
Elements of FlashForth 5.

Mechanical Engineering Report 2017/01
Peter Jacobs*, Pete Zawasky�and Mikael Nordman�

School of Mechanical and Mining Engineering
The University of Queensland.

February 8, 2017

Abstract

This report is a remix of material from a number of Forth tutorials and refer-
ences, adapted to the FlashForth 5 environment. It provides some examples and
explanation of using FlashForth on a PIC18 microcontroller while concentrating on
the features of the language rather than the details of the microcontroller hardware.
Following an introduction to the FlashForth interpreter, we look at adding our own
word definitions to the dictionary and then explore the manipulation of data values
on the stack. Flow of program control and more advanced defining words are also
explored. These defining words are convenient for making arrays. Finally, strings
and formatted numeric output are discussed.

*peterj@mech.uq.edu.au
�PZEF Company – Hardware and Software for Instrumentation and Control; pzawasky@pzef.net
�http://www.flashforth.com/; mikael.nordman@flashforth.com

1

CONTENTS 2

Contents

1 Introduction 3

2 Getting started 4

3 The interpreter 5

4 Extending the dictionary 7
4.1 Dictionary management . 7

5 Stacks and reverse Polish notation 8
5.1 Manipulating the parameter stack . 9
5.2 The return stack and its uses . 10

6 Using memory 11
6.1 Variables . 12
6.2 Constants . 12
6.3 Values . 13
6.4 Basic tools for allocating memory . 13

7 Comparing and branching 15

8 Comments in Forth code 16

9 Integer arithmetic operations 17

10 A little more on compiling 18

11 Looping and structured programming 19

12 More on defining words 21
12.1 create ... does> ... 21
12.2 Creating arrays . 22
12.3 Jump tables . 23

13 Strings 25
13.1 Pictured numeric output . 25

14 Forth programming style 26

1 INTRODUCTION 3

1 Introduction

Forth is an interesting mix of low-level access tools and language building tools. It is
effectively a small toolkit with which you construct a specialized dictionary of words that
work together to form your application code. This tutorial will explore and explain the
workings of the FlashForth 5 toolkit running on a Microchip PIC18 microcontroller and
complements the more hardware-oriented tutorial [1], the FlashForth quick reference [2]
and the FlashForth website [3]. Our interest is in using Forth on the microcontroller in
an embedded system, such as a special-purpose signal timing device, rather than as part
of a general-purpose calculation on a personal computer.

There are quite a number of good introductory tutorials [4, 5], course notes [6], and
references [7] for programming in Forth on a desktop or laptop computer, however, Flash-
Forth running on a PIC18 microcontroller is a different environment. In the following
sections, we will follow closely J. V. Noble’s tutorial [5] for using Forth on a personal
computer, reusing many of his examples and explanations verbatim, while adapting the
overall tutorial to the use of FlashForth on a microcontroller.

2 GETTING STARTED 4

2 Getting started

Although we will be using FlashForth on a PIC18 microcontroller, we communicate with
it using a serial terminal program running on a personal computer. FlashForth comes
with a couple of terminal programs (in Python and Tcl/Tk) that have some conveniences
when sending files to the microcontroller, so we will start our interaction with one of
those. Starting the ff-shell.tcl program in a normal terminal window will start up
the Tcl/Tk shell program. Pressing the ENTER ←↩ key a couple of times should get
the display as shown in Figure 1. The ok<#,ram> prompt indicates that the current
base is ten, for representing numbers in decimal format, and that the current context for
making variables is static RAM, rather than the Flash memory and EEPROM that is
also available in the microcontroller.

Figure 1: Opening screen using ff-shell.tcl.

In contrast to Forth on a PC, FlashForth is case sensitive, with most predefined words
being spelled with lower case. Also, being intended for use in an embedded system, there
is no command to exit the system. FlashForth only stops when the power is removed or
a reset occurs.

3 THE INTERPRETER 5

3 The interpreter

FlashForth is an interactive programming language consisting of words. Forth words are
the equivalent of subroutines or functions in other languages and are executed by naming
them. Although FlashForth is interactive at its core, the user doesn’t need to interact with
an embedded application if its top-level word is set to automatically execute at power-up.

Here is an example of executing a FlashForth word:

hex ←↩ ok<$,ram>

This executes the word that sets the base for representing numbers to 16, a format that
you are likely to be familiar with if you are a student of mechatronics or computing.
Note that both the text that your typed and the FlashForth response is shown together,
on either side of the Enter symbol ←↩ . For the moment, let’s return to using decimal
numbers:

decimal ←↩ ok<#,ram>

Now, let’s try something a bit more interesting by entering:

2 17 + . ←↩ 19 <#,ram>

This time FlashForth more clearly shows its interpretive nature. A small program called
the outer interpreter continually loops, waiting for input from the serial port. The input is
a sequence of text strings (words or numbers) separated from each other by the standard
Forth delimiter, one or more ASCII blank characters.

The text strings are interpreted in only three ways: words (subroutine or function
names), numbers, or not defined. The outer interpreter tries first to look for the incoming
word in the dictionary that contains the already defined words. If it finds the word, it
executes the corresponding code.

