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Abstract 

Infectious helminths are a worldwide major public health problem.  In terms of morbidity, 

approximately 3 × 10
9
 people are infected by soil-transmitted helminths (STHs) influencing 

rates of malnutrition and failure to thrive. All of this increases the global disease burden 

(GDB) by up to 5.9 × 10
6
 Daily Adjusted Life Years (DALYs). Helminth infections are 

more often seen as a major public health issue for developing countries however, concerns 

have been expressed in many of the developed nations because of the increased use of 

treated wastewater and sludge with no clear way of knowing the infection potential that can 

be attributed from such water. 

 

Guidelines have been established to minimise the potential public health risk associated 

with wastewater and sludge reuse. For example, the WHO guideline specified ≤ 1 ova 

(Ascaris lumbricoides) per L liquid (wastewater) or 4 g dry solid (sludge) for unrestricted 

use. Various wastewater treatment processes have been recommended to remove the 

helminths ova from wastewater depending upon its reuse. However, detection methods used 

to quantify viable helminths ova from wastewater has limitations. Therefore there is always 

a potential public health risk associated with reuse of wastewater and sludge.  

 

In this research, a real-time PCR method was developed. The new PCR method is rapid 

and specific. The method was found to be able to detect less than one ovum in one litre 

treated wastewater and approximately four ova in one litre raw wastewater and ~ 4 g sludge. 

The real-time PCR method was modified to a quantitative PCR (qPCR) method and further 

used to quantify hookworm ova from wastewater and sludge. The qPCR had estimated an 

average of 1.1, 8.6 and 67.3 ova for treated wastewater that was seeded with 1, 10 and 100 

ova, respectively. The gene copy numbers obtained for 1, 10 and 100 ova by qPCR varied 

significantly (P < 0.05) within the tested samples indicating that absolute quantification of 

ova may not be accurate. Despite the difficulty quantifying accurate numbers of hookworm 

ova, the lower limit of quantification (LLOQ) of the qPCR method was 30 gene copies. This 

was a lot less than the gene copies produced by one ovum. Therefore, the qPCR method has 

potential to use for complying with wastewater guidelines. 

 

.  
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Although the overall aim of this research was to develop a sensitive and specific method 

for quantitative detection of viable hookworm ova from wastewater, the importance of 

recovering the ova from wastewater and sludge samples for accurate detection was 

identified. While determining appropriate recovery rates was not an aim of this research, a 

suitable method that could be used to standardise research outcomes for further study was 

established. Therefore, ova recovery rate by different rapid methods was evaluated for 

further experiments. The result indicated that the ova recovery rate was higher for the 

treated wastewater (0.2 - 50%) than the raw wastewater (0.3 - 35%) and sludge (0.02 - 

4.7%) samples. A significant difference (P < 0.05) was observed between the methods used 

to recover the ova from wastewater matrices. Therefore, using this newly developed 

detection method more research is needed in another study to improve the ova recovery 

rates from wastewater and sludge samples.  

 

It is well known that the qPCR detection method cannot distinguish between viable and 

non viable microorganisms (cells, oocysts, and ova). Since only viable ova are capable of 

becoming infectious larvae and consequently causing infections in humans, it is important 

for health risk assessments to know what fraction of the PCR amplified ova are viable.  

Therefore, the developed qPCR method was combined with Propidium Monoazide (PMA) 

to develop a selective detection method for detecting viable hookworm ova from 

wastewater. Results confirmed that the PMA-qPCR method did not detect hookworm ova in 

samples that had been treated to kill. The performance of viability quantification of the 

newly developed PMA-qPCR method was then assessed against currently available (culture 

based and vital stain) methods. The percentage of in vitro viability assessed by PMA-qPCR 

was 19% lower than vital stain and 38% higher than culture based methods. 

