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Abstract: 

Cardiovascular diseases represent a major global health burden, with high rates of mortality 

and morbidity. Autologous grafts are commonly used to replace damaged or failing blood 

vessels, however such approaches are hampered by the scarcity of suitable graft tissue, donor 

site morbidity and poor long-term stability. Tissue engineering has been investigated as a 

means by which exogenous vessel grafts can be produced, with varying levels of success to 

date, a result of mismatched mechanical properties of these vessel substitutes and inadequate 

ex vivo vessel tissue genesis. In this work, we describe the development of a novel 

multifunctional dual-phase (air/aqueous) bioreactor, designed to both rotate and perfuse small 
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diameter tubular scaffolds and encourage enhanced tissue genesis throughout such scaffolds. 

Within this novel dynamic culture system, an elastomeric nanofibrous, microporous 

composite tubular scaffold, composed of Poly(caprolactone) and acrylated Poly(lactide-co-

trimethylene-carbonate) and with mechanical properties approaching those of native vessels, 

was seeded with human mesenchymal stem cells and cultured for up to 14 days in inductive 

(smooth muscle) media. This scaffold/bioreactor combination provided a dynamic culture 

environment that enhanced (compared to static controls) scaffold colonisation, cell growth, 

extracellular matrix deposition, and in situ differentiation of the human mesenchymal stem 

cells into mature smooth muscle cells, representing a concrete step towards our goal of 

creating a mature ex vivo vascular tissue for implantation.  

 

Keywords: Bioreactor, Dynamic culture, Mesenchymal stem cell, Composite scaffold, 

Vascular grafts 

 

1. Introduction: 

Over the last 60 years, transplantation of a wide variety of tissues and organs, re-constructive 

surgical techniques and replacement with artificial devices has significantly enhanced patient 

life expectancy and quality. Unfortunately, these solutions still suffer from many limitations, 

including donor shortage and lifelong immunosuppression, increased risk of infections, 

unwanted side effects and, in some cases, finite durability (Nasseri BA et al. 2001, Fuchs JR 

et al. 2001).  This situation has led to an increasing interest in tissue engineering as a possible 

solution to develop in-vitro cellularized functional substitutes able to restore or improve 

tissue and organ function (Peloso A et al. 2015, Vacanti JP 2010, Martin I et al. 2014).  

Significant progress has already been made in the field and examples of successful clinical 

implementation of in vitro tissue-engineered products include skin substitutes (Catalano E et 



 

 
This article is protected by copyright. All rights reserved. 

al. 2013, Gauvin R et al. 2013), bone grafts, cartilage, operational bladders and trachea (Atala 

A et al. 2006, Asnaghi MA et al. 2009, Jungebluth P et al. 2011, Fulco I et al. 2014). 

Whilst this progress offers significant promise, besides appropriate preclinical models to 

investigate the host response (e.g., neovascularization, re-modelling) (Piola M et al. 2013a) 

and the behaviour of the produced substitute once grafted, more effort is still required in 

terms of elucidating basic mechanisms regulating cell responses to these scaffolds under 

dynamic versus static culture conditions, and further, the behaviour of the engineered 

constructs during ex vivo maturation (Couet F and Mantovani D 2012, Martin I et al. 2014).  

Moreover, it is acknowledged that each tissue target and each pathologic condition will likely 

require a specific approach for optimal results, and hence having a modular and flexible 

approach to ex vivo tissue engineering will be important.  

Tissue engineered tubular tissues are seen as an alternative source of tissues for the 

replacement of small diameter damaged hollow organ structures (< 6 mm ), such as blood 

vessels and urethra (Atala A et al. 2012). There is a critical demand for the production of 

tissue-engineered vascular substitutes capable of meeting the functional requirements of the 

vessel without inducing immune or inflammatory responses, or losing function over time 

(Martin I et al. 2014).  

The tissue engineering (TE) approach is based on the well-established triad comprising cells, 

scaffolds (synthetic or natural), and stimuli (Martin I et al. 2014, Wendt D et al. 2009). 

Several studies have highlighted the important roles of mechanical and biochemical 

stimulation in driving the development of various cell phenotypes from various cellular 

starting points in order to create a mature and functional tissue-substitute (Seifu DG et al. 

2013, Tresoldi C et al. 2015, Prandi F et al. 2015, Moore M et al. 2012). Bioreactors thus 

have the potential to play a critical role in TE, having the ability to provide such stimulation 

in a dynamic but controlled manner to create the appropriate environment for tissue growth, 
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remodelling and maturation, prior to implantation (Asnaghi MA et al. 2009, Piola M et al. 

2013b, Flanagan TC et al. 2007, Piola M et al. 2015, Uzarski JS et al. 2014). 

To address this potential, numerous groups of researchers have developed dynamic culture 

systems suitable for applying, in a controlled manner, single or combined biomechanical 

stimuli to seeded scaffolds, such as shear stress, pressure, axial stretching or torsion loads 

(Sivarapatna A et al. 2015, Syedain ZH et al. 2011, Uzarski JS et al. 2015, Nieponice A et al. 

