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Abstract

The geometry package supports the construction of geometric elements such
as surface patches and volumes within the Eilmer4 compressible-flow simulation
program. Elements of the package are available to build a description of the gas-
flow and solid domains that can be discretized and then passed onto the flow
solver. The description of the flow domain is constructed as a Lua script which
defines the locations and extents of the elements bounding the domain. For a
2D domain, you will use edges to bound patches in the (x,y)-plane and, for a 3D
domain, you will define surfaces that meet at edges to define parametric volumes
in (x,y,z)-space.

The flow solver expects the gas-flow and solid domains to be specified as
meshes of finite-volume cells, so you will then need to discretize the 2D patches
or 3D volumes. The StructuredGrid class is available to build these meshes by
interpolating points within the patches and volumes. There is also an Unstruc-
turedGrid class for when structured-grids are too difficult to generate nicely.

Eilmer4 is available as source code from https://bitbucket.org/cfcfd/
dgd/ and is related to the larger collection of compressible flow simulation codes
found at http://cfcfd.mechmining.uq.edu.au/.

Acknowledgement
This document was prepared while PAJ was on Special Studies Program at Oxford
University.

https://bitbucket.org/cfcfd/dgd/
https://bitbucket.org/cfcfd/dgd/
http://cfcfd.mechmining.uq.edu.au/




Contents

1 Introduction 1
1.1 Some advice . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

2 Geometric elements 3
2.1 Points . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
2.2 Paths . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.3 Surfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.4 Volumes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

3 Grids 27
3.1 Making a simple 2D grid . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
3.2 StructuredGrid Class . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
3.3 UnstructuredGrid Class . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
3.4 Building a multiblock grid . . . . . . . . . . . . . . . . . . . . . . . . . . 32

References 37

Index 39

A Make your own debugging cube 41

iii





1

Introduction

The geometry package supports the construction of geometric elements such as sur-
face patches and volumes within the Eilmer4 flow simulation program[1]. The flow
solver expects the gas-flow and solid domains to be specified as meshes of finite-
volume cells. You may prepare these meshes in your favourite grid generation pro-
gram and then import them into your simulation or you may prepare a description
of the domain using the elements described in this report and then discretize it using
one of the grid generators that are also included in the geometry package. The proce-
dures described here are most convenient for meshing relatively simple domains but,
with sufficient effort, can be applied to arbitrarily complex situations. They have the
advantage that your simulation description is completely self-contained and you will
not be dependent on external programs to get your simulation going. This report is a
companion to the user’s guide for the overall simulation program[2].

For structured meshes, the top-level geometric elements that are given to the grid
generator are “patches” for 2D flow and “parametric volumes” for 3D flow. These are
regions of space that may be traversed by a set of parametric coordinates 0 ≤ r < 1,
0 ≤ s < 1 in 2D and with the third parameter 0 ≤ t < 1 in 3D. These patches or
volumes can be imported as VTK structured grids or they can be constructed as a
“boundary representation” from lower-dimensional geometric entities such as paths
and points.

For unstructured meshes1, the boundary representation is provided to the grid
generator as a set of discretized boundary edges in 2D or as a surface mesh in 3D. It is
also possible to construct an unstructured mesh from a structured mesh or to import
the unstructured mesh in VTK or SU2 format.

1.1 Some advice

Before describing the details of the geometric elements that you will use to build a
description of your flow domain, we would like to offer some advice on the process
of building that description. The process is one of programming the the geometry-
building program to construct an encoded description of your flow domain. With
this in mind, we advise the following procedure:

1Functions for unstructured-mesh generation are a work in progress.
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2 Chapter 1. Introduction

1. Start with a rough sketch of your flow domain on paper, labelling key features.

2. Start small, building a script to describe a very simple element from your full
domain.

3. Process this script with e4shared options --prep or --custom-post to pro-
duce either a rendered artifact or a grid.

4. View this artifact to see that it is what you wanted, debugging as required.

5. Proceed in small steps to complete your domain description.

We believe that this procedure will result in a far more satisfactory experience than
coding your entire description in one pass. You might be lucky, but chances are that
your mistakes will overpower your luck.
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Geometric elements

The end goal of working with elements from the geometry package is to construct a
representation of the flow domain that can be passed to the flow solver. For a two-
dimensional flow simulation, this domain will be defined as one or more patches
in the x,y-plane. Within the program code, these patches are represented as sur-
face objects which are topologically quadrilateral and have boundary edges labelled
north, east, south and west. The patches will be body-fitted, meaning that the do-
main boundaries take on the shape one or more bodies that contain the gas flow. For
a three-dimensional flow simulation, the gas-flow domain will be described using
body-fitted volume objects. These volumes and surfaces are constructed from lower-
dimensional geometric objects, specifically points and paths.

2.1 Points

The most fundamental class of geometric object is the Vector3 which represents
a point in 3D space and has the usual behaviour of a geometric vector. The code
for creating and manipulating these objects is in the Vector3 class of the underlying
D-language module. This D code has been wrapped in such a way that the class
methods are accessible from your Lua script.

In your Lua script, you might construct a new Vector3 object as:
Vector3:new{x=0.1, y=0.2, z=0.3}
When building models of 2D regions, you can omit the z-component value and it will
default to zero. Note that we are using the object-oriented convention described in
the Programming in Lua book [3]. In the Lua environment that has been set up by our
program, Vector3 is a table and new is a function within that table. In this particular
case, we will think of the new function as our constructor function for Vector3 ob-
jects. The use of the colon rather than a dot before the word new tells the interpreter
that we want to include the object itself in the arguments passed to the called func-
tion. Finally, note the use of braces to construct a table of parameters that are given
to the function. In the binding code for the new function, we are expecting all of the
arguments to be passed on the stack to be contained in a single table. When construct-
ing other objects within the input script, we have usually chosen a notation that has
all of the elements as named attributes in a single table. We believe that this provides
some benefit by making the order of arguments not significant. It also makes your
script a little more self-documenting at the cost of being a bit more verbose.

3



4 Chapter 2. Geometric elements

It is possible to ’get’ and ’set’ values of attributes within a geometric element.
For example, to create a node, extract the x-component of that node, change the y-
component, or to use the components to construct a new point, you could use the
following script.

1 -- example-1.lua
2
3 a = Vector3:new{x=0.5, y=0.8}
4 x_value = a.x
5 a.y = 0.4
6 b = Vector3:new{x=a.x+0.4, y=a.y+0.2}
7 print("a=", a, "b=", b)
8 print("x_value=", x_value)
9

10 dofile("sketch-example-1.lua")

On line 3, we have constructed a point and bound it to the name a. Lines 4 and 5
show examples of getting and setting components and line 6 constructs a new point
from expressions involving point a. Line 10 calls up another file to make an SVG
rendering of the points. We will discuss the content of that file in a later section. It is
somewhat detailed and unimportant for the moment.

The transcript of running this script through the custom-postprocessing mode of
the Eilmer4 program is:

1 $ e4shared --custom-post --script-file="example-1.lua"
2 Eilmer4 compressible-flow simulation code.
3 Revision: 0c2021bb8eb9 713 default tip
4 Begin custom post-processing using user-supplied script.
5 Start lua connection.
6 a= Vector3([0.5, 0.4, 0]) b= Vector3([0.9, 0.6, 0])
7 x_value= 0.5
8 Done custom postprocessing.

and the resulting points are displayed graphically in Figure 2.1. Note the output from
the print function calls on lines 6 and 7 of the transcript. The format of the dis-
played Vector3 objects is that of the underlying D-language module rather than the
Lua construction format used on line 3 of the input script. Internally, the coordinates
are stored in fixed-size array, hence the printed format as list of coordinate values
delimited by square brackets.