 

In general, the outcome of this research is an improved detection method which is 

sensitive and more specific than current method for detection of hookworm ova from 

wastewater. The method is rapid, cheap and does not require skilled personnel like 

microscopic methods.  Therefore, it will be suitable for health regulators as well as 

wastewater utilities for quality control and risk assessment purposes. However, studies are 

required to determine the gene copy numbers in different cell stages of hookworm ova, in 

order to improve the accuracy of quantification using qPCR method.  
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Introduction 

1.1. General introduction 

Soil-transmitted helminths (STHs) Ascaris lumbricoides (roundworm), Ancylostoma 

duodenale and Necator americanus (hookworm) and Trichuris trichiura (whipworm) are 

responsible for malnutrition, anemia and impaired cognitive development in humans (WHO, 

2012a; WHO, 2015). It is reported that more than 2.0 × 10
9
 people worldwide are suffering 

from single or multiple helminth infections at any given time (Bethony et al., 2006; Hotez et 

al., 2008; WHO, 2012a). Marginalized people with poor socio-economic conditions, 

especially in the developing regions such as Africa, Asia, and South America have the 

highest rate of infection (WHO, 2012a) (Table 1.1).   

 

Table 1.1: Numbers of pre-school aged and school-aged children in need of mass drug 

administration against soil-transmitted helminths in different regions (source: WHO, 

2012a) 

 

 

Regions 

Number of 

countries 

No requiring mass drugs administration 

Preschool-aged 

children 

School-aged 

children 

Total 

African 42 9.6 × 10
7
 1.9 × 10

8
 2.9 × 10

8
 

Americas 30 1.4 × 10
7
 3.1 × 10

7
 4.5 × 10

7
 

South East Asia 8 1.1 × 10
8
 2.7 × 10

8
 3.7 × 10

8
 

European 11 1.2 × 10
6
 3.0 × 10

6
 4.3 × 10

6
 

Eastern Mediterranean 8 2.5 × 10
7
 5.4 × 10

7
 7.9 × 10

7
 

Western Pacific 13 3.3 × 10
7
 6.6 × 10

7
 9.9 × 10

7
 

 

 

The disease from STHs is mainly attributed to chronic and insidious impact on health 

wellbeing of individuals rather than the mortality. Therefore, Disability-Adjusted Life Years 

(DALYs) has been used to determine the impacts of STHs infections. DALYs are a 

measurement of the amount of time (in years) that is ‘lost’ due to imperfect health from 

infection, taking into account of both premature death and time lived in a state of ill-health 

(termed disability). The burden of disease associated with STHs infection is very high (5.9 × 

10
6
 DALYs), which then creates a vicious cycle of infection, poverty, failure to thrive and 

consequently reduced productivity (WHO, 2012a; Hotez et al., 2014).  

 

In the last decade, mass drug administration (MDA) has been widely implemented for pre-

school aged and school-aged children to reduce the infection rates of STHs infections 
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including hookworm (Anderson et al., 2013). However, MDA was not successful enough to 

control STHs infections especially hookworm in those endemic communities. This could be 

due to the fact that MDA is mainly focused on children, leaving the large numbers of infected 

adults. Those adults may have served as reservoirs for re-infection in children. Other 

interventions such as safe drinking water, improved sanitation, and health education also have 

been introduced in addition to the MDA program to control STH infections more effectively 

(WHO, 2012a; WHO, 2012b; WHO, 2015). However, increasing rates of re-infections have 

been reported in the literature (WHO, 2012a; WHO, 2015).  

 

Land application of raw and partially treated wastewater and sludge can significantly 

increase the load of potentially infective ova/larvae of STH in the environment, which is one 

of the key routes of transmission to humans (Katakam et al., 2013; Karkashan et al., 2015). 

The land application of the raw wastewater and sludge are increasing due to the shortage of 

freshwater resources. It has been estimated that more than 2.0 × 10
7
 h of land is being 

irrigated with partially treated and raw wastewater (Carr, 2005). Due to livelihood and food 

security need, poorest people in developing countries rely on this resource more than others. 

Negative public health impacts from the use of raw and partially treated wastewater and 

sludge have already been reported (Ensink et al., 2007; Do et al., 2007; Vuong et al., 2007; 

Ensink et al., 2008). 

 

Among the STHs, hookworms pose a significant risk upon reuse of untreated wastewater 

and sludge because of their i) high prevalence rate (8.0 × 10
8
) (Knopp et al., 2008), ii) ability 

to produce large numbers of ova (10
3 

– 10
4
) every day (Bethony et al 2006) iii) transmission 

potential (skin penetration through L3 larvae and oral ingestion of viable ova) (Hotez, 2008a, 

Hotez, 2008b, Hotez and Gurwith, 2011), and iv) low dose (1-10 viable ova/larvae) to cause 

infection (WHO, 2006). In addition, the ova can remain viable for 9-12 months before 

hatching to infective larvae (L3) which can survive up to  another 3 months in the 

environment under favorable conditions (Abaidoo et al., 2010; Brooker, 2010).  