If no dictionary entry exists, the interpreter tries to read the input as a number. If
the string satisfies the rules for defining a number, it is converted to a number in the
microcontroller’s internal representation, and stored in a special memory location, called
the top of stack (TOS).

In the example above, FlashForth interpreted 2 and 17 as numbers, and pushed them
onto the stack. “+” is a predefined word, as is “.”, so they are looked up and executed.
The “+” (plus) word removed 2 and 17 from the stack, added them together, and left
the result 19 on the stack. The word “.” (dot) removed 19 from the stack and sent it to
the standard output device, the serial port for FlashForth. Here is a picture of the stack
through the process. The second-top element of the stack is labelled NOS for next on
stack.

word executed 2 17 + .

stack result TOS
NOS

2 17

2

19

We might also work in hexadecimal:

3 THE INTERPRETER 6

hex 0a 14 * . ←↩ c8 <$,ram>

This number base is probably convenient for most embedded systems work, where setting
and monitoring bit patterns forms a large part of the code. If you want to explicitly
indicate the base of a number, you can prepend a sigil to the digits of the number. For
example, $10, #16 and %10000 all represent the decimal value sixteen.

If the incoming text cannot be located in the dictionary nor interpreted as a number,
FlashForth issues an error message.

$0A ←↩ $0A ?

thing ←↩ thing ?

Note that the apparent hexadecimal number $0A was not interpreted as such because of
the case sensitivity of FlashForth.

decimal $0a ←↩ ok<#,ram>10

This time, the hexadecimal number was recognized and its value appears on the stack,
which is printed (in base ten) after the ok response. To assist with the handling of numbers
with many digits, FlashForth allows the convenience of embedding periods into the text
of the number. This is most useful for binary numbers, but it works generally.

hex ←↩ ok<$,ram>

%0100.0000.0000.0000 ←↩ ok<$,ram>4000

$4000 ←↩ ok<$,ram>4000 4000

$4.0.0.0 ←↩ ok<$,ram>4000 4000 4000

$4. ←↩ ok<$,ram>4000 4000 4000 4 0

decimal ←↩ ok<#,ram>16384 16384 16384 4 0

Note that the period after the number resulted in a double value being placed on the
stack as two (separate) items.

Other error messages that you might see include SP ?, for a stack pointer error, and
CO ?, for a context error. If the word * was to be executed without there being at least two
numbers sitting on the stack, the interpreter would abort, issuing the SP error message,
and then wait for new input.

* ←↩ ok<#,ram> SP?

Finally, to show the compilation and use of a new word, here is the classic Hello World!
program.

: hey ." Hello, World!" ; ←↩ ok<#,ram>

Forth lets you output text using the word ." while the words : and ; begin and end the
definition of your own word hey. Note that blank characters are used to delimit each of
these words. Now, type in hey and see what happens.

hey ←↩ Hello, World! ok<#,ram>

4 EXTENDING THE DICTIONARY 7

4 Extending the dictionary

Forth belongs to the class of Threaded Interpretive Languages. This means that it can
interpret commands typed at the console, as well as compile new subroutines and pro-
grams. The Forth compiler is part of the language and special words are used to make
new dictionary entries (i.e. words). The most important are : (start a new definition)
and ; (terminate the definition). Let’s try this out by typing:

: *+ * + ; ←↩ ok<#,ram>

What happened? The action of “:” is to create a new dictionary entry named *+ and
switch from interpret to compile mode. In compile mode, the interpreter looks up words
and, rather than executing them, installs pointers to their code. If the text is a number,
instead of pushing it onto the stack, FlashForth builds the number into the dictionary
space allotted for the new word, following special code that puts the stored number onto
the stack whenever the word is executed. The run-time action of *+ is thus to execute
sequentially the previously-defined words * and +

The word “;” is special. It is an immediate word and is always executed, even if the
system is in compile mode. What “;” does is twofold. First, it installs the code that
returns control to the next outer level of the interpreter and, second, it switched back
from compile mode to interpret mode.

Now, try out your new word:

5 6 7 *+ . ←↩ 47 ok<#,ram>

This example illustrated two principal activities of working in Forth: adding a new word
to the dictionary, and trying it out as soon as it was defined.

Note that, in FlashForth, names of dictionary entries are limited to 15 characters.
Also, FlashForth will not redefine a word that already exists in the dictionary. This can
be convenient as you build up your library of Forth code because it allows you to have
repeated definitions, say for special function registers, in several files and not have to
worry about the repetition.

4.1 Dictionary management

The word empty will remove all dictionary entries that you have made and reset all
memory allocations to the original values of the core FlashForth interpreter. As you
develop an application, it will often be convenient to return to an earlier, intermediate
dictionary and memory allocation state. This can be done with the word marker. For
example, we could issue the command

marker -my-mark

Later, after we have done some work with the FlashForth system and defined a few of
our own words and variables, we can return the dictionary and memory allocation to
the earlier state by executing the word -my-mark. Here, we have arbitrarily chosen the
word -my-mark so it would be good to choose a word that has some specific and easily
remembered meaning for us.