If you look into the file dgd/src/geom/geom.d, you will see that the Vector3
objects support the usual vector operations of addition, subtraction and the like. Also,
you can construct one Vector3 object from another and there are a small number of
built-in transformations that might be useful for programmatically constructing your
flow domain. For example, to create a point and its mirror image in the (y,z)-plane
going through x=0.5, you could use:

1 -- example-2.lua
2
3 a = Vector3:new{x=0.2, y=0.5}
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Figure 2.1: A couple of points defined as Vector3 objects and rendered to SVG.

4 b = Vector3:new{a}
5
6 mi_point = Vector3:new{x=0.5} -- mirror-image plane through this point
7 mi_normal = Vector3:new{x=1.0} -- normal of the mirror-image plane
8 b:mirrorImage(mi_point, mi_normal)
9

10 print("a=", a, "b=", b)
11 print("abs(b)=", b:abs())
12
13 c = a + b
14 print("c=", c)

which has the corresponding transcript:

1 $ e4shared --custom-post --script-file="example-2.lua"
2 Eilmer4 compressible-flow simulation code.
3 Revision: 0c2021bb8eb9 713 default tip
4 Begin custom post-processing using user-supplied script.
5 Start lua connection.
6 a= Vector3([0.2, 0.5, 0]) b= Vector3([0.8, 0.5, 1.11022e-16])
7 abs(b)= 0.94339811320566
8 c= Vector3([1, 1, 1.11022e-16])
9 Done custom postprocessing.

Note that, on line 8 of the example script, the mirrorImage method call passes
the defining points for the mirror-image plane as unnamed but ordered arguments.
These arguments are delimited by parentheses rather than braces, as would have
been used for building a table. Note also, on line 11 of the script, that the method
call for abs uses a pair of empty parentheses to make the method call with no argu-
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ments. Finally, on line 6 of the transcript, note the round-off error appearing in the
z-component of point b. This error is propagated into point c.

A list of operators and methods provided to the Lua environment is given in Ta-
ble 2.1.

Table 2.1: Operators and methods for Vector3 objects. In the table, Vector3 quanti-
ties are indicated as ~a. Scalar quantities are double (or 64-bit) floating-point values.
Some of the methods also appear as unbound functions in the global name space.

Lua expression Result of evaluation

−~a Vector3 object with negated components. ~a will
not be changed.

~a+~b Vector3 object with summed components
~a−~b Vector3 object with subtracted components
~a ∗ s Vector3 object with components scaled by s
s ∗~b Vector3 object with components scaled by s
~a/s Vector3 object with components divided by s
~a:normalize() make ~a into unit vector. ~a will be changed.
~a:dot(~b) scalar dot product
~a:abs() scalar magnitude of vector. ~awill not be changed.

~a:unit()
Vector3 object of unit magnitude in direction of ~a.
~a will not be changed.

~a:mirrorImage(~p, ~n)
Vector3 object that is the mirror image of ~a in the
plane through ~p with normal ~n. Note that ~a will
be changed.

~a:rotateAboutZAxis(θ)
rotate ~a about the z-axis by θ radians. Note that ~a
will be changed.

dot(~a,~b) scalar dot product, as above
vabs(~a) scalar magnitude, as above

unit(~a)
Vector3 object with unit magnitude and direction
of ~a. ~a will not be changed.

cross(~a,~b) Vector3 cross product ~a×~b
quadProperties{p0=~p0,
p1=~p1, p2=~p2, p3=~p3}

returns table t with named elements centroid,
n, t1, t2, and area

hexCellProperties{p0=~p0,
p1=~p1, p2=~p2, p3=~p3, p4=~p4,
p5=~p5, p6=~p6, p7=~p7}

returns table t with named elements centroid,
volume, iLen, jLen, and kLen
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2.2 Paths

The next level of dimensionality is the Path class. A path object is a parametric curve
in space, along which points can be specified via the single parameter 0 ≤ t < 1. Path
is a base class in the D-language domain and a number of derived types of paths are
available. Evaluating a path for a parameter value t results in the corresponding
Vector3 value. A path may also be copied or printed as a string.

2.2.1 Simple Paths

There are several simple path objects that can be constructed from points. The con-
structors typically accept their arguments in a single table, with the items being named,
as shown below:

• Line:new{p0=~a, p1=~b}: a straight line between points ~a and~b.

• Arc:new{p0=~a, p1=~b, centre=~c}: a circular arc from ~a to ~b around centre,
~c. Be careful that you don’t try to make an Arc with included angle of 180o or
greater. For such a situation, create two circular arcs and join as a Polyline
path.

• Arc3:new{p0=~a, pmid=~b, p1=~c}: a circular arc from ~a through ~b to ~c. All
three points lie on the arc.

• Bezier:new{points={~b0,~b1, ...,~bn}}: a Bezier curve of order n − 1 from ~b0
to ~bn. You can specify as many points as you like for the curve, however, 4
points for a third-order curve is very commonly used. A convenient feature
of the Bezier curve is that you get direct control of the end points and the tan-
gents at those end points. Note that the table of points is labelled and contained
within the single table passed to the constructor. The individual points are not
labelled and, although the subscripts shown start from zero (to be consistent
with the representation within the core D-language code), the default number-
ing of items in a Lua table starts at 1. We have side-stepped the issue here by
providing a literal construction of the points table, however, there are times
when you need to account for this difference in indexing.

Some examples of constructing these simple paths is shown here:

1 -- path-example-1.lua
2
3 -- An arc with a specified pair of end-points and a centre.
4 c = Vector3:new{x=0.4, y=0.1}
5 radius = 0.2
6 a0 = Vector3:new{x=c.x-radius, y=c.y}
7 a1 = Vector3:new{x=c.x, y=c.y+radius}
8 my_arc = Arc:new{p0=a0, p1=a1, centre=c}
9

10 -- A Bezier curve of order 3.
11 b0 = Vector3:new{x=0.1, y=0.1}
12 b3 = Vector3:new{x=0.4, y=0.7}
13 b1 = b0 + Vector3:new{y=0.2}
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14 b2 = b3 - Vector3:new{x=0.2}
15 my_bez = Bezier:new{points={b0, b1, b2, b3}}
16
17 -- A line between the Bezier and the arc.
18 my_line = Line:new{p0=b0, p1=a0}
19
20 -- Put an arc through three points.
21 a2 = Vector3:new{x=0.8, y=0.2}
22 a3 = Vector3:new{x=1.0, y=0.3}
23 my_other_arc = Arc3:new{p0=a1, pmid=a2, p1=a3}
24
25 dofile("sketch-path-example-1.lua")
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0.6

0.8

1.0
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Figure 2.2: Some simple paths defined from Vector3 objects and rendered to SVG.

2.2.2 User-defined-function path

For the ultimate in flexibility of path definition you can supply a Lua function to
convert from parameter, t, to physical space. The following script, with geometry
definition extracted from the sharp-body example for the simulation code, shows
how to do this for a two-dimensional case. On line 23, a LuaFnPath is constructed
by supplying the name of the Lua function as a string. The function xypath, defined
starting on line 13, accepts values of the parameter, t, (in the range 0.0 to 1.0) and
returns a table with x, y (and maybe z) named components that represent the point in
space for parameter value t. The function y(x), defined starting on line 4, is a helper
function that is used to make the script look more like the formula in the textbook [4]
that originally described the exercise. It is not necessary to split up the functions in
this manner. Figure 2.3 shows a rendering of the path.
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1 -- path-example-2.lua
2 -- Extracted from the 2D/sharp-body example.
3
4 function y(x)
5 -- (x,y)-space path for x>=0
6 if x <= 3.291 then
7 return -0.008333 + 0.609425*x - 0.092593*x*x
8 else
9 return 1.0

10 end
11 end
12
13 function xypath(t)
14 -- Parametric path with 0<=t<=1.
15 local x = 10.0 * t
16 local yval = y(x)
17 if yval < 0.0 then
18 yval = 0.0
19 end
20 return {x=x, y=yval}
21 end
22
23 my_path = LuaFnPath:new{luaFnName="xypath"}
24
25 dofile("sketch-path-example-2.lua")

0.0 2.0 4.0 6.0 8.0 10.0
x

0.0

2.0

4.0

6.0

8.0

10.0

y

Figure 2.3: A path defined via a Lua function and rendered to SVG. This particular
path is used to represent the profile of the body in the 2D/sharp-body simulation
exercise for Eilmer4.
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2.2.3 Compound Paths

Sometimes you wish to have a single parametric path object to pass into a grid-
generation function but it is convenient to define that part in smaller pieces. The
following path subtypes may be constructed:

• Polyline:new{segments={p0, p1, ..., pn}}: a composite path made up of the
segments p0, through pn, each being a previouly defined Path object. The indi-
vidual segments are reparameterised, based on arc length, so that the composite
curve parameter is 0 ≤ t < 1.