 

Guidelines have been established to minimise the potential public health risk associated 

with wastewater and sludge reuse (US EPA, 2003; NRMMC, 2004; WHO, 2006). Depending 

on the potential for human exposures various levels of wastewater and sludge treatment 

processes such as ponding and deactivated sludge and incineration, have been recommended 

in the guideline to remove/inactivate the ova/larvae of STHs from wastewater (US EPA, 
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2003; NRMMC, 2004; WHO, 2006). These guidelines however, are based on a model 

organism (Ascaris lumbricoides). Since, the types of STHs and their numbers in wastewater 

and sludge depend on the prevalence rate of infections in the community that generates the 

wastewater (Mahvi and Kia, 2006; Sidhu and Toze, 2009). Therefore, using a model 

organism (A. lumbricoides) to determine the quality of treated wastewater and sludge may not 

be ideal.  

 

Quantitative detection methods for the STHs in wastewater and sludge samples had two 

key fundamental issues including accurate quantification and viability assessment. Currently, 

detection and quantification of viable helminth ova from wastewater and sludge can be 

technologically difficult, labor intensive, time-consuming and expensive (Toze, 1999). Some 

of the existing methods considered as the more rapid and cheaper technologies to detect 

hookworm ova include the Kato-Katz, direct smear, thick smear and formalin-ethyl acetate 

methods (de Silva et al., 2006; Goodman et al., 2007; Cringoli et al., 2010; Habtamu et al., 

2011; Bastos et al., 2013). These methods do not provide viability status of helminth ova. In 

view of this, culture and vital stain methods have been commonly used to quantify the viable 

helminth ova from wastewater and sludge (Bowman et al., 2003; de Victorica and Galván, 

2003; US EPA, 2003; Trang et al., 2006; Do et al., 2007; Wen et al., 2009; Sharafi et al., 

2012). However, there are some significant limitations of the culture and vital stain methods. 

Both methods require highly skilled personnel to accurately distinguish between ova/larvae 

of pathogenic and non-pathogenic species of helminth. For example, ova/larvae of  

Ancylostoma duodenale, A. caninum and Necator americanus, are morphologically similar 

and  difficult to differentiate them to the species level using microscopic inspection alone 

(Cabaret et al., 2002; Verweij et al., 2007; Traub et al., 2008). In addition, the sensitivity of 

these methods depends on the detection limit of a microscope that can be very low (Weber et 

al., 1991).  

 

Moreover, the culture method requires up to seven days to obtaining a result, which may 

not be practical for situations that require rapid results (Boehm et al., 2009). The vital stain 

method is relatively rapid compared to the culture method while assessing the viability of 

hookworm ova (de Victorica and Galván, 2003). However, the vital stain method has 

potential to overestimate the viability of the ova (Gyawali et al., 2016).   
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Sensitive and specific detection of helminth ova/larvae is essential to determine the 

accurate health risk assessment as well as providing information to formulate effective 

control measures. There is, therefore, a need for a rapid, sensitive and specific detection 

method that can quantify viable helminth ova from wastewater and sludge. Polymerase chain 

reaction (PCR/qPCR) assays have been developed and used for rapid, sensitive and specific 

detection of helminths from faecal samples (Pecson et al., 2006; Verweij et al., 2007; Traub 

et al., 2008; Taniuchi et al., 2011; Ngui et al., 2012a; Ngui et al., 2012b). PCR/qPCR 

methods can detect pathogens in a one-step closed-tube reaction within 2-4 h with much 

higher sensitivity and specificity by directly amplifying a specific gene from a target 

microorganism (Botes et al., 2013; Schar et al., 2013), overcoming the limitations of the 

culture and vital stain methods.  

