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Abstract 

 

The group C SOX transcription factors SOX4, -11 and -12 play important and mutually 

overlapping roles in development of a number of organs. Here, we examined the role of SoxC 

genes during gonadal development in mice. All three genes were expressed in developing 

gonads of both sexes, predominantly in somatic cells, with Sox4 being most strongly 

expressed. Sox4 deficiency resulted in elongation of both ovaries and testes, and an increased 

number of testis cords. While female germ cells entered meiosis normally, male germ cells 

showed reduced levels of differentiation markers Nanos2 and Dnmt3l and increased levels of 

pluripotency genes Cripto and Nanog, suggesting that SOX4 may normally act to restrict the 

pluripotency period of male germ cells and ensure their proper differentiation. Finally, our 

data reveal that SOX4 (and, to a lesser extent, SOX11 and -12) repressed transcription of the 

sex-determining gene Sox9 via an upstream testis-specific enhancer core (TESCO) element in 

fetal gonads, raising the possibility that SOXC proteins may function as transcriptional 

repressors in a context-dependent manner.  

 

Introduction 

 

In mice, gonadal development starts around 10.5 days post coitum (dpc) when the coelomic 

epithelium overlying the ventromedial surface of the mesonephros thickens to form a pair of 

sexually bipotent genital ridges. In XY genital ridges, the subsequent expression of the Y-

linked male sex-determining gene Sry (Gubbay et al., 1990; Koopman et al., 1991; Sinclair et 

al., 1990) in somatic precursor cells marks the onset of testis differentiation. SRY activates its 

key target Sox9 by binding to an upstream testis-specific enhancer core (TESCO) element 

(Sekido and Lovell-Badge, 2008). SOX9 directs somatic precursor cells to differentiate into 
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Sertoli cells, which in turn orchestrate the development of other testicular cell lineages, 

including fetal Leydig cells (Svingen and Koopman, 2013). In the absence of Sry, XX 

somatic precursor cells differentiate towards granulosa cells under the influence of 

unopposed RSPO1/WNT4/ß-Catenin and FOXL2 signalling (Nicol and Yao, 2014). As a 

result, XX genital ridges form ovaries. 

 

Accompanying the differentiation of testicular cell lineages, mouse fetal testes undergo 

morphological changes from 11.5 dpc, including rapid growth, testis cord formation and 

vascularisation (Svingen and Koopman, 2013; Ungewitter and Yao, 2013). Along with the 

rapid growth, the shape of fetal testes changes significantly. Width of the testes increases ~4-

fold (Nel-Themaat et al., 2009) by 13.5 dpc due to a combination of somatic cell proliferation 

(Schmahl et al., 2000) and cell migration from the mesonephroi and coelomic epithelium  

(Karl and Capel, 1998; Martineau et al., 1997). At the same time, fetal testes become shorter 

(Nel-Themaat et al., 2009), presumably due to cells migrating more towards the centre of the 

gonad (Nel-Themaat et al., 2010). In contrast, fetal ovaries show no dramatic morphological 

changes within this time window apart from a slight increase in width and a reduction in 

length.  

 

Depending on the sexual fate choice of gonadal somatic cells, fetal germ cells adopt male or 

female fate. In fetal ovaries, germ cells enter meiosis in response to retinoic acid, and express 

meiotic markers including Stra8 and Sycp3 (Bowles et al., 2006; Koubova et al., 2006). In 

contrast, germ cells in fetal testes avoid entering meiosis and are instead mitotically arrested 

(McLaren, 1984). They transiently activate the Nodal/Cripto signalling pathway (Spiller et 

al., 2012), down-regulate pluripotency genes such as Nanog, Sox2 and Oct3/4 (Pou5f1) 

(Western et al., 2010), and begin to express genes marking the commitment to 
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spermatogenesis, including Nanos2 (Suzuki and Saga, 2008) and Dnmt3l (Bourc'his and 

Bestor, 2004).  

 

SRY and SOX9 belong to the multi-member SOX family of transcription factors defined by 

the presence of an SRY-type HMG (high-mobility group) box (SOX) DNA-binding domain. 

Based on the sequence homology of the HMG box, the 20 mammalian SOX proteins can be 

classified into groups A-H (Bowles et al., 2000). The SOXC group comprises three members, 

SOX4, SOX11 and SOX12. All possess a transactivation domain at the carboxyl-terminus, 

with SOX11 being the strongest transactivator (Dy et al., 2008). SoxC genes are expressed 

widely in the early mouse embryo and have been shown to redundantly function in a dose-

dependent manner in the development of multiple organs (Bhattaram et al., 2010). Sox4
 –/–

 

mice die at 14.5 dpc due to a heart outflow tract malformation (Schilham et al., 1996). Sox11
 

–/–
 mice develop multiple organ defects and die at birth with similar heart malformations but 

of less severity compared with Sox4
 –/–

 mice (Sock et al., 2004). Sox12
 –/–

 mice are grossly 

normal (Hoser et al., 2008).  

 

Northern blotting has previously revealed strong Sox4 expression in adult mouse thymus, 

ovaries and testes (van de Wetering et al., 1993), prompting us to investigate whether this 

gene might also play a role in fetal gonad development. In the present study, we show that 

Sox4 is highly expressed in both sexes in gonadal supporting cells, the organising centre of 

gonad organogenesis. By analysing Sox4
 –/–

 embryos, we found that Sox4 loss of function 

resulted in a dysregulation of the organ shape of both ovaries and testes. Although the 

specification of gonadal somatic cell lineages and female germ cells appeared unperturbed in 

Sox4
 –/–

 fetal gonads, the spermatogenic differentiation of male germ cells was significantly 

compromised. In addition, our results suggest that SOX4 (and possibly SOX11/12) may 
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function as a transcriptional repressor in fetal testes, contributing to the precise regulation of 

Sry and Sox9. Taken together, our data indicate that SOX4 plays important roles in mouse 

gonad development by modulating gonad morphogenesis and promoting male germ cell 

differentiation in vivo.  
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Materials and methods 

Mice 

All animal procedures were approved by the Animal Care Committee at the Atlantic 

Veterinary College, University of Prince Edward Island or the University of Queensland 

Animal Ethics Committee. Sox4
 +/–

 strain (Schilham et al., 1996), Wt1-RG red-green reporter 

strain (Zhao et al., 2014b), and W
 e
 strain (Buehr et al., 1993) have been described previously. 