• Spline:new{points={~b0,~b1, ...,~bn}}: a cubic spline from ~b0 through ~b1, to ~bn.
A Spline is actually a specialized Polyline containing n − 1 cubic Bezier
segments.

• Spline2:new{filename="something.dat"}: a spline constructed from a file
containing x y z coordinates of the interpolation points, one point per line. The
coordinate values are expected to be space separated. If the y or z values are
missing, they are assumed to be zero.

The following script builds a combined path object that looks similar to the first ex-
ample:

1 -- path-example-3.lua
2
3 -- An arc with a specified pair of end-points and a centre.
4 c = Vector3:new{x=0.4, y=0.1}
5 radius = 0.2
6 a0 = Vector3:new{x=c.x-radius, y=c.y}
7 a1 = Vector3:new{x=c.x, y=c.y+radius}
8 my_arc = Arc:new{p0=a0, p1=a1, centre=c}
9

10 -- A Bezier curve of order 3.
11 b3 = Vector3:new{x=0.1, y=0.1}
12 b0 = Vector3:new{x=0.4, y=0.7}
13 b1 = b0 - Vector3:new{x=0.2}
14 b2 = b3 + Vector3:new{y=0.2}
15 my_bez = Bezier:new{points={b0, b1, b2, b3}}
16
17 -- A line between the Bezier and the arc.
18 my_line = Line:new{p0=b3, p1=a0}
19
20 -- Put an arc through three points.
21 a2 = Vector3:new{x=0.8, y=0.2}
22 a3 = Vector3:new{x=1.0, y=0.3}
23 my_other_arc = Arc3:new{p0=a1, pmid=a2, p1=a3}
24
25 one_big_path = Polyline:new{segments={my_bez, my_line, my_arc,
26 my_other_arc}}
27
28 dofile("sketch-path-example-3.lua")

Note, that to make a single path that can be traversed, we needed to define the Bezier
curve using points in the opposite order to the earlier example.
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Figure 2.4: A single compound path defined from a set of path objects and rendered
to SVG.

If we take the same data points as used to construct the Polyline, we can see the
difference it make to use a Spline constructor in Figure 2.5. Sometimes, it is just what
you want, and other times, not so.

1 -- path-example-4.lua
2 -- A single spline through the same data points.
3 c = Vector3:new{x=0.4, y=0.1}
4 radius = 0.2
5 a0 = Vector3:new{x=c.x-radius, y=c.y}
6 a1 = Vector3:new{x=c.x, y=c.y+radius}
7
8 b3 = Vector3:new{x=0.1, y=0.1}
9 b0 = Vector3:new{x=0.4, y=0.7}

10 b1 = b0 - Vector3:new{x=0.2}
11 b2 = b3 + Vector3:new{y=0.2}
12
13 a2 = Vector3:new{x=0.8, y=0.2}
14 a3 = Vector3:new{x=1.0, y=0.3}
15
16 my_spline = Spline:new{points={b0,b1,b2,b3,a0,a1,a2,a3}}
17
18 dofile("sketch-path-example-4.lua")
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Figure 2.5: A Spline path defined on the same set of points that we used for the
Polyline.
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2.2.4 Derived Paths

We can construct new path objects as derivatives of previously defined paths. There
are a number of constructors with differing transformations:

• ArcLengthParameterizedPath:new{underlying path=pth}: Sometimes
a Bezier curve, Spline or Polyline may have its defining points distributed such
that the grid built upon it is not clustered in a good way. To fix this, it may be
useful to specfy the curve to be parameterized by arc length.

• SubRangedPath:new{underlying path=pth, t0=t0, t1=t1}: The new path
is a subset of the original. If t0 > t1, the new path is traversed in the reverse
direction.

• ReversedPath:new{underlying path=pth}: is useful for building patches
with common edges. For example, if the east edge of the first patch is common
with the south edge of a second patch, the direction of traverse is reversed.

• TranslatedPath:new{original path=pth, shift=~a}: Points on the new
path are translated by ~a from corresponding points on the original path.

• MirrorImagePath:new{original path=pth, point=~p, normal=~n}: The
point ~p is the anchor point for the plane through which the image is made and
~n is the unit normal of that plane.

• RotatedAboutZAxisPath:new{original path=pth, angle=θ}: Useful for
building bodies of revolution in 3D.

Here are some examples of building derived paths, with the results shown in Fig-
ure 2.6:

1 -- path-example-5.lua
2 -- Transformed Paths
3
4 b0 = Vector3:new{x=0.1, y=0.1}
5 b1 = b0 + Vector3:new{x=0.0, y=0.05}
6 b2 = b1 + Vector3:new{x=0.05, y=0.1}
7 b3 = Vector3:new{x=0.8, y=0.1}
8 path0 = Bezier:new{points={b0,b1,b2,b3}}
9

10 path1 = TranslatedPath:new{original_path=path0, shift=Vector3:new{y=0.5}}
11 path1b = MirrorImagePath:new{original_path=path1,
12 point=Vector3:new{x=0.5, y=0.6},
13 normal=Vector3:new{y=1.0}}
14
15 path2 = TranslatedPath:new{original_path=path0, shift=Vector3:new{y=0.5}}
16 path2b = ArcLengthParameterizedPath:new{underlying_path=path2}
17
18 dofile("sketch-path-example-5.lua")
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Figure 2.6: The original Bezier curve defined with points b0, b1, b2 and b3 in the
lower part of the figure. A pair of derived paths is shown above it. The dotted points
on all of the paths indicate equal increments in parameter t. Note the more uniform
distribution in x,y-space for the ArcLengthParameterizedPath.
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2.3 Surfaces

The ParametricSurface class represents two-dimensional objects which can be
constructed from Path objects. These can be used as the ParametricSurface ob-
jects that are passed to the StructuredGrid constructor (Sec. 3.2) or they can be
used to form the bounding surfaces of a 3D ParametricVolume object (Sec. 2.4).
ParametricSurface objects can be evaluated as functions of parameter pair (r, s) to
yield corresponding Vector3 values, representing a point in modelling space. Here
0 ≤ r ≤ 1 and 0 ≤ s ≤ 1.

Examples of the most commonly used surface patches are:

• CoonsPatch:new{south=pathS,north=pathN,west=pathW,east=pathE}:
a transfinite interpolated surface between the four paths. It is expected that
the paths join at the corners of the patch, such that pathS(0) = pathW (0) =
p00, pathS(1) = pathE(0) = p10, pathN(0) = pathW (1) = p01 and pathN(1) =
pathE(1) = p11. See the left part of Figure 2.7 for the layout of this surface.
Although the order of specifying the named edges is not significant, it is impor-
tant to be careful with the orientation of the Path elements that form the patch
boundaries. The north and south boundaries progress west to east with
parameter r increasing from 0 to 1. The west and east boundaries progress
south to north with parameter s increasing from 0 to 1. If the preparation
stage of the program complains that the corners of your patch are “open”, that
may be a symptom of having one, or more, of your bounding paths having
incorrect orientation.

