line.
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Chapter 4 develops the spike-only scale discussed in Section 1.3.3. Specifically the follow-

ing is performed:

• An overview of spike sorting, its canonical sub-problems (spike detection, spike

estimation, feature selection and clustering) and state of the art spike sorting

algorithms are discussed.

• The Basis Pursuit De-Noising (BPDN) framework for sparse estimation of spiking

times from MERs is motivated.

• An overview of BPDN is provided and the three BPDN algorithms (homotopy,

InCrowd with Truncated Newton Interior Point and Dual Augmented Lagrangian

Method) which are subsequently analysed are discussed.

• The dictionary terms necessary to drive the BPDN algorithm using a sequential

three step process of Continuous Wavelet Transformation, Diffusion Mapping and

Mean Shift clustering are introduced.

• The developed BPDN spike sorting algorithm is shown by extensive Monte-Carlo

simulation with Receiver Operating Characteristic (ROC) plots and Chi squared

(χ2) analysis to be superior to the state of the art spike sorter wav-clus when

analysed on simulated MER data.

• The developed BPDN spike sorting algorithm is then applied to the vLFPs ob-

tained from MERs inserted into the STN of patients with Parkinson’s Disease

prior to DBS surgery. It is shown using this algorithm that the analysed patients

have Poisson firing statistics with average firing rates between 20-56 Hz, which is

consistent with previous analysis.

Chapter 5 develops the conclusions to the findings of the previous three content chapters

and identifies limitations, recommendations and extensions for future work.
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1.5 Thesis Scope

Figure 1.8: Structure of a CLDBS system described in [43]. u(t) is the input current stim-

ulation. x(t) is the state of the neural system. y(t) is the biomarker of the neural system

under the transformation g(x, u, t). k(y, t) is the feedback signal based on the biomarker

y(t). This thesis is only concerned with identifying potential biomarkers y(t) under more

specific transformations g⋆(x, t).

This thesis has been motivated within a frame-work of developing biomarkers for potential

use in CLDBS systems. It is important to realise that the construction of a CLDBS system

is a highly non-trivial problem, in terms of the development of requisite underlying theory,

experimental validation and practical implementation, which is well beyond the scope of a

single thesis. In this thesis we restrict our analysis to characterising the state of the STN

(both in terms of identifying changes in the electrical activity or describing the behaviour

of the individual constituent neurons) by developing transformations of measured vLFPs

obtained from MERs. We do not consider:

• How the DBS stimulating current affects the neural state (f(u, t) in Figure 1.8), nor

the structure of the feeback controller based on the biomarker (k(y, t) in Figure 1.8).

• The effects of stimulating current in our transformation models (therefore the transfor-

mations g(x, u, t) considered in 1.8 are restricted to the sub-class g⋆(x, t)). Nonetheless,

with sufficiently sophisticated hardware recording devices (such as introduced in [5])

the biomarkers developed in this thesis should be valid either during or immediately

after (< 0.5 milliseconds) the stimulating current is provided.
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• Correlations between our identified transformations of the measured signal and clin-

ical pathological state of patients with Parkinson’s Disease or the success of specific

stimulation settings.

Nonetheless, the metrics and transformations identified and evaluated within this thesis

can be considered as providing some of the ground work for the development of potential

biomarkers for future CLDBS strategies.

1.6 Contribution of Thesis

This thesis provides a systematic analysis of vLFPs measured with MERs in the STN over

different length scales, introducing new methods to analyse these recordings and applying

methods which had previously not been applied to MERs. More specifically:

• For the model-free entire vLFP approach (chapter 2), the family of NMPs is applied

to deep brain recordings for the first time and the previous complex descriptions of

these metrics using the complex language of non-equilibrium statistical mechanics is

condensed to simpler explanations based on nonlinear spectral analysis. The NMP is

then used to identify signal changes in the human STN when presented with different

neuro-linguistic stimuli.

• For the model-based entire vLFP approach (chapter 3), a new method of analysis based

on Spectral Density Estimator is introduced. It is shown that given the assumptions

of this model are satisfied, this estimator can outperform state of the art spike sorting

algorithms when the spikes associated with different neurons are sufficiently similar.

It is also mathematically shown that if the information transmission of a neuron is

modelled as a Digital Pulse Interval Modulation encoder, where the information is

encoded in the time between the spikes, that the power spectrum of this process in the

limit of the spikes being allowed to occur (as biologically expected) at any time on the

continuous timeline is equivalent to a renewal process.

• For the spike-only approach (chapter 4), a new spike sorting algorithm based on Basis

Pursuit De-Noising is developed. It is shown that this algorithm can outperform state
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of the art spike sorting algorithms in a range of signal to noise ratios. It is then shown

that this algorithm can successfully be applied to the in-vivo MER to identify the spike

shapes and times associated with different neurons.



2
Model-Free Entire vLFP Analysis

“With four parameters I can fit an elephant, and with five I can make him wiggle

his trunk.”

– John von Neumann

2.1 Chapter Summary

This chapter introduces the model-free approach to characterising the entire vLFP (spikes

+ LFP) of a single channel MER. This method is based on the family of Non-Markov Pa-

rameters (NMP) developed from non-equillibrium statistical mechanics. The solution of the

family of NMP values requires solving an infinite sequence of deconvolution problems based

on the estimated auto-correlation function. This will be a consistent theme throughout this

thesis of characterising the vLFP in terms of a transformation which requires the solution

33
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of inverse problems.

We show that this family of parameters can be constructed in terms of a modular set of

operations on the measured power spectrum of the studied system. We suggest by theory

and example that only the first NMP has any useful value in complexity analysis, eliminating

the need to solve the infinite set of NMPs. We show that the first NMP is a function of both

the spread of the power spectrum and the ratio of the spectrum to its amplitude envelope.

We show that the zero frequency component of this parameter, frequently used as a metric

of discrimination between states of complex systems is solely a function of the spread of the

measured power spectrum and the DC offset. Thus, we show that using this parameter is

effectively equivalent to performing spectral feature selection.

We apply this NMP metric to the entire vLFP from MERs of the Sub Thalamic Nucleus

of patients suffering from Parkinson’s Disease. We identify changes in the low frequency

components (≤ 200Hz) of the NMP during different states of neuro-linguistic testing. Using

the theoretical analysis of the NMP, we identify that these changes are indicative of varia-

tions in the measured power spectrum of the vLFP. The results of this chapter suggest that

the low frequency spectral behaviour of the Sub Thalamic Nucleus changes with different

neuro-linguistic stimuli, and that the NMP can be used to detect these changes.
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2.2 Chapter Overview

In this chapter we introduce the Non-Markov Parameter which has previously been used to

analyse many-body systems where the underlying dynamics driving the system are too com-

plex to be predicted. The use of this family of metrics requires solving an inverse problem

associated with the integro-differential equations which describe the Mori-Zwanzig kinetic

equations. This approach of using the NMP to characterise the vLFP will represent the first

of three approaches based on solution of an inverse problem to characterise the neural signal

acquired from a single channel recording.

In this chapter we perform the following:

1. Provide a brief overview of the applications of statistical complexity metrics (which

the NMP belongs) to dynamical systems.

2. Introduce the Mori-Zwanzig kinetic equations which underpin the NMPs.

3. Show that the family of NMPs can be understood as a set of closed-form expressions

that only depend on a nonlinear set of integral transformations on the measured sig-

nal’s power spectrum. We then show that the first NMP contains the most useful

information about the measured system, and that the higher order NMPs veil the

underlying correlation structure of the measured system.

4. Show that the zero frequency value of the first NMP, ZF-NMP1, is solely a function of

the DC offset and spread of the measured power spectrum.

5. Apply the ZF-NMP1 to four instructive systems. The first three systems are analytical

models of a Simple Harmonic Oscillator driven by white noise, band limited white

noise and the output of white noise into an idealised all-pole low-pass filter. Analytical

calculation of the NMP identifies a primary sensitivity to the decay rate of the tail

of the power spectrum. The ZF-NMP1 is then numerically calculated from the time

series of a second order Auto-Regressive process driven by white noise. We show

that the numerically determined NMP is in agreement with the theoretically expected
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value. This example provides a ‘real world’ application, similar to our neural signals

problem, of estimating the non-Markovity spectra where the underlying continuous

power spectra are unknown and only discrete samples of the measured time series,

corrupted with noise, are available.

6. Lastly we use the ZF-NMP1 to identify changes of in-vivo vLFPs obtained from MER

probes from the left and right STN of patients with Parkinson’s Disease when they

are presented with neuro-linguistic stimuli. We show that this metric, applied to

the datasets of two separate neuro-linguistic experiments, is able to differentiate the

signals at different time of stimulus presentation, the side of the brain recorded and

the structure of the neuro-linguistic stimuli.
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89(2), 022109, 2015.

The experiment portion of this chapter (sections 2.9-2.10) is based on the following
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• J. Varghese, K. Weegink, P. Bellette, T. Coyne, P. Silburn, and P. Meehan, “The-

oretical & Experimental Analysis of the Non Markov Parameter to Detect Low Fre-

quency Synchronisation in Time Series Analysis” in Proceedings of the 33rd Annual

International Conference of the IEEE EMBS, Boston, Massachusetts USA, August

30-September 3,2011, 2011, pp. 1500-1505.

• P. Meehan, P. Bellette, A. Bradley, J. Castner, H. Chenery, D. Copland, J. Varghese,

T. Coyne, and P. Silburn, “Investigation of the Non-Markovity Spectrum as a Cognitive

Processing Measure of Deep Brain Microelectrode Recordings,International Conference

on Bio-inspired Systems and Signal Processing, Rome, Italy, pp. 144-151, 2011.
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Contribution

The contribution of this chapter is the development of expressions for the NMP in a signals

processing framework which shows that the NMP is simply a series of nonlinear functions of

the measured power spectrum. We then go on to apply different spectral bands of the NMP

to the vLFPs from MER obtained from in vivo human STN, showing that different states

can be identified using the entire signal (not just a subset set of the closest identified spikes)

using a novel parameter free methodology.
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2.3 Introduction

Time series analysis is often employed to characterise systems where the generating physics is

either too complex or involves too many degrees of freedom to be predicted. These systems

frequently arise in financial [103],[104] and biological [64],[105],[67],[106] systems. One of

the earliest metrics used to characterise a system is the Shannon information entropy which

ascribes a numerical score to the system based on the randomness of the underlying statis-

tics driving the process [107]. This methodology, originally used in communications theory,

was adapted to nonlinear deterministic dynamical systems with the use of Kolmogorov-Sinai

entropy [108]. While successful for the analysis of chaotic systems this approach can fail

to detect the statistical simplicity of random behaviour [66]. This has motivated the de-

velopment of “statistical complexity metrics” which measure the correlation structure of an

interacting system and its subsets [109], allowing for the analysis of multi degree of freedom

probabilistic systems.

This methodology has generated a plethora of statistical complexity metrics, often with

ambiguous relationships to each other, which often do not provide a clear interpretation of

what the metric is actually measuring [109]. The application of these complexity metrics to

time series analysis has thus seen the emergence of an interesting phenomenon where signals

from complex systems can be successfully differentiated, but there is little insight into the

nature of these differences.

An excellent example of this problem has been the application of the generalised Non-Markov

Parameter (NMP), which is effectively a complexity metric developed from the Mori-Zwanzig

theory of non equillibrium statistical physics [110]. The NMP has been used in a diverse range

of fields such as geology [111], astrophysics [112], cardiology [67] and neurophysiology [106].

In these complex systems the NMP has been developed as an informational tool to analyse

the degree of randomness or “Markovity” of the system. Particular attention has been paid

to the Zero Frequency value of the first order NMP (ZF-NMP1) [67],[111],[113],[114] which
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in a similar sense to the Shannon information entropy, maps the Markovity of a system in-

teracting with its environment to a scale from unity for non Markov processes (the transition

to the next state is history dependent) to infinity for purely Markov processes (the transition

to the next state is history independent) [110]. In specific applications the quantification of

this randomness has proved useful as a metric of discrimination between different states in

complex systems. In section 2.9 we use the ZF-NMP1 to differentiate states of vLFPs from

MERs of the STN of patients with Parkinson’s disease during neuro-linguistic processing

tasks [115], [116].

Previous papers have derived the NMP for measured systems from discrete time equations

to define chaos or a non Markov correlation structure between a system and its environment

[110]. This chapter will show that for stationary processes the NMP can be expressed in

closed form in terms of operations on the power spectrum of the measured system. It is

then shown that with the additional constraint of a smooth autocorrelation function (specif-

ically belonging to the C1 or higher differentiability class) the first NMP has a particularly

simple structure depending solely on the spread and amplitude envelope of the measured

power spectrum. These results provide a more conventional signal processing perspective

from which to understand the NMP in terms of the power spectrum of the measured system.

This result is entirely complementary to the original Mori-Zwanzig framework of complex

interactions between the measured system and its environment. In essence these results

allow the NMP to be expressed simply without a detailed understanding of Mori-Zwanzig

theory.

We then go on to show that closed form expressions for the higher order NMP can be

constructed in a modular fashion by a set of nonlinear operations on the measured power

spectrum. We then suggest, but do not prove, that these operations remove correlation

structure from the spectrum and thus there is limited information about the system in the

higher order NMP. This analysis is consistent with [117], which argued that the memory

kernels can ‘veil’ the properties of the physical system. The ZF-NMP1 is then analytically

calculated for three instructive systems: simple harmonic oscillator (SHO) driven by white



40 Model-Free Entire vLFP Analysis

noise, band limited white noise and white noise passed through an ideal all pole filter. We

show that the dominant feature of ZF-NMP1 is the slope of the tail of the measured power

spectrum. We lastly show with numerical simulation that these expressions are also valid

for noisy sampled systems where the power spectrum is not known a priori.

The work performed in this chapter may be considered an extension to that in [118]. The

work in [118] was concerned with developing the zero frequency NMP from time correlation

functions generated from time propagation operators in dynamical systems theory. These

time correlation functions are constructed such that they are only non-zero for positive time.

This greatly simplifies the spectral analysis in [118] because the Fourier Transforms (FT)

can be represented as Laplace transforms rotated by 90◦ in the complex plane. Note that

this is distinct from the autocorrelation functions considered in time series analysis which

are symmetric functions defined for both positive and negative time. In this chapter we

derive analytical expressions for the generalised NMP spectra for measured systems with

autocorrelation functions defined for both positive and negative time. Lastly this work is

concerned with observing how the NMP varies with the measured power spectrum whereas

[118] uses successively higher order zero frequency values of the non-Markov parameters to

explicitly explore the Markovity of specific causal systems.

The theory portion (sections 2.4-2.8) of this chapter are divided into four sections. The

first section gives an overview of the Zwanzig Mori kinetic equations from which the NMP is

derived. The second section develops closed form expressions for the hierarchy of generalised

NMPs and shows how the zero frequency value of the NMPs can be simplified. The third

section uses these simplifications to derive analytical expressions for the ZF-NMP1 for three

stochastic processes. The analysis of the SHO driven by white noise provides a conceptual

bridge between the analysis of the Markovity of the physical system and the signal processing

interpretation of the ZF-NMP1 introduced in this chapter. The analysis of the band limited

white noise and the ideal all pole filter provide an explicit understanding of how this param-

eter varies with spectral properties of corner frequencies and stop band decay rates. The

fourth section determines the generalised NMP from the discrete time series data of a model
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of the SHO driven by white noise. This highlights that the closed form expressions for the

generalised NMP are applicable to ‘real world’ problems where only noisy sampled realisa-

tions of a process are available. This methodology will then be used to distinguish different

experimental conditions of single channel MER signals placed into human Sub Thalamic

Nuclei in section 2.9.

2.4 Mori-Zwanzig Kinetic Equations

Consider a system of interacting objects with defined observables which completely describe

the phase space of the system of interest. Often we are only concerned with the evolution

of a subset of all the objects in the system. For example the voltage contribution to an

electrode of the closest neuron in a highly connected neural network.

The number of observables of interest can be extended to an arbitrarily high number but

for simplification we will consider the evolution of one observable G(t). The evolution of the

observable of interest is described by a generalised Langevin equation (GLE) [119]:

Ġ(t) = λ0G(t)− Λ0

∫ t

0

m1(t− t′)G(t′)dt′ + S(t) t ≥ 0, (2.1)

where G(t) and ˙G(t) are the observable of interest and its time derivative respectively, t′

is a dummy variable of integration, m1(t) is the first memory kernel which introduces history

dependence, S(t) is a stochastic forcing function and λ0 & Λ0 are the zeroth order relaxation

parameters.

The contribution of the neglected variables is accounted for in the memory (convolution)

function and stochastic forcing terms. The convolution term is a consequence of a general

result that when the evolution of a multi degree of freedom dynamic system, which is history

independent, is described by a reduced number of degrees of freedom it is transformed to a

history dependent dynamical system [65]. The presence of the stochastic forcing term is a

consequence of the state vector which describes the observables of interest. This resides in
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a subspace of the Hilbert space of the full dynamic system at time zero, rotating as time in-

creases outside of this subspace into the full Hilbert space. The evolution of this state vector

outside this subspace is modelled as stochastic forces randomly rotating the state vector [65].

The difficulty with the GLE (2.1) is that the presence of the noise term makes the sys-

tem a stochastic integro-differential equation which is mathematically difficult to analyze.

The equation can be reduced to a standard integro-differential by projecting the observable

at time zero G(0) onto the evolution equation and performing an ensemble average 〈· · · 〉.
The noise terms are constructed such that for all time they stay orthogonal to the observable

at time zero [120] and thus the noise term is removed. Thus:

〈S(t)G(0)〉 = 0 (2.2)

〈G(t)G(0)〉 = m0(t). (2.3)

Where m0(t) is the autocorrelation function of the observable G(t). Applying these opera-

tions to (2.1) yields an integro-differential equation for the evolution of the autocorrelation

function, m0(t), of our single observable of interest [65]:

dm0(t)

dt
= λ0m0(t)− Λ0

∫ t

0

m1(t− t′)m0(t
′)dt′ t ≥ 0.

(2.4)

There is a subtlety regarding the evolution of the autocorrelation function which must be

highlighted. The autocorrelation function by definition is a symmetric function defined for

both negative and positive time, however the GLE (2.1) is only defined for positive time and

thus the evolution of the autocorrelation function in (2.4) is only defined for positive time.

This point will be important when considering the FT of the memory kernel in this section.

The first memory kernel can be shown by the second fluctuation dissipation theorem to be

the autocorrelation (and thus symmetric) function of the stochastic forcing function [120]:

m1(t) =
〈S(t)S(0)〉
〈G(0)G(0)〉 . (2.5)

Arbitrarily higher order equations can be constructed by interchanging the positions of

the autocorrelation function mn−1(t) with the memory kernel mn(t) and introducing a new
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memory kernel mn+1(t) to replace mn(t) into the convolution term. This is known as the

Mori-Zwanzig chain, with the memory kernel autocorrelation functions acting as the links

of the chain.

dmn(t)

dt
= λnmn(t)− Λn

∫ t

0

mn+1(t− t′)mn(t
′)dt′ t ≥ 0.

(2.6)

By convention all of the considered autocorrelation functions are normalised such that

mn(0) = 1 [110]. For the first autocorrelation function (m0(t)) this can be achieved by

dividing every term in (2.4) by an appropriate normalising factor. For the remaining mem-

ory autocorrelation functions the normalisation is ensured by the form of the Λn relaxation

factors.

Recall that in this thesis we use the following FT convention:

F (ω) = F [f(t)] (ω) =

∫ ∞

−∞
f(t)e−iωt dt (2.7)

f(t) = F−1 [F (ω)] (t) =
1

(2π)

∫ ∞

−∞
F (ω)eiωt dω. (2.8)

Notice that an equivalent normalisation of unity requirement on the FT of the nth memory

autocorrelation function which we refer to as the nth order memory power spectrum, Mn(ω),

can be constructed using the Wiener-Khinchin theorem [121]:

∫ +∞

−∞
Mn(ω)dω = 2π. (2.9)

The form of the λn relaxation parameters can be determined from manipulation of (2.4) as:

λn = lim
t→0+

dmn(t)

dt
= 0 ∀ mn(t) ∈ C1. (2.10)

Notice that because the time correlation function in (2.4) is only defined for positive time,

the limit is taken from above. Due to the symmetry of autocorrelation functions, as long

as there is no breakdown in smoothness of the derivative (that is it belongs to the C1 or

higher set of functions) at the origin, this parameter must be zero in continuous time. An
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equivalent requirement can be constructed in the frequency domain:

λn = lim
h→0+

1

2π

∫∞
−∞Mn(ω)

(
eiωh − 1

)
dω

h
. (2.11)

By the dominated convergence theorem [122], if Mn(ω) decays O(ω−2) or faster, the limit

can be brought inside the integral and the integrand evaluated to yield the indeterminate

function 0/0. Applying L’Hôpital’s rule, if Mn(ω) decays O(ω−3) or faster, then the limit

can again be brought inside the integral and shown to be zero. Since the power spectrum

must be symmetric, this O(ω−3) decay is not possible. Thus if Mn(ω) decays O(ω−4) or

faster, λ is zero. As a counter example, an autocorrelation function with a c(t) = e−a|t| and

Mn(ω) ≡ O(ω−2) structure, which has a non zero λ value, was considered in [115]. A full

derivation of the functional form of this λn relaxation parameters is provided in section A.1.

The Λn relaxation parameter cannot be defined from (2.4) without the previously stated

constraint that Mn+1(0) = 1. Taking the derivative of (2.4), applying the Leibniz rule for

differentiating the convolution term and taking the limit as time goes to zero yields:

ΛnMn+1(0) = λn lim
t→0+

mn(t)

dt
− lim

t→0+

d2mn(t)

dt2
. (2.12)

As discussed previously, if Mn(ω) decays O(ω
−4) or faster, λn will be zero. Enforcing the

condition that the memory kernel Mn+1(t) must be unity at time zero gives the following

expression:

Λn = − lim
t→0+

d2mn(t)

dt2
, ∀ mn(t) ∈ C1

=
1

2π

∫ +∞

−∞
ω2Mn(ω)dω. (2.13)

The second expression has been generated by application of the Weiner-Khinchin theorem

and is in agreement with that obtained in [123] (which considered a similar Mori-Zwanzig

kinetic equation with λ set to zero) and [118]. Notice that this expression shows that Λn is

a measure of the spread (second central moment) of the Mn(ω) memory power spectrum. A

full derivation of the functional form of the Λn relaxation parameters is provided in section

A.2. It is important to note that despite this description of Λn as the second moment of the

memory power spectrum, Mn(ω) should not be interpreted as a probability distribution.
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2.5 Analysis of the Non-Markov Parameters

The Non-Markov parameters ǫn(ω) are defined as the square root of the ratio of FT of the

preceding memory kernel (Mn−1(ω)) and the memory kernel Mn(ω) [67],[110],[112]:

ǫn(ω) =

√

Mn−1(ω)

Mn(ω)
n ≥ 1. (2.14)

Using the second fluctuation-dissipation theorem, (2.5), we can write the NMP as the

ratio of the FT of the autocorrelation functions of the observable variables and the interacting

variables:

ǫn(ω) =
1

√

〈G(0)G(0)〉
·
√

F [〈S(t)S(0)〉] (ω)
F [〈G(t)G(0)〉] (ω) n ≥ 1. (2.15)

Notice that the zero frequency value of the NMP is the ratio of the correlation times, τc,

of the observable and interacting variables:

ǫn(0) =
1

√

〈G(0)G(0)〉
·

√
√
√
√

∫ +∞
0

〈S(t)S(0)〉dt
∫ +∞
0

〈G(t)G(0)〉dt
∝
√
τc,observe
τc,interact

(2.16)

When the correlation time of the system is high,τc,observe >> τc,interact, the observable

dynamics are highly Markovian. When the correlation time of the observables is compara-

ble to the correlation time of the interacting variables, τc,observe ≈ τc,interact, the observable

dynamics are Non Markovian.

By the Wiener-Khinchin theorem theM0(ω) term in the first NMP is immediately recog-

nised as the measured power spectrum of the signal. The higher order memory power

spectrum can be evaluated by taking the FT of both sides of (2.4), with a Heaviside dis-

tribution, θ(t), included in the Fourier kernel. The resultant equation in Fourier space can

be algebraically re-arranged to yield an expression for the FT of the memory kernel. The

inclusion of the Heaviside distribution is necessary as the evolution of the autocorrelation

function in (2.4) is only valid for positive time, whereas the FT is defined for all positive

and negative time. This function was evaluated previously in [115]:

F
[
dmn

dt
θ(t)

]

= λnF [mn(t)θ(t)]− ΛnF
[∫ t

0

mn+1(t− t′)mn(t
′)θ(t)dt′

]

. (2.17)
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These Fourier transforms will be considered individually:

F
[
dmn(t)

dt
θ(t)

]

(ω) = iωF [mn(t)θ(t)]− 1, (2.18)

Where integration by parts has been used and it is recognised that the definite integral

component vanishes, and then the sifting property of the Dirac delta distribution has been

applied.

The FT of the convolution term will be determined in the following steps. First we write

the expression as a double integral:

F
[

Λn

∫ t

0

mn+1(t− t′)mn(t
′)dt′θ(t)

]

(ω) = Λn

∫ ∞

0

∫ t

0

mn+1(t− t′)mn(t
′)e−iωtdt′dt (2.19)

Note that the Heaviside distribution is removed because the bounds of the FT have been

changed from (−∞,+∞) to (0,+∞). We evaluate this integral by applying Fubini’s theorem

to switch the order of integration and introduce the variable substitution: p = t− t′, dp = dt

to transform this into two separable integrals:

∫ ∞

0

∫ t

0

mn+1(t− t′)mn(t
′)e−iωtdt′dt =

∫ ∞

0

mn+1(p)e
−iωpdp

∫ ∞

0

mn(t
′)e−iωt′dt′ (2.20)

We can write this expression on the right hand side of (2.20) as the product of two

separable FTs by re-introducing a Heaviside distribution into the Fourier kernels:

F
[

Λn

∫ t

0

mn+1(t− t′)mn(t
′)dt′θ(t)

]

(ω) = ΛnF [mn+1(t)θ(t)] · F [mn(t)θ(t)] (2.21)

Using (2.18) & (2.21) we may algebraically re-arrange (2.17) as:

F [mn+1(t)θ(t)] =
1

Λn

(

λn − iω +
1

F [mn(t)θ(t)]

)

(2.22)

This expression can be simplified using the following identity [121]:

F [mn+1(t)θ(t)] =
1

2
(Mn+1(ω)− jH [Mn+1(ω)] (ω)) (2.23)

WhereH [· · · ] = is the Hilbert transform integral, which is defined in terms of the Cauchy

principal value (p.v.):

H [F (ω)] (ω) =
1

π
p.v.

∫ +∞

−∞

F (ω′)

ω − ω′ dω
′. (2.24)
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This identity (2.23) can easily be derived by applying the convolution theorem and the

definition of the Fourier Transform of the Heaviside distribution. Applying this identity to

(2.22) yields:

1

2
(Mn+1(ω)− jH [Mn+1(ω)] (ω)) =

1

Λn

(

λn − iω + 2 · Mn(ω) + jH [Mn+1(ω)] (ω)

Mn(ω)2 +H [Mn+1(ω)]
2 (ω)

)

(2.25)

Taking the real part of (2.25) and re-arranging yields the recursive expression for the FT

of (n+ 1)th memory kernel as a function of the FT of the previous nth memory kernel:

Mn+1(ω) =
2λn
Λn

+
4Mn(ω)

Mn(ω)2 +H [Mn+1(ω)]
2 (ω)

=
2λn
Λn

+
4

Λn

(
Mn(ω)

|Vn(ω)|2
)

. (2.26)

Note the expression in the denominator of (2.26), |Vn(ω)|2 = Mn(ω)
2 + H [Mn(ω)]

2 is

known in communications theory as the square of the Amplitude Envelope [107] of Mn(ω).

Thus we see that the FT of the memory kernel is an algebraic function of the previous mem-

ory kernel and its complex envelope.

The recursive nature of (2.26) allows the nth memory power spectrum Mn(ω) to be de-

termined from the previous Mn−1(ω) memory power spectrum. The nth memory power

spectrum can then be constructed in a modular fashion from the measured power spectrum

M0(ω) using (2.10),(2.13) & (2.26). For signals with memory kernel spectrums with decay

rates O (ω−4) or greater, or equivalently with memory autocorrelation functions belonging

to the C1 or greater set this has a particularly simple form:

Mn(ω) =
4nM0(ω)

n−1∏

i=0

Λi

(
Mi(ω)2 +H [Mi(ω)]

2 (ω)
)2
. =

4nM0(ω)
n−1∏

i=0

Λi|Vi(ω)|2
(2.27)

Thus the FT of the memory kernels are defined in terms of a product series of nonlinear

integral transforms of the measured power spectrum. We will pay particular attention to

the FT of the first memory kernel:

M1(ω) =
4M0(ω)

Λ0

(
M0(ω)2 +H [M0(ω)]

2 (ω)
) =

4

Λ0

· M0(ω)

|V (ω)|20
. (2.28)
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The generalised NMP, when (2.10) is satisfied, is given in closed form using (2.14) &

(2.27) :

ǫn(ω) =

√
Λn−1

2
·
√

Mn−1(ω)2 +H [Mn−1(ω)]
2

=

√
Λn−1 |Vn−1(ω)|

2
. (2.29)

Thus, when the conditions of (2.10) are satisfied, the first NMP is solely a function of the

spread and amplitude envelope of the power spectrum. The description of the memory power

spectrum in (2.26) as a ratio of the previous memory power spectrum and its amplitude enve-

lope suggests two interesting properties of these parameters. Firstly, the successive memory

power spectra will decay at slower rates than the previous memory power spectra. Secondly,

since the action of the amplitude envelope is to smooth out the underlying function, the

higher memory power spectra will become flatter and flatter over the support of the original

power spectrum. We will show this behaviour of the higher order memory power spectra in

the systems we analyse in sections 2.6 and 2.7.

This raises questions about the validity of using the higher order NMP to analyse a mea-

sured system. Firstly in the noise free case the successive amplitude envelopes will “smear”

out the measured spectrum, thereby losing the correlation structure. Thus the higher order

NMP may not be measuring anything ‘interesting’ about the system. This interpretation

may explain why two of the physical systems considered in [118] (ideal gas and an ideal gas

with linear interaction perturbations) had distinct ZF-NMP1 but identical higher order zero

frequency NMP values. Secondly in any signal acquisition process, noise will certainly be

present. It can be seen from (2.4), with λ = 0, that extracting the memory kernel is a de-

convolution of a Volterra integral equation of the first kind. These convolution equations are

often ill posed [124]. Thus it is possible that in any measured system, interesting structure

seen in the higher order NMP are actually the manifestation of numerical errors and or noise.

Notice that by the symmetry property of the power spectrum (Mn(ω
′) = Mn(−ω′)) the



2.5 Analysis of the Non-Markov Parameters 49

Hilbert transform of the power spectrum is zero at zero frequency:

H [Mn(ω)] (0) =
−1

π
p.v.

∫ +∞

−∞

Mn(ω
′)

ω′ dω′ = 0. (2.30)

Using (2.14) (2.27) and (2.30), closed form expressions for the zero frequency values of

the generalised NMP that solely depend on the spread and the DC offset of the nth memory

power spectrum can be obtained. These expressions are in agreement with the calculations

in [118]:

ǫn(0) =

√
Λn

2
Mn(0). (2.31)

We pay particular attention to the zero frequency value of the first NMP (ZF-NMP1):

ǫ1(0) =
M0(0)

2
√
2π

√
∫ ∞

−∞
ω2M0(ω)dω. (2.32)

The complicated structure of the Mori-Zwanzig chain (2.4) obfuscates the fact that the

ZF-NMP1 (and indeed the generalised NMP) is solely a function of the measured power

spectrum. Indeed the Mori-Zwanzig equations and associated memory kernels do not even

need to explicitly be considered. These results suggest that signal metrics to differenti-

ate complex systems can be developed by analysing different properties of the measured

power spectrum. The previous success of the NMP [67],[106],[111],[112],[115] helps elucidate

specifically what properties (spectral spread and DC offset) should be explored, but does

not necessarily require Mori-Zwanzig theory to interpret the results.

The dependence of the ZF-NMP1 on the DC offset value of the spectrum raises an im-

portant digital signal processing issue regarding the use of this parameter for “real-world”

measured systems. Spectrum values determined from nonparametric estimation methods

(e.g. Welch’s method) will be random variables (typically Chi-Squared distributed [125]).

Thus if the ZF-NMP1 is to be used as a signal metric, it would be advisable to use a large

number of signal samples and appropriate statistical tests or parametric spectrum estima-

tion techniques (e.g. Burg’s method) to reduce the variance associated with this metric [125].

It is interesting to note that the rich class of behaviour generated by Markovian dynamics
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will all have a common ZF-NMP1 value of infinity [110]. Thus in this framework different

purely Markov systems cannot be differentiated, representing a degeneracy. Methodologies

have been developed to explore and analyse the behaviour of these Markov processes given

only measurements of the system. An example of this is modelling the unknown Markov

system as a set of coupled, Langevein equations (representing the restricted case of (2.1) with

the memory kernel term set to zero) and performing an Eigenanalysis on the diffusion matrix

of the corresponding Fokker-Planck equation [126]. This approach was used to successfully

model the power response curves of wind farm turbines [127].

2.6 Explicit Calculation of ZF-NMP1 for physical sys-

tems

In this section we derive the ZF-NMP1 for three instructive stochastic processes: simple

harmonic oscillation driven by white noise, band limited white noise and the output of white

noise passed through an idealised all pole filter. We perform this analysis to understand how

sensitive this parameter is to specific variation in the measured power spectra. This provides

insight into what changes, in terms of spectral properties, the ZF-NMP1 was detecting in

the measured complex systems analysed in [67],[111],[113],[114].

2.6.1 Simple Harmonic Oscillation Driven by White Noise

The SHO driven by white noise provides an excellent bridge between understanding the (ZF-

NMP1) in the original framework of the Markovity of the system and the signal processing

framework of the structure of the spectrum. This system also provides one of the few systems

where the higher order memory power spectra can be analytically calculated. The difficulty

in the general case is due to the evaluation of the Hilbert Transforms. The dynamics of the

SHO driven by white noise are given by:

d2x(t)

dt2
+ 2ζω0

dx(t)

dt
+ ω2

0x(t) = W (t), (2.33)
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Figure 2.1: Power Spectral Density (M0(ω)) for the SHO for different damping regimes of

under (ζ = 0.1, blue solid line), over (ζ = 10, green dash-dottted line) and critically damped

(ζ = 1, red dashed line). Notice that as the damping ratio is increased the spectrum becomes

more spread, the zero frequency power increases and the NMP increases. Inset is the low

frequency behaviour of the 3 oscillators.

where ω0 is the angular natural frequency, ζ is the damping ratio and W(t) is the white noise

stochastic process with constant amplitude power spectrum.

The normalised power spectrum of this process is given by [128]:

M0(ω) =
4ζω3

0

(ω2
0 − ω2)

2
+ 4ζ2ω2

0ω
2
. (2.34)

Notice that M0(ω) decays O(ω−4) and thus λ0 = 0. The contour integrals required to

determine the Λ0 from the spectral form of (2.13) are relatively difficult for arbitrary ζ, ω0

parameters. Instead the Λ0 relaxation parameter will be determined from the autocorrela-

tion function form for the different damping regimes: over, under and critically damped.
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Figure 2.2: Numerically determined first three memory power spectra for the underdamped

SHO. Notice that for the successively higher memory power spectra the correlation structure

is lost, the spectra become more flat and the third order memory power spectra M2(ω)

appears to be approaching a white noise solution. The edge effects are numerical issues

associated with the numerical estimate of the Hilbert Transform.

The normalised autocorrelation structure of the underdamped (UD) SHO is given by [129]:

m0(t)UD = e−ζω0|t|

(

cos(ω1t) +
ζ

√

1− ζ2
sin(ω1|t|)

)

,

(2.35)

where ω2
1 = ω2

0(1 − ζ2) is the damped natural frequency. The critically damped case is

determined in the limit of ω1 → 0. The overdamped case is determined by setting ω1 → iω1,

which transforms the trigonometric functions in (2.35) to hyperbolic trigonometric functions.

The Λ0 relaxation parameter is given for all three damping regimes by:

Λ0 = ω2
0. (2.36)
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The ZF-NMP1 of the SHO driven by white noise can now be written using (2.31),(2.34) &

(2.36) as:

ǫ1(0) = 2ζ. (2.37)

Notice that the ZF-NMP1 depends solely on the damping ratio which is a measure of the

amount of energy dissipation in the system. Inspection of Figure 2.1 shows that as the

damping ratio is increased the measured spectrum M0(ω) becomes more spread out and

the DC offset increases. The sole dependence of the ZF-NMP1 on this ratio is particularly

interesting, because it explicitly states that the “Markovity” of this system (as measured by

the ZF-NMP1) is directly related to how quickly the energy is dissipated. If the system is

under-damped then the deterministic free response will dominate the stochastic forcing by

the white noise process. If the system is over-damped then the predictable free response will

quickly die out and the response will be dominated by the stochastic white noise process.

Thus the damping is a measure of the memory the system. This analysis is entirely con-

sistent with the original description of the ZF-NMP1 [106] in terms of the Markovity of a

system with respect to its environment.

Notice that in the limit of an infinitely large damping ratio the NMP approaches infinity.

Analysing the SHO dynamics in the limit of the β term approaching infinity and recognising

that the white noise process can informally be written as the time derivative of a Wiener

process: W (t) = dw(t)/dt the dynamics of this system in this limit can be written as:

dx(t) = −ω0

2ζ
x(t)dt+

1

2mζω0

dw(t). (2.38)

This is the stochastic differential equation which describes the Ornstein-Uhlenbeck process.

It is interesting to note that this is a process that satisfies the conditions of being stationary,

Markov and Gaussian [130]. Thus the NMP of the Ornstein-Uhlenbeck process is infinite,

which is in agreement with the original definition of this parameter.

The higher order memory power spectrum and kernel for the critically damped SHO (the
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Hilbert Transform being too difficult for arbitrary damping ratios) can be analytically cal-

culated :

|V0(ω)|2 =
4(ω2 + 4ω2

0)

(ω2 + ω2
0)

2

M1(ω) =
4ω0

ω2 + 4ω2
0

(2.39)

m1(t) = e−2ω0t. (2.40)

Notice that M1(ω) decays O(ω−2) and thus λ will be non zero. Using (2.10), (2.12) &

(2.40):

|V1(ω)|2 =
4

ω2 + 4ω2
0

M1(ω)

|V1(ω)|2
= ω0 (2.41)

λ1 = −2ω0 (2.42)

Λ1 = 0. (2.43)

Thus the M2(ω) memory power spectrum will be infinite due to the scaling by the inverse of

Λ1. This shows that the second order zero frequency NMP will be zero. Analysis of (2.26)

shows the higher order memory kernels and generalised NMP will give pathological divide by

zero solutions. This result can be explained as follows: The exponential first order memory

function satisfies the differential equation:

dm1(t)

dt
= λ1m1(t). (2.44)

This is exactly the Zwanzig-Mori equation (2.6) for the first memory kernel m1(t) with the

convolution term (and thus Λ1) equal to zero. It is interesting to identify the unscaled second

memory power spectrum M2(ω) given by (2.41) & (2.42) (that is not obeying the constraint

in (2.9)) is white noise. This indicates the second order memory kernel m2(t) will be a

Dirac delta distribution centred at time zero. This distribution cannot be scaled such that

it satisfies the requirements of (2.9), which also helps explain why Λ1 is zero.

Figure 2.2 shows the first three numerically determined memory kernels for the underdamped
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harmonic oscillator (ζ = 0.25, ω0 = 200) using (2.13) and (2.26) and assuming (2.10) is sat-

isfied. Notice that the M2(ω) term is constructed assuming λ2 = 0 (thus Λ2 is defined from

(2.13) rather than (2.12)) so that the flat white noise structure can be identified. Notice

that this flattening of the higher memory kernels is exactly as was postulated previously in

section 2.4.

2.6.2 Band Limited White Noise
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Figure 2.3: Numerically determined first five memory power spectra for the band limited

white noise case (ω0 = 50). Notice that the higher order memory power spectra after the

zeroth M0(ω) term appear to converge to a common spectral structure.

The normalised power spectrum for the white noise process banded between (−w0,+w0)

is given by:

M0(ω) =
π

ω0

[θ(ω + ω0)− θ(ω − ω0)] . (2.45)

Where θ(· · · ) is the Heaviside distribution. The Λ0 relaxation parameter is given by the
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spectral form of (2.13) and (2.45):

Λ0 =
1

2ω0

∫ +ω0

−ω0

ω2dω =
ω2
0

3
. (2.46)

The first memory power spectrum is given by:

M1(ω) =
12π [θ(ω + ω0)− θ(ω − ω0)]

ω0




π2 + ln





∣
∣
∣
∣

ω + ω0

ω − ω0

∣
∣
∣
∣





2





. (2.47)

The ZF-NMP1 is given by (2.31),(2.45) and (2.46):

ǫ1(0) =
π

2
√
3
. (2.48)

This is interesting because it shows that the ZF-NMP1 is independent of the bandwidth

of the band limited white noise. Mathematically this can be understood to be due to the

normalisation requirement, as the noise process occupies more bandwidth and the spread

increases, the amplitude of this noise decreases and so does the DC offset. These two param-

eters must change such that the ZF-NMP1 remains constant. We cannot extend our analysis

to the infinite bandwidth white noise process because the correlation structure is a Dirac

delta distribution for which it is not possible to normalise to unity, nor define its derivatives

in the limit of zero time as is required for the relaxation parameters.

Figure 2.3 plots the first five numerically determined memory power spectra of the band

limited white noise (ω0 = 50) system using (2.13),(2.27) and (2.45). Notice that all the

memory power spectra (except for the measured power spectrumM0(ω)) converge to a com-

mon spectral structure, indicating limited utility of the higher order NMP. The higher order

Λn relaxation parameters will not equal zero because the compact support of the band lim-

ited white noise prevent the memory power spectra from becoming white noise solutions, or

equivalently the autocorrelation function from ever becoming a Dirac delta distribution.

2.6.3 Ideal All Pole Filter

The ideal all pole filter refers to a piecewise continuous spectrum that consists in log-log

(base e) space of a straight line of height h which goes from 0 to the corner frequency ωc and
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Figure 2.4: Bode plot of the ideal all pole filter spectrum with corner frequency ωc and filter

order m.

then another straight line which has a negative slope proportional to the order of m, which

goes from the corner frequency ωc to infinity. The Bode plot of this spectrum is shown in

Figure 2.4. The actual value of the height h is determined by the normalization requirement

of (2.9). This is an idealised filter because the cusp (breakdown of the first derivative) at

the corner frequency creates an unphysical ‘infinite-power’ requirement on the filter [107].

Intuitively we expect the NMP to depend on both the order and corner frequency of the fil-

ter, but we show that it depends solely on the slope of the tail (i.e. m) of the power spectrum.

We can mathematically represent the power spectrum of our idealised all pole filter in log-log

(base e) frequency space as:

ln [M0(ω)] =







h 0 ≥ ln [ω] ≥ ln [ωc]

−2m
(

ln
[

ω
ωc

])

+ h ln [ωc] ≥ ln [ω] ≥ ∞.

(2.49)

We can map this to frequency space by taking the antilog (in base e) of both sides of
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Figure 2.5: Plot of ZF-NMP1 of the output of white noise fed into the ideal all pole filter

vs slope order (m). Notice that for sufficiently large slope order the NMP converges to the

band limited white noise solution.)

(2.49). There are two things to notice: Firstly the power spectrum is symmetric about the

origin whereas the log-log (in base e) power spectrum is one sided. Thus we make the solu-

tion obtained in frequency space symmetric about the zero frequency origin. The log-log (in

base e) power spectrum when mapped to the power spectrum will start at ω = 1 (because

e0 = 1 in the bounds for the constant straight line). We simply extend the bounds of the

power spectrum to ω = 0 in frequency space.

The constant α = eh will be determined such that the power spectrum has the appropriate

normalisation required by (2.9):

α =
π (2m− 1)

2mωc

. (2.50)
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The power spectrum is given by:

M0(ω) =







π (2m− 1)

2mωc

0 ≥ |ω| ≥ ωc

π (2m− 1)

2mωc




ω

ωc





−2m

ωc ≥ |ω| ≥ ∞.

(2.51)

In order to simplify analysis, we will only consider ideal all pole filters of order m of 2 or

higher.

The Λ0 relaxation parameter can be determined from the spectral form of (2.13) and (2.51):

Λ0 =
(2m− 1)ω2

c

3 (2m− 3)
. (2.52)

Using (2.31),(2.51) and (2.52) the ZF-NMP1 is given by :

ǫ1(0) =
π

m

√

(2m− 1)3

48 (2m− 3)
. (2.53)

The most interesting result from (2.53) is that, similar to the band limited white noise case,

the ZF-NMP1 for the ideal all pass filter is independent of the corner frequency. The ZF-

NMP1 is sensitive to the order of the filter. Figure 2.5 shows an inverse relationship between

the decay rate of the tail of the power spectrum and the ZF-NMP1 value. Similar to the

SHO, the more spread out the power spectrum, the larger the ZF-NMP1. An obvious differ-

ence between these two systems is that the ZF-NMP1 for the SHO is unbounded, whereas (at

least for m ≥ 2) the ZF-NMP1 of the ideal all pole filter is approximately bounded between

1.17 (m=2) and 0.9 (m → ∞). Notice that while the ZF-NMP1 does depend on the tail of

this spectrum, it is not particularly sensitive to it.

