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Abstract 

Adenosine is a nucleoside that is particularly interesting to many scientific and clinical 

communities as it has important physiological and pathophysiological roles in the kidney.  

The distribution of adenosine receptors has only recently been elucidated; therefore it is 

likely that more biological roles of this nucleoside will be unveiled in the near future.  

Since the discovery of the involvement of adenosine in renal vasoconstriction and 

regulation of local renin production, further evidence has shown that adenosine signaling is 

also involved in the tubuloglomerular feedback mechanism, sodium reabsorption and the 

adaptive response to acute insults, such as ischemia. However, the most interesting finding 

was the increased adenosine levels in chronic kidney diseases such as diabetic nephropathy 

and also in non-diabetic animal models of renal fibrosis. When adenosine is chronically 

increased its signaling via the adenosine receptors may change, switching to a state that 

induces renal damage and produces phenotypic changes in resident cells. This review 

discusses the physiological and pathophysiological roles of adenosine and pays special 

attention to the mechanisms associated with switching homeostatic nucleoside levels to 

increased adenosine production in kidneys affected by CKD. 

Keywords: Chronic Kidney Disease; Adenosine Receptors; Nucleoside Transporters; 

Renal Fibrosis. 
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1. Introduction 

The adenosine nucleoside was identified as a bioactive molecule when Drury and Szent-

Györgyi (1929) discovered its influence in several physiological tasks such as 

cardiovascular function. The role of adenosine in renal physiology was first studied in the 

60´s when it was discovered that infusion of adenosine to the renal artery increased renal 

vascular resistance (Hashimoto and Kumakura, 1965; Haddy and Scott, 1968). This 

evidence promptly lead to the notion that adenosine decreases glomerular filtration, and 

then its role on sodium excretion rates and influence on renin activity were characterized 

(Tagawa and Vander, 1970; Osswald, 1975). 

Since the competitive nature of methylxanthines, including caffeine and theophylline, on 

the effects of adenosine in the heart (De Gubareff and Sleator, 1965) and brain (Sattin and 

Rall, 1970) were recognized, it was convincingly supported the idea that specific receptors 

for this nucleoside may exists (Cobbin et al., 1974). In the 90’s adenosine receptors from 

human and mammals were cloned. There are four different adenosine receptors, named A1, 

A2A, A2B, and A3, belonging to the receptor family with seven transmembrane domains, 

coupled to diverse types of G proteins, which exhibit different affinities to their adenosine 

ligand (Fredholm et al. 2001, 2011). Since their identification, multiple studies have 

searched for the presence of adenosine receptors in renal cells, using diverse experimental 

approaches, to correlate their localization with a physiological function (see Table I). 

Knockout animal models of these receptors have recently been generated, some of which 

have been a valuable tool for evaluating the effects of adenosine in the kidney (Sun et al. 

2001; Tak et al. 2014; Yang et al. 2016). Therefore, discovering the biochemical 

mechanisms that control adenosine extracellular availability and influence its biological 
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activity has been a daunting task. A series of ectoenzymes that metabolize precursor 

nucleotides to generate adenosine were also identified. Additionally, nucleoside transporter 

systems which control adenosine flux through the plasmatic membrane, involved in 

presenting the ligand to activate signalling via adenosine receptors, were also characterized 

(Quezada et al. 2013; Shirley et al. 2009). 

In this review we will discuss the contribution of adenosine and its receptors to 

fundamental renal physiological functions. We will also present evidence that supports the 

role on adenosine in renal fibrosis progression, which is considered a common event during 

chronic kidney disease (CKD), independent of its origin, and which strongly correlates with 

progressive loss of renal function. 

2. Adenosine metabolism in the kidney 

The biological effects of adenosine are mediated by signaling via adenosine receptors in the 

plasma membrane. Adenosine is the main, if not exclusive, agonist of these receptors; 

therefore its bioactivity is dependent on its extracellular availability (Fredholm et al. 2011). 

Inosine could act as a partial agonist of the A3AR subtype (Jin et al. 1997; Fredholm et al. 

2001), but since this nucleoside is a catabolic product of adenosine it reinforces the 

physiological importance of adenosine generation at the tissular level. Adenosine is 

generated from intracellular synthetic pathways or in the extracellular compartment by 

catabolism of precursor nucleotides such as ATP or cyclic AMP (cAMP) (Jackson and 

Dubey, 2004; Vallon et al. 2009). The intracellular pathway of adenosine synthesis is 

mediated either by an intracellular 5’-nucleotidase, which dephosphorylates AMP 

(Schubert et al. 1979; Zimmermann et al. 1998), or hydrolysis of S-adenosyl-homocysteine 
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(Broch and Ueland, 1980). Intracellularly generated adenosine may be transported into the 

extracellular space mainly via specific bi-directional transporters by facilitated diffusion 

(Pastor-Anglada and Pérez-Torras, 2015). Some cells have an increased potential to release 

adenosine into the extracellular milleu (Fredholm et al. 1994; Parkinson et al. 2005), 

however, there is no evidence of renal cells having this potential. This is likely due to the 

fact that extracellular catabolism of precursor nucleotides is the major source of adenosine 

production at renal compartments during physiological or pathological responses. 

Classical examples of adenosine generation from nucleotide precursors have been described 

along the nephron. ATP may be hydrolyzed enzymatically by ectonucleoside triphosphate 

diphosphohydrolase (CD39) generating AMP. AMP then converts into adenosine via the 

enzyme 5'-ectonucleotidase (CD73) (Vallon et al. 2009). In addition, alkaline phosphatase 

at the proximal tubule may also generate adenosine even though it has a high Km for 

adenine nucleotides (Oyarzún et al. 2015). Prostatic acid phosphatase (PAP) is another 

enzyme that catalyzes AMP hydrolysis, however, its distribution and physiological roles in 

the kidney are poorly understood (Lam et al. 1989), although it has been attributed a role in 

renal carcinogenesis (Shibata et al. 2003). The types and distribution of ectonucleotidases 

along the rat nephron and murine renal substructures was previously described (Kishore et 

al. 2005; Shirley et al. 2009) and therefore is not included within this review.  

In the rat glomerulus, the basal ATP release rate is approximately 0.30 pmol/min/1000 

glomeruli (Karczewska et al. 2007). Exogenous ATP was rapidly degraded by the 

glomeruli suspension, with a t1/2 decay of 2 min, indicating that efficient extracellular 

catabolism occurs at this compartment, an observation that is reinforced by the abundance 

of nucleotidases in the glomerulus (Kishore et al. 2005; Shirley et al. 2009). Addition of 
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ARL67156, an ecto-ATPase activity inhibitor, to the glomeruli suspension caused 

extracellular ATP to gradually increase. Following ATP hydrolysis the AMP concentration 

was higher than other hydrolysis derived products. Under normal conditions, glomeruli 

hydrolyze AMP to adenosine, although less efficiently than ATP to ADP and AMP 

(Karczewska et al. 2007), which allows adenosine signaling in glomerular cells or 

downstream signaling throughout the nephron.  

Another example of adenosine signaling dependent on extracellular ATP hydrolysis is 

paracrine communication between macula densa cells and afferent arterioles. ATP released 

from cells in the macula densa is metabolized to adenosine in the extracellular space and 

mediates the vasocontractile response of afferent arterioles. Despite the fact that P2 

purinergic receptors are widely distributed throughout the kidney (Burnstock et al. 2014), 

only a minor role in afferent arteriolar vasoconstriction has been perceived (Schnermann, 

2011; 2015), indicating that metabolic imbalance towards the degradation of released ATP 

is relevant to the production of the vasoactive effector adenosine. Indeed, the paracrine 

pathway and afferent arteriolar vasoconstriction was deficient in mice that do not express 

5'-ectonucleotidase (Castrop et al. 2004). 