• CoonsPatch:new{p00=~p00, p10=~p10, p11=~p11, p01=~p01}: a quadrilateral
surface defined by it corners. Straight line segments (implicitly) join the corners.
This is convenient for building simple regions that can be tiled with straight
edged patches, since you don’t need to explicitly generate Line objects to form
the edges of each patch. Note that the order for specifying the corners is not
significant.

• AOPatch:new{south=pathS,north=pathN,west=pathW,east=pathE,
nx=10, ny=10}: an interpolated surface, bounded by four paths. When con-
structed, this surface sets up a background mesh with resolution specified by nx
and ny. The construction method, based on an elliptic grid generator [5], tries
to keep the background mesh orthogonal near the edges and also tries to keep
equal cell areas across the surface. The background mesh is retained within the
AOPatch object and, if the AOPatch is later passed to the grid generator, the
final grid is produced by interpolating within this background mesh. The de-
fault background mesh of 10×10 seems to work fairly well in simple situations.
If the bounding paths have strong curvature, it may be beneficial to increase
the resolution of the background mesh, so that the final interpolated mesh does
not cut across the boundary paths. This is especially important if the final grid
lines are clustered close to the boundaries. Setting a higher resolution of the
background mesh will require more iterations to reach convergence and you
may actually see a warning message that the iteration did not converge. For-
tunately, an unconverged background mesh is usually fine for use, because it
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starts as CoonsPatch mesh and each iteration should just improve the metrics
of orthogonality and distribution of cell areas.

• AOPatch:new{p00=~p00, p10=~p10, p11=~p11, p01=~p01, nx=10, ny=10}:
a quadrilateral surface defined by it corners. Straight line segments (implicitly)
join the corners. As shown in Figure 2.7, the difference with the correspond-
ing CoonsPatch is that the background mesh, here, tries to be orthogonal to the
edges and maintain equal cell areas across the surface.

Here are two examples of setting up simple patches:

1 -- surface-example-1.lua
2
3 -- Transfinite interpolated surface
4 a = Vector3:new{x=0.1, y=0.1}; b = Vector3:new{x=0.4, y=0.3}
5 c = Vector3:new{x=0.4, y=0.8}; d = Vector3:new{x=0.1, y=0.8}
6 surf_tfi = CoonsPatch:new{north=Line:new{p0=d, p1=c},
7 south=Line:new{p0=a, p1=b},
8 west=Line:new{p0=a, p1=d},
9 east=Line:new{p0=b, p1=c}}

10
11 -- Knupp’s area-orthogonality surface
12 xshift = Vector3:new{x=0.5}
13 p00 = a + xshift; p10 = b + xshift;
14 p11 = c + xshift; p01 = d + xshift;
15 surf_ao = AOPatch:new{p00=p00, p10=p10, p11=p11, p01=p01}
16
17 dofile("sketch-surface-example-1.lua")

As well as the constructors mentioned above, there is a convenience function
makePatch{south=pathS, north=pathN, west=pathW, east=pathE,
gridType="TFI"} which returns an interpolated surface. It returns either a Coon-
sPatch (TFI, by default) or an AOPatch object (gridType="AO"). The convenience is
really limited to allowing your scripts to be a little more like the Eilmer3 input script,
if you happen to be porting an old example to Eilmer4.

As listed below, there are more surface patch constructors, however, you will need
to refer to their source code for documentation.

• ChannelPatch:new{south=pathS, north=pathN , ruled=false,
pure2D=false}: an interpolated surface between two paths. By default, cubic
Bezier curves are used to bridge the region between the defining curves, result-
ing in a grid that is orthogonal to those curves. Providing a true value for the
ruled parameter results in the bridging curves being straight line segments. If
you are integrating this patch into a larger construction, it may be convenient to
obtain the west and east bounding curves by calling its make_bridging_path
method with arguments of 0.0 and 1.0, respectively. The argument for pure2D
may be set to true to set all z-coordinate values to zero for purely two-dimensional
constructions.



2.3. Surfaces 17

a

b

cd

p00

p10

p11p01

0.0 0.2 0.4 0.6 0.8 1.0
x

0.0

0.2

0.4

0.6

0.8

1.0

y

Figure 2.7: An example of a CoonsPatch and an AOPatch. The south-to-north lines
drawn over the patches are for constant values or r and the west-to-east lines are for
constant values of s.

• SweptPathPatch:new{west=pathW, south=pathS}: a surface, anchored by
the south path, and generated by sweeping the west path across the south path.

• LuaFnSurface:new{luaFnName="myLuaFnName"}: a surface defined by
the user-supplied function, f(r, s). The user function returns a table of three
labelled coordinates, representing the point in 3D space for parameter values
r and s. If you are trying to build a 2D simulation, just set the z-coordinate to
zero.

• MeshPatch:new{sgrid=myStructuredGrid}: a surface defined over a previously-
defined structured mesh of quadrilateral facets. The structured mesh may have
been imported (in VTK format) from an external grid generator.

• SubRangedSurface:new{underlying surface=mySurf, r0=0.0, r1=1.0,
s0=0.0, s1=1.0}: can select a section of a surface by setting suitable values
of r0, r1, s0 and s1. Default values for the full parametric range are shown.

Here are examples of setting up the two flavours of ChannelPatches:

1 -- surface-example-2.lua
2
3 path1 = Arc3:new{p0=Vector3:new{x=0.2, y=0.3},
4 pmid=Vector3:new{x=0.5, y=0.25},
5 p1=Vector3:new{x=0.8, y=0.35}}
6 p = Vector3:new{y=0.2}; n = Vector3:new{y=1.0}
7 path2 = MirrorImagePath:new{original_path=path1,
8 point=p, normal=n}
9 channel = ChannelPatch:new{north=path1, south=path2,
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10 ruled=false, pure2D=true}
11 bpath0 = channel:make_bridging_path(0.0)
12 bpath1 = channel:make_bridging_path(1.0)
13
14 yshift = Vector3:new{y=0.5}
15 path3 = TranslatedPath:new{original_path=path1, shift=yshift}
16 path4 = TranslatedPath:new{original_path=path2, shift=yshift}
17 channel_ruled = ChannelPatch:new{north=path3, south=path4,
18 ruled=true, pure2D=true}
19
20 dofile("sketch-surface-example-2.lua")
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Figure 2.8: Example of ChannelPatch objects. The south-to-north lines drawn over
the patches are for constant values or r and the west-to-east lines are for constant
values of s. The lower patch uses the (default) Bezier curves bridging the north and
south defining paths. The south and north paths are rendered as thick black lines
and the r = 0 and r = 1 bridging paths are shown in blue. The upper example uses
straight-line bridging paths.

The following script shows the construction of a SweptPathPatch, where the south
path anchors the surface and the west path is swept across it. Note, in Figure 2.9, that
the path constructed for the west path is not actually part of the final surface. The
LuaFnSurface example maps the unit square in (r,s)-space to the region between two
circles in the (x,y)-plane.

1 -- surface-example-3.lua
2
3 path1 = Arc3:new{p0=Vector3:new{x=0.2, y=0.7},
4 pmid=Vector3:new{x=0.5, y=0.65},
5 p1=Vector3:new{x=0.8, y=0.75}}
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6 path2 = Line:new{p0=Vector3:new{x=0.1, y=0.7},
7 p1=Vector3:new{x=0.1, y=0.9}}
8 swept = SweptPathPatch:new{south=path1, west=path2}
9

10 function myFun(r, s)
11 -- Map unit square to the region between two circles
12 local theta = math.pi * 2 * r
13 local bigR = 0.05*(1-s) + 0.2*s
14 local x0 = 0.5; local y0 = 0.3
15 return {x=x0+bigR*math.cos(theta), y=y0+bigR*math.sin(theta), z=0.0}
16 end
17 funSurf = LuaFnSurface:new{luaFnName="myFun"}
18
19 dofile("sketch-surface-example-3.lua")
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Figure 2.9: Example of a SweptPathPatch (upper) and a LuaFnSurface (lower). The
south-to-north lines drawn over the patches are for constant values or r and the west-
to-east lines are for constant values of s.