It can be seen that the ZF-NMP1 value for the ideal all pole filter converges to the band

limited white noise case for sufficiently large slope order (m ≈ 10 or higher). This result is

to be expected, because as the slope of the ideal all pole filter increases the spectrum will

converge to the band limited white noise spectrum. It is trivial to formally show that the

NMP of this idealised all pole filter converges to the band limited white noise process in the
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limit of infinite filter order:

lim
m→∞

ǫ1(0) = lim
m→∞

π

√

(2m)3

48m2 (2m)
=

π

2
√
3
. (2.54)

Figure 2.6 plots the first five numerically determined memory power spectra of the ideal

all pole filter (m = 4, ω0 = 50) using (2.13),(2.27) and (2.51). Notice that (similar to the

critically damped simple harmonic oscillator shown in Figure 2.2) the higher order memory

power spectra are flatter and lose the correlation structure present in the measured M0(ω)

spectrum. This further validates the flattening of the higher memory kernels as postulated

previously in section 2.4. Again, this raises questions about the utility of the higher order

NMP as system metrics.

−1000 −800 −600 −400 −200 0 200 400 600 800 1000
10

−12

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

Frequency (rad/s)

lo
g 10

 o
f P

ow
er

Memory Power Spectra for All Pole Filter (m=4,ω
0
=50)

 

 

M
0
(ω)

M
1
(ω)

M
2
(ω)

M
3
(ω)

M
4
(ω)

Figure 2.6: Numerically determined memory power spectra for the ideal all pole filter (m = 4,

ω0 = 50). Notice that the higher order memory power spectra get considerably flatter.
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2.7 Numerical Determination of NMP from Sampled

Time Series

We finish by determining the memory power spectra and ZF-NMP1, using the closed form

expressions (2.27)-(2.31), from what can be considered as a model of the sampled time series

of the displacement of the SHO driven by white noise. We model the system as a second

order Auto Regressive (AR(2)) process:

x[n] = φ1x[n− 1] + φ2x[n− 2] + ǫn (2.55)

where: (φ1 = 0.9, φ2 = −0.8), ǫn ∼ N (0, 1).

The choice of AR coefficients in (2.55) can be considered related to the under damped SHO

driven by white noise [131]. We simulate 120, 000 data points of this process to generate

a discrete time series. This number of data points is equivalent to 5 seconds of a signal

sampled at 24 kHz, which is the sampling rate of the measured vLFPs of the STN which we

analyse in section 2.9. We determine the memory power spectra and ZF-NMP1 using solely

this time series with no a priori information about the AR coefficients or innovations, ǫn,

which define the process. A realisation of this process (and thus time series to be analysed)

is shown in Figure 2.7.

The power spectrum of this process is determined from the time series using the AR-

MAsel parametric spectrum estimator. ARMAsel seperately fits the data to an optimal

order (p) AR , an order (q) Moving Average (MA) and an optimal order (r, r − 1) Auto

Regressive Moving Average (ARMA) model. Each ‘optimal order’ is determined by a spec-

ified information criteria. The Prediction Error (PE) associated with these three models is

then generated. The model with the smallest PE is used to generate the parametric power

spectrum in the standard fashion using Fast Fourier Transforms [132]. The technical details

of this estimator are provided in [133] but we provide more specific information about how

these three models are constructed and compared below.
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Figure 2.7: Sample path realisation of the AR(2) process (φ1 = 0.9, φ2 = −0.8, ǫn ∼ N (0, 1))

generated from (2.55). This discrete time series is used to generate the memory power

spectra.

The AR model is solved for a sequentially higher orders using Burg’s method [132] and

the optimal model order p is selected such that the minimum Generalised Information Cri-

teria (GIC) with a finite order correction factor (referred to in [133] as the CIC) is obtained.

Similar to most information criteria the CIC provides a balance between the variance of

the residuals and the order of the model. The specific difference of the CIC is that the

order penalty term is a compromise between the standard asymptotic penalty term (used in

GIC) and finite sample effects. The MA model is solved for sequentially higher orders using

Durbin’s method [134]. The optimal model order q is chosen as the minimum of the standard

asymptotic GIC criteria [133]. The ARMA (r, r − 1) model is solved for sequentially higher

orders using Durbin’s second method [135] and the optimal order is selected by minimising

the same GIC criteria as for the MA model (although the CIC used for selecting the AR

model can also be used). Once the optimal order p AR, order q MA and order (r, r − 1)

ARMA models are constructed, the prediction error associated with these models is then

computed. The prediction error for the MA and ARMA models can be computed using

Akaike’s first order selection criterion [136] whereas a separate formula, derived using finite

sampling theory [133]. is used to develop the AR prediction error.
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An estimate of the ZF-NMP1 of this AR process can be obtained from the time series by

estimating the power spectrum with the ARMAsel algorithm and using (2.13) and (2.31).

In Figure 2.8 we generate a beeswarm plot from estimating the ZF-NMP over 50 simulations

of the AR(2) process (φ1 = 0.9, φ2 = −0.8, σ = 1) and compare these values with the

analytical value of the ZF-NMP. It can be seen that the estimated ZF-NMP value provides

an accurate and consistent estimator of the true ZF-NMP.

Figure 2.8: Beeswarm plot of the 50 estimations of the NMP and the true NMP for the

AR(2) process with (φ1 = 0.9, φ2 = −0.8.) generated from (2.55). Notice that the values are

consistently distributed around the true NMP value. Inset: Zoomed in version of distribution

of estimates around the true value of the ZF-NMP.

The mean and standard error of the mean from these 50 realisations is:

ǫ̂1(0) = 0.358± 0.001 (2.56)

This solution can be compared to the true ZF-NMP1. The unnormalised power spectrum

of this process is given by [137]:

M0(ω) =
σ2

1 + φ2
1 + φ2

2 − 2φ1(1− φ2)cos(ω)− 2φ2cos(2ω)
,

(2.57)
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where σ2 is the variance of the innovations. Using (2.13),(2.31) and (2.57) with (φ1 = 0.9,

φ2 = −0.8, σ = 1) the ZF-NMP1 of this process can be calculated by numerical integration

to be:

ǫ1(0) = 0.359 (2.58)

Therefore it can be seen that with appropriate statistical averages (which are necessary

given finite time recordings of stochastic processes) the ZF-NMP1 can be accurately esti-

mated from the time series data alone.

With an estimate of the power spectrum using the ARMAsel algorithm the higher or-

der memory power spectra and generalised NMP can be determined using (2.13),(2.27) and

(2.29). The estimated memory power spectra are shown in Figure 2.9. Notice that similar to

systems with a continuous power spectrum analysed in section 2.6, the higher order memory

power spectra appear to smear out the correlation structure observable in the power spec-

trum.
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Figure 2.9: First five numerical memory power spectra estimates of the AR(2) process defined

in (2.55). Notice that for the successively higher order memory power spectra the correlation

structure observable in the power spectral density is smeared out. Also notice the spectrum

is defined over the normalised frequency range of (−π, π).
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This example highlights several key points which are not immediately clear in the anal-

ysis of the physically motivated systems considered in section 2.6. Firstly this time series

could be acquired without any knowledge of the underlying physics driving this system.

This would make the Mori-Zwanzig interpretation of the Non Markovity (which requires

partitioning the dynamical system into subsets of observables of interest and an interacting

environment) extremely difficult to perform. This is in contrast to the signal processing ap-

proach introduced in this paper which interprets the Non Markovity spectrum in the concrete

terms of operations on the measured power spectra. Secondly this example provides a ‘real

world’ application of estimating the Non Markovity spectra where the underlying continuous

power spectra is unknown and only discrete samples of the measured time series corrupted

with noise are available. Problems of this nature are commonplace in signals analysis and

thus it is important to identify that the closed form expressions (2.27)-(2.29) for the memory

power spectra and generalised NMP are applicable to this class of problem. We refer the

reader to [117] for a detailed description regarding the issues associated with interpreting

the underlying continuous memory kernel from its discrete time estimate.

2.8 Discussion of NMP

The generalised Non-Markov Parameters have been used to successfully differentiate states

(as defined by the degree of chaosity (sic) [138] and randomness) of complex interacting

systems. In the preceding part of this chapter we have shown these parameters can be un-

derstood as a set of closed form expressions which only depend on a nonlinear set of integral

transform operations on the measured signal’s power spectrum. We have argued that the

operations yielding the higher order memory power spectra and generalised NMP veil the

underlying correlation structure of the measured system in agreement with [117]. We have

supported this argument with numerical simulation of four instructive stochastic processes:

a SHO driven by white noise, band limited white noise, the output of white noise fed into an

ideal all pole filter and an AR(2) process with Gaussian innovations. These results suggest

a sensitivity of the ZF-NMP1 to the decay rate of the tail of the spectrum.
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Lastly we have shown that under the appropriate condition of C1 or higher smoothness

of the autocorrelation (or equivalently O(ω−4) or faster decay rates of the tail of the spectral

function), the closed form expression for the ZF-NMP1 can be reduced to depending solely

on the spread and DC offset of the measured power spectrum. These results provide an

alternative interpretation of the generalised NMP which only depends on the measured sig-

nal and does not require knowledge of Mori-Zwanzig theory, nor interpretation of a complex

relationship between a measured system and its environment. We have shown that these

equations for the memory power spectra and generalised NMP can readily be applied to

systems where only noisy discrete time samples are available. These simplified expressions

of the NMP in light of its previous success in the analysis of complex systems provides in-

sight into what properties of the spectrum could be used in future signal analysis of complex

systems.

2.9 NMP analysis of vLFPs

In this section we apply the 1st NMP, ǫ1(ω), at zero frequency (ZF-NMP1) and biologically

significant (β: 10-30Hz and fast: 80-200Hz) band frequencies to the vLFPs taken from MER

probes in the STN of patients undergoing DBS surgery. These frequency bands were se-

lected because of their extensive use in EEG analysis [60]. These biologically significant

NMP bands are calculated after developing the first NMP spectrum, ǫ1(ω), and then re-

stricting this spectrum to the desired frequency ranges. This methodology is discussed in

more detail in Section 2.9.2.

As discussed in section 2.3 the application of the NMP to complex datasets is not new.

Indeed the NMP has specifically been used for discriminating states of biological systems

such as the R-R interval of Electro Cardio Grams (ECG) for healthy patients and patients

post-myocardial infarction [67], EEG readings to predict the onset of seizures for epileptic

patients [106] and finger tremor data to differentiate patients with and without Parkinson’s
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Disease [114]. Nonetheless this experimental analysis represents the first use of the NMP for

deep brain recordings.

The application of complexity based metrics to the unfiltered neural signals is relatively

unique. Most extracellular analysis is based on spike sorting followed by ad hoc clustering

and analysis of resultant inter-arrival times [139], [140]. For example, mean firing rates and

a burst index (calculated by dividing the burst firing rate by the mean firing rate) were

considered in [141]. The template matching and clustering, if not automated are highly

dependent upon the skills of the person performing the analysis [139] and accurate estimates

of the firing statistics often require reasonably long sequences of data. The signal analysis in

this experiment simply required the unfiltered vLFP signals which were fed into the NMP

signal processing metric.

There have been limited attempts previously to analyse MER signals with complexity

metrics. Typically these studies have been clinically motivated, with the score of the met-

ric being correlated to a marker of disease state. For example The Lempel-Ziv Complexity

(LZC) estimator was applied to MER data (filtered in the 13−35 Hz range and less than 13

Hz range) taken from the STN of Parkinson’s Disease patients. The details of the general

Lempel-Zev method can be found in [142]. As an oversimplification the estimator can be

understood as follows. The signal is broken up into discrete values and assigned a 0 if the

signal is below the mean and a 1 if it is at the mean or above. The Lempel Ziv algorithm

determines how many distinct ways you can have sequences of up and down crossings (the

size of the dictionary in standard information theory) NDS. In order to make the LZC in-

dependent of the string length, NDS is scaled by the string length, N. The LZC is given by:

C = NDS

(N/log2(N))
. In essence this is a measure of the phasic structure of the signal. The results

of this paper showed a statistically significant correlation (ρ = −0.542, p = 0.008) between

hemibody UPDRS (Unified Parkinson’s Disease Rating Scale) score and the LZC score when

applied to the 13−35 Hz filtered data. No statistically significant correlations were observed

for either the less than 13 Hz data and the combined akinesia and rigidity UPDRS score.
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A second issue which [64] analyses is the LZC score for simulated data with an oscilla-

tory signal in the beta frequency range (generated by an auto-regressive model) overlaid

with fractional noise with a Hurst exponent of 0.5. As the signal to noise ratio increases

the LZC estimator decreases. This result is somewhat intuitive because as the stochastic

noise term becomes stronger the “complexity” of the signal will increase and it would be

expected that the LZC will increase. This result is interesting because a similar result would

be expected for the NMP. Recall that in the statistical mechanics framework the NMP is a

measure of the ‘randomness’ of the signal [143].

The primary advantage of applying the NMP given the theoretical analysis performed

in the previous section is that any changes identified can be linked to variations in the

measured power spectrum without recourse to a model of the underlying dynamics of the

neural ensemble. The advantage of this may not be immediately obvious, but consider the

original Mori-Zwanzig statistical mechanical framework of partitioning a dynamical system

into observed and interacting subspaces. For the MER recording it is not immediately clear

what either the observable or the interacting variables are. Is a single neuron the observable?

Or a collection of neurons? Is some set of neurons near the probe the observables and the

set further away the interacting variables? If so, where geometrically does this partition

lie? This is to say nothing of the lack of a tractable model for the interacting multitude of

neurons contributing to the signal. In effect without a priori knowledge of how the space is

partitioned we are forced to rely on vague interpretations of the NMP as a measure of the

‘chaosity (sic) [138] and randomness’ of the neural ensemble. The previous analysis allows

us to identify that the changes appear as variations in the measured power spectrum.

2.9.1 Experimental Methodology

Two separate datasets with slightly different experimental methodology were analysed using

the first NMP across different biologically relevant frequency bands and the ZF-NMP1. We

will briefly discuss both experimental methodologies, their results and implications. We note
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Figure 2.10: Rough cartoon of the neuro-linguistic testing set up. The patient is awake with

a MER probe inserted into their Sub Thalamic Nucleus (STN) which provides the vLFP.

The patient is shown two words which are either semantically similar or different (in this

diagram the words are semantically different). The patient determines if they are the same

or different using a clicker in the hand ipsilateral to the STN MER probe.

that interpreting the significance of these results in a speech pathology/linguistic framework

is beyond the scope of this thesis and restrict our observations to concepts of signal process-

ing.

In both datasets the general experimental protocol is largely similar. vLFPs were obtained

using MERs inserted into the STN of patients with Parkinson’s Disease undergoing Deep

Brain Stimulation surgery. The studies were approved by The University of Queensland

Medical Research Ethics Committee and UnitingCare Health Human Research Ethics Com-

mittee. All participants gave informed written consent. The electrical properties of these

probes, combined with the high neuron density of the STN suggests that multiple neurons

will contribute to the measured signal. The signals were recorded from the neural tissue at

a sample rate of 24 (experiment 1) or 22 (experiment 2) kHz. Three Butterworth filters, as

recommended by the manufacturer were applied to the signal (high-pass: 500 Hz first order,

low-pass: 5k Hz first order and anti-aliasing: 5 kHz fourth order). The 500 Hz high-pass fil-

ter is included to minimise the signal contamination from muscle artifact, background EEG
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activity and 50 Hz mains power interference [139]. Recordings were obtained at baseline

(epoch 1), when presented with the stimulus (epoch 2) and when the patient must cate-

gorise the stimulus using a motor task (epoch 3). Note that the motor task is performed

using a manual clicking device in the hand ipsilateral to the side of the brain that the STN

is being recorded from. This is to minimise the influence of the motor task on the electrical

activity of the STN [144].

Experiments of this form allow for an examination of whether the Basal Ganglia may

be involved in semantic processing and decision making in addition to its well known motor

modulation functions [145]. One of the unique features of this approach is the use of highly

localised MER recordings in contrast to the indirect methods of subcortical activity such as

functional Magnetic Resonance Imaging [146]. It is important to note that [147] used MER

of the Basal Ganglia, showing that the STN activity was not modulated with the changes

in linguistic processes in contrast to the results we present here which suggest a statistically

significant change when using the NMP metric [148] [115].

2.9.2 Experiment 1: Semantically Similar & Different Stimuli

The complete description of the experimental set up and methodology used in this research

is provided in [148]. In essence the experiments performed were based on seeing whether

the electrical behaviour of the STN, as determined by MER probes, varied when a patient

was presented with pairs of words which were either semantically similar (n=14) or different

(n=14). The words forming the pairs were drawn from either household items or animals.

Thus ‘cat’ and ‘dog’ would be considered semantically similar word pairs whereas ‘cat’ and

‘chair’ would be considered semantically different word pairs. The auditory recordings of

the word pairs were presented to the patient, who responded manually using his ipsilateral

index finger to indicate which category the word pair belonged to. The electrical behaviour

of the STN was analysed under the additional permutations of the two brain hemispheres

(the left and right sides were considered in separate trials) and the three time epochs. The
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first epoch was before the word pair was given for baseline activity, the second epoch was

immediately after the word pair was given during the cognitive processing of the stimuli and

the third epoch was during the motor response to the stimuli. The MER signals were taken

from the STN of 7 patients (all male, non senile and right handed) comprising 666 individual

trials sampled at 24 kHz which were analysed off line with no additional post-processing.

We analyse the NMP value in three frequency bands: zero frequency (ZF-NMP1) and

the biologically relevant (in EEG studies): β (10-30Hz) and fast (80-200Hz) bands. The

NMP spectrum, ǫ(ω), is calculated by taking the raw vLFPs (which have been band-pass

filtered between 500-5000 Hz as discussed previously in Section 2.9.1) estimating the power

spectrum using the WOSA method and then using (2.13) and (2.29). The zero frequency

NMP (ZF-NMP1) is calculated by taking the zero frequency value of this spectrum. The

β and fast band NMPs are calculated by taking the maximal value of this calculated NMP

spectrum within the respective frequency bands of (10− 30) Hz and (80-200) Hz:

ǫ[ω1···ω2](ω) = Max {ǫ(ω1 · · ·ω2)} (2.59)

It is important to realise that these NMP metrics are calculated using frequency bands of

the measured vLFPs which are filtered during the signal acquisition process. With regards

to the 5 kHz low-pass filters we do not expect there to be any relevant biological contribution

to the signal at frequencies beyond 5kHz. With regards to the 1st order 500 Hz high-pass

Butterworth filter, due to the low order, the signal attenuation (especially for the NMP fast

band) will be negligible. Secondly this low-pass filter is consistently applied (with the same

parameter values) to every signal acquired and in the subsequent analysis we only compare

the relative values of these NMP metrics under the different experimental conditions.

For the statistical analysis a rank preserving power law (Box-Cox) transform [149] was

applied to the NMP values to yield what we refer to as the ‘Synch’ parameter:

Synch = −2

(
1√
NMP

− 1

)

. (2.60)
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The normality of the Synch parameter for this data set was confirmed by Kolmogorov-

Smirnov tests. The synch metric was applied to the MER signals and the resulting data was

analysed using a Linear Mixed Model (LMM) to determine if there were any statistically

significant interaction effects between the three fixed factors of brain side (left or right),

semantic condition (same or different) and time epoch (before, processing and responding

to stimulus). The LMM was set up such that brain side, semantic condition and time epoch

were modeled as fixed effects whereas the patients were modeled as random effects and

significance of interaction was set at the (α = 0.05) level.

2.9.3 Experiment 1: Results

(a) fast (80− 200 Hz) band. (b) β (10− 30 Hz) band.

Figure 2.11: Mean Synch values for fast (2.11a) and β (2.11b) Bands

Statistically significant three way interactions (fast band: p = 0.004, β band: p = 0.001)

were observed between the three variables in all 3 frequency bands using the LMM. Interac-

tion effects of interest were then explored with planned contrasts. Since the left hemisphere

is typically associated with linguistic processing we focus on the left-side recordings initially.

It can be seen that for the fast band (Figure 2.11a) for the left side recording, an increase

in the synch metric was observed for the same semantic (word-meaning) category compared

to the different semantic (word-meaning) category during both the listening and responding

phases. It is interesting to note for the right side recordings these findings were reversed,

with the synch measure decreasing for the same semantic (word-meaning) category during
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both the listening and responding phases. This may indicate important left-right hemispher-

ical interactions are occurring in the STN during semantic processing.

Figure 2.11b shows the behaviour of the synch metric in the β (10-30Hz) band. Notice

that there are similar trends to the fast frequency band results of Figure 2.11a. Interestingly,

these results indicate a substantial difference in the β band NMP between the two semantic

conditions which is more pronounced for the right brain side recordings. Similar to the fast

band NMP, the findings for the right brain side β band NMP are the reverse of the left side

with the different semantic condition increasing and the same semantic condition decreasing

relative to baseline. It is important to recall that this experimental task included a motor

activity i.e. button push (in the responding phase). In addition, it should be highlighted

that the MER were taken from PD patients and so are not necessarily indicative of the

general population. In particular, recent research [51], [54], [64] has highlighted enhanced

beta band synchrony associated with STN local field potential (LFP) recordings from PD

patients using power spectra and complexity-based analyses of Parkinson’s disease patients.

Figure 2.12 shows post-hoc contrasts for the zero frequency synch (Box-Cox transformed

ZF-NMP1) value comparing the mean synch values with standard error as uncertainties

between the listening and responding epochs on both brain hemispheres. The change in

mean synch value was shown not to be statistically significant between the listening and

responding epochs for the left brain, but statistically significant (p < 0.01) for the right

brain by unpaired t-tests. It is interesting to note that, similar to the fast and β bands,

the difference in the synch metric between the listening and responding phases for both the

same and different word conditions is more pronounced for the right sided recordings than

the left sided recordings. It is especially interesting to note however that for the left sided

recordings during the listening and responding phases the synch measure for the fast and β

bands has larger value for the same word condition than for the different word condition,

whereas for the zero frequency value the different word condition has larger synch measure.

This consistent difference is also present for the right sided recordings.
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(a) Left STN. No significant difference (b) Right STN. significant difference

Figure 2.12: Mean Synch values at zero frequency (Box-Cox transformed ZF-NMP1) during

and after (Epoch 2 and 3) same and different word pair associations from the left and right

STN MER recordings. Notice that there is only statistically significant (at the α = 0.05

level) differences between the semantic conditions for the right brain.

2.9.4 Experiment 2: Word/NonWord Stimuli

The complete description of the experimental set up & methodology for this data set is

provided in section A.3. This experiment is similar to the previously described and anal-

ysed experiment of identifying whether the electrical behaviour of the STN as measured by

the same MER probes varied when a patient was presented with two different categories of

neuro-linguistic stimuli. In this experiment the stimuli was the presentation of a word (n=30,

for each hemisphere) or a non word (n=30, for each hemisphere). The non words were taken

from the Australian Research Council non word database [150] and were orthographically

legal, pronounceable & not homophonic with respect to English words.

The experiments began with a fixation cross presented at the center of a screen the pa-

tient was looking at directly. Either a word or a non word was then displayed on the screen.

The patient then had to respond with a motor task in their ipsilateral hand whether the

stimulus was a word or not a word. The motor task was using two-button clicker: one button
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corresponding to a word, one button corresponding to a non word. Note that similar to the

previous experiment the motor task is performed on the hand ipsilateral to the side of the

STN being recorded in order to minimise the influence of the motor task on the electrical

activity of the STN [144]. Similar to the previous experiment the signal was recorded at

baseline prior to presentation of the stimulus (epoch 1), during presentation of the stimulus

(epoch 2) and during the response to the stimulus (epoch 3).

934 MER time series segments, sampled at 22 kHz were recorded from six male patients

with idiopathic Parkinson’s Disease without dementia. The signals were then pre-amplified

and filtered with a bandwidth of 500− 5000 Hz using the previously mentioned filter setting

recommended by the manufacturer: Medtronic. The vLFPs for this experiment were only

analysed using the zero frequency value of the first NMP: ZF-NMP1.

2.9.5 Experiment 2 Results

Despite applying an optimal Box-Cox transformation, the assumption of normality could

not be established using the Kolmogorov-Smirnov test statistic with an α = 0.05 signifi-

cance level. Since this data set did not satisfy normality the use of Linear Mixed Models was

not applicable and the data was therefore analysed in a non-parametric framework using the

Friedmann 2-way analysis of ranks by variance with repeated measures. Since the Friedmann

test cannot incorporate 3 way interactions the data was partitioned into two separate sub

data sets of left and right STN data.

For each sub data set the permutations of patient ID and semantic condition were considered

as subjects. For example patient 5 when presented with is word stimuli was considered a sin-

gle variable, whereas patient 5 when presented with non-word stimuli was considered another

variable. The recordings at the different epochs of baseline (epoch 1), during presentation

of stimuli (epoch 2) and motor response to categorise (epoch 3) constituted the repeated

measures for the data. Note that for each subject (permutation of patient ID and stimuli
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presented) at each epoch there were multiple recordings. The methodology to generalise the

Friedmann test to this situation of multiple treatments per condition was developed in [151].

For both the left and the right data subsets, at the α = 0.05 level of significance, the

modified Friedmann test detected differences between the subjects. The differences between

conditions were further explored with Wilcoxon rank sum tests. The application of the

Wilcoxon rank sum test for both the left and right data subsets, for the presentation of both

word and non word stimuli showed statistical significance between the epoch 1 and epoch 2

& 3. These results are shown in Table 2.1. Interestingly for either side or stimuli there is

no statistically significant difference between epochs 2 & 3. It is also important to note that

for both epoch 2 & 3 on both the left & right sub datasets that there was no statistically

significant difference between the word and non word condition. These results are shown in

Table 2.2. Lastly we note the consistency of the results by identifying that no statistically

significant difference was identified for either the left or the right data subsets at epoch 1

between the is word and non word conditions. This result is important because epoch 1

occurs prior to the presentation of the stimuli and so we would not expect an identifiable

difference in the signal between these two conditions. These results are shown in Table 2.3.

The interquartile range of the subsets of data compared using the Wilcoxon rank sum

tests are displayed in box plots in Figures 2.13-2.15.
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Figure 2.13: Interquartile range box plots of ZF-NMP1 for epoch 1 & 2.
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Left Side

Is Word Not Word

Epoch

E1 vs E2 7.4×10−4 ∗ 6.9×10−4 ∗
E1 vs E3 3.7×10−4 ∗ 1.8×10−4 ∗
E2 vs E3 0.053 0.11

Right Side

Is Word Not Word

Epoch

E1 vs E2 0.034 ∗ 0.001 ∗
E1 vs E3 0.002 ∗ 7.5×10−4 ∗
E2 vs E3 0.3 0.85

Table 2.1: Wilcoxon Rank Sum tests comparing epochs for the left and right recordings.

The ∗ signifies significance at the α = 0.05 level. Notice that for both left and right sides

statistically significant difference is identified between epochs 1 & 2 and 1 & 3.

2.10 Experiment Conclusion

The NMP/Synch metric has been applied to two separate datasets to distinguish between

different states of the STN acquired using vLFPs obtained from MERs. This approach

is interesting, because unlike classical spike sorting approaches, which analyse the signal

using a subset of the data (the estimated spikes) the NMP is constructed in a model-free

framework using the entire signal. Using the theoretical analysis performed in this chapter it

is shown that the NMP essentially performs non-linear feature selection on the vLFP power

spectrum. The discrepancy between these results and those discussed in [147] is most likely

a consequence of using the synch/NMP metric. The MER signals in [147] were analysed in a

linear signal processing framework by comparing whether the mean peak voltage and latency

time observed between semantically different word pair experiments was significant (p ≤
0.05 level). Furthermore these results suggest that if STN is involved in lexical processing,
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Is Word vs Not Word

Left Right

Epoch

E2 0.42 0.67

E3 0.41 0.75

Table 2.2: Wilcoxon Rank Sum tests comparing semantic condition. Notice that no signifi-

cantly significant differences are identified at the α = 0.05 level.

Epoch 1

Left Right

Word vs Non Word 0.91 0.41

Table 2.3: Wilcoxon Rank Sum tests comparing epoch 1 for the two semantic conditions.

Notice that because the stimuli is presented after epoch 1 we would expect, and indeed

observe, that there is no statistically significant difference between these two states.

in order to see its effects (at least for short time recordings) we must analyse the entire

signal. These results, where changes between states have been identified by analysing the

entire signal, rather than just the spikes suggest that the ‘neural noise’ may in fact have

valuable information content. This implies that the neurons both close and distant to the

probe are modulated by experimental condition.

2.11 Conclusion & Thesis Contribution

There are two major contributions of this chapter which can be understood separately in a

theoretical and experimental framework.

Theoretical: The family of Non-Markov Parameters is analysed within a signal processing

framework. This approach allows the NMP to be understood in the concrete terms of

operations of the power spectrum in contrast to the more typical framework of non-

equilibrium statistical mechanics. In broad terms this analysis makes the application
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Figure 2.14: Interquartile range box plots of ZF-NMP1 for epoch 1 & 3.
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Figure 2.15: Interquartile range box plots of epoch 1. Notice for both the left and right

sided recordings the Wilcoxon rank sum test found no statistically significant difference at

the α = 0.05 level between the same and different conditions.

of the NMP more accessible to the engineering community which is more comfortable

with the concepts of spectral analysis.

More specifically we have shown that the usefulness of the (sequentially more compli-

cated) infinite family of Non-Markov Parameters is actually limited to the first NMP.

We have shown that the ZF-NMP1 can be understood in terms of simple operations of

the measured spectrum, rather than the abstract definitions of defining ‘chaosity (sic)

[138] & randomness’.

Experimental: We have shown that the Non-Markov Parameter can be used to successfully

differentiate the time series of the Sub Thalamic Nucleus Micro Electrode Recordings
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under different neuro-linguistic stimuli. The key novelty of this approach is that in cal-

culating the NMP the entire vLFP (spikes + LFP) is used and no underlying model for

the measured neural processes is assumed. This approach is perhaps particularly suit-

able for MER probes recording from neuron dense Sub Thalamic Nuclei which will pick

up the contribution of many more neurons than can be expected to be detected with

classical spike sorting approaches [96]. In theory the NMP will include the contribu-

tion of all neurons contributing to the MER probe, including sub threshold oscillations

and lower frequency synaptic-dendritic connections. This is in contrast to the most

common alternative of spike sorting strategies which characterise the measured system

in terms of the behaviour of a small subset of neurons closest to the recording probe.

The additional advantages of using the NMP for neural recordings are:

1. Applying the NMP to a time series represents a parameter free signals analysis

methodology. This is in contrast to spike sorting approaches where multiple

thresholding parameters must be chosen prior to analysis to set the detection and

clustering of the identified spikes.

2. The assumptions required to apply the NMP are minimal. Using the NMP does

not pre-suppose any underlying model for the data. The only requirement is that

the measured signal is covariance (wide-sense) stationary so that the autocorre-

lation function is non-stationary and the power spectrum is defined.

The disadvantage of using the NMP to characterise neural signals is that fundamentally,

the NMP provides a sensitive means to identify changes in a measured power spectrum.

We cannot link these identified changes to the underlying biological behaviour of the

neurons being measured, beyond broad statements about the presence of peaks (such

as that seen in β band synchronisation) representing the recruitment of synchronised

clusters.

This deficiency of the NMP will motivate the approach of the third chapter which is

to model the constituent spike trains as an ensemble of filtered renewal processes. This

approach will allow us to link changes in the measured spectrum to changes in the statistics
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of the contributing spike trains, which is consistent with information theoretic approaches

to characterise neuron firing patterns. This benefits of this approach will be at the expense

of a much more exhaustive list of assumptions of the underlying signal.
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3
Model-Based Entire vLFP Analysis

“All models are wrong, but some are useful. ”

– George E. P. Box

3.1 Chapter Summary

In the previous chapter we used a model-free approach to analyse the entire vLFP (spikes +

LFP) using the NMP. This methodology was successful in identifying changes in the state

of the STN during the presentation of experimental stimuli, but these changes could only be

described in terms of the measured spectrum, not the underlying biology of the system.

In this chapter we consider a model-based approach to analysing the entire vLFP. The

model used is to assume that the vLFP which is recorded is generated from an ensemble of

83
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independent neurons firing with renewal process statistics. This approach can be considered

to provide the conceptual bridge between the changes in the identified power spectrum and

changes in the underlying spike train statistics.

Using this methodology we will show, for non-Poisson firing statistics, that for an ensem-

ble of independent neurons the common probability density defining the firing statistics of

the constituent processes can be identified given an estimate of the power spectrum of the

ensemble. Identifying this probability density given the measured power spectrum contin-

ues the strategy employed throughout this thesis of characterising the neural time series by

solving inverse problems given statistical averages of the signal (in this case the measured

power spectrum). In this chapter the inverse problem is fundamentally based on developing

deconvolution strategies to the renewal equation.
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3.2 Chapter Overview

In this chapter we consider a renewal model-based approach to analyse the entire vLFP

(spikes + LFP). We seek to link the identified changes in the measured power spectrum of

the vLFP to changes in the firing patterns of the contributing neurons modelled as renewal

processes. We will then generate an algorithm, termed the Spectral Density Estimator, to

solve the associated inverse problem: given the power spectrum of an ensemble of indepen-

dent neurons, identify the probability distribution generating the renewal statistics.

The steps of this chapter will be as follows:

1. Provide an overview of the the properties of renewal processes necessary to understand

the remainder of the chapter.

2. Develop the Spectral Density Estimation algorithm which, via Fourier inversion tech-

niques, allows the identification of the probability distribution generating the firing

statistics associated with an ensemble of neurons. This estimate requires the measured

power spectrum associated with the ensemble. We show by extensive numerical sim-

ulation that this methodology can resolve the underlying statistics associated with an

ensemble of identical non-Poisson neural processes.

3. Generate a model of an ensemble of neurons with identical independent renewal statis-

tics which are variable distances from the recording probes. The distance is accounted

for with a simplified model of dispersion and amplitude attenuation (to model the

modifications to the electric fields of the neurons as they propagate from the neurons

to the electrical probe) which is a function of distance from the probe. We compare

how the Spectral Density Estimator and a widely used spike sorting algorithm ‘Osort’

estimate the underlying PDF driving the renewal statistics as the relative distance of

the neurons to the recording probe is varied. For the case where there is no relative

distance between neurons, the action potentials from all neurons are identical. This

represents a pathological problem which most spike sorting algorithms (based on iden-

tifying differences in the identified action potential shapes) cannot solve. We show

that for similar action potential shapes the Spectral Density Estimator is consistently
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more accurate, but the superiority of the estimates decreases as the relative distance

increases and the action potentials associated with the different neurons become more

distinct.

4. We suggest that this Spectral Density Estimator may find utility in the situation of

analysing vLFPs obtained fromMERs in neuron dense structures like the Sub Thalamic

Nucleus where multiple similarly orientated, near equi-distant neurons are contributing

to the measured time series.

5. Separate to the development, simulation and analysis of the Spectral Density Estimator

we show that the model of a neuron firing as a renewal process is equivalent to the

widely used communications protocol of Digital Pulse Interval Modulation (DPIM)

when the allowed firing times are allowed to occur along a continuum (as would be

expected for a biological system) instead of only occurring at discrete times. We then

explore how robust the associated spectrum of different neural spiking statistics are to

the presence of firing time jitter. This analysis is provided in section A.7.1.

Submitted Work

The development, analysis and benchmarking of the Spectral Density Estimator is based on

the following submitted, but as yet not published, journal article:

• J. Varghese, K. Weegink, P. Bellette, and A. Bradley, “Spectral techniques to estimate

renewal spiking statistics with near identical spike shapes” Phys. Rev. E, 2017.

The analysis of the renewal theory model of a spike train as the continuum limit of a

DPIM encoder (section A.7.1) and the discussion of the Bartlett spectrum (section 3.3.2) is

based on the following conference article:

• J.J. Varghese, K.J. Weegink, P.A. Bellette, and A.P. Bradley, “Spectral properties

of neuronal pulse interval modulation,” , in Acoustics, Speech and Signal Processing

(ICASSP), 2015 IEEE International Conference on, April 2015, pp. 1007-1011
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Contribution

The novelty of this chapter is introducing a method which, given a set of a priori assumptions

is able to estimate the PDF of an ensemble of neurons given just an estimate of the PSD. This

method uses the entire signal (not just a subset of identified spikes), is parameter free and we

show is capable of solving the pathological problem of resolving the firing time distribution

of a renewal process embedded with a collection of identical renewal processes. Secondly

we show that the power spectrum of a neuron firing as a Digital Pulse Interval Modulation

encoder, in the continuum limit of allowed firing times is identical to that of the renewal

processes frequently used to model individual neurons. Given that one of the primary roles

of the neural system is to convey information through the spike trains, the link between such

a biologically accepted model and a currently used communications protocol in fields such

as fibre optics where the information is also encoded in the pattern of the pulse times [152],

[153] provides an interesting link between computational neuroscience and communications

engineering.

3.3 Renewal Processes Models of Neural Time Series

Individual neurons are complicated systems that respond to synaptic input currents with a

multitude of different firing patterns. Indeed the dopaminergic neurons in the basal ganglia

have been shown to generate periodic, random and even chaotic firing patterns [154]. Despite

the complexity of the firing patterns, to good approximation, the shape of the action poten-

tial does not change. As a result it is believed that information is encoded by neurons in

the timing of spikes [88], [89], [82], [83], [155]. Replicating these firing patterns by pumping

noise into dynamical models inspired by the neuron physiology such as the Hodgkin-Huxley

or Fitzhugh-Nagumo models is possible, but in all but a few cases is mathematically in-

tractable and one has to rely on numerical approximations [90]. A viable alternative is to

do away with the physiological underpinnings of action potential dynamics and treat the

generated spikes in the train as an abstract collection of points in a set, with a probabilistic

relation between the points. Models of this form are known as ‘point-process models’. An
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excellent introduction to the theory of point processes in neuroscience is provided in [72].

The interval between action potentials is of special significance in neuroscience and is termed

the Inter Spike Interval (ISI). One of the most important subset of point processes in neu-

roscience are called renewal processes and are defined by the condition that the probability

distribution describing the ISI time is stationary and independent of prior ISI times.

The importance of the renewal process stems from the drastic simplification in mathe-

matical analysis the assumptions allow for, while still providing a reasonably accurate model

of neural spike trains [69]. Indeed this seemingly simple approximation allows for the gener-

ation of a remarkably diverse set of spike trains [90]. The key mathematical simplification

introduced by renewal processes is that all statistical properties (e.g. probability of the nth

action potential firing, the expectation and variance of spike count, correlation structure etc

...) are derivable solely from knowledge of the ISI PDF [156].

The use of renewal theory in neuroscience is widespread in both experiment [69], [70],

[71] and theory [72],[73],[74]. There is evidence that the discharge patterns of neurons in

certain anatomical zones of lower order mammals such as the spike trains from the retinal

ganglion cells to the Lateral Geniculate Nucleus (LGN) of the thalamus in cats [75] and the

responses of neurons in the Antero-Ventral Cochlear Nucleus [76] follow renewal statistics.

More recently [77] has shown that the dopaminergic neurons of the Substantia Nigra Pars

Compacta in rhesus macaques follow different classes of renewal statistics while performing

saccadic eye movements in response to different visual stimuli. The popularity of renewal

theory models, where the gap between firing times are statistically independent, is consis-

tent with the Hodgkin-Huxley Na+,K+ channel model, where the equations governing these

variables is reset after each spike [72]. Obviously this model is not always valid and their

are many examples in the literature where non-renewal statistics have been identified. See

[78] for a detailed review of these examples and proposed mechanisms for the generation of

non-renewal statistics.
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Similar to our analysis in the frequency domain, [157] showed that measurement of the

power spectra of single neuron spike trains could be used to identify the associated firing

rates and refractory times of a discharging neuron. These renewal theory approaches have

also been used to model collections of neurons in neural networks. The power spectra of an

ensemble of neurons following renewal statistics was developed in [158]. More recently there

has been an interest in modelling the behaviour of neurons in sparse neural networks using

renewal theory [79],[80],[81].

The work of these papers can broadly be considered extensions to Steins model of a

neuron in a network [159]. In Stein’s model the behaviour of a single neuron is described

by a leaky integrate and fire neuron which is has its membrane voltage altered by synaptic

barrages at the pre-synaptic terminal, the arrival times of which are described by Poisson

processes [160]. Although undoubtedly a powerful model, as discussed in [158] it generates

an inconsistency where the statistics of the input arrival times (Poisson) are inconsistent

with the output firing statistics (non-Poisson) of the neuron which would be input to other

neurons in the network. In [79] an analysis, including renewal statistic inputs, was performed

to identify inputs which are consistent with their output. Similar to the approach we follow

in this chapter statistical independence of the neurons in the network was assumed. In [80]

a generalisation of Stein’s model is introduced where the Poisson input is generalised to two

(one excitatory and one inhibitory) pooled renewal processes. In [161] it was shown that

non-Poisson input statistics could greatly affect the output statistics of a feedforward net-

work. In [81] expressions for output train statistics of single integrate and fire neuron given

a general time modulated renewal input processes were developed.

Renewal theory has also been used to construct spike sorting programs that detect and

cluster spikes from individual neurons given noisy extracellular recordings which contain the

contribution of multiple neurons embedded in noise. In [162] a model which assumes that

the spike trains of the individual neurons follow log-normal renewal statistics and the spike

amplitude is modulated with firing rate was constructed. This method used Bayes rule and
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Markov Chain Monte Carlo techniques to develop estimates of the probability that identified

spikes belonged to a specific cluster (referred to as ‘soft clustering’). By incorporating

information about both the spiking pattern and the spike amplitude this approach was able

to successfully deal with the non-stationarity of spike shape problem present with burst

firing where the spike shape of a single neuron varies when a sequence of spikes occur in

rapid (< 100 milliseconds) [163] [164] progression. This spike shape non-stationarity is a

problem which is well known to introduce errors into standard spike sorting programs [57]

[165].

3.3.1 Introduction

In this section we provide a brief overview of renewal processes in time series analysis required

to understand the subsequent chapter. For excellent introductions to and further discussion

of renewal processes see [156],[166]. Consider a sequence of non negative random variables

{∆Ti} which are independent and identically distributed (i.i.d.), drawn from an arbitrary

Probability Density Function (PDF) with positive support:

∆Ti ∼ p(t), t ∈ [0,∞) (3.1)

The random variable can be as abstract as necessary, but in the context of this thesis it

is best to consider a spike train, with sequence {∆Ti} representing the time between spikes

arriving at the synapse of a neuron [69],[78],[157]. The density, p(t), determines the statistics

of the spacing of these spikes.

Following [156] we define the combination of renewal events, Sn, which is itself a random

variable representing the time to the nth renewal (spike) event by:

S0 = 0, Sn = ∆T1 +∆T2 + · · ·+∆Tn (3.2)

Let N(t) denote the number of renewals (spikes in our situation) by time t, t ≥ 0. In

order for N(t) = n, that is n renewals (spikes) to occur at time t, the nth renewal, Sn must

occur at latest at time t and the (n+ 1)th renewal (spike) must occur after time t. That is:

{N(t) = n} ⇔ {Sn ≤ t, Sn+1 > t} (3.3)
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Stated more formally:

N(t) = sup {n : Sn ≤ t} , t ≥ 0 (3.4)

It should be immediately obvious that the counting variable, N(t), is a random variable.

The expectation of the number of spikes at time t plays a pivotal role in renewal theory

and is known as the renewal function: M(t) = E [N(t)]. For this chapter we will be more

interested in the derivative of this function, which is referred to as the Renewal Density

Function (RDF):

m(t) =
dM(t)

dt
=
dE [N(t)]

dt
(3.5)

The RDF, m(t), represents the rate of change of the expected number of events at time t.

We will now show a dual interpretation of the RDF as a marker for how the renewal events

are distributed in time. The RDF is related to the underlying PDF, p(t), by the following

Volterra convolution integral of the second kind with corresponding form in Laplace space

[156]:

m(t) = p(t) +

∫ t

0

m(t− t′)p(t′)dt′ t ≥ 0 (3.6)

m

M(s) =
P (s)

1− P (s)
(3.7)

The Laplace transform shows that the RDF completely describes the PDF: p(t). Histor-

ically there has been more concern with determining the RDF given a known PDF, whereas

here we are interested in determining the PDF from an estimated RDF. We can write the

RDF in a form more appropriate for understanding its relation to the distribution of renewal

events by applying the geometric sum formula to (3.7) (recall P (s) < 0, except at s = 0)

and applying the inverse Laplace transform:

m(t) = L−1 {P (s)} (s) + L−1
{
P (s)2

}
(s) + L−1

{
P (s)3

}
(s) + · · · (3.8)

= p(t)
︸︷︷︸

spike 1

+

∫ ∞

0

p(t′)p(t− t′)dt′

︸ ︷︷ ︸

spike 2

+

∫ ∞

0

∫ ∞

0

p(t′)p(t′′)p(t− t′ − t′′)dt′dt′′

︸ ︷︷ ︸

spike 3

+ · · · (3.9)
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Thus the RDF can be represented as an infinite sum of n-fold convolutions of the PDF.

Recall that the PDF associated with the sum of two independent random variables is the

convolution of their respective PDFs. Therefore the first term in (3.9) represents the proba-

bility of the first spike occurring at time t, the second term represents the probability of the

second spike occurring at time t and so forth. Thus we see that the RDF can be interpreted

as the probability of seeing any spike at time t. Note that as we show below, the RDF does

not integrate to unity and is therefore not a true probability density function.