In addition, adenosine may also be generated from extracellular cAMP degradation by an 

ecto-AMP phosphodiesterase, followed by AMP metabolism to adenosine by 5'-

ectonucleotidase (Jackson and Dubey, 2004). This pathway for extracellular adenosine 

formation was demonstrated in in vivo proximal tubules, collecting tubules and in primary 

cultures of cells derived from these tubules (Jackson et al. 2003, 2006). Intriguingly, renal 

epithelial cells along the nephron can extracellularly metabolize non-conventional 2',3'-

cAMP to 2'-AMP and 3'-AMP and further efficiently metabolize extracellular 2'-AMP and 
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3'-AMP to adenosine using non classical phosphodiesterases and ecto-5'-nucleotidase 

(Jackson and Gillespie, 2013). Since 2', 3'-cAMP may be released from cells upon injury, 

further research is needed to identify if there is a significant difference in 2', 3'-cAMP 

levels between the physiological and pathophysiological states.    

In addition to the rate of extracellular synthesis, research has also focused on the 

mechanism that regulates external accumulation of adenosine; which is dependent on cell 

uptake (San Martin et al. 2009). Nucleoside transport in eukaryotic cells is mediated by two 

families of structurally-unrelated membrane proteins: the Na+-independent facilitative 

equilibrative nucleoside transporters (ENTs) family and the Na+-dependent concentrative 

nucleoside transporters (CNTs) family (Hyde et al. 2001; Gray et al. 2004; Kong et al. 

2004; Baldwin et al. 2004). Each family of nucleoside transporters has several members, 

being CNT2, CNT3, ENT1, ENT2 and ENT3 capable of transporting adenosine (Pastor-

Anglada and Casado, 2006). It is supposed that nucleoside transporters are widely 

distributed throughout all cells types, due to the implications that the uptake of bases and 

nucleobases has on energetic metabolism and salvage pathways. However, it is currently 

known that nucleoside transporters are expressed in specific cell type patterns and may 

have a selective subcellular distribution (Jennings et al. 2001; Govindarajan et al. 2007). In 

fact, ENT3 (Baldwin et al. 2005) and ENT2 isoforms (Grañé-Boladeras et al. 2016) were 

involved in nucleoside transport activity in intracellular compartments. A variety of 

physiological models have shown that pharmacological inhibition of ENT1 or ENT2 at the 

plasma membrane results in increased extracellular adenosine concentration, favoring a 

specific biological effect via adenosine receptor activation (Mubagwa and Flameng, 2001; 

Ackley et al. 2003; Sonoki et al. 2003; Choi et al. 2004; Riksen et al. 2005; Carrier et al. 
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2006; Farías et al. 2006; Grenz et al. 2012; Cárdenas et al. 2013). Also, there is increasing 

evidence of the distribution and probable function of nucleoside transporters in the kidney. 

In renal epithelial cells, hCNT1, hCNT2, and hCNT3 at the apical membrane and hENT1 

and hENT2 at the basolateral membrane, apparently work together to mediate nucleoside 

reabsorption from the lumen to blood, driven by Na+ gradients (Elwi et al. 2006). 

Additional evidence suggests that the distribution of the main equilibrative nucleoside 

transporter ENT1 may be present in both apical and basolateral membranes of renal 

epithelia and extratubular locations including the glomeruli, vascular smooth muscle and 

endothelial cells (Roa et al. 2009; Damaraju et al. 2007). Thus, extensive distribution of 

ENT1 throughout the kidney indicates that this transporter plays a role in facilitating 

adenosine signaling beyond nucleoside and nucleobase solute homeostasis (Roa et al. 2009; 

Damaraju et al. 2007; Elwi et al. 2006). An overview of the mechanisms involved in 

extracellular adenosine generation linked with cellular signaling is shown in figure 1.  

3. Physiological functions of adenosine in the kidney 

The kidney is a fundamental organ for corporal homeostasis. It is organized into functional 

units known as nephrons connected to a capillary network nourished by blood, which 

participates in the process of filtration, reabsorption and excretion of solutes, and blood 

back into the circulatory system. The basic nephron function is to purify the blood of waste 

products via filtration at the glomeruli, as well as remove solutes, ions and water from the 

filtrate at the tubular level to produce urine. Additionally, the kidney has a fundamental role 

in regulating blood volume and arterial pressure. It is also involved in the glucose 

metabolism and regulation of pH, ion levels and hormone synthesis. Thus, certain renal 

cells, such as tubular epithelial cells, are recognized as polyfunctional and therefore, 
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understanding their physiology is an interesting but hard task for clinical and basic 

researchers. Over the last years there has been special interest in the generation of factors 

that can locally affect renal cell function, among those the intrarenal Renin-Angiotensin 

System (RAS) and production of other vasoactive molecules (Zhuo et al. 2013). Equally, 

conclusive background information indicates that adenosine, produced as an autacoid, and 

its interaction with other effector systems, regulates renal function (Vallón et al. 2006). It is 

involved in the regulation of afferent and efferent artery vascular tone and crosstalk with 

the renin-angiotensin system (Navar et al. 1996; Peti-Peterdi and Harris, 2010; Weihprecht 

et al. 1994). 

3.1 Involvement of adenosine in renal vascular tone regulation 

Renin is an enzyme secreted by kidney juxtaglomerular cells (JG) where it is synthesized as 

a preproenzyme that later converts into prorenin; the mature but inactive form of the 

enzyme (Urushihara and Kagami, 2016; Morales, 2010). Once activated this enzyme is key 

to the renin-angiotensin system since it is in charge of transforming angiotensinogen to 

angiotensin I (Huang et al. 2016). Therefore the amount of renin is a limiting step during 

the production of Ang II, the main RAS component that acts as a critical element to the 

regulation of blood pressure and CKD pathogenesis. Renin release by JG cells is stimulated 

by cAMP and is inhibited by an increase in intracellular calcium levels (Ortiz-Capisano et 

al. 2013) and endothelins in a calcium dependent way (Ortiz-Capisano et al. 2014). cAMP 

is a second messenger used for the transduction of intracellular signals in diverse biological 

processes, having an important role in stimulating renin gene expression. Factors that 

increase cAMP levels stimulate renin expression in JG cell cultures (Lopez and Gomez, 

2010; Gomez et al. 2009). The inhibitory effect of adenosine on renin release was 
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confirmed in dogs (Macias-Nunez et al. 1985; Arend et al. 1984), rats (Churchill and 

Bidani, 1987; Osswald et al. 1978), isolated rat kidney (Murray and Churchill, 1984, 1985), 

rat glomeruli (Skott and Baumbach, 1985) and in humans (Edlund et al. 1994). Adenosine 

produced at the macula densa inhibits renin release through activation of the A1 adenosine 

receptor in mouse JG cells (Ortiz-Capisano et al. 2013). This has also been shown in vivo; 

when adenosine was injected into the renal artery in the canine kidney, a decrease in renin 

production was observed (Deray et al. 1989). Also, A1 receptor knockout mice have a 

significantly increased renin plasmatic concentration compared to wild type mice (Schweda 

et al. 2005). Studies in JG mouse cells showed that A1 receptor activation results in a 

calcium dependent inhibition of renin release via transient receptor potential canonical 

channels (TRPC)-mediated calcium entry (Ortiz-Capisano et al. 2013). The role of the 

adenosine A2 subtype receptors in renin release is less clear. In the 80´s, studies using an A1 

receptor agonist (CHA) indicated that low concentrations were capable of inhibiting renin 

release, meanwhile elevated concentrations of CHA stimulated renin release (Churchill and 

Churchill, 1979, 1985), indicating the existence of an interaction between the agonist with 

other receptors. Later, in vivo studies in dogs showed that selective stimulation of A2 

receptors induced renin release (Miura et al. 1999). 

The afferent and efferent arterioles are an important site for autoregulation of perfusion and 

glomerular filtration rate. In general, various vasoactive substances, such as thromboxane, 

superoxide and kinins, may modulate renal vasculature tone, reactivity and resistance. 

