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Deriving Lindblad master equations with Keldysh diagrams:
Correlated gain and loss in higher order perturbation theory
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Motivated by correlated decay processes producing gain, loss, and lasing in driven semiconductor quantum
dots [Phys. Rev. Lett. 113, 036801 (2014); Science 347, 285 (2015); Phys. Rev. Lett. 114, 196802 (2015)], we
develop a theoretical technique by using Keldysh diagrammatic perturbation theory to derive a Lindblad master
equation that goes beyond the usual second-order perturbation theory. We demonstrate the method on the driven
dissipative Rabi model, including terms up to fourth order in the interaction between the qubit and both the
resonator and environment. This results in a large class of Lindblad dissipators and associated rates which go
beyond the terms that have previously been proposed to describe similar systems. All of the additional terms
contribute to the system behavior at the same order of perturbation theory. We then apply these results to analyze
the phonon-assisted steady-state gain of a microwave field driving a double quantum dot in a resonator. We
show that resonator gain and loss are substantially affected by dephasing-assisted dissipative processes in the
quantum-dot system. These additional processes, which go beyond recently proposed polaronic theories, are in
good quantitative agreement with experimental observations.
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I. INTRODUCTION

Microwave-driven double quantum dots (DQD) have
demonstrated a rich variety of quantum phenomena, including
population inversion [1–5], gain [6–8], masing [9–14] and
Sysiphus thermalization [15]. These processes are well un-
derstood in quantum optical systems; however, mesoscopic
electrostatically defined quantum dots exhibits additional
complexity not typically seen in their optical counterparts,
arising from coupling to the phonon environment.

A notable experimental example of this, which motivates
our work, is an electronically open DQD system coupled to
a driven resonator, as illustrated in Figs. 1(a) and 1(b) [6].
Substantial gain in the resonator field was observed when
the DQD is blue-detuned with respect to the resonator and
capacitively biased to induce substantial population inversion.
The observed gain is attributed to correlated emission of a
resonator photon and a phonon into the semiconductor medium
in which the DQD system is defined. This process ensures
conservation of energy, since the phonon carries the energy
difference, h̄(ωq − ωr ), between the energy of the qubit and
the energy of the resonator phonon.

In some experimental regimes of Ref. [6], the observed
gain is well described by a theory based on a canonical
transformation to a polaron frame [16]. In this frame, conven-
tional quantum-optics techniques and approximations (Born–
Markov, secular, etc.) are used to derive dissipative Lindblad
superoperators that are quadratic in both the qubit-phonon
bath coupling strength βj and in the qubit-resonator coupling
strength g. However, the same theory fails to describe the
substantial loss (subunity gain) in other experimental regimes,
which strongly suggests that there are additional dissipative
processes that are not captured in the polaron frame.
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One problem with relying on a canonical transformation as
the basis for a perturbative expansion is that it is tailored to a
specific frame, which emphasizes some processes over others.
It is therefore not guaranteed to find all dissipative processes
that occur at a given order in perturbation theory.

In this paper we present a systematic approach to derive a
Lindblad-type master equation at higher perturbative orders,
which contains all relevant correlated dissipative processes at
a given order. We use the Keldysh real-time diagrammatic
technique to calculate the perturbative series and explicitly
evaluate all fourth-order diagrams that generate correlated
dissipation. In doing so, we make explicit the link between
the Keldysh self-energy and the Lindblad superoperators.
We then apply this technique to the experimental situation
described above, showing that the additional terms we find
quantitatively explain anomalous gain and loss profiles in
driven DQD-resonator systems.

This paper is structured as follows:
Section II introduces the model system that motivates this

work; namely, a single artificial two-level system (qubit) cou-
pled to a resonator as well as a dissipative environment [6,11].

Section III derives the Keldysh self-energy superoperator
in terms of irreducible Keldysh diagrams and decomposes it
into a sum of Lindblad superoperators to form the Keldysh–
Lindblad master equation. The complete set of fourth-order
Keldysh–Lindblad dissipators, presented in Eq. (20), is the
central theory result of this paper.

Section IV introduces resonator driving and solves the
steady-state Keldysh–Lindblad master equation for a driven,
DQD-resonator system in a mean-field approximation.

Section V shows that the additional Lindblad dissipators
that arise in the Keldysh analysis of the Dyson series
quantitatively account for the of gain and loss in a driven
DQD-resonator system across all experimental regimes of
Ref. [6].
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FIG. 1. (a) Schematic showing a double quantum dot (DQD)
coupled to a cavity resonator mode, and to source and drain leads.
(b) An electron (black dot) tunnels from the source lead to the DQD
state |L〉, which couples to the DQD state |R〉 with matrix element
�q , and then tunnels to the drain, leaving the DQD in the empty state
|∅〉. Also shown are interdot bias εq and coupling rates �L and �R to
metallic leads, with chemical potentials μL and μR . (c) Dissipative
processes due to phonon emission (dashed arrows) responsible for
rates in Eq. (22). Each processes is correlated with resonator photon
creation (downward wiggly arrows) or annihilation (upward wiggly
arrows); γ

(ωq∓ωr )
↓± correspond to DQD relaxation from |e〉 to |g〉, while

γ
(ωr )
ϕ− corresponds to DQD dephasing, leaving the populations of |e〉

and |g〉 unchanged.

We finish in Sec. VI with a discussion of our results;
specifically, the correlated decay rates we obtain, which
describe the dynamics of qubit and resonator.

The Keldysh and Lindblad formalisms are each well used
in their respective research communities; however, the link
between them is usually not made explicit. Equations of
the Lindblad type are the generators of completely posi-
tive, trace-preserving dynamics [17] and a wide variety of
techniques have been developed to analyze the dynamics
of open quantum systems under the actions of Lindblad
master equations, including the input-output [18] and cascaded
scattering matrix, Lindbladian and Hamiltonian (SLH) for-
malisms [19], quantum trajectories and measurement [20–24],
and phase-space methods [25]. There are widely used but
somewhat heuristic techniques in quantum optics to derive
Lindblad master equations at second order in the bath
coupling [25]. Going beyond this approximation requires a
well-formulated perturbative approach.

The Keldysh diagrammatic technique [26] is widely
used in condensed-matter physics as a tool to calculate
Green’s functions of nonequilibrium systems [27]. It has
been previously applied with great success for calculating
the properties of mesoscopic quantum systems [13,28–31].
However, in these previous cases, the resulting master
equations are not typically expressed explicitly in the
Lindblad form. Furthermore, these derivations are either
limited to second order or include only a small class of
diagrams for which closed-form expressions are available.

In contrast, here we develop a systematic approach to ac-
count for all Keldysh diagrams at a particular order, with which
to derive a master equation that is explicitly in Lindblad form.

This paper therefore has the subsidiary objective of making
explicit the connection between the Keldysh and Lindblad
approaches to open quantum systems. As such, we have
provided extensive appendixes giving the technical details of
our calculations. As we show, Keldysh perturbation theory
is a powerful approach for deriving consistent Lindblad
dissipators at arbitrary order. It is especially well suited for
the treatment of open quantum systems in which correlated
dissipative processes, which go beyond the usual second order
in perturbation theory, are significant. As such, in addition
to the specific problem of correlated gain and loss in a
driven DQD resonator, we foresee immediate applications of
this technique in numerous contexts, such as cotunneling in
open quantum dots [32], charge transport through chains of
Josephson junctions [33], or the calculation of correlated decay
rates in multilevel circuit-QED systems [34].

II. DRIVEN DISSIPATIVE RABI MODEL

The Rabi Hamiltonian describe a single two-level system
or qubit coupled to a harmonic mode. It is one of the
main workhorses of modern quantum physics and describes
such diverse situations as natural atoms interacting with
visible light [18], superconducting artificial atoms coupled to
microwave resonators [35], or semiconductor double quantum
dots coupled to superconducting resonators [36]. Here we
additionally consider the situation where the two-level system
is coupled to an environment, inducing dissipation in the
dynamics. Here we adopt the language of a semiconducting
open double quantum dot, but the technique presented here is
applicable to many other situations that are described by the
Rabi model.

The Hamiltonian of a DQD coupled to a superconducting
resonator, expressed in the DQD position basis {|R〉,|L〉}, is
H = HS + HB + HI , with

HS = ωra
†a − εqσ

(p)
z /2 + �qσ

(p)
x /2, (1)

HB =
∑

modes j
ωjb

†
j bj , (2)

HI = gσ (p)
z (a + a†)/2 + σ (p)

z X/2, (3)

where σ
(p)
z = |L〉〈L| − |R〉〈R| is the dipole operator of the

DQD (also referred to as a qubit), σ
(p)
x = |R〉〈L| + |L〉〈R|

induces transitions between its two charge states, and a is
an annihilation operator for microwave photons in the cavity
mode at frequency ωr . Here the position states indicate the
presence of a single charge either on the right or on the left
dot. The DQD has an asymmetry energy between its position
states of εq , and they are tunnel coupled with strength �q .
The coupling between DQD and resonator is described by the
dipolar interaction, with coupling strength g. Here, as in the
rest of the paper, we use the convention h̄ = 1.

The DQD couples to a bath of environmental modes bj with
eigenfrequencies ωj via the system-bath coupling term

X =
∑

j

βj (bj + b
†
j ). (4)

For descriptive purposes we will assume the environment to
be a bath of phonons because this is generally the dominant
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source of dissipation for charge-based quantum dots [2]. In
general, the DQD environment could include other electronic
fluctuations, such as charged intrinsic two-level defects [37,38]
or charge traps on surfaces [39].

In addition to the coupling of the DQD to a bath, the
microwave resonator will also be coupled to a dissipative en-
vironment leading to loss and spurious excitation of resonator
photons. Also, in the experiments motivating this work, the
quantum dot was subject to an external bias, leading to charge
transport through the DQD as illustrated in Fig. 1(b). Both
these processes will be included in the master equation and we
describe them in Secs. III B and III C.

We write the interaction Hamiltonian HI as a sum of
the intrasystem interaction HI,S (i.e., between the qubit and
resonator), and the interaction between the system and phonon
environment HI,B,

HI = HI,S + HI,B

= 1

2
g(cos θ σz + sin θ σx)(a + a†)

+ 1

2
(cos θ σz + sin θ σx)

∑
j

βj (bj + b
†
j ), (5)

where we have decomposed σ
(p)
z = cos θ σz + sin θ σx into the

eigenoperators, σx = |e〉〈g| + |g〉〈e| and σz = |e〉〈e| − |g〉〈g|
of the bare system-bath Hamiltonian

H0 = HS + HB (6)

= ωra
†a − ωqσz/2 +

∑
j

ωjb
†
j bj , (7)

where the bare qubit level splitting is ωq = (ε2
q + �2

q)1/2 and
the qubit mixing angle tan θ = �q/εq , with the convention
0 � θ < π . The qubit eigenstates are given by

|g〉 = cos
θ

2
|L〉 − sin

θ

2
|R〉,

|e〉 = sin
θ

2
|L〉 + cos

θ

2
|R〉.

In the following we perform perturbation theory in the
interaction Hamiltonian HI. We are thus assuming that
the qubit resonator coupling is weak compared with their
detuning, g < |ωq − ωr |. Additionally, we make the usual
weak-coupling approximation between the system and the
phonon environment. The standard situation in experiments
is ω > g � βj , where ω represents all relevant system and
bath frequencies.

III. LINDBLAD SUPEROPERATORS FROM KELDYSH
SELF-ENERGY

The objective of this paper is to derive a Lindblad master
equation

ρ̇ =
∑
m

Lmρ

= L2ρ + L4ρ + Lresρ + Lleadsρ, (8)

for the evolution of the (slowly varying) system density matrix
ρ, where the index m labels orders of perturbation theory.

In particular, L2 includes dispersive and dissipative terms at
second order in HI, L4 includes dissipative terms at fourth
order in HI, Lres accounts for the resonator decay, and Lleads

describes a transport bias across the DQD, as in Ref. [6].
The superoperators Lm are composed of a linear combi-

nation of coherent evolution processes, expressed as com-
mutators with some effective Hamiltonian, and dissipative
evolution, expressed in the form of Lindblad dissipators

D[ô]ρ = ôρô† − (ô†ôρ + ρô†ô)/2. (9)

For the purposes of this paper, we will refer to any term of the
form in Eq. (9) as a Lindblad dissipator, although we note that,
at higher order, we find such terms with negative coefficients.

Keldysh perturbation theory provides a systematic way to
evaluate self-energy terms in the Dyson equation, in order to
derive the dynamical master equation for the system density
matrix. To determine the system evolution, we evaluate the
Keldysh self-energy superoperator 
, which is written as a
perturbation series in the interaction Hamiltonian. Terms in
this series are expressed in the graphical language of Keldysh
diagrams in order to keep track of all relevant contributions
and avoid double counting.

To begin the analysis, the Keldysh master equation for the
density matrix in the Schrödinger picture, ρ(S)(t), is given by

ρ̇(S)(t) = − i[H0,ρ
(S)(t)] +

∫ t

t0

dt1ρ
(S)(t1)
(t1,t), (10)

where the superoperator 
 is the self-adjoint self-energy,
which acts on the state from the right. A derivation of Eq. (10)
can be found in Appendix A 1. In the interaction picture defined
by H0, this becomes

ρ̇(I )(t) =
∫ t

t0

dt1ρ
(I )(t1)
(t1,t). (11)

Hereafter, we drop the interaction-picture label (I ). In what
follows, we seek to express the self-energy superoperator on
the right-hand side (RHS) of Eq. (11) in the form of dispersive
terms (i.e., commutators with the Hamiltonian) and dissipative
terms (i.e., Lindblad superoperators), as in Eq. (8).