 

It has been demonstrated that Propidium Monoazide (PMA) (Biotium, Hayward, CA), a 

DNA intercalating dye, combined with PCR/qPCR methods can be used for selective 

detection/quantification of viable bacteria, protozoa and viruses from wastewater, sludge and 

environmental samples (Fittipaldi et al., 2011; Taskin et al., 2011; Nkuipou-Kenfack et al., 

2013; Alonso et al., 2014; Li et al., 2014; Gensberger et al., 2014; Santiago et al., 2015). The 

working mechanism of PMA is that it penetrates non-viable cells or oo(cysts), and makes a 

covalent bond with DNA upon exposure to light preventing PCR amplification (Nocker et al., 

2006; Nocker et al., 2007). Despite the successful application of PMA-qPCR for detection of 

viable viruses, bacteria, and protozoa from wastewater matrices, these methods have not been 

adapted for helminths. There is no information available in the literature that PMA/EMA is 

being used for selective detection of viable hookworm ova. 

 

1.2. Knowledge Gaps 

WHO and other regulatory bodies have set an acceptable limit of helminth ova for the use of 

treated wastewater and sludge for agriculture (unrestricted) considering the minimal 

detectable level of the existing, microscopic methods (Carr, 2005; IWMI and IWRC, 2010). 

However, quantitative microbial risk assessment (QMRA) indicated that the advised numbers 

of ova for agricultural use can still have a high risk of infection for the public (Navarro and 

Jimenez, 2011). Therefore, there is a growing interest in modifying the WHO guideline and 

lowering the threshold limit of helminth ova (0.1 ova per L) in treated wastewater for 

unrestricted use. In order to achieve the proposed threshold limit of ova in treated wastewater, 
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a sensitive method is essential for precise identification and quantification of viable 

hookworm ova/larvae in wastewater and sludge. Therefore, developing a consistent method 

for the detection, identification, and viability assessment of hookworm in wastewater and 

sludge is more necessary than ever before.  

 

1.3. Research aims 

The aims of the research presented in this thesis were to identify limitations of existing 

detection methods on detecting viable hookworm ova from environmental samples such as 

wastewater and sludge and therefore, to develop a rapid, specific and sensitive method to 

detect viable hookworm ova from wastewater and sludge.  

 

1.4. Research questions 

Several research questions were formulated to achieve the overall aim of this research. The 

research questions are listed below.  

i. Can PCR methods be used to detect specific hookworm ova from wastewater and 

sludge samples? 

ii. Can qPCR method be used to quantify hookworm ova accurately? 

iii. Can PMA be used to distinguish between viable and non-viable hookworm ova? 

iv. Can PMA-qPCR method be used for selective detection of viable hookworm ova from 

environmental samples such as wastewater? 

v. Can PMA-qPCR method provide better viability assessment than culture-based and 

vital stain methods?  

 

1.5. Hypothesis 

To answer the research questions described in the earlier section, following hypothesis were 

tested in the course of this study. 

i. That real-time PCR method can be used for sensitive and specific detection of 

hookworm ova from wastewater, sludge, and environmental samples.  

ii. That quantitative PCR (qPCR) method can provide the numbers of hookworm ova in 

wastewater, sludge, and environmental samples.  
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iii. That PMA-qPCR method can be used for viability assessment of hookworm ova from 

wastewater and sludge samples.  

iv. That PMA qPCR method can provide more accurate numbers of viable ova than 

culture and vital stain methods 

 

1.6. Objectives 

To achieve the overall aim of this research and answer the research questions, five specific 

objectives described below were formulated.  

i. Develop a real-time polymerase chain reaction (PCR) method and evaluate the 

specificity and sensitivity of the method.  

ii. Upgrade the PCR method to quantitative PCR (qPCR) method and evaluate the ova 

recovery rate of different methods from wastewater matrices.  

iii. Develop and evaluate a PMA-qPCR method for selective detection of viable 

hookworm ova from wastewater. 

iv. Evaluate the ability of the qPCR method for quantification of hookworm ova from 

wastewater matrices.  

v. Compare the detection and quantification sensitivity of the newly developed PMA-

qPCR method with currently used culture and vital stain methods.  

 

1.7. Thesis structure/overview 

A flow chart of thesis structure is shown in Figure 1.1. Chapter one is a general introduction 

which describes briefly about STHs and their medical importance, potential mode of 

transmission via wastewater reuse and currently available quantitative detection methods. 

Chapter two is a literature review. This section highlights the hookworm infection, a potential 

source of hookworm infection including wastewater reuse, wastewater treatment, and 

efficiency. Finally, this chapter described detection methods and their advantage and 

disadvantages.  
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Figure 1.1: Flow chart showing structure of the thesis 

  

Chapter 3 discusses ethical statement, the source of hookworm ova for experiments and 

QA/QC during experiments.  In Chapter 4, a novel real-time PCR method was developed in 

the laboratory setting using dog hookworm (Ancylostoma caninum). The specificity and 

sensitivity of the method were evaluated. The sensitivity of the newly developed method was 

further validated using wastewater matrices. One paper was published from Chapter 4. 