2.3.1 Paths on Surfaces

In Eilmer3, a subclass of Path was available for constructing a path over a parametric
surface. As well as the underlying surface, it consisted of a pair of function objects
for evaluating r(t) and s(t). These were limited to linear functions of t. In Eilmer4,
the way to make a path on a parametric surface is to construct a LuaFnPath. This is
more flexible in that any function can now be used for r(t) and s(t).
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2.4 Volumes

Working in three dimensions significantly increases the amount of detail needed to
specify a flow domain. In 2D, a simple region may be represented as a single surface
patch with 4 bounding surfaces but, in 3D, the simple volume is now bounded by
6 surfaces, each with 4 edges. With an edge being shared by two surfaces, there
will be 12 distinct edges on the volume. The ParametricVolume object, as shown
in Figure 2.10 maps r,s,t parametric coordinates to x,y,z physical-space coordinates
within the volume. To assist in understanding the orientation of the corners, surfaces
and indices, you can build a model block from the development plan in Appendix A.
This should bring back fond memories of kindergarten and primary school, at least it
did for us.
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Figure 2.10: Two views of the parametric volume defined by its six bounding sur-
faces. These figures are ambiguous but each is supposed to show a hollow box with
the far surfaces in each view being labelled. The near surfaces are transparent and un-
labelled. On the left view, the p1–p5 edge is closest to the viewer. On the right view,
the p2–p6 edge is closest to the viewer.

There are a number of constructors:

• TFIVolume:new{north=surfN, east=surfE, south=surfS, west=surfW,
top=surfT, bottom=surfB} constructs the parametric volume from a set of six
parametric surfaces to form a body-fitted hexahedral volume. It is assumed that
the surfaces are consistent, in that they align appropriately at their edges, leav-
ing no gaps in the bounding surface. Minimal checks are done to be sure that
the corner locations (at least) are consistent.

• TFIVolume:new{vertices={~p0, ~p1, ~p2, ~p3, ~p4, ~p5, ~p6, ~p7}: defines the volume
by its vertices. Straight-line edges are assumed between these points. The sub-
scripts correspond to the labelled points in Figure 2.10.

• SweptSurfaceVolume:new{face0123=surf , edge04=path}: constructs the
volume by extruding the surface along the path. When evaluating points, the
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calculation is actually done as path(t)+surf(r, s)−surf(0, 0) such that the path
effectively anchors the volume in x,y,z-space.

• LuaFnVolume:new{luaFnName="myLuaFunction"}: constructs the volume
from a user-supplied Lua function. For example, the simple unit cube could be
defined with:

function myLuaFunction(r, s, t)
return {x=r, y=s, z=t}

end

• SubRangedVolume:new{underlying volume=pvolume, r0=0, r1=1, s0=0,
s1=1, t0=0, t1=1}: constructs the volume as a subregion of a previously-
defined volume. Any of the r, s, t limits that are not specified assume the
default values shown.

Just about the simplest ParametricVolume that can be defined is the regular hexa-
hedral block defined by its vertices. Although the example is simple, there is the same
subtle indexing issue to consider, as we have seen for the construction of Bezier paths
(see page 7). On line 21 of the script, the table of vertices is assembled with number-
ing of the points being implicit. Be aware that, by default, Lua will start numbering
the table items from 1. This is a continuing point of friction with the core program
written in the D programming, where array indices start at zero, so be careful if you
explicitly number the vertices. The Lua interface code for the constructor is expecting
to receive the points with default Lua numbering, even though we have tried to con-
sistently use D-language indexing in our documentation. In this example, we hide
the indexing issue by using a literal expression for the table.

1 -- volume-example-1.lua
2 -- Transfinite interpolated volume
3
4 Lx = 0.2; Ly = 0.1; Lz = 0.5 -- size of box
5 x0 = 0.3; y0 = 0.1; z0 = 0.0 -- location of vertex p000/p0
6
7 -- There is a standard order for the 8 vertices that define
8 -- a volume with straight edges.
9 p000 = Vector3:new{x=x0, y=y0, z=z0} -- p0

10 p100 = Vector3:new{x=x0+Lx, y=y0, z=z0} -- p1
11 p110 = Vector3:new{x=x0+Lx, y=y0+Ly, z=z0} -- p2
12 p010 = Vector3:new{x=x0, y=y0+Ly, z=z0} -- p3
13 p001 = Vector3:new{x=x0, y=y0, z=z0+Lz} -- p4
14 p101 = Vector3:new{x=x0+Lx, y=y0, z=z0+Lz} -- p5
15 p111 = Vector3:new{x=x0+Lx, y=y0+Ly, z=z0+Lz} -- p6
16 p011 = Vector3:new{x=x0, y=y0+Ly, z=z0+Lz} -- p7
17
18 -- Assemble a table literal to avoid the issue
19 -- of numeric indices starting at 1 in Lua code
20 -- whilst starting at 0 in D code.
21 vList = {p000, p100, p110, p010, p001, p101, p111, p011}
22
23 my_vol = TFIVolume:new{vertices=vList}
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24
25 dofile("sketch-volume-example-1.lua")

Let’s build the same box volume with a Lua function that is defined within the
input script. The function must return a single table with the x, y and z coordinates
labelled as such. The script is actually shorter than the previous example but the
computational machinery that calls back into the Lua interpreter to get the coordinate
values has a cost. For complex geometries with large grids, this might make the
preparation stage run slowly. For simple geometries, this cost is not an issue and your
time preparing scripts is much more valuable, so you should choose the approach that
you find convenient.

1 -- volume-example-2.lua
2 -- Volume defined on a Lua function.
3
4 Lx = 0.2; Ly = 0.1; Lz = 0.5 -- size of box
5 x0 = 0.3; y0 = 0.1; z0 = 0.0 -- location of vertex p000/p0
6
7 function myLuaFn(r, s, t)
8 return {x=x0+Lx*r, y=y0+Ly*s, z=z0+Lz*t}
9 end

10
11 my_vol=LuaFnVolume:new{luaFnName="myLuaFn"}
12
13 dofile("sketch-volume-example-2.lua")
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Figure 2.11: Isometric views of a regular hexahedral volume. The left view shows the
volume defined by defined by its vertices. The right view shows the same volume
defined by a Lua function.
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A very commonly studied 3D configuration is the cylinder with cross flow. The
following script constructs a flow volume around part of a cylindrical surface. We
first construct the (future) bottom surface in the z=0 plane and then sweep out the
volume by following the line b0-d parallel to the z-axis.

1 -- volume-example-3.lua
2 -- Parametric volume construced by sweeping a surface..
3
4 L = 0.4 -- cylinder length
5 R = 0.2 -- cylinder radius
6
7 -- Construct the arc along the edge of the cylinder
8 a0 = Vector3:new{x=R, y=0}; a1 = Vector3:new{x=0, y=R}
9 c = Vector3:new{x=0, y=0}

10 arc0 = Arc:new{p0=a0, p1=a1, centre=c}
11
12 -- Use a Bezier curve for the edge of the outer surface.
13 b0 = Vector3:new{x=1.5*R, y=0}; b1 = Vector3:new{x=b0.x, y=R}
14 b3 = Vector3:new{x=0, y=2.5*R}; b2 = Vector3:new{x=R, y=b3.y-R/2}
15 bez0 = Bezier:new{points={b0, b1, b2, b3}}
16
17 -- Construct the bottom surface
18 surf0 = CoonsPatch:new{west=bez0, east= arc0,
19 south=Line:new{p0=b0, p1=a0},
20 north=Line:new{p0=b3, p1=a1}}
21 -- Construct the edge along which we will sweep the surface.
22 d = Vector3:new{x=b0.x, y=b0.y, z=b0.z+L}
23 line0 = Line:new{p0=b0, p1=d}
24
25 my_vol = SweptSurfaceVolume:new{face0123=surf0, edge04=line0}
26
27 dofile("sketch-volume-example-3.lua")
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Figure 2.12: A volume constructed over part of a cylinder. The left view shows the
surface that will be swept along the line b0-d and the right view shows the con-
structed volume.
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Grids

Because the flow solver expects the gas-flow and solid domains to be specified as
meshes of finite-volume cells, we now need to consider the discretizion of the 2D
patches and 3D volumes. Typically, we pass the surface and volume objects, along
with cluster-function objects, to the constructor for the StructuredGrid class and get
back a mesh of points that define the vertices of our finite-volume cells. This mesh,
when combined with boundary conditions and an initial gas state (as described in the
main solver user guide [2]), then defines a flow block.