5 STACKS AND REVERSE POLISH NOTATION 8

5 Stacks and reverse Polish notation

The stack is the Forth analog of a pile of cards with numbers written on them. The
numbers are always added to the top of the pile, and removed from the top of the pile.
FlashForth incorporates two stacks: the parameter stack and the return stack, each con-
sisting of a number of cells that can hold 16-bit numbers.

The Forth input line

decimal 2 5 73 -16 ←↩

leaves the parameter stack in the state

cell # contents comment

0 -16 TOS (Top Of Stack)

1 73 NOS (Next On Stack)

2 5

3 2

We will usually employ zero-based relative numbering in Forth data structures such as
stacks, arrays and tables. Note that, when a sequence of numbers is entered like this,
the right-most number becomes TOS and the left-most number sits at the bottom of the
stack.

Suppose that we followed the original input line with the line

+ - * . ←↩

to produce a value xxx. What would the xxx be? The operations would produce the
successive stacks:

word executed + - * .

stack result TOS
NOS

-16

73

5

2

57

5

2

-52

2

-104

So, after both lines, the terminal window shows

decimal 2 5 73 -16 ok<#,ram>2 5 73 65520

+ - * . -104 ok<#,ram>

Note that FlashForth conveniently displays the stack elements on interpreting each line
and that the value of -16 is displayed as the 16-bit unsigned integer 65520. Also, the
word “.” consumes the -104 data value, leaving the stack empty. If we execute “.” on the
now-empty stack, the outer interpreter aborts with a stack pointer error (SP ?).

The programming notation where the operands appear first, followed by the opera-
tor(s) is called reverse Polish notation (RPN). It will be familiar to students who own
RPN calculators made by Hewlett-Packard.

5 STACKS AND REVERSE POLISH NOTATION 9

5.1 Manipulating the parameter stack

Being a stack-based system, FlashForth must provide ways to put numbers onto the stack,
to remove them and to rearrange their order. We’ve already seen that we can put numbers
onto the stack by simply typing the number. We can also incorporate the number into
the definition of a Forth word.

The word drop removes a number from the TOS thus making NOS the new TOS. The
word swap exchanges the top 2 numbers. dup copies the TOS into NOS, pushing all of
the other numbers down. rot rotates the top 3 numbers, bring the number that was just
below NOS to the TOS. These actions are shown below.

word executed drop swap rot dup

stack result TOS
NOS

-16

73

5

2

73

5

2

5

73

2

2

5

73

2

2

5

73

FlashForth also includes the words over, tuck and pick that act as shown below. over

makes a copy of NOS and then leaves it as the new TOS. tuck make a copy of the TOS and
inserts the copy just below the NOS. Note that pick must be preceeded by an integer that
(gets put on the stack briefly and) says where on the stack an element gets picked. Also,
for the PIC18 version of FlashForth, the definition of pick is provided as Forth source
code in the file pick.txt. The content of this file must be sent to the microcontroller to
define the word before we try to use it.

word executed over tuck 4 pick

stack result TOS
NOS

-16

73

5

2

73

-16

73

5

2

73

-16

73

73

5

2

5

73

-16

73

73

5

2

From these actions, we can see that 0 pick is the same as dup, 1 pick is a synonym for
over. The word pick is mainly useful for dealing with deep stacks, however, you should
avoid making the stack deeper than 3 or 4 elements. If you are finding that you often
have to reason about deeper stacks, consider how you might refactor your program.

Double length (32-bit) numbers can also be handled in FlashForth. A double number
will sit on the stack as a pair of 16-bit cells, with the cell containing the least-significant
16-bits sitting below the cell containing the most-significant 16-bits. The words for ma-
nipulating pairs of cells on the parameter stack are 2dup, 2swap, 2over and 2drop. For
example, we can put a double value onto the stack by putting a period as the last char-
acter of the number literal.

hex 23. ←↩ ok<$,ram>23 0

5 STACKS AND REVERSE POLISH NOTATION 10

Memory on microcontrollers is limited and, for FlashForth on the PIC18, the param-
eter stack is limited to 26 cells. If you accumulate too many items on the stack, it will
overflow and the interpreter will abort. The stack will be emptied and the interpreter will
wait for further input.

5.2 The return stack and its uses

During compilation of a new word, FlashForth establishes links from the calling word to
the previously-defined words that are to be invoked by execution of the new word. This
linkage mechanism, during execution, uses the return stack (rstack). The address of the
next word to be invoked is placed on the rstack so that, when the current word is done
executing, the system knows where to jump to the next word. Since words can be nested,
there needs to be a stack of these return addresses.

In addition to serving as the reservoir of return addresses, the return stack is where
the counter for the for ... next construct is placed. (See section 11.) The user can
also store to and retrieve from the rstack but this must be done carefully because the
rstack is critical to program execution. If you use the rstack for temporary storage, you
must return it to its original state, or else you will probably crash the FlashForth system.
Despite the danger, there are times when use of the rstack as temporary storage can make
your code less complex.

To store to the rstack, use >r to move TOS from the parameter stack to the top of
the rstack. To retrieve a value, r> moves the top value from the rstack to the parameter
stack TOS. To simply remove a value from the top of the rstack there is the word rdrop.
The word r@ copies the top of the rstack to the parameter stack TOS and is used to get
a copy of the loop counter in a for loop discussed in Section 11.