Embryos were collected from timed matings of various strains, with noon of the day on 

which the copulatory plug was observed designated 0.5 dpc. 

 

In situ hybridisation  

Section in situ hybridisation was performed following a previously described protocol 

(Wilhelm et al., 2007) with modifications: 7-μm paraformaldehyde-fixed paraffin sections 

were dewaxed, rehydrated, proteinase K-treated, refixed, acetylated and pre-hybridised as 

described (Wilhelm et al., 2007). Digoxigenin (DIG)-labelled riboprobes were heat denatured 

at 85 C for 5 min and cooled on ice before adding to the hybridisation buffer to a final 

concentration of 1 μg/ml. Hybridisation was carried out at 65 C overnight. Slides were 

subsequently washed in 5 SSC for 25 min at 65 C and NTE buffer (10 mM Tris-HCl, pH 

7.5, 0.5 M NaCl, and 1 mM EDTA, pH 8) for 15 min at room temperature before RNase A (5 

μg/ml) treatment in NTE buffer at 37 C for 2 15 min. Slides were washed sequentially in 

2 SSC at 65 C for 10 min, 0.5 SSC at 65 C for 30 min and room temperature for 15 min, 

MAB buffer (0.1 M Maleic acid, 0.15 M NaCl, pH 7.5) for 10 min, and MABT buffer (MAB 

buffer containing 0.1% Tween-20) for 10 min, before incubating for 45 min in MABT buffer 

containing 2% Blocking reagent (Roche) and 5% heat-inactivated horse serum. Anti-DIG-AP 

antibody (Roche) at 1:1000 dilution in MABT buffer was added to the slides and incubated at 

room temperature for 1 h. Slides were subsequently washed two times in MABT buffer and 
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three times in NTT buffer (0.1 M Tris-HCl, pH 9.5, 0.1 M NaCl, and 0.1% Tween-20) before 

incubating with BM purple solution (Roche) until optimal staining was achieved. The probe 

sequences of Sox4, Sox11, and Sox12 have been described previously (Huang et al., 2013). 

 

Whole-mount in situ hybridisation with a DIG-labelled riboprobe for the myoD gene (Ashe et 

al., 2012) was performed essentially as described (Hargrave et al., 2006).  

 

Cell sorting 

Fetal testes and ovaries (with mesonephros tissue removed) were dissected from Wt1-RG 

embryos at 13.5 dpc and pooled (n = 4). Gonad tissue was incubated with 0.05% trypsin for 5 

min at 37 C followed by mechanical dissociation with 18G and 23G needles sequentially. 

Cells were sorted for mCherry and EGFP fluorescence on an Influx Flow Sorter (BD 

Biosciences). Two cell populations were isolated from ovarian tissue, namely RG
 +

 (mCherry
 

+ 
EGFP

 +
) somatic cells and mCherry

 – 
EGFP

 –
 (RG

 –
) germ cells (Supplementary Fig. S1). 

Three distinct populations were isolated from fetal testes: RG
 Hi

 Sertoli cells, RG
 Lo

 interstitial 

cells (including fetal Leydig cells), and RG
 –

 germ cells (Supplementary Fig. S1).  

 

Histology 

Embryos were fixed overnight in 4% paraformaldehyde and embedded in paraffin. Briefly, 7-

μm paraffin sections were de-waxed in xylene, rehydrated through an ethanol series, then 

stained sequentially in haematoxylin and eosin solution. Images were captured on a BX-51 

microscope (Olympus). 
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Immunofluorescence 

Immunofluorescence staining was performed on 7-μm paraformaldehyde-fixed paraffin 

sections as described (Zhao et al., 2015). Images were captured on a LSM710 confocal 

microscope (Zeiss). Primary antibodies were used at the following dilutions: goat-anti-AMH 

(Santa Cruz C-20), 1:500; rabbit anti-HSD3 (Transgenic Inc. KAL-KO607), 1:500; rabbit 

anti-FOXL2 (Polanco et al., 2010), 1:500; rabbit anti-Laminin (Sigma L9393), 1:300; rabbit 

anti-DDX4 (Abcam ab13840), 1:800; mouse anti-SCP3 (Abcam ab97672), 1:200; mouse 

anti-DDX4 (Abcam ab27591), 1:500; rabbit anti-ARL13B (Proteintech 17711-1-AP), 1:300; 

rabbit anti-SRY (Wilhelm et al., 2005), 1:100; mouse anti-SOX9 (Abnova H00006662-M01), 

1:200; rabbit anti-cleaved Caspase-3 (Cell Signaling #9664), 1:600; rabbit anti-Ki67 (Abcam 

ab15580), 1:100. 

 

Quantitative RT-PCR (qRT-PCR)  

mRNA expression analysis was performed as described (Bagheri-Fam et al., 2015). Embryos 

at 13.5 dpc were collected and stored in RNAlater solution (Qiagen). Fetal gonads were then 

dissected in RNAlater solution with mesonephros removed. Total RNA was extracted using 

RNeasy Micro kit (Qiagen) and cDNA synthesized using a high-capacity cDNA kit (Life 

Tech). Quantitative PCR was conducted with SYBR Green mix (Life Tech) on a ViiA7 

machine (Life Tech). Primer sequences have been described previously (Huang et al., 2013; 

Zhao et al., 2015). Relative expression was calculated using ΔCt method with Tbp as the 

normalizing control (Svingen et al., 2009). Multiplicity-adjusted P values were calculated 

using GraphPad Prism 7. 
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Luciferase reporter assays 

Luciferase reporter assays were conducted as described (Zhao et al., 2014a). Briefly, 

HEK293 cells were co-transfected with the TESCO-Luc construct (Sekido and Lovell-Badge, 

2008), an empty pcDNA3 or a pcDNA3-Sf1 construct, an empty vector or an expression 

construct containing Sry or Sox9 coding sequence, in combination with an expression 

construct containing coding sequence of Sox4, 11 or 12 (Huang et al., 2013). A CMV-renilla 

luciferase plasmid was included as a control for transfection efficiency. Cell lysates were 

harvested 48 h post-transfection and luciferase activities measured using a Dual Luciferase 

kit (Promega) on a POLARstar Omega luminometer (BMG Labtech). Statistical significance 

was determined with one-way ANOVA with Tukey’s range test for multiple comparisons 

performed using GraphPad Prism 7. 