As a motivational example, especially for Ingo Jahn’s MECH4480 students of CFD,
consider the construction of a two-dimensional grid in the region around a bottle of
James Boag’s Premium. Figure 3.1 shows the final block arrangement with the bottle
lying on its side. You can see the profile of the bottle in the curves from x=0 to x=0.2
metres. We model only the upper half plane, with the gas domain being the region
around the bottle. Also, we’ll do the modelling in stages, starting with a single block
defining a limited subregion.
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Figure 3.1: Schematic diagram of Ingo’s beer bottle aligned with the x-axis. This PDF
figure was generated from the SVG file with some edits to move the point and block
labels to nicer positions.

27
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3.1 Making a simple 2D grid

We start with just block [3] above the main body of the bottle and define just the 4
nodes E,F,K and L that mark the corners of our region of interest (Figure 3.2). A simple
way to define the region is to make a CoonsPatch object with the four sides specified
as staight-line paths. The StructuredGrid constructor is given this surface object,
the number of vertices in each parametric direction and, possibly, the list of cluster
functions along each edge. The parametric directions of the surface, r and s, are
aligned with the grid index directions, i and j, respectively. We will come back to
clustering the points later.

1 -- the-minimal-grid.lua
2
3 -- Create the nodes that define key points for our geometry.
4 E = Vector3:new{x=0.1, y=0.03}; F = Vector3:new{x=0.202, y=0.03}
5 K = Vector3:new{x=0.1, y=0.1}; L = Vector3:new{x=0.202, y=0.1}
6
7 patch3 = CoonsPatch:new{north=Line:new{p0=K, p1=L},
8 east=Line:new{p0=F, p1=L},
9 south=Line:new{p0=E, p1=F},

10 west=Line:new{p0=E, p1=K}}
11
12 grid3 = StructuredGrid:new{psurface=patch3, niv=21, njv=21}
13 grid3:write_to_vtk_file("the-minimal-grid.vtk")
14
15 dofile("sketch-minimal-grid.lua")
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Figure 3.2: A single block for a simple subregion from the eventual model of the
Ingo’s beer bottle.

The script for making the SVG sketch was called on the last line of the previous script.
Its content is a bit ugly, especially for drawing the axes, but it allows us to make a
drawing customized to the situation.

1 -- sketch-minimal-grid.lua
2 -- Called by the user input script to make a sketch of the flow domain.
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3 -- PJ, 2016-09-28
4 sk = Sketch:new{renderer="svg", projection="xyortho"}
5 sk:set{canvas={0.0,0.0,120.0,120.0}, viewport={0.0,-0.1,0.3,0.2}}
6 sk:start{file_name="the-minimal-grid.svg"}
7
8 -- for flow domain
9 sk:set{line_width=0.1, fill_colour="green"}

10 sk:render{surf=patch3}
11 sk:text{point=0.25*(E+F+K+L), text="[3]", font_size=12}
12
13 -- labelled points of interest
14 sk:dotlabel{point=E, label="E"}; sk:dotlabel{point=F, label="F"}
15 sk:dotlabel{point=K, label="K"}; sk:dotlabel{point=L, label="L"}
16
17 -- axes
18 sk:set{line_width=0.3} -- for drawing rules
19 sk:rule{direction="x", vmin=0.1, vmax=0.2, vtic=0.05,
20 anchor_point=Vector3:new{x=0.1,y=-0.01},
21 tic_mark_size=0.004, number_format="%.2f",
22 text_offset=0.012, font_size=10}
23 sk:text{point=Vector3:new{x=0.15,y=-0.035}, text="x", font_size=12}
24 sk:rule{direction="y", vmin=0.0, vmax=0.1, vtic=0.05,
25 anchor_point=Vector3:new{x=0.09,y=0},
26 tic_mark_size=0.004, number_format="%.2f",
27 text_offset=0.005, font_size=10}
28 sk:text{point=Vector3:new{x=0.07,y=0.075}, text="y", font_size=12}
29
30 sk:finish{}

3.2 StructuredGrid Class

The constructor for StructuredGrid class accepts any of the following items:

• path: a Path object along which a number of discrete points will be defined to
represent a one-dimensional grid.

• psurface: a ParametricSurface object over which a regular mesh of points will
be defined to represent the vertices of a two-dimensional grid.

• pvolume a ParametricVolume object through which a 3D mesh of points will
be defined.

The constructor first looks for a path item and, if not found, tries the psurface item.
If that is not found, it finally tries for a pvolume item. As soon as it has found a valid
geometric item, it proceeds, ignoring the other options. The other essential items for
defining the grid are the number of vertices in each index direction, which are named
niv, njv and nkv. The index directions i, j and k for the grid correspond to the
parametric coordinate directions r, s and t respectively. Remember that the number
of finite-volume cells in each index direction is one less than the number of vertices
in that direction. We will often think of our the size of our grids in terms of numbers
of cells and so will specify the number for the vertices in the call to this constructor
as n+ 1, where n is the number of cells that we want.
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With no further information, the grid generator will uniformly distribute the ver-
tices in each parametric direction. This may or may not correspond to a uniform
distribution in x,y,z-space, depending on the definition of the supplied geometric ob-
ject. To get the uniformity in the distribution of the mesh vertices, you may need to
use an ArcLengthParameterizedPath (see page 13), for example, when defining the
edges of your surface patch.

Sometimes you really do want a non-uniform distribution of points along one or
more of the index directions. The distribution of vertices along each edge of the geo-
metric object can be specified via a cluster-function object. These are UnivariateFunction
objects of the following flavours:

• LinearFunction:new{t0=t0, t1=t1} where tnew = t0 × (1 − told) + t1 × told.
Default values for t0 and t1 are 0.0 and 1.0, respectively.

• RobertsFunction:new{end0=false, end1=false, beta=β}where the end0,
end1 integer flags indicate which end (possibly both) we wish to cluster to-
ward. The value of beta > 1.0 specifies the strength of the clustering, with
the clustering being stronger for smaller values of beta. For example, a value
of 1.3 would be relatively weak clustering while a value of 1.01 is quite strong
clustering. Set the end0 and end1 items to be true to cluster toward each end
of the parameter space (i.e. t = 0 and t = 1), respectively.

To specify a single cluster function for a one-dimensional mesh, provide a cf item
in the table given to the StructuredGrid constructor. To specify the sets of cluster
function objects needed for 2D and 3D, grids, provide a table of named objects as the
cfList item. In 2D, the names of the edges are north, east, south and west.
In 3D, the 12 edges have the names edge01, edge12, edge32, edge03, edge45,
edge56, edge76, edge47, edge04, edge15, 26 and edge37. Note that the 3D
names use the vertex labels (see Figure 2.10) to indicate which way the r, s or t pa-
rameter varies. Look at your debugging cube from Appendix A to get a good idea of
the arrangement. (You did cut out and stick the edges of your cube together, didn’t
you?) You don’t need to specify a cluster function for every edge. If you don’t specify
a function for a particular edge, it will get a default linear function that results in a
uniformly-distributed set of points.