2008). However, these devices still have their limitations, mainly associated with 

cumbersome handling and assembly procedures, and an inability to simultaneously produce 

different stimuli during culture that are required for the successful production of suitable 

tissue engineered grafts (Seifu DG et al. 2013, Fishman JM et al. 2014, Mantero S et al. 

2007). 

The present study aimed to redesign and validate an innovative multifunctional bioreactor, 

previously used for large hollow organs engineering (Asnaghi MA et al. 2009), for the 

generation of small diameter tubular tissues. The whole dynamic culture system was 

redesigned to suit small diameter tubular constructs and two new important features were 

added, namely pre-tensioning and luminal perfusion. Furthermore, as adaptability is 

considered nowadays a key element for tissue engineering (Morgan KY and Black LD, 3rd 

2014), great importance was given to modularity and scalability during the development 

process, in order to allow regeneration of patient-specific graft, always considering as 

mandatory sterility maintenance during long term culture (Mollet BB et al. 2015).  

The functionality and the benefit of the bioreactor system were assessed in the context of 

small calibre vessel engineering, using human mesenchymal stem cells and a promising 

elastomeric composite Polycaprolatcon and Poly(lactide-co-trimethylene-carbonate) 

(PCL/aPLA-TMC) based electrospun (Stefani I and Cooper-White JJ 2016), having first 

determined an optimized medium composition to induce mesenchymal stem cells (hMSCs) 
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differentiation into mature smooth muscle cells. Under dynamic culture within the bioreactor 

system for 14 days, the small diameter tubular scaffold and the novel optimized 

differentiation media resulted in substantial improvements in scaffold colonisation, cell 

growth, smooth muscle cell extracellular matrix secretion, and differentiation of hMSCs into 

mature smooth muscle cells (SMC) throughout the tubular scaffold as compared to static 

controls.  

 

2. Materials and Methods: 

2.1. hMSC 2-dimensional culture and elucidation of optimal smooth muscle cell 

differentiation media 

hMSC were purchased from Lonza (donors: 8006, 7219, 0956). hMSC were seeded at 4000 

cells/cm
2
, expanded in growth media and subsequently, when needed, exposed to 

differentiation media for 7 or 14 days before collecting samples for analysis. Growth medium 

(GM) consisted of low-glucose DMEM supplemented with 10% FBS, penicillin (100 

units/mL) and streptomycin (100 µg/mL) (Gibco, Australia). Four different myogenic media 

were tested and consisted of GM supplemented with: 1 ng/mL TGF-β1, 30 μM ascorbic acid; 

10 ng/mL TGF-β1, 30 μM ascorbic acid; 1 ng/mL TGF-β1, 30 μM ascorbic acid, 10% FBS; 

10 ng/mL TGF-β1, 30 μM ascorbic acid, 10% FBS. The different media are coded as (X Y) 

were X is the % of FBS and Y is TGF-β1 ng/mL added to low-glucose DMEM. Media were 

changed every two days. 

 

2.2. Quantitative real-time reverse transcription polymerase chain reaction 

Total RNA was isolated using an RNeasy Mini Kit with on-column DNAse treatment 

(QIAGEN VWR, Stockholm, Sweden) according to the manufacturer‟s protocol. The 

concentration and purity of RNA was determined by using a Nano-Drop spectrophotometer 
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(NanoDrop Technologies, Inc., Rockland, DE. Data not shown). cDNA was synthesised from 

100 ng of RNA using SuperScript III First-Strand Synthesis SuperMix (Invitrogen, Life 

Technologies) in a total volume of 21 μL, as per manufacturer's instructions. An equivalent 

volume of DNase and RNase-free water (Sigma) was used in place of RT Enzyme Mix for 

no-RT controls. 

qPCR reactions were set up in triplicates with each reaction having a total volume of 10 μL 

containing 1X Platinum SYBR Green qPCR SuperMix-UGD (Invitrogen), 0.2 μM forward 

and reverse primers and 1 μL cDNA. A CFX Connect™ Real-Time PCR Detection System 

(Bio-rad, USA) was used at standard cycling parameters: 50 °C for 2 min, 95 °C for 2 min 

and then 95 °C for 15 s and 60 °C for 30 s for a total of 40 cycles. Results of qPCR were 

analysed using the Pfaffl model to normalise gene expression to the reference gene GAPDH 

(Pfaffl MW 2001). Analysed genes (Table 1) were chosen due to their previous use within 

literature as SMC differentiation markers  (Murrell M et al. 2011, Ball SG et al. 2004, Narita 

Y et al. 2008, Cameron AR et al. 2011, Cameron AR et al. 2014, Tang AT et al. 2012). 

 

2.3. Cell morphology and differentiation analysis 

Cells seeded on 48 multi-well plates (triplicate samples, 1, 7 and 14 days post-seeding) were 

fixed in 4% paraformaldehyde (in PBS) for 20 min and rinsed with PBS before being 

permeabilized with a 0.1% (w/v) Triton 100-X solution for 5 min. After PBS rinsing, samples 

were blocked in 3% BSA in PBS solution for 1h. 