We will outline some additional properties of the RDF useful for our analysis.

1. Poisson Behaviour : The RDF for the Poisson process, which has exponential PDF:

p(t)Poisson,ν = νe−νtθ(t), is given by the constant value: m(t)Poisson,ν = νθ(t), [167]

where ν =
(∫∞

0
tp(t)dt

)−1
is the Mean Firing Rate (MFR) and θ(t) is the Heaviside

distribution. Therefore for a Poisson counting process the probability of seeing a spike

is constant.

The Poisson counting process is the only continuous distribution which is memoryless.

That is to say that if we have waited time period t without a spike, ∆T , occuring

P (∆T ≥ t), the probability of a spike, ∆T , occurring during an additional δt time

period P (∆T ≤ t+ δt|∆T ≥ t) is the same the probability of observing a spike in any

arbitrary δt time period. We can mathematically express this as:

Pr(∆T ≤ t+ δt|∆T ≥ t) = Pr(0 ≤ ∆T ≤ δt) (3.10)

2. Asymptotic Behaviour : By the Erdos-Feller-Pollard theorem [168] the RDF asymptotes

to the constant value of the mean firing rate ν: limt→∞m(t) = ν. In the less general

case of sufficiently smooth PDFs we can see this result by applying the Final Value

Theorem to the Laplace Transform of the RDF given by (3.7). We introduce the square

integrable Asymptotically Shifted Renewal Density Function (ASRDF) mAS(t):

mAS(t) = m(t)− νθ(t) (3.11)
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3. Non-Negativity : Inspection of (3.9) shows that the RDF is an infinite series of n-fold

convolutions of strictly positive PDFs. Since the convolution of two strictly positive

functions is positive, the RDF must be strictly positive.

4. Positive Support: Inspection of (3.9) also shows that the RDF is an infinite series of

n-fold convolutions of PDFs defined for positive support. Thus the RDF, m(t), is

also only defined for positive support. We define symmetric functions: s-RDF and

s-AS-RDF which are defined over the entire (positive and negative) R1 number line:

s-RDF ≡ m(t) +m(−t) (3.12)

s-ASRDF ≡ m(t) +m(−t)− ν (3.13)

Note that by the properties of Fourier Transforms of symmetric functions [121], the

FT of these symmetric forms of the RDF will be purely real functions.

The renewal process can be represented as a time series where, at the time of each event,

a Dirac delta distribution is embedded into the continuous number line R
1. The spaces

between the Dirac delta distributions are the random variables ∆Ti. The times series is thus:

x(t) =
∑∞

i=1 δ(t − ti), where (ti − ti−1) ≡ ∆Ti. For modeling many real world phenomena,

when the event occurs a characteristic shape is generated. For example the voltage at the

synapse of a neuron will generate a characteristic action potential shape when the spike

occurs. We can incorporate this effect into the time series by convolving the renewal process

(represented as the Dirac comb) with an appropriate filter function g(t). This is referred to

as a filtered renewal process and has the following time series form:

y(t) = g(t) ∗
∞∑

i=1

δ(t− ti) (3.14)

The auto-correlation structure, Ry(τ), for this time series is given by the convolution of

the pulse shape, g(t) with the correlation structure associated with the pulse times [157],

[167]:

Ry(t) = ν

∫ ∞

−∞
g(t− t′) [δ(t′) +m(t′) +m(−t′)] dt′ (3.15)
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Where ν =
(∫∞

0
tp(t)dt

)−1
is the Mean Firing Rate (MFR). Recall that the RDF, m(t)

is only defined for t ≥ 0. Thus the autocorrelation is a function of the s-RDF.

A closed form expression for the power spectrum of the filtered renewal process can be

developed, using the Weiner-Khinchtine theorem, by taking the Fourier Transform (FT)

of the autocorrelation function (3.15) of this process [157], [167], [169]. In Appendix A.5

we develop this expression along a different route, by considering the infinite limit of the

periodogram of the time series. The power spectrum, P (ω), is given by:

P (ω) = νG(ω)

[

2πνδ(ω) + 1 + 2Re

{
H(ω)

1−H(ω)

}

︸ ︷︷ ︸

Correlation Spectrum: 2·Φ(ω)

]

(3.16)

Where G(ω) = |F [g(t)]|2 is the energy spectrum associated with the filter shape g(t),

and H(ω) is the characteristic function of the {∆T} random variables. Note that if ∆T

admits a distribution then the characteristic function is given by the FT of the PDF:

H(ω) = F {p(t)} (ω). The expression in the square parentheses [· · · ] is termed the Barltett

spectrum and, by the Weiner-Khincthine theorem, represents the FT of the auto-correlation

structure of the pulse train [157]. The non constant component of the Bartlett Spectrum,

Φ(ω) = Re
{

H(ω)
1−H(ω)

}

, which we will refer to as the correlation spectrum will play a central

role in our subsequent analysis.

It is important to note that (3.16) is the analytic expression for the power spectrum of

a filtered renewal process. Specifically (3.16) does not represent the periodogram used to

estimate the power spectrum given a single realisation (i.e. the time series) of a renewal

process. Thus the G(ω) term represents the contribution to the analytical power spectrum

due to the stereotypical shape of the action potential generated at every firing time. It does

not represent a window or data taper used in the estimation of the power spectrum of the

measured time series.
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3.3.2 Analysis Of the Bartlett Spectrum

The Spectral Density Estimator discussed in section 3.5 is based heavily on the estimation

and subsequent integral transformation of the correlation spectrum Φ(ω). In section 3.3.3

we will show the unintuitive result that given the correlation spectrum, Re
{

H(ω)
1−H(ω)

}

, which

is a nonlinear function of H(ω), we can recover H(ω) and thus the density function p(t).

Before we begin the formal analysis of the correlation spectrum,Φ(ω), we provide some

general properties of both the Bartlett and correlation spectrum (which are related by a

constant, unity, offset). Notice that by inspection of (3.16) due to the non-negativity re-

quirements of the power spectrum the Bartlett spectrum must be non-negative. There is no

such requirement of the correlation spectrum.

The Bartlett spectrum represents the correlation structure of the spiking times in fre-

quency space. A problem is that despite the simple expression for the Bartlett spectrum, for

most probability distributions it is remarkably resistant to closed form analysis. It is rarely

possible to develop closed form expressions for the conditions for the presence of peaks, their

locations or width or indeed how rapidly the spectrum decays to zero. Instead we are forced

to rely on heuristics to understand the Bartlett spectrum. For example if a neuron is firing

perfectly periodically we would expect to see peaks in the power spectrum at the firing rate

and its harmonics. Purely periodic firing represents one of the few cases we can develop an

analytic expression for the Bartlett spectrum:

H(ω)periodic =

∫ ∞

0

δ(t− 1

λ
)eiωt = e(iω)/λ

∞∑

n=1

H(ω) +
∞∑

n=1

H∗(ω) =
∞∑

n=−∞
δ(ω − nλ)

ν [1 + Φ(ω)]Periodic = ν + ν

∞∑

n=−∞
δ(ω − n2πλ)
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As the variance associated with the timing of these spikes increases we would expect to

see the peaks get wider, and the higher order harmonics begin to disappear. As the variance

is increased such that the firing pattern becomes maximally random (that is, it becomes a

Poisson counting process) there would be no statistically expected deviation from uniformly

distributed firing times and thus we would expect the Bartlett spectrum to be a constant.

This is another case where an analytic expression for the Bartlett spectrum can be developed,

and it can be shown [167], in agreement with Carson’s theorem the Bartlett spectrum is a

constant:

H(ω)Poisson =
λ

λ− iω
−→ 2Re

(
H(ω)

1−H(ω)

)

= 0,

ν [1 + Φ(ω)]Poisson = ν + ν2δ(f)

It is convenient to identify that these two firing patterns represent extremes of the Weibull

family of distributions for the ISI random variable:

p(t)ISI =

(
k

λ

)(
t

λ

)k−1

e−(t/λ)k , t, λ, k ≥ 0 (3.17)

Where λ and k are termed the scale & shape parameter respectively. When k is unity the

maximally random Poisson statistics are recovered, whereas periodic firing occurs in the limit

of the shape parameter, k, approaching infinity. The variance of the Weibull distribution is

given by: σ2 = λ2Γ(1+2/k)−µ2. Notice that as k increases the variance decreases, and the

Poisson solution has maximal variance. Between the two extremes of periodic and Poisson

count firing statistics we can observe the Bartlett spectrum by parametrically fitting the ISI

density function to the Weibull distributions and tuning the shape parameter. Examples of

this process are shown in Figure 3.1 for k = 1, 5, 10 and validate this heuristic approach.

Inspection of Figure 3.1 shows that the peaks do not occur precisely at the harmonics of the

fundamental (mean firing rate, ν) frequency. This is because these are not spectra of purely

periodic processes .

There are two important points to observe from Figure 3.1. Firstly for the different

Weibull (k = 1, k = 5 and k = 10) ISI distributions considered, with mean firing rate

of 30 Hz, there is minimal structure (beyond constant behavior) in the Bartlett spectrum
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Figure 3.1: Bartlett spectrum of Weibull distributions with different shape parameters

k=1,5,10 for a neuron with mean firing rate of 30 Hz. Notice that as the firing becomes

less periodic (k decreases) the higher order peaks will disappear, the remaining peaks get

smaller and wider until eventually with Poisson counting statistics (k=1) the Bartlett spec-

trum shows no features. Notice that as these are not purely periodic processes the peaks do

not occur precisely at the harmonics of the fundamental (30 Hz) frequency.

above roughly 150 Hz. This intuitively makes sense, as the probability of the time between

firing events for these Weibull distributions being five times smaller than the mean time to

fire is exceedingly low. Therefore we would expect minimal correlations at firing rate rates

that are unlikely to occur. To compare these simulation values with real STN neurons, in

[170] the firing rates from 351 MER signals from 65 patients with Parkinsons Disease were

measured, on average, to be 40 ± 20.3 Hz. This is a similar mean firing rate to the 30 Hz

we have considered for these simulations. It is important to realise that while neurons can

temporarily fire at much faster rates (for example during burst firing events) this represents

an instantaneous increase in the firing rate, and not an increase in the mean (i.e. statistical

expectation) of the firing rate. For example it can be shown [171] that high frequency burst

firing patterns can be generated by stretched exponential (k < 1) Weibull ISI distributions

with standard physiological mean (ν ≈ 30 Hz) firing rates. The second important point to

note is that there is no structure in the Bartlett spectrum for a Poisson counting process

beyond constant amplitude equal to the mean firing rate.
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3.3.3 Analysis of the Correlation Spectrum

In the proceeding section we will show the unintuitive result that given the correlation

spectrum, Re
{

H(ω)
1−H(ω)

}

, which is a nonlinear function of H(ω), we can recover H(ω) and

thus the density function p(t). The key to this result is the positivity and non-negativity

properties of the RDF. Inspection of (3.15) and (3.16) shows that the correlation spectrum

Φ(ω) and the symmetric form of the Renewal Density Function (s-RDF) are a FT pair [157]:

F {m(t) +m(−t)} (ω) = 2Φ(ω) + 2πνδ(ω) (3.18)

The Dirac delta term δ(ω) is present because the RDF asymptotes to ν and thus is not

square integrable. Because the support of the renewal density function is ∈ [0,∞) there is

no ‘overlap’ between the causal, m(t), and anti-causal, m(−t), components. We can develop

the FT of the (one sided) renewal density function by inserting a Heaviside distribution,

θ(t), into the Fourier kernel and use the following identity developed from the convolution

theorem [121]:

F [f(t)θ(t)] =
1

2
(F (ω)− jH [F (ω)] (ω)) (3.19)

Recall that H{f(t)} (ω) is the Hilbert transform defined (in chapter 2) as H{f(t)} (ω) =
1
π
p.v.f(t) ∗ 1

t
, where p.v. is the Cauchy principle value. Inserting the Heaviside distribution

into the Fourier Kernel of (3.18) and using (3.19) yields:

F {m(t)} (ω) = F {[m(t) +m(−t)]θ(t)} (ω)

=
1

2
(2Φ(ω) + 2πνδ(ω))− i

2
(H{2Φ(ω) + 2Φ(ω)} (ω))

= Φ(ω)− iH [Φ(ω)] + πνδ(ω)− iν

ω
(3.20)

Thus given an estimate of the correlation function, Φ(ω), and the mean firing rate, ν,

the RDF can be recovered. This result can also be developed using the Kramers-Kronig

relationship, recognising that the FT of a causal function will be complex, with the real and

imaginary components of this transform related by a Hilbert transformation in the frequency
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domain. For practical purposes, from (3.18) we can obtain the AS-RDF, mAS(t), by Fourier

inversion of Φ(ω) multiplied by the Heaviside distribution:

mAS(t) ≡ m(t)− νθ(t) = F−1 {Φ(ω)} (t)θ(t) (3.21)

Note that the inversion of Φ(ω) recovers the AS-RDF: m̂AS(t). We must separately

develop an estimate of ν in order to estimate the RDF: m(t). We specifically discuss this

issue in Section 3.5.3.

Uniqueness of Correlation Function

Notice that we can express Φ(ω) as the FT of the difference of the s-RDF ,m(t)+m(−t), of
a given PDF with mean firing rate ν and the s-RDF of a Poisson process with rate ν.

F [( m(t) +m(−t)
︸ ︷︷ ︸

s-RDF:
∫

∞

0 tp(t)dt=ν

)− (νθ(t) + νθ(t))
︸ ︷︷ ︸

Poisson s-RDF,ν

] = Φ(ω) (3.22)

Thus Φ(ω) is the FT of the difference of two uniquely defined distributions. We argue

that, excluding Poisson processes, Φ(ω) completely describes p(t). The Poisson process rep-

resents a degeneracy point where Φ(ω) is zero [167] for all mean firing rates ν. Thus for the

Poisson process, Φ(ω) does not completely describe the PDF ppoisson(t).

3.4 Super-Position of Renewal Processes

We now consider the super-position of many independent renewal processes. In Section

3.7 we will use a modification of this super-position of renewal processes to model an extra-

cellular recording probe interacting with the electrical fields of multiple neurons. We consider

below the time series, y(t)Σ, associated with the restrictive case when the processes all

have the same filter shape but variable amplitude, a, uncorrelated with the firing times

(〈a∆T 〉 = 〈a〉〈∆T 〉). This is referred to as spike shape stationarity. Each renewal process

is independent with the spacing between pulses ∆T for each process being drawn from the
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same, but separate, PDF p(t):

y(t)Σ =
N∑

j=1

ajg(t) ∗
( ∞∑

i=1

δj (t−∆Ti,j)

)

∀j ∆Ti ∼ p(t) (3.23)

Where ∆Ti,j refers to the ith pulse gap associated with the jth renewal process. In general

this super-position of independent renewal processes results in a pooled process which is not

a renewal process, but a subset of Markov-renewal processes [172]. The key reason for this

is, due to the summation, the independence of spacing between the pooled spike stream is

violated. The properties of the infinite limit of summed renewal process was well studied

in [158]. It was shown that the general properties of a pooled renewal process are that the

random variable associated with the spacing, the Inter-Spike-Interval (ISI), is drawn from

an exponential distribution (similar to a Poisson counting process) but with correlations

between these random variables. This is not a property of renewal processes. Most interest-

ingly the power spectrum of this super-position is a scaled form of the individual processes

contributing to the pool. We can trivially extend the analysis in [158] to the summation of

filtered renewal processes with variable amplitude:

PΣ(ω) = Nν〈a2〉G(ω)
[

1 + 2Re

{
H(ω)

1−H(ω)

}]

(3.24)

The derivation of this result is provided in section A.6. Note that 〈a2〉 is the square of the
mean of the filter shape amplitudes. In effect the super-position of renewal processes creates

a non-renewal process, but with a renewal process power spectrum. As mentioned in [158]

this spectral result can be understood as a consequence of the variance of the summation of

independent random variables being the sum of the variance of those variables. The prop-

erty we will exploit is that the pooled renewal process, although having ISI different to the

individual contributing processes has (up to a scaling factor) the same correlation structure,

Φ(ω), as the individual contributing processes. That is (3.24) is scaled version of (3.16)

Note that it is frequently misinterpreted that the Palm-Khincthine theorem guarantees

that the pooled renewal process is a Poisson renewal process. As is emphasized in [158],

this theorem only guarantees that for the summation of low intensity renewal processes, on
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a time scale smaller than the renewal times of the individual processes, that the resulting

process will appear as a Poisson process.

3.5 Spectral Density Algorithm

Our algorithm to estimate the PDF, shown in Figure 3.2, consists of three iterated steps:

Step 1: estimate the correlation spectrum Φ(ω) and obtain the AS-RDF mAS(t). Step 2:

estimate the mean firing rate ν̂ to obtain an estimate of the RDF, m̂(t) = m̂AS(t) + ν̂θ(t).

Step 3: estimate the density function by solving (3.6) for p(t). In order to estimate ν we will

use an iterative procedure which will require multiple cycling of steps 2-3.

In explaining the following steps we consider the estimation of Φ(ω) of the super-position

of an unknown number of renewal processes with unknown amplitudes in the presence of

zero mean white noise with variance σ2 which is uncorrelated with the renewal processes:

y(t) = y(t)Σ + w(t), w(t) ∼ N (0, σ2) (3.25)

3.5.1 Step 1: Correlation Spectrum Estimation

The first requirement for an accurate estimate of Φ(ω) is obviously an accurate estimate of

the power spectral density. As we are generating a data driven estimate of the PDF, we

wish the estimates to be as general as possible and thus restrict the spectral estimation to

non-parametric methods. In the proceeding sections we use Welches Overlapping Segment

Averaging (WOSA) [173]. In certain circumstances, for instance if only short time recordings

are available, alternative methods such as Thompson’s multitaper method, (which, instead

of partitioning the time series, reduces variance in the estimate with a series of orthogonal

data tapers applied to the entire time series) [174],[125] may be more appropriate.

There are alternative approaches to estimating the power spectrum of more general sta-

tionary point processes (of which renewal processes are a special case) based on knowledge

of the precise timing of the spikes observed over the length of the measured time series
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Step 1 (A): Estimate Φ(ω), using (3.26),(3.27)

Step 1 (B): mAS(t) = F−1 {Φ(ω)} (t) using (3.28)

Guess νguess

Step 2: mguess(t) = mAS(t) + νguessθ(t)

Step 3: solve pguess(t) = (M∆T + I)−1 m using (3.31)

Step 4: Reconstruct Correlation Spectrum

Φguess(ω) = Re

(

F{pguess(t)}(ω)

1−F{pguess(t)}(ω)

)

If
∫+∞

−∞
Φguess(ω) − Φ(ω)dω < ǫ

Generate new

νguess by bisection

pguess(t) = p(t)

else

Figure 3.2: Spectral Density Estimator algorithm flow chart.

[175],[176]. Thus, instead of developing the power spectrum from a sequence of windows of

the time evolution of the stochastic process (i.e. the standard periodogram approach) the

spectrum is estimated from the discrete set of firing times which occur in these windows

of time. These approaches which require detailed knowledge of the individual neuron firing

times cannot be applied (without significant post-processing) to the vLFP problem because

we do not know the precise firing times of the constituent neurons contributing to the noisy

single channel MER signal.
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The ability to estimate Φ(ω) is determined by the signal to noise ratio of the energy spec-

trum G(ω) to the background white noise in the region of support of Φ(ω). This support

is dependent on the physical problem considered. For example with extra-cellular neural

recordings, the firing rates of individual neurons are roughly in the 1-150 Hz range. Thus

we would expect the support of Φ(ω) for the neural system to be roughly (0-150 Hz). We

show the Bartlett spectra associated with different gamma distributed renewal processes

with physiological neural mean firing rate of 50 Hz as well as the typical energy spectrum

for the spike shape of an STN neuron, G(ω), in Figure 3.4.

We estimate Φ(ω) in the following steps: Given estimates of the PSD, P̂ (ω), and energy

spectrum, G(ω), either by a priori knowledge or estimated from the signal, perform the blind

deconvolution: χ(ω) = P̂ (ω)/G(ω). Using (3.24)-(3.25) this can be shown to be equivalent

to:

χ(ω) = Nν〈a2〉 [1 + Φ(ω)] +
σ2

G(ω)
(3.26)

By the Riemann-Lebesgue lemma [177], at sufficiently high frequencies Φ(ω) will decay to

zero. As discussed previously on heuristic grounds we expect that this will decay to zero

around the value of the firing rate. We also expect, excluding the unphysical situation

g(t) = δ(t), that for sufficiently high frequencies limω→∞G(ω) = 0. Thus at high frequencies

the noise component of χ(ω) (where the correlation spectrum will most likely be zero) may

diverge. If we choose a range [ωL · · ·ωH ] where we expect Φ(ω) to be approximately zero but

G(ω) to be sufficiently large we can develop an approximation for the product of unknown

quantities Nν〈a2〉:

α = Nν〈a2〉 = 1

M

ω=ωH∑

ω=ωL

χ(ω), M =
ωH − ωL

∆ω
(3.27)

Using (3.26),(3.27) we can develop our estimate of the correlation spectrum as: Φ̂(ω) ≈
χ(ω)/α−1. Because of the noise term of χ(ω) diverging at higher frequencies we can low-pass

filter our solution. We use a shifted complementary Gaussian error function: erfc(ω−ω0) =

2√
π

∫∞
ω
e−(ω′−ω0)2 dω′. as a low-pass filter, with ω0, the cut off frequency, set at a value higher



104 Model-Based Entire vLFP Analysis

than the highest expected firing rate. The AS-RDF, mAS(t), is recovered using (3.21):

m̂(t)AS = F−1

{

erfc(ω − ω0) ·
[
χ(ω)

α
− 1

]}

(t)θ(t) (3.28)

Notice that the algebraic manipulation required to obtain Φ(ω) from P (ω), from (3.24), is

equivalent to a deconvolution of the filter shape and the s-ASRDF, in the time domain. Thus

an alternative approach based on Tikhonov regularisation of the auto-correlation function

in the time domain could also be employed [178].

3.5.2 Step 2: Solving the Volterra Integral Equation

We will discretise the RDF: m → m[t] and the desired PDF p(t) → p[t] and use numerical

quadrature techniques to perform the deconvolution required to solve (3.6) for p(t). Note

that if we discretise these continuous quantities at a sampling rate, Fs, the numerical time

step is given by: ∆T = 1/Fs. We can write the convolution term as a matrix-vector product:

∫ t

0

m(t− t′)p(t′)dt′ ≈ Mp∆T (3.29)

Mp =











m[1] 0 0 · · · 0

m[2] m[1] 0 · · · 0
...

...
...

. . .
...

m[n] m[n− 1] m[n− 2] · · · m[1]





















p[1]

p[2]
...

p[n]











(3.30)

We can solve this for p[t] as:

p[t] = (M∆T + I)−1 m[t] (3.31)

Since the RDF does not asymptote to zero we cannot use Fourier Transform techniques

to estimate the discretised distribution p[t]. This problem can be solved using Ordinary

Least Squares (OLS), or Tikhonov regularisation with a penalty associated with either the

ℓ2 norm of the vector p[t] or its first order difference (to promote smooth solutions). In the

proceeding sections we solve (3.31) using OLS.
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A problem now is that the methodology in Section 3.5.1 determines an estimate of AS-

RDF: mAS(t). From (3.21) we require an estimate of the MFR, ν, to construct an estimate

of the RDF. We describe an iterative process to achieve this in the next section.

3.5.3 Step 3: Mean Estimation

It is important to notice that the RDF with different offsets: m′(t) = m(t) + ν ′θ(t) yields a

structurally different integral equation to the standard Volterra integral equation of the 2nd

kind (3.6). Re-writing the RDF in (3.6) as: m(t) = mAS(t)+ νguessθ(t) yields the expression:

mAS(t) + νguessθ(t) = pguess(t) +

∫ t

0

mAS(t− t′)pguess(t
′)dt′ + νguess

∫ t

0

pguess(t)dt

(3.32)

There is no guarantee that the solution, pguess(t) for all νguess, of this modified renewal

equation will satisfy the properties of a PDF of integrating to unity or being strictly non-

negative. We can identify that in the limit of νguess >> m(t) ∀t, (3.32) reduces to the

standard renewal equation for a Poisson process with mean firing rate νguess.

This suggests that we can estimate the mean firing rate ν for a non-Poisson process using

the following iterative procedure:

1. Choose a value vguess on the interval [0,+vmax), where vmax is determined by an estimate

of the maximum possible firing rate. The lower bound is because the mean firing rate

cannot be negative.

2. Given the estimate m̂AS(t) and choice vguess, generate m̂guess(t) and solve (3.32) for

pguess(t).

3. Form the associated correlation spectrum: Φguess(ω) = 2Re







F {pguess(t)} (ω)
1−F {pguess(t)} (ω)






.

4. Determine the sum of squared error:
∫ +∞
−∞ (Φ(ω)− Φguess(ω)) dω
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5. Use a bisection method to determine the v′min which minimises the sum of squared

error. v̂ → vguess (in the proceeding section we use the golden search method). Return

to step 2.

3.5.4 Degeneracy of Poisson Processes

Notice that for Poisson processes Re
{

H(ω)
1−H(ω)

}

= 0 [167] and thus PPoisson(ω) = Nν. There

is no way without a-priori knowledge to tell from the spectrum whether the system consists

of a single Poisson process firing with rate = Nν, N oscillators firing with rate = ν or m

oscillators firing with rate = ν/m. This is a consequence of Φ(ω) = 0 and thus it represents

a degeneracy point. This limits the utility of this method to the super-position of Poisson

firing oscillators without a priori knowledge of the mean firing rate. We note however that

if ν can be known a priori (e.g. by biological or technical constraints of the problem), the

SDE will successfully recover the PDF. We also note that although it is certainly less useful,

inspection of the power spectrum associated with the superposition of renewal processes

will inform us that the underlying processes are following Poisson statistics, but with an

unknown rate.

3.6 Validation of Methodology

In this section we validate the methodology described by estimating the PDF associated with

super-positions of filtered renewal processes. We consider spikes with gamma firing statis-

tics. The gamma distribution is given by p(t) =
λktk−1e−λt

Γ(k)
. Where k and λ are referred to

as the shape and scale parameters respectively. For the gamma distribution the MFR, νγ,

is related to these parameters by the relation: νγ = λ/k.

We choose the gamma distribution for two reasons. Firstly Poisson firing is a special case

of the gamma distribution, with k = 1. This allows us to explore how the accuracy of this

method varies as the firing statistics become more correlated (less Poisson-like). Recall in

Section 3.5.4 we identified that the iterative process used to estimate the mean firing rate,
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Figure 3.3: Sample time series of the superposition of three identical filtered renewal pro-

cesses and a zoomed in version of the individual constituent (different colours) processes.

ν, (and subsequently the PDF) breaks down for the case of Poisson statistics. By varying

the shape parameter, k, we can quantify the accuracy of the estimates ν̂, the PDF and

subsequent statistical moments (which are calculated using this estimate of the PDF) as the

firing patterns become more correlated. The second reason is that, as mentioned previously,

in Section 3.7 we apply this method to simulated datasets of neurons interacting with an

extra-cellular probe. Gamma statistics are frequently used to model neuron firing patterns

[179],[180],[181].

We consider the problem of attempting to estimate the PDF for a range of different

shape parameters from k = 1.8 (near-Poisson) to k = 4 (strongly correlated). We also con-

sider whether the accuracy of the estimates vary with the MFR over the range ν = 20Hz

to ν = 200Hz. We consider a filter shape, g(t), which is the action potential generated by

solving the Hodgkin-Huxley equations with the appropriate parameters for an STN neuron

[182]. We consider this filter function as known apriori, although we note that it would be

possible to estimate this filter function, albeit less accurately, from the times series.
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We generate the resulting time series as the superposition of three filtered gamma re-

newal processes, but do not have a priori knowledge about this number of processes. A

sample realisation of the time series is shown in Figure 3.3. We use a transition frequency

ω0 = 500Hz for the low-pass Filter described in Section 3.5.1. A plot of the Bartlett spectra

for different shape parameters, with mean firing rate ν = 50Hz, the energy spectrum |G(ω)|2

and the low-pass Filter are shown in Figure 3.4. Notice the support of the non unity com-

ponent of the Bartlett Spectra, the correlation spectrum Φ(ω), overlaps with the support of

|G(ω)|2 which is vital for the blind deconvolution described in Section 3.5.1 to be successful.

Also note that for almost all shape parameters considered the non-unity component of the

Bartlett spectrum is within roughly 5% of its final value by 150 Hz and continues to decrease

at higher frequencies. The majority (but not all) of the support of the correlation spectrum

being restricted to the low frequency (< 150 Hz) region will be important in Section 3.7 when

we consider the low-pass filter effects of the extracellular fluid which causes frequency selec-

tive attenuation of the measured vLFPs. Recall that frequency selective attenuation of the

measured vLFP will alter the estimate of power spectrum and in turn the correlation spec-

trum which provides the foundation for estimating the underlying probability distribution

using the SDE algorithm.

3.6.1 Variation of Statistics

We generate a Monte-Carlo simulation where for each permutation of shape parameter, k,

and MFR, ν, considered, 20 different realisations of a 100 second time recording was gen-

erated and the mean firing rate, ν̂, the PDF, p̂(t), and the variance, σ̂2, estimates were

compared with the true values and relative errors were calculated. Note that the MFR esti-

mate ν̂ was constructed using the iterative process described in Section 3.5.3. The PDF was

then constructed using the methodology described in Section 3.5 using the MFR estimate

ν̂. The variance estimate was then constructed using both ν̂ and ˆp(t) with the formula:

σ̂2 =
∫ +∞
0

(t− 1/ν̂)2p̂(t)dt. The choice of these three parameters, where the estimation relies

on the estimates of the previous parameter(s) allows us to observe how the errors in the

estimate propagate.
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Figure 3.4: Bartlett Spectrum, Energy Spectrum |G(ω)|2 and low-pass filter @ ν = 50Hz.

Inset : Zoomed in version of Bartlett spectra of gamma distribution for different shape

parameters k.

Figure 3.5 shows the error associated with the estimates of the mean firing rate, ν̂, PDF

p̂(t) and variance σ̂2 respectively for each of the 20 trials for the different shape parameters

and true MFR. Analysis of these parameter estimates shows the following:

1. MFR: At smaller true MFR the estimates ν̂ for all firing patterns, from near-Poisson

(k=1.8) to strongly correlated (k=4) are accurate. As the true MFR increases, the

estimates closer to Poisson firing become less accurate, whereas estimates associated

with the more correlated firing patterns stay accurate. It is interesting to note that for

the near-Poisson case at high frequency the methodology appears to be biased towards

under-estimating the MFR.

2. PDF: The accuracy of the PDF estimate is largely determined by the accuracy of the

MFR estimate. The pattern of errors for both the NFR and PDF estimates follow

the same trend: The near-Poisson (k = 1.8) errors are larger for higher MFR. In

general, the higher MFR cases are associated with a larger biased error values. This is

especially pronounced for the less correlated (smaller k values) firing statistics. This
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can be understood because if the average firing rate is higher, for a given time window

there will be more pulses and a more accurate estimate of the correlation structure can

be obtained.

3. Variance: The distribution of errors roughly follows the same pattern as that of the

PDF and MFR errors. The more accurate the PDF estimate the smaller the relative

error in the variance estimate. It is interesting to note that for near-Poisson (k=1.8)

firing, even though the MFR estimate is biased to under-estimation, the variance esti-

mates do not appear to be biased. This is especially interesting given that the variance

estimate depends on MFR both explicitly, and through its effect on the construction

of the PDF estimate.

We have shown with simulation that the theory describing the solution to the inverse

problem can indeed be used to estimate the firing time distribution given the superposition of

an unknown number of identical renewal processes with similar filter shape. We have shown,

as a general rule, that this method is more accurate for less ‘Poisson-like’ firing statistics.

In the proceeding section we consider the application of this methodology to attempting

to estimate the firing statistics of an ensemble of neurons which are equally close to an

extra-cellular recording probe and therefore difficult to distinguish from one another.
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Figure 3.5: Error plots of MFR, ν̂, density, p̂(t) and variance σ̂2 estimates for different NFR

and shape parameters. Each point represents the result from a single trial.
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3.7 Application to Extra-Cellular Recordings

We consider an application of this Spectral Density Estimator to the vLFP estimation prob-

lem. When extra-cellular recording probes are used they often record the electrical activity

of multiple nearby neurons [19]. This is especially true for the vLFPs recorded from MERs

when they are placed in neuron-dense nuclei such as the STN targeted in Deep Brain Stim-

ulation surgery for neuro-psychiatric disorders [14]. However in computational neuroscience

we frequently wish to identify the spiking times associated with a single neuron, so that we

may characterise that neuron by its firing properties [90],[89],[155]. These properties can

either be the distribution that the firing times are drawn from or the statistical moments

such as the mean firing rate, the coefficient of variation or the information entropy associated

with this distribution (assuming they exist).

In order to isolate single neuron statistics when an ensemble of neural firing times are

inadvertently measured spike sorting is used. Spike sorting consists of four main steps [165]:

The first step is spike detection which estimates when a spike occurs in the time series.

The second step is spike extraction where the shapes of the detected spikes are identified

from the noisy time series. The third step is feature selection, where certain properties of

the candidate spikes are selected and extracted. The fourth step is spike clustering, which

attempts to partition the spikes into similar groups based on the similarity of the selected

features. Once the set of spike times in a group have been identified the statistical moments

(ν̂, σ̂, ...) can be estimated and the underlying distribution can be obtained either by using

histograms or Kernel Density Estimation (KDE).

Recall that clustering in spike sorting is based on grouping some subset of the spikes

together because of the similarity of some feature(s) such as the Euclidean distance of their

shape to one another [57] or their principle components [183]. The problem is that when

the spike shapes associated with different neurons are sufficiently similar, the clustering

processes will not be able to differentiate the spikes. This will result in the clustering

process placing spikes from different neurons into the same cluster. This situation could
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occur when (excluding different spatial orientations) multiple neurons are equidistant from

an extra-cellular recording probe. Conversely the Spectral Density Estimator solves the

inverse problem assuming that the filter shapes, g(t), are similar. The only difference which

is accounted for in the super-position of renewal processes model is the variation in amplitude

due to the scale factor a in (3.23). Therefore the more similar the action potential shapes

are, the more accurate we expect the Spectral Density Estimates to be.

3.7.1 Simplified vLFP Model

We consider a simplified model of the vLFP associated with the MER receiving signals from

multiple neurons as the superposition of multiple independent filtered renewal processes.

This model is described by (3.23). It is important to note that this model introduces many

simplifications to the vLFP recording. We discuss the implications of the two most important

approximations below:

Renewal firing spike trains: This model assumes that the individual firing times are re-

newal processes which by construction assume that the time between spikes are i.i.d.

There is a subtlety regarding this point: the property of i.i.d. times between spikes

does not imply that the firing times are uncorrelated. This can be understood as fol-

lows. Inspection of (3.15) shows that the autocorrelation function of the spike times

is solely a function of the renewal density function and the mean firing rate. With the

exception of the Poisson process (a subset of renewal processes) different ISI proba-

bility distributions will generate non-constant renewal density functions and therefore

will generate correlated firing patterns.

Independence of neurons: This model also assumes that each neuron will fire indepen-

dently of their surrounding neurons. This is indeed a simplification to the true be-

haviour measured by the vLFP signal. Previous in-vitro studies measuring the spiking

patterns of pairs of STN neurons in the Basal Ganglia tissue of rats has showed through

cross correlation analysis that STN neurons often fire in synchronous bursts [184]. It is

therefore unlikely that the STN neurons truly fire independently. Nonetheless in [171]
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it was shown that a model of independent STN neurons firing with renewal statis-

tics could successfully reproduce the structure of the measured vLFP power spectrum.

Thus this assumption may assume an accurate power spectrum and therefore the es-

timated ISI PDF may also be accurate. In effect, [171] was interested in solving the

‘forward problem’ of choosing a specific ISI distribution such that the simulated power

spectrum matched the measured one, whereas this chapter is concerned with solving

the ‘inverse problem’ of estimating the ISI distribution given measurements of the

vLFP power spectrum. The primary motivation for incorporating this independence

assumption is to make the solution of the inverse problem (estimating the ISI PDF

from the measured PSD) tractable. In future work we will consider whether this in-

verse approach can be extended to incorporate simple correlation models between the

individual neurons.

In addition to the model given by (3.23) we include an amplitude scaling factor and

low-pass filtering of the action potential shapes, g(t), to incorporate the effect of attenuation

and dispersion of the electric fields as they travel through the extra-cellular fluid [185] to

the probe tip. It is important to note that the amplitude attenuation is modeled by the a

factor in (3.23), whereas the dispersion by low-pass filtering is not. Thus we expect that the

presence of low-pass filtering will cause the Power Spectrum, P (ω), to deviate from the form

expected from (3.23) and therefore will reduce the accuracy of the SDE.

For the simulations we consider the situation of three neurons of variable distance from

the MER. We wish to identify how both the spectral density estimator and classical spike

sorting compare in identifying the PDF defining the neural statistics as the action potentials

of the neurons become more similar. This similarity is a model for the neurons becoming

more equidistant. We ignore the effects of white noise (due to signal acquisition errors) or

neural noise (due to the contribution of more distant neurons) to minimise the number of

variables when we compare these two methods. We note that if the neural noise is associated

with the same renewal statistics as the three neurons of interest this will boost the signal

to noise ratio for the SDE, but reduce accuracy for the classical spike sorting methodology.
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The time series for this model is given by.

y(t) = [g(t) ∗ h1(t)] ∗
∞∑

i=1

δ(t− ti) + (1 + α) [g(t) ∗ h2(t)] ∗
∞∑

j=1

δ(t− tj) (3.33)

+ (1− α) [g(t) ∗ h3(t)] ∗
∞∑

k=1

δ(t− tk)

(3.34)

Where {h(t)1, h(t)2, h(t)3} , are Butterworth low-pass filters of order 2 with a transition

frequencies given by: ωc = {0.12fs/2, (0.12 + α/10) fs/2, (0.12− α/10) fs/2} respectively

and fs is the sampling frequency. These low-pass filters act as the simple model for dispersion

due to the extra-cellular fluid. In this simple model the α scaling factor controls the similarity

of the three action potentials. In the case of the three neurons being similarly orientated

and equidistant from the extra-cellular probe the action potential shapes and amplitudes

would be identical, which would be modeled by α = 0. As the relative distance to the probe

between the neuron varies the action potential shapes vary and α will increase. When α =

1, the third neuron vanishes completely and the shape difference (in terms of dispersion) of

the first and second neurons action potentials is greatest. Figure 3.6 illustrates this effect,

showing the three different action potentials for different α values.
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Figure 3.6: Action potentials with different levels of dispersion and attenuation determined

by the α scaling factor. The green and red action potentials have the least and greatest

dispersion respectively. Notice that the greater the value of α (i.e. the greater the dispersion

and attenuation) the more distinct the waveforms.
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We vary this scaling factor α over the range [0, 1] and compare the PDF estimates ob-

tained by the spectral method to classical spike sorting. We run all simulations with gamma

firing (k = 2.5) statistics with mean firing rate, ν, of 50 Hz and generate the subsequent time

series at sampling rate of fs = 10kHz. Similar to the previous section the action potential

shape is generated by solving the Hodgkin-Huxley equation with appropriate parameters for

the neuron in the Sub-thalamic nucleus (STN) [182].

We compare the accuracy of PDF reconstructions generated by our methodology with a

classical spike sorting approach used by the highly popular program Osort [57]. Osort per-

forms the spike detection step using a multi-scale continuous wavelet denoising algorithm.

For a full description of this process see [94]. The spike clustering in Osort is performed

using a template matching scheme which groups the (up sampled) waveforms identified at

the estimated spike times into different clusters based on the Euclidean distance from each

other. For a full description of this clustering process see [57]. Once we have identified

the spiking times associated with each cluster we generate estimates of the ISI times for

each cluster by subtracting the identified firing time from the previous identified firing time:

∆Ti = ti− ti−1. We then merge the ISI times for each cluster into a single grand cluster and

generate an estimate of the PDF using an adaptive Kernel Density Estimator based on the

diffusion process [186].

3.7.2 Results

Inspection of Figures 3.7 and 3.8 show that as the α scaling value gets closer to zero (mod-

eling the neurons becoming more equidistant from the recording probe) the accuracy of the

classical spike sorting estimates decrease. As α decreases, the clustering (incorrectly) places

more and more neurons into the same cluster. This results in estimates of PDF with much

smaller mean time, µ, between events with a shape that looks similar to the exponential

distribution. This was identified in [158] where the spike times associated with a superposi-

tion of renewal processes was observed to have shorter mean ISI times and more exponential
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Figure 3.7: Sample realisations of the Spectral Density Estimator and Osort PDF estimates,

p̂(t), for different α scaling values.

looking distribution estimates as more renewal processes contributed to the super-position.

As the α value gets larger (modeling the AP shapes becoming more distinct) the classical

spike sorting result gets more accurate, because the template matching correctly clusters

neurons. It is interesting to note that despite the general trend towards better estimates for

the classical spike sorting, at α = 0.8 there is a local increase in the SSE. The cause of this

is not obviously clear. It is likely due to the re-emergence of an Osort detected similarity

between two separate action potentials, which disappears for even larger α values in the re-

gion where the amplitude of the third neuron is approximately zero. Note that the spectral

density estimator is largely insensitive to the α value.

3.7.3 Analysis

The results shown in Figure 3.8 and discussed in the previous section confirm the intuition

discussed in Section 3.7 that the more similar the action potential shapes the worse the
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Figure 3.8: Mean and SEM of the SSE averaged over 25 trials for k = 2.5 gamma firing

neurons (ν = 50Hz) for various α scaling levels. Notice the general trend that as the α

scaling factor increases the classical spike sorting is more successful, whereas the spectral

KDE is largely independent of the relative amplitudes.

Osort and better the Spectral Density Estimator function respectively. This suggests that

the Spectral Density Estimator may have utility over classical spike sorting approaches when

the renewal firing statistics of individual neurons are required but unable to be separated

from other nearby renewal firing neurons which are also being recorded.

It is very interesting that in Figure 3.8 the accuracy of the spectral density estimator

is largely unaffected by the dispersion (low-pass filtering) effect. Recall that the dispersion

changes the filter function, g(t), shape. Also recall that the Spectral Density Estimator

solves the inverse problem associated with the superposition of filtered renewal processes

with (up to a scaling factor) identical filter functions. Intuitively we would expect this

dispersion effect to violate the assumptions of the model, alter the power spectrum, P (ω),

and in turn alter the estimate of the correlation spectrum Φ(ω) (described in Section 3.5.1)

and therefore the estimate of distribution: p(t). This does not occur because for almost all

transition frequencies, ωc, considered the support of the correlation spectrum, Φ(ω), over-

laps the constant passband of the Butterworth low-pass Filter. For example, the smallest

transition frequency considered in these simulations was (at α = 1 for the third neuron in

(3.34)) ωc = 100Hz. Inspection of Figure 3.4 shows that for a wide range of gamma shape

parameters with mean firing rate, ν, of 50Hz (including k = 2.5) the correlation spectrum
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is close to zero by approximately 150Hz. Thus filtering distorts the measured spectra in a

region that contains minimal information about the correlation spectrum and therefore the

density estimate is largely unaffected.

The results of these simulations are also interesting because they suggest that given the

power spectrum of highly filtered and attenuated neural time series (firing with renewal

statistics) it is possible to reconstruct the distribution that these firing statistics are drawn

from. A situation where this occurs is the analysis of Local Field Potentials (LFPs). The

contribution to LFPs is still debated [19], but in addition to synaptic/dendritic contributions

it also must include the effect of multiple far field highly dispersed neurons. This is especially

plausible when low impedance, high capacitance MERs (such as those used in Deep Brain

Stimulation surgery) are employed. Results from [19] have suggested that in some instances,

with appropriate machine learning techniques, features of LFPs can be used to predict with

relatively high accuracy when a particular neuron will generate an action potential. It is

particularly interesting that this methodology was most effective when the feature consid-

ered was the power of the LFPs in the gamma band (40− 90Hz), which, as shown in Figure

3.4, is precisely the region where the correlation spectrum for a physiologically firing neuron

will be non-zero. We also note that there is rarely a clear demarcation between single unit

recordings and LFPs for extra-cellular recordings [20]. This is especially true for the vLFPs

from MERs which, even when placed near a dominant neuron will still pick up the electrical

contribution from (heavily) attenuated and dispersed nearby neurons.

As discussed in the previous section we have generated a highly simplified model of neu-

rons interacting with an extra-cellular MER. Multiple effects such as the spatial orientation

of the neurons (which will further alter the action potential shape) and firing rate dependent

spike shapes have not been included. Additional phenomena such as sub-threshold oscil-

lations [187] and correlation between the neurons [188] are not modeled. In addition the

filtering effect of the extra-cellular medium is more complex than a second order Butter-

worth low-pass filter [185]. Nonetheless this model incorporates many of the core features

and can be considered a proof of concept that there are circumstances (of multiple renewal
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firing neurons) when estimates of the power spectrum can yield accurate reconstructions of

the underlying density function which outperform classical spike sorting approaches.