A. Keldysh self-energy

As described in Appendix A 1, the self-energy superoper-
ator 
(t1,t) is given by the sum of irreducible superoperator-
valued Keldysh diagrams, each of which evolves the state from
an early time t1 to the current time t . We evaluate 
(t1,t) to
a given order of perturbation theory by truncating the sum at
that order.

Keldysh superoperators are represented diagrammatically
as two parallel lines representing the time evolution of the
forward (〈·|) and reverse (|·〉) components of the density
matrix. Vertices placed on the lines correspond to the action
of the interaction Hamiltonian, so at mth order of perturbation
theory there are m interaction vertices. These act at specific
interaction times tj over which we integrate. Tracing over
bath degrees of freedom corresponds to contracting vertices
together, indicated by dashed lines.
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To evaluate the time integral appearing in the Keldysh
master equation (11), we note that each Keldysh diagram
takes the form of a convolution kernel with oscillatory time-
dependence, so that the Laplace transform in the time-domain
becomes a product of terms in Laplace space, i.e., ρ(t) → ρs .
In Laplace space, Eq. (11) becomes

sρs − ρ(0) =
∑
ωj

ρs+iωj

̄s, (12)

where ωj labels a set of system frequencies.
One approach to the solution of these equations was

presented in Ref. [4] starting from the ansatz

ρs = ρ̄0

s
+

∑
ωj

ρ̄j

s + iωj

. (13)

In brief, the unknown residues in Eq. (13) are found by
comparing the poles on both sides of Eq. (12) and imposing
a self-consistency condition thereupon. This self-consistent
solution ultimately truncates the summation in Eq. (13), which
corresponds to a secular or rotating-wave approximation.
Further details are given in Appendix A 3.

In the experiments that motivate this work, the steady-state
response of the system determines the phenomenology, so we
focus here on the slow dynamics of the system.

Retaining only the pole at s = 0 corresponds to the conven-
tional secular approximation made in deriving the quantum
optical master equation [4], so we use the quasistatic ansatz

ρs = ρ̄/s, (14)

so that ρ̄ captures the quasistatic evolution associated with
the weak coupling to the bath.

We now describe the results of evaluating Lm at each order.

1. First order

There are no dissipative terms surviving the perturbative
treatment at first order in perturbation theory, since for any
thermal state of the environment one finds 〈bj 〉th = 〈b†j 〉th =
0 [18,25]. This is generally true for any odd moments of bath
operators.

In our case, the perturbative interaction Hamiltonian HI

also contains coherent terms between the qubit and resonator,
i.e., terms that couple two parts of the system to each other.
In this case the above reasoning no longer applies and some
terms might survive even in first order of perturbation theory.
However, these terms carry a rapidly rotating time dependence.
Making a rotating-wave approximation [consistent with our
approximate ansatz, Eq. (14)] eliminates these terms also. It
follows that L1ρ̄ = 0.

2. Second order

In second-order perturbation theory there are four classes
of diagrams to consider, depicted in Fig. 2(a). Evaluating these
diagrams generates a dissipative contribution arising from
system-phonon interactions, as well as a coherent contribution
from the dispersive, coherent terms arising from qubit-
resonator coupling. We provide worked examples evaluating

(a)

(b)

FIG. 2. (a) Diagrams representing all second-order terms in the
Keldysh self-energy. The red dashed line indicates that bath operators
in the vertices connected by it are contracted together to form a
bath spectral function. (b) Two examples of irreducible fourth-order
Keldysh diagrams. All 32 irreducible diagrams at this order can be
generated from the two shown by swapping subsets of interaction
vertices between the lower and upper lines.

these diagrams in Appendix A 4. At second order we write,

L2ρ̄ = L2,dissρ̄ − i[H2,ρ̄], (15)

where we specify L2,diss and H2 below.
Second-order dissipative terms. If the vertices in Fig. 2(a)

represent the interaction with the underlying phonon bath
HI,B , the diagrams yield the usual dissipative terms in
the master equation for a two-level system coupled to an
environment [18,40]. They evaluate to (cf. Appendix A 4 a)

L2,dissρ̄ = γ↓,2D[σ−]ρ̄ + γ↑,2D[σ+]ρ̄ + γϕ,2D[σz]ρ̄, (16)

where the second-order rates are

γ↓,2 = sin2 θ C(ωq)/2,

γ↑,2 = sin2 θ C(−ωq)/2, (17)

γϕ,2 = cos2 θ C(0)/2,

and in which the spectral function of the phonon environment
is

C(ω) =
∫ ∞

−∞
dteiω(t1−t2)〈X̂(t1)X̂(t2)〉

= 1

2
J (ω)[nth(ω) + θ (ω)],

where X̂(t) = ∑
j βj (bj e

−iωj t + b
†
j e

iωj t ) is the bath-coupling
operator in the interaction picture, J (ω) is the spectral density,
and 〈b†j bj 〉 = nth(ωj ) = (eβωj − 1)−1 is the Bose distribution
with β = 1/kBT . θ (ω) is the step function. See Appendix A 2
for more details.

Second-order coherent terms. If the vertices in Fig. 2(a)
represent dot-resonator interactions from HI,S, most diagrams
carry fast oscillatory terms, so that they vanish in a rotating-
wave approximation. The residual, stationary terms contribute
to the imaginary part of the self-energy, leading to a renormal-
ization of the Hamiltonian. We find (cf. Appendix A 4 b)

H2 = χ
ωq

ωq + ωr

(σz + 2a†aσz), (18)
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where the dispersive shift is χ = g2 sin2 θ/(4ωq − 4ωr ),
similar to the standard treatment of the Jaynes–Cummings
model in the dispersive regime [35]. The difference between
our result (18) and the usual Jaynes–Cummings dispersive
shift lies in the inclusion of counter-rotating terms in the
system-bath coupling (5), leading to the additional ratio of
system frequencies in Eq. (18). Our result does not make
the rotating-wave approximation in this coupling and thus
includes both the usual dispersive as well as the Bloch–Siegert
shift [41,42] in one analytic expression.

3. Third order

Third-order diagrams can again contribute due to the
system-system coupling terms in our perturbative interaction
Hamiltonian. Their contributions can be at order ∼g3 or ∼gβ2,
i.e., they are at even order in HI,B and odd order in HI,S. These
terms contribute Hamiltonian corrections, i.e., small energy
shifts and changes of the bare system parameters, so we ignore
them here. Instead, we assume that these contributions are
implicitly included in renormalized experimental parameters.
Thus we take L3ρ̄ = 0.

4. Fourth order

In fourth-order perturbation theory, there is a total of 32
irreducible diagrams. Two examples are depicted in Fig. 2(b)
and the full set is shown in Appendix A 5. These 32 diagrams
all have four vertices, each of which represents terms in HI =
HI,S + HI,B. When evaluating diagrams, we first expand each
one into all possible combinations of HI,S and HI,B over the
vertices. Within this expansion, terms with an odd number of
instances of HI,B vanish, since odd moments of bath operators
vanish. Terms with an even number of instances of both HI,B

and HI,S are further classified into three distinct categories of
diagrams:

(1) Correlated photon-phonon decay processes: diagrams
in which two vertices come from the intrasystem interaction
Hamiltonian HI,S and the remaining two are from the system-
bath interaction HI,B.

(2) Coherent dispersive photon-photon processes: dia-
grams in which all four vertices originate from the coherent
intrasystem interaction HI,S.

(3) Two phonon decay processes: diagrams in which all
four vertices come from the system-bath interaction term HI,B.

We thus write

L4ρ̄ = L4,corrρ̄ − i[H4,ρ̄] + L4,2phononρ̄, (19)

where the order of the terms corresponds to the numbered list
above.

In this paper we are only concerned with calculating the
self-energy diagrams leading to correlated photon-phonon
decay processes, L4,corr. We therefore evaluate neither H4 nor
L4,2phonon here, but leave this to future work. In passing, we
note that H4 will renormalize the bare Hamiltonian terms, and
L4,2phonon will renormalize the rates in Eq. (17), and potentially
include dispersive shifts as well.

Fourth-order correlated photon-phonon decay terms.
Evaluating correlated photon-phonon decay self-energy di-
agrams at fourth order results in a total of 21 individual
dissipators, each associated with rates �j .

An example diagram at fourth order is evaluated in
Appendix A 5 a for pedagogical purposes. After evaluating all
the relevant fourth-order Keldysh diagrams, we are left with
a large number of superoperators that contribute to L4,corrρ̄.
Collecting these into Lindblad dissipators requires careful
analysis, which we describe in Appendix A 6.

The full set of correlated photon-phonon decay terms
that appear at fourth order of Keldysh–Lindblad perturbation
theory are

L4,corrρ̄

= �↓+D[σ−a†]ρ̄ + �↓−D[σ−a]ρ̄ + �↑+D[σ+a†]ρ̄

+�↑−D[σ+a]ρ̄ + �ϕ+D[σza
†]ρ̄ + �ϕ−D[σza]ρ̄

+�−D[a]ρ̄ + �+D[a†]ρ̄ + �↑↓(D[σ+]ρ̄ + D[σ−]ρ̄)

+�n(D[a†a]ρ̄ − D[σz + a†a]ρ̄) + �ϕ,4D[σz]ρ̄

+�±,ϕ±(D[a + σza]ρ̄ + D[a† + σza
†]ρ̄)

+�ϕn(D[σza
†a]ρ̄ − D[σz + σza

†a]ρ̄)

+�↓n(D[σ−a†a]ρ̄ − D[σ− + σ−a†a]ρ̄)

+�↑n(D[σ+a†a]ρ̄ − D[σ+ + σ+a†a]ρ̄). (20)

Each of the rates �j are sums of terms depending on the bath
spectral function, C(ω), evaluated at frequencies ω ∈ {0, ±
ωq, ± ωr, ± (ωq − ωr ), ± (ωq + ωr )}, cf. Table II. Addi-
tionally, there are contributions to the �j that are proportional
to the derivative of the bath spectral function, C ′(ω), evaluated
at frequency ω = ±ωq . Those originate from diagrams where
the time evolution involves degenerate frequencies, leading to
double poles in Laplace space, as has been noticed before [43].
Their physical interpretation is uncertain. One possibility is
that they are first-order terms in a Taylor expansion of the
bath spectral function and as such indicative of an implicit
renormalization of system frequencies. We have verified that
the derivative terms do not contribute significantly in the
experimental parameter regime we consider below and leave
their detailed understanding to future work.

Analyzing all 21 dissipators above in detail is not the main
concern of this paper. However, the first six dissipators in
Eq. (20) are easy to interpret and have dominant contributions
γj to the corresponding rates �j , which can be expressed
simply. These are

L(0)
4,corrρ̄ = γ

(ωq−ωr)
↓+ D[σ−a†]ρ̄ + γ

(ωq+ωr)
↓− D[σ−a]ρ̄

+ γ
(−ωq−ωr)
↑+ D[σ+a†]ρ̄ + γ

(−ωq+ωr)
↑− D[σ+a]ρ̄

+ γ
(ωr )
ϕ− D[σza]ρ̄ + γ

(−ωr )
ϕ+ D[σza

†]ρ̄, (21)

where ↑ and ↓ denote qubit flipping processes, ϕ indicates
qubit dephasing, and + and − photon excitation and loss,
respectively. The rates are

γ
(ωq−ωr )
↓+ = 1

2
g2 cos2 θ

ω2
q sin2 θ

ω2
r (ωq − ωr )2

C(ωq − ωr ),

γ
(ωq+ωr )
↓− = 1

2
g2 cos2 θ

ω2
q sin2 θ

ω2
r (ωq + ωr )2

C(ωq + ωr ), (22)

γ
(ωr )
ϕ− = 1

2
g2 sin2 θ

ω2
q sin2 θ

(ωq − ωr )2(ωq + ωr )2
C(ωr ).
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The remaining three rates in Eq. (21) are related by thermal
occupation factors,

γ
(−ωq+ωr )
↑− = γ

(ωq−ωr )
↓+ e−β(ωq−ωr ),

γ
(−ωq−ωr )
↑+ = γ

(ωq+ωr )
↓− e−β(ωq+ωr ),

γ
(−ωr )
ϕ+ = γ

(ωr )
ϕ− e−βωr .

In Sec. V, we analyze in detail the contributions from Eqs. (22)
to gain and loss in the parameter regime of recent experiments
in semiconductor double quantum dots coupled to a microwave
resonator. There we show that the six dissipators in Eq. (22)
quantitatively explain recent experimental results [6], whereas
including the full set of rates from Eq. (20) does not change
the picture qualitatively apart from a change in numerical
parameters.

B. Resonator decay

The resonator couples weakly to the external electromag-
netic environment [44], and we include this as an additional
decay process in the usual way [25] through the Lindblad
dissipators

Lresρ̄ = κ−,rD[a]ρ̄ + κ+,rD[a†]ρ̄, (23)

with the resonator relaxation and excitation rates κ∓,r and the
bare resonator linewidth κ = κ−,r − κ+,r .