The following staining solutions (in 3% BSA in PBS) were used (150 μl/well): 1/200 Anti-

alpha smooth muscle Actin [1A4] antibody and 1/100 Anti-Calponin antibody [CALP] 

(abcam,UK) overnight (4°C) followed by 1/500 AlexaFluor 568 (Life Technologies) and 

1/400 AlexaFluor 633 (Life Technologies) 60 min (Room Temperature, RT); finally 1/200 
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Phalloidin 488 (actin staining)(Life Technologies, Australia) 30 min (RT) and 1/1000 

Hoechst 33342 (nucleus staining, Life Technologies, Australia) 5 min (RT). 

Wells were then rinsed in PBS three times and left immersed at 4° C until imaging. High-

resolution images were obtained using an LSM Zeiss 710 confocal microscope. 

Pictures of cell populations for chosen treatment conditions (more effective myogenic 

medium and control) were processed with a self-made method implemented with cell-image 

analysis open source software CellProfiler (Broad Institute, USA) (Carpenter AE et al. 2006) 

to identify, count and measure individual cells. The method recognized nuclei first, in order 

to generate a cytological profile, containing a collection of measurements of features of each 

cell, like fluorescence intensity for all the different channels. 

CellProfiler Analyst system then presented individual cells for classification, sampled 

randomly from the screen-wide population (Jones TR et al. 2009). After fifty cells were 

classified by the operator as α-SMA and Calponin positive/negative, the iterative machine-

learning phase, in which the computer generates a tentative rule based on the classified cells 

and presents the researcher with cells classified according to that rule, began. After correcting 

classification errors and retraining for several rounds, the automatic classification became 

more accurate. When the accuracy was considered sufficient, the trained method was used to 

classify all cells in the experiment in order to calculate the number of double positive cells in 

each sample. 

 

2.4. PCL/aPLA-co-TMC scaffold  

A previously developed PCL/aPLA-co-TMC tubular electrospun porous scaffold (SF- 1) was 

chosen due to the promising chemical and mechanical feature for vascular tissue engineering. 

The three-dimensional (3D) support is composed of fibers with di

presenting a spontaneous in-process phase separation: the inner core is formed from a stiffer 
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material (PCL), and the outer layer is crosslinked aPLA-co-TMC. The structure of the 

scaffold is porous, but tightly packed (pore size = 12.5 ± 0.8 µm). The outer surface presents 

axially aligned structures (SF-1D) (Stefani I and Cooper-White JJ 2016). Five centimetre 

long scaffolds with internal diameter of 4 mm and a wall thickness of 0.75 mm were 

sterilized with 70% ethanol wash and rinsed in 1% antibiotic-antimycotic (Gibco, Thermo 

Fisher Scientific Inc, USA) solution in PBS. Before cell seeding, scaffolds were kept in GM 

without FBS overnight. 

 

2.5. Bioreactor Design 

The bioreactor design and development focused on achieving the following criteria for the 

system: 1) simple cell seeding procedures on both sides of a tubular matrix, to permit a 

homogeneous cell distribution; 2) the ability to culture different cell types on either side of 

the tubular support, with the possibility to supply different media; 3) the ability to enhance 

oxygenation of the culture medium and mass transport (oxygen, nutrients and catabolites) 

between media and adhering cells; 4) the ability to perfuse the internal lumen, and connect 

the bioreactor to different perfusion systems; 5) the ability to introduce scaffold tensioning in 

order to assure a pervious lumen; 6) the achievement and maintenance of sterility and other 

criteria of Good Laboratory Practice (GLP).  

In order to ensure applicability of the device for different purposes (i.e., different scaffold 

sizes (diameter up to 1 cm and length up to 10 cm) and cell types), the major design 

principles were high versatility and modularity of the whole system. Furthermore, two 

perfusion systems were developed to bench-test the device under laminar and pulsatile (P= 

120-80 mmHg) flows. 

 

2.6. Bioreactor dynamic culture 
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After sterilization (autoclave), the culture chamber was assembled in a biosafety cabinet. The 

sterilized scaffold was positioned on the developed shafts (see Figure 2A). Approximately 2 

to 3 mm linear motion of the pre-tensioning system was required, depending on the 

experiment, to maintain the used scaffold straight and pervious. The electrospun scaffold was 

not visibly modified: no dimensional change was visible; no modification in porosity or fiber 

alignment is expected. hMSCs (Donor 9056, Lonza – Passage 5) were harvested from culture 

flasks; a cell density of 2x10
6
 cells/cm was calculated, considering 4 cm of scaffold as 

„seedable‟ (0.5 cm each side were used to block the scaffold with the developed pinches). 

The entire cell pellet was re-suspended in 320 µL of GM, and 10 µL drops were pipetted on 

the external surface of the tube positioned in the bioreactor, slowly rotating the scaffolds 

during the seeding phase (Figure 1). 

The bioreactors were then placed in the incubator (37°C, 5% CO2) and left for 3.5 h, setting a 

rotation speed of 2 rpm (Arrigoni C et al. 2008), to encourage more even cell distributions. 