6 USING MEMORY 11

6 Using memory

As well as static RAM, the PIC18 microcontroller has program memory, or Flash memory,
and also EEPROM. Static RAM is usually quite limited on PIC18 controllers and the
data stored there is lost if the MCU loses power. The key attribute of RAM is that it
has an unlimited endurance for being rewritten. The Flash program memory is usually
quite a bit larger and is retained, even with the power off. It does, however, have a
very limited number of erase-write cycles that it can endure. EEPROM is also available,
in even smaller amounts than static RAM and is non-volatile. It has a much better
endurance than Flash, but any particular cell is still limited to about 100000 rewrites.
It is a good place to put variables that you change occasionally but must retain when
the power is off. Calibration or configuration data may be an example of the type of
data that could be stored in EEPROM. The registers that configure, control and monitor
the microcontroller’s peripheral devices appear as particular locations in the static RAM
memory.

In FlashForth, 16-bit numbers are fetched from memory to the stack by the word @

(fetch) and stored from TOS to memory by the word ! (store). @ expects an address on
the stack and replaces the address by its contents. ! expects a number (NOS) and an
address (TOS) to store it in. It places the number in the memory location referred to by
the address, consuming both parameters in the process.

Unsigned numbers that represent 8-bit (byte) values can be placed in character-sized
cells of memory using c@ and c!. This is convenient for operations with strings of text, but
is especially useful for handling the microcontroller’s peripheral devices via their special-
function file registers. For example, data-latch register for port B digital input-output
is located at address $ff8a and the corresponding tristate-control register at address
$ff93. We can set pin RB0 as an output pin by setting the corresponding bit in the
tristate control register to zero.

%1111.1110 $ff93 c! ←↩ ok<$,ram>

and then set the pin to a digital-high value by writing a 1 to the port’s latch register

1 $ff8a c! ←↩ ok<$,ram>

If we had a light-emitting diode attached to this pin, via a current-limiting resistor, we
should now see it light up as in the companion hardware tutorial [1]. Here is what the
terminal window contains after turning the LED on and off a couple of times.

warm

S FlashForth 5 PIC18F26K22 11.11.2016

%1111.1110 $ff93 c! ok<#,ram>

1 $ff8a c! ok<#,ram>

0 $ff8a c! ok<#,ram>

1 $ff8a c! ok<#,ram>

0 $ff8a c! ok<#,ram>

Note that we started the exercise with a warm restart so that the FlashForth environment
was in a known good state. Being interactive, FlashForth allows you to play with the
hardware very easily.

6 USING MEMORY 12

6.1 Variables

A variable is a named location in memory that can store a number, such as the interme-
diate result of a calculation, off the stack. For example,

variable x ←↩ ok<#,ram>

creates a named storage location, x, which executes by leaving the address of its storage
location as TOS:

x ←↩ ok<#,ram>61806

We can then fetch from or store to this address as described in the previous section.

empty warm

S FlashForth 5 PIC18F26K22 11.11.2016

marker -play ok<#,ram>

variable x ok<#,ram>

3 x ! ok<#,ram>

x @ . 3 ok<#,ram>

For FlashForth, the dictionary entry, x, is in the Flash memory of the microcontroller but
the storage location for the number is in static RAM (in this instance). Note that the
empty word was used to discard all dictionary entries that we may have made on top of
the base system. If you are unsure of what dictionary entries you have made, use words

to display all current dictionary entries.

FlashForth provides the words ram, flash and eeprom to change the memory context
of the storage location. Being able to conveniently handle data spaces in different memory
types is a major feature of FlashForth. To make another variable in EEPROM, try

eeprom variable y ←↩ ok<#,eeprom>

We can access this new (nonvolatile) variable as we did for the RAM variable x, but y

retains its value, even when we turn off and on the power to the microcontroller.

4 y ! ok<#,eeprom>

y @ . 4 ok<#,eeprom>

x @ . 3 ok<#,eeprom>

FlashForth 5 PIC18F26K22 11.11.2016

y @ ok<#,ram>4

x @ ok<#,ram>4 0

In the example above, we reset the microcontroller by bringing its MCLR pin low for a
moment.

6.2 Constants

A constant is a number that you would not want to change during a program’s execution.
The addresses of the microcontroller’s special-function registers are a good example of

6 USING MEMORY 13

use and, because the constant numbers are stored in nonvolatile Flash memory, they are
available even after a hardware reset. The result of executing the word associated with a
constant is the data value being left on the stack.

$ff93 constant trisb ok<#,ram>

$ff8a constant latb ok<#,ram>

%1111.1110 trisb c! ok<#,ram>

0 latb c! ok<#,ram>

1 latb c! ok<#,ram>

0 latb c! ok<#,ram>

FlashForth 5 PIC18F26K22 11.11.2016

hex trisb ok<$,ram>ff93

%1111.1110 trisb c! ok<$,ram>ff93

0 latb c! ok<$,ram>ff93

1 latb c! ok<$,ram>ff93

6.3 Values

A value is a hybrid type of variable and constant. We define and initialize a value

and invoke it as as we would for a constant. We can also change a value as we can a
variable.

decimal ok<#,ram>

13 value thirteen ok<#,ram>

thirteen ok<#,ram>13

47 to thirteen ok<#,ram>13

thirteen ok<#,ram>13 47

The word to also works within word definitions, replacing the value that follows it with
whatever is currently in TOS. You must be careful that to is followed by a value and
not something else.