Gyawali P, Sidhu JPS, Ahmed W, Jagals P and Toze S (2015) Rapid concentration and 

sensitive detection of hookworm ova from wastewater matrices using a real-time PCR 

method. Experimental Parasitology, 159: 5-12. 

 

 

 



9 
 

However, the PCR method could not provide quantitative information which is necessary 

for assessing the potential health risks. Therefore, the PCR method was upgraded to the 

qPCR method and used for quantifying hookworm ova from ova seeded and unseeded 

wastewater samples. The finding of this study was presented in chapter 5. One article was 

published from this chapter. 

Gyawali P, Ahmed W, Sidhu JPS, Jagals P and Toze S (2016) Quantification of hookworm 

ova from wastewater matrices using quantitative PCR. Journal of Environmental Sciences, 

accepted (see appendix G for acceptance letter).  

 

Since the accuracy and rapidness of the qPCR method depend on the effective recovery of 

hookworm ova from wastewater and sludge samples, four different ova recovery methods for 

wastewater and two methods for sludge were evaluated for their performance. The result of 

this study was presented in chapter 6. The effective ova recovery method (filtration) for 

wastewater and (flotation) for sludge samples used for further experiments. One paper was 

published from this Chapter.  

Gyawali P, Ahmed W, Sidhu JPS, Jagals P and Toze S (2015) Comparison of 

concentration methods for rapid detection of hookworm ova in wastewater matrices using 

the qPCR method. Experimental Parasitology, 159: 160-167. 

 

The recently developed qPCR method can be used for quantitative detection of hookworm 

ova. The methods, however, is unable to distinguish between viable and non-viable ova. 

Since only viable ova are capable of hatching (L3) larvae and consequently causing infections 

in humans. Therefore, quantification of viable hookworm ova is important to assess the 

public health risks.  In Chapter 7 a PMA-qPCR method was developed for selective detection 

of viable hookworm ova from wastewater sample. The PMA-qPCR method for hookworm 

was further modified to quantify viable ova of other STHs. Two papers were published from 

this Chapter. 

Gyawali P, Sidhu JPS, Ahmed W, Jagals P and Toze S (2016) An approach to reduce false 

viability assessment of hookworm ova with vital stains. Food and Waterborne Parasitology, 

3: 9-12. 

Gyawali P, Ahmed W, Sidhu JPS, Nery S, Clements A, Traub R, McCarthy J, Llewellyn S, 

Jagals P and Toze S (2016) Quantitative detection of viable helminth ova from wastewater, 

human feces and environmental soil samples using novel PMA-qPCR methods. 

Environmental Science and Pollution Research, 23(18): 18639-18648. 

http://dx.doi.org/10.1007/s11356-016-7039-9
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PMA-qPCR method was able to distinguish viable ova from non-viable ones. Therefore, 

the viability assessment performance of PMA-qPCR method was compared with previously 

available methods (culture-base and vital stain) in chapter 8.  This method comparison study 

was conducted in the laboratory setting because all three methods require extensive isolation 

and concentration of hookworm ova from environmental and wastewater samples.  
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Literature review 

2.1. Background information 

Hookworm infections in humans are a leading cause of malnutrition, anemia, physical and 

mental retardation (Hotez et al., 2005; Brooker et al., 2008; WHO, 2012). Ancylostoma 

duodenale and Necator americanus are the primary cause of human infections (Hotez et al., 

2005; Traub et al., 2008; WHO, 2012). N. americanus is cosmopolitan in distribution, 

whereas A. duodenale is found to be more geographically restricted (Hotez et al., 2004). In 

addition, three species of zoonotic hookworm (A. ceylanicum, A. caninum and A. braziliense) 

also causes minor infections in humans (Traub et al., 2004; Traub et al., 2007).  