3.8 Numerical Simulation Conclusion

We have developed a methodology to estimate the PDF associated with the superposition of

filtered renewal processes given an estimate of the power spectrum. We have shown through

extensive Monte-Carlo simulation that this method generates more accurate estimates when

the firing patterns are more strongly correlated. We have suggested that this spectral ap-

proach to density estimation may have applications in analysing vLFPs from MERs, outper-

forming classical spike sorting techniques when the shapes of the action potentials associated

with different neurons being recorded are sufficiently similar. These results suggest that this

method could be most appropriate when attempting to estimate the firing statistics asso-

ciated with multiple neurons when they cannot be separated using classical spike sorting

techniques.

3.9 Conclusion & Contributions

In this chapter we have attempted to develop a model-based approach to analyse vLFPs

from MERs in neuron dense structures such as the STN. We have developed a transfor-

mation operator, termed the Spectral Density Estimator which maps the measured power

spectrum to the underlying common probability distribution driving the firing statistics of

the neural ensemble. The methodology implemented in this chapter has demonstrated the

remarkable result that given the measured power spectrum of a neural ensemble, conditional

on a series of assumptions being satisfied, the common probability density function driv-

ing the constituent spike trains can be identified. This methodology continues along the

common theme introduced in this thesis, where the vLFPs are characterised by solution

of an inverse problem. In this case there were two serial inverse problems: decoupling the
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Bartlett spectrum from the action potential energy spectrum associated and the deconvo-

lution operation on the renewal density equation to identify the probability density function.

This spectral approach has allowed us to solve the pathological mathematical problem of

identifying the firing statistics of an individual renewal process when it is embedded with

identical processes which are impossible to distinguish using conventional techniques. We

have argued that this pathological situation can arise when there are multiple neurons of

the same type, some with similar orientation, equidistant from a single channel recording

probe. This situation is highly likely to occur when recording probes are placed in neuron-

dense structures like the Sub Thalamic Nucleus. Therefore, the methodology of the Spectral

Density Estimator introduced in this chapter may be useful to resolve the spiking statistics

if this situation is expected and classical spike sorting approaches fail to yield accurate or

biologically plausible solutions.

We have also (in Appendix A.7) developed a model of a neuron encoding information

in the space between firing times using a Digital Pulse Interval Modulation (DPIM) scheme

popular in telecommunications engineering. We have shown (unlike classical DPIM strate-

gies used in communication systems) that if the firing times are allowed to occur any time

in the continuous timeline (as we would expect for a biological process) that the power spec-

trum of this encoder will be exactly the same as that of an idealised renewal process.

Similar to the NMP, an additional advantage of this Spectral Density Estimator approach

is that the estimates are generated using the entire signal, rather than small subset of spikes

in the case of spike sorting. Also similar to the NMP approach this methodology is param-

eter free (with the exception of parameters introduced in the identification of the spectrum

step to boost the accuracy of the estimate).

The limitation of this approach is that in order for this Spectral Density Estimator
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approach to be valid there is a series of stringent signal requirements.

• The signal must not only be wide-sense (covariance) stationary for the power spectrum

to be defined, but it must be strictly stationary for the probability density being

estimated to not vary over the duration of the recordings.

• The firing patterns of all the individual neurons must satisfy renewal statistics drawn

from a common distribution.

• The neural ensemble is modelled as a statistically independent set of renewal processes.

In the next chapter we introduce the final approach to characterise the MER signal

based on Basis Pursuit Denoising and clustering using Diffusion Mapping and the Mean

Shift algorithm. Similar to chapters 2 & 3 this will involve solving an inverse problem,

but unlike the previous approaches, where the inversion is performed on the time averaged

ensembles of the autocorrelation function or the power spectrum, the inversion is associated

with the actual time series representing stochastic realisations of the vLFP. This approach

will drastically reduce the a priori assumptions, principally no assumption of stationarity

of the firing times or independence of the constituent neurons. The disadvantage of this

approach is that fundamentally it is a variant of a spike sorting algorithm and so only uses

information from a small subset (the identified spikes) of the signal. In addition, it requires

multiple parameters which must be determined apriori.



4
Spike-Only vLFP Analysis

“It is pointless to do with more what can be done with fewer.”

– William of Ockham, in Summa Totius Logicae

4.1 Chapter Summary

In the previous chapter we showed that the vLFPs could be analysed in a model-based frame-

work by assuming the contributing neurons could be modelled as an ensemble of independent

renewal processes. Using this model, conditional on multiple assumptions being satisfied, the

common probability distribution driving the spike times could be estimated with a series of

inverse operations applied to the measured power spectrum. The problem with this approach

was that the assumptions were highly restrictive. In addition the probability distribution

123
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could not be determined if the neurons were firing with maximally random Poisson statistics.

In this chapter we introduce a method to identify the precise firing times of a subset of

the individual neurons in the ensemble. This method places no assumptions on the indi-

vidual firing patterns of, or the interactions between the constituent neurons and can deal

with Poisson firing statistics. In this approach we strip away all information from the vLFP

except for the firing times and action potential shapes of the nearest neurons interacting

with the MER. The major assumption, also invoked in the previous chapter, is that these

spike shapes and firing times for the individual neurons are considered decoupled variables.

The method introduced in this chapter is a spike sorting algorithm constructed using

Basis Pursuit Denoising (BPDN), which is a subset of the sparse ℓ1 minimisations schemes

used widely in signals processing, statistics and compressed sensing. Similar to the methods

introduced in the previous chapters the BPDN scheme requires the solution of an inverse

problem, although unlike the previous chapters this inversion is solved in the time domain.

We show through extensive Monte Carlo simulation that the sensitivity, specificity and

χ2 estimates of the spike sorting using this BPDN strategy are superior to state of the art

spike sorting techniques. We then apply this method to vLFPs from MER in the STN of

human patients with Parkinon’s Disease undergoing DBS. The firing patterns we identify

(∼ 20− 56 Hz, Poisson statistics) are consistent with previous experimental analysis.
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4.2 Chapter Overview

In this chapter we develop a spike sorting algorithm to characterise the firing patterns ob-

served in a vLFP from the contribution of the neurons (with action potentials which are

resolvable) which are closest to the (single channel) MER. Unlike the previous chapters

which were based primarily on frequency domain operations, this algorithm is based on op-

erations in the time domain.

With this approach we only use the information from the time and shapes associated with

spikes of the neurons nearest to the MER. This philosophy is markedly different from the

approach considered previously in chapters 2 & 3, where the time series was characterised by

operations on the entire vLFP. The principal advantage of this spike sorting approach is the

minimal a priori assumptions required to use this method: the firing times of the constituent

neurons may be highly nonstationary, with complex correlations between the constituent

neurons which may have arbitrarily complex individual firing patterns. The only require-

ment of this model is that the action potential shapes associated with individual neurons

does not vary with time. This is referred to as spike shape stationarity.

The outline of this chapter is as follows:

1. Provide an introduction to spike sorting and the four canonical sub-problems of spike

detection, spike identification, feature selection and clustering. We then provide an

overview of the different methodologies introduced to solve these sub-problems.

2. Introduce the sparse least squares algorithm of Basis Pursuit De-Noising (BPDN)

and explain why it provides a natural framework for spike detection and clustering

problems. We then provide an overview & analysis of three popular approaches to

solving BPDN: homotopy, the InCrowd algorithm with Truncated Newton Interior

Point (TNIP) and the Dual Augmented Lagrange Multiplier (DALM) method.

3. Introduce the solution to the problem of identifying the spike shapes (the dictionaries)

required to use BPDN for spike sorting. We identify these spike shapes using a three
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step method of Continuous Wavelet Transforms to develop an initial estimate of the

firing times, Diffusion Mapping to reduce the dimensionality of the identified waveforms

and the Mean Shift algorithm to automatically identify the average of the individual

neuron’s spike shapes.

4. Show the results of this spike sorting algorithm when applied to synthetic vLFP time se-

ries. The accuracy of the different spike sorting algorithms are displayed with Receiver

Operating Characteristic (ROC) scatter plots which provides a graphical representa-

tion of how many true positives (identifying the correctly clustered spike) and false

positives (either the detection of a spike that was not present or incorrectly cluster-

ing a spike that was present). The following numerical simulations are generated and

analysed:

• The accuracy of the three different BPDN algorithms: homotopy, InCrowd with

TNIP and DALM when the true action potential shapes are known a priori.

• The accuracy of the BPDN clustering algorithm compared with the ‘prelimi-

nary dictionary obtaining’ (wavelet + diffusion mapping + mean shift clustering)

method. We show that while the BPDN algorithm requires accurate estimates

from this ‘preliminary dictionary obtaining’ method, the BPDN approach con-

sistently outperforms this ‘preliminary dictionary obtaining’ method for all noise

levels considered.

• The accuracy of the BPDN clustering algorithm compared against the state of the

art spike sorting software Wav-Clus. We show that at high signal to noise levels

both of these algorithms give comparable results, but at the more challenging

lower signal to noise levels the BPDN spike sorting algorithm outperforms wav-

clus.

5. Apply the BPDN spike sorting algorithm to vLFPs obtained from MERs inserted in

human STN. We show that these neurons fire, on average, with the physiologically

plausible pattern of ∼ 20− 56 Hz with Poisson firing statistics.
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Contribution

The contribution of this chapter is the introduction of a non-parametric spike sorting algo-

rithm based on Basis Pursuit De-Noising which is able to outperform the state of the art

spike sorting software Wav-Clus at low signal to noise ratios. This algorithm is then ap-

plied to in-vivo recordings of human sub thalamic nuclei, showing that at rest these neurons

fire with Poisson statistics in the physiological range of 20 − 56 Hz. The results on both

benchmarked synthetic and real extracellular data suggest that this BPDN spike sorting

algorithm can be successfully used for analysis and spike sorting of signals obtained from

in-vivo extracellular micro electrode recorders in low signal to noise environments.
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4.3 Introduction

One of the core objectives of neuroscience is unravelling the neural code. That is, given

a neuron which generates a series of action potentials, understanding how this stream of

spikes transmit information? It is near universally agreed that the information is encoded

in the timing of spikes [82], [83], [84], [85], [86], [87], [88], [89]. But How this information is

encoded is a contentious question: in some cases it is believed the information encoded by

the lower order statistical moments (e.g. the firing rate [88] or coefficient of variation [90]),

in other cases it is the precise timing between the spikes [89]. The answer to this question is

further obsfucated by the rich diversity of observed firing patterns. For example dopamin-

ergic neurons of the Basal Ganglia have been identified with firing patterns ranging from

near periodic, to maximally (Poisson) random to chaotic [154]. Irrespective of the neural

coding mechanism, in order to characterise a firing pattern, techniques must be developed

to identify these spikes contributing to the pattern [93].

Once the firing times of the individual neurons are known they can be compared to

the timing of the presentation or some property of the external stimulus. Alternatively,

assuming the firing patterns on a short enough time scale are stationary, the neurons can

be described by the statistical moments (firing rate, coefficient of variation or information

entropy), if they exist, of the spacing between their spikes. Recall that this spacing between

the spikes is referred to as the Inter Spike Interval (ISI). In intracellular experiments, or with

well controlled in-vitro probes, a skilled physiologist can record the firing times of individual

neurons. For in-vivo experiments recorded with extracellular probes, identifying individual

neuron firing times is is manifestly more difficult [189],[96],[57],[165]. This is because the

signal will be composed of the contribution referred to as the Multiple Unit spiking Activity

(MUA) [19] of the multiple local neurons [190] hidden within the so called ‘neural noise’ con-

sisting of the heavily filtered [24] spiking activity of far field neurons and the multitude of

low frequency (< 300 Hz) neural events which contribute (synaptic currents [20], spike after

potentials [19], voltage-dependent membrane oscillations [22]) to the Local Field Potential

(LFP) [19]. This field of research, of not only identifying the MUA spikes hidden within the
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noise, but clustering them together into groups associated with individual neurons is referred

to as Spike sorting.

Spike sorting effectively involves solving two coupled problems: firstly identifying all the

firing times (action potentials) in a signal and then secondly grouping those identified spikes

into appropriate clusters. It is important to note that there is an implicit assumption of

most spike sorting programs [165], [191], [192], [57] that each neuron generates a stereotyped

action potential which is unique for each of the measureable neurons. The exact shape and

amplitude of these spikes will depend on the distance and orientation to the recording probe

and the morphology of the neuron [185]. The issues associated with this assumption, par-

ticularly in the case of burst firing neurons, will be discussed further in section 5.3.

4.3.1 Overview of Spike Sorting

The two sub problems of spike timing: identifying firing times and then clustering them are

usually solved in 4 steps [165]. We will outline these steps and discuss the most commonly

used approaches utelized by automated spike sorting software.

The first step is spike detection which involves detecting all the candidate spikes, irre-

spective of which cluster they belong to. This spike detection step can be solved with a

multitude of techniques. The simplest approach is based on amplitude thresholding [165],

where a datapoint with amplitude greater than some value or factor of the standard devia-

tion in the measured times series is considered a spike. The performance of this approach,

while simple to implement, degrades rapidly in situations of low signal to noise [94] because

the high variance noise events greater than threshold are considered spikes. Similar, but

more sophisticated approaches based on identifying localised increases in energy using the

multi-resolution Teager Energy Operator (mTEO) [193] have also been considered. Another

widely used approach is to use multi-scale wavelet decompositions [94] with mother wavelets

carefully chosen to match the expected shape of action potentials (for example the bior1.5
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family [194]). Briefly this multi-scale resolution allows the signal to be decomposed indepen-

dently into different frequency bands so that different transients (spikes) at different time

scales can be identified robustly in the presence of noise. We will discuss this approach in

more detail in section 4.5.1.

The second step, once the candidate firing times have been identified is spike extrac-

tion. This involves collecting a windowed time-series centred around the estimated firing

times. This process is consistent among different spike sorting strategies, with the only

variable being how much of the time series is recorded before and after the estimated spike.

This decision is usually selected based on an assumed time constant of the expected action

potentials associated with the neurons being examined.

The third step, once all the candidate firing times and their associated spike shapes have

been detected is feature extraction. The purpose of this step is to condense the high-

dimensional action potential shapes from the traces of the time series into low-dimensional

structures such that similar shaped action potentials (presumed to come from the same neu-

ron) will reside in similar locations in this subspace, but be separated from action potentials

of different shapes belonging to a different group. The selection of the dimensionality of the

subspace is a non-trivial problem. The reason for this is that differences between spikes are

most clearly seen in high dimensions (in the extreme limit this would be the original action

potential shapes). However the success of algorithms used to cluster action potentials in the

reduced subspace markedly degrades in higher dimensions. This is referred to as the “curse

of dimensionality” [195].

Multiple different features of spike shapes have been used to construct this reduced di-

mension subspace. One of the earliest approaches was to perform Principal Component

Analysis (PCA) on the identified spike shapes [183]. In [165] the ten Haar wavelet coeffi-

cients with the greatest degree of multi-modality, as indicated by the Kolmogorov-Smirinov

test, (as an indication of being different for different neurons) was used. More recently [196]

argued that diffusion maps developed in [197] provides a superior approach for clustering
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than the Haar wavelets with the greatest multi-modality. This feature extraction problem

is an open area of research that we will discuss in more detail in section 4.5.2.

Once the shapes of candidate spikes have been mapped to a reduced dimension subspace

they must be clustered into appropriate groups. This fourth step is called spike clustering.

The simplest approach to clustering is for the process to be user driven, but even in the hands

of a skilled neurophysiologist this approach is time consuming and is subject to bias [165]

with wide variance between users [198]. This has motived the development of automated

clustering algorithms. Automated clustering is a very large field and the development of

new clustering algorithms is an area of active research. In this section we will only discuss

a subset of the available clustering methods, focussing on density based and graph based

approaches. For an excellent overview and introduction of automated clustering see [199,

Chapter 5].

One of the simplest and robust approaches is K-means clustering [200], which groups

elements of a dataset by the shortest Euclidean distance to a number of centroids. One of

the problems with the K-means approach is it requires a priori knowledge of the number of

centroids (in the spike sorting case this is the number of neurons contributing to the record-

ing). With extra-cellular recordings the number of contributing neurons is seldom known.

Extensions to K-means, which do not require a priori knowledge of the number of clusters,

have been developed including using the gap statistic [201], silhouette statistics [202] and

information criterion approaches such as the Bayesian Information Criterion (BIC) (used in

the X-means algorithm) [203] . In the context of spike sorting these extensions to K-means

using the gap statistic and silhoutte statistics were applied to features based on both the

most multi-modal Haar wavelet coefficients and diffusion maps in [196].

Another successful clustering approach is the Super-Paramagnetic Culstering (SPC) algo-

rithm which was applied to spike sorting in [165]. This approach is based on simulated

interactions between data points in the reduced subspace and its K nearest neighbours.

The name SPC is based on simulations of a statistical mechanical model of spin states in a
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crystalline lattice called the Pott’s model. For a detailed explanation see [165], but briefly,

points in the reduced subspace are randomly assigned to one of a fixed number of states. The

probability that other points will also be assigned to this state is an exponentially decreasing

function of the Euclidean distance (in the reduced subspace) of these points to the original

point. A free parameter, referred to as the temperature (due to the algorithms statistical

physics origins) scales the Euclidean distance function. For sufficiently high temperatures

this coupling function drops off rapidly and each data point in the subspace will be consid-

ered as an independent cluster, at low temperatures the strength of the coupling factor is

large and all data points belong to the same cluster. In between these two extremes there

will be a distribution of clusters, similar to the paramagnetic state of a spin glass, where a

small subset of clusters will form. The success of this method is largely driven by judicious

choice of the temperature parameter.

A simpler alternative to clustering on the subspace is to use the mean shift algorithm.

The mean shift algorithm is a non-parametric method for identifying peaks (modes) in the

Kernel Density Estimate (KDE) of a set of datapoints without actually constructing the

KDE. If the data points in the reduced subspace are assumed to be realisations of a multi-

dimensional random variable the mean shift algorithm can be applied to identify which peak

each datapoint in the reduced subspace belongs to. Applying this method to each datapoint

partitions them into unique clusters associated with a mode. Similar to the SPC algorithm

the success of this method relies on the choice of the bandwidth parameter associated with

the KDE. We will provide further analysis of this method in Section 4.5.3. This mean shift

algorithm method was applied to both the most multi-modal Haar wavelet coefficients and

diffusion maps of a priori known spike shapes in [196].

An alternative, much simpler clustering strategy based on the Euclidean distance between

candidate spike shapes themselves, rather than the distance in some transformed subspace

was considered in [57]. In this approach spike shapes with a Euclidean distance smaller than

some pre-defined threshold are considered to belong to the same cluster. This approach has

the advantage of being computationally efficient enough to be performed online, and does
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not require apriori information about the number of clusters, but has also been found to be

less accurate than other clustering methods [204].

It is important to stress that we have only scratched the surface of clustering algorithms.

There are other powerful density based clustering algorithms such as DBSCAN [205] (used

in a spike clustering approach in [206]), it extensions OPTICS [207], DENCLUE [208] (sim-

ilar to the mean shift approach we discuss in Section 4.5.3) and DENCLUE 2.0 (which

incorporates sparse sampling and can be shown to be a subset of Expectation-Maximisation

[209]). There are additional graph based approaches such as clustering on the Normalised

Graph Laplacian (applied to spike sorting in [210]) and more general spectral clustering

[211],[212] strategies. There are also Bayesian, model-based, clustering strategies based on

Gaussian Mixture Models (GMM) [213], mixtures of Student t-distributions [214], infinite

Gaussian mixture models [215] or greedy ‘binary pursuit strategies’ [191] which maximise

the a posteriori (MAP) distributions of spike times and shapes. There are also Dynamic

Hidden Markov Model approaches to spike sorting [216],[217] which attempt to incorporate

as much ‘biological’ information (such as the refractory times of neurons and the variation

of spike amplitude with firing rate in bursting regimes). This is by no means an exhaustive

list and indicates the breadth of the field of automated clustering and its application to the

spike sorting problem.

These four steps (spike detection, spike estimation, feature selection and clustering) are

largely modular with different algorithms for the four steps being effectively interchangeable.

For example the spike sorting package Osort uses the multiscale wavelet decomposition to

identify the firing times and then clusters based on the Euclidean distance of the spike

shapes to each other. The wav-clus algorithm, which we use to bench mark our spike sorting

method against in section 4.6.5 uses amplitude thresholding to identify spike times, Haar

wavelet coefficients for feature selection and SPC for feature clustering. The SpikeOMatic

algorithm uses amplitude thresholding or template matching to identify spikes and then uses

the Gaussian Model of Mixtures or the Dynamic Hidden Markov Model to cluster the data.

As discussed previously the majority of algorithms solve these sub problems sequentially. One
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notable exception is [192] which uses an iterated co-ordinate descent approach of holding the

firing times constant then solving the sub-problem to identify the optimal spike shapes, and

then holding these newly determined spike shapes constant while solving the sub-problem to

identify the optimal firing times. This process is then repeated in an iterative fashion until

a stopping condition is satisfied.
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4.3.2 Model Development

Figure 4.1: Simplified Model of the MER interacting with the electric field of nearby neu-

rons. We consider a boundary (the red circle) which separates our neural sources into 2

components: the MUA S(t) (inside the red circle), and the neural noise η(t) consisting of

far field neurons and the LFP contribution (outside the red circle). The division is arbitrary,

and it is not immediately clear how this demarcation should be made. Image adapted from

[96].

In this section we develop a linear response model of the vLFP measured by a single

channel MER embedded in neural tissue. This basic model formulation were also developed

in [191] & [192]. The probe records a time dependent voltage, y(t), which consists of two

components. The first component is the MUA, S(t), associated with the spiking of the

nearby resolvable neurons (the neurons within the red circle of Figure 4.1) and the second

component is the neural noise term, η(t), associated with the spiking activity of more dis-

tant, non-resolvable neurons and the slower non spiking contributions to the signal.

The firing times of each of the neurons in the MUA set, S(t), can be represented with-

out loss of generality as an arbitrary point process. That is, the spike times are isolated

stochastic elements embedded in the continuous timeline. We can express these firing times

as a function of time as a summation of Dirac delta distributions
∑N

k=1 δ(t− tk), where {tk}
form a set of random variables. Note that there is no restrictions on this random variable



136 Spike-Only vLFP Analysis

beyond non-negativity. The firing times need not be i.i.d or even drawn from a stationary

distribution. Recall that this is distinct from the modelling in chapter 3 where a renewal

model for the spacing between the firing times was considered.

As discussed in section 4.3 the action potential shape for each neuron is considered stereo-

typed with a specific structure that is a function of the neurons morphology and the distance

and orientation from the recording probe. The shapes associated with the MUA set of neu-

rons is not considered known a priori and must be estimated from the recorded time series.

The spike trains, yi(t), of the individual neurons which belong to the MUA, may be written

as the convolution of the spike shape, gi(t), and the Dirac delta distribution of firing times:

yi(t) = gi(t) ∗
∑N

i=k δ(t − tk). It is important to note that the assumption that the action

potential of a single neuron is stereotyped is equivalent to assuming a linear framework for

the spike trains such that the spike shape and firing time variables are decoupled from each

other. This linearity heuristic breaks down in certain scenarios such as bursting [163], where

the spike shape for a single neuron varies along the bursting event.

The signal generated by the set of neurons comprising the MUA is given by their super-

position:

S(t) =
N∑

i=0

gi(t) ∗
( ∞∑

k=1

δ(t− tk,i)

)

︸ ︷︷ ︸

ithNeuron

(4.1)

The neural noise term, η(t), consists of every contribution to the recording probe which

is not the spiking activity of the resolvable neurons which contribute to the MUA. As dis-

cussed in section 4.3 this term will include, but not be limited to, the heavily filtered spiking

activity of far field neurons and the multitude of low frequency (< 300 Hz) neural events

which contribute (synaptic currents, spike after potentials, voltage-dependent membrane os-

cillations) to the Local Field Potential (LFP) [19]. Note that the filtering of the far field

neurons occurs as the associated electric fields travel through the extra-cellular medium to

the recording probe [24],[185]. It is important to note that this neural-noise term η(t) will

be coloured and correlated with both itself and the neural source term S(t).
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The model for the single channel extra-cellular MER times series is given by the super-

position of the MUA term, S(t) (4.1), and the neural noise term, η(t):

y(t) =
N∑

i=0

gi(t) ∗
( ∞∑

k=1

δ(t− tk,i)

)

+ η(t) (4.2)

It is important to appreciate that in order to model the vLFP we have (similar to others

[57],[192] [191]) introduced the heuristic that the spike train dynamics and their interactions

are linear. More specifically we have assumed linearity for the following:

• spike shape stationarity: As discussed previously the spike shape (for a single

neuron) does not vary and is not influenced by firing times.

• MUA linearity: the behaviour of the MUA is given by the linear superposition of

the individual spike trains of the constituent neurons.

• signal + noise linearity: the overall time series is given by the linear summation

MUA signal, S(t), and the neural noise term η(t). Note that there is no restriction on

the correlation between the signal and the noise.

It is important to identify that these assumptions are not unique to our approach. Indeed

these assumptions are implicit in other state of the art spike sorters [57]1,[165],[191],[192].

The approach we take (similar to [192]) given this linear framework is to explicitly develop

estimates of the firing times (that are subsequently clustered) which are theoretically guar-

anteed, under certain conditions dictated by the Restricted Isometry Property (see section

4.4) to be optimally sparse.

A notable exception to the spike shape stationarity assumption is the Dynamic Hidden

Markov Model approach used in the SpikeOMatic [162] spike sorting algorithm. In this

methodology the firing times of the neurons are modelled as renewal processes and the am-

plitude of a spike is dependent on the time elapsed since the last spike. This approach has

1In the Osort algorithm the threshold for belonging to the same cluster is often set sufficiently low such

that action potentials which are modified during burst sequences are still clustered into the same group. The

trade-off for this is less accurate spike separation in the general case.
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the advantage of easily incorporating the burst phenomenon, where the amplitude of a spike

decreases if a sequence of spikes occur in a rapid succession. The disadvantage of this model

is that it requires a priori information about the number of neurons contributing to the signal.

If this model (4.2) is discretised as is necessary for digital acquisition and subsequent

numerical operations, the convolution of the ith action potential shape gi(t) with the variable

Dirac comb representing the firing times {tk}i can be written in matrix-vector notation as:

gi(t) ∗
( ∞∑

k=1

δ(t− tk,i)

)

=














g0 0 0 · · · 0

g1 g0 0 · · · 0

g2 g1 g0 · · · 0
...

...
...

. . .

gM gM−1 gM−2 g0



























xi0

xi1

xi2
...

xiM−1














= Aixi (4.3)

Note that Ai ∈ R
M×M is a convolution matrix and xi ∈ R

M×1 is a vector associated with

the ith spike train. The vector xi is the discretised form of the Dirac delta comb associated

with the firing times, with the non-zero elements representing the time and amplitude of the

spike gi(t). For example the time series for the ith spike train with sampling rate of Fs Hz

with non-zero values in the 412th and 756th elements of magnitude 1 and 1.5 respectively

indicates that spikes with amplitudes of magnitude (1) & (1.5) occur at [412/Fs] & [746/Fs]

seconds respectively.

We can write the entire problem in matrix-vector notation as:

y = [A1,A2, · · ·AN ]x+ ηηη (4.4)

y = Ax+ ηηη (4.5)

Where A ∈ R
M×(N×M) is the block form of the N convolution matrices associated with

the set of spike shapes {g(t)}. x ∈ R
(N×M)×1 is the vertical concatenation of the firing time

vectors, {xi}, associated with the N neurons. We can write this using the transpose operator

as:

x =
[
xT
1 ,x

T
2 , · · · ,xT

M

]T
(4.6)
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Since the zero elements of x represent no spike, for a sufficiently high sampling rate, Fs,

we expect x to be a sparse vector. For example the time series we analyse in section 4.6.6

is sampled at Fs = 24kHz. If we consider 5 neurons all firing with Poisson statistics at a

physiologically fast rate of 100Hz we expect only one in every 48 elements of the solution

vector to be non-zero. This requirement of sparsity plays a central role in our motivation for

the development of a Basis Pursuit De-Noising (BPDN) approach to estimating the firing

times.

4.4 Basis Pursuit De-Noising Approaches to Spike Time

Detection

Given the dictionary set {gi[t]} the problem of estimating the set of firing times{tk}i is an in-

verse linear problem of the deconvolution class. The simplest approach to solve this problem

would be to use Ordinary Least Squares, which by the Gauss-Markov theorem is guaranteed

to provide the Best Linear Unbiased Estimator (BLUE) in the presence of errors which are

uncorrelated, with equal variance and an expectation value of zero [218]. Recall that for

this problem (4.5) the noise sources are expected to be highly correlated, with no guarantee

of constant variance and thus the Gauss-Markov theorem does not hold. Furthermore, as

discussed in section 4.3.2 because neuronal firing rates are relatively low (maximally ∼ 100

Hz) and signal sampling rates are relatively high (∼ 24kHz) we wish to bias the estimated

firing time vector, x̂, to be sparse.

We can incorporate this sparsity by writing (4.5) as a constrained least squares problem

with the constraint that the number of non-zero elements in the solution vector x is less

than some value δ. We can mathematically represent this condition by requiring that the

ℓ0 pseudo-norm (which measures the number of non-zero elements of a vector) of x satisfy:

|x|0 ≤ δ. Thus we seek the solution of the following mathematical problem:

min
x

|Ax− y|22 s.t. |x|0 ≤ δ, (4.7)
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The problem with this strategy is that ℓ0 minimisation is an NP-hard [219] combinato-

rial search problem [220]. Notice that to find the minimum least squared error for a fixed

ℓ0 pseudo-norm of δ we must search over
(
(N×M)

δ

)
combinations. Since the least squares

problem is constrained such that the ℓ0 pseudo-norm can take any value from 0 to δ we must

perform the search over
∑δ

i=1

(
(N×M)

i

)
combinations. Clearly this is not a feasible approach

to develop sparse solutions. Multiple strategies have been developed to speedily deal with

this problem, broadly these can be categorised into greedy approaches and convex relaxation

approaches.

Greedy approaches have the advantage of being computationally efficient but have no

theoretical guarantees regarding existence or stability criteria [221]. They typically work in

a step-wise fashion, sequentially turning on elements according to some heuristic rule. Exam-

ples include Orthogonal Matching Pursuit (OMP) [222] which develops a linear combination

of the active elements by identifying variables associated with the column of the system

matrix which has the greatest inner product with the current residual. Another widely

used alternative is Least Angle Regression (LARS) which sequentially adds elements which

maximally reduce the residual correlation of the system. Greedy approaches specialised to

the spike detection problem have also been constructed such as Binary Pursuit [191] which

attempt to selectively turn elements on and off such that the decrease in a log-likelihood

function is maximised.

The alternative solution is to use convex relaxation, where the ℓ0 pseudo-norm in (4.7) is

replaced by the ℓ1 norm. This, in effect, replaces the ℓ0 norm with its convex hull, convert-

ing the minimisation problem from a combinatorial one to a convex (but non-differentiable)

one. The conditions under which the ℓ0 pseudo-norm and ℓ1 norm problems are equivalent is

described by the Restricted Isometry Property (RIP) [223],[224],[225]. The RIP places condi-

tions on both the system matrixA (and all permutations of its sub-matrices) and the sparsity

of the solution vector x. Unfortunately showing a matrix has bounded restricted isometry

properties is also an NP-hard problem [226] and in practice ℓ1 minimisation schemes are

utilized without verifying whether the data satisfies the RIP. The ℓ1 minimised least squares
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problem may be written in an equivalent form as an OLS problem with an ℓ1 regularisation

term:

min
x

|Ax− y|22 + λ|x|1 (4.8)

In the signals processing community this problem (4.8) is known as Basis Pursuit De-

Noising [98] and is used for detecting signals, assumed to be sparse, from highly over com-

plete dictionaries. In the statistics community (an equivalent form) of (4.8) is known as

Least Absolute Selection and Shrinkage Operator (LASSO) [99] and is used for parsimonious

model selection of high-dimensional multi variable regression problems. The use of these ℓ1

minimisation problems is used in problems as diverse as magnetic resonance image process-

ing [97], [227],[228], portfolio optimisation [229], (one of its original applications) reflection

seismology [230] and more recently in the field of compressed sensing [100],[101].

The number of algorithms developed to solve (4.8) is legion. These methods include

gradient methods [231], Iterative Shrinkage Thresholding (IST) [232], an accelated variant

(FISTA) [233], and a variant with an intelligent step size [234] and Fixed Point Continuation

(FPC) [235]. Alternative methods using Bregman iteration [236], shown to be equivalent to

Augmented Lagrange Multipler (ALM) methods [237], Split Bregman Iteration (SBI) [238],

Dual Augmented Lagrangian Methods (DALM) [239], interior point methods [227] and ho-

motopy methods [240], [241] are also used. This list is by no means exhaustive, with different

solution methodologies providing advantages and disadvantages depending on the sparsity of

the signal to be estimated, the measurement noise level, the structure of the system matrix

and computational efficiency.

There have been some studies which have attempted to catalogue the differences between

these approaches. For example [242] compared five algorithms: gradient projection, homo-

topy, IST, Proximal Gradient, and ALM on both simulated datasets and on image processing

problem of facial recognition. The results of [242] found that for the synthetic data no al-

gorithm overall provided a superior combination of speed and accuracy for different sparsity

and noise levels. Interestingly the results pertaining to the different algorithms obtained



142 Spike-Only vLFP Analysis

from the simulated data were markedly different when applied to the real data. For the real

world data the authors concluded that the homotopy method and ALM provided the best

balance of performance and computational efficiency.

For the remainder of this chapter we will consider the following non-negative ℓ1 minimi-

sation problem:

min
x

|Ax̂− y|22 + λ|x|1
s.t. x � 0 (Non-negativity) (4.9)

Where the non-negativity has been introduced to incorporate the principle that the Dirac

delta trains representing the spiking times in x must, by definition, be positive. Note that

the � symbol indicates element-wise greater than or less than value.

A variant of BPDN, referred to as Continuous Basis Pursuit was applied to spike sorting

in [192]. The full description of CBP is provided in [243] but briefly, it can be considered an

extension to BPDN which attempts to remedy errors associated with attempting to identify

the spike times on a discretised lattice when the signal being sampled has the spikes em-

bedded in continuous time. To improve on these errors, local shifts in the dictionary terms

(identified spike shapes), of the order less than the sampling period: ∆T = 1/Fs, are approx-

imated using interpolation functions. In [243] linear Taylor series & trigonometric splines

were considered and their associated minimisation problems were explicitly constructed.

In [192] this CBP algorithm was applied to extra-cellular recordings and the firing time

estimates were further refined using the process of Iterative Reweighted ℓ1 Minimisation.

Reweighted ℓ1 minimisation was introduced in [244] as a means of estimating sparser so-

lutions with comparable reconstruction error to standard ℓ1 minimisation. In Reweighted

ℓ1 minimisation the ℓ1 norm: |x|1 is replaced by the weighted norm: |Wx|1. In [192] the

elements of the diagonal weighting matrix were (similar to [244]) chosen proportional to an

estimate of the elements of the solution vector: Wii ∝ 1/xi. This approach penalises solution

elements closer to zero. The Iterative Reweighted ℓ1 Minimisation employed in [192] solves
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the CBP initially with a weighting matrix equal to the identity matrix: W = I and then iter-

atively solves the weighted ℓ1 minimisation problem with the weighting matrix updated from

the previous estimate until a convergence criterion is met. The individual weighted ℓ1 min-

imisation problems are solved using the convex optimisation solver package CVX [245],[246].

The methodology introduced in [192] of using CBP & Iterative Reweighted ℓ1 Minimi-

sation forms the conceptual scaffolding for this chapter, nonetheless we argue that they

introduce some unnecessary complications to the spike sorting problem. We argue that the

advantages of CBP over BPDN are negligible for sufficiently over sampled neural systems.

For example, although digital sampling of the extracellular recordings involves the discretisa-

tion of a fundamentally continuous process, in section 4.6.6 the experimental data is sampled

at 24 kHz, whereas the physiological firing rates of the measured neurons is roughly 100Hz.

Secondly, although Iterative Reweighted ℓ1 Minimisation will undoubtedly improve the spar-

sity of the firing time estimates, these iterated ℓ1 minimisations must be performed serially

and thus the computational time will be multiplied by the number of iterations. Thirdly

the interpolation functions associated with the CBP process generates a more complicated

constrained convex optimisation problem to be solved, as well as additional variables which

must be estimated. Lastly the cvx package used to solve the weighted ℓ1 minimisation prob-

lem is self-described as not being recommended for large-scale problems [245].

For the remainder of this chapter we only consider the application of non-negative BPDN

(4.9) to the spike sorting problem. We consider three algorithms: homotopy, Incrowd with

Truncated-Newton Interior Point (TNIP) and Dual Augmented Lagrangian. We will discuss

these algorithms individually in more depth in sections 4.4.1-4.4.3 but we briefly mention

the motivation for choosing these three methods out of the multitude of previously discussed

BPDN algorithms.

The homotopy approach is first considered because of the program’s solution approach

that single spikes are identified (i.e. non-zero elements of the solution vector are indi-

vidually added or removed) in each iteration of the solver [240]. This spike by spike
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approach seems intuitively appropriate for detecting sparse firing neurons.

The InCrowd approach is then considered because, in many ways, it can be considered

an extension of the homotopy algorithm because it can identify groups of spikes (i.e.

multiple non-zero elements of the solution vector are added or removed) in each itera-

tion [220]. This ‘groups of spikes’ approach seems intuitively appropriate for situations

where there is a high density of spikes contributing to the measured signal (i.e. if the

firing rates are higher or there are more neurons contributing to the vLFP).

The Dual Augmented Lagrangian approach is finally considered as an alternative to

these two previous methods because the program solves the BPDN problem using an

entirely different approach in the Fenchel dual space [247].

we will develop these algorithms and in section 4.6.3 we will compare the accuracy of

these algorithms for spike sorting simulated extracellular vLFP datasets.

4.4.1 Positive Homotopy Algorithm

The homotopy algorithm was first introduced in [240] for solution to the LASSO problem

for over-determined systems. It was extended in [248] to deal with arbitrary measurement

matrices. An extensive analysis of the theory and freely available matlab code was provided

in [241], which as a special case, included the positive homotopy algorithm to the more

general problem of applying the homotopy algorithm which could incorporate a warm-start

(initial guess) solution vector.

KKT Conditions for Positive BPDN

We apply the Karush-Kuhn-Tucker (KKT) conditions to problem (4.9). Our objective func-

tion to minimise is f(x) =
1

2
|Ax̂−y|22+λ

∑n
i=1 x. Notice that because of the non-negativity

constraint we can replace the ℓ1 norm with the summation operator over the individual x

elements. We incorporate these non-negativity requirements, which are essentially inequality
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constraints in the standard KKT framework as gi(xi) = −xi ∀i = 1 · · ·N . Notice that we

have introduced the constant prefactor of (1/2) in order to simplify calculations.

The Lagrangian associated with this problem is given by:

L(x, µ) = f(x) +
n∑

i=1

µigi(x)

=
1

2
|Ax− y|22 + λ

n∑

i=1

xi −
n∑

i=1

µixi (4.10)

Where µ is the KKT multiplier associated with the inequality constraints. The KKT

conditions to ensure the optimal solution x are:

AT (Ax− y) + λ1− µµµ = 0 stationarity (4.11)

∀i = 1 · · ·N : µixi = 0 Complimentary Slackness (4.12)

µi ≥ 0 dual feasibility (4.13)

x � 0 primal feasibility (4.14)

Where 1 is the N ×1 column vector of unity values and µµµ is a column vector of the KKT

multipliers such that µµµ = [µ1, µ2 · · ·µN ]
T . We partition the solution vector x into an active

set xI (s.t. xi 6= 0, ∀i ∈ I) and inactive set xJ (s.t. xj 6= 0, ∀j ∈ J) and x = xI

⋃
xJ .

We define #(I) and #(J) as the number of elements (i.e. the ℓ0 pseudo-norm) in the active

and inactive sets respectively. We similarly partition the columns, ak = Ak,: of the system

matrix A, associated with elements of the solution vector x into two sub-matrices:

AI = (ai)i∈I ∈ R
M×#(I) (4.15)

AJ = (aj)j∈J ∈ R
M×#(J) (4.16)

WhereAI andAJ represent the columns of matrixA associated with the active and in-active

variables respectively. We now define the residual correlations consistent with [221],[241]:

c = AT (y −Ax) (4.17)

Where c(I) & c(J) are the residual correlations of the elements of the active and in-active

sets respectively. We will now develop the optimisation conditions separately for elements
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associated with the active (non-zero) xI and in-active (zero) xJ elements. On the active set,

by the complimentary-slackness condition (4.12) the KKT multipliers must be zero and thus

the stationarity condition (4.11) for active elements can be simplified to:

c(I) = AT
I (y −Ax) = λ1I (4.18)

On the inactive set by the dual feasibility condition guarantees (λ− µj) < λ. We can

therefore remove the µj variables, but include their effect by replacing the equality in the

stationarity condition (4.11) equation with an inequality:

c(J) = AT
J (y −Ax) ≤ λ1J (4.19)

Positive Homotopy Algorithm

The name homotopy comes from the fact that initially (4.9) is solved for the trivial problem

of very large regularisation parameter λ such that the solution vector is the inactive set:

x → xJ ≡ 0. The regularisation parameter λ is subsequently reduced until it reaches the

required value. For each value of the regularisation parameter the optimality conditions

(4.18)-(4.19) must be obeyed, which results in elements being added (joining the active set)

or being removed (joining the inactive set) for specific values of λ. Between the addition and

removal of elements from the active set the solution vector follows the affine transformation

given by the re-arrangement of active-set optimisation condition (4.18):

xI,λ = (AT
I AI)

−1
(
AT

I y − λ1I

)
(4.20)

Thus the change in the solution vector between these breakpoints can be described by

replacing: λ→ (λ− γ):

xI,λ−γ = xI,λ + (AT
I AI)

−11I
︸ ︷︷ ︸

u

γ (4.21)

Thus the update direction of the solution vector u is simply the inverse of the Gram

matrix associated with the columns of the (currently) active set multiplied by a column

vector of ones. Rather than continuously reducing the regularisation parameter, λ, we can

reduce it in discrete jumps of γ associated with the addition or removal of an element from
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the active set. An element will move from the inactive set to the active set when its residual

correlation changes from less to equality with the current λ value.

Saturating the optimality condition for the inactive set (4.19) by equality of the left hand

side with the regularisation parameter (the boundary of violation of the optimality condition

for the inactive set) as the regularisation parameter is varied from λ→ (λ− γj,min,add) yields:

aj
T
(
y −AIxI,λ−γj,min,add

)
= λ− γj,min,add

aj
T (y −AIxI,λ)

︸ ︷︷ ︸

cj

− aT
j AIu
︸︷︷︸

v

γj,min,add = λ− γj,min,add (4.22)

Substituting in (4.21):

γj,min,add =
λ− cj
1− aT

J v
(4.23)

Scanning over all j elements of the inactive set we find the minimum γj,min,1 which would

result in an inactive set element becoming an active set element xj → xi:

γmin,add = min (γj,min,add) ∀j ∈ J s.t. γmin,add > 0 (4.24)

The other alternative for the affine transformation to be broken is that an element of the

active set, xi → xJ = 0. The value for this to occur for each element of the active set is

given using (4.21):

γi,min,remove = −xi
ui

(4.25)

Scanning over all i elements of the active set we find the minimum γi,min,remove which

would result in an active set element becoming an inactive set element xi → xj:

γmin,remove = min (γi,min,remove) ∀i ∈ I s.t. γmin,remove > 0 (4.26)

The distance γ is the smallest distance which will either cause an element to be added

or removed from the active set:

γmin = min (γmin,add, γmin,remove) (4.27)
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The value of λ is sequentially reduced in these determined amounts γmin, and the solution

vector x is transformed in the direction u. Because the ℓ1 minimisation problem is convex, by

always obeying the optimality conditions we are guaranteed to head down to the global min-

imum associated with the problem. In the noise free case we keep decreasing λ until λ→ 0+.

At this point the xλ→0 solution has the minimum |x|1 which satisfies AT (Ax− y) = 0 (that

is has zero residual) [227]. In our situation where noise is present we bring λ down to the

level of the ℓ2 norm of the noise |w|22. In practice this noise level is unknown, so the stopping

criteria becomes a free parameter which must be tuned. It has been shown [221] that if there

are k non-zero elements of a sparse solution vector, the homotopy path should have k vertices.

There is a very similar greedy algorithm, Least Angle Regression (LARS) which can also

be applied to data where the solution vector x is restricted to non-negative values. LARS

starts with a zero solution vector, and then sequentially turns on the elements with the

greatest residual correlation. When one of the inactive variables has residual correlation

equal to the active set elements, this element joins the active set and the solution vector

updates in direction u which is the bisection between the active variables. The key difference

between these two algorithms is that in homotopy elements can be removed from the active

set, whereas in LARS they cannot. See [249] for further information on LARS and [221] for

a discussion of when solution paths of homotopy and LARS converge.

Efficient Homotopy

The most computationally expensive steps of computing the homotopy path is calculating

the inverse of the Grammian matrix
(
AT

I AI

)−1
for the update direction u in (4.21) [221]

[241] and determining the residual correlations which are subsequently partitioned into c(I)

& c(J). The residual correlations can be computed rapidly by recognising that the convo-

lution operations can be quickly constructed using the Fast Fourier Transform (FFT). We

describe how to calculate the residual correlation using the FFT in section A.8. The opti-

misation of the update direction, u, calculation is more difficult and is described below.