6.4 Basic tools for allocating memory

The words create and allot are the basic tools for setting aside memory and attaching
a convenient label to it. For example, the following transcript shows a new dictionary
entry x being created and an extra 16 bytes of memory being allotted to it.

empty warm

S FlashForth 5 PIC18F26K22 11.11.2016

hex ok<$,ram>

create x ok<$,ram>

x u. f16e ok<$,ram>

here u. f16e ok<$,ram>

10 allot ok<$,ram>

here u. f17e ok<$,ram>

6 USING MEMORY 14

When executed, the word x will push the address of the first entry in its allotted memory
space onto the stack. The word u. prints an unsigned representation of a number and
the word here returns the address of the next available space in memory. In the example
above, it starts with the same value as x but is incremented by (decimal) sixteen when
we allotted the memory.

We can now access the memory allotted to x using the fetch and store words discussed
earlier, in Section 6. To compute the address of the third byte allotted to x we could say
x 2 +, remembering that indices start at 0.

30 x 2 + c! ok<$,ram>

x 2 + c@ ok<$,ram>30

We will discuss a way to neatly package the snippets of code required to do the address
calculation later, in Section 12.2. Finally, note that the memory context for this example
has been the static RAM, however, (as shown for variables in Section 6.1) the context for
allotting the memory can be changed.

7 COMPARING AND BRANCHING 15

7 Comparing and branching

FlashForth lets you compare two numbers on the stack, using the relational operators >,
< and =.

hex ok<$,ram>

2 3 = ok<$,ram>0

2 3 > ok<$,ram>0 0

2 3 < ok<$,ram>0 0 ffff

. -1 ok<$,ram>0 0

These operators consume both arguments and leave a flag, to represent the boolean result.
Above, we see that “2 is equal to 3” is false (value 0), “2 is greater than 3” is also
false, while “2 is less than 3” is true. The true flag has all bits set to 1, hence the
16-bit hexadecimal representation ffff and the corresponding signed representation -1.
FlashForth also provides the relational operators 0= and 0< which test if the TOS is zero
and negative, respectively.

The relational words are used for branching and control. For example, after a warm
restart, we can define the word test and try it

: test 0= invert if cr ." Not zero!" then ; ok<#,ram>

0 test ok<#,ram>

-14 test

Not zero! ok<#,ram>

The TOS is compared with zero and the invert operator (ones complement) flips all of the
bits in the resulting flag. If TOS is nonzero, the word if consumes the flag and executes
all of the words between itself and the terminating then. If TOS is zero, execution jumps
to the word following the then. The word cr issues a carriage return (newline).

The word else can be used to provide an alternate path of execution as shown here.

: truth 0= if ." false" else ." true" then ; ok<#,ram>

1 truth true ok<#,ram>

0 truth false ok<#,ram>

A nonzero TOS causes words between the if and else to be executed, and the words
between else and then to be skipped. A zero value produces the opposite behaviour.

8 COMMENTS IN FORTH CODE 16

8 Comments in Forth code

The word (– a left parenthesis followed by a space – says “disregard all following text
until the next right parenthesis or end-of-line in the input stream”. Thus we can add
explanatory comments to colon definitions.

Stack comments are a particular form of parenthesized remark which describes the
effect of a word on the stack. For example the comment (x -- x x) could be used as
the stack-effect comment for the word dup. The comment indicates that the word will
make a copy of TOS and add it to the stack, leaving the original value, now as NOS.

The word \ (backslash followed by a space) is known as drop-line and is also available
as a method of including longer comments. Upon executing, it drops everything from
the input stream until the next carriage-return. Instructions to the user, clarifications of
usage examples can be conveniently expressed in a block of text, with each line started
by a backslash.

9 INTEGER ARITHMETIC OPERATIONS 17

9 Integer arithmetic operations

With FlashForth having 16-bit cells, the standard arithmetic operators shown in Table 1
operate on 16-bit signed integers, in the range -32768 to +32767 (decimal). Note that the
word u*/mod (scale) uses a 32-bit intermediate result. FlashForth also provides arithmetic
operators for double numbers (32-bit integers), signed and unsigned. See the companion
quick reference sheet [2] for a more complete list.