 

Image quantification 

For morphometric analysis of fetal urogenital organs, fetal gonads and kidneys were 

dissected from 13.5 dpc embryos and imaged with a Leica EC3 digital camera attached to a 

Leica MZ7.5 stereomicroscope. Length and width of each organ were measured using ImageJ 

software. Embryo trunk length was measured using ImageJ on embryos previously stained by 

whole-mount in situ hybridisation with a myoD riboprobe as described (Wainwright et al., 

2014). Number of external testis cords (those running immediately beneath the coelomic 

epithelium) were counted on the central sagittal section of the fetal testis (the largest plane). 

Multiplicity-adjusted P values were calculated using GraphPad Prism 7. 

 

For quantifying apoptosis, the number of CC3
 +

 cells in a whole gonadal section from each of 

several embryos of each genotype was manually counted and the area of each section 

measured with ImageJ. For quantifying cell proliferation and SRY-expressing cells, the 
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number of Ki67
+
 or SRY

+
 cells in three randomly chosen areas of arbitrary and identical size 

was manually counted in a whole gonadal section from each of several embryos of each 

genotype.  
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Results 

 

SoxC genes are predominantly expressed in the fetal gonadal somatic cell lineages 

 

Sox4 has previously been shown to be strongly expressed in adult mouse ovaries and testes 

(van de Wetering et al., 1993). However, detailed information about its expression pattern 

during mouse gonadogenesis is lacking. We therefore analysed the expression of Sox4, Sox11 

and Sox12 in the developing fetal gonads from 10.5 to 14.5 dpc. qRT-PCR analysis (Fig. 1A) 

showed that all three genes were expressed in CD1 mouse fetal gonads, with similar levels in 

XX and XY gonads during this period. Expression of all three genes gradually decreased 

during the time course, with Sox4 expression appearing to plateau after 12.5 dpc.  

 

We further analysed the spatial expression pattern of SoxC genes using in situ hybridisation 

on sagittal sections of 13.5 dpc CD1 mouse embryos (Fig. 1B). In the fetal ovary, Sox4 was 

strongly expressed in the domain close to mesonephros (future ovarian medulla), while Sox11 

and Sox12 were expressed throughout the tissue. In the fetal testis, intensive staining of Sox4 

mRNA was observed within testis cords comprising cluster of germ cells and surrounding 

Sertoli cells. Sox12 expression was detected both within testis cords and in the interstitium. In 

contrast, staining of Sox11 transcripts appeared to be restricted to the interstitium. In 

accordance with these observations, elevated levels of SoxC genes were detected by qRT-

PCR in W
 e
 fetal gonads which lack germ cells, possessing an increased proportion of somatic 

cells (Buehr et al., 1993), compared with wild type gonads  (Fig. 1C). These results indicate 

that SoxC genes are predominantly expressed in the somatic compartment of fetal gonads. 
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To further delineate the cell lineages expressing SoxC genes, we analysed their expression in 

13.5 dpc fetal gonads from the Wt1-RG (red-green) mouse strain carrying an mCherry-EGFP 

transgene under the control of Wt1 regulatory sequence (Zhao et al., 2014b). Gonadal cells 

from Wt1-RG fetal ovaries were sorted into RG
 +

 (mCherry
 +

 EGFP
 +

) and RG
 –

 (mCherry
 –

 

EGFP
 –

) cell populations, whereas cells from Wt1-RG testes were sorted into three distinct 

populations based on their fluorescence intensities: RG
 Hi

, RG
 Lo 

and RG
 –

 (Supplemental Fig. 

S1). qRT-PCR analyses of lineage marker genes indicate that XX RG
 +

 and RG
 –

 cell 

populations were enriched for granulosa and germ cells respectively, whereas XY RG
 Hi

, RG
 

Lo
, and RG

 –
 populations were enriched for Sertoli, interstitial (including fetal Leydig cells) 

and germ cells respectively (Supplemental Fig. S1).  

 

SoxC genes were expressed at high levels in the somatic cell compartment (RG
 +

 population 

in fetal ovaries; and RG
 Hi

 and RG
 Lo

 populations in fetal testes) with much lower levels in 

RG
 –

 germ cells (Fig. 1D), in agreement with our in situ hybridisation and W
 e
 qRT-PCR 

results. In 13.5 dpc fetal testes where Sertoli and fetal Leydig cells have developed by this 

stage, SoxC genes showed clearly diverged expression patterns (Fig. 1D): Sox4 was 

expressed at high levels in RG
 Hi

 Sertoli cells and slightly lower levels in RG
 Lo

 interstitial 

cells; Sox12 was expressed at roughly equal levels in RG
 Hi

 Sertoli cells and RG
 Lo

 interstitial 

cells. In contrast, Sox11 was predominantly expressed in RG
 Lo

 interstitial cells with 

substantially lower levels in RG
 Hi

 Sertoli cells.  

 

Common somatic progenitor cells are believed to give rise to sex-specific somatic cell 

lineages (granulosa or Sertoli; stromal or interstitial) in the fetal testis and ovary (Albrecht 

and Eicher, 2001; Burgoyne et al., 1988; Palmer and Burgoyne, 1991a, b). It is thus highly 

likely that the expression of SoxC genes in ovarian somatic cell lineages (granulosa and 
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stromal) follows the same patterns in their corresponding testicular lineages. This 

extrapolation is supported by a previously published mouse fetal gonadal expression dataset 

conducted on sorted cell lineages (Supplemental Fig. S2; Jameson et al., 2012).  

 

SOX4 influences the organ shape of fetal gonads in mice 

 

Based on the identified expression patterns of SoxC genes in mouse fetal gonads, we next 

focused our study on Sox4, as it is highly expressed in the supporting cell lineage that 

orchestrates fetal gonad development. While Sox12 is also expressed in the supporting cells, 

it is the weakest transactivator amongst the SOXC factors (Dy et al., 2008), and has been 

shown previously to be dispensable for mouse embryonic development and fertility in adult 

mice (Hoser et al., 2008).  