The static controls (1 cm each), positioned in an ultra-low attachment 24 well-plate, were 

seeded, under sterile conditions, rotating the matrix of 90° every 30 min. After 3.5 h, the 

bioreactors were stopped and filled with myogenic media (scaffold submerged), and left in 

the controlled environment of the incubator overnight. At the same time myogenic media was 

also applied to the static controls. The following day, 15 ml of media was removed from the 

main chambers and the bioreactors were turned on with a speed of 3 rpm exposing the 

scaffold to double-phase (Zeisberg EM et al.) (Figure 1). Optimal myogenic media was 

changed every two days. After 14 days of culture, scaffolds were harvested and samples were 

collected for SEM analysis and Histology imaging. 

 

2.7. Histological and scanning electron microscopy analysis 
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After 14 days, samples cultured in the bioreactor and the static controls were processed for 

histological analysis and SEM observation. Briefly, they were fixed with 4% PFA for 6h at 

4°C, left overnight in a 30% sucrose (w/v) solution, then immersed for 12 h in OCT 

embedding media and finally frozen in fresh OCT. Samples were stored at -80°C prior to 

cutting. Sections (10μm thick) of cultured tubes were collected on SuperFrost Plus slides 

(Thermo Scientific), washed with PBS, rinsed with MilliQ water, and left to dry overnight. 

Lillie‟s allochrome stain was performed and the slides scanned with an Aperio AT slide-

scanner (Leica Biosystems, Australia) to analyse the cell distribution and extracellular matrix 

(ECM) deposition in the tube cross-sections. Lillie‟s allochrome method was adapted from 

Culling (Culling CFA 1974).  

As for immunofluorescence staining, a 0.05% Trypsin solution in 0.1% Calcium chloride was 

used to unmask the antigens and epitopes for protein staining (20 min, RT). After PBS 

rinsing, sections were blocked in 3% BSA in PBS solution for 1h. The following staining 

solutions (in 3% BSA in PBS) were used: 1/400 Anti-collagen IV antibody, 1/300 Anti-

fibronectin antibody, 1/300 Anti-laminin antibody, 1/400 Anti-collagen I antibody 

(abcam,UK) 60min (RT) followed by 1/500 AlexaFluor 488 (Life Technologies60 min 

(Room Temperature, RT); finally fluorescence mounting media was used to preserve the 

sections. Sides were analysed using a LSM Zeiss 710 confocal microscope. 

Furthermore, samples were analysed using a scanning electron microscopy Stereoscan 360 

(Cambridge Instruments, UK). Before analysis, the samples were dehydrated, with an 

increasing ethanol scale, and coated with 20 nm layer of gold (SC7620, Quorum 

Technologies, UK). 

 

3. Results: 
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3.1. Differentiated mesenchymal stem cells gene expression (qPCR) and CellProfiler 

Analysis 

The cells cultured with TGF-β1 increased the gene expression level of early SMC-specific 

markers in a dose dependent manner (9056 Donor Figure 3; other donors SF- 2), consistently 

with previous publications [27, 28]. A significant increase in gene expression from an 

increase in TGF-β1 from 1 ng/ml to 10 ng/ml was only seen across all the three donors for 

Calponin F (CNN1) and Collagen IV. Throughout the time course, Desmin (DES) and SM1 

expression levels remained similar to day 1; DES is an early marker of a SMC phenotype, 

whilst SM1 is expressed later in more mature SMCs [14]. It is therefore probable that at day 7 

and 14 the cells that were analysed were in an intermediate stage, past the high DES 

expression, but still not in a final differentiation stage, expressing SM1. The up-regulation 

trend is still visible at day 14 of exposure. 

Whilst there was an alteration in gene expression profiles between the conditions of 10% vs 

20% FBS, this was not considered significant enough to justify the increase of concentration 

of FBS for further experimental studies; with 10% FBS selected due to an improved cost to 

performance ratio, whilst reducing potential confounding elements from such an undefined 

serum. The following media was thus chosen as our optimal media for all work using the 

bioreactor: low-glucose DMEM supplemented with 10% FBS, penicillin (100 units/mL) and 

streptomycin (100 µg/mL), plus 10 ng/mL TGF-β1 and 30 μM ascorbic acid. 

Further investigations were carried out to quantify the efficiency of differentiation along the 

time course with the chosen medium. CellProfiler was utilized to analyse 20 images 

(examples reported in Figure 4), coming from each tested donors, for each time point. At day 

7, 48% ± 10 positive cells were detected, while at day 14 the number increased to 90% ± 4 

positive cells, the control didn't show any double positive staining.  Confocal imaging also 

allowed to study cell morphology: mesenchymal stem cells gradually acquired an elongated 
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shape, reaching a smooth muscle-like morphology, after 14 days of myogenic media culture 

in the optimal media. 

3.2. Bioreactor final design and bench validation 

A rectangular based bioreactor structure (40x190x45 mm) was manufactured, out of 

polycarbonate (PC), with access from the top, to allow easy insertion and removal of the 

scaffold construct and facilitating cell seeding of the external surface. The lid design 

mimicked a Petri dish configuration to permit gas exchange, while preserving sterility of the 

culture environment. Two orifices for the insertion of the shafts were created on two of the 

chamber walls, in order to define the structure that allows rotational motion. Viton® dynamic 

seals (highlighted in green in Figure 2/A), positioned into slits properly manufactured on 

chamber orifices, guaranteed isolation and sterility of the culture milieu in correspondence of 

critical interfaces. 