Table 1: Arithmetic operators for single (16-bit) numbers.
word effect comment
+ (n1 n2 -- n1+n2) sum
- (n1 n2 -- n1-n2) difference
* (n1 n2 -- n1*n2) product
/ (n1 n2 -- n1/n2) quotient
mod (n1 n2 -- n.rem) remainder
*/ (n1 n2 n3 -- n1*n2/n3) scaled quotient
u/ (u1 u2 -- u1/u2) unsigned quotient
u/mod (u1 u2 -- rem quot) remainder and quotient
u*/mod (u1 u2 u3 -- rem quot) scaled remainder and quotient

For an example of using arithmetic operators, consider the conversion of temperature
values from Celcius to Fahrenheit using the formula n2 = (n1*9/5 + 32).

decimal ok<#,ram>

: to-f-1 (n1 -- n2) 9 * 5 / #32 + ; ok<#,ram>

0 to-f-1 . 32 ok<#,ram>

100 to-f-1 . 212 ok<#,ram>

500 to-f-1 . 932 ok<#,ram>

5000 to-f-1 . -4075 ok<#,ram>

This simple function works fine, up until the intermediate result (n1*9) overflows the
16-bit cell. With a bit more bother, we can make use of the scaled operator to avoid
overflow of the intermediate result. Again, the following function computes expression
(u1*9/5 + 32) but now uses the scale operator */. This operator uses a 32-bit interme-
diate result to avoid overflow.

: to-f-2 (n1 -- n2) 9 5 */ #32 + ; ok<#,ram>

0 to-f-2 . 32 ok<#,ram>

100 to-f-2 . 212 ok<#,ram>

500 to-f-2 . 932 ok<#,ram>

5000 to-f-2 . 9032 ok<#,ram>

Note that not all of the arithmetic operators are part of the core FlashForth that is
written in PIC18 assembly language and, to get the scale operator, you will need to
load the math.txt file of word definitions before trying this second example. This file is
available in the common forth source directory of the FlashForth distribution.

10 A LITTLE MORE ON COMPILING 18

10 A little more on compiling

While compiling, it is possible to temporarily switch to interpreter mode with the word
[and switch back into compile mode with]. The following example defines the word
feet that converts a number representing a length in feet to an equivalent number of
millimetres. The intermediate result is in tenths of a millimetre so that precision is
retained and, to make the conversion clear, the numeric conversion factor is computed as
we compile the word.

: feet (u1 -- u2)

[#254 #12 *] literal #10 u*/mod

swap drop ; ok<#,ram>

10 feet ok<#,ram>3048

The word literal is used to compile the data value in TOS into the definition of feet.
At run-time, that data value will be placed onto the stack.

11 LOOPING AND STRUCTURED PROGRAMMING 19

11 Looping and structured programming

The control words available for structured programming are shown in Table 2, where xxx
and yyy denote sequences of words and cond denotes a boolean flag value. Within the
body of a for loop, you may get the loop counter with the word r@. It counts from u-1
down to 0. If you exit from a for loop, you must drop the loop count with rdrop.

Table 2: Flow control in FlashForth.

Code Description
cond if xxx else yyy then Conditional execution.
begin xxx again Infinite loop.
begin xxx cond until Loop until cond is true.

begin xxx cond while yyy repeat
Loop while cond is true, yyy is not executed
on the last iteration.

u for xxx next Loop u times.

endit
Sets loop counter to zero so that we leave the
loop when next is encountered.

exit Exit from a word.

Here are a couple of examples of counted loops, one constructed from the generic
begin...until construct, and the other using the dedicated for...next construct. Note
the difference in counter ranges.

-countdown ok<#,ram>

marker -countdown ok<#,ram>

: countdown1 (n --)

begin cr dup . 1- dup 0= until

drop ; ok<#,ram>

5 countdown1

5

4

3

2

1 ok<#,ram>

: countdown2 (n --)

for cr r@ . next ; ok<#,ram>

5 countdown2

4

3

2

1

0 ok<#,ram>

It was convenient, when setting up these examples, to put the source code into a little file
that could be reloaded easily each time the source text was changed.

11 LOOPING AND STRUCTURED PROGRAMMING 20

-countdown

marker -countdown

: countdown1 (n --)

begin cr dup . 1- dup 0= until

drop ;

5 countdown1

: countdown2 (n --)

for cr r@ . next ;

5 countdown2

12 MORE ON DEFINING WORDS 21

12 More on defining words

The compiler word create makes a new dictionary entry using the next name in the input
stream and compiles the pointer value of the first free location of the current data-space
context. When executed, the new dictionary entry leaves that pointer value on the stack.

create can be used to build other defining words. For example, we can make our own
variation of word variable as

: make-var create 1 cells allot ; ok<#,ram>

Here make-var can be used to make an uninitialized variable that can hold a single
number. When make-var is executed, the first word within its definition (create) sets
up a dictionary entry with the name coming from the next text in the input stream
(alpha in the example below), the number 1 is pushed onto the stack, the word cells

converts the TOS to the appropriate number of bytes (2 in this case) and the word allot

increments the pointer to the next available space in memory by this number of bytes.
This allots one cell to the newly created child word.

make-var alpha ok<#,ram>

13 alpha ! ok<#,ram>

alpha @ . 13 ok<#,ram>

At run time for the newly created child word, alpha leaves its data-space address on the
stack and we may store to or fetch from this address, as shown above.

As a second example, we can also build a defining word for making initialized variables.

: make-zero-var create 0 , ; ok<#,ram>

Instead of just allotting space for the data, the word , (comma) puts TOS into the next
cell of memory and increments the memory-space pointer by appropriate number of bytes.
Run time use of the newly defined variable is the same as for any other variable.

make-zero-var beta ok<#,ram>

beta @ . 0 ok<#,ram>

12.1 create ... does> ...