Importantly, studies have recognized the convergence of Angiotensin II activity (Ang II) 

and adenosine in the afferent arteriole to mediate tubuloglomerular feedback (TGF) (Franco 

et al. 2009; Persson et al. 2013). TGF indicates a negative relationship between NaCl 
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concentration at the macula densa and glomerular filtration rate or glomerular capillary 

pressure (Schnermann, 2015). Ang II induces renal microvasculature constriction via the 

AT1 receptor (Harrison-Bernard et al. 2006). Meanwhile, adenosine produces different 

responses depending on the type of receptor with which it interacts; A1 receptor regulates 

contraction (nM range) and A2 receptor regulates dilation (nM range) (Lai et al. 2006a). At 

physiological concentrations Ang II increases the adenosine contractile response (Lai et al. 

2006a). Correspondingly, low concentrations of adenosine significantly increase the 

response of the afferent arteriole to Ang II (Lai et al. 2006a). Many studies have shown that 

the adenosine A1 receptor is important for the synergic interaction between adenosine and 

Ang II, however, other mechanisms can also contribute to this phenomenon (Lai et al. 

2006b; Hansen et al. 2003; Gao et al. 2011). It was recently shown that arteriolar 

contraction induced by Ang II is decreased in A1 receptor knockout mice; however 

administration of adenosine sensitizes the contractile response both in control and knockout 

mice (Gao et al. 2015). On the other hand, it was shown that temporary injection of Ang II 

elevates interstitial and tissue levels of adenosine (Franco et al. 2008). To explain this 

effect, it is assumed that vasoconstriction induced by Ang II leads to ischemia, producing 

de novo formation of adenosine. This is also explained by the fact that Ang II induces a 

significant decrease in adenosine deaminase (ADA) activity, as well as a decrease in 

mRNA and protein levels of this enzyme, which catabolize adenosine to inosine. In turn, 

increased adenosine concentration also directs downregulation of the A2A receptor, 

allowing the adenosine vasoconstrictor effect to be preferentially regulated through A1 

receptor activation (Franco et al. 2008). In humans and animals with CKD, the circulating 

levels of Ang II are induced (Urushihara and Kagami, 2016). Interestingly, Dai et al. (2011) 

showed that renal fibrosis progression, in a model of Ang II infusion, was concurrent with 
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increased adenosine levels and could be blocked by using an adenosine A2B receptor 

antagonist, highlighting the interaction between adenosine signalling and the RAS system. 

Nitric oxide (NO) is another vasoactive molecule relevant to renal function. Bioactivity of 

adenosine receptors produces different effects on NO levels, generating diverse results at 

the vascular beds. Activation of the A1 receptor regulates renal vasoconstriction through 

both decreased NO generation and increased production of vasoconstrictor compounds 

from the COX (cyclooxygenases) pathway of arachidonic acid metabolism (Barrett and 

Droppleman, 1993; Walkowska et al. 2007). On the other hand, activation of the A2A and 

A2B receptors produces vasodilator effects through stimulation of NO production (El-

Gowelli et al. 2013; Carroll et al. 2006). While A2A and A2B receptors are expressed in 

afferent arterioles, studies indicate that the vasodilator actions occur essentially by 

activation of the A2B receptor (Feng and Navar, 2010). However, Carlström and colleagues 

showed that stimulation of the A2A receptor attenuated tubuloglomerular feedback 

responses by stimulating endothelial nitric oxide synthase (eNOS), presumably at the 

afferent arteriole (Carlstrom et al. 2011). It is also known that intravenous administration of 

adenosine causes vasodilatation mediated by the activation of the A2A receptor/NO axis, 

since dilatation induced by adenosine was abolished in eNOS knockout mice and in wild 

type mice treated with l-NAME, suggesting that eNOS is a source of NO that mediates the 

vascular effects of A2A activation (Hansen et al. 2005). The potential role of the adenosine 

A2A receptor in mediating eNOS activation and modulating vascular tone has been shown 

in rat aorta, carotid artery (Ray and Marshall, 2006; Teng et al. 2008) and human fetal 

endothelium, which is named the ALANO pathway in the latter system (San Martín and 

Sobrevia, 2006).  



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT
14 

 

Lastly, studies on the effects of A3 receptor activation on vascular control at the renal beds 

are scarce. Evidence indicates that activation of the A3 receptor dilated the norepinephrine-

preconstricted afferent arterioles and blunted the vasoconstrictive effect of adenosine A1 

receptor activation (Lu et al. 2015). The effects of A3 receptor activation in other vascular 

niches are contradictory to date (Hinschen et al. 2003; Ansari et al. 2007). 

3.2 Roles of adenosine in ions balance 

Many studies have characterized the role of adenosine in absorption and excretion of ions 

in the tubular renal system. The first correlation between adenosine and balance of the Na+ 

and Cl- secretory and absorptive pathways in the kidney come from Siragy and Linden, 

(1996) who described that increased NaCl intake could modulate adenosine production in 

the kidney. In experiments performed with rats maintained with a low salt diet (0.15%), 

adenosine concentration significantly decreased (23.3 ± 3 nM cortex; 55.5 ± 5 nM 

medulla). Meanwhile when salt intake increased (4%), adenosine renal production also 

increased (418 ± 43 nM cortex; 1040 ± 37 nM medulla), being higher in the medulla than in 

the renal cortex (Siragy and Linden, 1996) and indicating that NaCl concentration and 

adenosine production in the kidney is tightly regulated, especially in the medullar zone. As 

described above, TGF is regulated by adenosine through the A1 and A2A adenosine 

receptors. This mechanism directly relates tubular NaCl concentration in the ascending 

limb of Henle's loop and afferent arteriolar tone (Hansen and Schnermann, 2003; Huang et 

al. 2006). The best characterized adenosine function in solute reabsorption in the kidney is 

related to tubular Na+ reabsorption. The A1 adenosine receptor regulates Na+ reabsorption 

in the proximal tubule (responsible for reabsorbing 60-70% of filtrated Na+) effecting the 

activity of multiple transporter systems, including the Na+/H+ exchanger-3 (NHE3), the 
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Na+/PO4
- cotransporter and Na+-dependent glucose transporter (SGLT) (Welch, 2015). It 

was shown that administration of selective A1 receptor antagonists cause diuresis and 

natriuresis, reaffirming that this receptor mediates sodium and water reabsorption (Vallon 

et al. 2009). Also, the use of an antagonist or deletion of the A1 receptor decreased 

hypertensive outcomes in different animal models (Welch, 2015). Other studies have 

demonstrated a relationship between salt intake and adenosine A1 receptor expression. 

Increased salt intake in rats decreased adenosine A1 receptor expression in the collector 

duct, meanwhile in the proximal tubule, decreased salt intake increased A1 receptor 

expression thus increasing Na+ reabsorption (Siragy and Linden, 1996; Zou et al. 1999; 

Kulick et al. 2008). These changes could be part of a feedback mechanism that allows 

increased Na+ reabsorption in the proximal tubule when faced with low salt intake and high 

excretion under high salt consumption, apparently functioning through modulation of A1 

receptor expression and activity (Rajagopal and Pao, 2010; Zou et al. 1999). Although 

many researchers have shown a relation between NaCl homeostasis and regulation via 

activity of the adenosine A1 receptor in the kidney, evidence is still needed to understand 

the intracellular mechanisms that regulate this feedback. 

One proposed mechanism of NaCl homeostasis through the adenosine A2A receptor 

involves stimulation of K+ channels and Cl- secretion (Wang et al. 2011; Gu et al. 2007). 

Most potassium is reabsorbed in the proximal tubule by passive transport and solvent drag. 

25% is reabsorbed in the loop of Henle by the Na+-K+-2Cl- symporter and the remaining 

potassium reaches the distal nephron and can be reabsorbed or eliminated in the urine 

(Stone et al. 2016, Palmer, 2015). Adenosine activates K+ channels in the basolateral 

membrane of cells of the ascending limb of the Henle´s loop in the rat kidney, dependent 
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on A2A receptor activation of PKA (Gu et al. 2007). K+ channels participate in epithelial 

transport in cells from the thick ascending limb of the loop of Henle, which is responsible 

for the absorption of 20-25% of filtered Na+ (Gu et al. 2007; Hebert, 1998). The apical K+ 

channels are essential for K+ recycling, maintaining Na+/Cl-/K+ cotransporter function 

(Simon et al. 1996), meanwhile basolateral K+ channels participate in generating the 

membrane potential in the thick ascending limb of the Henle´s loop (Hebert et al. 2005). 