The tubular scaffold is positioned on two Polyether ether ketone (PEEK) supports, developed 

to securely connect with the rotating shafts, in an easy and reliable way; inside the supports, 

two O-rings prevent medium infiltration. Along the axis of the shafts, a 2 mm wide conduit 

was made, to allow perfusion of the inner lumen by connecting it to a hydraulic circuit; the 

choice of two rotating shafts instead of a single chuck maximizes the exposure of the 

scaffold-lumen of small calibre constructs to medium flow, during perfusion. Connection 

between chamber and actuator were designed to allow easy positioning and extraction of the 

device from the incubator. The bioreactor rendering and prototype are shown in Figure 2. 

Thanks to the modularity of shafts and scaffold-supports, together with their scalability, it is 

possible to host scaffolds of different sizes (both length and diameter) by simply changing the 

scaffold supports. The pre-tensioning system (Figure 2/A-2) allows extension of the scaffold, 

after securing in the culture chamber, to avoid any geometrical change (due to bending) of the 

scaffold, maintaining its lumen pervious. The pre-tensioning mechanism allows for a 
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maximum increase in length of 10mm. All the described components can be autoclaved in 

order to reduce contamination risks. All the described components can be autoclaved in order 

to reduce contamination risks.  

Rotation of the scaffold is provided by a DC brushless motor AXHM230KC-GFH (Oriental 

Motor Ltd., UK,), with a fine speed regulation (AXHD30K, Brushless DC Speed Controller, 

Oriental Motor) even at low revolutions per minute, and ensuring reliability inside the 

incubator.  

All prototypes were manufactured by Zerotre Meccanica Srl (Costa di Mezzate, Italy) using 

in-house technologies, a parallel lathe (OPTI D 240x500 G-Vario, Optimum, Bamberg, 

Germany) and a numerical control machine (Roland MDX-40, Roland DG Mid Europe s.r.l, 

Peschiera Borromeo, Italy). 

A custom-made hydraulic circuit was developed to supply pulsatile pressure stimuli in the 

physiological range of 80 - 130 mmHg, as we wanted to test critical points like the 

connection between shafts and supports and the luer-lock joints for high-pressure resistance. 

The system was assembled and left in working condition (rotation and pulsatile perfusion) for 

7 days and connection stability assessed for absence of leakages within perfusion circuit and 

main chamber and within bioreactor and the external environment. The validity of the 

pulsatile system was ensured using two pressure transducers PX600F (Edwards Lifescience 

LLC, USA) connected in line with the bioreactor shafts. 

 

3.3. Bioreactor culture outcomes 

Scaffolds from Static controls (24 well-plate) and dynamic experiments (bioreactor) were 

first analysed with SEM imaging (Figure 5). The external surfaces of each scaffold were 

scanned to visualize differences in extracellular matrix production and distribution. 

Differences at 14 days of culture are clear. Bioreactor samples showed complete coverage of 
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the scaffold outer surface with significant production of ECM. It was possible to observe the 

underlying morphology of the fibers, but the surface was homogenously covered. The static 

cultured scaffolds, on the other hand, presented covered zones as well as matrix free areas, 

typical of the cell-suspension drop seeding technique. The comparison allowed us to prove 

that the rotation conditioning, starting from the seeding time point, in the bioreactor, during 

the adhesion timeframe for the MSCs, permitted improved cell seeding and distribution and 

hence a more favourable starting point for more even matrix production and distribution 

throughout the scaffold (Wendt D et al. 2006), whilst in the controls cells were not exposed to 

the whole scaffold outer surface and settled to a large extent where they were initially seeded. 

The production of ECM was also lower in the static condition, confirming previous reports 

suggesting dynamic culture promote protein production and deposition, and cell proliferation 

(Scotti C et al. 2012, Au P et al. 2008, Wendt D et al. 2009). 

Histological analysis using Lillie‟s Allochrome (Figure 6), a connective tissue stain, 

permitted further analysis of the developed tissue structure, as it clearly distinguishes 

between nuclei (black), collagen (blue), muscle reticulin (reddish purple) and fibrin (red to 

pink), highlighting differences in cell and protein distributions across the two conditions 

tested.  Circumferential and axial sections of the bioreactor cultured samples gave important 

information showing how cells were colonizing more than half of the scaffold thickness. 

Matrix deposition was relevant at the outer surface and it was possible to see, at the highest 

magnification (20X), tissue developing around fibers. The contrast between the bioreactor 

samples (Figure 6 C-L) with the static control (Figure 6 A-B) was clear: only an outer and 

non-continuous layer of cells was present in the static control, probably due to the highly 

packed structure (pore size ≤ 30μm) of the matrix, which does not facilitate spontaneous cell 

migration in the absence of intra-mural flow - further encouraged by the air-aqueous rotating 

interface in the bioreactor.  Static cultured scaffolds contained considerably fewer cells, 
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mainly producing collagen, whereas a complete network of proteins, with collagen, reticulin 

and fibrin, was present in the samples cultured in the bioreactor. A clear homogenous 

distribution of cells and ECM could be seen on the outer half of the tubular scaffold. It was 

possible to recognize differently stained structures also in the inner part of the scaffold 

thickness, confirming that nutrient and growth factors could reach the inner zone of the 

structure easily with the rotation stimuli.  