C. External quantum dot bias

In the experiments that motivate this work, the open
DQD coupled to external leads, inducing a charge-discharge
transport cycle, illustrated in Fig. 1(b). To model this process,
we extend the DQD basis to include the empty state |Ø〉, in
which the DQD is uncharged. As electrons tunnel between the
leads and the DQD, it passes transiently through the empty
state. This process is described by the incoherent Lindblad
superoperator [2,17,18,21,22]

Lleadsρ = �LD[|L〉〈Ø|]ρ + �RD[|Ø〉〈R|]ρ. (24)

For simplicity, we assume �R = �L = � in the following.
Depending on the sign of εq and the strength of �, the DQD
population may become inverted in the steady state.

IV. DRIVEN RESONATOR

The additional dissipators tend to drive the system to its
ground state. To see nontrivial behavior arising from the master
equation, the system needs to be driven out of equilibrium.
Depending on the specific system, there are a variety of ways
to achieve this. Here we consider resonator driving, in which
an external microwave field is imposed on the resonator. To
this end we introduce an additional resonator driving term in
the system Hamiltonian, H = HS + HD , where

HD = εd (a†eiωd t + ae−iωd t )/2, (25)

with the amplitude of the drive εd and frequency ωd . In writing
Eq. (25) we have assumed a rotating-wave approximation,
relevant to near-resonant driving ωd ≈ ωr .

Under driving, we anticipate that the resonator will tend
to a steady state which is close to a coherent state |α〉.

We therefore apply a displacement transformation to the
resonator modes [45,46], a → ã + α. This transformation
forms the basis of a semiclassical, mean-field approximation
for dissipative steady-state equations for qubit and resonator,
from which we establish a self-consistency condition that
determines α.

The canonical unitary for the displacement transformation
is

D(α) = exp {αa† − α∗a}, (26)

so that D(α)†aD(α) = ã + α. The Hamiltonian in the dis-
placed frame is transformed as

H̃ = D(α)†HD(α) − iD(α)†Ḋ(α)

= D(α)†HD(α) − i(ã†α̇ − ãα̇∗), (27)

where α may be time dependent.
When applying the displacement operation, we have to

take care to include dissipative processes containing resonator
operators in the transformation. For example, when applying
the transformation to the dissipator describing direct photon
decay ∼D[a]ρ we find

D[D†aD]ρ̄ =D[ã]ρ̄ − i[i(α∗ã − αã†)/2,ρ̄], (28)

where the second term describes a coupling between the
residual mode ã and the coherent field amplitude α. This
term, and similar ones from other dissipators, contributes to a
self-consistent equation for the coherent field amplitude α.

Correlated dissipators transform similarly. For example, in
the displaced frame, D[σ−a†]ρ transforms as

D[D†σ−a†D]ρ̄ = D[σ−ã†]ρ̄ + |α|2D[σ−]ρ̄

+ ασ−ã†ρ̄σ+ + α∗σ−ρ̄ãσ+

− 1
2 (ασ+σ−ã†ρ̄ + α∗ãσ+σ−ρ̄

+ αρ̄σ+σ−ã† + α∗ρ̄ãσ+σ−). (29)

A. Separable and semiclassical approximations

In principle, we could solve the steady-state (or dynamical
behavior) of the master equation (8), accounting fully for
correlations between the resonator and qubit. However, to
make analytical progress we now make a simplifying mean-
field approximation that enables us to calculate the qubit and
resonator steady states.

That is, we assume the resonator to be in the semiclassical
regime, so that it is well approximated by a coherent state |α〉.
We will self-consistently determine the coherent amplitude α

by finding a displaced resonator frame which is effectively
undriven.

In this approximation, the resonator and qubit are separable,

ρ̄ = ρ̄r ⊗ ρ̄q . (30)

Under this approximation, Eq. (8) decomposes into two
coupled mean-field equations: one for the resonator state,
ρ̄r = |α〉〈α|, and one for the qubit state, ρ̄q , in which each
subsystem experiences the mean field of the other. We find

˙̄ρr = Trq

{∑
m

D†LmDρ̄

}
, (31)
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˙̄ρq = Trr

{∑
m

D†LmDρ̄

}
. (32)

Evaluating these traces simplifies correlated dissipators. For
example, tracing over the qubit in Eq. (29) contributes a term
on the RHS of Eq. (31):

Trq{D[D†σ−a†D]ρ̄}
= Pe(D[ã†]ρ̄r − i[i(αã† − α∗ã)/2,ρ̄r ]), (33)

where Pi = Trq{ρ̄|i〉〈i|}, so that 〈σ+σ−〉 = Pe. The first term
describes incoherent photon generation originating from the
correlated decay processD[σ−a†]ρ, while the second and third
terms represent effective resonator driving, which depends
on the qubit population and the resonator field expectation
value α.

Finally, tracing Eq. (29) over the resonator degrees of free-
dom results in a contribution to the qubit master equation (32):

Trr{D[D†σ−a†D]ρ̄} = 〈(ã + α)(ã† + α∗)〉D[σ−]ρ̄q . (34)

B. Coupled steady-state equations

In the application to gain and loss in a driven DQD res-
onator, we are interested in steady-state properties of the sys-
tem, so we solve the above equations subject to ˙̄ρ = 0, and α̇ =
0. The mean-field approximation for the resonator field then
yields coupled steady-state equations for the two subsystems.
In a frame rotating at the resonator drive frequency ωd , we find
the steady state of the resonator master equation (31) becomes

0 = −i[H̃r ,ρ̄r ] + κ−D[ã]ρ̄r + κ+D[ã†]ρ̄r , (35)

with the renormalized photon loss and generation rates

κ± = κ±,r + κ±,4, (36)

and where the contributions from the fourth-order Keldysh
perturbation theory are given by

κ−,4 = γ
(ωq+ωr)
↓− Pe + γ

(−ωq+ωr)
↑− Pg + γ

(ωr )
ϕ− (1 − PØ)

+ κ
(ωq)
ϕ 〈σz〉 + κ(ωq)Pe − κ(−ωq)Pg,

κ+,4 = γ
(ωq−ωr)
↓+ Pe + γ

(−ωq−ωr)
↑+ Pg + γ

(−ωr )
ϕ+ (1 − PØ)

+ κ
(ωq)
ϕ 〈σz〉 − κ(ωq)Pe + κ(−ωq)Pg. (37)

Here 〈σz〉 = Pg − Pe is the expectation value of the qubit
dipole operator and κ−,r and κ+,r are the original resonator
decay and excitation rates. PØ is the population of the empty
state, when no charge is on either island. For the parameter
regime we consider below, PØ � 1. The full expressions for
the rates κ

(ωq )
ϕ and κ (±ωq ) are somewhat cumbersome and are

given in Appendix B 2 where we also give their relationship
to the �j in Eq. (20).

The effective Hamiltonian for the resonator in the displaced
frame is

H̃r = (δωr + 2χ̃〈σz〉)ã†ã

+ ã†[εd/2 + α(δωr + 2χ̃〈σz〉 − iκ ′/2)] + H.c., (38)

where χ̃ = χωq/(ωq + ωr ) is the effective dispersive shift.
The resonator linewidth is renormalized by the interaction
with the qubit to

κ ′ =κ− − κ+. (39)

The term in Eq. (38) proportional to ã† (and its Hermitian
conjugate) describes effective driving of the transformed
resonator mode ã, which would lead to a nonzero expectation
value of the resonator operators 〈ã〉. We now self-consistently
require that the coefficient of ã† should vanish. Since the
effective driving terms depend on α, this choice leads to the
condition

0 = εd/2 + α(δωr + 2χ̃〈σz〉 − iκ ′/2). (40)

In this case, the effective driving terms in Eq. (38) are zero
and Eq. (35) describes the residual quantum dynamics of
an un-driven resonator subject only to relaxation at rate κ−
and excitation at rate κ+ In the displaced frame with the
appropriately chosen value of α, the displaced resonator mode
ã will be in a thermal state, with its effective temperature
Tr depending on the ratio of its relaxation and excitation
rates like κ+/κ− = exp {−ωr/kBTr}. In this case, we find
〈ã〉 = 〈ã†〉 = 0. In the following we additionally assume a
small effective temperature of the resonator Tr such that
〈ã†ã〉 = κ+

κ−−κ+
� 1.

The steady-state of the qubit master equation (31) then
becomes

0 = − i[H̃q,ρ̄q] + γ↓D[σ−]ρ̄q + γ↑D[σ+]ρ̄q

+ γϕD[σz]ρ̄q + Lleadsρq, (41)

where the effective qubit Hamiltonian is

H̃q = −ωqσz/2 + χ̃ (1 + 2|α|2)σz, (42)

and the correlated qubit dissipation rates are given by γ↑ =
γ↑,2 + γ↑,4, γ↓ = γ↓,2 + γ↓,4 and γϕ = γϕ,2 + γϕ,4 with the
additional rates from correlated fourth-order processes

γ↓,4 = |α|2γ (ωq+ωr )
↓− + (|α|2 + 1)γ

(ωq−ωr )
↓+

+ γ
(ωq )
↓ + γ

(−ωq )
↓ + γ ′

↓,

γ↑,4 = |α|2γ (−ωq+ωr )
↑− + (|α|2 + 1)γ

(−ωq−ωr )
↑+

+ γ
(ωq )
↑ + γ

(−ωq )
↑ + γ ′

↑,

γϕ,4 = |α|2γ (ωr )
ϕ− + (|α|2 + 1)γ (−ωr )

ϕ+

+ γ (0)
ϕ + γ

(ωq )
ϕ + γ

(−ωq )
ϕ + γ ′

ϕ. (43)

The expressions for γ
(±ωq )
↑/↓ , γ ′

↑/↓, γ (0)
ϕ , γ

(±ωq )
ϕ , and γ ′

ϕ are
somewhat lengthy and are given in full in Appendix B 2, where
we also discuss their relationship to the �j in Eq. (20).

If in the previous calculation the effective resonator tem-
perature Tr is large, i.e., when κ+ � κ−, the expectation value
of 〈ã†ã〉 acquires a nonzero value |α̃|2. If necessary, we can
simply take this into account by noting that tracing over the
resonator degrees of freedom now involves additional factors
of |α̃|2. As an example Eq. (34) becomes

Trr{D[D†σ−a†D]ρ̄} = (|α|2 + |α̃|2 + 1)D[σ−]ρ̄, (44)
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where α̃ is determined from the effective thermal state at
temperature Tr .

V. APPLICATION TO GAIN AND LOSS IN
MICROWAVE-DRIVEN DOUBLE QUANTUM DOTS

We now apply this theory to a specific experimental
situation, where an open semiconductor double quantum dot
is coupled to a microwave resonator and subject to a transport
bias. We are interested in calculating the steady-state resonator
field depending on qubit parameters in an effort to replicate the
experimental findings of Ref. [6]. In particular, we calculate the
gain of the DQD-resonator system by comparing the internal
circulating microwave energy within the driven DQD resonator
with the same quantity for a driven resonator alone (i.e.,
without the DQD).

From Eq. (40) we find that the resonator steady-state field
amplitude is described by

α = −εd/(2δω′
r − iκ ′), (45)

where δω′
r = δωr + 2χ̄〈σz〉 is the DQD-renormalized detun-

ing. We calculate α by simultaneously solving for the qubit
steady state (41) and for the resonator field (45). The power
gain is then given by

G = |α/α0|2 = |2δωr − iκ|2/|2δω′
r − iκ ′|2,

where α0 = −εd/(2δωr − iκ) is the steady-state resonator
field that would be produced in the absence of the DQD
coupling (i.e., setting g = 0). We set δωr = 0, corresponding
to resonant cavity driving, which is the experimental situation
reported in Ref. [6].

To make a quantitative comparison between theory and ex-
periment, we assume that the bath spectral function is C(ω) =
J (ω)[nth + θ (ω)] with J (ω) = J1D(ω) + J3D(ω), where the
spectral densities for the first phonon mode in the quantum
wire and the bulk substrate phonons are given by [2,16]

J1D(ω)

ωr

= F
cn

ωd
[1 − cos (ωd/cn)]e−ω2a2/2c2

n ,

(46)
J3D(ω)

ωr

= P
ω

ωr

[1 − sinc(ωd/cs)]e
−ω2a2/2c2

s ,

with the speed of sound in the quantum wire cn = 4000 m/s
and in the substrate cs = 5000 m/s [47], an interdot spacing
d = 120 nm and nanowire radius a = 25 nm. We have taken
kBT /ωr = 7.8, from Ref. [16]. We discuss details of fitting
parameters F, P, and a Gaussian smoothing parameter w
below.

A. Theoretical and experimental gain-loss profiles

In Fig. 3(a) we plot the gain G in the microwave resonator
due to the DQD coupling for three different theoretical
treatments, along with experimental gain data extracted from
Ref. [6], shown as points.