 

The gross morphology of both XX and XY Sox4
 –/–

 fetal gonads at 13.5 dpc largely 

resembled that of wild type (Fig. 2A): testis cords formed in Sox4
 –/–

 testes, while no overt 

morphological changes were noticed in Sox4
 –/–

 ovaries. Mutant embryos were 

indistinguishable from their littermates macroscopically (Supplemental Fig. S3A). However, 

Sox4
 –/–

 fetal gonads were significantly longer and thinner than wild type in both sexes (Fig. 

2A,C,D): on average, Sox4
 –/–

 ovaries were ~27% longer and ~20% thinner than wild type, 

and Sox4
 –/–

 testes ~24% longer and ~9% thinner. The effect of SOX4 appears to be specific 

to fetal gonads, as neither the length of embryo trunk axis (Supplemental Fig. S3B) nor the 

shape of the fetal kidney, another organ originating from the urogenital ridge (Fig. 2B,E,F), 

were altered in Sox4
 –/–

 embryos. 
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Anti-laminin immunofluorescence revealed significantly more external testis cords (those 

running immediately beneath the coelomic epithelium; Combes et al., 2009) in Sox4
 –/–

 testis 

than wild type at 14.5 dpc (Fig. 3), consistent with a previously reported correlation between 

the gonad length and the number of testis cords (Nel-Themaat et al., 2009; Wainwright et al., 

2014). Since the number of external testis cords decreases from 12.5 to 14.5 dpc in wild type 

testes due to extensive cord remodelling (Combes et al., 2009; Nel-Themaat et al., 2009), the 

observed increase in testis cord number in Sox4
 –/–

 testis could be caused by either excess 

formation of new cords or stabilisation of existing ones. Future experiments examining the 

dynamics of cord formation and remodelling in Sox4
 –/–

 fetal testes across 12.5 to 14.5 dpc 

should help to clarify this issue.  

 

SOX4 is likely to modulate gonad shape through mechanisms common to both testes and 

ovaries, as Sox4
 –/–

 testes and ovaries underwent similar shape changes. We therefore reason 

that the increase in cord number was unlikely to drive the elongation of the gonad domain in 

Sox4
 –/–

 fetal testes, since cord-like structures were absent in Sox4
 –/–

 fetal ovaries. Instead, we 

suggest that the increased number of testis cords in Sox4
 –/–

 fetal testis may be a result of the 

extended gonad domain available for cord formation, in agreement with a previously 

proposed model that the number of testis cords may be determined by the space available in 

the gonadal field (Wainwright et al., 2014).  

 

We have recently reported that one cause of increased gonad length is a defect in Ift144, a 

gene encoding a component of the primary cilium (Wainwright et al., 2014). We therefore 

analysed the presence of primary cilia in Sox4
 –/–

 fetal gonads using immunofluorescence. No 

apparent difference in primary cilia distribution between Sox4
 –/–

 and wild type fetal gonads 

was observed (Supplemental Fig. S4). Although we cannot rule out that Sox4 regulates 
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primary cilium-mediated signalling to affect gonad length without affecting the formation 

and distribution of primary cilia, our results do not support an active involvement of primary 

cilia signalling in this phenotype.  

 

We next analysed cell apoptosis and proliferation, since SoxC genes have been shown to be 

essential for the survival of mesenchymal and neural progenitor cells (Bhattaram et al., 

2010). Immunostaining for the apoptosis marker cleaved Caspase-3 and the mitosis marker 

Ki-67 showed no significant changes in cell survival or proliferation in Sox4
 –/–

 gonads 

compared with wild type (Supplemental Figs. S5-S6), suggesting that SOX4 influences the 

shape of fetal gonads via other cellular and molecular mechanisms. 

  

SOXC factors have been shown to directly regulate Tead2 (Bhattaram et al., 2010; Poncy et 

al., 2015), a co-activator of the Hippo pathway, which plays a critical role in controlling 

organ shape and size in development and cancer (Zhao et al., 2011). We found that Tead2 

was significantly downregulated in XY but not XX mutant gonads at 13.5 dpc (Fig. 2G). 

Similar to previous studies (Bhattaram et al., 2010; Poncy et al., 2015), no significant 

changes in expression of other Hippo pathway genes, including Amotl2, Ctgf and Cyr61, 

were observed in Sox4
 –/–

 fetal gonads (Fig. 2H-J).  

 

Sox4 loss-of-function does not perturb the specification of somatic cell lineages in mouse 

fetal gonads  

 

Sox4 has been shown to control cell fate determination in neural progenitor cells (Bergsland 

et al., 2006) and skeletogenesis (Bhattaram et al., 2014). We therefore sought to determine 

whether specification of major somatic cell lineages was affected in the developing Sox4
 –/–

 



 

 16 

fetal gonads. Histological examination of gonad sections at 14.5 dpc showed no apparent 

difference between the mutant and wild type gonads (Fig. 4A). Immunofluorescence analysis 

of several markers of the major gonadal cell lineages, including AMH (a marker of Sertoli 

cells), HSD3 (a steroidogenic enzyme expressed by fetal Leydig cells), and FOXL2 (a 

marker of granulosa cells) showed overall similar expression patterns in Sox4
 –/–

 and wild 

type gonads (Fig. 4B): AMH-expressing Sertoli cells and HSD3-expressing fetal Leydig 

cells were present in Sox4
 –/–

 fetal testes and were absent in Sox4
 –/–

 ovaries. Conversely, 

FOXL2-positive granulosa cells were only detected in Sox4
 –/–

 ovaries but not in Sox4
 –/–

 

testes. Quantitative analysis of these marker genes at 13.5 dpc using qRT-PCR confirmed 

similar expression levels of these marker genes in Sox4
 –/–

 and wild type gonads 

(Supplemental Fig. S7A–C). 