 

4. Discussion: 

Vascular tissue engineering aims to develop a vascular construct that demonstrates biological 

and mechanical properties as close as possible to those of a native vessel (Couet F and 

Mantovani D 2012), with many different approaches having already been reported in 

literature. More than 40 reviews on this topic, plus countless primary research articles, were 

written in 2014, and given that cardiovascular diseases account for most non-communicable 

diseases deaths (17.3 million people annually) (Lim Ss VT et al. 2012), the need of a flexible, 

functional and patient-specific solution is clear.    

Bioreactors are a useful tool in regenerative medicine, building a suitable environment for 

functional tissue growth and maturation. These devices can provide a standardized and 

reproducible range of stimuli, confined in a safe sterile environment, presenting a possible 

regulatory-compliant approach to reach the desired clinical substitute (Couet F. MD 2012, 

Autors V 2013). Many vascular-bioreactors have been reported in literature, mainly due to 

the necessity to discover an alternative to small-diameter synthetic prostheses that currently 

lead to the development of anastomotic intimal hyperplasia, coagulation and thrombogenesis 

(Graham LM et al. 1989, Pasic M et al. 1995).  

Niklason et al. developed and patented, in 1999, a bioreactor applying cyclic pulsatile strain. 

The device, connected to a closed flow system equipped with a peristaltic pump, provide 
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cyclic pulsatile strain to cell-seeded scaffolds. The main idea was to reproduce the cyclic 

circumferential stretching imposed on native vessels by the heart (Niklason LE et al. 1999). 

The device allowed them to create a decellularized scaffold starting from a polyglycolic acid 

tubular mesh seeded with porcine smooth muscle cells and cultured for 10 weeks in a 

perfusion bioreactor system. The constructs were then decellularized, leaving behind the 

mechanically robust extracellular matrix of the graft wall. After seeding endothelial 

progenitor cells on the lumen, the graft was then implanted (Quint C et al. 2011), with 

promising results, but it is important to underline how 10 weeks of culture plus 

decellularizing and re-seeding significantly enhance the probability of bacterial or fungal 

contamination.  

Mironov et al. thereafter suggested that longitudinal strain is a necessary stimulus to produce 

functional grafts. Their bioreactor included two media perfusion systems: one for the luminal 

side of the tubular construct and the other for the watertight main chamber. The device 

allowed for a manually-invoked change of longitudinal strain of the construct during culture, 

from 0% to 200%. The prototype was also equipped with pressure transducer and a digital 

TV camera, to analyse culture evolution. The bioreactor was tested using a native bovine 

carotid artery as a tubular construct, but never exploited for graft culture and tissue 

regeneration (Mironov V et al. 2003). 

Bilodeau et al. describe a bioreactor that allows for the possibility of applying an 

oscillatory/constant strain utilizing a pneumatic cylinder controlled by a microcontroller, 

reproducing torsion generally induced by heart beating. The internal and external surfaces of 

the seeded scaffold are in contact with culture medium to feed seeded cells. Two perfusion 

systems were then developed to avoid contamination between different cell types (Bilodeau 

K et al. 2005). Although the system was considered of great interest, no biological results 

were published. 
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Finally, Tranquillo et al. developed a transmural flow bioreactor allowing for different flow 

configurations and for measurement of changes in transmural dissolved oxygen 

concentration. It consisted of a glass external housing with a polyetheretherketone internal 

housing. Culture medium, directed through the internal lumen of a scaffold, was supplied by 

syringe pumps. The device allowed for the introduction of transmural perfusion, lumen 

perfusion and a combination of the two. SMCs culture was performed, enhancing production 

of extracellular matrix (Bjork JW and Tranquillo RT 2009). The system allowed seeding of 

two different cell types, as the structure allowed one to connect two different hydraulic 

circuits. However, perfusion and transmural flow are the only two stimuli exploited, limiting 

the potential of this device. 

Taking into account these published results we report in this paper the development of a 

device that could reproduce the most promising stimuli for vascular tissue regeneration 

(perfusion, rotation, tensioning) never presented before in literature in a single bioreactor. 

Considering modularity and scalability as one of the main goals, the produced prototype can 

house scaffolds with a variable length from 5 to 10 cm (just by changing one of the shafts) 

and internal diameter varying from 3 to 10 mm (just by producing a set of supports). This 

modular design permits the application of the bioreactor to constructs of varied dimensions as 

required, depending on the targeted tissue structure and function. Furthermore, we focused 

our design on easy assembly procedures after sterilization and ease of handle. 