Thus, the A2A adenosine receptor could increase signalling through the cAMP-PKA 

pathway, activating K+ basolateral channels and leading to synchronized entrance of apical 

Cl- and basolateral exit, which indirectly increase Na+/Cl-/K+ cotransporter activity at the 

apical membrane, favouring Na+ reabsorption (Wang et al. 2011; Gu et al. 2007). The A2B 

receptor mediates a different signalling pathway to regulate NaCl secretion through the 

collecting duct when faced with excessive salt intake (Rajagopal and Pao, 2010). Studies in 

mIMCD-K2 cells (renal inner medullary collecting duct) show that adenosine activates the 

apical A2B receptor when its concentration reaches the micromolar range, stimulating Cl- 

secretion through CFTR (cystic fibrosis transmembrane conductance regulator), via a 

cAMP/PKA dependent signalling pathway (Rajagopal and Pao, 2010).  

Studies also indicate that adenosine could regulate the transport of other ions in the kidney. 

Adenosine modulates Mg2+ uptake in distal convoluted tubule cells via A1 and A2 receptors 

and a volume sensitive-like chloride conductance in the rabbit distal convoluted tubule cell 

line (DC1) (Kang et al. 2001; Rubera et al. 2001). 

To mediate these physiological tasks fine-tuned regulation of extracellular levels and 

clearance of adenosine is required. Basal extracellular adenosine levels are estimated to be 

between 30 to 200 nM (Ballarín et al. 1991). This amount is sufficient to activate some of 
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the high affinity adenosine receptors under physiological conditions and can result from 

equilibrative transport of adenosine through ENTs, balancing intracellular production with 

extracellular nucleoside generation. From this baseline level, adenosine can increase 

substantially when extracellular formation increases as a result of adenine nucleotide 

release from cells as described above. In addition, extracellular accumulation of adenosine 

may occur due to decreased cell uptake through ENTs. Both these mechanisms may have a 

role in dysregulation of adenosine levels in CKD models. Indeed, ent1-/- mice exhibit 

elevated interstitial and plasmatic adenosine levels affecting renal physiology and renal cell 

function (Li et al. 2013). 

4. Pathogenesis of Chronic kidney disease 

Chronic kidney disease (CKD) is defined by most clinical and genetic epidemiological 

studies as a condition with an estimated GFR (eGFR) of < 60 ml·min−1·1.73 m-2, 

irrespective of the presence or absence of any additional kidney damage (Levey et al. 

2005). Pathological features of CKD are inflammatory infiltration, tubular atrophy, 

capillary rarefaction, podocyte depletion and fibrosis (Duffield et al. 2013; Campanholle et 

al. 2013). CKD remains an incurable disease and it is estimated to affect 8-16% of the 

world’s population (Jha et al. 2013). Two of the most prevalent causes of CKD are 

hypertension and diabetes. CKD severely affects patient’s quality of life, their lifetime 

productivity and is a source of mortality due to cardiovascular events (Go et al. 2004). As 

diabetic and nondiabetic CKD progresses, the costs associated with patient care 

considerably increase too, due to the requirement of organ replacement therapies (Jha et al. 

2013). Patient management includes prescribing antidiabetics, antidyslipidemics and 

antihypertensives. Over the last decades, the use of RAS blockers, including angiotensin-
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converting enzyme inhibitors or angiotensin II type I receptor antagonists, affected only 

modestly CKD progression (Jha et al. 2013). Therefore, searching for new therapies and 

tools to assist in the early diagnosis of CKD continues to be a challenge.  

Among the pathogenic mechanisms involved in CKD in diabetes, the best described 

mechanism is how hyperglycemia alters renal cell functions. Hyperglycemia activates 

several protein kinase C isoforms, a step that is required for local production of growth 

factors such as the transforming growth factor-β (TGF-β) and the vascular endothelial 

growth factor (VEGF) (Ziyadeh, 2008). Also involved in this pathology are metabolic 

factors, such as advanced glycosylation end products (AGE) (Forbes et al. 2003), oxygen 

reactive species (Ha et al. 2008) and aldose reductase/polyol pathways (Dunlop, 2000). 

Further CKD of diabetic and non-diabetic origin presents common alterations to renal 

synthesis and the activity of some hemodynamic factors such as RAS (Mezzano et al. 

2003), endothelins (ETs) (Sorokin and Kohan, 2003) and a decrease in nitric oxide (NO) 

bioavailability (Nakagawa, 2009). Production of pro-inflammatory mediators, as well as 

monocytes/macrophages interstitial invasion, may also contribute to renal injury and 

fibrosis (Fornoni et al. 2008). Recently, the pathogenic role of adenosine signaling in 

mediating glomerulopathy (Quezada et al. 2013; Cárdenas et al. 2013) and renal fibrosis 

(Kretschmar et al. 2016; Roberts et al. 2014) has emerged as a new player contributing to 

CKD as discussed below. 

The fibrotic process is crucial in CKD since it generates irreversible organ scaring as a 

result of extracellular matrix (ECM) deposition in renal structures such as the capillary 

glomerular wall, arterioles, mesangial and tubule-interstitial space (Duffield, 2014; Liu, 

2005), leading to progressive loss of renal function and end stage renal disease (ESRD) 
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(Duffield, 2013). Briefly, renal fibrosis pathogenesis is commonly represented by an initial 

and repetitive tissue insult (toxic, metabolic, infectious, ischemic or immunologic) leading 

resident kidney cells, such as tubular epithelial cells and mesangial cells (Campanholle et 

al. 2013), to trigger an inflammatory processes, secreting a series of pro-inflammatory 

cytokines and chemokines such as, TNF-α, IL1-β, MCP-1, among others (Hirschberg, 

2005; Meng et al. 2014). These signaling molecules induce platelet coagulation and 

infiltration of the immune cells such as neutrophils, dendritic cells, T lymphocytes and 

monocytes/macrophages in the glomeruli and interstitium (Duffield, 2013).  Inflammatory 

cells produce harmful molecules, such as reactive oxygen species, inflammatory and 

fibrogenic cytokines: TGF-β, PDGF, CTGF, FGF-2, IL-13 (Bondi, 2010; Chen, 2011, 

Strutz et al. 2000). These factors stimulate resident cells, where part of these cells undergo 

apoptosis (Song, 2007) and the other portion directly or indirectly contribute to the 

accumulation of interstitial myofibroblasts in the interstitium, around the blood vessels or 

in the glomerulus (Grande et al. 2015; Humphreys et al. 2010; LeBleu et al. 2013; Lin et al. 

2008; Wu et al. 2013). Myofibroblasts  are defined as cells with contractile properties that 

expresses α-SMA, type II intermediate filaments desmin and vimentin, and secrete proteins 

and ECM proteoglycans (fibrillar collagen type I, III, IV, fibronectin, laminin, perlecan and 

heparin). Although this is a simplified view of the processes that occurs during renal 

fibrogenesis, several of these steps occur simultaneously and can be much more complex. 

However, accumulation of myofibroblasts is a key event that persistently generates an 

increase in ECM deposits (Duffield et al. 2013, Duffield, 2014), which finally leads to 

disorganization of the kidney parenchyma and irreversible loss of kidney function. In this 

scenario, phenotypic transformation of resident and infiltrating cells in the kidney gives a 

clue about  the origins of myofibroblasts. Recent evidence (Humphreys et al. 2010; Lovisa 
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et al. 2015) showed that injured tubule epithelial cells acquire a mesenchymal-like 

phenotype, losing their properties to protect functional kidney parenchyma through cell 

cycle–dependent proliferation, dedifferentiation and repairing (Lovisa et al. 2015). 

Additionally, reprogramed epithelial cells acquire a profibrotic secretome that orchestrates 

transdifferentiation and recruitment of cells that contribute to accumulation of interstitial 

myofibroblasts (Grande et al. 2015; Wu et al. 2013; Lovisa et al. 2015; Grgic et al. 2012). 