 

We further analysed additional marker genes of the gonadal somatic cell lineages at 13.5 dpc 

using qRT-PCR. In line with our immunofluorescence analysis showing the presence of the 

major somatic cell lineages in Sox4
 –/–

 gonads, Sf1 (also known as Nr5a1), a gene required for 

the differentiation of somatic cell lineage in both sexes (Luo et al., 1994), showed no 

significant expression changes between Sox4
 –/–

 and wild type gonads (Fig. 4C). Testicular 

cell lineage markers, including Dhh (Sertoli), Cyp11a1 and Star (fetal Leydig), showed 

similar expression levels in Sox4
 –/–

 and wild type testes (Fig. 4D–F). Similarly, expression of 

Fst, a marker of granulosa cells and a downstream target of FOXL2 (Blount et al., 2009; 

Kashimada et al., 2011), remained unaltered in Sox4
 –/–

 ovaries compared with wild type (Fig. 

4H). Interestingly, we found that Wnt4, a key driver of fetal ovarian development (Vainio et 

al., 1999), was slightly up-regulated in Sox4
 –/–

 fetal ovaries compared with wild type ovaries 

(Fig. 4G), suggesting that SOX4 may directly or indirectly repress Wnt4 transcription in fetal 

ovaries. 
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Together, these data do not support an active role of Sox4 in cell fate determination of fetal 

gonadal somatic cell lineages, in accordance with previous findings that various marker genes 

of embryo patterning and cell lineage specification are expressed normally in SoxC mutant 

embryos (Bhattaram et al., 2010). 

  

SOX4 negatively regulates Sry and Sox9 in mouse fetal testes  

 

Complex interplay among different SOX proteins has been well documented (Kamachi and 

Kondoh, 2013; Wegner, 2010). For instance, SOX4 and SOX9 cooperate to control bile duct 

development (Poncy et al., 2015), whereas SOXC proteins antagonise SOX9 activity in 

skeletogenesis (Bhattaram et al., 2014). Therefore, to identify potential regulatory 

interactions of SOX proteins, we analysed Sox4
 –/–

 fetal gonads for the expression of multiple 

Sox genes, including SoxC (Sox4/11/12), Sry and SoxE (Sox8/9/10) genes. 

 

Levels of Sox4 transcripts were substantially decreased but detectable using qRT-PCR at 13.5 

dpc in Sox4
 –/–

 fetal gonads (~35% of that in wild type; Supplemental Fig. S7E), suggesting 

that the transcription termination conferred by the single polyadenylation signal inserted 

upstream of the Sox4 coding region in this allele (Schilham et al., 1996) may not be complete. 

Expression of Sox11 and Sox12 remained largely unchanged in Sox4
 –/–

 fetal gonads 

compared with wild type, with the exception that Sox11 was slightly up-regulated in Sox4
 –/–

 

ovaries (Supplemental Fig. S7F,G), suggesting Sox4 may cross regulate Sox11 transcription 

in fetal ovaries. 
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In mice, Sry is expressed in XY genital ridges within a very short time window from 10.5 to 

12.5 dpc, with its expression almost completely extinguished by 13.5 dpc (Bullejos and 

Koopman, 2001; Hacker et al., 1995; Jeske et al., 1995; Koopman et al., 1990; Wilhelm et al., 

2005). We observed no obvious changes in SRY protein expression or the number of SRY-

expressing cells in XY Sox4
 –/–

 genital
 
ridges at 11.5 dpc compared with wild type 

(Supplemental Fig. S8), indicating that SOX4 may not contribute to the induction of Sry 

expression in fetal testes. Interestingly however, we found that Sry transcripts were clearly 

detectable in Sox4
 –/–

 fetal testes at 13.5 dpc (~6 fold higher than the background level in wild 

type testes; Fig. 5A), albeit at much lower levels than its peak expression at 11.5 dpc (~8% of 

peak levels, data not shown). This result raises the possibility that Sox4 may contribute to 

down-regulating Sry in the mouse fetal testis.  

 

Of the three SOXE group members, SOX9 and SOX8, cooperate to maintain the male sexual 

fate at both the fetal (Barrionuevo et al., 2009; Georg et al., 2012) and adult stages 

(Barrionuevo et al., 2016). The other SoxE gene, Sox10, is also expressed in Sertoli cells and 

has been shown to be able to sex reverse XX mice when overexpressed (Polanco et al., 2010). 

We found that the expression of Sox8 and Sox10 remained unchanged in Sox4
 –/–

 fetal testes 

at 13.5 dpc (Supplemental Fig. S7H,I). In contrast, Sox9 mRNA levels were increased by 

~50% in the mutant testes compared with wild type (Fig. 5B), indicating that SOX4 may 

selectively repress the expression of Sox9 but not Sox8 or Sox10.  

 

Given the critical involvement of the Sox9-TESCO enhancer in the initiation and 

maintenance of Sox9 expression in the fetal testis (Sekido and Lovell-Badge, 2008), we next 

examined whether SOXC factors regulate TESCO activity, using a well-established in vitro 

reporter assay system (Polanco et al., 2010; Sekido and Lovell-Badge, 2008; Uhlenhaut et al., 
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2009; Zhao et al., 2014a). We found that SOX4 potently repressed the activation of TESCO 

by SF1, SRY + SF1, or SOX9 + SF1 (~90% repression in each situation; Fig. 5C), despite a 

~3-fold activation of TESCO on its own (Supplemental Fig. S9). SOX11 and SOX12 

manifested weaker repressor activities compared with SOX4 (~70% or ~50% repression 

respectively; Fig. 5C) in the presence of SF1 and/or SRY/SOX9 (Fig. 5C). However, SOX11 

or -12 alone activated TESCO more strongly than SOX4 (Supplemental Fig. S9). Together, 

these results reveal a context-dependent role for SOXC proteins in negatively regulating Sox9 

expression via repressing the TESCO enhancer in mouse fetal testes. 

 

SOX4 promotes spermatogenic differentiation of male fetal germ cells  

 

Fetal germ cells adopt either male or female sexual fate depending on the molecular cues 

provided by their surrounding somatic cells (Bowles and Koopman, 2013; Spiller and 

Bowles, 2015). In the fetal ovary they switch on Stra8 and enter meiosis in response to 

retinoic acid, but in contrast, in the fetal testis germ cells are mitotically arrested and up-

regulate male fate markers including Nanos2, Dnmt3l and p15
 INK4b

 (Cdkn2b).  