The three theoretical curves shown in Fig. 3(a) compare the
dependence of the gain on various terms in the fourth-order
correlated dissipators. The dashed blue curve includes terms
in the first two lines of Eq. (21) but not the third line (i.e.,
the fourth-order theory restricted to γ

(∓ωr )
ϕ± = 0), which is

equivalent to the polaronic theory in Ref. [16]. The solid black

FIG. 3. (a) Logarithmic plot of the microwave power gain G

versus DQD bias εq for kBT /ωr = 7.8 (corresponding to T = 3 K).
Points are experimental data extracted from Ref. [6]. The blue-dashed
theory curve is generated by using terms in the first two lines
of Eq. (21), corresponding to the polaron transformation used in
Ref. [16]. The solid-black theory curve is generated by using the six
terms in Eq. (21). The dotted red curve includes all additional terms
in Eq. (20). (b) Correlated rates, γ↓+ (dashed), γ↓− (dotted), and
γϕ− (solid) from Eq. (22) corresponding to the black curve in panel
(a). (c) Qubit steady-state population 〈σz〉ss (solid, black), compared
with thermal population of the DQD, 〈σz〉th (dashed, blue). Common
parameters for all panels: ωd/ωr = 1, g/ωr = 0.0125, �q/ωr = 3,
κ/ωr = 52 × 10−6, �/ωr = 0.34, as in Ref. [16].

curve further includes the six terms in Eq. (21), corresponding
to DQD-mediated photon-to-phonon interconversion. The
dotted red curve finally includes all 21 fourth-order rates that
appear in the derivation of the full master equation (20).

In Fig. 3(a), there is a clear qualitative difference between
the polaronic theory (blue, dashed) and the experimental data
in the regime εq/ωr � 0: the theory is unable to explain
the depth of loss (subunity gain). In contrast, the additional
dephasing-mediated processes in the last line of Eq. (21) give
rise to enhanced losses beyond the polaronic terms and are
sufficient to quantitatively account for the entire range of gain
and loss observed in the experimental data (black). We have
also shown the results of the full fourth-order theory (red
dotted) from Eq. (20), which also consistently captures the
peak of the gain for εq > 0, and the depth of the trough for
εq < 0. In the parameter regime described here, there are only
small differences between the latter-two curves, including a
rescaling of F and P, indicating that the six terms in Eq. (21)
quantitatively account for the extremes of gain and loss.

Figure 3(b) plots the rates in Eq. (22) and shows clearly
that the dephasing-assisted loss rate (solid) γ

(ωr )
ϕ− is significant

compared with the other correlated decay processes, γ
(ωq∓ωr )
↓±

(dashed and dotted). This is the main reason for the qualitative
difference between the theory curves in Fig. 3(a). Since the
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full fourth-order theory accounts for the experimental data,
while the polaron-only theory does not, we conclude that
dephasing-assisted loss is a substantial contribution to the
system dynamics.

Figure 3(c) shows the steady-state DQD population imbal-
ance, 〈σz〉ss (black), compared with the thermal equilibrium
value, 〈σz〉th = Tr{σze

−βHS }/Z (blue). In conventional gain
and loss models, positive values of the difference 〈σz〉th −
〈σz〉ss (i.e., population inversion) drive gain, while negative dif-
ferences drive loss. This is manifest in κ ′

±, where enhancement
of Pe leads to an increase of κ ′

+, a corresponding decrease in κ ′,
and thus an overall increase of α. In contrast, the dephasing-
assisted loss contribution to Eq. (37) is independent of the state
of the DQD in the limit that PØ � 1, which is the case here.

B. Note on parameter fitting

As in Ref. [16], we treat the dimensionless spectral
strengths F and P as free parameters. We follow the same
fitting approach, in which we choose parameter values so that
the theory curves satisfactorily replicate the strong gain peak
evident for εq > 0. The specific values are shown as insets in
Fig. 3(a).

Likewise, we also convolve the bare theory gain curves
with a normalized Gaussian smoothing kernel ∝e−ε2

q /2w2
(cor-

responding to a full width at half maximum of
√

8 ln 2w) [16],
to account for low-frequency voltage noise in the gates defining
the interdot bias [36].

In effect, all theory curves have three fitting parameters: F,
P, and w. Very roughly, F controls the gain peak height, P
controls the tail behavior of the gain at large εq , and w controls
the gain peak width. Thus, once we find a parameter set for a
given theory curve that adequately accounts for the gain profile
for εq > 0, the dependence for εq < 0 is determined. The
overall scale for F and P is ultimately constrained by the value
of the resonator linewidth κ: it is the relative contributions from
the correlated decay rates compared with κ that set overall
gain and loss through the effective resonator linewidth κ ′; cf.
Eq. (39).

To make contact with the microscopic electron-phonon
coupling, Appendix C gives estimates of the values of F and P
calculated by using material coupling constants, densities, and
speeds of sound, assuming simplified geometries for phonon
modes of the one-dimensional (1D) InAs wire and bulk SiN
substrate [2]. We find Fpiezo = 0.85 and Ppiezo = 0.16, which
are in reasonable order-of-magnitude agreement with values
shown inset in Fig. 3(a).

The high phonon temperature assumed in Fig. 3(a) (T =
3 K) may arise from Ohmic heating from current flowing
through the DQD, as estimated in Ref. [6]. Increasing the
phonon-bath temperature in the theory leads to an increase
in the loss rate, with commensurate improvement in the
agreement with the experimental data for εq/ωr < −3, as
shown in Appendix C 1.

VI. DISCUSSION

A. Effective rates

The large number of rates that appear in Eq. (20) is too
great to analyze individually in detail; however, the mean-field

approximation embodied in Eq. (30) helps to distil significant
combinations of the rates in Eq. (20) into effective decay rates
on the resonator, Eq. (37), and the qubit, Eq. (43), separately.

Figure 4 (and Figs. 10 and 11 in the Appendix) show plots
of the effective rates appearing in the qubit and resonator
steady-state equations (35) and (41), in the region ωq ∼ ωr .
Many of the rates show divergences at resonance ωq = ωr

or become negative in the vicinity of very small detuning.
This behavior is not unexpected, since our perturbative series
relies on a small qubit-resonator coupling compared with the
qubit and resonator detuning, g < |ωq − ωr |. Proximity to
resonance between qubit and resonator will therefore make
it necessary to take higher orders in perturbation series into
account to accurately describe the system dynamics.

The effective resonator decay rates κ+,4 and κ−,4 are shown
in Fig. 4 in various limits of Pe and for an Ohmic bath spectral
function, C(ω) = ω[nth + θ (ω)], both for zero and nonzero
bath temperature T . For a given choice of qubit parameters,
and temperature, the “true” value of the effective rates κ+,4

and κ−,4 is a convex combination of the limits plotted. For
ωq > ωr , these effective resonator rates are all positive, so
that the Lindblad operators generate well-defined completely
positive (CP) maps on the resonator.

As discussed before, the displaced resonator mode ã is
undriven such that its steady state will be a thermal state
at an effective temperature Tr defined by the ratio of its
relaxation and excitation rates κ+/κ− = e−ωr/(kBTr ). Due to the
effective coupling of resonator and qubit steady states through
the fourth-order dissipative rates, this effective temperature
will be influenced by both the original resonator temperature
as well as the temperature of the qubit environment. The
effective resonator temperature depends specifically on the
qubit steady-state population Pe as seen from Eq. (37) and
Fig. 4. In the case of population inversion in the qubit, the
effective resonator excitation rate κ+,4 can dominate over κ−,4.

In Appendix B 3 we show plots of the correlated qubit
relaxation, excitation, and dephasing rates from Eq. (43). Their
behavior is similar to that of the effective resonator rates shown
in Fig. 4.

B. Negative Lindblad superoperators

For ωq � ωr , there are regimes in which the κ+,4 and κ−,4

can become negative. The situation is similar for the effective
qubit rates γ↓,4 γ↑,4 and γϕ,4, as shown in Appendix B 3. More
generally, Eq. (20) has a number of Lindblad superoperators
with explicitly negative coefficients. This can be seen, e.g., in
the prefactors of D[σza

†a]ρ̄ and D[σz + σza
†a]ρ̄, which have

a relative minus sign relating them, so that one coefficient
will always be negative. This mathematical phenomenon
arises naturally at fourth-order perturbation theory and has
previously been connected to the description of explicitly
non-Markovian dynamics [48–51] and its unravelling into a
quantum jump description [52]. In contrast, the second-order
rates in Eq. (17) are always explicitly positive.

The appearance of negative coefficients to Lindblad super-
operators is controversial, since there is no longer a guarantee
that the resulting map is completely positive.

There are a number of possible resolutions to this mathe-
matical problem. First, the dominant fourth-order terms [i.e.,
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CLEMENS MÜLLER AND THOMAS M. STACE PHYSICAL REVIEW A 95, 013847 (2017)

FIG. 4. Plots of the effective dissipative resonator rates κ+,4 and κ−,4 from Eq. (37) for an Ohmic bath spectral function C(ω) = ω[nth(ω) +
θ (ω)] with the bosonic thermal occupation factor nth(ω) = 1/(eβω − 1), β = 1/kBT . We show κ+,4 and κ−,4 for the qubit in its ground state
Pe = 0 (left) and in its excited state Pe = 1 (right) for the two situations of zero temperature, T = 0 (top row), and nonzero temperature,
T = 0.2ωr (bottom row). Horizontal lines in the contour plots indicate the values of �q used in the line plots below. The thin dotted line in the
contour plots indicates the resonance condition ωq = ωr .

those in Eq. (21)] are indeed explicitly positive, so that they
do correspond to well-behaved Lindblad superoperators. That
is, the most significant physics is represented by a CP map.

Second, the main objective of this paper is to find steady
states of the propagator, so that we do not necessarily require
complete positivity. Rather, we simply require that the steady
state is a positive operator, as is indeed the case in the situation
described here, illustrated by the red dotted curve in Fig. 3.
However, this argument is unsatisfactory in general, since the
dissipators can be interpreted in a dynamical equation, just
as L2ρ̄ in Eq. (15) appears in the dissipative dynamics of the
quantum optical master equation.

Third, the explicitly negative signs in Eq. (20) are
associated with somewhat anomalous dissipators such as
D[σz + σza

†a]ρ̄, which on their own contain products of
four resonator creation and annihilation operators (e.g., the
expansion of this Lindblad dissipator includes the operator
product σza

†aρ̄σza
†a). These dissipators all arise from the

diagonalization procedure described in Appendix A 6 a. In fact,
such dissipators always appear in combination with another
dissipator (in this case D[σza

†a]ρ̄), such that quartic products
of resonator operators cancel. At higher orders of perturbation
theory, we expect to see dissipators that are truly quartic in the
resonator operators appearing, and these would renormalize
the negative coefficients seen at the order we evaluate.

This suggests that the apparent negative signs appearing
in Eq. (20) are a consequence of the truncation of an infinite
power series; including higher-order terms should renormalize
the dissipative rate at each order. As such, we speculate that
resumming a large class of higher-order Keldysh diagrams
will lead to well-defined Lindblad superoperators with positive
prefactors.

This can be understood as an analog to the series expansion
of a unitary operator U = e−iH generated by a Hamiltonian
H . While the zeroth- and infinite-order expansion are both
explicitly unitary (corresponding to the physical requirement
that probability is conserved), this is not guaranteed to hold
for any finite order (e.g., the approximation U ≈ 1 − iH is
not generically a unitary operator), so that conservation of
probability is strictly violated. Nevertheless, linear-response
theory explicitly makes these kinds of approximations, to good
effect. By analogy, it is not surprising that the fourth-order
Keldysh–Lindblad master equation we have derived includes
terms that are non-CP, which are nevertheless useful for
describing the system.

C. Keldysh–Lindblad synthesis

Equation (20) is the principal theory result of this paper.
It represents the synthesis of the Keldysh and Lindblad
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formalisms, which both are widely used in mesoscopic
physics, but with relatively little overlap in the community
of practitioners who deploy them; the Lindblad formalism has
been carried over from the quantum optics literature, while
the Keldysh formalism has its roots in the nonequilibrium
condensed-matter literature.

Equation (20) contains a large class of Lindblad super-
operators that go beyond the standard dissipators in the
quantum-optical master equation. The first six terms in
Eq. (20) are dominant in a typical experimental situation, and
these have a natural interpretation as qubit mediated energy
exchange between the resonator and the bath. The first four
terms have previously been identified by using a polaron
transformation [16]. The terms γϕ+D[σza

†]ρ̄ + γϕ−D[σza]ρ̄,
which correspond to a dephasing assisted energy ex-
change, represent the most significant contribution presented
here.

VII. CONCLUSION

We conclude that the dephasing-mediated gain and loss
Lindblad superoperators in Eq. (21) account for substan-
tial additional loss observed in recent experiments. These
terms were derived by using the Keldysh diagrammatic
techniques and arise at the same order of perturbation
theory as other terms previously derived by using a polaron
transformation. Including all additional dissipators derived at
the same order in perturbation theory does not qualitatively
change the results apart from a rescaling of numerical
parameters.

Synthesizing Lindblad and Keldysh techniques to derive
higher-order dissipative terms is thus a powerful approach to a
consistent, quantitative understanding of quantum phenomena
in mesoscopic systems. Lifting the simplifying mean-field
approximation to study the effects of correlations between
the DQD and resonator will be the subject of future
work.

This paper opens a variety of avenues to explore. We have
not evaluated the fourth-order dispersive terms, nor the fourth-
order pure bath (multiphonon) terms. In some regimes, two-
phonon emission may be significant, particularly if phononic
engineering is used to suppress the spectral density at dominant
single-phonon frequencies (e.g., by designing phononic band
gaps). In such a situation, two (or more) phonon emission rates
can be calculated within the Keldysh formalism and collected
into Lindblad superoperators.