Several sources of myofibroblasts have been identified by using cell-tracer fate in vivo in 

animal models of fibrosis. Among the identified contributors are local resident pericytes 

and fibroblasts (Chen et al.. 2011; Lin et al. 2008; Wu et al. 2013; Grgic et al. 2012; Smith 

et al. 2012), cells recruited from the bone marrow and from endothelial to mesenchymal 

cell transition (EndMT) (LeBleu et al. 2013) and macrophages via their transition to 

myofibroblasts in a process termed macrophage-myofibroblast transition (MMT) (Nikolic-

Paterson et al. 2011; Wang et al. 2016). Another pathological characteristic of CKD is 

glomerulosclerosis. Many studies have described that mesangial cells may acquire a 

myofibroblast-like phenotype that generates excessive ECM accumulation and increase 

TIMP (tissue inhibitors of metalloproteinases) levels (Riser et al. 2000; Bollineni and 

Reddi, 1993; Kagami et al. 1994; Ziyadeh et al. 2000). Recent evidence shows that loss of 

podocytes is a feature observed in numerous studies involving patients with CKD (Kim and 

Cheigh, 2001; Asanuma, 2015, Reiser and Sever, 2013). Injury and consequent depletion of 

podocytes using transgenic mice, provoked glomerulosclerosis with evident mesangial 

expansion, collapse of glomerular capillaries, and decreased kidney function (Wiggins et al. 

2005, Wharram et al. 2005). Finally, other authors indicated that podocyte injury led to a 

phenotypic change to myofibroblasts, expressing collagen1a1. This indicates that podocytes 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT
21 

 

and parietal epithelial cells also generate basal membrane thickening and capillary 

obstruction contributing to kidney fibrosis (Campanholle et al. 2013; Duffield, 2014). 

Interestingly, the first evidence that correlates adenosine with kidney fibrosis comes from 

studies performed by Ratech and col. (1985) in adenosine deaminase (ADA) deficient 

patients. Examination of renal tissue in cases of ADA deficiency showed mesangial 

sclerosis. Congenital ADA deficiency generates severe combined immune deficiency 

(SCID) (Booth and Gaspar, 2009) which is a consequence of impeded nucleotide 

metabolism containing adenine as nitrogenized base. The nucleotide dATP acts as an 

inhibitor of overall ribonucleotide reductase activity, affecting the immune system 

response. Furthermore, adenosine is also increased in this pathology. Recreation of 

adenosine imbalance in ada-/- KO mice leads to renal accumulation of collagen and 

proteinuria that can be blocked by using an adenosine receptor antagonist (Dai et al. 2011). 

The involvement of altered adenosine in fibrotic processes is not restricted to the kidney. 

ADA deficiency leads to the spontaneous development of pulmonary (Chunn et al. 2006) 

and skin (Fernandez et al. 2008) fibrosis in mice. In these models, increased collagen 

deposition was accompanied by increased levels of key fibrosis mediators, including TGF-

β, connective tissue growth factor and interleukin-13 (Ackley et al. 2003). In addition, 

pulmonary inflammation and fibrosis in wild-type mice subjected to bleomycin-induced 

lung injury also showed upregulated adenosine signaling (Sun et al. 2006). Another study 

showed induction of liver fibrosis in mice treated with CCl4, ethanol or TAA with 

extracellular adenosine levels two- to three-fold higher (Peng et al. 2008). Thus, gaining 

knowledge about the biochemical events that control local extracellular adenosine levels is 
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fundamental to the understanding of homeostatic kidney function and the pathogenic 

signaling pathways that mediate renal alterations. 

5. Adenosine and renal pathology 

5.1 Dysregulated adenosine levels 

Due to several limitations when quantifying adenosine in biological samples, such as its 

short half-life due to widely distributed metabolizing enzymes and the necessity of complex 

equipment such as mass spectrometers or high resolution chromatographers, clinical 

research that associates dysregulated adenosine levels with diseases is scarce. However, 

conclusive evidence collected from patients affected by diabetic CKD exists. Xia and col 

showed that disparate adenosine levels and the catabolic products inosine and uric acid, in 

the plasma of patients with diabetic nephropathy (DN) is concurrent with disease 

progression; meanwhile healthy and diabetic patients without renal repercussion have 

adenosine levels within the basal range (Xia et al. 2009, 2010). Further, using an integrated 

biomarker system to find a predictor of diabetic nephropathy in humans, it was found that 

the plasmatic adenosine-derived metabolite inosine could be useful as a prognosis tool 

(Huang et al. 2013).  

Additionally, several animal models have been used to correlate dysregulated adenosine 

homeostasis with the CKD pathogenesis. Among these, experimental diabetes induced in 

murines recapitulates glomerular alterations and incipient stages of fibrotic activation of 

cells, while animals with unilateral ureteral obstruction, hypertension or infused Ang II 

resemble glomerular and tubulointerstitial alterations leading to fibrosis and loss of renal 

function. 
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Studies in animal models of diabetic kidney disease reproduced the observations found in 

diabetic nephropathy patients. Firstly, experiments in streptozotocin-induced diabetic rats 

indicated that adenosine levels were significantly increased in renal vein plasma (Angielski 

et al. 1989). Roa et al. (2009) using this same animal model showed that isolated glomeruli 

from diabetic rats contained significantly higher external adenosine compared to controls 

(37.4 ± 3.1 v/s 6.0 ± 0.6 nM, corrected per µg of total glomeruli protein). Further, it was 

recently demonstrated that renal injury progression in diabetic rats develops with increased 

adenosine levels, having a strong correlation with the profibrotic marker α-SMA 

(Kretschmar et al. 2016), meanwhile increased urinary adenosine excretion could be 

detected during early onset of kidney dysfunction (Oyarzún et al. 2016). These observations 

highlight the fact that locally generated adenosine contributes to setting the pathological 

milieu of CKD progression. The biochemical events associated with increased local 

adenosine generation in diabetic kidney disease models was recently elucidated. ENT1 and 

ENT2 activity was examined to define the mechanisms associated with changes in 

adenosine levels at the glomerulus (Roa et al. 2009; Quezada et al. 2013). At this 

compartment, sodium-independent uptake activity was significantly decreased in diabetic 

rat glomeruli, in particular ENT1 activity was inhibited to 50%; these being the main 

engines for increasing extracellular adenosine accumulation that drives diabetic 

glomerulopathy (Roa et al. 2009). Recent evidence demonstrated inhibition of ENT1 

activity in the proximal tubules of rat diabetic kidney (Kretschmar et al. 2016), thus 

probably also contributing to increased external adenosine. Indeed, in ent1-/- mice or 

animals with pharmacologically inhibited ENT activity, the levels of interstitial and 

plasmatic adenosine were elevated (Li et al. 2013), highlighting the critical role of ENTs in 

adenosine homeostasis. This is of a major relevance because histological examination of 
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ent1-/- mice revealed increased interstitial collagen deposition and α-SMA in the kidney 

(Guillén-Gómez et al. 2012; Kretschmar et al. 2016). Some studies indicated that insulin 

and elevated glucose levels can regulate ENT activity in some cell types (Sakowicz et al. 

2004; Pawelczyk et al. 2003; Muñoz et al. 2006; Westermeier et al. 2011). There is strong 

evidence of the inhibitory effect of high glucose concentration on ENT1 and ENT2 activity 

in human endothelial cells and murine lymphocytes and podocytes (Sakowicz et al. 2004; 

Pawelczyk et al. 2003; Muñoz et al. 2006; Westermeier et al. 2011; Karczewska et al. 