We can efficiently speed up the calculation of the direction vector u using the following
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two ideas. Firstly the homotopy algorithm sequentially adds or removes elements (corre-

sponding to single columns of the system matrixAI) and thus are rank-1 updates/downdates

of AI . The second idea is that rather than explicitly calculating the Grammian inverse, we

can generate the new direction vector unew based on an update to the previous direction

vector uold. We will consider the generation of the new direction vector unew for element

addition and deletion seperately below.

In all calculations we represent the system matrix using the QR factorised form such that

AI = QR. We choose QR factorisation because it provides an excellent balance between

numerical stability and computational speed. Note that if there are k active elements such

that AI ∈ R
M×k the factored matrices will be of size: Q ∈ R

M×k & R ∈ R
k×k. These

approaches were implemented, but not discussed in the code of [241].

Adding An Element to the Active Set

When an element is added to the active set, an additional column is appended to the end

of the sub matrix [AI, ai]. The R matrix associated with the QR decomposition can be

rapidly constructed using the Modified Gram-Schmidt algorithm with ‘twice is enough’ re-

orthogonalisation [250]. The new update direction unew can then be calculated from this

R matrix and the previous update direction uold as follows: Firstly calculate the update

direction ∆u

r = R−1
new [01, 02 · · · 0#I , 1]

T (Backwards substitution) (4.28)

∆u = rT1Ir (4.29)

unew = [uold, 0]
T +∆u (4.30)

Removing an Element from the Active Set

In the case of removing a column, the efficient update is slightly more complicated. The

QR re-factorisation can be calculated using Givens rotation matrices G [250]. Similar to

adding a column we can iteratively determine the update direction as follows: Assume we

are removing the ith column from the system matrix: AI → [a1, a2, · · · , ai−1, ai+1, · · · , aN ].
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We first apply a permutation matrix P which brings the ith column of the current R matrix

ri to the position of the final column of Rperm: Rperm → PR.

Rperm does not have the required upper triangular structure for a QR decomposition. To

restore this we apply a series of Given rotatation matrices, G to subsections of the permuted

R matrix to restore Rperm (excluding the last column) to upper triangular form. The first

Givens matrix G will be applied to the ith and (i+ 1)th rows, which due to the zeros in the

preceeding columns of Rperm, will only effect the proceeding columns ri · · · rN :

Rnew,perm(i : i+ 1, i : N) → GT
i,i+1Rperm(i : i+ 1, i : N) (4.31)

We continue this process starting at column i and continuing until column (N − 1). We

thus re-form the upper triangular matrix structure (excluding the final permuted column)

with a series of these Givens matrices:

Rnew,perm → GT
N−1,N · · ·GT

i+1,i+2G
T
i,i+1Rperm (4.32)

Where similar to equation (4.31) only a subset of the entire Rnew,perm needs to be recal-

culated with each pre-multiplication by the Givens rotator. See [250] for a more detailed

description of this process and [251] for a more in depth discussion about applying the Givens

matrices to a sub matrix of the Rperm matrices.

Sub matrices of the Q matrix can be similarly updated:

Qnew,perm(1 :M, i : i+ 1) = Qperm(1 :M, i : i+ 1)Gi,i+1 (4.33)

We use a series of these:

Qnew,perm = Q(1 :M, i : i+ 1)Gi,i+1Gi+1,i+2 · · ·GN−1,N (4.34)

The effect of this column which is to be removed (which is now in the final column) can

be similarly calculated with:

r = R−1
perm,new [01, 02 · · · 0#I−1, 1]

T (4.35)
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The change in the update direction is given by:

∆u = rT1Ir (4.36)

The update direction can then be iteratively calculated from the previous direction using:

unew = Puold −∆u (4.37)

unew → unew(1···I−1) (4.38)

Because we have permuted theRmatrix, we must similarly permute the update direction.

Because we are removing an element, our update direction must involve one less direction

and thus we must remove the final element of the calculated update direction (because we

permuted the element to be removed to the end of the system matrix)

Positive Homotopy Pseudo-Code

1. Initialise solution vector x = 0. Determine initial residual correlation C0 = ATy.

2. Starting homotopy parameter value: λ = max (C0). Initial active element xi is the

element with maximal residual correlation.

3. Determine initial direction vector u using (4.21).

while λ < τ

4. Calculate the γmin (4.27) using (4.24) & (4.26).

5. Update active elements: xI = xI + γu.

6. Decrease λ→ λ− γ.

7. Add or remove active element depending on outcome of (4.27).

8. Calculate correlated residuals over the new inactive set cJ using (A.99).

9. Determine new direction vector u using (4.30) when an element is added or (4.38)

when an element is removed.
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4.4.2 InCrowd Algorithm with Truncated Newton Interior Point

In the preceding sections (4.4.1) we discussed the homotopy algorithm which solves the

BPDN problem by starting with a zero vector and then sequentially adding and removing

elements from the active solution set as the regularisation parameter is decreased. We now

introduce the InCrowd algorithm [220] which can be thought of as an extension to homotopy

where instead of adding/removing individual elements, at each step we add and remove a

collection of active elements. The advantage of this approach is that if we have multiple

neurons contributing spikes to the signal we may be able to identify potential sets of these

spikes in a single pass, compared to the step by step approach of identifying spikes which

occurs in the homotopy method.

The InCrowd algorithm works, similar to homotopy, by iteratively updating a solution vector

x which is partitioned into active xI and inactive xJ subsets. Also similar to homotopy the

initialisation of the solution vector is the zero vector: x = 0 ≡ xJ .

At each step of the InCrowd algorithm the residual correlations are calculated over the

inactive set. The Lic variables with residual correlations cJ greater than some threshold τic

are added to the active set as candidate active set elements. The BPDN algorithm (4.9) is

then solved over the active subset using any desired method from convex optimisation. Thus

at each step this process can result in candidate active elements either becoming inactive or

active and elements activated in previous steps either staying active or becoming inactive.

This process is repeated until no remaining elements of the inactive set have a residual cor-

relation greater than τic. The principle advantage of this method is that, for Lic ≪ (N ×M)

the computationally intensive part of BPDN is solved for a significantly smaller problem.

In the code provided in [220] the default value is Lic = 20 Note that there are similar algo-

rithms where instead of BPDN an OLS step is performed, such as subspace pursuit [252] and

compressed orthogonal matching pursuit [253] which also have similar theoretical guarantees

if the RIP is satisfied. Similar to [220] we have found these methods to provide solutions

with higher error rates and slower speeds of convergence compared to the BPDN approaches.
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Similar to the homotopy method we can speed up the calculation of the residual correlations

using FFTs as described in section A.8. Note that in order to enforce the non-negativity

solution condition we only consider candidate active elements which have positive residual

correlations. This is due to the theorem, proven in [254] that a solution vector element,

xi, must have the same sign as its residual correlation: sgn (xi) = sgn (ci). Note that in

addition the algorithm used to solve the BPDN problem over the identified active subset

must incorporate the non-negativity condition.

The following properties of the InCrowd algorithm are discussed in [220]. The InCrowd

method is guaranteed to solve the BPDN and converge to the global minimum. Under cer-

tain conditions on the columns of the system matrix A (|ai|22 = 1), conditions are developed

for the error term to initially decrease exponentially. It is also shown that this method cannot

retrace its own path. Despite this, similar to homotopy, individual elements can be re-added

and removed over multiple cycles (described as model-churning in [221]). Nonetheless the

combination of elements comprising the active set at each step is guaranteed to be unique.

InCrowd Inner Loop: Truncated Newton Interior Point Method:

As discussed in the previous section, The BPDN solution step for the InCrowd algorithm

over the active set can be performed with any BPDN solver. We solve the BPDN step using

the Truncated Newton Interior Point (TNIP) method, which with our simulations has been

fast, acurate and allows for easy incorporation of the non negativity condition. The TNIP

was described in [227] and provided as the Matlab package ls-l1. We provide an overview of

the TNIP method for BPDN following [227], but refer the reader to this article for further

technical details.

The TNIP algorithm is an interior point method which finds the solution in the interior

point using an iterative central path method with a series of log-barrier functions with
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increasing penalties. The central path framework is set up as follows:

φt(x) = |Ax− y|22 + λ
N∑

i=1

xi −
(
1

t

) N∑

i=1

log(xi) (4.39)

The last term in (4.39) is termed the logarithmic barrier function, which allows us to

incorporate the non-negativity condition as an unconstrained optimisation problem. Notice

that this central path problem (4.39) is convex, and due to the domain of the logarithmic

functions is restricted to the interior of the feasible points xi ≤ 0 ∀i [247]. The set of

points, x⋆
t which minimise (4.39) for varying values of t is known as the central path. The

value of t controls the penalty for being in an infeasible region (xi < 0). The larger the pa-

rameter t, the more accurately the infeasable region is modelled, but obtaining the solution

becomes numerically more difficult because the Hessian varies rapidly near the boundary of

the feasible set [247]. The approach taken is to iteratively generate the central path {x⋆
t}

by optimising equation (4.39) for small values of t, then using this solution for the starting

point for generating the central point for a larger value of t.

It can be shown that a point on the central path x⋆
t satisfy all the KKT conditions,

except complimentary slackness, which satisfies µixi = 1/t [247]. Note that in the limit

of t approaching infinity the KKT conditions will be satisfied and for t sufficiently large

the KKT conditions are ‘almost’ satisfied. It is also important to note the bounds on the

sub-optimality of the solution given by: x⋆
t [247], [227] :

f0(x
⋆
t)− p⋆ ≥ 2N

t
(4.40)

Where p∗ = f0(x
∗) is the unknown optimal primal solution and N is the number of

constraints, in this case the length of the solution vector x⋆
t . It is interesting to compare

the central path approach to solving (4.9) to the homotopy approach discussed in section

4.4.1. The homotopy method starts by solving an easier problem (associated with a large

regularisation parameter and subsequently a single active element) and then slowly deforms

the problem, satisfying the KKT conditions at each step until the required solution (corre-

sponding to a specific regularisation parameter) is obtained. The central path approach does

not vary the regularisation parameter, but rather constructs a sequence of simpler problems
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which at each step only approximate the KKT conditions. For each step in this sequence of

simpler problems the approximation to the KKT conditions become more valid.

A given value of the parameter t in (4.39) is solved for the minimal value of xt using

Newtons method to determine the search direction (∆x). The search direction is the solution

of:

∇2φt(x)∆x+∇φt = 0 (4.41)

Where:

∇2φt(x) = 2tATA+ diag

[
1

x21
,
1

x22
· · · 1

x2N

]

= 2tATA+D (4.42)

∇φt(x) = 2tAT (Ax− y) +

[

tλ− 1

x1
, tλ− 1

x2
, · · · tλ− 1

xN

]T

(4.43)

Note that the Hessian is positive and symmetric and thus the search direction is solved

approximately using the Pre-Conditioned Conjugate Gradient (PCGC) method. The pre-

conditioner which is recommended in [227] and used in l1-ls is the Jacobi preconditioner, P,

based on the diagonals of the Hessian:

P = diag
(
2tATA

)
+D (4.44)

The xt,i value is then updated to:

xt,i+1 = xt,i + s∆x (4.45)

The value of the step size s is calculated using a back-tracking line search. The method

described so far can be continued indefinitely, subsequently increasing the penalty pre-factor

t resulting in slower and slower convergence to a solution. Note that since the problem

satisfies Slaters condition [227] the duality gap ∆pd between the optimal primal and dual

loss functions is zero:

∆p⋆,d⋆ = p⋆ − d⋆ = 0 (4.46)

Thus a stopping criteria can be constructed based on the duality gap being sufficiently

small. In order to identify the duality gap the Lagrangian dual problem is constructed and

a subsequent dual feasible point is identified.
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Calculation of Duality Gap

The ℓ1 regularised least squares problem (4.9) without the non-negativity constraint can be

re-written as:

minimise f(x, z) = ztz+ λ|x|1 (4.47)

such that z = Ax− y (4.48)

Thus the Lagrangian dual problem to (4.48) can be written as:

maximise G(v) = −(
1

4
vTv + vTy) (4.49)

subject to aT
i v ≤ λ ∀i = 1 · · ·N

We can construct a dual feasible point which satisfies (4.49):

ṽ =
λ (Ax− y)

||AT (Ax− y) ||∞
(4.50)

With this dual feasible point ṽ, we can use equations (4.47), (4.49) & (4.50) to develop

the duality gap ∆p,d:

∆p,d = f(x, z)−G(ṽ)

= |Ax− y|22 + λ|x|1 + (
1

4
ṽT ṽ + ṽTy) (4.51)

The TNIP algorithm is terminated when the relative duality gap, ∆p,d/f(x, z) , is less

than the specified tolerance: τgap.

InCrowd Pseudo-Code

1. Start with the active set being the null set I ∈ ∅, and the solution vector being the

zero vector , x = 0.

2. Calculate the correlated residual over the in-active set cJ using (A.99) and indexing

the residual correlation terms associated with the inactive set.. In [220] this is referred

to as the ’usefulness’ of the inactive set.
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3. Determine if any of the residual correlations, cJ are above the regularisation threshold

(cJ) < τic. If no residual correlations are above this threshold then end the algorithm

with the current solution x.

4. If residual correlations exist greater than τ , select the elements with the Lic largest

residual correlations.

5. Solve the BPDN problem exactly over the subspace of the active set variables xI . Note

that this will be a dense problem, albeit in a much smaller dimensional space than the

full scale problem:

(a) set: t = v1/λ xI = 0.

While ∆p∗,d∗/f(x, z) ≤ τgap.

(b) Compute direction ∆x using Newton’s method to solve (4.41) with PGC.

(c) Compute step size γ in direction ∆x using a back-tracking line search.

(d) xt = xt + s∆xt.

(e) Construct dual feasible point v from (4.50).

(f) calculate relative duality gap (4.51).

(g) update t.

6. Prune the solution components from the active set which were set to zero xi = 0, I → J

in constrained minimisation problem (step 5). Update the solution vector on the active

set, xI , with the values determined in step 5.

7. Update the correlated residuals over the inactive set, cJ , using (A.99) and indexing

the residual correlation terms associated with the new inactive set.

8. Return to step 3.
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4.4.3 Positive Dual Augmented Lagrangian Method

In this section we describe an alternative method to solving the non-negative BPDN problem,

based on solution in the dual space described in [239]. This approach is based on develop-

ing an alternative dual, the Fenchel dual and then attempting to maximise the Lagrangian

associated with this dual problem. The Lagrangian is iteratively maximised in a step-wise

fashion using the Augmented Lagrangian (with quadratic penalty) method, with the La-

grange multipliers updated in each iteration. The advantage of this approach is that, similar

to the homotopy method, the computational complexity of this algorithm is proportional to

the sparsity of the system being estimated. This is in contrast to the TNIP method used

with the InCrowd method where the computational complexity is related to the structure

of the system matrix A. We provide a brief overview of this method with enough detail

to grasp the underlying intuition and implement it numerically. The interested reader is

referred to [239] for the full technical details of the convergence guarantees and [255] for an

extension of this method to a more general family of BPDN approaches. The authors of both

these papers have made code available based on this method, which we use in simulations,

as part of the DAL program.

The key to understanding this method is that the Lagrange multiplier associated with the

Lagrangian of the Fenchel dual is also the primal (spike firing time) variable x. In the

Augmented Lagrangian framework both the variables to be optimised and the Lagrange

multiplers are updated in an iterative fashion towards their optimal value. Thus this pro-

cess of updating the Lagrange multipliers associated with the Fenchel dual problem provides

the primal solution variable x. Similar to the TNIP method described in section 4.4.2, the

solution is considered optimal once the duality gap is sufficiently small.

Similarly to Section 4.4.1 we will rewrite the positive BPDN problem (4.9) into a slightly

different, but equivalent form more amenable for the positive DAL algorithm:

minimize
1

2
|Ax̂− y|22 + λ

P∑

i=1

xi

s.t. x � 0 (Non-negativity) (4.52)
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Since we are constrained to positive elements of the solution vector x, the ℓ1 norm of x

has been replaced with the summation over the elements of x. We have also pre-multiplied

the OLS term by 1/2 in order to make some of the subsequent calculations simpler. Central

to the DAL algorithm is the Fenchel-Rockafeller Duality theorem, which provides the rela-

tionship between the infimum of a cost function and the supremum of its dual problem con-

structed from Fenchel-Legendre transformations. We first introduce these Fenchel-Legendre

transformations:

f ∗(ααα) = sup
x∈Rn

〈x,ααα〉 − f(x) (4.53)

The Fenchel-Legendre transformation, also referred to as the convex conjugate, can be

understood as the convex hull associated with the epigraph of function f(x) in terms of its

supporting hyperplanes. Note that by construction the Fenchel-Legendre transformation is

a convex function.

The Fenchel-Rockafeller duality theorem [256],[257] states:

inf
x∈Rm

f(x) + g(Ax) = sup
ααα∈Rn

−f ∗(−ATααα)− g∗(−α) (4.54)

Where A is a matrix which maps from R
m to R

n. The Fenchel-Rockafeller duality theo-

rem (4.54) states that the minimum in the primal space can be determined by an equivalent

minimum problem in terms of the Fenchel-Legendre conjugates. Notice also that the point

wise supremum of convex functions is also necessarily convex. For the BPDN problem (4.9)

The individual Legendre-Fenchel transforms are given below.

The Fenchel-Legendre transformation of the regularisation (summation) term in (4.52)

is derived below:

f ∗(ααα) = sup
x∈R+

P

〈ααα,x〉 − λ
P∑

i=1

xi =
P∑

i=1

(αi − λ) xi (4.55)

Notice that because of the non-negativity constraint on x we are constrained to consider

only positive values of x. Also notice that if any element αi > λ the maximum value that
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f ∗(ααα) may obtain is infinity, in the limit of xi approaching infinity. For αi ≤ λ the maximum

value that f ∗(ααα) may obtain is zero. Thus:

f ∗(ααα) = ℓ∞
+

λ (ααα) =







0 if αi ≤ λ

+∞ if αi > λ

∀i (4.56)

Where we define ℓ∞
+

λ (α) as the subset of the ℓ∞ ball of radius λ for only positive values.

The Fenchel-Legendre transform of the regularisation term is therefore:

f(x) = λ

P∑

i=1

xi ⇒ f ∗(ααα) = ℓ∞
+

λ (ααα) (4.57)

The Legendre-Fenchel transformation of the sum of squares term is:

g∗(ααα) = sup
x∈R+

P

〈αααx〉 − 1

2
||x− y||2 (4.58)

Since all the expressions in (4.58) are smooth, standard calculus techniques can be applied

to identify that the maximal value of x is given by: x = y +ααα. Substituting this value into

(4.58) and taking the negative argument of the convex conjugate, as is required for the

Fenchel-Rockafeller (4.54) theorem, yields:

g∗(−ααα) = 1

2
||ααα− y||2 − 1

2
||y||2 (4.59)

The Fenchel-Rockafeller dual to BPDN problem (4.9) can be written using (4.54), (4.57)

& (4.59) as:

sup
ααα∈Rm

− δ∞
+

λ

(
ATααα

)
− 1

2
||ααα− y||2 + 1

2
||y||2

︸ ︷︷ ︸

d(ααα)

(4.60)

One of the principal problems with (4.60) is the coupling of the ααα variables due to the

system matrix A. We can re-write the above coupled optimisation problem, as a decoupled

optimisation problem, with the coupling included as a constraint which must be satisfied:

sup
ααα,v

− δ∞
+

λ (v)− 1

2
||ααα− y||2 + 1

2
||y||2

︸ ︷︷ ︸

d(ααα,v)

(4.61)

subject to v = ATααα (4.62)
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We can now write a Lagrangian associated with this constrained dual problem. We will

use the Augmented Lagrangian function. In this approach our constraint is incorporated with

a Lagrange multiplier and in addition we have a quadratic penalty term for not satisfying

the constraint:

Lη(ααα,v,w) = d(ααα,v)−wT
(
ATααα− v

)
− η||ATααα− v||2

= −δ∞+

λ

(
ATααα

)
− 1

2
||ααα− y||2 + 1

2
||y||2 −wT

(
ATααα− v

)
− η

2
||ATααα− v||2

(4.63)

Where w are the Lagrange multipliers associated with the constraint (4.62). Notice that

because this is a convex problem, and we are taking the Lagrangian associated with the

dual problem, these Lagrange multipliers are also the primal solution x variable we seek. In

the augmented Lagrangian framework the Lagrange multipliers are updated in an iterative

fashion according to the equation:

wk+1 = wk + ηk
(
ATαkαkαk − vk

)
(4.64)

The dual problem [247] associated with the Lagrangian of our Fenchel dual problem is:

fη(w) = sup
ααα∈Rm,v∈Rn

Lη(ααα,v,w) (4.65)

The maximisation in (4.65) with respect to v can be performed analytically, reducing

the problem to a single variable optimisation:

sup
v∈Rn

Lη(ααα,v,w) = −1

2
||ααα− y||2 − min

v∈Rn

(

δ∞
+

λ (v) +
η

2
||ν −ATααα− w

η
||2
)

−c(w, η) (4.66)

Notice that we have split finding the supremum of the Lagrangian with respect to the

dual variable v, (4.66) into a component which depends on the variables to be optimised

(ααα,v) and a component which depends on the variables which are not to be optimised (w,η).

Notice that this c(w, η) function will not be required for the optimisation procedure because

the function fη(ω) only requires the additional optimisation with respect to the ααα variable

and the Lagrange multiplier (which is also the primal solution vector x) w are updated based
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only on these ααα,v optimised variables.

Notice that in the above equation all the terms containing the v variable are ℓ2 norm values

pre-multiplied by negative one and therefore must be negative. Thus in order to maximise

the Lagrangian the v terms must all be minimal. The presence of the ℓ∞+ term and the

minimisation condition constrains us to the projection onto the positive subset of the ℓ∞

ball of radius λ: P∞+

λ (· · · ). Therefore:

sup
v∈Rn

Lη(ααα,v,w) = −1

2
||α− y||2 − η

2

∣
∣
∣
∣

∣
∣
∣
∣
ATααα +

w

η
− P∞+

λ

(

ATααα +
w

η

)∣
∣
∣
∣

∣
∣
∣
∣

2

(4.67)

Following [239] the projection onto the ℓ∞ ball of radius λ can be related to the soft

thresholding function (STλ = w − P∞
λ (w)). Since our problem projects only onto the

positive component of the ℓ∞ ball we consider the positive soft thresholding function:

ST+
λ (w) = w − P∞+

λ (w)

= (max(wj − λ, 0))j ∀j = 1 · · ·n (4.68)

The supremum of the Lagrangian with respect to the v dual variable, is given by substi-

tuing (4.68) into (4.67). Therefore fη(w) can now be written in terms of the maximisation

of the single dual variable α:

fη(w) = max
ααα∈Rm

− ||ααα− y||2 − η

2

∣
∣
∣
∣

∣
∣
∣
∣
ST+

λ

(

ATααα +
w

η

)∣
∣
∣
∣

∣
∣
∣
∣

2

(4.69)

The expression for the update of the Lagrange multiplier wk+1 (4.64) can be written in

terms of the projection operator on the vk dual variable: vk = Γ∞+

λ

(
ATααα + ω/η

)
:

wk+1 = wk + ηkA
Tαααk − ηkΓ

∞+

λ

(
wk + ηkA

Tαkαkαk

ηk

)

= ST+
ληk

(
wk + ηkA

Tααα
)

(4.70)

Where we have used the identity for the projection operation: Γ∞+

ληk
(w) = Γ∞+

λ (ηkw).

We now turn our attention to maximising fη(w) (4.69) over the variable ααα. Notice that

similar to before, the objective to be maximised consists of ℓ2 norm of functions which are
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pre-multiplied by negative one. Thus the maximisation of fη(w) is equivalent to the following

minimisation over the ααα dual variable:

αkαkαk = arg min
αααk∈Rm

{
1

2
||ααα− y||2 + ηk

2
||ST+

λ

(

ATααα +
wk

η

)

||2
}

(4.71)

The ααα which minimises (4.71) can be solved using interior point methods. Similar to

the TNIP method used with the InCrowd algorithm described in section 4.4.2, [239] solves

(4.71) using Newton’s method. The gradient,∇ψ, and Hessian Matrices, ∇2ψ, with respect

to the ααα variable are given by [239]:

∇αααψ = ααα− y +AST+
ληk

(
wk + ηkA

Tααα
)

(4.72)

∇2
αααψ = Im + ηkAIA

T
I (4.73)

Where Im is the identity matrix of size m × m and AI is the submatrix of the system

matrix A consisting of the columns associated with the non-zero elements of w. Notice that

the Hessian and gradient only depend on the active elements. Therefore the complexity of

the Newton step is proportional to the sparsity of the solution vector x, not the density of

the system matrix A. In this sense, this approach is similar to the computational cost asso-

ciated with the homotopy method and is unlike the TNIP, which depends on the complexity

of the system matrix.

Similar to TNIP [227], it is recommended that a Preconditioned Conjugate Gradient (PCG)

method should be used to solve Newton system [239]. The preconditioner used is the Jacobi

preconditioner which is constructed using the diagonal elements of the Hessian matrix ∇2
αααψ.

The methodology to solve for the firing time vector x using the DAL approach can now be

explained. Choosing a sequence of increasing barrier terms {ηk}: ηk < ηk+1 (this guarantees

supra-linear convergence [239]) the αααk which minimises (4.71) is solved using the Newton

method and a backtracking line search. The solution to the Newton method is defined when

the magnitude of the gradient function ∇αααψ is less than some threshold ǫk The Lagrange

multiplier (primal variable) wk+1 is updated using (4.70). The barrier term is increased:

ηk → ηk+1 and the Newton step solution threshold is decreased ǫk → ǫk+1. This process is
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repeated until the stopping criteria is reached. The stopping criterion, the same as for the

TNIP described in section 4.4.2, is defined as when the relative duality gap ∆p,d/f(x) is less

than the specified tolerace: τgap.

The dual feasible point, satisfying (4.62), is chosen in [239] using exactly the same

methodology as the TNIP described in section 4.4.2:

α̂ =
λ (Aw − b)

||AT (Aw − b) ||∞
(4.74)

Notice that this feasible point satisfies, by construction, the requirement that AT α̃ ≤ λ.

The duality gap can be developed using (4.52) & (4.60) given by:

∆p,d = f(x)− d(α̂αα,AT α̂αα)

=
1

2
|Ax̂− y|22 + λ

P∑

i=1

xi +
1

2
||α̃̃α̃α− y||2 − 1

2
||y||2 (4.75)

DAL pseudo-code

choose sequences {ηk} such that ηk+1 > ηk and {ǫk} such that ǫk+1 < ǫk

while ∆p,d/f(x) < τgap

1. set ηk.

2. solve ∆αααk+1 for the direction to minimise (4.71) using Newton’s method to tolerance:

|∇ψ| ≤ ǫk+1.

3. Choose step size γk+1 which maximises the decrease in (4.71) using a backtracking line

search.

4. Update αk+1αk+1αk+1 = αkαkαk + γk+1∆αααk+1

5. Update wk+1 using (4.70).

6. Update the gradient ∇ψ (4.72) & the Hessian matrix ∇2
αααψ (4.73).

7. calculate ∆p,d.
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Diffusion

Mapping

Continuous

Wavelet

Transform

Mean Shift
time series generate A.

Figure 4.2: The three step process to identify dictionaries and construct the system matrix

A for BPDN. The candidate spike times are estimated using CWT, the reduced dimensional

feature space is constructed using Diffusion Maps which is then clustered using the Mean

Shift algorithm.

4.5 Developing The Dictionaries

In the previous section we have shown that given an estimate of the set of spike shapes,

{gi} we can form the system matrix A and use BPDN to identify the firing times x. Since

the firing time vector x is a concatenation of the firing time vectors associated with each

dictionary term (spike), the BPDN algorithm not only performs accurate spike detection but

also accurate and automatic spike clustering. The problem with this approach is that given

an extra-cellular recording we do not know the spike shapes apriori and therefore do not

have the structure of the system matrix A necessary to perform BPDN. In the proceeding

section we will develop a methodology to identify the spike shapes, which will be used as

the dictionary set (and thus construction of the system matrix A) for the BPDN algorithm.

This approach will involve 3 steps: initial spike time detection using multi-scale continuous

wavelet decomposition, dimensionality reduction using Diffusion Mapping and then cluster-

ing using the Mean Shift algorithm. This process is shown conceptually in Figure 4.2. The

centroids associated with these clusters are then used to estimate the spike shapes {gi}. This
process is shown on simulated data in Figure 4.3.

We argue that this sequential approach of estimating the spike shapes to generate the

dictionary terms (and thus the system matrix A) for use in the BPDN algorithm (4.9) is

superior to the sequential approach introduced in [192] of initial spike detection using am-

plitude thresholding, feature selection using Principal Component Analysis, then clustering

using the K-means algorithm and using the centroids of these clusters to drive the CBP
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(a) CWT estimate of firing times (b) Identified action potentials

(c) clustering by diffusion mapping and means

shift clustering

(d) estimated action potential shapes (dictio-

nary terms)

Figure 4.3: The three step process of getting the dictionaries. The firing times are estimated

by CWT. The candidate spike shapes are extracted from the voltage trace. The dimension-

ality of the dataframe is reduced using diffusion mapping (3 dimensions are shown). The

reduced data is clustered using mean shift and the centroid of the waveforms amongst the

same members are used as the dictionaries.

algorithm.

The main problem with this approach is the requirement of the K-means clustering al-

gorithm to know the number of clusters a priori. Any least squares solver (BPDN, CBP

or otherwise) cannot be accurate if its dictionary terms (and thus system matrix A) is in-

correct. For real extra-cellular recordings the number of clusters is not known apriori and

thus frequently the incorrect number of clusters can be specified. If the incorrect number

of clusters is specified the K-means clustering will produce incorrect dictionary terms and

the spike detection and subsequent clustering will be poor. In effect, the basis pursuit al-

gorithms (BPDN or CBP) are all highly reliant on their preliminary clustering algorithms.
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This problem with the K-means clustering algorithm does not occur with the mean shift

algorithm (described in section 4.5.3) which can successfully cluster data without a priori

knowledge of the number of clusters.

As discussed in section 4.3.1 automated clustering is an incredibly broad area of active

research. The K-means clustering (without modification) is a reasonably simple clustering

algorithm. Indeed in the family of density based estimators (which mean shift belongs to)

there are several viable candidate clustering algorithms which could be considered such as

DBSCAN [205], OPTICS [207], DENCLUE [208] and DENCLUE2.0 [209]. This is to say

nothing of the other discussed clustering approaches including, but not limited to, Bayesian

approaches of Gaussian Mixed Models [213], Student Distribution Mixed Models [214], Infi-

nite Mixed Models [215] or spectral clustering [212], [211].

Secondary problems with the approach of [192] is the use of amplitude thresholding and

feature selection based on the principal components. It was shown by extensive simulation

in [94] that wavelet analysis was superior to amplitude thresholding techniques to estimate

firing times in neural data. Likewise it was shown in [165],[95] that wavelet coefficients and

diffusion maps were superior to Principle Component Analysis (PCA) for feature selection in

neural data. It was argued in [165] that while the eigenvectors associated with PCA account

for the largest variance of the identified waveforms, this does not necessarily provide the best

basis for separation of the spike clusters.

It is important to note that this method of developing the dictionaries is itself a rudimen-

tary spike sorting algorithm. The subsequent application of the BPDN procedure boosts the

sensitivity and specificity of the spike sorting. In section 4.6.4 we explicitly demonstrate that

the additional BPDN step does indeed improve spike sorting estimates over this dictionary

building procedure of CWT, diffusion mapping and then mean shift clustering.

In the proceeding section we describe the sub-steps employed to obtain the dictionary

terms in detail:
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1. The continuous wavelet transform used to identify the spike times.

2. The diffusion mapping procedure used to reduce the dimensionality of the identified

spike shapes and perform feature selection.

3. The mean shift algorithm used to group the reduced dimensional spike shapes into

their appropriate clusters.

4.5.1 Multi-Scale Continuous Wavelet Transform

The Continuous Wavelet Transform (CWT) is a commonly used method for spike detection

[94] and is implemented in the spike sorting package Osort [57]. The general idea is as

follows. Recall that with the Fourier Transform we represent an arbitary function (subject

to certain conditions) as a linear super-position of basis functions of sines and cosines. The

idea of the CWT is to decompose an arbitrary function into a linear super position of basis

functions called wavelets. The basis functions, termed daughter wavelets are all generated

by dilations and translations of a mother wavelet Ψ(t).

Ψa,b =
1√
a
Ψ

(
t− b

a

)

, a,b ∈ R (4.76)

We refer to terms a & b as the dilating & translating parameters respectively. The

wavelets must satisfy certain conditions of compact support, zero mean:
∫ +∞
−∞ Ψ(t) = 0 and

specific orthogonality conditions [194]. The CWT projets the arbitrary function (y(t)) onto

the daughter functions (Ψa,b):

c(a, b) =

∫ +∞

−∞
y(t)Ψ

(
t− b

a

)

dt (4.77)

The CWT maps from the one dimensional space of the arbitary function y(t), to the two

dimensional space of wavelet coefficients c(a, b). The CWT is, for all intents and purposes a

measure of the correlation between the function y(t) and the daughter wavelet with dilation

and translating parameters a,b chosen from the set {a},{b}. Notice that if we choose a

specific dilation parameter value a, then the CWT represents the cross-correlation function

between y(t) and the wavelet shape at this specific scale. If a mother wavelet is chosen

to resemble a spike shape, then at scale a the wavelet coefficients c(a, b) over the set {b}
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identify where the signal correlates with the spike shape with time constant ≈ 1/a. Thus

for a fixed dilation parameter the CWT, over the set of translation parameters, acts like a

matched filter [258]. By generating the wavelet transform for multiple dilation and shift-

ing parameters, the cross correlation of the signal, y(t), with wavelets with the same basic

shape but different time constants can be constructed. This is referred to in the literature

as multi-resolution analysis. [194]

The full CWT spike sorting method is described in [94], but an overview of this process

is described below. The mother wavelet Ψ(t) is chosen with a shape as similar to the action

potentials we are attempting to detect. This is often a wavelet from the bior1.5 family. A

set of scale parameters {ai} are selected which are consistent with the expected width of the

action potentials. This set may subtly vary with anatomical location or physiological condi-

tions, but is typically in the 0.2-1.5 milliseconds range. The set of translation parameters,

{bk} is selected to correspond to every discretised element of the time series. That is, if the

time series is Ts seconds long and sampled at Fs = 1/∆T the set of translation parameters

will be [∆T , 2∆T , · · ·Ts]. Notice that this set of translation parameters is different from the

dyadic set often used in wavelet analysis [194].

For each dilation parameter, ai, the wavelet transform over the set of translation param-

eters is a cross correlation between the measured signal and the daughter wavelet. This set

of cross-correlation signals are used to identify the firing times using the following method-

ology. For each cross correlation function, at each translation point a hypothesis test is

performed to estimate whether that point represents a spike (signal + noise) or no spike

(just noise). The details are provided in [94], but the hypothesis test is:

|c(a, b)|
H1

≷
H0

µ̂i

2
+
σ̂2
i

µ̂i

ln

(

LM · L+ ln

[
P (H0)i
P (H1)i

])

∀ b ∈ {b} (4.78)

Where µi is the sample mean of the absolute value of the wavelet coefficients at scale

ai under the hypothesis H1 (that a spike is present) and σi is the standard deviation of

the wavelet coefficients at scale ai. The term in the parenthesis (· · · ) sets the costs of false
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negatives vs. false positives at the wavelet scale ai. The terms P (H0)i/P (H1)i is the ratio

of the prior probability distributions associated with spike and no spike respectively at scale

ai. This ratio is considered equivalent of the ℓ0 pseudo-norm of the number of spikes and

non spikes respectively. LM = 36.7368 is chosen as the maximum ratio of the cost of false

positives to false negatives which does not cause arithmetic overflow under a double-precision

floating point representation. The L variable represents a free parameter which controls the

cost of false positives and false negatives.

Note that if the statistics of the signal are known, the linearity of the wavelet trans-

form guarantees that the statistics of the wavelets at the different scales can be calculated.

The problem is that the statistics of the signal are not known, and in the case of the µi

& P (H0)i/P (H1)i terms we do not know which set of translation coefficients correspond to

spikes.

The mean, µi, is estimated by partitioning the wavelet coefficients at scale ai into a spike

containing set and a non spike containing set based on a hard thresholding rule (based on

a nonlinear wavelet denoising approach used in [259]) such that coefficients greater than

the threshold are considered spikes and coefficients less are considered to be noise. The

threshold, given by Ti =
√

2Nσ̂i
2, is based on the estimate of the variance and the number

of time samples, N. Similarly the ratio P (H0)/P (H1) is calculated at scale ai by the ratio

of the number of coefficients greater and less than this threshold respectively. There is a

subtly discussed in [94] which explains the different options of how to proceed if no wavelet

coefficients are detected above the hard threshold value. Briefly the options are to consider

no spikes at this scale ai (termed the conservative estimate) or to consider that a single

wavelet at this scale exceeds this threshold and set µi = Ti (termed the liberal estimate).We

explain how the variance at each scale ai is estimated below.

As previously explained, at sufficiently high sampling rates the spikes are sparsely dis-

tributed in the time series. Thus, with respect to estimation of the variance σ, of the

background noise, the spikes can be considered outliers. The variance at each wavelet scale
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is estimated by assuming that the action of the wavelet transform is to make the signal

statistics more white and uncorrelated and then applying the Median Absolute Deviation

(MAD) estimator to the set of wavelet coefficients for each dilation parameter value a. Recall

that for Gaussian random variables the MAD estimator provides accurate estimates of the

variance in the presence of outliers (spikes).

For a given scale parameter at each point where the alternative hypothesis is true, neigh-

bouring points will often also satisfy this hypothesis. This is referred to as temporal contiguity

[94]. For each contiguous series of points at scale ai we identify whether this point of an

estimated spike is also identified at other scales. This is referred to as scale contiguity [94].

If the alternate hypothesis is true in a contiguous region over multiple scales the spike time

in that contiguous region is identified as the arithmetic mean of the maximum wavelet coef-

ficient at each scale value. This approach provides an estimate which attempts to deal with

the noise sources on the different scales independently jittering the location of the maximal

coefficient. If the contiguous region is only present at one scale, ai, the spike time is esti-

mated at the time of the maximum wavelet coefficient over that contiguous region. This

process is repeated for every contiguous region to identify all the spike times. Notice that,

as identified in [94], the process of identifying a single spike in each contiguous region pre-

vents the detection of sufficiently close overlapping spikes. This is in contrast to the BPDN

approach which can deal with this overlapping spike situation.

CWT spike detection pseudo-code

Choose a range of wavelet scale coefficients [a1 · · · an] and detection parameter L:

1. Calculate the CWT over the set of all scale coefficients [a1 · · · an] and translation coef-

ficients b = [∆T , 2∆T · · ·Ts]

2. at each scale a

(a) Estimate the standard deviation σi using the MAD estimator.
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(b) Determine the hard threshold Ti

(c) Calculate the mean µj associated with the wavelet coefficients with absolute value

greater than the threshold |c(a, b)| > Ti.

(d) Calculate the ratio P (H0)i/P (H1)i at scale ai as the ratio of the number of wavelet

coefficients from the set {b} with absolute value greater and less than Tj respec-

tively.

(e) Identify the wavelet coefficients which satisy the alternative hypothesis H1 using

(4.78).

3. Identify wavelet coefficients which satisfy the alternative hypothesis over different scales

[a1 · · · an] (satisfy scale contiguity).

4. Estimate the spike time in the temporally contiguous regions as the arithmetic average

of the time associated with the maximum wavelet coefficient in this region across the

valid scales.

Notice that this CWT approach can often successfully perform the first phase of spike

sorting: detecting spikes amongst noise, but it cannot perform the second phase which is

assigning the identified spikes into their appropriate clusters. In the next sections we describe

how given these estimates of the spiking times, diffusion mapping (section 4.5.2) and the

mean shift algorithm (section 4.5.3) can be used to successfully cluster the spikes.

4.5.2 Diffusion Mapping

Diffusion mapping is a non-linear dimensionality reduction technique (closely linked to spec-

tral clustering) which was introduced in [197]. This method was applied to extra-cellular

neural recordings where the firing times were known apriori in [95]. We describe the diffusion

mapping process below, but refer the reader to [197] for the original (and more mathemati-

cally detailed) formulation of the methodology. Given our series of L dimensional datapoints:

xi = [x1, · · · , xL]T which describe an identified spike shape, we form a data frame X by stack-

ing these p datapoints: X = [x1,x2, · · ·xp]. We view the data points associated with the

different spike shapes as nodes of a weighted undirected graph G = (V,E,W ) (vertex, edge
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and weight). We define the weights according to the heat (Gaussian) kernel and form the

associated p× p dimension Gram matrix as:

Wi,j = exp



−
||xi − xi||2

σ2
DM



 (4.79)

The σDM function represents the strength of the scaling between data points in the P

dimensional space and is a free parameter which must be tuned by the operator. The use

of this kernel shows that we are considering a fully connected graph. We see that points

which are close in the Euclidean sense are weighted more highly. Notice that this Gaussian

kernel is isotropic. Reduced dimensional clustering based on a normalised graph Laplacian

of this isotropic kernel was considered in [210]. Indeed spike clustering using this approach

was considered in [260]. In [197] a family of anisotropic diffusion processes (parameterised

by a factor α) are introduced which specify the amount of influence of the density of the

datapoints in the (infinitesimal) transitions of the diffusion process:

Wα = D−αWD−α (4.80)

Where D is the diagonal matrix with diagonal elements: Dii =
∑

j

Wij . Following [197]

we consider α = 1, which corresponds to diffusion described by the Beltrami-Laplace op-

erator, and removes the influence of the density of the distribution of the datapoints and

recovers the underlying (Riemannian) geometry of the dataset.

From our anisotropically weighted matrix we define the Markov probability transition

matrix: P = (Dα
norm)

−1 Wα. The diagonal matrix Dα
norm is defined as: Dα

norm,ii =
∑

j

Wα
i,j.

Thus the matrix P is a row normalised form of W α such that each row sums to unity. This

P matrix is the transition matrix of the Markov chain associated with a random walk on

the data points. It is shown in [197] that for the choice of α = 1 the Markov chain converges

to Brownian motion on the sub manifold of Rl. The behaviour of the random walk tells us

which points are close (the random walker is likely to transition to) and which points are

further apart (the random walker is less likely to transition to). This provides a natural

framework for clustering over the dataset.
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We determine the eigenvalues & eigenvectors associated with this Markov transition

matrix: Pψ = λψ. The first eigenvalue λ1 will be unity (to see this consider that for

non-negative matrix elements aij, which are row-normalised to unity, Pψ = 1ψ will always

be a solution) and the magnitude of the remaining eigenvalues will be less than unity:

λ1 = 1 ≥ |λ2| ≥ |λ3| ≥ · · · ≥ |λp|. The set of eigenvectors, scaled by its eigenvalue provides

a basis set for the data points {λψ}. Because the ordered eigenvalues are all less than unity

and have reducing magnitude we may truncate all but the q largest eigenvalues (excluding

the unity one). This corresponds to the mapping: Ψ : RL → R
q.

Ψ(xi) →











λ1ψ1(i)

λ2ψ2(i)
...

λqψq(i)











=











q1(i)

q2(i)
...

qq(i)











(4.81)

Immediately we can see that if q ≤ L this method can be used for dimensionality reduc-

tion. We will briefly discuss the intuitive advantage of this method. Consider the Diffusion

distance which is related to summations over our Markov transition matrix P:

D2
t (xi,xj) =

∑

z

(
Pt

iz −Pt
jz

)2 · d−1
z

=
∑

z

(

p (z, t|xi)− p (z, t|xj)w(z)

)

(4.82)

Note that p (z, t|xi) is the probability that the random walker starts at point z and arrives

at point xi after t steps. The diffusion distance Dt(xi,xj) defines the ℓ2 distance between the

probability clouds xi, xj with weight w. As identified in [197] as this distance sums over all

paths of length t connecting xi & xj it is robust to noise. The diffusion distance can also be

written in terms of the Euclidean distance of the eigenvectors weighted by the eigenvalues.

Using the truncated set of eigenvalues and eigenvectors we may write:

D2
t (xi,xj) = ||Ψ(xi)−Ψ(xj)||2 +O(t, q) (4.83)

Thus by using the mapping provided by (4.81) we can see that we achieve a dimensional

reduction from R
l → R

q which attempts to preserve the diffusion distance between data
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points in the original higher dimensional space. It tries to preserve the structure between

points which are readily connected by a random walk on the data. Thus at lower dimensions

it identifies which points are ‘connected’, which provides a natural representation for clusters.

Diffusion Mapping Pseudo-Code

1. Form the R
(L×p) data-frame: X.

2. Construct the isotropic kernel W using (4.79).

3. Construct the anisotropic kernel Wα (with α = 1) using (4.80).

4. Construct the Normalisation Matrix Dnorm.

5. Form the Markov transition matrix P = (Dα
norm)

−1Wα (with α = 1).

6. Generate the first q + 1 eigenvalues and eigenvectors.

7. Generate the q dimensional Diffusion Mapping using (4.81) and the 2nd to (q + 1)th

eigenvalues and eigenvectors.

Note that in subsequent section we used q = 3 dimensional Diffusion Maps.