In future work we intend to analyze the dynamics and
steady state of the fully correlated equation (20) without
the simplifying mean-field approximations (30). Also, the
master equation (20) naturally lends itself to an input-output
treatment allowing the calculation of qubit and resonator
output correlation functions.
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APPENDIX A: KELDYSH TECHNIQUE

1. Derivation of Keldysh master equation

We describe a system interacting with an environment using
Keldysh diagrams. The basic Hamiltonian has the form

H = H0 + HI , (A1)

where H0 = HS + HB describes the unperturbed system HS

and the environment HB , and HI contains all the interactions
terms and is considered small. In the following we will employ
an interaction picture with respect to HI , where operators now
evolve in time with respect to H0 while states evolve according
to HI .

In the Schrödinger picture, the time evolution of the systems
density-matrix elements is

ρ
(S)
k′k (t) = Tr{ρ(S)(t)|k〉〈k′|}

= Tr{U0U
†
0ρ(S)(t)U0U

†
0 |k〉〈k′|}

= Tr{ρ(I )(t)U †
0 |k〉〈k′|U0}

= Tr{UIρ
(I )(t0)U †

I U
†
0 |k〉〈k′|U0}

=
∑
k̄′ k̄

ρk̄′ k̄(t0)〈k̄|TrB{ρBU
†
I Pk′k(t)UI }|k̄′〉

≡
∑
k̄k̄′

ρk̄′ k̄(t0)�k̄′ k̄→k′k(t0,t), (A2)

where we have traced out the bath degrees of freedom, defined
the projector unto system states Pkk′ = |k〉〈k′| with

Pkk′(t) = U0(t,t0)†|k〉〈k′|U0(t,t0), (A3)

where U0 ≡ U0(t,t0) = e−iH0(t−t0), and we have defined the
forward and backwards time-evolution operators in the inter-
action picture by

UI ≡ UI (t,t0) = T exp

{
−i

∫ t

t0

dt1HI (t1)

}
,

(A4)

U
†
I ≡ UI (t0,t) = T̄ exp

{
i

∫ t

t0

dt1HI (t1)

}
,

where T indicates time-ordering (later times left) and T̄

indicates anti-time-ordering (later times right). The interaction
term HI (t) is itself in the interaction picture, i.e., evolves in
time according to the unperturbed Hamiltonian H0 as

HI (t) = U0(t0,t)HIU0(t,t0). (A5)

We have also assumed in Eq. (A2) that the system and bath
factorize at the initial time, i.e.,

ρ(t0) = ρB(t0) ⊗
∑
k̄k̄′

ρk̄′ k̄(t0)|k̄′〉〈k̄|. (A6)

Equation (A2) implicitly defines the density-matrix propagator
�(t0,t).

We now expand the time-evolution operators U
†
I and UI on

both sides of Pkk′(t) in Eq. (A2) in a perturbative expansion in
powers of the coupling coefficients g and βj that appear in HI .
At a given order m of perturbation theory in this expansion,
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FIG. 5. (a) Illustration of the density-matrix propagator � in diagrammatic perturbation theory for evolution from the initial time t0 to the
final time t . Other times depicted are dummy integration variables, satisfying t0 < · · · < t2 < t1 < t . Lines with arrows correspond to periods
of free evolution. Dots denote the interaction Hamiltonian HI (tj ) acting at time tj . � denotes swapping of upper and lower vertices. Background
colors are used to help track terms in the following panels. Only terms at even orders in perturbation theory are shown, and dashed lines denote
contractions of bath operators into two-time correlation functions. In our convention, � acts on the density matrix from the right, so that
ρ(t) = ρ(t0)�t0→t , as in Eq. (A8). (b) Diagrammatic reordering of the �. Here we factor each diagram into products of irreducible diagrams,
which are those that cannot be divided by vertical lines without cutting any contractions. (c) Diagrammatic expression of the Dyson equation.
The first term in the product (blue diagrams) is the propagator, �t0→t2 , and the second term (green and orange diagrams) is the self-energy

t2→t1 composed of irreducible self-energy diagrams, followed by a period of free evolution. (d) Dyson equation expressed algebraically, which
implicitly defines the self-energy 
 in terms of irreducible diagrams.

the propagator � acts on the density matrix by application of
m instances of HI , which appear on the left and right of ρ in
every possible configuration.

This expansion has a graphical representation in the form
of Keldysh diagrams, shown in Fig. 5. The action of HI in

Eq. (A2) acting on the left (which come from U
†
I ) are drawn

as vertices on the lower branch of the diagram; those acting
on the right (which come from UI ) are drawn as vertices
on the upper branch. These diagrams are operator valued,
schematically acting on ρ(t0) from the right. Diagrams up
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to fourth order are shown in Fig. 5(a). Here we have already
made use of Wick’s theorem to express multi-operator bath
correlation functions as sums of two-time correlation func-
tions, indicated by red dashed lines in the diagrams of Fig. 5.

Figures 5(b) and 5(c) show a diagrammatic refactoring of
the expansion, to derive the Dyson equation, which relates the
propagator � to the self-energy 
, and the free evolution �0

through

�(t0,t) = �0(t0,t) +
∫

dt2dt1�(t0,t2)
(t2,t1)�0(t1,t). (A7)

Diagrammatically, the self-energy 
 is given by the sum over all irreducible diagrams, shown in Fig. 5(c).
When we substitute the the Dyson equation [shown in Fig. 5(d)] into the propagator in Eq. (A2), we find the time-dependent

evolution of the density matrix is given by

ρk′k(t) =
∑
k̄k̄′

ρk̄′ k̄(t0)�0
k̄′ k̄→k′k(t0,t) +

∑
k̄k̄′

∑
k1k

′
1

∑
k2k

′
2

∫ t

t0

dt1

∫ t1

t0

dt2ρk̄′ k̄(t0)�k̄′ k̄→k′
1k1

(t0,t2)
k′
1k1→k′

2k2 (t2,t1)�0
k′

2k2→k′k(t1,t)

= ρk′k(t0)e−i(Ek′−Ek)(t−t0) +
∑
k̄k̄′

∫ t

t0

dt1

∫ t1

t0

dt2ρk̄′ k̄(t2)
k̄′ k̄→k′k(t2,t1)e−i(Ek′−Ek)(t−t1), (A8)

where in the second line the free propagator has been explicitly
written as

�0
k̄′ k̄→k′k(t,t0) = δk̄,kδk̄′,k′e−i(Ek′−Ek)(t−t0). (A9)

Taking the time derivative of Eq. (A8) finally leads to the
Keldysh master equation

∂tρk′k(t) = − i(Ek′ − Ek)ρk′k(t)

+
∑
k̄k̄′

∫ t

t0

dt1ρk̄′ k̄(t1)
k̄′ k̄→k′k(t1,t), (A10)

where Ek is the energy of system state |k〉. From this
equation we see that the self-energy superoperators 
k̄′ k̄→k′k
generate the residual dynamics arising from the interaction
Hamiltonian, and are responsible for both dispersive and
dissipative effects at higher order. Note that the self-energy
in Eq. (A10) is still formally exact, since it contains all orders
of perturbation theory.

Noting that ρ(t) = ∑
k′k ρk′k(t)|k′〉〈k|, we write the master

equation for the full density matrix

ρ̇(S)(t) = −i[H0,ρ
(S)(t)] +

∫ t

t0

dt1ρ
(S)(t1)
(t1,t), (A11)

where the self-energy superoperator 
(t1,t) acts on the density
matrix from the right. This convention ensures that the Keldysh
diagrams we draw later are correctly understood as acting
with earlier times on the left. In the interaction picture, we
have

ρ̇(I )(t) =
∫ t

t0

dt1ρ
(I )(t1)
(t1,t). (A12)

In what follows, we will work in the interaction picture, and
drop the notation (I ).

The detailed relationship between the last term in
each of Eqs. (A10) and (A11) is established by defin-
ing 
k̄′ k̄→k′k(t1,t) ≡ ∑

j 〈k̄|L̂j |k〉〈k′|R̂j |k̄′〉 for some set of

time-dependent operators L̂j , R̂j . Then,

∑
k′k

∑
k̄′ k̄

ρk̄′ k̄(t1)
∑

j

k̄|L̂j |k〉〈k′|R̂j |k̄′〉|k′〉〈k|

=
∑
k′k

∑
k̄′ k̄

∑
j

〈k′|R̂j |k̄′〉ρk̄′ k̄(t1)〈k̄|L̂j |k〉|k′〉〈k|

=
∑
k′k

∑
j

|k′〉〈k′|R̂jρ(t1)L̂j |k〉〈k|

=
∑

j

R̂jρ(t1)L̂j

≡ ρ(t1)
(t1,t). (A13)

We note that, in order to preserve Hermiticity of ρ, the self-
energy operator is self-adjoint.

In what follows, we evaluate the self-energy operator up to
fourth order and collect terms in order to express the master
equation in Lindblad form.

2. Note on environmental spectral functions

As in most treatments of open quantum systems, the
bath spectral function plays a critical role in capturing the
open-systems dynamics. In anticipation of later derivations,
here we define the bath spectral function through the Fourier
transformation of the two-time correlation function of the bath
coupling operators as

C(ω) = 1

2

∫ ∞

−∞
dteiω(t1−t2)〈X̂(t1)X̂(t2)〉, (A14)

such that in all integral expressions we can replace

〈X̂(t1)X̂(t2)〉 = 1

π

∫ ∞

−∞
dωe−iω(t1−t2)C(ω). (A15)

Here, X̂(t) is the bath coupling operator in the interaction
picture, which in our case, for bosonic phonon modes, takes
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the form

X̂(t) =
∑

j

βj (bj e
−iωj t + b

†
j e

iωj t ). (A16)

Defining the coupling operator spectral density J (ω) in the
continuum limit of the bath modes with spectral density ν(ω)
as∑

j

β2
j → 1

π

∫ ∞

0
dωβ2(ω)ν(ω) = 1

π

∫ ∞

0
dωJ (ω), (A17)

and assuming the bath modes to be in thermal equilibrium
with a Bose distribution 〈b†j bj 〉 = nth(ωj ) = 1

e
βωj −1

, we can
explicitly evaluate the spectral function as

C(ω) = 1

2
J (|ω|)

(
coth

|ω|
2T

+ sign(ω)

)
,

= 1

2
J (ω)[nth(ω) + θ (ω)], (A18)

which follows the detailed balance relation C(ω)/C(−ω) =
eβω with the thermal factor β = 1/kBT .

3. Laplace space integration

To evaluate the self-energy, we transform the master equa-
tion into Laplace space. In Laplace space, the time-integration
is particularly simple, as all necessary time integrals take the
form of convolutions. Additionally, we focus our evaluation
on finding the steady-state density matrix of the system. We
make use of the technique developed in Ref. [4], which enables
one in general to find dynamical steady states, i.e., steady
states with a residual, periodic time dependence. Here, we are
only interested in the time-independent steady state. In the
following we provide a short overview of the technique; more
details can be found in Ref. [4].

We first transform the Keldysh master equation into Laplace
space. Since the time-integrals can be written as multiproduct
convolutions, their solution in Laplace space is particularly
simple. Defining

LT{e−iωt } = 1

s + iω
,

(A19)
LT{f (t)e−iωt } = fs+iω,

where fs is the Laplace transformed function f (t), the Keldysh
master equation (A12) in Laplace space becomes

sρs − ρ(0) =
∫

dω
∑

j

ξj ôj,1ρs+iωj
ôj,2

Nj −1∏
k=1

1

s + iωk

,

=
∑
ωj

ρs+iωj

̄s, (A20)

where ρs is the Laplace transformed density matrix and the
index j enumerates the different diagrams in the self-energy.
The operators ôj depend on the specific diagram and the index
k is dependent on the order Nj of perturbation theory of the
j th term. The coefficients ξj contain bath spectral functions
C(ω) each of which comes with an integral over the Fourier
frequency ω; cf. Appendix A 2. Finally, the frequencies ωk

are linear combinations of system frequencies from the time

evolution of the system operators, and Fourier frequencies
from the definition of the bath spectral function. Examples
of this expression for specific diagrams are evaluated in
Eqs. (A28) and (A35).

To solve Eq. (A12) for the dynamical steady state of the
system, the following ansatz has been shown to be useful [4]:

ρ̄(t) = ρ̄0 +
∑

j

ρ̄j e
−iωj t , (A21)

where ρ̄0 is the time-independent part of the steady-state
and the ρ̄j components of the steady state show residual
oscillations at frequencies ωj . In Laplace space, this becomes

ρs =
∫ ∞

t0

dte−stρ(t) = ρ̄0

s
+

∑
j

ρ̄j

s + iωj

. (A22)

Inserting the ansatz into the Keldysh master equation and
restricting ourselves to the time-independent steady state ρ̄0

leads to a transcendental equation for ρ̄0. Comparing residuals
on both sides of the equation finally leads to the time-averaged
steady-state equation of the form

0 = lim
s→0+

∫
dω

∑
j

ξj ôj,1ρ̄0ôj,2

Nj −1∏
k=1

1

s + iωk

, (A23)

where the limit lims→0+ corresponds to calculating the resid-
uals of the right-hand terms. Here we have assumed that the
zero pole on the right-hand side of Eq. (A20) originates with
the density matrix ρs and not from a term in the self-energy 
s ,
as is the case in all diagrams considered below. More details
can be found in Ref. [4].