The word does> is used to specify a run-time action for the child words of a defining
word. We can make our own variant of constant and test it.

: make-con create , does> @ ; ok<#,ram>

53 make-con prime ok<#,ram>

At run time for the defining word make-con, create sets up the new dictionary entry with
the next text in the input stream (prime), the word , (comma) compiles TOS (53 in this
example) into the memory-space of the new child word and does> stores the following
words up to the terminating semicolon (only @ in this case), such that they will be executed
at the run time of the child word defined by make-con. Thus, when prime is executed, the
address of the first entry in its data-space is put onto the stack and the word @ executed.

prime . 53 ok<#,ram>

Although only one word is stored as the run time code for prime in this example, it could
be arbitrarily complex.

12 MORE ON DEFINING WORDS 22

12.2 Creating arrays

The create...does> pair can be used to define some convenient array-defining words. For
an array of bytes, it is straight-forward to manually allot the memory and address it at
run time.

create my-array 10 allot ok<#,ram>

my-array 10 $ff fill ok<#,ram>

my-array @ . -1 ok<#,ram>

Here, my-array is first allotted 10 bytes. At run time for my-array, the address of the
start of the 10 bytes is left on the stack, and we use the fill word (found in the Forth
source file core.txt) to completely fill the array of bytes with ones. Accessing the first
cell (2 bytes) and printing it (to get -1 sent to the serial port) confirms that all bits are
1s. The word dump can be used to get a more complete picture. It expects the starting
address and number of bytes to dump sitting on the stack.

hex ok<$,ram>

my-array $30 dump

f174 :ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff

f184 :00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

f194 :00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ok<$,ram>

Note that dump works with blocks of 16 bytes and that the dots to the right show a
character representation of the byte values. This is convenient when trying to identify
strings of text.

It is also straight-forward to create an array with particular data compiled in.

create my-cell-array 100 , 340 , 5 , ok<$,ram>

Remember to use , (comma) to compile in every data element, not leaving off the last one.
At run time, my-cell-array puts the address of the start of the associated memory on
the stack and the address of the desired cell (index 2, in this case) needs to be calculated
(2 cells +) before executing @ (fetch).

my-cell-array 2 cells + @ . 5 ok<$,ram>

This address calculation code can be added into the defining word with does> such that
the subsequently defined my-cells array will have the snippet of code (swap cells +)
executed at run time to convert from a cell index to an address.

\ A defining word for creating arrays.

: mk-cell-array (u --)

create cells allot

does> swap cells + ; ok<$,ram>

The swap is used to get the index as TOS with the array address as NOS, cells scales the
index to the offset as a number of bytes and + adds the offset to the array address. The
newly computed cell address is left as TOS for use by the words ! (store) and @ (fetch).

12 MORE ON DEFINING WORDS 23

\ Make an array and access it.

5 mk-cell-array my-cells ok<$,ram>

3000 0 my-cells ! ok<$,ram>

3001 1 my-cells ! ok<$,ram>

3002 2 my-cells ! ok<$,ram>

1 my-cells @ . 3001 ok<$,ram>

12.3 Jump tables

Sometimes we want to execute one of a large selection of words, depending on the outcome
of a calculation. It is possible to set up a sequence of tests and branches (as introduced
in Section 7), however, FlashForth allows a neater solution in the form of a jump table. A
word in FlashForth can be executed by feeding its execution token to the word execute. If
you have a table of execution tokens, then you need only look up the one corresponding to
a given index, fetch it and say execute. The following transcript shows such a jump-table
for a collection of four functions, the word do-action to execute the appropriate word,
given an index, and a sample of trials that shows the jump-table mechanism in action.

\ Set up the words that we want to selectively execute.

: ring (--) ." ring ring" ; ok<#,ram>

: open (--) ." opening" ; ok<#,ram>

: laugh (--) ." ha ha" ; ok<#,ram>

: cry (--) ." crying" ; ok<#,ram>

\ Store the execution tokens in a table that allots into flash memory.

flash ok<#,flash>

create actions ’ ring , ’ open , ’ laugh , ’ cry , ok<#,flash>

ram ok<#,ram>

: do-action (n --)

0 max 3 min

cells actions + @ execute ; ok<#,ram>

\ Call up the actions.

3 do-action crying ok<#,ram>

0 do-action ring ring ok<#,ram>

2 do-action ha ha ok<#,ram>

5 do-action crying ok<#,ram>

The word ’ (tick) finds the following name in the dictionary and puts its execution token
(xt) on the stack. The word , (comma) compiles the xt into the table. Note that we
are compiling these tokens into the flash memory of the microcontroller so that the jump
table continues to work, even after a power break. In do-action, the words 0 max 3 min

limit the incoming index value to the valid range for looking up a token in the jump-table.
The token is fetched to TOS and then execute called. The final line of the transcript
shows that the word cry is executed for the invalid index value of 5. You may want to
handle incorrect input differently in your application.