4.5.3 Mean Shift

We now describe the non-parametric algorithm used to automatically cluster the waveforms

in the reduced dimensional space provided by the diffusion mapping. The mean shift al-

gorithm is a non-parametric clustering technique which identifies modes in the underlying

probability distribution describing a dataset. The mean shift is based on Kernel Density

Estimation (KDE), but the key to this algorithm is that in order to find these modes the

KDE does not need to be explicitly constructed. If we assume that the data points are

realisations of a random variable drawn from the multi-dimensional distribution, we can use

the mean shift algorithm to identify the cluster shape (mode) that the data points belong

to. We will briefly explain this algorithm following the approach of [261]. The KDE, f̂(x)
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associated with the multivariate data is given by:

f̂(x) =
1

nhd

n∑

i=1

K

(
x− xi

h

)

(4.84)

Where h is referred to as the bandwidth of the kernel. Notice the similarity between this

bandwidth term and the sigma function σDM used in the diffusion mapping procedure (4.5.2).

Similar to σDM , this bandwidth represents a free parameter for the spike sorting algorithm

which scales the strength of the contribution of nearby data points. Multiple different kernels

can be considered (Uniform, Epanechikov, Gaussian) but they must satisfy certain conditions

including positive definiteness, zero mean, integrating to unity and vanishing behaviour in

the appropriate limits [261]. In the mean shift procedure we only consider isotropic, radially

symmetric kernels: K(x) = k(||x||2). This function k(· · · ) is referred to as the profile of the

kernel. This simplifies the KDE f̂(x) (4.84) to:

f̂(x) =
ck,d
nhd

n∑

i=1

k

( ||x− xi||2
h

)

(4.85)

Where ck,d is a normalisation constant introduced to guarantee that the PDF integrates

to unity. The modes of the PDF, by definition have gradients of zero. Taking the gradient

of (4.85), introducing the new profile associated with the derivative of the previous profile:

g(||x||) = −dk(||x||)
dx

and defining a new kernel associated with this profile G(x) = g(||x||2)
yields:

∇fh,K(x) =
2ck,d
nhd+2

n∑

i=1

g



||
x− xi

h
||2




︸ ︷︷ ︸

f̂G,h(x)

×












∑n
i=1 xig



||
x− xi

h
||2




∑n
i=1 g



||
x− xi

h
||2




− x












︸ ︷︷ ︸

mh,G

(4.86)

As explained in [261] the first term, fG,h(x) represents the KDE of f(x) with kernel

G(x). The second term, mh,G(x), is referred to as the mean shift vector and represents

the difference between the point x and the weighted mean (as scaled by the kernel G(x)).

Algebraically re-arranging (4.86) yields:

mh,G(x) =
h2c

2

∇fh,K(x)
f̂G,h(x)

(4.87)
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Therefore we see from (4.87), due to the normalisation by the PDF estimate f̂G,h(x), that

the mean shift vector always points in the direction of increasing probability density. This

implies that if mh,G(x) equals zero, then the point x must represent a mode point.

Note that (4.87) shows that the mean shift vector can be used to identify the modes

and (4.86) shows how to identify these modes without explicitly constructing the KDE.

Given a point x we may identify the nearby mode in an iterative process by determining

the mean shift vector mh,G(x) associated with this point, then determining the mean shift

vector associated with this new point. We continue this process until the magnitude of the

mean shift vector is sufficiently small:

while |mh,G(x
k)|2 ≤ ǫ

xk+1 = mh,G(x
k) =

∑n
i=1 x

k
ig



||
xk − xi

h
||2




∑n
i=1 g



||
xk − xi

h
||2




− xk

end (4.88)

Mean Shift Algorithm Pseudo-Code

Choose parameters ǫ, ǫmerge and bandwidth h.

1. For each data point xi (which corresponds to a diffusion mapped spike estimate) apply

algorithm (4.88). This will (to some high degree of tolerance) map each data point

(spike) to the centroid associated with that cluster.

2. Once each point has been clustered, all modes within some specified radius |xi − xj|2 ≤
ǫmerge are merged.

3. Identify the spike shapes associated with the different clusters by taking the arithmetic

average (centroid) of the spike shapes (in the original L dimensional space) in each

cluster.
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We briefly mention three improvements which could be implemented to improve the

clustering ability. Notice that the mean shift algorithm is constructed assuming that the

bandwidth of the kernel at each data point is constant. The use of variable bandwidth esti-

mators can improve estimates when the characteristics of the feature space vary across the

space of the data [262]. A procedure for choosing a unique bandwidth for each point, propor-

tional to the density estimate, is described in [262]. The problem with this approach is that

it requires an initial estimate of the distribution (termed the pilot) using the standard KDE.

Unfortunately this defeats one of the primary advantages of using the mean shift algorithm,

that it does not require an explicit construction of the KDE. The second problem with using

the standard mean shift algorithm for clustering is that it is computationally expensive. It

is possible to improve the runtime of the algorithm by approximating the mean shift vector

in (4.86) by a form which only considers the data points close to the current point of interest

[263]. This strategy is often viable for Gaussian kernels because the function rapidly decays

away from point of interest. A third improvement, suggested in [263] is to improve run time

by estimating the kernel for the mean shift using random sampling.

Attractive alternatives to mean shift clustering are the previously mentioned DENCLUE

2.0 [209] and the Gaussian Blurred Mean Shift [264] algorithms. The Gaussian Blurred Mean

Shift simultaneously shifts every single data point towards its cluster centroid. The problem

with this approach however is that if the algorithm is run for too many iterations it converges

all data points to a single cluster. In [264] a stopping criterion based on information entropy

estimates are developed to stop iterating once it has successfully clustered the data sets, but

before the cluster structure is lost.
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4.6 Results

In this section we apply the BPDN algorithm to both simulated and real data. The outline

of these results will be as follows:

section 4.6.1 describes the simulation methodology used to generate the artificial vLFP.

This data is used in the subsequent sections to benchmark the accuracy of the BPDN

spike sorting algorithm and compare it to other spike sorting approaches.

section 4.6.2 describes how the ROC plots associated with the spike sorting algorithms are

constructed. These ROC plots and χ2 statistics of the estimates are used to quantify

the success of the analysed spike sorting algorithms.

section 4.6.3 provides comparisons in ROC space of the three BPDN algorithms described

in section 4.4 to see which provides spike sorting estimates with the greatest sensitivity

and specificity.

section 4.6.4 compares the sensitivity and specificity of the BPDN spike sorting algorithm

to the simpler method based on the preliminary estimate of the firing times using the

CWT approach, which is used to develop the dictionary terms (and subsequently the

system matrix A) for the BPDN approach.

section 4.6.5 compares the sensitivity, specificity and associated χ2 estimates of spike sort-

ing using BPDN algorithm and the well established state of the art wav-clus spike

sorting algorithm.

section 4.6.6 applies the BPDN spike sorting algorithm to real vLFPs collected from MERs

inserted into the STN of human patients prior to undergoing deep brain stimulation

for Parkinson’s Disease.

These steps can be understood in a pedagogical fashion. Firstly if we are going to

employ a BPDN approach, we need to identify which BPDN algorithm (homotopy, InCrowd

or DAL) should be used. Once we have identified the specific BPDN solver to implement we

must show that the spike sorting estimates identified using the dictionary building approach
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(CWT, diffusion mapping and the mean shift algorithm) are improved with the additional

BPDN step. We then need to show that this BPDN approach provides spike sorting estimates

which are superior (or at least comparable) to other spike sorting programs (we specifically

compare against wav-clus). Once this BPDN approach has been validated and compared

on synthetic data (where we know the ground truth of when spikes occur) we can more

confidently apply it to real extra-cellular recordings where the spike times are not known a

priori.

4.6.1 Simulation Data

Figure 4.4: Schematic representation of the generation of the simulated extra-cellular vLFP.

The MUA term S(t) is generated by superposition of convolving the spike times {tk} with

the spike shapes g(t). The voltage trace is then given by the superposition of the MUA and

neural noise term: y(t) = S(t) + η(t). Figure adapted from [192].

In this section we describe the methodology used to generate the simulated extra-cellular

vLFPs which are used to asses the accuracy of the spike sorting algorithms. The use of sim-

ulated data is necessary because, with the exception of rare circumstances where concurrent

intra-cellular and extra-cellular recordings are obtained [163], there is no “ground truth” for

the spiking times of the real data.

The basic idea of the simulated data is to generate a time series which consists of the

super-position of two processes. This concept of two components of the signal: the resolvable

spikes of nearby neurons making up the MUA, S(t), and the non-resolvable neural noise,

η(t), was discussed in section 4.3.2. The first process, the MUA, is the set of spike trains of
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the neurons with distinct spike shapes which are closer to the recording probe. We consider

this part of the signal as containing the detectable and separable spikes. The second process

is the neural noise which consists of every biological process not associated with the spiking

of the MUA neurons. As discussed in section 4.3.2 these neural noise terms include (but

are not limited to) the spiking behaviour of the more distant neurons, synaptic currents,

subthreshold oscillations and after potentials. We consider this part of the signal as con-

taining no detectable spikes, but impeding our ability to identify and cluster the detectable

spikes making up the MUA. In principle a perfect spike sorting algorithm will ignore the

contribution of the neural noise, identify all the detectable spikes contributing to the MUA

and correctly cluster them into their appropriate groups.
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Figure 4.5: The three detectable spike shapes used in the simulations.

The simulated vLFP data is generated using a modification to the publicly available

simulation datasets of single channel extra-cellular recordings taken from the Sub Thalamic

Nuclei of human patients undergoing Deep Brain Stimulation developed in [204]. The spike

trains associated with each of the MUA, S(t), was constructed using the following procedure:

1. The spike shapes were manually obtained from the extra-cellular recordings from dif-

ferent portions of the STN of patients undergoing DBS. These spike templates were

scaled such that the maximal amplitude was unity. The three spike shapes considered

are shown in Figure 4.5. Notice that the structure of the depolarisation-polarisation

phase of the action potential is very similar between spikes one & three. Therefore we

expect that separating noisy samples of these two spikes to be more difficult than spike
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two, which has a much broader characteristic depolarisation-polarisation phase.

2. The ISI times, tk − tk−1, for the spike train of each neuron was a random sample of a

Weibull distribution with randomly selected rate and shape parameters. Specifically

the shape parameter, k̃, was drawn from the bounded continuous uniform distribution:

k̃ ∼ U (1, 4) giving firing patterns that range from Poisson (k=1) to pseudo-periodic

(k=4). The mean firing rate ν̃ was also drawn from the bounded continuous uniform

distributions ν̃ ∼ U (10, 35) . Thus the firing rates of the spike trains ranged from 10

to 35 Hz. The scale parameter λ̃ was chosen such that the randomly sampled shape

and firing rates could both be satisfied: λ̃ = 1/(ν̃Γ(1 + 1/k̃)). Thus the ISI time are

drawn from the distribution (tk − tk−1) ∼ p(t)ISI such that:

p(t)ISI = k̃tk̃−1

(

ν̃Γ

(

1 +
1

k̃

))k̃

e−tν̃Γ(1+ 1
k̃
)
k̃

(4.89)

3. This process was then repeated for all of the detectable neurons and the resulting spike

trains were linearly superposed. The resulting time series were then scaled such that

the power spectrum integrated to unity: S(t) = S(t)/
√∫∞

−∞ PS(t)(ω)dω, where PS(t)(ω)

is the power spectrum of the unscaled S(t) process.

The neural noise, η(t), part of the signal was generated from the real STN recordings in

regions where no spikes were observed to occur. This is to mimic both the behaviour of the

more distant neurons and the previously mentioned non-spiking neural processes (such as

synaptic currents, subthreshold oscillations and after potentials) which will contribute to the

recording probe time series. This time series is then scaled to an appropriate Noise to Signal

Ratio (NSR) as follows: η(t) = η(t) ·
√

NSR
∫

∞

−∞
Pη(t)(ω)dω

, where Pη(t)(ω) is the power spectrum

of the unscaled neural noise, η(t), process. Obviously the greater this neural noise level the

more difficult it is to detect and sort the spikes associated with the detectable set. In the

proceeding sections the NSR parameter is varied to identify how the different spike sorting

algorithms operate in different noise conditions. Three NSR levels of 0.05, 0.2, 0.45 corre-

sponding to low, medium and high neural-noise respectively are considered in simulations in

Sections 4.6.3-4.6.5. The power spectra of a representative sample of the MUA ,S(t), and
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the neural noise, η(t), at these three NSR levels is shown in Figure 4.6.
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Figure 4.6: Power Spectral Density of the detectable spike train and the non-detectable

neural noise for the three NSR levels of 0.05, 0.2 & 0.45. Note the neural noise component

is a coloured noise process with a similar spectrum to the detectable spike train.

The MUA, S(t), (detectable) and neural noise,η(t), (non-detectable) parts of the signal

are linearly superposed and white Gaussian noise is added to the signal to model thermal

and signal aquisition effects. For all simulations this white noise process is scaled similarly

to the neural noise, with the constant value of NSRWN = 0.1. This process is shown in

Figure 4.4. Note that in the subsequent sections we limit the performance analysis of the

spike sorting algorithms to a system with the three detectable spike shapes (neurons). This

process of analysing the ability and accuracy of the spike sorting algorithm to identify and

cluster only three distinct action potential shapes was also performed in [192] and [165] to

characterise the performance of CBP and the wav-clus algorithms respectively.

4.6.2 ROC Curve Criteria

In this section we describe how Receiver Operating Characteristic (ROC) plots are used

to quantify the success of the different spike sorting algorithms. The ROC plot provides a

convenient means of measuring and displaying the ability of a procedure to perform binary

classification tasks. This approach was originally developed in radar theory [265] but has

since found extensive use in the medical field [266]. The ROC scatter-plot displays the False
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Positive Rate (FPR) on the abscissa and the True Positive Rate (TPR) on the ordinate.

The success of the binary classifier can be assessed by identifying where in the ROC space

it resides. We would ideally like to construct classifiers which have high TPR and low FPR

estimates. These quantities of FPR and TPR are defined below and can be related to other

commonly used statistical metrics:

TPR =
TP

CP

= Sensitivity = 1− β (4.90)

FPR =
FP

CN

= 1− Specificity = α (4.91)

Where CP and CN refer to the number of positive events (spikes) and negative events (no

spike). TP refers to the number of true positives where the detector has classified the state as

positive when the state truly is positive (i.e. identified a spike when there is a spike) and FP

refers to the number of false positives where the detector has classified the state as positive

when the state truly is negative (i.e. identifying a spike when there is no spike). Notice that

by construction both TPR and FPR values are restricted to between zero and unity and

therefore can be considered the probabilities of true positive and false positive classification

respectively. α is the level of significance of a statistical test and represents the probability

of a false positive. (1 − β) is referred to as the power of a statistical test and represents

the probability of a true positive. Notice that for a binary classifier we may also define false

negatives (FN) where an event is classed as negative when the state is truly positive (i.e.

missing a spike when there is a spike) and true negatives (TN) where an event is classified

as a negative when the state is truly negative (i.e. identifying no spike when there is no spike).

Correct

Cluster?

Correct

Time?
True Positive

False Positive

detected spike yes yes

no no

Figure 4.7: To define a true positive the correct time and cluster must be identified.
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Note that the diagonal line extending from (0,0) to (1,1) is the locus of points where

TPR = FPR (or equivalently α = 1−β). This line defines the set of points associated with

a random classification scheme which doesn’t use any of the input (i.e. signal) information.

The point (0,0) corresponds to a point where the probability of defining a random negative

state is unity, Pn = 1, (each state is considered a negative so no FPs will be identified, but

equally no TP will be identified). The point (1,1) corresponds to a point where the proba-

bility of defining a random positive state is unity, Pp = 1 (each state is considered a positive

so all TPs will be identified, but equally every possible FP will also occur). The points

between these extremes represent the variation in the probabilities of randomly labelling

positive and negative states such that Pn+Pp = 1. Obviously any successful classifier which

uses information about the measured system to classify states should reside in a point above

this random classification (α = 1− β) line.

Quantifying the success of a spike sorting operation is difficult for a multitude of reasons.

The primary reason is that spike sorting is not a binary classification problem. When spikes

are detected they are assigned (or classified) into one of many clusters. One approach to

deal with this would be to have a separate ROC plot for each of the clusters but this would

be impractical for a number of reasons. Firstly the number of identified clusters can change

between recordings and secondly spikes can vary with which cluster they are assigned to as

the threshold parameter is varied. Lastly this is an impractical method to compare different

spike sorting algorithms. For example it is unclear how you would quantify the success of

two separate spike sorters when one algorithm classifies one cluster accurately and another

cluster poorly whereas the second algorithm classifies the first cluster poorly but the second

cluster accurately. Another approach to dealing with the multi classifier nature of spike

sorting would be to develop a multi-class ROC hypersurface with two axes, TPR and FPR,

per cluster. The main problem with this approach is the difficulty of displaying the data in

such high dimensions.

The approach we introduce is to consider a true positive classification of the spike sorter
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when the program not only correctly detects the time of a spike but also correctly classifies

the spike into the appropriate cluster. This is effectively a method of mapping the multi-class

ROC hypersurface to a binary ROC plot with only positive and negative classification. Thus

in this framework if the spike is correctly detected but incorrectly clustered it is considered

a false positive. This requirement for a true positive is shown in Figure 4.7. In constructing

these ROC plots there are subtleties with both identifying whether the spike sorter has de-

tected the spike at the correct time and assigned it to the correct cluster which we discuss

below.

The timing of the spike is defined as occurring in a particular time bin of the discretised

lattice. If the spike time is detected in a bin (or bins) adjacent to the defined spike time

there is an issue of whether this should be considered a correct or incorrect detection. We

define a correct spike detection if it is within ±N bins of the true spike time. For subsequent

simulations we set N = 10. Note that for time series sampled at 24 kHz this corresponds

to spike detection which is accurate to within 0.4 milliseconds. For comparison, the main

depolarisation-polarisation lobes of the spikes considered (shown in figure 4.5) have widths

of roughly 0.625 milliseconds. See [267] for an excellent review of the action potential shapes

of neurons in different regions of the mammalian central nervous system.

The second issue is how we define whether the identified spike is classified into the correct

or incorrect cluster. Associated with this is the issue of how we link the clusters identified

from the spike sorting program to the true clusters defined in the synthetic data. We in-

troduce the following two definitions: the identified clusters are the collections of sets of

spike times for the clusters identified by the spike sorting program, the true clusters are the

collections of sets of spike times for the clusters defined from the simulation data. Note that

the number of positive, CP , and negative, CN , events in (4.90) & (4.91) are defined from the

number of spike and non spike events of the simulated data respectively.

We link the identified and true clusters together by pairing the identified and true clusters

that have the greatest agreement in their set of spike times. Specifically for each permutation
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of identified and true clusters we calculate the TPR between their sets of spike times. We

then pair the clusters in an iterative greedy approach: linking the identified and true pair

with the highest TPR, removing these clusters from the linking process and then finding the

next pair (of the remaining clusters) with the greatest TPR. Notice that if there is more

identified clusters than true clusters, the spike times associated with these unmatched clus-

ters in the subsequent ROC analysis are automatically considered false positives. Likewise if

there are less identified clusters than true clusters, all of the spike times at these unidentified

true clusters are considered false negatives.

It is important to note that this process of detecting spikes and then classifying them is

distinct from the classical ROC approach of linearly varying a threshold parameter and con-

sidering elements above this value an event and elements below this value not an event. In

the case of the BPDN algorithm, variation of the regularisation parameter λ has a nonlinear

effect [227] on the number of spikes detected and their location. The amplitude thresholding,

Athresh, for spike detection in wav-clus and the L factor (re-parameterisation of the ratio of

false positives to false negatives) in (4.78) for the CWT are similar to the classical thresh-

olding in ROC analysis, but the subsequent clustering procedures will introduce nonlinear

variation. In effect as you vary λ or Athresh you construct a new classifier which can result in

either the TPR and FPR increasing or decreasing as these threshold parameters are varied.

Therefore the variation of these parameter will not necessarily trace out a convex hull in

the ROC space. Thus there is no simple way, by variation of a single parameter to vary the

misclassification cost between positive and negative classification. Nonetheless the closest

surrogates to a single parameter are the regularisation parameter, λ for BPDN and the am-

plitude threshold level, Athresh for wav-clus.

A second important consideration is that the collapse of the multi-class classifier (i.e

classifying to multiple different clusters) to a single positive/negative detection condition

will restrict the points of any spike sorting algorithm to a subset of the ROC space. For

example since any clustering algorithm will only assign each spike to a single cluster it is

highly unlikely that any choice of parameter for any spike sorting algorithm will result in
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a point in the ROC space of 100 percent true positive rate (every spike not only detected

but correctly clustered). Due to these conditions we display the data in scatter form in the

ROC space rather than with the traditional (and convex) ROC curves. Specifically the ROC

scatter plots show the operating points of the different spike sorters (our BPDN and the

wav-clus SPC algorithm) as the regularisation λ and amplitude thresholding parameters An

respectively are varied.

χ2 Estimates of the Classifiers

The ROC plots quantify the behaviour of the classifier by the two quantities of TPR and

FPR (or equivalently sensitivity and specificity) as a parameter is varied. These two quan-

tities provide complimentary but independent descriptions of how successful the candidate

classification scheme is. In order to explicitly compare the classification ability between the

different spike sorting algorithms we must characterise this classifier by a single value. Un-

fortunately any attempt to reduce the information from the collection of points on the ROC

space to a single value will lose information about the pattern of positive and negative clas-

sifications. The most popular summary statistic is the Area Under the Curve (AUC) [266].

Due to the points in the ROC space not defining a convex set and the different spike sorting

algorithms being restricted to different subsets of this space, this statistic is not appropriate.

The single value metric we use to characterise the success of the different spike sorting

algorithm is the chi squared statistic: χ2. The χ2 measures the Euclidean distance between

the observed values in the TP, TN, FP and FN classes and and the expected values of these

classes based on the random classification scheme:

χ2 =
∑

c

(O − E)2

E
(4.92)

The expression for the χ2 value for this binary classification system was developed in

[268]:

χ2 = (E (TP )− TP )
2

(
1

E (TP )
+

1

E (FP )
+

1

E (TN)
+

1

E (FN)

)

(4.93)
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Where:

E (TP ) =
CP [CP (1− β) + CNα]

CN + CP

(4.94)

E (FP ) =
CN [CP (1− β) + CNα]

CN + CP

(4.95)

E (FN) =
CP [CN (1− α) + CPβ]

CN + CP

(4.96)

E (TN) =
CN [CN (1− α) + CPβ]

CN + CP

(4.97)

Thus the χ2 statistic can be generated for each spike sorting estimate by using (4.90)-

(4.91) to convert the TPR and FPR values into equivalent α and β scores which are inserted

into (4.94)-(4.97) to generate the expectation values which, along with the TP count are

substituted into (4.93). It is interesting to note that, as identified in [268] the χ2 value is not

only a function of the distance from the random classification (TPR=FPR) line, but also

where in the (TPR,FPR) space the classifier resides.

Following [268] we consider the χ2 value as a measure of how much ‘work’ the classifier is

doing, i.e. exactly how different it is to a random classification system. A primary advantage

of using the χ2 statistic is that this metric is robust to wide discrepancies of the number of

positive and negative states. For example it is shown in [268] that if the accuracy metric is

determined for a system with Cp = 5 and Cn = 55, always labelling a state as negative can

lead to accuracy estimates as high as 92% whereas the χ2 value remains low. For the MER

recordings we are considering the time series are sampled at Fs = 24kHz whereas the spike

rates of the individual neurons are less than 100Hz, thus their will be a wide discrepancy

between the number of spike and non spike states.

For each ROC plot considered in the subsequent sections we overlay χ2 contour values

in order to describe the success of the different spike sorters in terms of a single value. In

figure 4.8 we demonstrate how to interpret which classifiers do more or less ‘work’ based on

the relative value of the χ2 contour they lie on. Note from (4.94)-(4.97) that the χ2 estimate

depends on the number of true, CP , and negative, CN states. Since this will vary between

simulations, for each ROC plot we generate the χ2 contours based on the average of the CP
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Figure 4.8: Interpreting the ‘work’ done by a classifier based on its χ2 value. The χ2
0 contour

represents the classifier based purely on chance (α = 1 − β). The classifier associated with

point C does the most ‘work’. The classifier associated with point A does the least ‘work’.

The classifiers associated with points B and B’ do the same amount of ‘work’ because even

though they lie on different points in ROC space they are on the same χ2
2 contour. In this χ2

framework we would refer to classifier C as the best classifier, point A as the worst classifier

and points B & B’ equally good classifiers.

and CN values over the simulations used to generate the ROC plot.
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4.6.3 Comparison of BPDN strategies

In this section we apply the BPDN approach for the three methods: homotopy, InCrowd

and DAL discussed in Sections 4.4.1, 4.4.2 and 4.4.3 respectively. This provides a means of

deciding which BDPN algorithm to implement for subsequent comparison against other spike

sorting solvers (the wav-clus algorithm) and application to real data. In this section, in order

to minimise the number of variables we consider the dictionary terms known a priori. Thus

the system matrix A is already constructed. This identifies the limits of discriminability we

can expect using the BPDN algorithm because we expect this algorithm to be most accurate

when the dictionary terms (and system matrix, A) are perfectly known a priori. Figures

4.9-4.11 show the ROC plots with overlaying χ2 contours for the low (NSR=0.05), medium

(NSR=0.2) and high (NSR=0.45) neural noise levels. For each of these three noise levels,

we generate ten Monte Carlo simulations and solve the BPDN problem for each of the three

algorithms over a range of regularisation parameters, λ.
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Figure 4.9: ROC plots with χ2 contours for different BPDN solvers: homotopy (blue circles),

InCrowd with TNIP (red squares) and DALM (green crosses) with neural noise = 0.05

It can be seen for Figures 4.9-4.11 that for all noise levels considered, both the homotopy

and DALM methods provide estimates with equal or higher sensitivity and specificity (and

also χ2 estimates) than the InCrowd method with Truncated Newton Interior Point. At

the low noise (neural noise =0.05) level it can be seen in Figure 4.9 that the three methods

provide comparable results, with similar numbers of estimates of all BPDN strategies within
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Figure 4.10: ROC plots with χ2 contours for different BPDN solvers: homotopy (blue circles),

InCrowd with TNIP (red squares) and DALM (green crosses) with neural noise = 0.2

the highest χ2 value contour. At the higher noise levels (neural noise = 0.20 and 0.45) it

can be seen in Figures 4.10-4.11 that the homotopy and DALM provide superior estimates,

with higher sensitivity, specificity and markedly more estimates within the highest χ2 value

contours. It is unclear whether the decreased performance of the InCrowd+TNIP method at

higher noise levels is due to the InCrowd algorithm or the TNIP step of the algorithm. The

deficiency is unlikely to be due to the TNIP step, as the DALM method uses this same step

in the dual space. Nonetheless it may be of interest to explore the success of the InCrowd

algorithm with other ℓ1 solvers.

For the noise levels considered, due to the similarity of the results, it is difficult to as-

sess whether the homotopy or DALM algorithm is superior. There is much overlap between

the results for both these methods. For the remainder of this chapter (sections 4.6.4-4.6.6)

the BPDN problem will be solved using the DALM method and the system matrix,A will

not be known apriori.
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Figure 4.11: ROC plots with χ2 contours for different BPDN solvers: homotopy (blue circles),

InCrowd with TNIP (red squares) and DALM (green crosses) with neural noise = 0.45

4.6.4 Comparison of CWT and BPDN

Recall that the dictionary terms necessary to construct the system matrix A for the BPDN

solution requires preliminary estimates of the spike times using the CWT and then the spike

shapes associated with these times are clustered using the Diffusion Mapping and Mean Shift

procedure. This approach was described in Section 4.5. A simple spike sorting algorithm can

be constructed by partitioning the firing times estimated with the CWT into the appropriate

clusters determined using the diffusion mapping and means shift procedure. We refer to this

algorithm as wavelet clustering.

The additional step of using these estimated dictionary terms and solving the spike sorting

problem using the BPDN algorithm introduces computational complexity. Thus in order to

justify this complexity we must show that the inclusion of this BPDN step actually improves

the spike sorting estimates. In this section we explore and quantify this improvement by

comparing the sensitivity and specificity (and χ2 estimates) of both the wavelet and BPDN

clustering algorithms under the low, medium and high (NSR = 0.05,0.2,0.45) neural noise

conditions. These ROC plots with associated χ2 contours are shown in Figures 4.13-4.15.

For both algorithms ten Monte-Carlo simulations using the method described in Section
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Figure 4.12: Spike detection using BPDN and wavelet clustering (CWT in legend). There

are two overlapping spikes centred at time bins 620 and 640. The CWT detects a single

spike at bin 638 whereas the BPDN detects the seperate spikes at bins 620 and 640. Time

Series sampled at 24kHz.

4.6.1 were generated and subsequently clustered and the estimates were plotted in the ROC

space. The CWT clustering was solved with the free parameter L given in (4.78) set to the

default value of zero. The BPDN problem is solved (with the DALM algorithm) with the

system matrix constructed from the wavelet clustering step. The BPDN problem is solved

for regularisation values, λ, of {5, 10, 12.5, 15, 17.5, 20, 22.5}.

Inspection of Figures 4.13-4.15 show that the additional step of BPDN clustering does

indeed boost the sensitivity and specificity compared with the CWT clustered estimates.

Furthermore it can be seen that the BPDN estimates are associated with consistently higher

χ2 values. One obvious reason for the superiority of the BPDN is the ability to resolve

spiking times of overlapping spikes, which the CWT approach cannot perform. Recall from

Section 4.5.1 that it was discussed that due to the temporal and scale contiguity of wavelet

transforms, the regions with nonzero wavelet coefficients across time and different scales are

collapsed to a single point representing a spike time. Thus if two different spikes occur near

simultaneously they will have maximum amplitude coefficients at different scales but likely

over the same contiguous region of translation coefficients (time). Therefore these two spikes

will be likely be detected but merged by the CWT as a single spike occurring at a time given
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by the average of the maximum wavelet coefficient at each observed scale. This effect of the

CWT algorithm observing a single spike but the BPDN algorithm correctly identifying the

two overlapping spikes for simulated data is shown in Figure 4.12.
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Figure 4.13: ROC plots for BPDN (blue circles) and CWT (black square) spike sorting

estimates for SNR = 0.05
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Figure 4.14: ROC plots for BPDN (blue circles) and CWT (black square) spike sorting

estimates for SNR = 0.2
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Figure 4.15: ROC plots for BPDN (blue circles) and CWT (black square) spike sorting

estimates for SNR = 0.45

4.6.5 Comparison of Integrated Approach against Super Param-

agnetic Clustering

In this section we compare the accuracy of the BPDN spike sorting algorithm to the state of

the art method wav-clus. We compare our BPDN algorithm against the wav-clus algorithm

for two main reasons. Firstly wav-clus is widely employed in scientific studies involving the

simulation of extra-cellular recordings and subsequent analysis using spike sorting techniques

[96],[269]. Secondly the accuracy of wav-clus has consistently been benchmarked against

other spike sorting programs [204], [192]. Indeed in [204] explicit comparisons showed that

the wav-clus solver was more accurate than both the alternative state of the art spike sorting

algorithms Osort and KlustaKwik.

The BPDN component of the BPDN spike sorting algorithm is solved using the DALM

method. The wav-clus algorithm was discussed in section 4.3.1 but we review how this

method works here. Similar to the BPDN approach wav-clus serially solves the problems of

spike detection, feature selection and clustering. The spikes are detected by considering any

point in the time series which is greater than the threshold, Athresh · σn, where Athresh is any

number greater than zero and σn is an estimate of the standard deviation of the background
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noise which is constructed using the Median Absolute Deviation estimator discussed in sec-

tion 4.5.1. Obviously the larger values of Athresh will detect very few spikes but very few

false positives, whereas very small values will detect many true spikes but also many false

positives. The feature selection is based on performing a Haar wavelet decomposition on the

identified spike shapes and then selecting the ten wavelet coefficients with the greatest de-

gree of multi-modality (to best separate the spike shapes in this reduced dimensional space)

determined by a Kolmogorov-Smirnov test. The wavelet coefficients are then clustered using

the Super-Paramagnetic Clustering algorithm discussed in section 4.3.1. We briefly mention

that this clustering algorithm depends on a free parameter referred to as the temperature:

T , similar to the bandwidth selection parameter for the Mean Shift algorithm, h. When this

temperature value is very small all the data is partitioned into a single cluster, whereas when

this temperature value is very large each data point belongs to its own group. Between this

range is a ‘super-paramagnetic regime’ where the appropriate number of clusters should be

generated.

Figures 4.16-4.18 present the results of the BPDN and the wav-clus spike sorting algo-

rithms in ROC space for ten Monte Carlo simulations at each neural noise levels of 0.05, 0.2

and 0.45. For the BPDN algorithm only the regularisation parameter λ was varied. For the

wav-clus algorithm only the extraction threshold parameter Athresh was varied. Note that

the clustering temperature of the SPC algorithm in wav-clus is determined automatically by

varying the temperature in a range (T=0 to T=0.301 in steps of 0.01) and identifying the

highest temperature in this range where a large membership (> 20 elements) was created.

The temperature for the subsequent clustering operations is set as this identified tempera-

ture. The rationale for this approach is that as the temperature is varied in this range the

clustering will sweep through the paramagnetic then super-paramagnetic then ferromagnetic

regimes. In both the paramagnetic and ferromagnetic phases clusters with minimal mem-

bership will develop, whereas in the super-paramagnetic phase large membership clusters

will form [165]. Table 4.1 shows the parameter values used for the BPDN and wav-clus

algorithms during these simulations.
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BPDN wav-clus

wavelet type: bior 1.5 wavelet type: Haar

wavelet L: 0 temperature: automatic detection

kernel scaling σ: 1 threshold

Athresh:

{ 3,3.5,4,4.5,5,5.5,6 }

bandwidth h: 1 ∗ 10−4

regularisation λ: { 5,10,12.5,15,17.5,20,22.5 }

Table 4.1: Parameter values for BPDN and wav-clus analysis of simulated data.

Inspection of Figures 4.16-4.17 shows that for the three NSR regimes (neural noise =

0.05, 0.2 and 0.45) the BPDN spike sorting algorithm consistently performs superior spike

classification than the wav-clus algorithm. This superiority of the BPDN spike sorter is most

pronounced for the high NSR signals. We discuss the behavior of both these algorithms over

the three noise regimes below.

It can be seen from Figure 4.16 that for the low NSR (neural noise = 0.05) that the χ2

values of the estimates of the BPDN algorithm are superior to the wav-clus algorithms. It

can be seen from Figure 4.16c that across the range of regularisation and amplitude thresh-

old values (for BPDN and wav-clus respectively) that the BPDN estimates appear to have

greater sensitivity whereas the wav-clus estimates have slightly greater specificity. Analysis

of figures 4.16a-4.16b shows that for this (neural noise = 0.05) noise environment the optimal

(in terms of the highest χ2 values) regularisation and amplitude threshold parameter values

are λ = 12 (green circles) and Athresh = 4.5 (blue triangles). The optimal Athresh values are

difficult to appreciate in these ROC plots because of the close overlap of the different Athresh

points.

Analysis of Figure 4.17 shows that for the medium NSR (neural noise = 0.20) level more

of the BPDN spike sorting classifications have higher χ2 values than the wav-clus estimates.
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Inspection of Figures 4.17c clearly shows that, for the range of regularisation and amplitude

threshold parameters considered, the BPDN algorithm generates a ‘hull’ of higher sensitivity

and specificity (and therefore higher χ2 values) points around the wav-clus estimates. Anal-

ysis of Figures 4.17a-4.17b shows that for this (neural noise = 0.20) noise environment the

optimal (in terms of the highest χ2 values) regularisation and amplitude threshold parameter

values are λ = 12 (green circles) and Athresh = 6 (black triangles).

Inspection of Figure 4.18 shows that for the high NSR (neural noise = 0.45) environment

the BPDN spike sorting classifications consistently have higher sensitivity, specificity and χ2

values than the wav-clus estimates. The superiority of the BPDN solver over the wav-clus

algorithm at this high NSR is particularly evident from observation of Figure 4.18b. Analysis

of Figures 4.18a shows that for this (neural noise = 0.45) noise environment the optimal (in

terms of the highest χ2 values) regularisation and amplitude threshold parameter values are

λ = 12 (green circles) and Athresh = 5 (red triangles).
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(b) ROC plot zoomed
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(c) single colour ROC plot

Figure 4.16: ROC plots with χ2 contours for BPDN (circles) and SPC (triangle) spike sorting

estimates for neural noise = 0.05. The colour ordering is { magenta, yellow, green, blue, red,

cyan, black } for regularisation parameters, λ, of { 5,10,12.5,15,17.5,20,22.5 } and amplitude

thresholding values of { 3,3.5,4,4.5,5,5.5,6 } respectively. Note that there is some overlap of

data points corresponding to different tuning parameters (λ or Athresh) for the same algorithm

(BPDN or SPC) which makes some data points difficult to identify.
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(b) ROC plot zoomed
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(c) single colour ROC plot

Figure 4.17: ROC plots with χ2 contours for BPDN (circles) and SPC (triangle) spike sorting

estimates for neural noise = 0.20. The colour ordering is { magenta, yellow, green, blue, red,

cyan, black } for regularisation parameters, λ, of { 5,10,12.5,15,17.5,20,22.5 } and amplitude

thresholding values of { 3,3.5,4,4.5,5,5.5,6 } respectively. Note that there is some overlap of

data points corresponding to different tuning parameters (λ or Athresh) for the same algorithm

(BPDN or SPC) which makes some data points difficult to identify.
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Figure 4.18: ROC plots with χ2 contours for BPDN (circles) and SPC (triangle) spike sorting

estimates for neural noise = 0.45. The colour ordering is { magenta, yellow, green, blue, red,

cyan, black } for regularisation parameters, λ, of { 5,10,12.5,15,17.5,20,22.5 } and amplitude

thresholding values of { 3,3.5,4,4.5,5,5.5,6 } respectively. Note that there is some overlap of

data points corresponding to different tuning parameters (λ or Athresh) for the same algorithm

(BPDN or SPC) which makes some data points difficult to identify.
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Comparison of Integrated Approach against Super Paramagnetic Clustering with

Optimal Tuning Parameters

In order to further compare the spike sorting ability of the BPDN solver and wav-clus for each

noise level (NSR= 0.05,0.2,0.45) we compare the regularisation parameter, λ, and amplitude

threshold Athresh which yield the estimates with the greatest chi-squared values identified

in the previous section. For each of the three noise levels considered we generate fifty

simulations with the optimal regularisation and amplitude thresholding parameters. The

χ2 statistic associate with each estimate of the BPDN and the wav-clus is then displayed

on a box plot. These results are shown below in Figures 4.19-4.21. For each noise level

the Wilcoxon Rank Sum test is performed to identify that the population means between

these two spike sorting algorithms are indeed different. For each of the three noise levels

considered, at the α = 0.01 level of significance, statistically significant differences in the

means of the χ2 values of the BPDN and wav-clus algorithms was identified, with the BPDN

mean consistently higher. Based on these results we can conclude that the BPDN algorithm

does provides superior spike sorting estimates to the wav-clus algorithm across a dynamic

range of noise environments.
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Figure 4.19: Box plots for χ2 statistic for BPDN λ = 12 and SPC Athresh = 4.5 at noise level

= 0.05. Wilcoxon Rank Sum test p-value between populations: < 0.01.
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Figure 4.20: Box plots for χ2 statistic for BPDN λ = 12 and SPC Athresh = 6 at noise level

= 0.2. Wilcoxon Rank Sum test p-value between populations: < 0.01.
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Figure 4.21: Box plots for χ2 statistic for BPDN λ = 12 and SPC Athresh = 5 at noise level

= 0.45. Wilcoxon Rank Sum test p-value between populations: < 0.01.
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4.6.6 Application of BPDN to Real Data

In this section we apply the BPDN algorithm to vLFPs of extracellular MERs from the

left and right STN of nine human patients with Parkinson’s Disease (PD) undergoing DBS

surgery. The study was approved by The University of Queensland Medical Research Ethics

Committee and UnitingCare Health Human Research Ethics Committee. The signals were

recorded from the neural tissue at a sample rate of 24 kHz. Three Butterworth filters, as

recommended by the manufacturer were applied to the signal (high-pass: 500 Hz first order,

low-pass: 5k Hz first order and anti-aliasing: 5 kHz fourth order). For each recording the

spike times were identified and clustered and then the mean firing rate, ν, and Coefficient of

Variation (CoV) Cv = σν were calculated for each cluster. These estimated mean firing rates

and CoV were then averaged into grand mean and CoV estimates. Thus for each recording

a mean firing rate and CoV was estimated. The parameters of the BPDN algorithm are

shown in Table 4.2. In Table 4.4 the mean firing rate and CoV (both sides, left and right

side) are shown for each individual patient analysed.

Figures 4.22 and 4.23 show the Kernel Density Estimates (using the KDE method de-

scribed in [186]) and box plots of the mean firing rates and CoV of 218 recordings across all

nine patients for both the left and right side STN recordings. Notice that inspection of Fig-

ures 4.22a-4.23a shows that the firing rates are distributed around a mode of approximately

20 Hz and the CoV is centred around a mode of approximately unity. This suggests that

on average the neurons in the STN of PD patients fire with Poisson statistics at roughly

20Hz. Analysis of the box plot of firing rates displayed in Figure 4.22b shows that the mean

firing rate is 44.84 Hz and the median firing rate is 36.22 Hz (19.65 − 56.36 Hz, 25th-75th

percentile). Similarly analysis of the box plot of CoV displayed in Figure 4.23b shows that

the mean CoV is 1.47 and the median CoV is 1.14 (0.94 − 1.5, 25th-75th percentile). We

discuss the validity of these results in the context of previous studies below. It is highly

likely that these estimates of mean firing rate and CoV are sensitive to the higher valued

outliers whereas the median, being a more robust statistic [270], is less biased.
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BPDN parameter values

wavelet type: bior 1.5

wavelet L: 0

kernel scaling σ: 3.5

bandwidth h: 1× 10−3

regularisation λ: 0.5

Table 4.2: Parameter values for BPDN analysis of real data.

These results are consistent with the results of previous studies of the firing patterns

of STN in humans with PD. For example in [170] the firing patterns in the STN from 351

recordings was averaged over bursting and non-bursting neurons to yield a mean firing rate

40.5 ± 20.3 Hz with a CoV 1.327 ± 0.52. Similarly [28] investigated the firing patterns of

the STN in human patients with early and advanced PD. The results showed that in the

advanced group (77 recordings) the mean firing rate was 36.3 Hz (25.8-48.5 Hz, 25th-75th

percentile) with CoV 1.1 (0.9-1.4, 25th-75th percentile). Similarly the results showed that in

the early group (113 recordings) the mean firing rate was 28.7 Hz (19.7-38.7 Hz, 25th-75th

percentile) with CoV 1.2 (1.0-1.5, 25th-75th percentile). We display the comparisons in firing

rates and CoV between the advanced and early PD patients studied in [28] in Table 4.3. Note

that the patients analysed in our study would most likely be more similar to the advanced

PD patients in this study as they were undergoing DBS surgery. It is especially interesting

to note in Table 4.3 the similarity in these firing rates and CoV between the advanced PD

patients studied in [28] and our results.

To further investigate these results we now split the data of all the patients into sub

sets associated with the left and right hand side recordings. This partitioning of the data

serves two purposes. Firstly it allows us to explore whether there are differences between

the firing patterns on the left and right hand side STN of the patients analysed. Secondly

this splitting of the data ensures that the previously identified physiological firing rates and
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Early PD

patients

[28]

Advanced

PD [28]

BPDN

measure-

ments

mean FR (Hz) 28.7 36.3 44.84

median FR (Hz) - - 36.22

(25th − 75th) percentile FR

(Hz)

(19.7-38.7) (25.8-48.5) (19.65-56.36)

mean CoV 1.2 1.1 1.47

median CoV - - 1.14

(25th − 75th) percentile CoV (1-1.5) (0.9-1.4) (0.94-1.5)

Table 4.3: Comparison of firing rate and CoV for BPDN and previous studies [28] of early

and advanced PD patients.

pattern are not a consequence of averaging over a large number of both very large and very

small un-physiological firing rates and patterns. Figures 4.24 and 4.25 show that both the

mean firing rates and the CoV are similar for the left and right hand side recordings, with

both sides firing with approximately Poisson (Cv = 1) statistics. It is interesting to note in

Figure 4.24 that the KDE of the left hand side recordings may suggest a bimodal distribution

with one peak at 20 Hz (similar to the right hand side recordings) and then a higher peak

at roughly 50 Hz which is not reproduced in the right hand side recordings.

4.6.7 Summary of Results

In this section we have applied the BPDN algorithm to both simulated vLFP data (where

the ground truth of spike times is known) and experimentally obtained vLFPs from human

STN of Parkinson’s disease patients during DBS surgery (where the ground truth of spike

times is unknown).
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Both Sides Left Right

Patient Rate (Hz) CoV Rate (Hz) CoV Rate (Hz) CoV

1 35.76 1.05 22.34 1.11 53.01 0.98

2 32.31 1.13 26.64 1.20 39.71 1.05

3 83.34 2.46 105.00 2.79 37.00 1.75

4 59.42 2.47 68.07 3.34 43.69 0.90

5 15.01 1.06 12.33 1.14 15.91 1.03

6 55.38 1.15 55.04 1.10 55.84 1.23

7 31.70 1.30 32.54 1.31 11.40 1.21

8 33.90 1.18 18.93 1.16 59.56 1.23

9 38.21 1.12 48.30 1.06 15.16 1.26

Table 4.4: Mean firing rates & Coefficient of Variation for individual patients.