When evaluating the residue of the zero-frequency pole of
the master equation, the following limit will become important:

lim
s→0+

1

s − iω
= lim

s→0+

s + iω

s2 + ω2
= πδ(ω) + i

ω
, (A24)

where the δ function allows us to restrict the frequency integral
over the bath spectral functions C(ω) and the imaginary
parts may contribute as frequency shifts to the effective
Hamiltonian.

4. Example second-order Keldysh diagrams

a. Second-order dissipative Keldysh diagrams

To give a practical example of the general steps, we show
three specific examples. First we consider a simple dissipative
diagram in second order shown in Fig. 6. Here we use the
convention that when collecting the terms, we trace the lines
in the direction of the arrows, starting from the bottom right.
Also, remember that the density matrix at the earliest dummy
integration time (here t1) multiplies this diagram from the left.
Evaluating this diagram leads to the the master equation term

L(1)
2,dissρ(t1) ≡ TrB

{∫ t

t0

dt1σ−(t)X̂(t)ρ(t1)σ+(t1)X̂(t1)

}
,

(A25)

where for the sake of readability we neglected the prefactors
∼ sin θ .

We now assume separability of the bath and system, ρ(t ′) =
ρq(t ′) ⊗ ρB over the interval t0 < t ′ < t1 (N.B. the first vertex
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FIG. 6. One specific self-energy diagram in second order, with
each of the vertex operators specified. Here both vertices correspond
to coupling to bath operators X̂, and their contraction is indicated by
the blue solid line. This diagram contributes to the the standard qubit
decay process ∼D[σ−]ρ as detailed in the text.

at the dummy time variable t1), and that the bath is in its
thermal steady state throughout this time interval. This gives

L(1)
2,dissρ(t1) =

∫ t

t0

dt1σ−(t)ρq(t1)σ+(t1)〈X̂(t1)X̂(t)〉, (A26)

which, after inserting the definition of the bath spectral
function (A15) becomes

L(1)
2,dissρ(t1) = 1

π

∫
dωC(ω)

∫ t

t0

dt1σ−ρq(t1)σ+ei(ω−ωq)(t−t1).

(A27)

Here we have expressed the result in the form of temporal
convolution,

(f � g) =
∫

dt1f (t1)g(t − t1),

with f (t) = ρq(t) and g(t) = exp [i(ω − ωq)t]. Transforming
into Laplace space allows us to evaluate the time integral, and
we get

L(1)
2,dissρ̄s =

∫ ∞

t0

dte−stL(1)
2,dissρ(t1)

= 1

π

∫
dωC(ω)

1

s − i(ω − ωq)
σ−ρ̄sσ+, (A28)

with the Laplace-transformed density matrix ρs . Inserting
the ansatz (A22) and taking the steady-state limit by using
Eq. (A24) leaves us with

L(1)
2,dissρ̄0 =

∫
dωC(ω)δ

(
ω − ωq

)
σ−ρ̄0σ+

= C
(
ωq

)
σ−ρ̄0σ+ + i(dispersive part), (A29)

which is one of the terms appearing in the dissipator describing
qubit relaxation γ↓,0D[σ−]ρ̄, cf. Eq. (17). Here the imaginary
term in limit s → 0+ will contribute only as a small renormal-
ization of Hamiltonian parameters, which we neglect.

b. Second-order dispersive Keldysh diagrams

We now show another example in second order, illustrated
by the diagram in Fig. 7. Here, both vertices represent operators
from the interaction between the qubit and the resonator. The
contribution to the Keldysh master equation takes the form

L(1)
2,cohρ(t1) =

∫
dt1σ+aσ−a†ρ(t1)ei(ωq−ωr )(t−t1), (A30)

FIG. 7. Another example of a self-energy diagram in second
order, with each of the vertex operators specified. Here both vertices
correspond to coherent coupling between the qubit and the resonator,
as indicated by the wavy green line.

where prefactors are ignored. The integral can again be
evaluated in Laplace space to arrive at

L(1)
2,cohρ̄s = 1

s − i(ωq − ωr )
σ+aσ−a†ρ̄s . (A31)

Since there is no frequency integral now, the only relevant term
in the limit s → 0+ is the imaginary contribution and we get
the final result

L(1)
2,cohρ̄0 = i

2(ωq − ωr )
(1 − σz)(a

†a + 1)ρ̄0, (A32)

which forms part of the effective dispersive Hamiltonian H2;
Eq. (18).

5. Fourth-order diagrams

At fourth order in the interaction, a total of 32 irreducible
diagrams contribute to the Keldysh self-energy. Half of these
diagrams are schematically depicted in Fig. 8, from which the
other 16 can be obtained by swapping all vertices between
the upper and the lower line.

a. Fourth-order dissipative Keldysh diagrams

We consider one particular dissipative diagram in fourth
order, see Fig. 9. This diagram acts on the state at t3, so that
the corresponding term in the Keldysh master equation is

L(1)
4,dissρ(t3) =

∫
dt1dt2dt3{〈X(t3)X(t)〉

×eiωr (t1−t2)e−iωq (t1−t2)σza
†σ−ρ(t3)σzaσ+},

(A33)

where we again left off all prefactors for the vertex operators
and already assumed the Born initial condition of separable
system and bath density operators for t0 < t ′ < t3. Inserting
the definition of the bath spectral functions gives

L(1)
4,dissρ(t3) = − 1

π

∫
dωC(ω)

∫
dt1dt2dt3σ−a†ρ(t3)aσ+

× eiω(t−t1)ei(ω−ωq+ωr )(t1−t2)eiω(t2−t3). (A34)

This is a multiproduct convolution over the integration vari-
ables. In Laplace space the time integrals can then be evaluated
trivially and we get

L(1)
4,dissρ̄s = − 1

π

∫
dωC(ω)σ−a†ρ̄saσ+

× 1

(s − iω)2

1

s − i(ω − ωq + ωr )
. (A35)
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FIG. 8. (a) Irreducible Keldysh self-energy diagrams at fourth
order representing terms where all four interaction vertices appear
to the left of the density matrix. (b) Irreducible Keldysh self-energy
diagrams at fourth order representing terms where two interaction
vertices appear to the right of the density matrix and two vertices
appear to the left. (c) Irreducible Keldysh self-energy diagrams
at fourth order representing terms where three interaction vertices
appear to the left of the density matrix and one vertex appears to the
right. The remaining irreducible diagrams at fourth order are formed
by swapping indices from the upper to the lower line and vice versa.

We now make use of a partial fraction decomposition of the
integral kernel, with the added subtlety that one of the poles
in Eq. (A35) is degenerate. We note that

1

(s − iω)2(s − iω1)
= − 1

(s − iω1)(ω1 − ω)2

− ∂

∂ω

1

(s − iω)(ω − ω1)
, (A36)

FIG. 9. Particular realization of a self-energy diagram in fourth
order, with each of the vertex operators specified. Here one pair of
operators represents coupling to the dissipative environment and is
connected by a blue solid line. The second pair of vertex operators
describes coupling between the qubit and the resonator and is
connected by a wavy green line. This diagram contributes to the
correlated decay process ∼D[σ−a†]ρ.

where we used shorthand ω1 = ω − ωq + ωr . The second term
deserves special attention since, in the steady-state limit s →
0+, it leads to∫

dωC(ω)
∂

∂ω

δ(ω)

(ω − ω1)
= − C ′(ω)

(ω − ω1)
− C(ω)

(ω − ω1)2

∣∣∣∣
ω=0

,

(A37)

i.e., a degenerate pole leads to a derivative of the bath spectral
function, as has been observed before [43]. Note that above we
neglected to write the imaginary components appearing in the
limiting procedure, since we neglect those small Hamiltonian
terms in the end. For the complete diagram in Fig. 9, we thus
get

L(1)
4,dissρ̄ = σ−a†ρ̄aσ+

×
{

C(ωq − ωr )

(ωq − ωr )2
− C(0)

(ωq − ωr )2
− C ′(0)

(ωq − ωr )

}
,

(A38)

which contributes to the process of correlated qubit decay
and photon generation. Specifically, the first term is a relevant
contribution to the primary rate expression γ

(ωq−ωr )
↓+ ; Eq. (22).

We note in passing that the terms proportional to C ′(0) and
C(0) as well as any imaginary parts in Eq. (A38) ultimately
cancel with terms arising from other, similar diagrams.

6. Dissipators from master equation

This section describes how to obtain the Lindblad dissipa-
tors from the Keldysh steady-state equation. After evaluating
the self-energy to a given order, we can write the Keldysh
master equation in the form

˙̄ρ = σ̂Amρ̄σ̂ † − 1
2 {σ̂ †Asσ̂ ρ̄ + ρ̄σ̂ †Aeσ̂ }, (A39)

where σ̂ is a row-vector of operators and the objects A are
coefficients matrices in the space of these operators. For
example, the scalar factor appearing in Eq. (A38) would
contribute to Am.

Hermiticity of the master equation requires that the matrices
A be symmetric. Trace-conservation of ρ also constrains
the As, so that As = Ae. These conditions imply that the
RHS of Eq. (A39) can always be expressed as a sum of
Hermitian commutators, and Lindblad dissipators D[ ], with
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real coefficients γj . They do not automatically constrain the γj

to be positive, which has implications for complete positivity
of the evolution. We comment on this in the main text.

The vector σ̂ contains all operators that can be made up of
combinations of terms in the interaction Hamiltonian HI at the
appropriate order. Specifically, in the case of the Rabi model
and with the interaction Hamiltonian given by Eq. (5) up to
fourth order in perturbation theory, we have

σ̂ = (1, σz, a
†a, σza

†a, a†, σza
†, a, σza,σ−, σ+,

σ−a†a, σ+a†a, σ−a†, σ+a, σ−a, σ+a†). (A40)

As is obvious from our choice of parametrization of the
matrices A, any diagonal term that appears in both Am

as well as As,e directly corresponds to a dissipator in the
master equation. The dissipative operator is then given by the
eigenvector belonging to that particular diagonal element. As a
simple example, collecting all terms on the RHS of Eq. (A39)
that are proportional to the phonon spectral function at the
difference frequency between the qubit and the resonator,
C(ωq − ωr ), we find that the matrices A only have a single
nonzero entry:

A
(ωq−ωr )
m,s,e = diag(0,0,0,0,0,0,0,0,0,0,0,0,γ

(ωq−ωr )
↓+ ,0,0,0),

(A41)

in the basis defined by Eq. (A40). The nonzero entry on the
diagonal corresponds to the operator σ−a† in Eq. (A40), so we
immediately identify this part as the Lindblad dissipator

σ̂A
(ωq−ωr)
m ρ̄σ̂ † − 1

2

{
σ̂ †A

(ωq−ωr)
s σ̂ ρ̄ + ρ̄σ̂ †A

(ωq−ωr)
e σ̂

}
= γ

(ωq−ωr)
↓+ D[σ−a†]ρ̄. (A42)

Similarly simple diagonal forms can be found for all terms
probing the phonon spectral function at frequencies ±(ωq −
ωr ), ±(ωq + ωr ), and ±ωr , leading to the six correlated
dissipators in Eq. (21).

a. Nondiagonal forms for A

In general, the matrices A on the RHS of Eq. (A39) are not
purely diagonal, and some manipulation is required to bring
them into a recognisable form in terms of sums of dissipators,
D[ ]. Specifically in our case, it is the cyclic property of the
Pauli matrices which makes this a nontrivial challenge.

To diagonalize the matrices A, we make use of a particular
property of composite dissipators; namely, that for any two
operators ô1 and ô2, we can write the dissipator of the sum of
these operators as

D[ô1 + ô2]ρ = D[ô1]ρ + D[ô2]ρ + ô1ρô
†
2 + ô2ρô

†
1

− 1
2 (ô†1ô2ρ + ô

†
2ô1ρ + ρô

†
1ô2 + ρô

†
2ô1).

(A43)

The last six terms in this expression correspond to symmetric
off-diagonal terms in the matrices A in Eq. (A39), whereas
the first two terms are purely diagonal. Thus, combinations
of off-diagonal elements in the As can be directly related to

combinations of dissipators using Eq. (A43):

ô1ρô
†
2 + ô2ρô

†
1 − 1

2 (ô†1ô2ρ + ô
†
2ô1ρ + ρô

†
1ô2 + ρô

†
2ô1)

= D[ô1 + ô2]ρ − D[ô1]ρ − D[ô2]ρ. (A44)

Since the matrices A are symmetric, we can thus ascribe
dissipators to all off-diagonal elements. All remaining terms
are then already diagonal and correspond to dissipators of
single operators of our basis vector σ̂ .