2011). Some studies have identified the effect of insulin on restoring decreased nucleoside 

uptake activity. Recovery of basal adenosine extracellular levels in glomeruli exposed to 

high glucose, which have increased nucleoside accumulation, was attained by the addition 

of insulin via upregulation of ENT2 activity; suggesting that this transporter is a target of 

insulin in the kidney (Alarcón et al. 2015). This opposing modulation of ENT activity by 

glucose and insulin may allow maintenance of homeostatic adenosine levels during 

fluctuating physiological conditions. The impact of insulin on controlling renal cell 

function is of great interest. In fact, mice with podocyte-targeted deletion of the insulin 

receptor develop significant albuminuria together with histological features that recapitulate 

diabetic nephropathy (Welsh, 2010). Importantly, insulin resistance and poor glycemic 

control is present in both type 1 and type 2 diabetic patients, being a risk factor for the 

development of diabetic kidney disease (Ekstrand et al. 1998; Groop et al. 1993). Mima et 

al. (2011) analyzed both a type 1 diabetes model, generated by STZ treatment, and a type 2 

diabetes model, using the Zucker fatty strain, and observed a loss of insulin signaling in the 

kidney, suggesting that renal cells are susceptible to developing insulin resistance. Similar 

findings were described in podocytes (Tejada et al. 2008). We also recently demonstrated 

downregulation of the insulin receptor protein in kidney cortex from STZ induced diabetic 
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rats and diabetic patients (Gatica et al. 2013). Thus, lack of insulin responsiveness may 

permit kidney injury progression even when hormonal replacement therapy is performed. 

Also, this condition may affect adenosine handling by downregulating nucleoside uptake 

and leading to chronically increased levels of adenosine.  

In regards to adenosine metabolizing enzyme activity in diabetic CKD, information is 

available only from experimental models. In STZ-diabetic rats slight changes in 5’-

ectonucleotidase activity were observed in glomeruli (Roa et al. 2009), however a 

significant increase was also observed in the proximal tubules of diabetic rats (Oyarzún et 

al. 2015), indicating that compartmentalized extracellular adenosine generation may be 

differentially regulated. Interestingly, Oyarzún et al. (2015) demonstrated that AMPase 

activity mediated by 5’-ectonucleotidase, CD73, was increased during early diabetic renal 

injury. Since CD73 activity can be measured in urine, its use as a clinical tool for 

evaluating diabetic renal alterations affecting proximal tubules was proposed by the authors 

(Oyarzún et al. 2015). Studies of tubular damage biomarkers, such as KIM-I, NGAL, L-

FABP and Cystatin C are inconsistent, with larger studies in humans showing no additional 

value to traditional prediction models (Lim, 2014). Thus CD73 would be useful as a marker 

of CKD progression in the clinic. Other studies on adenosine metabolizing enzymes found 

that the expression of ecto-adenosine kinase (adenosine → AMP) was significantly lower in 

diabetic rat kidney (Pawelczyk et al. 2000; Sakowicz and Pawelczyk, 2002). 

Using different experimental approaches, it was suggested that increased adenosine and 

signaling is a common event in the pathogenesis of non-diabetic chronic kidney disease 

(Dai et al. 2011). Such is the case of renal fibrosis in mice generated by Ang II infusion and 

unilateral ureteral obstruction (UUO) (Dai et al. 2011; Lee et al. 2013). Also, Dai et al. 
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(2011) observed development of renal fibrosis in ada-/- animals. Whereas failed adenosine 

uptake due to insulin deficiency was observed in the diabetic model, however the 

mechanism leading to chronically high adenosine levels in these other CKD models is 

unknown. Genetic and pharmacological studies in mice revealed that CD73-mediated 

excess renal adenosine activates the A2B receptor and signaling, contributing to Ang II-

induced hypertension (Zhang et al. 2013). Also, CD73 and adenosine A2B receptor levels 

were significantly increased in the kidneys of human CKD patients compared with normal 

individuals and were further elevated in hypertensive CKD (Zhang et al. 2013). Thus, 

altered adenosine handling by cells or extracellular generation may contribute to chronic 

adenosine levels in CKD. In turn, future research should focus on establishing the 

alterations that occur to cellular functions mediated by adenosine and its receptors. 

5.2 Pathogenic functions of adenosine receptors in CKD 

In addition to the physiological functions attributed to adenosine receptors described in 

section 3, some of these receptors are linked to both protective and deleterious effects on 

kidney cells and renal function. Using pharmacological approaches and genetic deletion of 

receptors, the involvement of adenosine in acute and CKD was identified. As depicted in 

Table 2, the protective role of A1 and A2A receptor subtypes signaling was recognized by 

using the renal ischemia and reperfusion model where neutrophils infiltration and necrosis 

of proximal tubules was reduced. These findings could be applied to the creating of new 

therapies for acute renal disease.   
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The involvement of adenosine receptors in CKD (see Table 2) will be discussed with an 

emphasis on fibrotic process. Evidence indicates that the adenosine A2A receptor has a 

protective effect during podocyte injury, which was evaluated using toxicity assays in cells 

in vitro and by inhibiting monocyte/macrophage adhesion to endothelium in an 

experimental model of diabetic kidney disease (Persson et al. 2015; Awad et al. 2006, 

2008). However, how this protection is overwhelmed in CKD and is poorly understood. 

Apparently, adenosine signaling properties may be altered by the chronic increase of ligand 

due to the different pharmacological characteristics of the receptors, thus effecting different 

cellular responses (Fredholm et al. 2011; Roberts et al. 2014). Also, adenosine receptors 

may change their number and distribution during CKD. Analysis of the distribution and 

abundance of adenosine receptors in the human kidney and changes during diabetic CKD 

are underway. The distribution and abundance of A1, A2B and A3 receptors in the healthy 

kidney and in the kidney of diabetic nephropathy patients is shown in Figure 1. 

Histochemistry analysis shows changes in the expression of the adenosine receptors with 

the progression of the disease. There is evident loss of A1 receptor at the glomerulus, with 

increased staining at the tubules. One of the most noticeable alterations in the diabetic CKD 

was A2B receptor expression induced at the glomerular cells and increased abundance at the 

tubules. Interestingly, A2B receptor expression in non-diabetic CKD exhibited a similar 

upregulated pattern (Zhang et al. 2013). For the A3 receptor the most remarkable feature 

was receptor distribution at the tubules and interstitium during the advanced state of the 

diabetic kidney disease, which was recently recognized by Kretschmar et al. (2016). 

Overall, it is expected that these receptor distribution patterns contribute to their correlation 

with functional consequences at the cellular level. Indeed, the induction of the glomerular 

A2B receptor can be linked to increased TGF-β release and VEGF overproduction at the 
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glomerulus as previously described in the pathogenesis of diabetic renal injury in rats 

(Valladares et al. 2008; Roa et al. 2009; Cárdenas et al. 2013). Several groups have 

reinforced the probable pathogenic role of the adenosine A2B receptor, showing that this 

receptor subtype directs processes associated with CKD progression such as unbalance of 

the VEGF-NO axis and endothelin-1 induction in a hypoxia-inducible factor-α–dependent 

manner (Wilkinson et al. 2016; Patel et al. 2014; Zhang et al. 2013). Remarkably, a strong 

association between A2B receptor and renal fibrosis has been observed. Dai et al. (2011) 

demonstrated that development of renal fibrosis generated in all three models, ada-/- mice, 

Ang II infused animals and ureteral unilateral obstructed (UUO) animals, can be avoided 

when using an A2B receptor antagonist. A2B receptor mediated renal fibrosis was related to 

interleukin-6 induction (Dai et al. 2011). Additionally, a role for the A2B receptor in renal 

fibrosis could come from its capacity to mediate profibrotic activation of renal fibroblasts 

(Wilkinson et al. 2016). Cardenas et al. (2013) observed decreased induction of α-SMA in 

diabetic rats with pharmacological antagonism of the A2B receptor, probably resulting from 

attenuated profibrotic activation of resident or infiltrating cells. Complementary pathogenic 

effects were attributed to adenosine signaling via the adenosine A3 receptor in renal 

fibrosis. Signaling via A3 receptor is involved in the transition of tubular epithelial cells to a 

mesenchymal-like phenotype that leads to tubulointerstitial parenchyma remodeling and 

extracellular matrix deposition as described in section 4 (Kretschmar et al. 2016; Lee et al. 

2013). Interestingly, these studies suggest crosstalk between the A3 receptor and TGF-β 

fibrotic cascade in proximal tubule cells (Kretschmar et al. 2016; Lee et al. 2013). 