For the simulated data we have quantified the success of the spike sorting with the aid of

ROC scatter plots and identifying the χ2 statistic of the estimators compared to a binary clas-

sifier based purely on chance. We have shown that for the BPDN component of the BPDN

algorithm the homotopy and DALM methods give comparative, superior results whereas

the InCrowd method (with the ℓ1 minimisation step solved with TNIP) gave worse results.

We have shown that including the additional step of BPDN to the preliminary spike sorter

consisting of Continuous Wavelet Transform, Diffusion Mapping and Mean Shift clustering

(the method to determine the dictionaries described in section 4.5) significantly boosts the

sensitivity and specificity (and the χ2 statistic) of the spike sorting estimates. We suggested

that this is due to the ability of the BPDN algorithm to correctly identify highly overlapped

spikes. We then showed that this BPDN algorithm provides superior spike sorting estimates

to the state of the art spike sorter wav-clus which is based on amplitude thresholding and

Super Paramagnetic Clustering.

Lastly we have applied the BPDN spike sorter to recordings taken from human Sub
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Thalamic Nuclei. The BPDN algorithm identified that, on average, the detected neurons

fire with physiologically plausible Poisson statistics with firing rates between 20-56 Hz. These

estimates are in agreement with previous studies which have identified the firing patterns of

neurons in the STN of patients with Parkinson’s Disease.
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Figure 4.22: Kernel Density Estimates and Box Plots of the firings rates determined by

BPDN algorithm to all patients. The mean firing rate is 44.84 Hz and the median firing

rate is 36.22 (19.65 − 56.36 Hz, 25th-75th percentile) Hz. It is likely that the mean value is

sensitive to the higher frequency outliers.
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Figure 4.23: Kernel Density Estimates and Box Plots of the Coefficient of Variation deter-

mined by BPDN algorithm applied to all patients. Notice that the mode of the distribution

is approximately unity, corresponding to Poisson firing statistics. The mean CoV is 1.47 Hz

and the median CoV is 1.14 (0.94− 1.5, 25th-75th percentile) Hz. It is likely that the mean

value is sensitive to the higher CoV outliers.
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Figure 4.24: Kernel density estimates of the firing rate determined by BPDN algorithm

applied to all patients in epoch 1 with left (blue) and right hand (red) data sets considered

seperately.
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Figure 4.25: Kernel density estimates of the Coefficient of Variation determined by BPDN

algorithm applied to all patients in epoch 1 with left (blue) and right (red) hand data sets

considered seperately.
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4.7 Conclusion & Contributions

We have proposed a BPDN spike sorting algorithm which we have shown, through extensive

simulation, is capable of outperforming other state of the art spike sorting algorithms such

as wav-clus in high noise environments. We have then applied this algorithm to data ob-

tained from extra-cellular, single channel micro electrode recordings of the STN of patients

with Parkinson’s Disease undergoing DBS. We have identified that the neurons in the STN

of these patients fire, on average with Poisson statistics at (∼ 20 − 56)Hz, consistent with

previous experimental analysis.

The a priori assumptions required for this algorithm are minimal. The primary heuristic

introduced is that the spiking patterns of the individual neurons are linear dynamical sys-

tems such that the spike timing and spike shape are decoupled. Consistent with previous

spike sorting algorithms we have suggested this heuristic is valid for a large parameter space

of extracellular recordings, but the validity will break down in situations such as burst firing

where the spike shapes and firing rates are coupled variables.
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5
Conclusion

“I predict that within 10 years, computers will be twice as powerful, ten thousand

times larger, and so expensive that only the five richest kings of Europe will own

them”

– Professor Frink, The Simpsons

This thesis contains novel theoretical and experimental analysis of vLFPs from in vivo

single channel MERs obtained from human STN. We have developed methods to analyse

these vLFPs over multiple scales (using the contribution from the localised LFP and/or

the nearby spikes) using techniques from non-equilibrium statistical mechanics, stochastic

processes, signals processing, convex optimisation and clustering theory. For each of the

three methodologies considered we have introduced a transformation operator which maps

the one dimensional vLFP to either a number on the positive real (R+) line (chapter 2), the

217
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Figure 5.1: The three separate transformations considered to analyse the vLFP and their

associated required assumptions (abscissa) and insight into the behaviour of the STN (ordi-

nate).

probability distribution associated with the firing times (chapter 3) or the precise times and

shapes of action potentials from the nearby neurons (chapter 4).

We have used these techniques to either identify changes in the electrical activity of the

STN under different experimental conditions or understand the behaviour of the neurons

nearest to the probe contributing to the measured signal. The results of using these meth-

ods highlights that both the measured power spectrum of the entire signal (LFP + spikes)

and the precise firing patterns of the neurons nearest to the recording probe can be used to

characterise the state of the STN. Thus, there is information about the STN in the vLFP

over the multiple scales analysed in this thesis. These methods may have future utility

as bio-markers in CLDBS algorithms. In the proceeding section we sum up the different

methods used, the results obtained, their required assumptions, and their advantages and

disadvantages.
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5.1 Summary of Methods

Model-Free: NMP This methodology was the most general non-parametric approach con-

sidered in this thesis. In this method the first NMP is the transformation operator

which maps the entire vLFP (LFP + spikes) to a single number on the positive real, R+,

line. This methodology was used to identify statistically significant changes in the low

frequency (β: 10-30 Hz, fast : 80-200 Hz and zero frequency : 0 Hz) bands of the NMP

while patients were presented with different stimuli from two separate neuro-linguistic

experiments. This work was published in the following conference articles:

• J. Varghese, K. Weegink, P. Bellette, T. Coyne, P. Silburn, and P. Meehan,

“Theoretical & Experimental Analysis of the Non Markov Parameter to Detect

Low Frequency Synchronisation in Time Series Analysis” in Proceedings of the

33rd Annual International Conference of the IEEE EMBS, Boston, Massachusetts

USA, August 30-September 3,2011, 2011, pp. 1500-1505.

• P. Meehan, P. Bellette, A. Bradley, J. Castner, H. Chenery, D. Copland, J. Vargh-

ese, T. Coyne, and P. Silburn, “Investigation of the Non-Markovity Spectrum as

a Cognitive Processing Measure of Deep Brain Microelectrode Recordings, Inter-

national Conference on Bio-inspired Systems and Signal Processing, Rome, Italy,

pp. 144-151, 2011.

The family of NMPs is constructed by solving a series of inverse problems associated

with the stochastic integro-differential (Langevin) equations which describe the Mori-

Zwanzig chains of non-equilibrium statistical mechanics. We showed that the first

NMP contained the most useful information about the measured system, with higher

order NMP veiling the systems correlation structure. We also showed that the first

NMP could be understood in a signals processing framework as a series of nonlinear

operations on the measured power spectrum. Thus, we suggested that when the NMP

was used during the neuro-linguistic experiments, it was detecting subtle but statisti-

cally significant changes in the vLFP power spectrum. This work was published in the

following journal article:



220 Conclusion

• J.J. Varghese, P.A. Bellette, K.J. Weegink, A.P. Bradley P.A. Meehan, “Analysis

of the non-Markov parameter in continuous-time signal processing, Phys. Rev.

E., vol 89(2), p. 022109, 2015.

The NMP method of analysis places effectively no requirements on the measured sig-

nal except for covariance-stationarity (so that the WienerKhinchin theorem guarantees

that the power spectrum is the Fourier Transform of the autocorrelation function). The

disadvantage of this method is that it does not provide much insight into the underlying

physics driving the measured system, and provides even less link to concepts typically

used to quantify measurements in neuroscience based on the statistics of the under-

lying spike trains. The best conceptual understanding we can develop from applying

the first NMP to the neuro-linguistic experiments is that there are subtle changes in

the distribution of the vLFP power spectrum. Nonetheless, this method is capable

of resolving differences in the in vivo signals in a consistent fashion, using the entire

signal (rather than a subset of the closest spikes) without introducing free parameters.

Certainly, from a machine learning perspective, any metric (such as the NMP) which

can distinguish different behavioural or functional states in the STN has the potential

to be used as a biomarker. Considerations of biophysical accuracy are, for all intents

and purposes, secondary for such applications.

Summary: The NMP approach requires minimal a priori assumptions of the vLFP, is

capable of identifying changes in the in vivo STN vLFP recordings but provides minimal

insight into the measured process beyond information about how energy is distributed

in different frequency bands.

Renewal Model-Based: This methodology introduced the most stringent model restric-

tions considered in this thesis. In this method the measured signal is modelled as

an ensemble of independent filtered renewal processes. The transformation operator

maps the entire vLFP (LFP + spikes) to The PDF associated with the ISI times of

the individual spike trains. This PDF is constructed by the serial solution of two



5.1 Summary of Methods 221

inverse problems. Firstly the Bartlett spectrum (the contribution to the power spec-

trum due to correlation structure of the individual spike trains) is identified from the

measured power spectrum using inverse techniques in the frequency domain. Secondly

the Bartlett spectrum is then transformed to the renewal density function by integral

transforms and then finally the PDF is constructed by solving another inverse problem

associated with the renewal density equation which is a Volterra integral equation of

the second kind. The analysis of the relationship between the firing statistics and the

power spectrum and the consequences for neural signals processing were explored in

the following conference paper:

• J.J. Varghese, K.J. Weegink, P.A. Bellette, and A.P. Bradley, “Spectral proper-

ties of neuronal pulse interval modulation,” , in Acoustics, Speech and Signal

Processing (ICASSP), 2015 IEEE International Conference on, April 2015, pp.

1007-1011

In addition this paper also showed that the spectrum of a neuron encoding information

using a Digital Pulse Interval Modulation (DPIM) scheme converges to a renewal pro-

cess in the limit of continuous time. Building on this work, we developed the Spectral

Density Estimator which, when the assumptions of the model are satisfied, is able

to successfully identify the firing statistics (without explicitly identifying the spiking

times) in the pathological situation of simultaneously recording multiple neurons with

similar action potential shapes. We consider that this situation may arise when there

are voltage contributions from multiple neurons which are a similar distance and ori-

entation from a recording probe. The development of this estimator was submitted

(but not yet accepted) in the following journal article:

• J. Varghese, K. Weegink, P. Bellette, and A. Bradley, “Spectral techniques to

estimate renewal spiking statistics with near identical spike shapes” Phys. Rev.

E, 2017.

Unfortunately the assumptions of this model were too stringent to successfully apply

to the in vivo vLFPs. The assumptions require strict stationarity, that the individual
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neurons can be treated as renewal processes and that the neurons contributing to the

MER time series form a statistically independent ensemble. There is also an implicit

assumption that the LFP contribution to the vLFP is dominated by the highly filtered

distant spiking neurons. The failure of this methodology suggests that the assumptions

of this method are not valid for the vLFPs measured. It is unclear which assumptions

are invalid. Nonetheless, the advantage of this approach is in stark contrast to most

classical spike sorting approaches, which rely on identifying differences between action

potential shapes in order to separate individual neurons and develop estimates of their

firing statistics.

Summary: the Spectral Density Estimator requires very restrictive a priori assump-

tions about the vLFP and was too restrictive to apply to the in vivo STN recordings but

provides maximal insight into the firing statistics in pathological situations (when the

assumptions are valid) where classical spike sorting techniques fail.

BPDN Spike Sorting: The characterisation of only the nearby spiking neurons using

BPDN techniques provides an excellent balance of both minimal a priori assumptions

while providing insight into the behaviour of the nearby neurons contributing to the

vLFP. In this approach the transformation operator is the spike sorter, which maps

the signal to the spiking shapes and times of the nearby neurons. This spike sorter

is constructed in a two step process. The candidate spike shapes are estimated using

a combined wavelet transform, diffusion mapping and mean-shift clustering approach.

The spike times are then estimated by assuming the vLFP is a linear dynamical sys-

tem, using convex relaxation, and subsequently employing BPDN strategies to develop

accurate and sparse estimates of the firing times.

We demonstrated with simulated vLFPs that this BPDN spike sorter was superior

(based on sensitivity, specificity and χ2 estimates) to the state of the art spike sorting
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program wav-clus (which is based on amplitude thresholding and Super Paramagnetic

Clustering) in challenging low signal to noise ratio environments. We then applied

this BPDN spike sorter to the vLFPs obtained from MERs inserted into human STNs

of patients with Parkinson’s Disease undergoing DBS. We identified Poisson statistic

firing patterns with firing rates in the range of 20−56 Hz. These results are consistent

with previous studies of the behavior of the STN in patients with Parkinson’s Disease

[28],[170].

This BPDN spike sorting approach places no restrictions on the firing patterns of the

individual neurons or their interaction with other neurons. The primary assumption

introduced by this approach is that the spike trains evolve as linear dynamical systems

and therefore the spike shape of a neuron is independent of the firing pattern. In this

approach the BPDN solution is constructed by solving the inverse problem associated

with the ℓ1 regularised least squares problem. This method provides the precise firing

times of a number of neurons close to the MER. The disadvantage of this approach

is that it only characterises the signal by the behaviour of the neurons which happen,

by chance, to be nearest to the recording probe and thus information from non nearby

spiking processes is lost.

Summary: the BPDN spike sorter requires minimal a priori assumptions and provides

excellent insight into the behaviour (in terms of elucidating the firing patterns) of the

nearby contributing neurons, but only uses a very small subset of the entire vLFP.

5.1.1 Conclusion of Analysis

Throughout this thesis we have emphasised the differences of the three methods in terms of

the scale of the vLFP considered (the localised LFP and/or the nearby spikes) and whether

the methodology is parametric or non-parametric. With the results of these methods now

provided and compared we are now in a position to summarise the validity of the applica-

tion and the information provided by these three approaches. Specifically, we consider the
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differences of these approaches in terms of how many a priori requirements must be satisfied

and how much insight they provide into the underlying biology of the measured system. We

see that the NMP approach (chapter 2) requires the least assumptions, but provides the

least insight into the underlying biology of the measurements. The renewal approach (chap-

ter 3) requires the most stringent assumptions, but also provides excellent insight into the

underlying biology. The BPDN approach (chapter 4) provides a balance between minimal

required assumptions and good insight into the underlying biology. This summary is pro-

vided graphically in Figure 5.1.

The key result from this thesis is that the vLFPs obtained from MERs contain useful

information about the STN over the multiple scales (localised LFP, nearest neuron spiking

patterns and the combination of both these effects) of analysis. This result is consistent with

the assessment in [20], (also stated in the introduction chapter) that “spike ‘contamination’

of the LFP should be regarded as good news, in that high-frequency LFP power can provide

a ‘proxy’ for the assessment of neuronal outputs”. The next stage of research should ideally

focus on exploring whether the bio-markers developed in this thesis can be correlated with

clinical features of disease state. This could be achieved with the aid of scoring systems

such as the Movement Disorder Society sponsored revision of Unified Parkinson’s Disease

Rating Scale (MDS-UPDRS) for Parkinon’s Disease [271]. This can begin by using within-

subject studies that may start with a small number of participants. Depending on how

successful these bio-markers are at detecting pathological states, much longer term research

goals would ideally be to consider implementing these bio-markers in future CLDBS systems.

It is not immediately clear which bio-marker future research should focus on. On one

hand, the NMP analysed in chapter 2 requires minimal a priori assumptions of the vLFP,

is capable of identifying changes in the in-vivo STN vLFP recordings but provides minimal

insight into the measured process. On the other hand, the BPDN spike sorter developed in

chapter 4 provides physiological insight, robust performance and minimal required a priori

assumptions but only uses a subset of the entire vLFP. Another advantage of the BPDN

approach is that this method could easily be scaled up to the more modern multi-electrode
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systems which provide multiple simultaneous channels of in vivo recording to provide much

larger ‘meso-scale’ information about the constituent neural processes in the targeted neural

tissue.

5.2 Contributions

The following are believed to be novel contributions to the literature:

• Development of closed form expressions for the NMP - showing that it is a nonlinear

series of operations on the power spectrum.

• Identifying that within the family of NMPs, the first NMP contains the most informa-

tion, with subsequent NMPs losing information.

• Showing the NMP can be applied to vLFP recordings from MERs obtained from human

STN to differentiate electrical states during neuro-linguistic testing.

• Showing that (excluding Poisson processes) the underlying PDF which drives the indi-

vidual ISI times for a super-position of renewal processes can be accurately estimated

using the measured power spectrum.

• Showing that this estimation of the ISI PDF from the measured power spectrum can,

in certain circumstances (when there are multiple neurons equidistant and with simi-

lar orientation to a recording probe) provide superior estimates of the ISI PDF than

classical spike sorting algorithms.

• Showing that the power spectrum of neuron encoding information using a DPIM coding

scheme will have the power spectrum of a renewal process in the limit of continuum

time.

• Developing the BPDN spike sorting algorithm which we show is superior to state of the

art spike sorting algorithms in the challenging situation of low signal to noise ratios.

• Applying the BPDN spike sorter to the vLFP recordings from MERs obtained from

human STN and identifying that the firing patterns of the individual neurons have, in
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agreement with the literature [28],[170], physiologically plausible Poisson firing statis-

tics with firing rates between ∼ 20− 56 Hz.

5.3 Limitations

In this section we identify limitations associated with the methods we have developed to

analyse the vLFPs:

Accuracy of the Spectral Estimates

Recall that the NMP (chaper 2) and Spectral Density Estimator (chapter 3) approaches are

constructed from spectral estimates of the vLFPs. Therefore, the accuracy of these metrics

are fundamentally limited by how accurately the power spectrum can be estimated. It is

a highly non-trivial problem to develop accurate spectral estimates from short time record-

ings. This problem is further compounded by the fact that the NMP bands considered in

this thesis (β: 10-30 Hz, fast : 80-200 Hz and zero frequency : 0 Hz) and the relevant spectral

information for the Spectral Density Estimator is in the low frequency content. Recall from

section 3.3.2 of chapter 3 that we suggested, but did not prove, that the Bartlett spectrum

which represents the contribution from the statistics of the ISI to the power spectrum is

centred about the mean firing rate ν. In most circumstances physiological mean firing rates

are between 1-100 Hz.

Throughout this thesis we have used the non-parametric Welch’s Overlapping Segment

Averaging (WOSA) method with fifty percent overlap which further reduces the length of

the time series and thus degrades the quality of the low frequency contribution. The devel-

opment of more sophisticated spectral estimation techniques is an active area of research.

As discussed in section 3.5.1 of chapter 3, methods such as Thompson’s multitaper method

which, instead of partitioning the time series into smaller segments, reduces variance in the

estimate with a series of orthogonal data tapers applied to the entire time series [174],[125]

may be more appropriate for these short time recordings.
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An alternative approach is to use parametric spectral estimators which are specifically

accurate in low frequency regimes. One method proposed in [272] uses frequency selective

parametric (Auto Regressive Moving Average model) spectral analysis in defined sub-bands.

This estimator works by estimating the entire spectrum using a very high order Auto Re-

gressive (AR) model. The spectrum in the sub band of interest is then transformed to an

auto-covariance function and then an ARMA model is fitted to this auto-covariance function.

The spectrum is then described using the coefficients of the ARMA model. The order of the

ARMA model can be automatically selected using Generalised Information Criteria [273].

This approach is referred to as sub-band remodelling. This sub-band remodelling may find

particular utility with the Spectral Density Estimator approach where the sampling rates

of most MER acquisition systems is of the order 20 kHz, whereas the useful information

content is only up to the order 100 Hz.

Dealing With Nonlinearity

Figure 5.2: Bursting is a nonlinear phenomenon, introducing a coupling between the spike

shape and firing times. Notice that the amplitude of the spikes decreases with the burst

sequence. Figure taken from [163].

For both the Spectral Density Estimator (chapter 3) and the BPDN spike sorter (chapter

4) approaches, multiple linear heuristics have been introduced to deal with the complexity

of the vLFP. As discussed in Section 4.3.2 of chapter 4, these linear assumptions are:

1. spike shape stationarity: The spike shape (for a single neuron) does not vary and

is not influenced by firing times.
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2. nearby neuron linearity: The behaviour of the nearby neurons is given by the linear

superposition of the individual spike trains of the constituent neurons.

3. LFP + nearby spikes linearity: the overall vLFP is given by the linear summation

of the nearby neurons and the LFP.

For all intents and purposes the linearity of the voltage contribution from the nearby

neurons (assumption 2) is likely to be valid. It is unclear how to identify whether the lin-

earity of the nearby spikes and the LFP (assumption 3) is valid, indeed it is even less clear

how this validity could be explored. It is important to note that while we have assumed that

the nearby spikes and the LFP can be linearly summed, with the Spectral Density estimator

(chapter 3) we have also assumed that these two terms are uncorrelated, whereas with the

BPDN spike sorter (chapter 4) we have not assumed that these two terms are uncorrelated.

We discuss the implications of the spike shape stationarity (assumption 1) to the validity

and accuracy of the BPDN spike sorter below:

The application of the BPDN approach requires that the firing patterns of the individual

neurons can be modelled as linear dynamical systems. Stated another way, the BPDN spike

sorting methodology requires the introduction of a heuristic that the spike trains can be mod-

elled in a linear framework where the action potential shapes, g(t), and firing times, {tk} are

decoupled. This can mathematically be represented by: f(g(t), {tk}) = g(t)∗∑∞
k=1 δ(t− tk).

For a very large parameter space of extracellular recordings this assumption is likely valid.

This is evidenced by almost every spike sorting algorithm [165], [57],[192] operating under

the assumption that the spike shape does not vary over the time course of the recording.

One important area where this assumption of linearity is known to break down is in the

presence of burst firing. When a neuron fires in a burst sequence (with spikes typically less

than 100 milliseconds apart [163], [164]) the action potential shape is continuously deformed,

usually with the amplitude sequentially decreasing. This is an intracellular phenomenon [57],

which is shown in Figure 5.2. Applying the linearity heuristic to bursting data will likely

result in the different amplitude spikes being (incorrectly) partitioned into different clusters.
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We note that the SpikeOMatic program, which can solve the spike sorting program using

a Dynamic Hidden Markov Model [216], combines information about both the determined

firing times and amplitudes with a simple model for variation of the spike amplitude in the

presence of burst firing to often successfully cluster spikes in the presence of bursting.

An open area of research is determining how to extend the BPDN spike sorting algorithm

to this fundamentally nonlinear problem. An interesting extension of the BPDN spike sorter

would be to use an underlying model, similar to [216], which combines information about the

firing times and the spike amplitude to incorporate the variation of amplitude when spikes

from the same neuron occur in rapid succession.

We discuss additional limitations of the methods introduced in this thesis below:

• The NMP and renewal chapters assume that the measured signals are stationary over

the time scales examined.

• With a single channel recording it is not possible to capture any of the spatial depen-

dence of the signal. This is a fundamental limitation of a single channel system.

• The methods we have used to analyse the signal do not consider the synaptic weightings

between the different neurons. It may be possible to argue that the evolution of the

firing rates (in a Hebbian learning framework) or the specific timing (in a Spike Timing

Dependent Plasticity framework) between specific neurons may provide are a ‘proxy

marker’ for the synaptic weighting between these identified neurons.

• We have not attempted to correlate these transformations of the signal to either the

clinical state of patients with Parkinson’s Disease or the success of different stimulation

protocols. If we are to consider any of the methodologies introduced in this thesis as

potential bio-markers for future CLDBS strategies, larger scale clinical correlation and

animal studies will be required. We discuss this further in section 5.4.3
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5.4 Extensions and Future Work

In this section we identify extensions to the methods developed in this thesis and future work

which may be performed. The recommendations are broken up into three broad sections:

combining information about the vLFP from multiple scales, extending current methods and

future clinical work.

5.4.1 Combining Information From Multiple Scales

In this section we describe how combining information from the methods developed in this

thesis may provide more insight into the measurements obtained of the STN and improve the

robustness of these algorithms. We specifically consider two extensions: firstly, identifying

how the zero frequency value of the NMP varies with firing pattern if the STN is modelled

as an ensemble of independent neurons (combining information from the chapters 2 and 3

approach) and secondly, suggesting how the spectral properties of a renewal process may

improve the accuracy of the BPDN spike sorter when the action potential associated with

two or more neurons is sufficiently similar (combining information from the chapters 3 and

4 approach).

Zero Frequency NMP for Poisson and Periodic Renewal Processes

In section A.9 the zero frequency value of the first NMP of a renewal process is calculated

as:

ǫ1,Σ(0) = πG(0)C2
v ·

√
√
√
√
√
√
√
√

∫ +∞

−∞
ω2G(ω)

[

1 + 2Re

{
H(ω)

1−H(ω)

}]

dω

(∫ +∞

−∞
G(ω)

[

1 + 2Re

{
H(ω)

1−H(ω)

}]

dω

)2 (5.1)

Where Cv = νσ is the coefficient of variation of the ISI distribution. We now use this

expressions (5.1) to develop explicit expressions of the ǫ1(0) value for the two different ex-

tremes of renewal statistics: maximally random Poisson and periodic firing statistics.
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Recall from section 3.3.2 of chapter 3 that for Poisson processes 2Re
{

H(ω)
1−H(ω)

}

= 0 and

Cv = 1. Therefore the NMP of a Poisson process is given by:

ǫ1,Poisson(0) = πG(0) ·
√
∫ +∞

−∞
ω2dω = ∞ (5.2)

This result is consistent with the analysis in section 2.5 of chapter 2 where we showed

that Markov processes have maximal (infinite) zero frequency NMP values.

Recall that by definition the variance of a purely periodic processes is zero and thus

Cv = σ = 0. Using the expression for the Bartlett spectrum of a periodic process given in

section 3.3.2 of chapter 3 the NMP of a periodic renewal process is given by:

ǫ1,Periodic(0) = πG(0) · 0 ·

√
√
√
√
√
√
√
√
√
√
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G(ω)

[

1 +
n=+∞∑
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δ(ω − nλ)

]

dω

)2 = 0 (5.3)

This result is consistent with the analysis in section 2.5 of chapter 2 where we showed

that Non-Markov processes have very small zero frequency NMP values.

Therefore, it appears that the NMP might be useful in distinguishing different renewal

firing patterns. This also suggests that the changes of the electrical behaviour of the STN us-

ing the zero frequency component of the NMP in section 2.9 of chapter 2 may reflect changes

in the firing patterns of the measured neurons. However, it is important to remember that

since the NMP was applied to the entire vLFP, many non spiking low frequency (localised

LFP) contributions to the LFP would of also affected the NMP value.

The following represents extensions to the work performed in this thesis which may

provide further insight into the NMP and the behaviour of the STN under the experimental

conditions considered in sections 2.9:

• As discussed in section 3.3.2 of chapter 3 the Poisson and periodic firing patterns

represent the two different extremes of ISI time drawn from the very general Weibull



232 Conclusion

distribution. Can simplifications of the power spectrum of the Weibull distribution

be introduced to develop simplified expressions for the NMP as the firing pattern is

varied?

• We have identified that the two different extremes of firing patterns, Poisson and

periodic, are mapped by the NMP to the extremes of the number line (approaching

infinity and zero respectively). How sensitive is the NMP to variation of the firing

statistics between these extremes?

• If the models of the vLFP used in chapter 4 are considered (individual, resolveable spike

trains embedded in highly correlated non-white background noise from the LFP), how

robust is the NMP to measuring changes in the renewal statistics of the resolvable

spikes as the amplitude of the LFP background noise increases?

• Similarly, is the value of the NMP dominated by high frequency spiking behaviour of

the nearest neurons or the non-spiking, low frequency LFP processes?

Applying renewal theory to the BPDN spike sorter

In chapter 4 we have shown with extensive simulation that the BPDN spike sorting algorithm

is capable of outperforming (as judged by sensitivity, specificity and χ2 estimates) state of

the art spike sorters in challenging low signal to noise ratio environments. Nonetheless, as

we identified in section 3.7.2 of chapter 3, any spike sorting algorithm which performs clus-

tering based on the amplitude and or shape of the identified action potentials will fail when

multiple neurons produce identical spike shapes. Therefore, the BPDN spike sorter will also

provide inaccurate results for the pathological situation when one or more neurons produces

sufficiently similar action potential shapes. This situation may indeed occur in neuron dense

environments such as the STN when neurons are equidistant and similarly aligned relative

to the MER probe.

In section 3.3.3 of chapter 3 we argued that (with the exception of Poisson processes) each

firing pattern of a renewal process has a unique Bartlett spectrum. In a very broad sense
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we considered this unique Bartlett spectrum a ‘spectral fingerprint’ in the low frequency

component of the measured spectrum. We can use this property to introduce an ‘error-

checking’ step to the BPDN spike sorter. Consider the following situation: the MER probe

is inserted into neural tissue such that there are two neurons: neuron A and neuron B which

are similarly orientated and an equal distance from the MER probe. If the spike shapes

of neurons A and B are sufficiently similar, the BPDN spike sorter will either merge these

two distinct firing clusters into a single cluster or attribute a large number of spikes from

neuron A to neuron B, or vice versa. If the firing patterns of neurons A and B are, or can be

approximated, as independent renewal processes we can “error check” the set of firing times

identified for each neuron using classical spike sorting as follows:

1. Apply the BPDN (or any spike sorting) algorithm.

2. For each cluster, generate the KDE of the ISI probability distribution associated with

the identified firing times. Calculate the Bartlett spectrum associated this KDE of the

ISI PDF of this cluster using (3.16).

3. Measure the Bartlett spectrum of this cluster directly from the set of identified spike

times (see [175],[176]) in this cluster.

4. Compare these measured and calculated Bartlett spectra. If there is a large discrepancy

in values there has likely been an error with how the spike sorting algorithm has

clustered the detected spike times.

Note that this potential method would work on the principle elucidated in [158] and dis-

cussed in section 3.4 of chapter 3, that the super-position of independent renewal processes

generates a non-renewal process with a spectrum which is a scaled form of the constituent

renewal processes. If the spike sorter incorrectly generates a cluster which consists of the

spikes from neuron A in addition to multiple spikes from other neurons there will be a

discrepancy between the calculated Bartlett spectrum and the measured Bartlett spectrum.

This is because the calculated spectrum will be calculated using the incorrect KDE of the ISI

distribution whereas the measured Bartlett spectrum (if the independent renewal assump-

tions are valid) will be the linear combination of the individual Bartlett spectra associated
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with the ISI distribution. Therefore, if the measured and calculated Bartlett spectra for

each of the clusters are consistent then the BPDN (or any alternative) spike sorter has likely

identified most of the spikes associated with a single cluster.

The principle problem with this extension is that while it may identify if the estimated

firing times are consistent with the measured power spectrum, it does not suggest how to

improve the estimates if these values are inconsistent.

5.4.2 Development of potential bio-markers from BPDN

In chapter 4 we developed the BPDN algorithm and showed that it was capable of resolving

the firing times and shapes of individual neurons contributing to a vLFP with high accuracy.

The outputs from this algorithm are the individual spike shapes and sets of the discrete firing

times associated with individual neurons. In the context of this thesis an immediate question

is: given this output, what metrics should be constructed to characterise the state of the

STN? An obvious approach, similar to chapter 3, would be to assume that the spike trains

are renewal processes, and develop metrics from the statistical moments (firing rate, the

coefficient of variation or the information entropy) of the ISI times. An alternative approach

would be to model the data as a point process and develop the Bartlett spectrum (the power

spectrum of the firing time correlation structure discussed in chapter 3) using the discrete

sets of firing times (see [175],[176]). Given an accurate estimation of this Bartlett spectrum,

previously developed metrics such as the peak energy in the β band (10 − 35 Hz) [56] or

even the NMP (considered in chapter 2) could be used to characterise the state of the STN

and potentially be used as future CLDBS bio-markers.

5.4.3 Efficacy of developed metrics as CLDBS biomarkers

The methods (NMP, Spectral Density Estimator and the BPDN spike sorter) developed in

this thesis to analyse the vLFPs obtained from MERs have demonstrated that they can be

used to characterise the state of the STN and identify the firing patterns of a subset of the
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contributing neurons. Recall that the motivation for this research was largely driven by at-

tempting to develop potential biomarkers for use in future CLDBS systems for the treatment

of Parkinson’s Disease. The first required step is to identify whether these metrics can be

correlated to the degree of severity of Parkinson’s Disease pathology. This is required in

order to confirm a ‘numerical measure’ of the patient’s disease state (which can be measured

near instantaneously by the MER probes) for use in any future adaptive CLDBS system.

There is a long history in Parkinson’s Disease research of exploring whether metrics can

characterise the state of the disease. Multiple studies have suggested that β band synchro-

nisation may play a role in the motor symptoms of Parkinson’s [50], [51], [52], [53], [54], [55].

More recently, complexity metrics such as the Lempel-Ziv Complexity (LZC) metric have

been applied to vLFPs band pass filtered in the β (13-35 Hz) range and correlated with the

UPDRS score for akinesia/rigidity.

The first recommended step in exploring the efficacy of these metrics as potential biomark-

ers would be to explore whether correlations exist between the patient’s clinical state (as-

sessed using scoring tools such as the MDS-UPDRS system) and the metrics (NMP, statistical

moments or the spectra of the identified spike trains) developed in this thesis. One approach

would be to set up the designated metric(s) and the MDS-UPDRS scores in a regression

framework with a relatively large collection of patients and, similar to [99], use a LASSO

(ℓ1 minimisation) approach to determine which specific MDS-UPDRS scores correlate most

strongly to the developed metrics. Due to the comorbidities of patients, the variable state

of their Parkinson’s Disease and the subjective nature of the MDS-UPDRS scoring systems

there is likely to be a high degree of variability associated with the detected correlations.

Due to this intrinsic variability, it is instead recommended that these metrics be analysed

using within-subject studies that compare their values with and without DBS or on and off

medication. For practical reasons these studies could begin with a relatively small cohort,

with an extension to larger sample sizes pending the outcome of the smaller studies.

If these bio-markers are successfully able to identify pathological disease states, much

further future work may be able to explore whether they could be used in future CLDBS
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systems. This style of approach was considered in [5] where it was suggested that certain

characteristic shapes of late onset evoked action potentials near the site of DBS in the STN

are more responsive to stimulation than others. A simpler approach could be to follow the

methodology in [56] where a stimulating current with an a priori selected voltage and fre-

quency (perhaps the standard open loop values) are applied when the biomarker gets above a

threshold value and stays quiescent when the biomarker is below the threshold value. These

approaches could first be analysed theoretically using computer simulation studies, similar

to [58], but will more than likely require animal model studies, similar to the approach of [40].

Exploring the efficacy of these bio-markers as markers of disease states will be a difficult

and time consuming process. Furthermore, the subsequent analysis of whether these metrics

could be considered as bio-markers for CLDBS will be a highly non-trivial future task.

Nonetheless, the success of this approach may provide the exciting prospect of drastically

reducing the impact of a cruel, debilitating and currently incurable disease which affects

more than 10 million people worldwide.
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Appendices

A.1 Deriving λ Relaxation Parameter

In this appendix we will determine two equivalent expressions for the set of first relaxation

parameters {λn} in terms of the autocorrelation, mn(t), and the power spectrum: Mn(ω).

We will show that for C1 smooth autocorrelation functions or equivalently power spectrums

which decay faster than O(ω) this parameter is always equal to zero.

The λn relaxation parameter is very easy to understand in terms of the autocorrelation

function. Applying the limit as time goes to zero from the positive side to (2.6) yields:

237
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lim
t→0+

dmn(t)

dt
= λn lim

t→0+
mn(t)− Λn lim

t→0+

∫ t

0

mn+1(t− t′)mn(t
′)dt′ t ≥ 0.

(A.1)

Notice the following simplifications:

1. Because the autocorrelation function is normalised: limt→0+ mn(t) = mn(0) = 1.

2. The convolution integral in the limit of zero time is zero:

lim
t→0+

∫ t

0

mn+1(t− t′)mn(t
′)dt′ =

∫ 0

0

mn+1(t− t′)mn(t
′)dt′ = 0 (A.2)

Thus:

λn = lim
t→0+

dmn(t)

dt
(A.3)

Recall that autocorrelation functions are by definition symmetric. Also recall that the

first derivative around the origin of a symmetric function is always zero. Thus the λn relax-

ation parameter must be zero unless there is a breakdown in smoothness at the origin of the

mn(t) autocorrelation function. An example of a function with a breakdown in smoothness

at the origin is mn(t) = e−a|t|. Figures A.1 & A.2 show the functions and derivatives re-

spectively of a smooth function mn(t) = sinc(ωt) and a non-smooth function mn(t) = e−a|t|

(with breakdown at the origin).

We will now provide the analysis to understand the requirements on the power spectrum

for a non zero first relaxation parameter λn:

Notice that the first derivative at the origin can be written as:

lim
t→0+

dmn(t)

dt
= lim

h→0+

mn(h)−mn(0)

h
(A.4)
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Figure A.1: Example of smooth mn(t) = sinc(ωt) and non-smooth mn(t) = e−a|t| memory

autocorrelation functions. Notice the breakdown in smoothness at the origin.

Now mn(h) (which is the autocorrelation function where we have represented the time

variable by h) can be written in terms of the inverse Fourier transform of the power spectral

density by the Wiener-Khinchine theorem:

mn(h) = F−1 [Mn(ω)]

=
1

2π

∫ ∞

−∞
Mn(ω)e

iωhdω (A.5)

Now mn(0) can similarly be written:

mn(0) =
1

2π

∫ ∞

−∞
Mn(ω)e

iω(t=0)dω =
1

2π

∫ ∞

−∞
Mn(ω)dω (A.6)

Thus:

lim
h→0+

mn(h)−mn(0)

h
= lim

h→0+

{
1

2π

∫ ∞

−∞
Mn(ω)e

iωhdω − 1

2π

∫ ∞

−∞
Mn(ω)dω

}

= lim
h→0+

1

2π

∫ ∞

−∞
Mn(ω)

(
eiωh − 1

)
dω
/

h (A.7)

Therefore:

λn = lim
h→0+

1

2π

∫ ∞

−∞
Mn(ω)

(
eiωh − 1

)
dω
/

h (A.8)

By the theorem of Dominated Convergence we can see that if Mn(ω) decays faster than

1/ω then Mn(ω) is integrable and its behaviour will dominate the integration and the limit

can be brought inside the integral. If the limit is brought inside the integral we have:

lim
h→0+

(
eiωh − 1

)
= 0 (A.9)
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Figure A.2: Derivative of the smooth mn(t) = sinc(ωt) and non-smooth mn(t) = e−a|t|

memory autocorrelation functions. Notice that the derivative is zero at the origin of the

smooth function, but is non zero (and the limits from above and below zero are different

values) for the non-smooth function.

In this case that the power spectrum decays faster than 1/ω both the numerator and the

denominator will be zero:

λn =
0

0
(A.10)

Using L’Hospitals Rule:

λn = lim
h→0+

1

2π
·

∂

∂h

∫∞
−∞
(
Mn(ω)e

iωh − 1
)
dω

∂h

∂h

(A.11)

= lim
h→0+

i

2π

∫ ∞

−∞
ωMn(ω)e

iωhdω (A.12)

Now if the Power Spectrum decays faster than O(1/ω2) then by the theorem of Dominated

Convergence then the limit can be brought inside the integral:

λn =
i

2π

∫ ∞

−∞
ωMn(ω)dω For Mn(ω) > O

(
1

ω2

)

(A.13)

The power spectrum is by definition an even function whereas ω is clearly and odd

function. The product of an even and odd function is an odd function. The integral of an

odd function over the entire real line must necessarily be zero. Thus:

λn = 0 For Mn(ω) > O

(
1

ω2

)

(A.14)
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A.2 Deriving Λ Relaxation Parameter

In this appendix we will develop expressions for the set of {Λn} relaxation parameters. We

show that the relaxation parameters Λn can be understood in terms of the limit as time

goes to zero of the second derivative of the autocorrelation functions mn(t). We will then

show that if certain conditions are met that this can be alternatively analysed in terms of

the ‘spread’ of the power spectral density Mn(ω).

Taking the first derivative of (2.6) yields:

d2mn(t)

dt2
= λn

dmn(t)

dt
− Λn

d

dt

∫ t

0

mn+1(t− t′)m(t′)dt′ (A.15)

The only difficulty with the above equation is determining the derivative of the convo-

lution term. Notice that this is not a convolution defined with integration bounds from -∞
to +∞ and thus the derivative operation cannot be brought inside the integral and applied

to either of the convolution products. Also notice that the fundamental theorem of calculus

cannot be used because the integral bounds depend on the time variable which is a function

of the integrand. We use the generalised Leibniz rule for differentiation of an integral:

Let φ(α) =

∫ b(α)

a(α)

f(t′, α)dt′ (A.16)

∂φ

∂α
=

∫ b(α)

a(α)

∂

∂α
f(t′, α)dt′ + f(b, α)

∂b

∂α
− f(a, α)

∂a

∂α
. (A.17)

For the convolution term in (A.15) our definitions translate as:

α ≡ t (A.18)

b(α) ≡ t (A.19)

a(α) ≡ 0 (A.20)

f(t′, α) ≡ mn+1(t− t′)c(t′)dt′ (A.21)
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For our ZM chain the following quantities need to be calculated:

f(b, α) = f(t′ = t, t) = mn+1(0)mn(t) (A.22)

f(a, α) = f(t′ = 0, t) = mn+1(t)mn(t) (A.23)

∂b

∂α
=

∂t

∂t
= 1 (A.24)

∂a

∂α
=

∂0

∂t
= 0 (A.25)

So:

d

dt

∫ t

0

mn+1(t− t′)mn(t
′)dt′ =

∫ t

0

∂mn+1(t− t′)

∂t
mn(t

′)dt′ +mn+1(0)mn(t)−mn+1(t)mn(t) · 0

=

∫ t

0

∂mn+1(t− t′)

∂t
mn(t

′)dt′ +mn+1(0)mn(t) (A.26)

Substituting this result back into (A.15) yields:

d2mn(t)

dt2
= λn

dmn(t)

dt
− Λn

(∫ t

0

∂mn+1(t− t′)

∂t
mn(t

′)dt′ +mn+1(0)mn(t)

)

(A.27)

If we take the limit as time goes to zero of this equation:

lim
t→0+

d2mn(t)

dt2
= λn lim

t→0+

dmn(t)

dt
− Λn

(

lim
t→0+

∫ t

0

∂mn+1(t− t′)

∂t
mn(t

′)dt′ +mn+1(0) lim
t→0+

mn(t)

)

(A.28)

The convolution term in the limit will be zero (see section A.1). By definition the limit:

limt→0+ mn(t) is unity. Thus this expression can be simplified:

lim
t→0+

d2mn(t)

dt2
= λ2n − Λnmn+1(0) (A.29)

Re-arranging we can get a form for the Λn relaxation parameter:

Λnmn+1(0) = λ2n − lim
t→0+

d2mn(t)

dt2
≡ lim

t→0+

dmn(t)

dt

2

− lim
t→0+

d2mn+1(t)

dt2
(A.30)

If we limit our analysis to ‘sensible’ signals (Mn(ω) ≥ O (1/ω2)) where the λn relaxation

parameter is zero we can simplify the Λn relaxation parameter equation to:

Λnmn+1(0) = − lim
t→0+

d2mn(t)

dt2
(A.31)
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Imposing the condition that the memory function at time zero mn+1(0) must be unity

leads to the expression for ‘sensible’ signals:

Λn = − lim
t→0+

d2mn(t)

dt2
(A.32)

We will now show the Λn relaxation parameter in terms of the power spectral density.

Recall from the Wiener-Khinchtine formula that:

mn(t) =
1

2π

∫ +∞

−∞
Mn(ω)e

iωtdω (A.33)

Taking the second derivative of this equation with respect to time yields:

d2mn(t)

dt2
=

−1

2π

∫ +∞

−∞
ω2Mn(ω)e

iωtdω (A.34)

Taking the limit of this equation as time goes to zero yields:

lim
t→0+

d2mn(t)

dt2
=

−1

2π

∫ +∞

−∞
ω2Mn(ω)dω (A.35)

Substituting this result into the equation for the Λn relaxation parameter in terms of the

limit of the second derivative of the autocorrelation function (A.32) yields:

Λn =
1

2π

∫ +∞

−∞
ω2Mn(ω)dω (A.36)
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A.3 Neuro-Linguistic Experiment 2 Procedure

In this appendix we describe the experimental setup and signals acquisition protocol used

to obtain the MERs from the second experiment which were subsequently analysed using

the NMP as described in Section 2.9.4. This description is based heavily on the (as yet) un-

published article Microelectrode recordings of subthalamic nucleus activity during language

processing in people with Parkinson’s disease with authors: Helen J Cheney, Anna D Mac-

donald, Andrew P Bradley, Peter A Silburn, Andrew Smith, John Varghese, Terry Coyne,

David A Copland which used the same data, but analysed the signals differently using the

spike sorting package Osort.

Participants

Ten participants were initially recruited to the study but the data from four of these par-

ticipants were discarded due to participant drowsiness during the intra-operative testing

procedure or technical difficulties with data acquisition. Subsequently, six participants (five

male) diagnosed with idiopathic PD without dementia who were undergoing bilateral DBS

surgery for treatment of their symptoms participated in the study (mean age 66.77 ± 6.52

years [range 59-78]; mean years of education, 15.5 ± 4.13 years [range 10-21]; mean disease

duration from time of diagnosis, 8.5 ± 4.70 years [range 4-17]). A summary of the partici-

pant characteristics is shown in Table A.1.

All participants were native English speakers except for participant 10 who reported

being multi-lingual (Greek and Afrikaans) with English as a first language. The data from

this participant was retained as preliminary inspection of the data showed no significant

deviation from the group. The study was approved by The University of Queensland Medical

Research Ethics Committee and UnitingCare Health Human Research Ethics Committee.