Taking into consideration the current state of art in vascular TE practices as reported in the 

literature (Pashneh-Tala S et al. 2015), we believe that bone marrow derived hMSCs show 

potential as a practical cell source (in particular for SMCs) for a less invasive way of 

obtaining an appropriate number of cells prior to implantation. Little is known about the 

mechanisms causing the differentiation of hMSCs into SMCs (Narita Y et al. 2008, Wang D 

et al. 2004, Gong Z et al. 2009). TGF-β1 is recognized as fundamental signalling protein, 
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playing important roles in many aspects of embryonic development and adult homeostasis 

(Wu MY and Hill CS 2009). This factor has different effects on cells, mainly depending on 

the concentration of TGF-β1, the environment, or cellular phase. TGF-β1 has been shown to 

up-regulate some smooth muscle markers in hMSCs (Narita Y et al. 2008, Wang D et al. 

2004) and embryonic cells (Sinha S et al. 2004).  We thus decided to investigate four media 

combinations using low glucose DMEM and 30μM Ascorbic Acid with two different 

concentrations of FBS (10/20 %), and two concentrations of TGF-β1 (1/10 ng/mL) across 

three different MSC donors. Higher FBS was tested as SMC primary cultures are usually 

performed with 20% of serum (Arrigoni C et al. 2008). Real Time-PCR analysis was 

performed and whilst different magnitudes of gene up-regulation across the three hMSC 

different donors investigated were observed, they all displayed similar trends. Late 

differentiation markers were still low at day 14, while early differentiation genes were 

activated. Calponin was significantly up-regulated in comparison to other genes only in 

cultures exposed to 10ng/mL of TGF-β1, guiding the decision to choose the 10 ng/mL + 

10 % FBS media combination. Since no significant differences were noticed with the higher 

FBS concentration, the FBS concentration was kept at 10%. Our results are in line with 

previous works demonstrating the important of TGF-β1 in mesenchymal stem cells 

differentiation into smooth muscle cells lineage (Narita Y et al. 2008, Gong Z et al. 2009). 

Further analyses were conducted using confocal imaging to quantitate the amount of cells 

undergoing differentiation at day 7 and 14 and to study changes in cell morphology. After 

building a method on CellProfiler, images were processed (as described in Methods) with 

results indicating that at day 14 in the (10 10) media, 90% of cells were positive for a smooth 

muscle cell phenotype ([α-SMA+ calponin positive/phalloidin positive] *100). Cells also 

appeared elongated with less randomly (in terms of direction) attached filopodia, a phenotype 

characteristic of SMCs (Patel S et al. 2000, Galvin DJ et al. 2002). 
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The experiments that utilised our novel bioreactor produced outstanding results, compared to 

the static culture: SEM analysis showed a non-homogenous distribution of cells on static 

culture, due to drop seeding, with cells seemingly proliferating where they were positioned 

without migrating consistently across/throughout the scaffold surface; on the other hand, 

scaffolds cultured in the multifunctional bioreactor presented a continuous layer of 

extracellular matrix that completely incorporated and covered scaffold fibres. Histological 

analysis of these two culture methods (bioreactor versus static) confirmed clear differences 

between static and dynamic culture: scaffold colonization across a significant fraction of the 

scaffold thickness was consistent within the bioreactor environment, while cells survived 

only on the outer surface in the static condition. Moreover, the stimuli given by rotation and 

exposure to the air-aqueous phases appeared to facilitate cell migration into a scaffold with 

small pore-size like the one produced.  

Matrix deposition was also enhanced in the case of the bioreactor dynamic culture, as shown 

from Lillie‟s allochrome staining; different proteins were deposited by differentiating MSCs. 

Collagen, muscle reticulin, and fibrin were all detected. Proteins were arranged in a complex 

network, incorporating the scaffold structure. Nuclei staining demonstrated cell infiltration 

exceeding half way through the scaffold thickness. In stark contrast, matrix deposition in the 

static condition was minimal and uneven, and cell penetration minimal, underlying the 

importance of a dynamic culture environment. After only two weeks of culture in our 

bioreactor, the obtained amount of matrix is comparable with most tissue engineered vessels 

reported in literature, but in these cases, 6 to 10 weeks of cell culture was needed (Quint C et 

al. 2011, L'heureux N 2012, L'heureux N et al. 2006, Syedain ZH et al. 2011).  

This work using the described bioreactor focused on vascular tissue engineering, however it 

is clear that the approach detailed herein could be applied for all tubular organs that have a 

SMC muscularis and an epithelium or endothelium covering the internal lumen.  
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Whilst the obtained results are promising, further analysis is now required on the impacts of 

scaffold rotation and pulsatile perfusion rates, along with simultaneous cell seeding on both 

the outer surface and in the internal lumen, in order to comprehensively examine the full 

functionality of the bioreactor in terms of creating a constitutionally-correct (in terms of both 

cell types and ECM) vessel. We believe that the coexistence and right combination of these 

two stimuli will lead to further increases in matrix deposition, giving rise to a mature 

muscular layer, facilitating cell differentiation and tissue cohesion.  