In practice, we then perform this diagonalization procedure
on the matrix Am according to the replacement rule

ô1ρô
†
2 + ô2ρô

†
1 → D[ô1 + ô2]ρ − D[ô1]ρ − D[ô2]ρ

(A45)

and verify that the resulting dissipator-like terms are sufficient
to construct the matrices Ae and As. If additional terms are
required to construct these matrices, those terms will appear
as contributions to the Hamiltonian in the steady-state equation
∼ − i[H,ρ̄], as opposed to dissipators.

b. Dissipators proportional to C(0)

As an illustration we now consider an example where
the matrices A are not diagonal to start with. In particular,
collecting all terms proportional to the phonon spectral
function at zero frequency, C(0), we find a contribution to
the RHS of Eq. (A39) with the Am matrix taking the form

A(0)
m =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

A
(0)
m,1 0 0

0 A
(0)
m,2 0

0 0 08×8

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

16×16

,

(A46)

with the 4 × 4 submatrices

A
(0)
m,1 =

⎛
⎜⎝

c1 c2 c1 0
c2 c3 0 c3

c1 0 0 0
0 c3 0 0

⎞
⎟⎠C(0), (A47)

and

A
(0)
m,2 = diag(c4, − c4,c4, − c4)C(0), (A48)

where the matrix coefficients are listed in Table I. Because
A

(0)
m,2 is already diagonal, we only have to diagonalize A

(0)
m,1

to determine all contributions ∝C(0). Since D[1]ρ = 0 and
also D[1 + ô]ρ = D[ô]ρ for any Hermitian operator ô, any
off-diagonal elements involving the unit matrix 1 cancel in the
diagonalization procedure because D[1 + ô]ρ̄ − D[ô]ρ̄ = 0.
The only relevant contributions from A

(0)
m,1 then come from the

block containing the coefficient c3 and we find the result

σ̂A(0)
m ρ̄σ̂ † − 1

2 σ̂ †A(0)
s σ̂ ρ̄ + ρ̄σ̂ †A(0)

e σ̂ }
= c3C(0)(D[σz + σza

†a]ρ̄ − D[σza
†a]ρ̄)

+ c4C(0)(D[a†]ρ̄ − D[σza
†]ρ̄ + D[a]ρ̄ − D[σza]ρ̄),

(A49)
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TABLE I. Table of matrix coefficients obtained when
evaluating the Keldysh self-energy at fourth order. The
coefficients c1, c2, c6, c21, c25, c26, and c28 do not appear
in any of the rates summarized in Table II, since their
contributions ultimately cancel out in the diagonalization
procedure.

c1 = −g2 cos2 θ
cos2 θ ω2

q (ω2
q−3ω2

r )+ω2
r (ω2

q+ω2
r )

8ω2
r (ω2

q−ω2
r )2

c2 = g2 cos2 θ
3 sin2 θ ω3

q

8ωr (ω2
q−ω2

r )2

c3 = g2 cos2 θ
cos2 θ (ω4

q+2ω2
qω2

r −ω4
r )−2ω2

r (2ω2
q−ω2

r )

4ω2
r (ω2

q−ω2
r )2

c4 = −g2 cos2 θ
cos2 θ ω2

q−ω2
r

4(ω2
q−ω2

r )

c5 = −g2 sin2 θ
ω2

r (ω2
q+ω2

r )+cos2 θω2
q (ω2

q−3ω2
r )

16ω2
r (ω2

q−ω2
r )2

c6 = −g2 sin2 θ
(ωq−ωr )ω2

r +cos2 θ ω2
q (ωq+3ωr )

32ω2
r (ω2

q−ω2
r )(ωq+ωr )

c7 = g2 sin2 θ
cos2 θ(ω2

q−ω2
r )+sin2 θ ωqωr

8(ω2
q−ω2

r )2

c8 = g2 sin2 θ cos2 θ

8(ω2
q−ω2

r )

c9 = g2 sin2 θ
cos2 θ ω2

q−ω2
r

8ωr (ω2
q−ω2

r )(ωq−ωr )

c10 = g2 sin2 θ
cos2 θ ω2

q

16ω2
r (ω2

q−ω2
r )

c11 = g2 sin2 θ
cos2 θ ω2

q (ωq−ωr )−sin2 θ ωqω2
r

8ω2
r (ω2

q−ω2
r )(ωq−ωr )

c12 = g2 sin2 θ
ω2

r −cos2 θω2
q

8ωr (ω2
q−ω2

r )(ωq+ωr )

c13 = g2 sin2 θ
cos2 θω2

q (ωq+ωr )−sin2 θωqω2
r

8ω2
r (ω2

q−ω2
r )(ωq+ωr )

c14 = −g2 sin2 θ cos2 θ

8(ωqωr−ω2
r )

c15 = −g2 sin2 θ
cos2 θωq+cos2 θ(ω2

q−ω2
r )+2ω2

r

8ω2
r (ω2

q−ω2
r )

c16 = −g2 sin2 θ
cos2 θ(2ω2

q+ω2
r )+2 sin2 θω2

r

8ω2
r (ω2

q−ω2
r )

c17 = g2 sin2 θ
ωr−cos2 θωq

8ωr (ωq−ωr )2

c18 = g2 sin2 θ
ω2

r −cos2 θωq (2ωq−ωr )

8ω2
r (ωq−ωr )2

c19 = g2 sin2 θ
ωr+cos2 θωq

8ωr (ωq+ωr )2

c20 = g2 sin2 θ
ω2

r −cos2 θωq (2ωq+ωr )

8ω2
r (ωq+ωr )2

c21 = g2 sin2 θ
ω2

r (ωq+ωr )+cos2 θω2
q (ωq−3ωr )

32ω2
r (ω2

q−ω2
r )(ωq−ωr )

c22 = g2 sin2 θ
cos2 θ(ω2

q−ω2
r )−sin2 θωqωr

8(ω2
q−ω2

r )2

c23 = −g2 sin2 θ
cos2 θ(2ω2

q−ωqωr+ω2
r )+2 sin2 θω2

r

8ω2
r (ω2

q−ω2
r )

c24 = g2 sin2 θ cos2 θ

8ωr (ωq+ωr )

c25 = −g2 sin2 θ
ω2

r −cos2 θω2
q

16ωr (ω2
q−ω2

r )

c26 = g2 sin2 θ
ωr−cos2 θωq

32ωr (ωq−ωr )

c27 = −g2 sin2 θ
sin2 θωq

16(ω2
q−ω2

r )

c28 = g2 sin2 θ
ωr+cos2 θωq

32ωr (ωq+ωr )

which contributes to the dissipative superoperator at fourth
order, L4,corrρ̄.

As an aside, we note that some of the individual dissipators
in Eq. (A49) contain four photon creation and annihilation
operators, such as D[σza

†a]ρ, the total expression including

all terms only contains a maximum of two photon operators
in each term, as is consistent with our choice of self-energy
diagrams.

c. General form for dissipators proportional to C(ω)

The preceding section illustrated the diagonalization pro-
cedure for terms in the master equation that are pro-
portional to C(0). There are other terms proportional to
C(−ωq), C(ωq), C ′(−ωq), and C ′(ωq). Generically, each of
these terms take the form

σ̂A(ω)
m ρ̄σ̂ † − 1

2

{
σ̂ †A(ω)

s σ̂ ρ̄ + ρ̄σ̂ †A(ω)
e σ̂

}
, (A50)

with

A(ω)
m =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

A
(ω)
m,1 0 0 0

0 A
(ω)
m,2 0 0

0 0 A
(ω)
m,3 0

0 0 0 A
(ω)
m,4

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(A51)

being block diagonal in the operator basis (A40), and we find
A(ω)

s = A(ω)
e , consistent with the form required to ensure that

Eq. (A50) is of Lindblad form. Here the blocks A
(ω)
m,j are 4 × 4

submatrices.
For completeness, in the following sections we explicitly

provide the forms for these block submatrices and explicitly
write out the results of the diagonalization procedure in terms
of dissipators D[ ].

d. Dissipators proportional to C(−ωq)

For the terms proportional to the spectral function at the
negative qubit frequency, C(−ωq), we find

A
(−ωq )
m,1 =

⎛
⎜⎝

c5 c6 c5 0
c6 c7 c5 c8

c5 c5 0 0
0 c8 0 0

⎞
⎟⎠C(−ωq),

A
(−ωq )
m,2 =

⎛
⎜⎝

c9 c10 0 0
c10 c11 0 0
0 0 c12 c10

0 0 c10 c13

⎞
⎟⎠C(−ωq),

(A52)

A
(−ωq )
m,3 =

⎛
⎜⎝

c14 0 −c8 0
0 c15 0 c16

−c8 0 0 0
0 c16 0 0

⎞
⎟⎠C(−ωq),

A
(−ωq )
m,4 = diag(c17,c18,c19,c20)C(−ωq),
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with the coefficients specified in Table I. Performing the above
specified diagonalization procedure leads to the expression

σ̂A
(−ωq )
m ρ̄σ̂ † − 1

2 {σ̂ †A
(−ωq )
s σ̂ ρ̄ + ρ̄σ̂ †A

(−ωq )
e σ̂ }

= C(−ωq)[c17D[σ−a†] + c18D[σ+a]

+ c19D[σ−a] + c20D[σ+a†]

+ (c11 − c10)D[σza
†] + (c13 − c10)D[σza]

+ (c12 − c10)D[a] + (c9 − c10)D[a†]

+ (c15 − c16)D[σ+] + (c14 + c8)D[σ−]

− c5(D[a†a] − D[σz + a†a]) + (c22 + c5 − c8)D[σz]

+ c10(D[a + σza] + D[a† + σza
†])

− c8(D[σza
†a] − D[σz + σza

†a])

+ c8(D[σ−a†a] − D[σ− + σ−a†a])

− c16(D[σ+a†a] − D[σ+ + σ+a†a])]ρ̄. (A53)

e. Dissipators proportional to C(ωq)

The matrix representing terms proportional to the spectral
function at the positive qubit frequency, C(ωq), is represented
by the blocks

A
(ωq )
m,1 =

⎛
⎜⎝

c5 c21 c5 0
c21 c22 −c5 c8

c5 −c5 0 0
0 c8 0 0

⎞
⎟⎠C(ωq),

A
(ωq )
m,2 =

⎛
⎜⎝

c12 −c10 0 0
−c10 c13 0 0

0 0 c9 −c10

0 0 −c10 c11

⎞
⎟⎠C(ωq),

A
(ωq )
m,3 =

⎛
⎜⎝

c23 0 c16 0
0 c24 0 −c8

c16 0 0 0
0 −c8 0 0

⎞
⎟⎠C(ωq),

A
(ωq )
m,4 = diag(c18,c17,c20,c19)C(ωq), (A54)

with diagonalization resulting in a similar expression to
Eq. (A53),

σ̂A
(ωq )
m ρ̄σ̂ † − 1

2

{
σ̂ †A

(ωq )
s σ̂ ρ̄ + ρ̄σ̂ †A

(ωq )
e σ̂

}
= C(ωq)[c18D[σ−a†] + c17D[σ+a]

+ c20D[σ−a] + c19D[σ+a†]

+ (c13 + c10)D[σza
†] + (c11 + c10)D[σza]

+ (c9 + c10)D[a] + (c12 + c10)D[a†]

+ (c24 + c8)D[σ+] + (c23 − c16)D[σ−]

+ c5(D[a†a] − D[σz + a†a]) + (c22 + c5 − c8)D[σz]

− c10(D[a + σza] + D[a† + σza
†])

− c8(D[σza
†a] − D[σz + σza

†a])

− c16(D[σ−a†a] − D[σ− + σ−a†a])

+ c8(D[σ+a†a] − D[σ+ + σ+a†a])]ρ̄. (A55)

f. Dissipators proportional to C ′(ωq)

The final remaining terms are proportional to derivatives of
the spectral function. Terms ∝C ′(ωq) can be written as

A′(ωq )
m,1 =

⎛
⎜⎝

c25 c26 0 −c27
c26 c27 0 c27
0 0 0 0

−c27 c27 0 0

⎞
⎟⎠C ′(ωq),

(A56)

A′(ωq )
m,3 =

⎛
⎜⎝

−4c27 0 −4c27 0
0 0 0 0

−4c27 0 0 0
0 0 0 0

⎞
⎟⎠C ′(ωq),

where the other two blocks are zero. Diagonalization gives

σ̂A′(ωq )
m ρ̄σ̂ † − 1

2

{
σ̂ †A′(ωq )

s σ̂ ρ̄ + ρ̄σ̂ †A′(ωq )
e σ̂

}
= c27C

′(ωq)(D[σz + σza
†a] − D[σza

†a]

+ 4D[σ−a†a] − 4D[σ− + σ−a†a])ρ̄. (A57)

g. Dissipators proportional to C ′(−ωq)

The terms ∝C ′(−ωq) lead to

A′(−ωq )
m,1 =

⎛
⎜⎝

c25 c28 0 −c27
c28 −c27 0 −c27
0 0 0 0

−c27 −c27 0 0

⎞
⎟⎠C ′(−ωq),

(A58)

A′(−ωq )
m,3 =

⎛
⎜⎝

0 0 0 0
0 4c27 0 4c27
0 0 0 0
0 4c27 0 0

⎞
⎟⎠C ′(−ωq),

with the other two submatrices again being zero. Similar to
Eq. (A57), diagonalization leads to the Lindblad dissipators

σ̂A′(−ωq )
m ρ̄σ̂ † − 1

2

{
σ̂ †A′(−ωq )

s σ̂ ρ̄ + ρ̄σ̂ †A′(−ωq )
e σ̂

}
= c27C

′(−ωq)(−D[σz + σza
†a] + D[σza

†a]

− 4D[σ+a†a] + 4D[σ+ + σ+a†a])ρ̄. (A59)

APPENDIX B: FOURTH-ORDER MASTER EQUATION
OF THE RABI MODEL

1. All fourth-order correlated dissipators

Combining dissipators in equations (21), (A49), (A53),
(A57), and (A59) gives a total of 21 dissipators and their
corresponding rates. These constitute the correlated decay
processes at fourth order:

L4,corrρ̄

= �↓+D[σ−a†]ρ̄ + �↓−D[σ−a]ρ̄ + �↑+D[σ+a†]ρ̄

+ �↑−D[σ+a]ρ̄ + �ϕ+D[σza
†]ρ̄ + �ϕ−D[σza]ρ̄

+ �−D[a]ρ̄ + �+D[a†]ρ̄ + ��(D[σ+]ρ̄ + D[σ−]ρ̄)

+ �n(D[a†a]ρ̄ − D[σz + a†a]ρ̄) + �ϕ,4D[σz]ρ̄

+ �±,ϕ±(D[a + σza]ρ̄ + D[a† + σza
†]ρ̄)

+ �ϕn(D[σza
†a]ρ̄ − D[σz + σza

†a]ρ̄)

+ �↓n(D[σ−a†a]ρ̄ − D[σ− + σ−a†a]ρ̄)

+ �↑n(D[σ+a†a]ρ̄ − D[σ+ + σ+a†a]ρ̄), (B1)
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TABLE II. Expressions for dissipative rates in the fourth-order
contribution to the steady-state equation (B1). Terms γ (ω)

m are defined
in Eq. (21), while cjs are defined in Table I. Here we have
additionally introduced the symmetrized and antisymmetrized bath
spectral functions C±(ω) = C(ω) ± C(−ω) and the unsymmetrized
spectral function derivative C ′

−(ω) = C ′(ω) − C ′(−ω).