All participants gave informed written consent.
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Participant Age Years of

Educa-

tion

Duration

Since

Diag-

nosis

Average

LD

Dose

(mg/day)

EHI

score

GDS-

SF

SMMSE PD-

CRS

2 64 10 8 1300 R

(100)

3 27 100

10 78 21 5 400* R

(78)

3 30 89

11 62 18 10 800 Ambi

(30)

3 30 105

14 65 13 17 850 R

(79)

1 30 82

16 59 13 7 750 R

(79)

0 30 na

18 69 18 4 750 R

(71)

1 28 na

Table A.1: Patient Characteristics for Second Neuro-Linguistic experiment. Acronyms: EHI:

Edinburgh Handedness Inventory, GDS-SF: Geriatric Depression Scale Short Form, SMMSE:

Standardized Mini-Mental State Examination, PD-CRS: Parkinson’s disease Cognitive Rat-

ing Scale. * Patient 10 was also taking 150mg/day desvenlafaxine.

Surgical Procedure

The DBS leads were implanted under local anaesthesia after overnight withdrawal of all

antiparkinsonian medication. The neurosurgical team targeted the dorsolateral aspect of

the STN using a Cosman-Roberts-Wells stereotactic frame with patients set on a Medtronic

Stealth surgical planning station. The stereotactic coordinates were determined via direct

visualisation of the target after merging of preoperative thin slice (1mm) CT with 3-T MRI

T1 and fluid-attenuated inversion recovery (FLAIR) sequences.
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During surgery, a 500 micron tungsten microelectrode (Fred Hayer Corporation) was

passed via a microdrive attached to the head frame to 5mm above the subthalamic nucleus.

The procedure is described fully in [14], but briefly, microelectrode recordings were obtained

in a selected trajectory to verify the characteristic STN firing patterns that assist in optimal

target identification. The participant was examined for effect on clinical signs (dyskinesia,

tremor, rigidity, bradykinesia) and absence of adverse effects. At this stage, the experimen-

tal testing was carried out (full details are provided below). After testing was completed,

the microelectrode was withdrawn and the permanent DBS lead (Medtronic Lead 3387) was

placed through the same guidetube.

The procedure was then repeated on the other brainside. As a general guide,the neuro-

surgical team implanted the first lead in the STN on the contralateral side to the patient’s

worst motor symptoms, which for five of the six participants was the left STN.

Language Stimuli and Procedure

Two stimulus sets (one for each hemisphere) each consisting of 30 real words and 30 non-

words were created and presented in a counterbalanced fashion across participants. Real

words were nouns and were matched across sets (F values for all tests < 1.14; p values for

all tests > .289) for mean concreteness (498.25 ± 107.65), imageability (532.72 ± 72.66),

Kucera-Francis written frequency (173.65 ± 140.51), number of letters (5.18 ± 1.32) [274]

and mean lexical decision time (594.4 ± 45.75) and accuracy (.98 ± .02) [275] and mean total

CELEX frequency (169.05 ± 145.92) [276]. Nonwords were taken from the ARC Nonword

Database [150], and were orthographically legal, pronounceable and not homophonic with

real English words. The mean number of letters for nonwords (5.07 ± 1.3) was matched

to real words within a list (List 1, F = 0.038, p =0.846; List 2, F = 0.239, p = 0.627).

Nonwords were also matched across sets for number of letters (F = 0; p = 1) and neighbours

(F = 0.08; p = 0.779).

The presentation of the lexical decision task and collection of behavioural responses (ac-

curacy and response times) was controlled and timed by E-Prime Version 1.1 running on a



A.3 Neuro-Linguistic Experiment 2 Procedure 247

DELL laptop with a modified USB two-button mouse attached. An external monitor was

positioned over the patient on the operating table via an articulating monitor arm. Ex-

perimental stimuli were pseudorandomly ordered such that there were no more than three

consecutive word or nonword trials. Each experimental trial began with a fixation cross (+)

presented in the centre of the screen for 1500 ms followed by the stimulus which remained

on the screen until the participant responded or a maximum duration of 3 seconds elapsed.

Participants were instructed to indicate via button press whether the stimulus was a real

word or not (i.e., a nonword). The hand that was ipsilateral to the hemisphere of the STN

MER acquisition executed the button press. For each hand, the index finger was always used

to indicate Yes (real word) and the middle finger for No (nonword). The duration of the

inter-trial interval was set at a minimum of 500 ms and, dependent on the response time for

each stimulus, varied to make each trial length 5 seconds in total. Participants completed

a short practice task with stimuli not used in experimental sessions 1-2 days prior to their

surgery.

MER Recordings and Analysis

In this study, we acquired 1,440 baseline and task micro-electrode recordings (MERs) using

two hardware systems: a Leadpoint system (Medtronic) with sampling rates of 22 kHz and

a FHC Guideline LP+ system, sampling frequency 48 kHz. We removed individual MERs

that were linked to participant errors on the lexical decision task or where there were too

few spikes detected in an epoch leaving 934 of the total 1,440 MERs (or 64.9%) for final

analysis. The MERs were pre-amplified and filtered to a bandwidth of 500-5000 Hz prior

to sampling. The filter settings used were those recommended by Medtronic to reduce the

effect of muscle artefact, 50Hz mains interference and background electroencephalographic

activity.
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Time Synchronisation:

Each MER recording was synchronized (time aligned) with the experimental timings using

the E-prime software to insert detectable ‘trigger’ pulses into the MER recordings at the end

of both the fixation and inter-trial epochs for each trial (see Figure A.3). The trigger was

inserted using an opto-isolated connection between the parallel port on the laptop running

the E-Prime experiment and the Leadpoint/FHC bio-amplifier input. These trigger pulses

were then combined with the timing information from E-prime so as to enable each MER

recording to be broken up into individual trials and within these trials, individual epochs.

In cases where the timing difference between the E-prime system (accurate to within ± 1

ms) and the recorded MER triggers could not be resolved to within ± 3ms for an epoch in a

trial, the data from the epoch in that trial was not subsequently analysed. This accounted

for 340 MERs or 23.6 % of the data. These events were attributed to data loss in the Lead-

point/FHC system as a result of saving the MER data to disk.

For each participant/hemisphere combination we created a single amalgamated MER

consisting of each individual MER from every trial (baseline and stimulus) that were then

concatenated (i.e., joined) together. While this technique of amalgamating the epochs from

different trials could potentially introduce discontinuities where each MER is concatenated,

it was judged that background noise statistics could be more reliably estimated using the

longer amalgamated MERs.
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Figure A.3: Testing and recording sequence of the neuro-linguistic experiment.

A.4 Asymptotic Behaviour of RDF:

In this appendix we prove the result that the asymptotic value of the renewal density func-

tion, m(t), is equal to the mean firing rate of the underlying probability distribution p(t).

As stated in section 3.3.1 this can be considered a special case of the more general result

of the Erdos-Feller-Pollard theorem [168] when the function is sufficiently smooth such that

the Laplace transform of the function and its derivative exists.

Using the Final Value Theorem for Laplace Transforms [44]:

lim
t→∞

m(t) = lim
s→0+

sM(s) (A.37)

Substituting in our expression for the Laplace transform of the renewal function (3.7)

yields:

lim
t→∞

m(t) = lim
s→0+

sP (s)

1− P (s)
=

0

0
(A.38)

Since:

P (s = 0) =

∫ ∞

0

p(t)dt = 1 (A.39)
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Applying L’Hospitals rule to this limit yields:

lim
t→∞

m(t) = lim
s→0+

d

ds
[sP (s)]

d

ds
[1− P (s)]

= lim
s→0+

P (s)

−P ′(s)
+ lim

s→0+

sP ′(s)

−P ′(s)

= lim
s→0+

P (s)

−P ′(s)
(A.40)

Using the following identity:

lim
s→0+

dP (s)

ds
= lim

s→0+

d

ds

∫ ∞

0

p(t)e−stdt

=

∫ ∞

0

lim
s→0+

d

ds
p(t)e−stdt

= −
∫ ∞

0

tp(t)dt

= −µ (A.41)

Thus the limit of the renewal density function becomes:

lim
t→∞

m(t) =
1

µ
= ν (A.42)
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A.5 Derivation of Power Spectrum of a Single Filtered

Renewal Process

In this appendix we derive the power spectrum of a filtered renewal process. It should be

made explicitly clear that this result has been known for over 50 years (see [277],[167]).

Indeed a derivation using the Wiener-Khinchtine theorem was developed in [157] specifically

for neural discharge spectra, although that paper only considered the case where all the

action potentials have the same amplitude. The problem with these previous derivations is

they are too mathematically loquacious to be accessible to (most) engineers and lose track

of the physics behind the problem. This derivation is based on a periodogram approach and

is an extension to Carson’s theorem for shot noise processes, which was restricted to Poisson

counting (i.e. memoryless) events.

Assumptions

Figure A.4: Schematic of the filtered renewal process. The forcing function is a Dirac comb

of impulses which follow the statistics of the renewal process. This forcing function is fed into

a response filter which yields an output which is the convolution of the Dirac comb forcing

function with the response shape function (for our analysis the action potential shape).

This is a highly simplified model of the expected neuron dynamics and in all certainty is

not a truly accurate reflection of the true biological process. The following assumptions are

introduced

1. The individual neurons follow renewal firing statistics. See Figure A.4. Recall that for

renewal processes the Inter-Spike Interval (ISI) times ∆Ti form a set of independent,
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identically distributed (i.i.d.) random variables drawn from probability distribution

p(t). Note that this does not imply that the firing times ti form an i.i.d. process.

2. All the STN action potentials have exactly the same shape, with the exception of a

free amplitude scaling factor which is drawn from an arbitrary probability distribution.

This makes our model a marked filtered renewal process.

3. The amplitude of an arbitrary action potential is independent of the firing times or

the ISI time. This is referred to as spike shape stationarity. Note that this is a

consequence of analysing the spike trains in a linear dynamical systems framework.

For most circumstances this assumption will hold true, but it has been found that

sometimes neurons can exhibit rate dependent action potential shapes during bursting

events [163] for example.

4. The neurons, individually modelled as renewal processes are independent of each other.

Certainly this assumption appears the most unphysical. Neurons are highly nonlinear,

densely connected, possibly chaotic, deterministic oscillators. We can consider that

modelling the firing times as stochastic processes is an approximation to these nonlin-

ear coupled dynamics. Indeed in other physical systems we have seen the success of

mean field theories were highly correlated systems can be treated as an ensemble of

independent statistical objects. This process is frequently used in condensed matter

physics with the Druid model of how a highly correlated systems of electrons and pos-

itive ions in a crystal lattice can be modelled with high accuracy as gas of independent

electrons.

We model the voltage time series at the MER probe as:

y(t) =
N∑

m=1

amg(t− tm) (A.43)

Where the set {tm} are the firing times. Recall that the ISI times: (tm − tm−1), are i.i.d.

and are drawn from a probability density function p(t).

Because we are dealing with a stochastic process which is not square integrable we have
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to be careful how we define our Fourier Transforms. We formally define the Fourier Trans-

forms in the following limiting sense:

F {y(t)} (ω) = lim
T→∞

∫ T/2

T/2

y(t)e−iωtdt (A.44)

The Fourier Transform of (A.43) can be determined using the shifting property of Fourier

Transforms.

F {y(t)} (ω) = Y (iω) = G(iω)
N∑

m=1

ame
−iωtm (A.45)

Where we have taken the Fourier Transform of the pulse shape G(iω) outside of the

summation because of our assumption that it is independent of the firing times.

The complex conjugate of the Fourier Transform is given by:

F {y(t)} (ω)∗ = Y (iω)∗ = G(iω)∗
N∑

n=1

ane
+iωtn (A.46)

The power spectral density of a stochastic process is defined as:

P (ω) = E

(

lim
T→∞

1

T
Y (iω)Y ∗(iω)

)

= lim
T→∞

1

T
E
(

Y (iω)Y ∗(iω)
)

(A.47)

There are subtleties associated with exchanging the limit and expectation operations

which are guaranteed by the Weiner-Khinchtine theorem. The power spectrum for our

renewal process generated voltage time history is thus given by:

P (ω) = lim
T→∞

1

T
E

(

G(iω)
N∑

m=1

ame
−iωtmG(iω)∗

N∑

n=1

ane
+iωtn

)

(A.48)

= lim
T→∞

1

T
|G(iω)|2

N∑

m=1

N∑

n=1

〈amane−iω(tm−tn)〉 (A.49)

Where 〈· · · 〉 represents taking the ensemble average. Using assumption 3 that the action

potential amplitudes are independent of the firing times:

P (ω) = lim
T→∞

1

T
|G(iω)|2

N∑

m=1

N∑

n=1

〈aman〉〈e−iω(tm−tn)〉 (A.50)
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We break this double summation up into three components: one where m = n (which

will have N terms), one where m > n and one where m < n (which will have combined

(N2 −N) terms).

P (ω) = lim
T→∞

1

T
|G(iω)|2








N∑

m=1
︸︷︷︸

m=n

+
N∑

m=1

N∑

n=1
︸ ︷︷ ︸

m>n

+
N∑

m=1

N∑

n=1
︸ ︷︷ ︸

m<n

[
〈amam〉〈e−iω(tm−tn)〉

]








(A.51)

We will tackle the m = n term of the summation first:

P (ω)m=n = lim
T→∞

1

T
|G(iω)|2

N∑

m=1
︸︷︷︸

m=n

〈amam〉〈e−iω(tm−tm)〉 (A.52)

= lim
T→∞

1

T
|G(iω)|2〈a2〉 ·N (A.53)

Where in the last equation we have assumed that all the action potential amplitudes are

drawn from a common distribution. Note that in the limit of time, T, approaching infinity

the number of pulses, N, will also approach infinity. At this point consider the limits of

N → ∞ and T → ∞ such that there ratio converges to the mean firing rate ν:

lim
N→0
T→0

N

T
= ν (A.54)

The limit of N → ∞ arises because when we consider the process over an infinitely long

time period (i.e. T → ∞) there will be an infinite number of pulses. Therefore we have for

the m = n terms of the power spectra:

P (ω)m=n = ν|G(iω)|2〈a2〉 (A.55)

Will now tackle the m > n terms of the double summation:

P (ω)m 6=n = lim
T→∞

1

T
|G(iω)|2

N∑

m=1

N∑

n=1
︸ ︷︷ ︸

m>n

〈aman〉〈e−iω(tm−tn)〉 (A.56)

The key simplification introduced by assuming renewal firing times is that the difference

of firing times can be written as: tm − tn = (m − n)τ where τ is the i.i.d. random variable
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representing the ISI firing times. Thus:

P (ω)m>n = lim
T→∞

1

T
|G(iω)|2

N∑

m=1

N∑

n=1
︸ ︷︷ ︸

m>n

〈aman〉〈e−iω(m−n)τ 〉 (A.57)

Notice that the constraint that: m > n guarantees that m− n > 1 and that this double

sum involving the difference of two counting variables m− n can be written as a single sum

involving a single counting variable ‘k’ that ranges from 1 to N:

N∑

m=1

N∑

n=1
︸ ︷︷ ︸

m>n

〈aman〉〈e−iω(m−n)τ 〉 =
N∑

k=1

〈ak〉〈ak〉〈C(k)e−iωkτ 〉 = 〈a〉2
N∑

k=1

C(k)〈e−iωkτ 〉(A.58)

There are two really important concepts to notice here:

1. We have assumed that the amplitudes associated with the old counting variables m &

n are drawn from the same probability distribution, and that they are independent of

each other. This is a reasonable assumption given that firing times might be correlated,

the amplitudes are unlikely to be.

2. We have included a function C(k) in the summation. The is the combinatoric function

which accounts for the fact there are multiple copies of the e−iωkτ term. The constraint

that m > n and the fact that both m and n run from 0 to N leads to the conclusion

that the form of the combinatoric function is: C(k) = N − k.

Therefore:

N∑

m=1

N∑

n=1
︸ ︷︷ ︸

m>n

〈aman〉〈e−iω(m−n)τ 〉 = 〈a〉2
N∑

k=1

(N − k)〈e−iωkτ 〉 (A.59)

Now notice that the characteristic function for the Inter-Spike-Interval (ISI) distribution

is given by:

H(ω) = 〈eiωτ 〉 , H(ω)∗ = 〈e−iωτ 〉 (A.60)

Also recall that for independent random variables the following property:

〈eiω(τ1+τ2...+τk)〉 = H(ω)k (A.61)
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Now recall that one of the defining properties of a renewal process is that the ISI times

are i.i.d. Thus we can write:

e−iωkτ = e−iω(τ1+τ2+···τk) (A.62)

Thus we can write out our sum in (A.59) as:

N∑

m=1

N∑

n=1
︸ ︷︷ ︸

m>n

〈aman〉〈e−iω(m−n)τ 〉 = 〈a〉2
N∑

k=1

(N − k) (H(ω)∗)k (A.63)

Algebraically re-arranging this expression:

N∑

m=1

N∑

n=1
︸ ︷︷ ︸

m>n

〈aman〉〈e−iω(m−n)τ 〉 = 〈a〉2N
N∑

k=1

(1− k

N
) (H(ω)∗)k (A.64)

The exact same process can be performed with the m < n summation term in (A.51),

with the substitution that i→ −i in the exponent:

N∑

m=1

N∑

n=1
︸ ︷︷ ︸

m<n

〈aman〉〈e−iω(m−n)τ 〉 = 〈a〉2N
N∑

k=1

(1− k

N
)〈e+iωkτ 〉 (A.65)

= 〈a〉2N
N∑

k=1

(1− k

N
)H(ω)k (A.66)

Now we can write the power spectrum contribution from the m 6= n terms of the sum-

mation. Substituting (A.64) & (A.66) into (A.51) yields:

P (ω)m 6=n = lim
T→∞

1

T
|G(iω)|2








N∑

m=1

N∑

n=1
︸ ︷︷ ︸

m>n

+
N∑

m=1

N∑

n=1
︸ ︷︷ ︸

m<n

[
〈amam〉〈e−iω(tm−tn)〉

]








= |G(iω)|2〈a〉2 lim
T→∞

N

T

(
N∑

k=1

(1− k

N
) (H(ω)∗)k +

N∑

k=1

(1− k

N
)H(ω)k

)

(A.67)

At this point, similar to the m = n case we take the limit of N going to infinity and T

going to infinity such that:

lim
T→∞

lim
N→∞

N

T
= ν (A.68)
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Notice that in this limit:

lim
N→∞

N∑

k=1

(1− k

N
)H(ω)k ≈

∞∑

k=1

H(ω)k =
H(ω)

1−H(ω)
(A.69)

Where we have used the geometric series formula in the last equation above. Therefore

the power spectrum contribution from the m 6= n terms of the summation can be written

as:

P (ω)m 6=n = ν|G(iω)|2〈a〉2
[(

H(ω)

1−H(ω)

)

+

(
H(ω)

1−H(ω)

)∗]

(A.70)

= 2ν|G(iω)|2〈a〉2Re
{

H(ω)

1−H(ω)

}

(A.71)

Thus the power spectrum of the filtered renewal process can be obtained by adding the

contribution from the m = n (A.55) & the m 6= n (A.71) terms of the power spectrum:

P (ω) = P (ω)m=n + P (ω)m 6=n

= ν|G(iω)|2
(

〈a2〉+ 2〈a〉2Re
{

H(ω)

1−H(ω)

})

(A.72)

If we now restrict the amplitudes of the individual neuron to be a constant value: 〈a〉2 =
〈a2〉 = 1. Also using the notation that: |G(iω)|2 ≡ G(ω) the power spectrum for the

individual renewal process is given by:

P (ω) = νG(ω)

(

1 + 2Re

{
H(ω)

1−H(ω)

})

(A.73)

This is the power spectral density given by (3.16) in Section 3.3.1.
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A.6 Spectrum of Ensemble of i.i.d Renewal Processes

is Scaled form of Individual Process

In this appendix we derive the power spectrum of a sum of independent filtered renewal

processes which each have a distinct, but constant, amplitude. As discussed in section 3.4,

this derivation and the implication that the resulting PSD of the superposition of identical

renewal processes is a scaled form of PSD of the constituent processes was developed in

[158]. In this section we perform the trivial extension of developing the spectrum when the

constituent renewal processes have distinct, but constant amplitudes.

Let the time series voltage at the MER be a linear combination of the voltages from the

individual neurons with variable amplitude as given by (3.23 ):

y(t)Σ =
N∑

n=1

αnyn(t) (A.74)

The autocorrelation function of the MER time series is given by:

RyΣ(t) = 〈yΣ(t)yΣ(t− t′)〉 − 〈yΣ(t)〉〈yΣ(t− t′)〉

= 〈
∑

n,l

αnαlyn(t)yl(t− t′)〉 −
∑

n,l

〈αnyn(t)〉〈αlyl(t)〉 (A.75)

We separate the double summation in both terms into N identical terms where the n

and l indices are identical and another where the indices are distinct. We then invoke

both the statistical independence of the firing times of different renewal processes and the

independence of the amplitude and firing times of a single renewal process.

RyΣ(t) = N〈α2〉 (〈y(t)y(t− t′)〉 − 〈y(t)〉〈y(t− t′)〉)

+
∑

n,l
n 6=l

〈αnyn(t)〉〈αlyl(t)〉 −
∑

n,l
n 6=l

〈αnyn(t)〉〈αlyl(t)〉

= N〈α2〉Ry(t) (A.76)

Where 〈α2〉 is the second moment of the amplitude distribution which is independent of

the firing times. Using the Weiner-Khinchtine theorem the power spectrum at the MER due
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to the superposition of iio ensemble renewal oscillators is given by:

PΣ(ω) = 〈α2〉NP (ω) (A.77)
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A.7 Spectral Equivalence of DPIM and renewal theory

In this Appendix we develop the power spectrum for a neuron that encodes information in

the gaps between its spikes as a Digital Pulse Interval Modulation encoder. We consider the

situation which (unlike telecommunications protocols) the pulses can occur at any time on

the continuous timeline. We show that the resulting spectrum in this limit is identical to

that of the renewal processes considered in chapter 3.

Digital Pulse Interval Modulation (DPIM) is a communications scheme where informa-

tion content is transmitted in the variable number of idle slot times between pulses [152].

The DPIM information transmission methodology is ideally suited for optical fibre commu-

nications where classical amplitude or frequency modulation techniques are non-trivial. The

wide bandwidth offered by optical fibre motivates the use of particularly narrow pulses with

low duty cycles which allows for low average, but high peak power. This property provides

accurate signal detection at the receiver end during transmission over a noisy channel [153].

Carrying the information between the pulses also eliminates the need for the pulse times to

be defined relative to a central clock.

These properties of robust transmission over noise, lack of a central clock and minimal en-

ergy expenditure are also ideal for information transmission of neurons. Indeed the concept

of neurons transmitting information in the space between firing events has been considered

as far back as [278] where it was shown that a DPIM coding scheme offers a far greater

channel capacity than a binary on/off keying (OOK) coding scheme. Fundamentally the

debate about rate vs time dependent coding is about how neurons encode information in the

timing between spikes. Nevertheless there is a key difference between neuron information ex-

change and DPIM on communications channels. DPIM processes are discrete time processes

embedded in continuous time. Although the signals being sent and received are occurring

in continuous time, the pulse intervals are constrained to be separated by a discrete number

of packets, termed slots or chips. Neurons have no such embedding and the firing times can

occur at any point along the continuous time line. This issue is philosophically complicated
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by the fact that at some fine enough level of temporal resolution a neuron must consider a

spike arriving at two different times to be the same spike.

The time intervals between pulses in DPIM are driven by some encoding strategy and thus

is strictly speaking deterministic. Nonetheless from the receiver’s perspective, who does

not know the message a priori, the series of gaps between the pulses is a random process.

Neurons are most likely similar in the sense that the action potential timings are generated

by highly nonlinear processes, with exceptionally rich and complex synaptic/dendritic con-

nections, such that from the ‘perspective’ of a neuron the arriving pulse times are random

variables. This is the basis for mathematical modeling of neuron firing times as stochastic

point processes.

The time history of DPIM, v(t), can be represented as follows [152]:

v(t) =
m=+∞∑

m=−∞
g(t− τmT ) (A.78)

Where g(t) is the pulse shape, characteristically a rectangle with a given duty cycle, T is

the slot length and τm is a set of random integers indicating when a pulse occurs in terms

of numbers of slots.

The power spectrum of this process contains both a continuous and discrete part which

are both functions of the energy spectrum, G(f), of the pulse shape. They are also both de-

pendent on the average pulse rate, νb, which is the inverse of the expected length (in number

of slots) between pulses. The continuous component, Rc(fT ), termed the Bartlett spectrum

in point process literature [279], is best understood from the Weiner-Khinchtine theorem as

the Fourier transform of the autocorrelation structure of the pulse times. The discrete com-

ponent forms a Dirac comb with Dirac delta distributions δ(· · · ) spaced fm = m/T, (m ∈ Z)

apart. This discrete component arises because the expectation of the signal is non zero

(E [v(t)] 6= 0) [280]. Intuitively the repetition of the Dirac delta pulses can be understood

because the discrete process is embedded in the continuous time, creating an effective Nyquist

frequency (the inverse of the slot time) for the frequency structure to be periodic about. The
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spectrum of the DPIM process is determined in [152] as:

SDPIM(f) =
1

T
|G(f)|2Rc,DPIM(fT )

︸ ︷︷ ︸

Continuous

+
+∞∑

m=−∞

1

T 2
|G(f)|2 ν2b δ(f − fm)

︸ ︷︷ ︸

Discrete

(A.79)

The Bartlett spectrum is given in [152] by the following evaluation of the Z transform on the

unit circle:

Rc,DPIM(u)
︸ ︷︷ ︸

Bartlett Spectrum

= νb

[

νb − 1 + 2Re

(

X(z)

∣
∣
∣
∣
z=e2πju

)]

(A.80)

Where X(z) can be understood to be the Z transform of the cumulative probabilities associ-

ated with the spacing (in number of slots) between two arbitrary pulses. We use an alternate

definition of X(z) defined in [281]:

X(z) = 1 +X(z)
∞∑

λ=0

p[λ]z−λ − νb

∞∑

λ=0

p[λ]
λ−1∑

k=0

z−k (A.81)

Where p[λ] represents the probability of the pulse interval being λ slots long. We algebraically

re-arrange (A.81) and evaluate the z transform on the unit circle as defined in (A.80) to show

that this term depends on the characteristic function associated with the pulse arrival time

random variables:

X(ej2πu) =
1

1−
∞∑

λ=0

p[λ]e−2πjuλ

−νb ·








∞∑

λ=0

p[λ]
λ−1∑

k=0

e−2πjuk

1−
∞∑

λ=0

p[λ]e−2πjuλ








︸ ︷︷ ︸

simplify

(A.82)

We will now develop a simplified expression for the bracketed term in (A.82) (labelled

simplify) by recognizing that the nested sum in the numerator can be re-written except at



A.7 Spectral Equivalence of DPIM and renewal theory 263

zero frequency using the geometric series formula and identifying that the probability mass

function, p[λ], must sum to unity:

∞∑

λ=0

p[λ]
λ−1∑

k=0

e−2πjuk =
∞∑

λ=0

p[λ]

(
1− e−2πjuλ

1− e−2πju

)

=

(

1−
∞∑

λ=0

p[λ]e−2πjuλ

)

1− e−2πju
(A.83)

Substituting (A.83) into the numerator of the bracketed part of (A.82) (labelled simplify)

and cancelling the common denominator & numerator term yields the following simpler

expression:








∞∑

λ=0

p[λ]
λ−1∑

k=0

e−2πjuk

1−
∞∑

λ=0

p[λ]e−2πjuλ








=
1

1− e−2πju
(A.84)

Therefore:

X(ej2πu) =
1

1−
∞∑

λ=0

p[λ]e−2πjuλ

− νb ·
1

1− e−2πju
(A.85)

Note the identity:

2Re

(
1

1− e−2πju

)

= 1 (A.86)

Thus taking the real part of (A.85) and using (A.86) yields:

2Re
[
X(e2πju)

]
= 2Re







1

1−
∞∑

λ=0

p[λ]e−2πjuλ







− νb (A.87)

Substituting (A.87) into (A.80), adding and subtracting unity yields:

Rc,DPIM(u) = νb






1 + 2Re







∞∑

λ=0

p[λ]e−2πjuλ

1−
∞∑

λ=0

p[λ]e−2πjuλ













(A.88)
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Thus we can write the power spectrum for the DPIM scheme in [152] as:

SDPIM(f) =
νb
T
|G(f)|2

[
+∞∑

m=−∞

νb
T
δ(f − m

T
)

+ 1 + 2Re







∞∑

λ=0

p[λ]e−2πjfλT

1−
∞∑

λ=0

p[λ]e−2πjfλT







]

(A.89)

Note that if the pulse slot time approach zero, the expected gap (in units of the number

of slots) between pulses will approach infinity. Thus the average rate of pulses (in units

of the inverse of the number of slots) νb, will also approach zero. These limits will both

converge to zero such that their ratio remains the statistical average rate of the number of

pulses, N(t), in units of time:

lim
T→0
νb→0

νb
T

= ν. = lim
t→∞

E

(
N(t)

t

)

(A.90)

Note that as the pulse slot time approaches zero the discrete component of the spectrum will

change from a train of Dirac delta pulses (spaced 1/T apart) to a single Dirac delta pulse

(the m = 0 solution) centred at zero frequency:

lim
T→0
νb→0

+∞∑

m=−∞

ν2b
T 2
δ(f − m

T
) −→ ν2δ(f) (A.91)

Also note that reducing the pulse slot length to zero allows the pulse times to occur at any

point on the continuous time line. Thus the characteristic function will transform from a

periodic DTFT for a discrete random variable to a non-periodic continuous Fourier transform

for a continuous random variable:

∞∑

λ=0

p[λ]e−2πjuλ −→
∫ +∞

0

p(t)e−2πftdt ≡ H(ω) (A.92)

Where H(ω) is the characteristic function of the Inter Spike Interval (ISI) of firing times.

Thus the DPIM spectrum in the continuum reduces to:
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lim
T→0
νb→0

SDPIM(f) = ν|G(f)|2
[

1 + 2Re

(
H(ω)

1−H(ω)

)

︸ ︷︷ ︸

Rc,DPIM

+νδ(f)

]

(A.93)

A.7.1 Spectral Effect of Jittering the Neural DPIM Spectra

In this section we explore how robust the spectral features of a neuron following renewal

statistics are to noise. The noise sources on a neuron in a network are exceptionally com-

plex. We model noise effects to the PIM encoding scheme in the simplest possible fashion of

Gaussian displacements of the firing times. In the most general sense we can consider that

noise will introduce variation to the membrane voltage, which in turn will introduce varia-

tion to when the neuron reaches threshold and fires, thus jittering the firing times. These

ideas were formalised in [282] with a leaky integrate and fire model of a neuron subject to

Gaussian white noise input. We show that the effect of the jittering is to attenuate, but not

distort, the non-Poisson features of the Bartlett spectrum.

We consider the effect of the jittering on the spectral properties of the Bartlett spectrum

rather than the full time series power spectrum. This is equivalent to considering the ac-

tion potentials to be Dirac delta pulses (g(t) = δ(t), |G(f)|2 = 1). This spectrum can be

determined with aid from the Fundamental Isometry Theorem. Briefly this theorem allows

for the determination of the spectrum of a marked point process when the spectrum of the

original process and the statistics of the marks are known. It can be shown [277] that the

jittering is easily accounted for as follows:

Rc,DPIM(ω)jittered = |φz(2πf)|2Rc,DPIM(ω) + ν(1− |φz(2πf)|2) (A.94)

We consider that the firing times are independently jittered by a Gaussian random vari-

able with mean µJ and variance σ2
J. Thus the absolute value squared of the characteristic

function is |φz(2πf)|2 = e−σ2
j f

2

. Note that the effect of jittering is to randomise firing pat-

terns, remove correlation structure and thus make the observed firing times more uniform.
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Using (A.94) the Gaussian jittered Bartlett spectrum is given by:

Rc,DPIM(ω)jittered = ν

[

1 + 2e−σ2
jω

2

Re

(
H(ω)

1−H(ω)

)]

(A.95)

There are two points to notice about (A.95). Firstly jittering removes the non-Poisson

structure, which represents deviations from uniformly distributed patterns, from the Bartlett

spectrum at a rate exponentially proportional to the jittering variance. Secondly jittering

has no effect on the Bartlett spectrum of a Poisson process, which already has uniform dis-

tributed firing times.

Figure A.5 shows the jittered Bartlett spectrum of Weibull processes with shape param-

eters of k=5 (pseudo-periodic) & k=10 (strongly periodic) for different strengths of jittering

(σJ = 0.01, 0.025, 0.05 seconds). As a comparison the time constant of a leaky integrate and

fire model of a Sub Thalamic Nucleus is 0.01 seconds [182]. Notice that, as expected, the

larger the variance of jitter the more the features of the Bartlett spectra are reduced but not

distorted. Notice also that the spectra of the more periodic Weibull process is more robust

to jittering. This intuitively makes sense, as we expect it would require jitter of a higher

variance to transform the more ‘strongly’ periodic processes to a maximally random Poisson

process.

This result shows that the spectra of both the maximum (Poisson) and minimum (purely

periodic) information entropy firing distributions are highly resistant to firing time jitter,

whereas patterns in between these extremes are sensitive. This is especially true for nearly

Poisson (k ≈ 1) firing patterns. This is interesting for neural spectral feature selection

because neurons can have highly variable firing patterns under different anatomical and

physiological conditions. For example cortical neurons alone can display firing statistics

ranging from Poisson to weakly periodic depending on anatomical area, anaesthetic state

and behavioural task [283].
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A.8 Simplification of Residual Correlations

In this section we show how the calculation of the residual correlations required for the ho-

motopy algorithm (section 4.4.1) and the InCrowd algorithm (section 4.4.2) can be efficiently

computed.

We can speed up the calculation of the residual correlations by exploiting the fact that

our system matrix, A, is a concatenation of convolution matrices. Notice that for a single

convolution matrix, Ai with a single solution vector xi we can write the matrix vector

product using Fourier Transforms as:

Aixi = F−1 {F {gi} (ω) · F {xi} (ω)} (t) (A.96)

With the use of the Fast Fourier Transform this reduces our operation count from roughly

2M2 to Mlog(M). Similarly we can write the correlation of the entire system with an

estimate of the firing time vector x̂ as:

(y −Ax̂) = y −
M∑

i=1

(
F−1 {F {gi} (ω) · F {x̂i} (ω)} (t)

)

︸ ︷︷ ︸

z

(A.97)

We now work out the residual correlation. Due to the re-ordering introduced by the

transpose of the system matrix, we must re-order elements. Introducing the transforma-

tion operator: T̂ [(x0, x1, x2, · · · , xN)] = (xN , xN−1, xN−2, · · · , x0), we can write the residual

correlation associated with Ai as:

ci = T̂
[

F−1
{

F {gi} (ω) · T̂ [F {z} (ω)]
}

(t)
]

(A.98)

The residual correlation can now be written as:

C = AT (Ax− y) =
[
cT1 , c

T
2 , · · · cM

]T
(A.99)



268 Appendices

A.9 Deriving NMP for a Superposition of Renewal

Processes

In this Appendix we develop closed form expressions for the full spectrum and zero frequency

value of the first NMP, ǫ1(ω), for a superposition of renewal processes.

Recall from (2.13) & (2.29) that the first generalised NMP is given by:

ǫ1(ω) =

√
Λ0

2

√

P (ω)2 +H{P (ω)} (ω)2 (A.100)

Where: Λ0 =
1

2π

∫ ∞

−∞
ω2P (ω)dω (A.101)

Recall from (3.24) that the resulting power spectrum of a super-position of renewal

processes, PΣ(ω), is given by:

PΣ(ω) = Nν〈a2〉G(ω)
[

1 + 2Re

{
H(ω)

1−H(ω)

}]

Recall from section 2.4 that the NMP requires a power spectrum normalised such that
∫ +∞
−∞ P (ω)dω = 2π. Therefore the normalised spectrum is given by:

PΣ,norm(ω) =
2πG(ω)

[

1 + 2Re
{

H(ω)
1−H(ω)

}]

∫ ∞

−∞
G(ω)

[

1 + 2Re

{
H(ω)

1−H(ω)

}]

dω

(A.102)

The second relaxation parameter for a super-position of renewal processes is therefore

given by combining (A.101) & (A.102):

Λ0 =

∫ +∞

−∞
ω2G(ω)

[

1 + 2Re

{
H(ω)

1−H(ω)

}]

dω

∫ +∞

−∞
G(ω)

[

1 + 2Re

{
H(ω)

1−H(ω)

}]

dω

(A.103)

Therefore we may calculate the generalised NMP associated with a super-position of
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renewal processes by combining (A.100),(A.103) & (A.102):

ǫ1,Σ(ω) = π ·

√
√
√
√
√
√
√
√

∫ +∞

−∞
ω2G(ω)

[

1 + 2Re

{
H(ω)

1−H(ω)

}]

dω

(∫ +∞

−∞
G(ω)

[

1 + 2Re

{
H(ω)

1−H(ω)

}]

dω

)2

×
√
(

G(ω)

[

1 + 2Re

{
H(ω)

1−H(ω)

}])2

+H
{

G(ω)

[

1 + 2Re

{
H(ω)

1−H(ω)

}]}

(ω)2

(A.104)

This expression (A.104) is far too complicated to allow simple insight into how the firing

statistics alter the NMP spectrum, beyond identifying that this spectrum is explicitly a func-

tion of these firing statistics. We consider the simpler case of the Zero Frequency component

of the first NMP (ǫ1,Σ(0)), which we used to compare states of the STN in sections 2.9.3-2.9.4.

By taking the Maclaurin series approximation (to second order) of the correlation function

it can be shown [157]:

lim
ω→0

(

1 + 2Re

{
H(ω)

1−H(ω)

})

= ν2σ2 = C2
v , (A.105)

where, ν is the mean firing rate, σ2 is the variance of the ISI and Cv is the coefficient

of variation of the ISI. Using (A.104) and (A.105) the zero frequency component, ǫ1,Σ(0), of

the first NMP is given by:

ǫ1,Σ(0) = πG(0)C2
v ·

√
√
√
√
√
√
√
√

∫ +∞

−∞
ω2G(ω)

[

1 + 2Re

{
H(ω)

1−H(ω)

}]

dω

(∫ +∞

−∞
G(ω)

[

1 + 2Re

{
H(ω)

1−H(ω)

}]

dω

)2 (A.106)
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Figure A.5: Rate normalised jittered Bartlett Spectrum of a Weibull process with shape

parameters (k) = 5 & 10, mean firing rate of 30Hz for different strengths of jittering (σJ).
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[264] M. A. Carreira-Perpiñán. Fast nonparametric clustering with gaussian blurring mean-

shift. In Proceedings of the 23rd International Conference on Machine Learning, ICML

’06, pp. 153–160 (ACM, New York, NY, USA, 2006).

[265] J. Fan, S. Upadhye, and A. Worster. Understanding receiver operating characteristic

(roc) curves. Canadian Journal of Emergency Medicine 8(01), 19 (2006).

[266] A. P. Bradley. The use of the area under the roc curve in the evaluation of machine

learning algorithms. Pattern recognition 30(7), 1145 (1997).

[267] B. P. Bean. The action potential in mammalian central neurons. Nature Reviews

Neuroscience 8(6), 451 (2007).



References 297

[268] A. P. Bradley. Roc curves and the χ2 test. Pattern Recognition Letters 17(3), 287

(1996).

[269] R. Q. Quiroga. What is the real shape of extracellular spikes? Journal of neuroscience

methods 177(1), 194 (2009).

[270] S. Janke and F. Tinsley. Introduction to Linear Models and Statistical Inference (Wiley,

2005).

[271] C. G. Goetz, S. Fahn, P. Martinez-Martin, W. Poewe, C. Sampaio, G. T. Stebbins,

M. B. Stern, B. C. Tilley, R. Dodel, B. Dubois, et al. Movement disorder society-

sponsored revision of the unified parkinson’s disease rating scale (mds-updrs): Process,

format, and clinimetric testing plan. Movement Disorders 22(1), 41 (2007).

[272] P. M. Broersen and S. De Waele. Time series analysis in a frequency subband. Instru-

mentation and Measurement, IEEE Transactions on 52(4), 1054 (2003).

[273] P. M. Broersen. Automatic spectral analysis with time series models. Instrumentation

and Measurement, IEEE Transactions on 51(2), 211 (2002).

[274] M. Wilson. Mrc psycholinguistic database: Machine-usable dictionary, version 2.00.

Behavior Research Methods, Instruments, & Computers 20(1), 6 (1988).

[275] D. A. Balota, M. J. Yap, K. A. Hutchison, M. J. Cortese, B. Kessler, B. Loftis, J. H.

Neely, D. L. Nelson, G. B. Simpson, and R. Treiman. The english lexicon project.

Behavior research methods 39(3), 445 (2007).

[276] C. J. Davis. N-watch: A program for deriving neighborhood size and other psycholin-

guistic statistics. Behavior research methods 37(1), 65 (2005).

[277] A. Ridolfi and M. Win. Ultrawide bandwidth signals as shot noise: A unifying approach.

IEEE Journal on selected areas in communications 244, 899 (2006).

[278] D. MacKay and W. McCulloch. The limiting information capacity of a neuronal link.

The bulletin of mathematical biophysics 142, 127 (1952).



298 References

[279] G. Lindgren. Stationary Stochastic Processes (CRC Press, 2013).

[280] M. Simon and S. Million. Power spectrum of unbalanced nrz and biphase signals in the

presence of data asymmetry. The Telecommunications and Data Acquisition Progress

Report pp. 42–126 (1996).

[281] G. Cariolaro and G. Pierobon. Stationary symbol sequences from variable-length word

sequences. IEEE Transactions on Information Theory 232, 243 (1977).

[282] W. Gerstner, W. Kistler, R. Naud, and L. Paninski. Neuronal Dynamics: From Single

Neurons to Networks and Models of Cognition (Cambridge University Press, 2014).

[283] P. DiLorenzo and J. Victor. Spike Timing: Mechanisms and Function (CRC Press,

2013).


	List of Abbreviations
	List of Figures
	List of Tables
	Introduction
	Thesis Motivation
	Thesis Motivation In A Nutshell

	Thesis Hypothesis
	Thesis Approach
	Entire vLFP (LFP + Neuronal Spikes) Model-Free Analysis
	Entire vLFP (LFP + Neuronal Spikes) Model-Based Analysis
	Spike-Only analysis of the vLFP

	Thesis Structure Overview
	Thesis Scope
	Contribution of Thesis

	Model-Free Entire vLFP Analysis
	Chapter Summary
	Chapter Overview
	Introduction
	Mori-Zwanzig Kinetic Equations
	Analysis of the Non-Markov Parameters
	Explicit Calculation of ZF-NMP1 for physical systems
	Simple Harmonic Oscillation Driven by White Noise
	Band Limited White Noise
	Ideal All Pole Filter

	Numerical Determination of NMP from Sampled Time Series
	Discussion of NMP
	NMP analysis of vLFPs
	Experimental Methodology
	Experiment 1: Semantically Similar & Different Stimuli
	Experiment 1: Results
	Experiment 2: Word/NonWord Stimuli
	Experiment 2 Results

	Experiment Conclusion
	Conclusion & Thesis Contribution

	Model-Based Entire vLFP Analysis
	Chapter Summary
	Chapter Overview
	Renewal Processes Models of Neural Time Series
	Introduction
	Analysis Of the Bartlett Spectrum
	Analysis of the Correlation Spectrum

	Super-Position of Renewal Processes
	Spectral Density Algorithm
	Step 1: Correlation Spectrum Estimation
	Step 2: Solving the Volterra Integral Equation
	Step 3: Mean Estimation
	Degeneracy of Poisson Processes

	Validation of Methodology
	Variation of Statistics

	Application to Extra-Cellular Recordings
	Simplified vLFP Model
	Results
	Analysis

	Numerical Simulation Conclusion
	Conclusion & Contributions

	Spike-Only vLFP Analysis
	Chapter Summary
	Chapter Overview
	Introduction
	Overview of Spike Sorting
	Model Development

	Basis Pursuit De-Noising Approaches to Spike Time Detection
	Positive Homotopy Algorithm
	InCrowd Algorithm with Truncated Newton Interior Point
	Positive Dual Augmented Lagrangian Method

	Developing The Dictionaries
	Multi-Scale Continuous Wavelet Transform
	Diffusion Mapping
	Mean Shift

	Results
	Simulation Data
	ROC Curve Criteria
	Comparison of BPDN strategies
	Comparison of CWT and BPDN
	Comparison of Integrated Approach against SPC
	Application of BPDN to Real Data
	Summary of Results

	Conclusion & Contributions

	Conclusion
	Summary of Methods
	Conclusion of Analysis

	Contributions
	Limitations
	Extensions and Future Work
	Combining Information From Multiple Scales
	Development of potential bio-markers from BPDN
	Efficacy of developed metrics as CLDBS biomarkers


	Appendices
	Deriving  Relaxation Parameter
	Deriving  Relaxation Parameter
	Neuro-Linguistic Experiment 2 Procedure
	Asymptotic Behaviour of RDF:
	Derivation of Power Spectrum of a Single Filtered Renewal Process
	Spectrum of Ensemble of i.i.d Renewal Processes
	Spectral Equivalence of DPIM and renewal theory
	Spectral Effect of Jittering the Neural DPIM Spectra

	Simplification of Residual Correlations
	Deriving NMP for a Superposition of Renewal Processes

	References