 

An adult hookworm can survive 5-7 years in the intestine of its human host and produce 

9.0 × 10
3
-3.0 × 10

4
 ova/day (Bethony et al., 2006). The ova are released into the environment 

through human defecation (Toze and Sidhu, 2011; Gyawali, 2012), which consequently 

increase the load of viable hookworm ova in the environment (WHO, 2006; Karkashan et al., 

2014). In the receiving environment, the ova can remain viable for 9-12 months and can 

hatch into larvae under favourable conditions (Abaidoo et al., 2010). The infective larvae (L3) 

are non-feeding organisms, therefore, they live in a state of developmental arrest up to three 

months in the environment (Brooker et al., 2006; Brooker, 2010); further development 

resumes after the  L3 larvae enter the human host via skin penetration (N. americanus and A. 

duodenale) or oral ingestion (A. duodenale). The life cycle of hookworm (N. americanus and 

A. duodenale) can be seen in Figure 2.1.  

 

It has been estimated that approximately 8.0 × 10
8
 people worldwide suffering from 

hookworm infection especially socioeconomically marginalised people in rural and areas of 

the tropical and subtropics of developing countries (WHO, 2012a; WHO, 2012b; WHO, 

2015). The infections account for approximately 3.2 × 10
6
 DALYs as reported in the global 

disease burden study in 2010 (Hotez et al., 2014). The higher hookworm infection rate in 

developing countries could be associated with poverty. Out of 8.0 × 10
8
 hookworm infection 

cases, 6.0 × 10
8
 cases are present in people earning less than $ 2.0 per day  (Hotez et al., 

2007). The mechanism of higher hookworm infection in people living with the poverty are 

inadequate sanitation, poor housing construction, lack of health education, lack of essential 

medicine and reuse of raw and partially treated wastewater. 
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Figure 2.1: Life cycle of N. americanus and A. duodenale (Source: Hotez et al., 2004) 

 

Due to the necessity of moist and sandy soil to complete the life cycle of hookworm and 

deposition of human faeces, people living without latrines access would be at high risk of 

hookworm infection. Wealthy families can easily afford anthelminthic drugs to treat 

hookworm infection on a frequent and periodic basis and therefore do not have to depend on 

sponsored deworming programs. The governmental funded deworming programs have 

mainly focused on pre-school aged and school-aged children rather than the entire 

community who serve as a reservoir for re-infection (Campbell et al., 2014). Another 

contributing factor for increased hookworm infections in developing countries could be poor 

housing construction. It has been reported that dirt floors, thatch roofs, and walls with cracks 

and crevices are also responsible for the transmission of hookworm infection (Hotez et al., 

2007).  
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Furthermore, use of raw and partially treated wastewater is also responsible for increased 

hookworm infection in the rural community of developing countries (Vuong et al., 2007, 

Gupta et al., 2009, Trang et al., 2007). The use of treated and raw wastewater in broadacre 

agriculture have increased significantly worldwide (Carr, 2005; Sidhu and Toze, 2009; 

Pritchard et al., 2010; Hanjra et al., 2012). It has been estimated that 2.0 × 10
7
 h of 

agricultural lands in developing countries are irrigated with raw wastewater (Carr, 2005; 

WHO; 2006; ). However, the use of treated and raw wastewater is associated with socio-

economic factors at the household level, such as poverty and a limited awareness of co-

existed health risks (Carr, 2005; Jimenez, 2006). The households that depend on agriculture 

for their livelihood are forced to use partially treated or untreated wastewater for agriculture 

(Carr, 2005; Jimenez, 2006) (Figure 2.2). In addition, up to 42% of treated sludge produced 

globally from wastewater treatment process is being used as fertiliser (Oleszkiewicz et al., 

2001; Wei et al., 2003; UN HABITA, 2008; ANZBP, 2009; Pepper et al., 2010; Kelessidis 

and Stasinakis, 2012).  

 

 

 

Figure 2.2: Global use of treated and raw wastewater for agriculture (Source: IWMI 

and IWRC, 2010) 
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Although the hookworm infection is predominantly found in developing nations (WHO, 

2015), a serious concern has been expressed in many of the developed countries including 

Australia, due to the increased mobile population, and the influx of uncontrolled refugees 

from hookworm-endemic regions (Jensenius et al., 2008; Johnston and Conly, 2008; Cherian 

et al., 2009; Monge-Maillo et al., 2009; O’Brien, 2009; Abu-Madi et al., 2010; Baaten et al., 

2011; Eslick and Kalantar, 2011). Due to their enteric source, hookworm ova excreted by 

infected individual reach to the wastewater and sludge (Sidhu and Toze, 2009; Toze and 

Sidhu, 2011). Since freshwater resources are under increasing pressure because of growing 

populations and climate change (Schwarzenbach et al., 2010; Hanjra et al., 2012), people are 

forced to use alternative water sources such as wastewater (Redcliffe, 2006; Redcliffe, 2010). 