Furthermore, TGF-β induced CD73 in these cells (Oyarzún et al. 2015) reinforcing a 

positive feedback mechanism for directing kidney fibrosis. In vivo antagonism of the A3 

receptor attenuated fibrosis markers in diabetic rats and fibrosis in UUO animals 
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(Kretschmar et al. 2016; Lee et al. 2013). Thus common mechanisms of renal fibrosis 

pathogenesis in diabetic and non-diabetic CKD can be interfered through adenosine 

receptor antagonism. 

Several questions have arisen about the role of adenosine due to alterations in receptor 

profiles in diabetic and non-diabetic CKD. One of these refers to the mechanisms 

associated with A2B receptor induction or A3 receptor distribution in the kidney. Studies 

have demonstrated induction of A2B receptor mediated by the proinflammatory mediator 

TNF-α and hypoxia (Kolachala et al. 2010; St Hilaire et al. 2008; Yang et al. 2010; 

Koeppen et al. 2011). Interestingly these two factors are associated with CKD progression 

(Carrero et al. 2009; Fu et al. 2016). Ang II may also mediate A2B receptor induction (Dai et 

al. 2011). Thus a major task will be to solve the way that A2B receptor, with the lowest 

ligand affinity, may be upregulated concurrently with increased adenosine. Another 

interesting aspect is the tubulointerstitial distribution of the A3 receptor in diabetic CKD, 

resembling the myofibroblast pattern in renal fibrosis. Since the A3 receptor is also 

expressed in bone marrow derived cells (Haskó et al. 2008), the expression pattern in 

diabetic CKD could represent a pool of myofibroblasts from non-resident cells. Thus, 

contribution of this receptor subtype to myofibroblast generation or maintenance must be 

solved to be able to understand adenosine signaling integrated into the fibrotic process.   

6. Concluding remarks 

- One of the most astounding characteristics in experimental models of chronic renal 

disease of diabetic and non-diabetic origin is the increase in extracellular adenosine and of 

its catabolic products, which indicates that the pathogenesis of these renal conditions is 
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from a common axis. In humans, clinical studies confirm this characteristic in patients 

affected by diabetic nephropathy.  

- The biochemical mechanisms associated with increased adenosine levels involve both 

higher ectonucleotidase activity, which degrades precursor nucleotides, and lower 

extracellular adenosine uptake through equilibrative nucleoside transporter systems; 

although the series of events that underlie these alterations are unknown. In diabetes, 

metabolic and hormonal unbalance may influence lower ENT activity. 

- Cell signaling properties are altered due to a chronic increase of adenosine. Even more, 

changes in the amount and distribution of the adenosine receptors in chronic renal disease 

of diabetic and non-diabetic origin have been described. 

- The A2B and A3 adenosine receptors emerge as possible targets for pharmacological 

intervention due to their role in the development of renal fibrosis during chronic renal 

disease. However, the intervention possibilities are still limited. The development of a 

clinically useful A2B receptor selective antagonist is underway for the treatment of asthma 

and pulmonary disease. In fact, CVT-6883 has progressed to phase I clinical studies in 

humans, however it still requires further research. In the case of A3 receptor antagonists 

only preclinical studies has been performed. Some of the antagonists may be selected for 

clinical phase studies based on their pharmacological and chemical properties (Baraldi et al. 

2012). Interestingly, continuous administration of adenosine deaminase (ADA) decreased 

adenosine levels and precluded CKD in some animal models. Further, ADA replacement 

therapy is an effective therapy for ADA deficient patients (Booth and Gaspar, 2009; Wen et 
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al. 2010), although the cost of this product and its limitations in immune competent patients 

limits its implementation in the CKD population.  

- Further researches to resolve how the chronic adenosine cascade is founded to trigger 

pathogenic effects leading to CKD are underway. Also, validation of clinical tools that 

detect induction of the adenosine axis in CKD are needed. Measuring CD73 activity in the 

urine of at risk patients may be useful for detecting CKD, in addition to current standard 

procedures. This analysis will provide improved knowledge about the pathological 

processes that occur in human CKD and will help us observe when interception of 

adenosine signaling might be useful for opportune intervention. 
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Legend of the Figures 

Figure 1. Adenosine metabolism and cellular effects in the kidney. A. Homeostatic 

extracellular adenosine levels are generated from hydrolysis of the precursor nucleotides 

ATP and cAMP which are released by kidney cells. ATP is metabolized to AMP by the cell 

surface enzyme ecto-nucleoside triphosphate diphosphohydrolase 1 (ENTPD1 or CD39) 

and then to adenosine by ecto-5′-nucleotidase (NT5E or CD73). Extracellular cAMP is the 

substrate of phosphodiesterase (PDE) and consecutively AMP is dephosphorylated by 

CD73 to generate adenosine. The mechanisms involved in cell-mediated release of 

precursor nucleotides may include nucleotide permeable channels or extrusion mediated by 

vesicles, but this remains to be determined in kidney compartments. Intracellularly, 

adenosine is produced from S-adenosylhomocysteine (SAH) and converted to AMP by 

adenosine kinase (AK) or metabolized by the salvage pathway (SP) of purine nucleosides 

and nucleobases. The Equilibrative Nucleoside Transporters (NT) balances extracellular 

levels of the nucleoside and adenosine in the cells. In addition NT activity may be 

decreased to mediate extracellular accumulation of adenosine. B. Finely regulated 

extracellular levels of adenosine signal through four G-protein-coupled receptors A1, A2A, 
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A2B, and A3 in the healthy kidney to mediate physiological tasks such as tubuloglomerular 

feedback (TGF), renin release and ions balance. In contrast, chronic kidney disease models 

show persistently high levels of adenosine thus affecting cellular functions. The most 

remarkable consequences of unbalanced adenosine signaling in diabetic and non-diabetic 

CKD are glomerulopathy and renal fibrosis. 

Figure 2. Distribution of adenosine receptors in human diabetic CKD. 

Immunohistochemical detection of A1, A2B and A3 adenosine receptors (AR) in human 

kidney sections from non-diabetic normal tissue and biopsies from diabetic nephropathy 

patients. In the glomerular compartment there is evident induction of the A2B receptor 

subtype in diabetic CKD. Further, A3 receptor distribution to the tubulointerstitium was 

observed in advanced stages of diabetic nephropathy. The A1 receptor subtype was 

decreased in glomeruli but increased in tubular epithelial cells as the disease progresses. 

Selected images show representative progressive stages of renal injury probed by the 

content of α-smooth muscle actin (α-SMA) and pathological analysis. Original 

magnification 200x. Scale bars 50µm. 
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Table 1. Adenosine receptor distribution in the kidney 

Adenosine receptor subtype 
and localization 

Specie/Cell culture Method References 

 

Adenosine A1 receptor 

   

Podocytes and distal 
convoluted tubules 

 

Rat Immunohistochemistry Pawelczyk et al., 2005 

Isolated kidney glomeruli and 
podocytes 

 

Rat/cultured podocytes RT-PCR Valladares et al., 2008 

Thin limbs of Henle, 
collecting duct system and to a 
lesser extent in the medullary 
thick ascending limb. 

Mouse/rat RT-PRC Vitzthum et al., 2004 

 

Microdissected afferent 
arteriole  

 

Mouse 

 

RT-PCR 

 

Lu et al., 2015 

     

Microdissected efferent 
arteriole 

Mouse RT-PCR Al-Mashhadi et al., 2009 

 

Juxtaglomerular cells Primary cultures Mouse Immunolabeling/confocal 
microscopy/RT-PCR 

Ortiz-Capisano et., 2013 

 

Mesangial cells 

 

SV40 transformed mouse 
mesangial cell line 

 

RT-PCR 

 

Zhao et al., 2002 

Proximal tubule cells Human papillomavirus 16 
(HPV-16) transformed HK-2 
cells 

Real time RT-PCR Tang and  Zhou, 2003 

Adenosine A2A receptor    

Glomeruli 

 

Mouse/Rat RT-PCR Vitzthum et al., 2004 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT
67 

 

Conditionally immortalized 
podocyte cell line 

 

Mouse RT-PCR/ 
Immunocytochemistry 

Awad et al., 2008 

Juxtaglomerular cells 

 

Primary cultures of isolated 
mouse juxtaglomerular cells. 