 

We sought to determine whether the disruption of Sox4 might affect fetal germ cell 

development. qRT-PCR analysis showed that upregulation of Stra8 at 13.5 dpc was similar in 

Sox4
 –/–

 and wild type fetal ovaries (Fig. 6F), indicating that the initiation of meiosis of 

female germ cells had proceeded normally in Sox4
 –/–

 ovaries. Immunofluorescence for 

SYCP3, a marker of meiosis, revealed comparable expression patterns at 14.5 dpc in wild 

type and Sox4
 –/–

 ovaries (Fig. 6G), confirming the entry of meiosis of fetal germ cells was 

unperturbed in the mutant ovaries.  
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Consistent with the unperturbed differentiation of Sertoli and fetal Leydig cells in Sox4
 –/–

 

fetal testes (Fig. 4B), germ cells in these mutant testes adopted male fate, and did not up-

regulate meiosis markers Stra8 and SYCP3 (Fig. 6F and data not shown). Instead, expression 

of Nanos2 and Dnmt3l, markers of spermatogenic differentiation, were detected in the mutant 

testes at 13.5 dpc (Fig. 6A,B), confirming that germ cells in Sox4
 –/–

 fetal testes had embarked 

on spermatogenesis. However, both Nanos2 and Dnmt3l were expressed at levels 

substantially lower than those in wild type testes (Fig. 6A,B), indicating that the 

differentiation of male germ cells was severely impaired in Sox4
 –/–

 testes.  

 

As male germ cell fate commitment hinges on a fine balance between maintaining 

pluripotency and initiating spermatogenic differentiation, we analysed the expression of 

several genes that play key roles in maintaining the pluripotency of male germ cells, 

including Nodal, Cripto, Nanog, Sox2 and Oct3/4 (Spiller et al., 2012; Western et al., 2010). 

Our data revealed that the levels of Cripto, and its downstream target Nanog (Miles et al., 

2013) were doubled at 13.5 dpc in Sox4
 –/–

 testes compared with wild type (Fig. 6D,E). 

Expression levels of Nodal, Sox2, and Oct3/4 remained unchanged (Supplemental Fig. S7J-

L). No significant change in Fgf9, encoding a Sertoli cell-secreted factor pivotal in promoting 

male germ cell fate (Barrios et al., 2010; Bowles et al., 2010), was found (Supplemental Fig. 

S7D). 

 

Another male germ cell fate marker, p15
INK4b

, is up-regulated in male germ cells at 14.5 dpc 

and considered to contribute to the mitotic arrest of male germ cells (Spiller et al., 2012; 

Western et al., 2008). Interestingly, p15
INK4b

 was upregulated precociously in Sox4
 –/–

 testes at 

13.5 dpc (Fig. 6C), suggesting that male differentiation and mitotic arrest of germ cells may 

be uncoupled. 
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In summary, these data indicate that although SOX4 does not seem to affect the cell fate 

commitment of fetal germ cells, it plays an important role in promoting the spermatogenic 

differentiation of male germ cells.  
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Discussion 

 

SOX transcription factors play crucial roles in a wide variety of developmental contexts 

(Kamachi and Kondoh, 2013). In the developing mouse gonads, two SOX transcription 

factors, SRY and SOX9, play instructive roles in male sex determination and fetal testis 

development (Koopman et al., 1991; Vidal et al., 2001). We show in the current study that 

another SOX protein, SOX4, also plays important roles in mouse fetal gonad development by 

modulating morphogenesis of the developing gonads and promoting male germ cell 

differentiation. 

 

SOX4 modulates morphogenesis of both fetal testes and ovaries 

 

Organ shape and size are determined through tightly regulated and highly stereotypic 

processes. While some progress has been made in unravelling developmental pathways 

regulating organ and embryo size, little is understood regarding how organ shape is regulated. 

Our morphometric analysis of fetal gonads reveals that both Sox4
 –/–

 testes and ovaries were 

longer and thinner compared with wild type at 13.5 dpc. Since mouse fetal gonads become 

plumper and shorter from 11.5 to 13.5 dpc (Nel-Themaat et al., 2009), one explanation is that 

Sox4 inactivation may have simply caused a delay in gonad development, either cell-

autonomously or secondarily to developmental defects in other organs, such as the heart. 

However, a number of somatic marker genes, including Star, Cyp11a1, and Hsd3b, that are 

dynamically expressed during this period (Büdefeld et al., 2009; Yao et al., 2002), showed 

similar expression levels in Sox4
 –/–

 and wild type gonads at 13.5 dpc, arguing against a 

developmental delay. 
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We suggest that SOX4 is part of the mechanism by the shape of fetal gonads is determined. 

Supporting this hypothesis, SoxC genes have been shown to be essential for organogenesis in 

mouse embryos by ensuring the survival of neural and mesenchymal progenitor cells 

(Bhattaram et al., 2010). Tead2, a direct target of SOXC proteins and a Hippo/YAP pathway 

component, has been suggested to mediate the pro-survival activity of SOXC proteins 

(Bhattaram et al., 2010). We found that Tead2 was down-regulated only in Sox4
 –/–

 fetal 

testes but not ovaries, suggesting that Tead2 may not be the main target required for 

mediating SOX4’s activity. Alternatively, SOX4 may regulate different targets in testes 

(namely Tead2) and ovaries (other unidentified targets) to achieve similar outcomes.  

 

Consistent with our observation that neither cell survival nor proliferation was significantly 

altered in Sox4
 –/–

 fetal gonads, estimates based on gonad length and width suggested that the 

gonad volume was not altered substantially in Sox4
 –/–

 embryos, despite significant changes 

observed in external profile. We therefore speculate that SOX4 modulates the gonad shape by 

regulating genes involved in extracellular matrix remodelling, cell-cell interaction and cell 

migration. Supporting this concept, genes encoding cell adhesion molecule E-Cadherin and 

metalloprotease ADAM19 have been identified as SOXC direct targets in heart outflow tract 

remodelling (Paul et al., 2014).  

 

Mouse ovaries and testes undergo gradual changes in shape during fetal development and 

become oval-shaped before they descend to their final location in later embryonic life, 

namely the lower abdomen for ovaries and the scrotum for testes. It is conceivable that the 

changes in shape of gonads may facilitate their translocation across the abdominal cavity (and 

the abdominal wall in the case of testis descent). However, the embryonic lethality of Sox4
 –/–

 

embryos at 14.5 dpc precludes us from testing this hypothesis. Conditional Sox4 knockout 
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mouse models should help to evaluate this hypothesis by allowing the examination of the 

shape and position of gonads at later developmental stages. 