12 MORE ON DEFINING WORDS 24

The FlashForth distribution comes with a file, jmptbl.txt (in the common forth source
code directory), that provides set of words for building jump tables. With these words,
we can build a second jump table with a neater notation.

flash

JUMP_TABLE do-action-2

0 | ring

1 | open

2 | laugh

3 | cry

default| cry

ram

Note that, in the code above, we have omitted the FlashForth response on each line. This
new jump table gives essentially the same behaviour as the first one.

\ Call up the actions. ok<$,ram>

3 do-action-2 crying ok<$,ram>

0 do-action-2 ring ring ok<$,ram>

2 do-action-2 ha ha ok<$,ram>

5 do-action-2 crying ok<$,ram>

Although not evident in this example, JUMP_TABLE allows more general key values than
we could use in the basic array implementation for do-action. We could, for example,
build a jump table with a selection of character codes as the keys.

13 STRINGS 25

13 Strings

The Hello World! program, back in Section 3 could have been written a little differently,
as the following transcript shows.

: hey2 s" Hello, World!" cr type ; ok<#,ram>

hey2

Hello, World! ok<#,ram>

The word s" compiles the string into Flash memory and, at run time, leaves the address of
the string and the number of characters in the string on the stack. Using this information,
the word type will send the characters to the standard output.

13.1 Pictured numeric output

To get numbers output in a particular format, FlashForth provides the basic words #, <#,
#s, #>, sign and hold. These words are intended for use within word definitions. Here
is an example of their use.

: (d.2) (d -- caddr u)

tuck dabs <# # # [char] . hold #s rot sign #> ; ok<#,ram>

A double number sits on the stack, with it most significant bits, including its sign, in
TOS. First, tuck copies TOS (with the sign bit) to below the double number and then
the absolute value is converted to a string of characters representing the unsigned value.
Starting with the least significant digits, there will be two to the right of a decimal
point. The phrase [char] . hold adds the decimal point to the string. In this phrase,
[char] . builds in the representation of the decimal point as a numeric literal (ASCII
code 46) and hold then adds it to the string under construction. After adding the decimal
point, the word #s converts as many remaining digits as required. The word rot is used
to bring the copy of the original most-significant cell to TOS and the word sign adds a
negative sign to the string if required. Finally, word #> finishes the conversion, leaving
the character-address of the resultant string and the number of characters in it on the top
of the stack.

437658. (d.2) type 4376.58 ok<#,ram>

-437699. (d.2) type -4376.99 ok<#,ram>

45. (d.2) type 0.45 ok<#,ram>

Note that, with FlashForth, double integers must be entered as literal values with the
decimal point as the last character.

14 FORTH PROGRAMMING STYLE 26

14 Forth programming style

There is much written on the style of Forth programming and, indeed, there is book
called “Thinking Forth” [8]. Here are a number of recurring statements on programming
in Forth that are relevant to sections of this tutorial:

� Build your application from the bottom up, testing new words as you go.

� Choose simple and meaningful names, so that the intent of each word is clear and
your code is easily read, almost as statements you would make to another person.

� Always provide stack-effect comments.

� As you build your application, refactor your code aggressively so that you don’t
need complicated stack manipulations to access your data.

� Clean up after yourself and don’t leave rubbish on the stack.

� Use the return-stack for temporary storage when it makes your code cleaner but be
very careful to clean up when doing so.

REFERENCES 27

References

[1] P. A. Jacobs. A tutorial guide to programming PIC18, PIC24 and AVR microcon-
trollers with FlashForth. 2016 revision. School of Mechanical and Mining Engineering
Technical Report 2016/01, The University of Queensland, Brisbane, February 2016.

[2] P. A. Jacobs. FlashForth 5 quick reference for PIC and AVR microcontrollers. School
of Mechanical and Mining Engineering Technical Report 2016/02, The University of
Queensland, Brisbane, February 2016.

[3] Mikael Nordman. FlashForth. URL, http://www.flashforth.com/.

[4] L. Brodie and Forth Inc. Starting Forth: An introduction to the Forth Language and
operating system for beginners and professionals, 2nd Ed. Prentice Hall, Englewood
Cliffs, New Jersey, 1987.

[5] J. V. Noble. A beginner’s guide to Forth. URL
http://galileo.phys.virginia.edu/classes/551.jvn.fall01/primer.htm, 2001.

[6] S. Pelc. Programming Forth. Microprocessor Engineering Limited, 2011.

[7] E. K. Conklin and E. D. Rather. Forth Programmer’s Handbook, 3rd Ed. Forth Inc.,
California, 2007.

[8] L. Brodie. Thinking Forth: A Language and Philosophy for Solving Problems. Punchy
Publishing, 2004.

	Introduction
	Getting started
	The interpreter
	Extending the dictionary
	Dictionary management

	Stacks and reverse Polish notation
	Manipulating the parameter stack
	The return stack and its uses

	Using memory
	Variables
	Constants
	Values
	Basic tools for allocating memory

	Comparing and branching
	Comments in Forth code
	Integer arithmetic operations
	A little more on compiling
	Looping and structured programming
	More on defining words
	create ... does> ...
	Creating arrays
	Jump tables

	Strings
	Pictured numeric output

	Forth programming style