RT-PCR Ortiz-Capisano et al., 
2013 

Juxtamedullary afferent 
arterioles 

Rat In vitro blood-perfused 
juxtamedullary nephron 
technique combined with 
videomicroscopy.(Functio
nal assay) 

Feng and Navar, 2010 

Microdissected efferent 
arterioles 

Mouse RT-PCR Al-Mashhadi et al., 2009 

 

Proximal tubule cells Human papillomavirus 16 
(HPV-16) transformed HK-2 
cells 

Real time RT-PCR Tang and Zhou, 2003 

Adenosine A2B receptor    

Cortical thick ascending limb 
of Henle and in the distal 
convoluted tubule 

 

Mouse /rat RT-PCR Vitzthum et al., 2004 

Glomeruli and tubules 

 

Human Immunohistochemistry Zhang et al., 2013 

Juxtaglomerular cells Mouse Primary cultures of 
isolated mouse 
juxtaglomerular cells/RT-
PCR 

Ortiz-Capisano et al., 
2013 

Juxtamedullary afferent 
arterioles. 

Rat In vitro blood-perfused 
juxtamedullary nephron 
technique combined with 
videomicroscopy. 

Feng and Navar, 2010 

Renal inner medullary 
collecting duct 

 

Immortalized cell line 
mIMCD-K2/murine model. 

Western Rajagopal and Pao, 2010 

Isolated glomeruli and 
podocytes 

Rat/cultured podocytes RT-PCR/ 
Immunohistochemistry 

Valladares et al., 2008 
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Microdissected efferent 
arterioles. 

Mice RT-PCR Al-Mashhadi et al., 2009 

 

Mesangial cells 

 

 

SV40 transformed mouse 
mesangial cell line from 
adult male Wistar-Kyoto rats 

RT-PCR/Inhibition assay 
with MRS1754 

Zhao et al., 2002 
Jackson et al., 2010; 
Jackson et al., 2011 

Fibroblast  

 

Rat cell line NRK-49F RT-PCR Wilkinson et al., 2016 

Initial segment of the inner 
medullary collecting duct 

Murine cell line mIMCD-K2  Western blotting Rajagopal et al., 2010 

Adenosine A3 receptor    

Microdissected isolated 
afferent arteriole 

Mouse RT-PCR  Lu et al., 2015 

 

Microdissected efferent 
arterioles 

 

Mouse 

 

RT-PCR 

 

Al-Mashhadi et al., 2009 

 

 

Mesangial cells 

 

SV40 transformed mouse 
mesangial cell line 

 

RT-PCR 

 

Zhao et al., 2002 

    

Glomeruli and tubules 

 

Human Immunohistochemistry Kretschmar et al. 2016 

Proximal tubules Human papillomavirus 16 
(HPV-16) transformed HK-2 
cells and rat purified 
proximal tubules 

Western blot Kretschmar et al. 2016 
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Table 2. Involvement of adenosine receptors in acute and chronic kidney diseases 
Adenosine 
receptor 

Model of 
kidney injury 

Interventional 
strategy 

Effect Reference 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

A1 

Ischemia and 
reperfusion 

 

CCPA agonist  

 

Restores renal function, attenuates 
the expression of inflammation 

markers ICAM-1, IL-1β and TNF-α, 
necrosis and apoptosis 

Lee et al. 2004a 

Ischemia and 
reperfusion 

DPCPX 
antagonist  

Increases renal dysfunction, tubular 
necrosis, inflammation and apoptosis 

Lee et al. 2004a 

Ischemia and 
reperfusion 

 

 A1AR-/- mice 

 

Increases the expression of 
inflammation markers ICAM-1, IL-

1β and TNF-α. Augments neutrophils 
infiltration 

Lee et al. 2004b 

 

Ischemia and 
reperfusion 

CCPA agonist  

 

Reduces necrosis in proximal tubules, 
neutrophils infiltration, inflammation 
and apoptosis in IL-11 receptor KO 

mice 

Kim et al. 2013 

Ischemia and 
reperfusion 

 

DPCPX 
antagonist  

Enhances lymphocyte infiltration and 
TNF-α production 

Najafi et al. 2016 

Alloxan-
induced 
diabetes  

A1AR-/- mice Increases glomerular filtration rate Sällström et al. 
2007 

Diabetic 
nephropathy 

A1AR-/- mice Increases renal injury and glomerular 
filtration rate  

Faulhaber-Walter et 
al. 2008 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

A2A 

Ischemia and 
reperfusion 

DWH146e 
antagonist 

Inhibits inflammation, reduces renal 
damage 

Okusa et al. 1999 

Ischemia and 
reperfusion 

ZM241385 
antagonist 

Blockades the renoprotector effects 
of DWH146e   

Okusa et al. 1999 

Ischemia and 
reperfusion 

DWH 146e 
agonist 

Reduces neutrophil infiltration in 
renal cortex and medulla. Decreases 

ICAM-1 expression 

Okusa et al. 2000 

Diabetic 
nephropathy 

ATL146e o 
ATL313 
agonists 

Attenuates the fibrotic marker 
fibronectin and reduces macrophages 

infiltration in glomeruli 

Awad et al. 2006 

Glomerulonep
hritis 

CGS21680 
agonist 

Reduces macrophages infiltration and 
collagen type I, II and IV deposition.  

Restores expression of E-cadherin 
and decreases the expression of α-

García et al. 2011 
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SMA in interstitium and the 
glomerulus 

unilateral 
ureteral 

obstruction 

A2AAR-/- mice Increases progression of 
tubulointerstitial fibrosis 

Xiao et al. 2013 

unilateral 
ureteral 

obstruction 

CGS21680 
agonist 

Significantly reduces collagen 
deposition, TGF-β and lymphocytes 

T CD4+ infiltration  

Xiao et al. 2013 

Diabetic 
nephropathy 

 

CGS21680 
agonist 

 

Prevents glomerular damage by 
inhibition of the inflammatory 

pathway. Reverses proteinuria and 
decreases urinary excretion of TNF-

α. 

Persson et al. 2015 

 

 
 
 
 
 
 
 
 
 
 

A2B 

unilateral 
ureteral 

obstruction 

A2BAR-/- mice Attenuates IL-6 induction Dai et al. 2011 

Diabetic 
nephropathy 

MRS1754 
antagonist 

Restores nephrin and attenuates 
VEGF expression and α-SMA 

induction in glomeruli 

Cárdenas el al. 
2013 

Diabetic 
nephropathy 

MRS1754 
antagonist 

Reduces  VEGF expression and 
restores nitrite levels in the kidney 

tissue 

Patel et al. 2014 

Diabetic 
nephropathy 

A2BAR-/- mice  Increases glomerular filtration rate 
and albumin excretion 

Tak et al. 2014 

Cyclosporine 
A-induced 

Nephropathy  

MRS1754 
antagonist 

Reverses the increase of VEGF 
induced by the non-selective agonist 

NECA of adenosine receptors  

Patel et al. 2015 

 
 
 
 
 
 
 
 

A3 

Ischemia and 
reperfusion 

A3AR-/- mice Attenuates renal injury and restores 
renal function 

Lee et al. 2003 

Ischemia and 
reperfusion 

MECA agonist Favors renal damage Lee et al. 2003 

unilateral 
ureteral 

obstruction 

LJ1888 
antagonist 

Inhibits the expression of fibronectin 
and collagen I. Reduces interstitial 

collagen  

Lee et al. 2013 

Diabetic 
nephropathy 

MRS1220 
antagonist  

Reduces α-SMA Kretschmar et al. 
2016 

Adriamycin-
induced 

LJ1888 
antagonist  

Restores nephrin and decreases 
collagen type IV, NF-κB, NOX4, 

Min et al. 2016 
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nephropathy TLR4, TNFα, IL-1β and IFN-γ 
expression 
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