�↓+ = γ
(ωq−ωr )
↓+ + c17C(−ωq ) + c18C(ωq )

�↑− = γ
(−ωq−ωr )
↑− + c18C(−ωq ) + c17C(ωq )

�↓− = γ
(ωq+ωr )
↓− + c19C(−ωq ) + c20C(ωq )

�↑+ = γ
(−ωq+ωr )
↑+ + c20C(−ωq ) + c19C(ωq )

�ϕ+ = γ
(−ωr )
ϕ+ −c4C(0)+(c11−c10)C(−ωq ) + (c13 + c10)C(ωq )

�ϕ− = γ
(ωr )
ϕ− −c4C(0) + (c13 − c10)C(−ωq ) + (c11 + c10)C(ωq )

�� = (c23 − c16)C−(ωq )
�ϕ,4 = (c7 − c5 − c8)C−(ωq )
�− = c4C(0) + (c12 − c10)C(−ωq ) + (c9 + c10)C(ωq )
�+ = c4C(0) + (c9 − c10)C(−ωq ) + (c12 + C10)C(ωq )
�n = c5C−(ωq )
�ϕn = −c3C(0) − c8C+(ωq ) − c27C

′
−(ωq )

�↓n = c8C(−ωq ) − c16C(ωq ) + 4c27C
′(ωq )

�↑n = −c16C(−ωq ) − c8C(ωq ) − 4c27C
′(−ωq )

�±,ϕ± = −c10C−(ωq )

with the complete expressions for all rates summarized in
Table II. There we have additionally introduced the
symmetrized and antisymmetrized bath spectral functions
C+(ω) = C(ω) + C(−ω) and C−(ω) = C(ω) − C(−ω) as
well as the unsymmetrized spectral function derivative
C ′

−(ω) = C ′(ω) − C ′(−ω).

2. Complete coupled steady-state equations

Here we give the full expression for all rates and factors
appearing in the coupled steady-state equations for resonator
and qubit.

We previously found the resonator steady-state equation as

0 = −i[H̃r ,ρ̄r ] + κ−D[a]ρ̄r + κ+D[a†]ρ̄r , (B2)

with the renormalized photon loss and generation rates

κ− = κ−,r + Peγ
(ωq+ωr)
↓− + Pgγ

(−ωq+ωr )
↑− + γ

(ωr )
ϕ−

+ 〈σz〉κ (ωq )
ϕ + Peκ

(ωq ) − Pgκ
(−ωq ),

κ+ = κ+,r + Peγ
(ωq−ωr )
↓+ + Pgγ

(−ωq−ωr )
↑+ + γ

(−ωr )
ϕ+

+ 〈σz〉κωq

ϕ − Peκ
(ωq ) + Pgκ

(−ωq ), (B3)

where we ordered the contributions according to their bath
frequencies. The previously unspecified additional rates are

κ
(ωq )
ϕ = 1

8
g2 sin2 θ

ω2
q cos2 θ

ω2
r

(
ω2

q − ω2
r

)C+(ωq),

κ (ωq ) = 1

2
g2 sin2 θ

ωq

(
cos2 θ ω2

q − ω2
r

)
ωr

(
ω2

q − ω2
r

)2 C(ωq), (B4)

κ (−ωq ) = 1

2
g2 sin2 θ

ωq

(
cos2 θ ω2

q − ω2
r

)
ωr

(
ω2

q − ω2
r

)2 C(−ωq),

with all other expressions defined previously.

The self-consistent equation for the resonator field ampli-
tude α we write again as

iα̇ = εd/2 + α(δωr + 2χ̃σz − iκ ′/2), (B5)

with the renormalized resonator linewidth κ ′:

κ ′ =κ− − κ+, (B6)

with all expressions already previously defined.
The qubit steady state is determined from

0 = − i[H̃q,ρ̄q] + γ↓D[σ−]ρ̄q

+ γ↑D[σ+]ρ̄q + γϕD[σz]ρ̄q , (B7)

with the correlated dissipative rates

γ↓ = γ↓,2 + |α|2γ (ωq+ωr )
↓− + (|α|2 + 1)γ

(ωq−ωr )
↓+

+ γ
(ωq )
↓ + γ

(−ωq )
↓ + γ ′

↓,

γ↑ = γ↑,2 + |α|2γ (−ωq+ωr )
↑− + (|α|2 + 1)γ

(−ωq−ωr )
↑+

+ γ
(ωq )
↑ + γ

(−ωq )
↑ + γ ′

↑,

γϕ = γϕ,2 + |α|2γ (ωr )
ϕ− + (|α|2 + 1)γ (−ωr )

ϕ+

+ γ (0)
ϕ + γ

(ωq )
ϕ + γ

(−ωq )
ϕ + γ ′

ϕ, (B8)

where we again ordered all contributions according to their
bath frequency and we already specified the expressions for
the rates γ↑/↓,0, γ

(±ωq±ωr )
↓/↑,± , γϕ,0, and γ

(±ωr )
ϕ,± in Eq. (22) of the

main paper.
The qubit relaxation rates are

γ
(ωq )
↓ = [|α|2(c18 + c20 − 2c16) + (c18 + c23 − 2c16)]C(ωq),

γ
(−ωq )
↓ = [|α|2(c17 + c19 + 2c8)

+ (c17 − c23 + c16 + c8)]C(−ωq),

γ ′
↓ = (8|α|2c27 + 4c27)C ′(ωq). (B9)

Similarly, we also find the correlated rates for qubit excitations
as

γ
(ωq )
↑ = [|α|2(c17 + c19 − 2c8)

+ (c19 + c23 − c16 − c8)]C(ωq),

γ
(−ωq )
↑ = [|α|2(c18 + c20 − 2c16) + (c20 − c23)]C(−ωq),

γ ′
↑ = −(8|α|2c27 + 4c27)C ′(−ωq). (B10)

Finally, the additional contributions to qubit dephasing are
given by

γ (0)
ϕ = −[|α|2(2c3 + 2c4) + (c3 + c4)]C(0),

γ
(ωq )
ϕ = [|α|2(c13 + c11 − 2c8)

+ (c13 + c10 − 2c8 + c7 − c5)]C(ωq),

γ
(−ωq )
ϕ = [|α|2(c11 + c13 − 2c8)

+ (c11 − c10 − c7 + c5)]C(−ωq),

γ ′
ϕ = −(2|α|2c27 + c27)C ′

−(ωq). (B11)
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FIG. 10. Plots of the effective qubit relaxation and excitation rates γ↑,4 and γ↓,4 from Eq. (43) for an Ohmic bath spectral function
C(ω) = ω[nth(ω) + θ (ω)] with the bosonic thermal occupation factor nth(ω) = 1/(eβω − 1), β = 1/kBT . We show the contributions to the
rates for the resonator unpopulated, α = 0 (left), and for a large resonator field amplitude, α � 1 (right), for the two situations of zero
temperature, T = 0 (top), and nonzero temperature, T = 0.2ωr (bottom). Horizontal lines in the contour plots indicate the values of �q used
in the line plots below. The thin dotted line in the contour plots indicates the resonance condition ωq = ωr .

3. Effective qubit rates

Figure 10 shows the correlated qubit relaxation and ex-
citation rates γ↓/↑,4. We show the rates in the two limits of
zero resonator field, α = 0 and very large resonator amplitude,
|α|2 � 1, both for zero and nonzero temperature T . In
Figure 11 we show the effective qubit dephasing rate γϕ,4 for
the same parameters. Similar to the effective resonator rates
κ±,4 shown in the main text, the qubit rates are not generally
well behaved close to resonance between qubit and resonator,
as expected from the perturbation theory. Far from resonance,
however, all rates are positive and finite and therefore lead
to CP dynamics in the qubit master equation. As before we
can define an effective qubit temperature Tq via the ratio of
its relaxation and excitation rates, γ↑/γ↓ = exp {−ωq/kBTq},
now depending on the bath temperature and the resonator field
amplitude α.

APPENDIX C: PHONON SPECTRAL FUNCTIONS FROM
MICROSCOPIC CONSIDERATIONS

Following the discussion in Ref. [2] we calculate expres-
sions for the spectral function weights F and P in Eq. (46)
assuming piezoelectric interactions between the phonons and
the DQD, based on a simplified geometrical model of the

semiconductor heterostructure. We find

Fpiezo = P 2
1 h̄d

2μ1c2
nωr

, Ppiezo = P 2
1 h̄

2μ3c3
p

, (C1)

where μ3 is the three-dimensional mass density of the material,
and μ1 = πa2μ3 is the one-dimensional equivalent for a wire
of radius a. Here we assumed that the interactions of substrate
phonons with the electronic state in the DQD is mediated by
the piezoelectricity of the wire material, while the phonon
modes are defined by the bulk properties of the substrate. With
the DQD length d = 120 nm, the wire radius a = 25 nm,
the speed of sound in the wire cn = 4 × 103 m/s and in the
substrate cp = 5 × 103 m/s [47], we find

Fpiezo = 0.85, Ppiezo = 0.16. (C2)

Given that these estimates do not include any of the
complexities of the real experimental system (e.g., nearby

TABLE III. Microscopic parameters for the calculation of the
phonon spectral functions, partially extracted from Ref. [53].

InAs (1D wire) SiN (3D substrate)

Mass density μ3 5.7 × 103 kg/m3 3.2 × 103 kg/m3

Piezoelectric constant Ph̄ 0.725 eV/nm n.a.
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FIG. 11. Plots of the effective qubit dephasing rate γϕ,4 from
Eq. (43) for an Ohmic bath spectral function C(ω) = ω[nth(ω) +
θ (ω)] and zero-frequency noise of amplitude C(0) = 1. We show the
contributions to the rates for the resonator unpopulated, α = 0 (left),
and for a large resonator field amplitude, α � 1 (right), for the two
situations of zero temperature, T = 0 (top), and nonzero temperature,
T = 0.2ωr (bottom). Horizontal lines in the contour plots indicate the
values of �q used in the line plots below. The thin dotted line in the
contour plots indicates the resonance condition ωq = ωr .

surface gates, shear coupling between the 1D wire and the
bulk substrate, finite length of wire, etc.) these values are
in reasonable qualitative agreement with the values used

FIG. 12. Effect of raising the phonon bath temperature from 3
to 9 K. We plot the power gain in the microwave resonator G as a
function of DQD asymmetry εq . The solid red line is for the elevated
temperature, kBT /ωr = 23.4 (corresponding to T = 9 K), the dotted
line is for comparison at the lower temperature shown in Fig. 3 (i.e.,
kBT /ωr = 7.8, corresponding to T = 3 K, from Ref. [16]). All other
parameters are the same for both curves. Shown are calculations
including all additional terms in the full master equation (20).
Parameters used in the calculations are ωd/ωr = 1, g/ωr = 0.0125,
�q/ωr = 3, κ/ωr = 52 × 10−6, �/ωr = 0.34, F = 2.9, P = 0.25,
and w = 1.7, as in Fig. 3.

in Fig. 3 in the main text, where F and P are treated as free
parameters.

The remaining microscopic parameter values used are
summarized in Table III, where we have corrected for angular
averaging in three-dimensional (3D) piezoelectric constants
compared with 1D compounds.

1. Effect of higher temperature

To illustrate the effect of a raising the bath temperature,
we compare in Fig. 12 the microwave power gain G at
a bath temperature of T = 3 K (dashed red) with that at
T = 9 K (solid red). These calculations take into account all
additional dissipators in Eq. (20). We see that the main effect
is a broadening of the gain profile, leading to a better fit of
the theory to experimental data (orange dots) in the region
εq/ωr < −5.
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