 

Sox4 regulates male fetal germ cell development 

 

Our data indicate that Sox4 is required for proper progression of male germ cell 

differentiation but appears dispensable for female germ cell development. We found that 

disruption of Sox4 in fetal testes leads to up-regulation of genes involved in maintaining 

pluripotency, including Cripto and its downstream target Nanog, and down-regulation of 

spermatogenic differentiation markers Nanos2 and Dnmt3l. These results suggest SOX4 

plays an important role in restricting the period of pluripotency in male germ cells by 

repressing the Cripto/Nodal pathway. Reduced activities of Cripto and its target Nanog 

should allow male germ cells to proceed with spermatogenic differentiation (Spiller et al., 

2012).  

 

How does SOX4 regulate male germ cell development? We found that Sox4 is expressed 

highly in Sertoli and interstitial cells, and at a much lower level in germ cells. It is possible 

that SOX4 in Sertoli/interstitial cells regulates the secretion of certain signalling molecules to 

regulate Cripto expression in germ cells. Such an example has recently been described. 

Emx2, a gene expressed in Sertoli cells, regulates Fgf9, a Sertoli cell-secreted molecule 

crucial in inducing both the pluripotency genes and male differentiation markers (Barrios et 

al., 2010; Bowles et al., 2010; Spiller et al., 2012), to modulate male germ cell development 

(Tian-Zhong et al., 2016). However, Fgf9 does not seem to be a SOX4 target, as its 

expression appeared unchanged in Sox4
 –/–

 fetal testes. It is possible that SOX4 may regulate 

unidentified signalling molecules in Sertoli/interstitial cells to fulfil this role. Alternatively, 



 

 25 

SOX4 in germ cells, albeit at very low levels, may cell-autonomously restrict Cripto 

expression. Further studies involving Sertoli and germ cell-specific conditional Sox4 

knockout models are required to elucidate the molecular mechanisms underlying its ability to 

regulate Cripto and male germ cell differentiation. 

 

SOXC proteins as context-dependent transcriptional repressors  

 

Our results uncover a hitherto unappreciated role of SOXC proteins in transcriptional 

repression of Sox9, adding an extra level of control of Sox9 expression in fetal gonad 

development. The negative regulation of Sox9 by SOX4, and possibly SOX11 and -12, in 

fetal Sertoli cells may contribute to the homeostasis of Sox9. Since SoxC genes are highly 

expressed in female somatic cells, SOXC proteins may also contribute to repression of Sox9 

in fetal ovaries. However, no apparent up-regulation of Sox9 was observed in Sox4
 –/–

 fetal 

ovaries. Two possibilities may account for this. First, other mechanisms to repress Sox9 

expression involving the RSPO1/WNT4/ß-Catenin or FOXL2 are in place in the fetal ovary 

(Greenfield, 2015). Second, SOX11/12 may function redundantly in this context to repress 

Sox9, as has been described in other developing tissues (Bhattaram et al., 2010). 

 

SOXC proteins possess a single transactivation domain at the carboxyl-terminus and 

predominantly function as transcriptional activators (Wegner, 2010). Our in vitro reporter 

assays show that SOXC proteins induce TESCO activity on their own but potently repress the 

activation of TESCO-mediated transcription in the presence of SF1 (either SF1 alone or 

combined SF1 and SRY/SOX9), indicating SOXC proteins may function as transcriptional 

repressors in a context-dependent manner. It is unclear how SOXC proteins exert repressor 

activity in the absence of a transcriptional repressor domain. SOXC factors may directly 
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interact with SF1 and repress its ability to activate TESCO-mediated transcription. It is also 

possible that the formation and stabilisation of a repressor complex containing SOXC 

proteins and partner co-repressors (Koumangoye et al., 2015) may be facilitated by SF1. 

Alternatively, the binding of SOXC proteins to SOX binding motifs within TESCO may 

sterically hinder the binding of SF1 to its nearby binding sites. In the presence of SRY or 

SOX9, SOXC proteins may also compete with SRY/SOX9 for DNA binding.  

 

We found that the down-regulation of Sry was delayed in Sox4
 –/–

 fetal testes. In mice, Sry 

expression is switched off only 2 days after reaching its peak (Kashimada and Koopman, 

2010). The molecular mechanisms underlying the down-regulation of Sry are not fully 

understood (Larney et al., 2014). SOX9 appears to be involved, as prolonged Sry expression 

has been observed in conditional Sox9 knockout gonads (Barrionuevo et al., 2006; 

Chaboissier et al., 2004). However, down-regulation of Sry also occurs in the ovarian portion 

of ovotestes where Sox9 is not expressed, suggesting that additional unidentified factors may 

also contribute to down-regulating Sry (Wilhelm et al., 2009). We suggest that SOX4 may be 

a contributing factor, possibly via the repressor function revealed in this study. 

  

Among SOXC proteins, SOX11 is the strongest transactivator with its transactivating 

capacity several times more potent than that of SOX4 (Dy et al., 2008and the present study). 

However, the transactivating capacity of SOXC proteins does not necessarily correlate with 

the severity of certain organ defects in mice deficient for SoxC genes. For example, the 

defects in heart outflow tract are more severe in Sox4
 –/–

 mice than those in Sox11
 –/–

 or Sox4
 

+/–
 Sox11

 +/–
 mice (Bhattaram et al., 2010; Schilham et al., 1996; Sock et al., 2004). It is thus 

puzzling why Sox4 deficiency causes the most severe phenotype if transactivation is the main 

function of SOXC proteins in vivo. It has been postulated that SOX4 may be present and 
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function in non-cardiac neural crest, non-mesodermal cells (that do not express Sox11), e.g. 

pharyngeal endoderm cells, during outflow tract development but direct evidence is lacking 

(Paul et al., 2014).  

 

Our results from TESCO-luciferase reporter assays show that SOX4 is the most potent 

transcriptional repressor among SOXC factors, followed by SOX11 and SOX12. 