So, putting all that together for a two-dimensional grid, we have the constructor
signature:
StructuredGrid:new{psurface=myPatch, niv=ni, njv=nj ,

cfList={north=cfN , south=cfS , west=cfW , east=cfE} }
Omitting the longer cluster-function list, the constructor signature for a parametric
volume, will look as simple as:
StructuredGrid:new{pvolume=myV olume, niv=ni, njv=nj , nkv=nk}

3.2.1 StructuredGrid Methods

Once you have a StructuredGrid object, sgrid, there are a number of methods that can
be called.
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• sgrid:get niv() returns the number of vertices in the i-index direction. The
empty parentheses indicate that no argument needs to be supplied.

• sgrid:get njv() returns the number of vertices in the j-index direction.

• sgrid:get nkv() returns the number of vertices in the k-index direction. For a
2D grid, this will be 1.

• sgrid:get vtx(i, j, k) returns the Vector3 object giving the location of the ver-
tex in x,y,z-space. If j and/or k are not supplied, values of zero are assumed.
Index values for each direction start and 0 and range up to (but less than) the
number of vertices in that direction. This is at odds with the usual Lua con-
vention for starting at 1 but it aligns with the D-code implementation of the
StructuredGrid class.

• sgrid:subgrid(i0, ni, j0, nj , k0, nk) returns a StructuredGrid object that has
been constructed as a subsection of the original grid. In each direction the i0
specifies the first vertex of the subgrid and ni counts out the further number
of vertices to end of the subsection. ni is effectively the number of cells in i-
direction of the subgrid. If values for k0 and nk are not supplied, values of 0 and
1, respectively, are assumed. Same for j0 and nj .

• sgrid:write to vtk file(fileName) writes the grid, in classic VTK format,
to the specified file. This format is a simple ASCII text format that may be
viewed with any text editor or displayed with a visualization program like Par-
aview.

• sgrid:write to gzip file(fileName) writes the grid to the native format
used by Eilmer4. It is a essentially a gzipped text file with a format defined by
the code implemented in the D-code file src/geom/sgrid.d. It is very similar
to the classic VTK format.

• sgrid:joinGrid(otherGrid, joinLocation)will append otherGrid to the joinLocation
boundary of sgrid. The join location may be specified as east, imax, north,
or jmax.

• sgrid:find nearest cell centre(x, y, z) returns the single index of the
cell whose centre lies closest to the x,y,z point and the distance from that point
to the position of the cell centre. Arguments not supplied default to zero.

3.2.2 Importing a Gridpro Grid

The unbound function importGridproGrid(fileName, scale), will read a com-
plete Gridpro grid file and return a list (i.e. a Lua table) of StructuredGrid objects.
A complete Gridpro grid file may contain several blocks, hence the return of a Lua
table. Care should be taken with Gridpro grids built from CAD geometries, which
are typically dimensioned in millimetres. For such a file, the required value for scale
would be 0.001, to convert coordinates to metres. The default value for scale is 1.
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3.3 UnstructuredGrid Class

This is a new class for Eilmer4 and we haven’t had a lot of experience using it.
Presently, the options for constructing and UnstructuredGrid object are:

• construct from a StructuredGrid object,

• import the grid in SU2 format, maybe from a file written by Pointwise,

• use Heather’s paver, which is a work in progress.

If you rummage through the example set that accompanies the Eilmer source code,
you will find examples of building and importing unstructured grids.

3.4 Building a multiblock grid

When making a flow domain that is reasonably complicated, it’s probably best to
build a collection of blocks where each block is roughly a quadrilateral, but with the
bounding paths fitted to the curves of the object to be modelled. Figure 3.3 shows the
resulting grid, after dividing the full gas-flow region into 6 blocks.

1 -- the-plain-bottle.lua
2
3 -- Create the nodes that define key points for our geometry.
4 A = Vector3:new{x=-0.07, y=0.0}; B = Vector3:new{x=-0.05, y=0.0}
5 C = Vector3:new{x=0.0, y=0.0}; D = Vector3:new{x=0.005, y=0.012}
6 E = Vector3:new{x=0.1, y=0.03}; F = Vector3:new{x=0.202, y=0.03}
7 G = Vector3:new{x=0.207, y=0.0}; H = Vector3:new{x=0.3, y=0.0}
8 I = Vector3:new{x=-0.07, y=0.1}; J = Vector3:new{x=-0.05, y=0.1}
9 K = Vector3:new{x=0.1, y=0.1}; L = Vector3:new{x=0.202, y=0.1}

10 M = Vector3:new{x=0.3, y=0.1}; N = Vector3:new{x=0.3, y=0.03}
11
12 -- Some interior Bezier control points
13 CD_b1 = Vector3:new{x=0.0, y=0.006}
14 DJ_b1 = Vector3:new{x=-0.008, y=0.075}
15 GF_b1 = Vector3:new{x=0.207, y=0.027}
16 DE_b1 = Vector3:new{x=0.0064, y=0.012}
17 DE_b2 = Vector3:new{x=0.0658, y=0.0164}
18 DE_b3 = Vector3:new{x=0.0727, y=0.0173}
19
20 -- Now, we join our nodes to create lines that will be used to form our blocks.
21 -- lower boundary along x-axis
22 AB = Line:new{p0=A, p1=B}; BC = Line:new{p0=B, p1=C}
23 GH = Line:new{p0=G, p1=H}
24 CD = Bezier:new{points={C, CD_b1, D}} -- top of bottle
25 DE = Bezier:new{points={D, DE_b1, DE_b2, DE_b3, E}} -- neck of bottle
26 EF = Line:new{p0=E, p1=F} -- side of bottle
27 -- bottom of bottle
28 GF = ArcLengthParameterizedPath:new{
29 underlying_path=Bezier:new{points={G, GF_b1, F}}}
30 -- Upper boundary of domain
31 IJ = Line:new{p0=I, p1=J}; JK = Line:new{p0=J, p1=K}
32 KL = Line:new{p0=K, p1=L}; LM = Line:new{p0=L, p1=M}
33 -- Lines to divide the gas flow domain into blocks.
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34 AI = Line:new{p0=A, p1=I}; BJ = Line:new{p0=B, p1=J}
35 DJ = Bezier:new{points={D, DJ_b1, J}}
36 JD = ReversedPath:new{underlying_path=DJ}; EK = Line:new{p0=E, p1=K}
37 FL = Line:new{p0=F, p1=L};
38 NM = Line:new{p0=N, p1=M}; HN = Line:new{p0=H, p1=N}
39 FN = Line:new{p0=F, p1=N}
40
41 -- Define the blocks, boundary conditions and set the discretisation.
42 n0 = 10; n1 = 4; n2 = 20; n3 = 20; n4 = 20; n5 = 12; n6 = 8
43
44 patch = {}
45 patch[0] = CoonsPatch:new{north=IJ, east=BJ, south=AB, west=AI}
46 patch[1] = CoonsPatch:new{north=JD, east=CD, south=BC, west=BJ}
47 patch[2] = CoonsPatch:new{north=JK, east=EK, south=DE, west=DJ}
48 patch[3] = CoonsPatch:new{north=KL, east=FL, south=EF, west=EK}
49 patch[4] = CoonsPatch:new{north=LM, east=NM, south=FN, west=FL}
50 patch[5] = CoonsPatch:new{north=FN, east=HN, south=GH, west=GF}
51
52 grid = {}
53 grid[0] = StructuredGrid:new{psurface=patch[0], niv=n1+1, njv=n0+1}
54 grid[1] = StructuredGrid:new{psurface=patch[1], niv=n2+1, njv=n0+1}
55 grid[2] = StructuredGrid:new{psurface=patch[2], niv=n3+1, njv=n2+1}
56 grid[3] = StructuredGrid:new{psurface=patch[3], niv=n4+1, njv=n2+1}
57 grid[4] = StructuredGrid:new{psurface=patch[4], niv=n5+1, njv=n2+1}
58 grid[5] = StructuredGrid:new{psurface=patch[5], niv=n5+1, njv=n6+1}
59
60 for ib = 0, 5 do
61 fileName = string.format("the-plain-bottle-blk-%d.vtk", ib)
62 grid[ib]:write_to_vtk_file(fileName)
63 end
64 dofile("sketch-plain-bottle.lua")