 

5. Conclusions: 

In this paper, we have presented an innovative bioreactor specifically designed for the 

regeneration of small diameter tubular structures, allowing rotation and perfusion of the 

entire lumen of cylindrical grafts. With particular focus on small diameter vascular 

regeneration, we tested the developed device in combination with a previously developed 

PCL/a-PLA-co-TMC electrospun tubular matrix, proving promising mechanical properties 

and excellent biocompatibility. Human mesenchymal stem cells were chosen to prove the 

bioreactor‟s ability to create a suitable environment for in vitro tissue generation, as we 

strongly believe that hMSC are a valuable source of cells for our purpose as they can be 

differentiated in SMC and, in a future prospective, they are easily harvestable form patients. 

The combination of our novel polymeric matrix and dynamic culture system created an 

environment that promoted hMSC growth and differentiation into applicable cell types to 

generate a functional vessel, result confirmed by histological staining showing a considerable 

amount of the targeted extracellular matrix produced.  In conclusion, we have developed an 

efficient, versatile and valuable tool that in synergy with the produced scaffold is a concrete 

step towards our goal of creating a mature tunica media for vascular tissue engineered 

constructs.  
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Table 1: Primer sequences used in qPCR analysis 

Gene Forward Reverse 
Reference or 

NCBI sequence 

GAPDH ATGGGGAAGGTGAAGGTCG TAAAAGCAGCCCTGGTGACC (Murrell M et al. 2011) 

α-SMA ACGTGGGTGACGAAGCACAG GGGCAACACGAAGCTCATTGTA (Narita Y et al. 2008, 

Ball SG et al. 2004, 

Cameron AR et al. 

2011) 

CNN1 TCGGCAACAACTTCATGG GCCTGGCTGCAGCTTATT (Ball SG et al. 2004) 

DES GAGACCATCGCGGCTAAGAAC GTGTAGGACTGGATCTGGTGT NM_001927.3 

SM1 ATTCGCCAAGCCAGAGAC GAAGCCCTCCAAAAGCAA (Ball SG et al. 2004) 

Col1A1 CCTGCGTGTACCCCACTCA ACCAGACATGCCTCTTGTCCTT (Tang AT et al. 2012, 

Cameron AR et al. 

2014) 

Col4A1 GCCGTGGGACCTGCAATTACT CGTAGGCTTCTTGAACATCT NM_001845 
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Figure 1 Experimental scheme for Tissue engineered vascular grafts (TEVG) study. A 

summary of the approach we followed to cellularize a synthetic scaffold: seeding and culture 

conditions are reported to simplify the understanding of the set-up of the study. hMSC were 

seeded dropwise on the developed synthetic scaffold and cultured under dynamic condition 

for 14 days. Static culture was carried out as control Figure 1 

  



 

 
This article is protected by copyright. All rights reserved. 

 

Figure 2 A) 3D rendering of the developed bioreactor. 1) Shafts for rotation and pre-

tensioning system, produced in different sizes in order to house scaffolds of different lengths; 

2) The pre-tensioning system (in green Viton® dynamic-seals, in dark grey the ball bearing 

holder); 3) Scaffold supports. They are interchangeable and can be inserted in the chamber 

after the scaffold housing outside of the chamber; 4) Scaffold and custom-made clips, 

specifically designed to stably hold the scaffold in place. B) Picture of the developed 

bioreactor coupled with the motion unit: the whole base can be easily positioned in a 

standard incubator and left in it for all the time of the culture, while the culture chamber can 

be independently moved for medium change procedures or samples collection. 
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Figure 3 Gene Expression in hMSCs (donor 9056 used for dynamic experiment later in this 

paper ) exposed to four different myogenic media for 7 (LHS) and 14 (RHS) days. Samples 

number represents the % of Fetal bovine serum (10 or 20) and the concentration of TGF-β1 

(1 or 10 ng/mL). Data are normalized on GAPDH and growth media exposed hMSCs gene 

expression data (black-line). Data were not combine due to similar trends, but different 

expression values due to donor variability. 
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Figure 4: Confocal pictures of MSCs after 7 and 14 days of exposure to 10-10 differentiation 

medium. Nuclei (blue), actin (green), smooth muscle actin (α-SMA) (red) and calponin 

(yellow) were stained. Images were loaded into CellProfiler method as separate channels, as 

required from the software. 
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Figure 5: Scanning electron microscopy of PCL/PLA-TMC scaffold seeded with hMSCs and 

cultured in myogenic media for 14 days. Outer surfaces of static (CONTROL) and dynamic 

(BIOREACTOR) cultured samples were analysed to investigate cells morphology and extra 

cellular matrix deposition. Scale bar = 200 μm 
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Figure 6: A-D Lillie‟s allochrome staining. Control and bioreactor scaffolds were analysed 

circumferentially. Black arrows in image A and B present the extent of cell penetration. Deposition of 

different matrix proteins was investigated throughout the scaffolds. Nuclei are stained in black, 

collagen in blue (Yellow arrows), muscle reticulin reddish purple (red arrows), fibrin red to pink. 

(Scale-bar top=3 mm, bottom=200 μm). EH) Immunohistochemistry was performed on histology 

sections from the bioreactor samples in order to highlight the main components of the produced 

extracellular matrix (E - Fibronectin; F - Laminin; G -Collagen IV; H - Collagen II). Scaffold is 

visible in blue (Scale-bar=200 μm) 