Interestingly, this order mimics the order of phenotypic severity of heart outflow tract 

malformation in SoxC knockout mouse models, raising the possibility that SOXC proteins 

may function as transcriptional repressors in other developmental contexts in vivo, and their 

repressor activities may contribute to the different phenotypic outcomes in knockout mouse 

models. Supporting this hypothesis, knockout of Sox4 in primary mouse limb bud cells 

resulted in upregulation of a number of genes (Bhattaram et al., 2010); similarly, 

overexpression or knockdown of Sox4 in various cancer cell lines caused down- or up-

regulation of many downstream genes respectively (Vervoort et al., 2013). We suggest that 

mouse models carrying mutated SoxC alleles with the native transactivation domain replaced 

by an ectopic transactivation or repressor domain such as the VP16 or engrailed repressor 

domain (Bergsland et al., 2006; Zhao et al., 2014a), should help to solve this puzzle.  
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Figure legends 
 

Fig. 1. Sox4, Sox11 and Sox12 are expressed in the developing mouse fetal gonads. (A) 

qRT-PCR analyses of SoxC genes in CD1 mouse fetal gonads from 10.5 to 14.5 dpc. Mean ± 

s.e.m; n = 3. (B) In situ hybridisation of sagittal sections of XX or XY CD1 embryos at 13.5 

dpc. Dashed lines delineate testis cords. Scale bar, 100 μm. (C) qRT-PCR analyses of SoxC 

genes on wild type (WT) or W
 e
 fetal gonads at 14.5 dpc. Mean ± s.e.m; n = 4. (C) qRT-PCR 

analyses of SoxC genes on sorted somatic and germ cell populations from Wt1-RG fetal 

gonads. Cells from multiple pairs of fetal gonads were pooled and sorted for mCherry and 

EGFP (see also Supplemental Fig. S1). Mean ± s.e.m of triplicate qPCR reactions. 

 

Fig. 2. Sox4 affects the morphology of mouse fetal gonads. (A,B) Bright-field images of 

13.5 dpc gonads (A) or kidneys (B) from wild type (WT) or Sox4
 –/–

 embryos. Representative 

images from littermate WT and Sox4
 –/–

 embryos were shown. Scale bars, 0.5 mm. (C-F) 

Quantitation of the length or width of fetal gonads (C,D) or kidneys (E,F). Mean ± s.d.; n = 9, 

11, 6 or 7 (XY WT, XX WT, XY Sox4
 –/–

or XX Sox4
 –/–

). *P<0.05, **P<0.01, multiple t tests. 

(G-J) qRT-PCR analyses of Hippo pathway genes on 13.5 dpc fetal gonads. Tead2, a known 

Sox4 target gene, was significantly down-regulated in Sox4
 –/–

 testes compared with wild type 

(WT) controls. Mean ± s.e.m; n = 5. *P<0.05 (multiple t tests); ns, not significant. 

 

Fig. 3. Sox4
 –/–

 fetal testes develop significantly more testis cords. The largest sagittal 

sections of 14.5 dpc wild type (WT) or Sox4
 –/–

 testes were stained with an anti-laminin 

antibody to reveal testis cords. (A) Representative images from littermate wild type (WT) and 

Sox4
 –/–

 embryos were shown. Scale bar, 100 μm. (B) Quantitation of testis cords. Mean ± 

s.d.; n = 6 (WT) or 5 (Sox4
 –/–

). **P<0.01, Mann-Whitney test. 
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Fig. 4. The differentiation of gonadal somatic cell lineages appeared unperturbed in 

Sox4
 –/–

 fetal gonads. (A) Histological analysis of gonadal sections at 14.5 dpc using 

Hematoxylin and Eosin staining. (B) Immunofluorescence analyses of 14.5 dpc gonadal 

sections. Sertoli cells (marked by AMH, green) and fetal Leydig cells (marked by HSD3, 

magenta) were present in XY Sox4
 –/–

 testes, while granulosa cells (marked by FOXL2, 

magenta, bottom panel) were present in XX Sox4
 –/–

 ovaries. Nuclei were counterstained with 

DAPI (blue). Dashed lines delineate gonad perimeters. Scale bars (A,B), 50 μm. (C-H) qRT-

PCR analyses of additional somatic cell lineage markers at 13.5 dpc. Expression of testicular 

somatic cell markers (C-F) and an ovarian marker Fst (H) remained unchanged in Sox4
 –/–

 

gonads compared with wild type (WT). Another ovarian marker Wnt4 (G) was slightly up-

regulated in Sox4
 –/–

 ovaries. Mean ± s.e.m; n = 5. *P<0.05 (multiple t tests); ns, not 

significant. 

 

Fig. 5. SOX4 negatively regulates Sry and Sox9 in mouse fetal gonads. (A,B) qRT-PCR 

analyses on 13.5 dpc gonads revealed significantly higher levels of Sry (A) and Sox9 (B) in 

Sox4
 –/–

 testes compared to wild type. Mean ± s.e.m; n = 5. **P<0.01, ***P<0.001, multiple t 

tests. (C) SOXC proteins strongly repressed the activation of TESCO by SF1, SRY and 

SOX9. Reporter assays were performed in HEK293 cells. The activity of TESCO-Luc co-

transfected with the empty vector in the absence of SF1 was set to 1. For simplicity, only the 

+SF1 data are presented here, as mean ± s.e.m (n = 3). **P<0.01, one-way repeated measures 

ANOVA with Holm-Sidak multiple comparisons test. 

 

Fig. 6. Sox4 regulates differentiation of male fetal germ cells. (A-F) qRT-PCR analyses of 

markers of germ cell development on 13.5 dpc gonads. Mean ± s.e.m; n = 5. *P<0.05, 

**P<0.01, ***P<0.001 (one-way ANOVA with Sidak multiple comparisons test); ns, not 

significant. (G)  Immunofluorescence showing germ cells (marked by DDX4, magenta) in 
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both wild type and Sox4
 –/–

 ovaries expressed SYCP3 (green), a meiotic marker. Nuclei were 

counterstained with DAPI (blue). Scale bar, 50 μm. 

 

Highlights 

 

 SoxC genes are expressed in mouse fetal gonads, predominantly in somatic cells. 

 SOX4 activity influences organ shape in developing ovaries and testes. 

 SOX4 activity also promotes the differentiation of male germ cells. 

 SOX4 both activates and represses transcription depending on context. 
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