One of the most significant issues in relation to wastewater reuse is the potential public health 

risks associated with viable hookworm ova (US EPA, 2003; WHO, 2006).  

 

Stringent treatment is required before using wastewater for various (potable and non-

potable) purposes where there is potential for human exposure. Several guidelines have been 

developed by national and international authorities and wastewater treatment methods have 

been put in place to eliminate the hookworm ova from treated wastewater and sludge (US 

EPA, 1999; US EPA, 2003; NRMMC, 2004; WHO, 2006). However, complete removal of 

hookworm ova may be difficult due to their protective cell wall (Toze and Sidhu, 2009).  

A thorough understanding of the prevalence of viable hookworm ova in wastewater and 

sludge, potential health risk mechanism, the efficiency of various treatment methods and 

detection methods in terms accurate quantification is essential.  

 

2.2. Literature search 

An initial literature search was performed on the electronic database including PubMed, 

Google Scholar, ISI web of Knowledge to obtain published information and was regularly 

updated as information become available. Articles, reports, conference proceedings, 

guidelines published in English were taken into consideration for extracting the reverent 

information. The literature search was performed using keywords [Wastewater reuse, sludge 

reuse, biosolid reuse, wastewater reuse and public health risk, wastewater treatment methods, 

sludge treatment methods, wastewater reuse guidelines, hookworm in wastewater, hookworm 

in sludge].  
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Since Ascaris lumbricoides is being used as an indicator organism for helminth in 

wastewater and sludge, the search resulted in little information on the prevalence of 

hookworm in wastewater and sludge.  Therefore, criteria for the literature search was broaden 

using keywords [helminths in wastewater, helminths in sludge, wastewater treatment and 

helminths reduction, wastewater reuse and helminth-associated health risk].   

 

2.3. Prevalence of helminths in wastewater and sludge  

The occurrence of helminth ova/larvae in wastewater depends on the prevalence of the 

helminth infection in the community (Mahvi and Kia, 2006). Due to the higher prevalence 

rate, and ability to produce a higher number of ova each day by a female (Bethony et al., 

2006; Brooker et al., 2006; Knopp et al., 2012), ova and larvae of STHs (Ascaris 

lumbricoides, Ancylostoma duodenale, Necator americanus, and Trichuris trichiura) are 

commonly found in wastewater and sludge around the world.  

 

However, other helminths such as Enterobius vermicularis, Strongyloides stercoralis, 

Toxocara spp., Taenia spp., Hymenolepsis nana, Echinococcus spp., Trichostrongylus spp., 

Dicrocoelium dendriticum have also been reported to be present in wastewater and sludge 

(Gaspard and Schwartzbrod, 2003; Mahvi and Kia, 2006; Do et al., 2007; Wichuk and 

McCartney, 2007; Jimenez et al., 2007; Ben Ayed et al., 2009; Kelessidis and Stasinakis, 

2012; Bastos et al., 2013; Sharafi et al., 2012; Hajjami et al., 2012; Konate et al., 2013a; 

Konate et al., 2013b). Commonly detected helminth ova and larvae in the wastewater and 

sludge around the world, their mode of transmission and the infective stage are presented in 

Table 2.1. 
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Table 2.1: Commonly detected helminths in wastewater and sludge, their mode of 