Figure 3.3: A multiple-block model of the region around Ingo’s beer bottle.
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Each of the blocks is generated independently of the others. It is your responsibil-
ity to ensure that the defining edges that are common to pairs of blocks are consistent
and that the cell-discretization along each of these edges is consistent with the corre-
sponding discretization of any adjacent edge of another block. The first constraint is
easy to meet by defining each edge once only and reusing that path in the definition
of different blocks. Sometimes, the orientation of a pair of blocks and the particular
directions of the paths within each block means that one defining edge needs to be
in the opposite sense to the original. In this case the ReversedPath class may be
useful. For an example of this, note that the script actually constructs such a path
for JD using the path DJ on line 36. Tha path JD is oriented so that it can serve as a
north boundary for patch 1 whereas the path DJ is oriented such that it can be used
as a west boundary for patch 2.

3.4.1 Improving the grid with clustering

We can now tweak the grid and improve the distribution and shape of the cells by
adjusting the clustering of the points along each of the block edges. See Figure 3.4 for
the result of the following script. The particular values used for the strength of the
clustering are ad-hoc and some trial and error has been used to get these particular
values.

Again, the distribution of points along each edge of each block is computed in-
dependently, so it is the responsibility of the user to ensure that the cells along the
corresponding edges of adjoining blocks are aligned. This will require the use of
matching clustering functions on these edges.

1 -- the-clustered-bottle.lua
2
3 -- Create the nodes that define key points for our geometry.
4 A = Vector3:new{x=-0.07, y=0.0}; B = Vector3:new{x=-0.05, y=0.0}
5 C = Vector3:new{x=0.0, y=0.0}; D = Vector3:new{x=0.005, y=0.012}
6 E = Vector3:new{x=0.1, y=0.03}; F = Vector3:new{x=0.202, y=0.03}
7 G = Vector3:new{x=0.207, y=0.0}; H = Vector3:new{x=0.3, y=0.0}
8 I = Vector3:new{x=-0.07, y=0.1}; J = Vector3:new{x=-0.05, y=0.1}
9 K = Vector3:new{x=0.1, y=0.1}; L = Vector3:new{x=0.202, y=0.1}

10 M = Vector3:new{x=0.3, y=0.1}; N = Vector3:new{x=0.3, y=0.03}
11
12 -- Some interior Bezier control points
13 CD_b1 = Vector3:new{x=0.0, y=0.006}
14 DJ_b1 = Vector3:new{x=-0.008, y=0.075}
15 GF_b1 = Vector3:new{x=0.207, y=0.027}
16 DE_b1 = Vector3:new{x=0.0064, y=0.012}
17 DE_b2 = Vector3:new{x=0.0658, y=0.0164}
18 DE_b3 = Vector3:new{x=0.0727, y=0.0173}
19
20 -- Now, we join our nodes to create lines that will be used to form our blocks.
21 -- lower boundary along x-axis
22 AB = Line:new{p0=A, p1=B}; BC = Line:new{p0=B, p1=C}
23 GH = Line:new{p0=G, p1=H}
24 CD = Bezier:new{points={C, CD_b1, D}} -- top of bottle
25 DE = Bezier:new{points={D, DE_b1, DE_b2, DE_b3, E}} -- neck of bottle
26 EF = Line:new{p0=E, p1=F} -- side of bottle
27 -- bottom of bottle
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28 GF = ArcLengthParameterizedPath:new{
29 underlying_path=Bezier:new{points={G, GF_b1, F}}}
30 -- Upper boundary of domain
31 IJ = Line:new{p0=I, p1=J}; JK = Line:new{p0=J, p1=K}
32 KL = Line:new{p0=K, p1=L}; LM = Line:new{p0=L, p1=M}
33 -- Lines to divide the gas flow domain into blocks.
34 AI = Line:new{p0=A, p1=I}; BJ = Line:new{p0=B, p1=J}
35 DJ = Bezier:new{points={D, DJ_b1, J}}
36 JD = ReversedPath:new{underlying_path=DJ}; EK = Line:new{p0=E, p1=K}
37 FL = Line:new{p0=F, p1=L};
38 NM = Line:new{p0=N, p1=M}; HN = Line:new{p0=H, p1=N}
39 FN = Line:new{p0=F, p1=N}
40
41 -- Define the blocks, boundary conditions and set the discretisation.
42 n0 = 10; n1 = 4; n2 = 20; n3 = 20; n4 = 20; n5 = 12; n6 = 8
43
44 patch = {}
45 patch[0] = CoonsPatch:new{north=IJ, east=BJ, south=AB, west=AI}
46 patch[1] = CoonsPatch:new{north=JD, east=CD, south=BC, west=BJ}
47 patch[2] = CoonsPatch:new{north=JK, east=EK, south=DE, west=DJ}
48 patch[3] = CoonsPatch:new{north=KL, east=FL, south=EF, west=EK}
49 patch[4] = CoonsPatch:new{north=LM, east=NM, south=FN, west=FL}
50 patch[5] = CoonsPatch:new{north=FN, east=HN, south=GH, west=GF}
51
52 rcfL = RobertsFunction:new{end0=true, end1=false, beta=1.2}
53 rcfR = RobertsFunction:new{end0=false, end1=true, beta=1.2}
54
55 grid = {}
56 grid[0] = StructuredGrid:new{psurface=patch[0], niv=n1+1, njv=n0+1}
57 cfList = {north=RobertsFunction:new{end0=false, end1=true, beta=1.1}, south=rcfR}
58 grid[1] = StructuredGrid:new{psurface=patch[1], niv=n2+1, njv=n0+1,
59 cfList=cfList}
60 cfList = {north=rcfR, west=RobertsFunction:new{end0=true, end1=false, beta=1.1}}
61 grid[2] = StructuredGrid:new{psurface=patch[2], niv=n3+1, njv=n2+1,
62 cfList=cfList}
63 grid[3] = StructuredGrid:new{psurface=patch[3], niv=n4+1, njv=n2+1}
64 grid[4] = StructuredGrid:new{psurface=patch[4], niv=n5+1, njv=n2+1,
65 cfList={north=rcfL, south=rcfL}}
66 grid[5] = StructuredGrid:new{psurface=patch[5], niv=n5+1, njv=n6+1,
67 cfList={north=rcfL, south=rcfL}}
68
69 for ib = 0, 5 do
70 fileName = string.format("the-clustered-bottle-blk-%d.vtk", ib)
71 grid[ib]:write_to_vtk_file(fileName)
72 end

Further improvement of the grid can be made by introducing a layer of blocks
around the bottle surface, so that the cells near the surface can be made always nearly
orthogonal and much more finely clustered toward the surface. The extra blocks add
to the complexity of the input script but provide some decoupling with respect to
cell number along block edges and allow the fine clustering of cells toward the bottle
surface without greatly increasing the cell refinement in other parts of the gas-flow
region. Such a grid would be suited to simulations of viscous flows.
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Figure 3.4: An improved multiple-block grid around Ingo’s beer bottle.
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A

Make your own debugging cube

Cut out the development on the reverse of this page, fold along all of the edges and
stick the your own cube together. A pair of cubes is very handy for sorting out the
specification of connections between structured-grid blocks.

41



42 Appendix A. Make your own debugging cube
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