transmission and infective stage  

 
Helminths Numbers of ova 

production 

Infective stage Transmission mode 

Ascaris spp. 10
5
/day Embryonated ova Oral ingestion 

Hookworm 10
4
/day Filariform larvae Oral and skin penetration 

T. trichiura 10
3
/day Embryonated ova Oral ingestion 

E. vermicularis 10
5
/female Embryonated ova Oral ingestion 

S. stercoralis 10
1 
larvae/day Filariform larvae Skin penetration 

Toxocara spp. 10
5
/day Embryonated ova Oral ingestion 

Taenia spp. 10
5
/proglottid Embryonated cyst Oral ingestion 

Hymenolepis spp. - Embryonated ova/cyst Oral ingestion 

Echinococcus spp. - Embryonated ova Oral ingestion 

Trichostrongylus spp 10
2
/day Filariform larvae Oral ingestion 

D. dendriticum - Metacercariae larvae Oral ingestion 

Fasciola spp. 10
5
/day Metacercariae larvae Oral ingestion 

Spirometra spp 

Schistosoma spp 

- 

10
4
 

Coracida larvae 

Metacercariae larvae 

Oral ingestion 

Oral ingestion 
-
 = Data is not available 

The numbers of STHs ova in raw wastewater can be as high as 10
3
 per liter depending 

upon the rate of infection in the community (Gaspard and Schwartzbord, 2003; Sharafi et al., 

2012; Hajjami et al., 2012; Bastos et al., 2013).  Climatic conditions such as temperature, 

rainfall, relative humidity can also influence the numbers of ova and larvae in the wastewater 

and sludge (Sharafi et al., 2012; Hajjami et al., 2012; Bastos et al., 2013). This could be due 

to the fact that, STHs ova are known to develop faster at a temperature between 28-32ºC 

(Seamster, 1950; Beer, 1976; Smith and Schad, 1989; Brooker et al., 2006). In addition, soil 

moisture and relative humidity also influence the survival of viable ova and larvae (Nwosu 

and Anya, 1980; Udonis et al., 1980; Brooker et al., 2006). Therefore, a wider population is 

potentially infected, and eventually contributing more STHs ova into the wastewater system.  

 

Helminths ova have high density and are large in size (55 -74 µm by 35 – 42 µm) 

depending on the species, therefore they can settle down rapidly in wastewater, and be 

concentrated in the sludge (Hotez et al., 2005; Do et al., 2007; Pecson et al., 2007; Yen Phi et 

al., 2010; Konate et al., 2010; Navarro and Jimenez, 2011; Konate et al., 2013a). However, 

the velocity of ova settling down depends on the density of wastewater. Sengupta and 

colleagues (2011) reported that helminth ova settled faster in raw wastewater than in tap 

water.  
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Table 2.2: Numbers of helminth ova in raw wastewater, treated wastewater and sludge in different countries 

Countries Numbers of helminth ova in wastewater matrices References 

Raw wastewater (ova/L) Treated wastewater (ova/L) Sludge (ova/g) total solid 

Pakistan 46
a
,  5

b
, 3

c
, 53

i
 1

a
, 1

i
 * (Sharafi et al., 2012) 

Egypt 68
i
 4

i
 67

i
 (Stott et al., 2003; Jimenez, 2007) 

Tunisia 455
a
, 6

b
, 51

d
, 420

e
, 932

i
 5

a
, 6

d
, 24

e
, 35

i
 * (Ben Ayed et al., 2009) 

Mexico 6
i
 * 46

a
, 4

c
, 2

f
, 52

i
 (Pecson et al., 2007; Navarro and Jimenez, 2011) 

India 3
a
, 1

c
, 8

g
, 47

i
 24

a
, 5

g
, 29

i
 * (Gupta et al., 2009) 

Iran 2
a
, 3

d
, 1

e
, 2

g
, 9

i
 1

a
 22

i
 (Bina et al., 2004; Mahvi and Kia, 2006) 

Burkina Faso 7
a
, 1

c
, 6

g
, 16

i
 * 536

i
 (Konate et al., 2010, Konate et al., 2013a) 

France 9
i
 * 7

i
 (Navarro and Jimenez, 2011) 

USA 8
i
 * 13

i
 (Navarro and Jimenez, 2011) 

Vietnam 200
i
 * 450

i
 Do et al., 2006, Yen Phi et al., 2010) 

Brazil 201
i
 * 101

a
, 20

b
, 11

d
, 61

e
, 5

g
, 27

h
, 229

i
 (Silvana et al., 2006; Navarro and Jimenez, 2011) 

Oman 

Australia 

224
a
, 69

c
, 3

e
, 18

f
, 33

g
, 6

h
, 353

i 

* 

45
a
, 6

f
, 6

h
, 57

i 

41
i
 

* 

* 

(Rivera et al., 2012) 

(Water Corporation, 2012) 

a
Ascaris,  

b
Hymenolepsis,  

c
Trichuris,  

d
Taenia,  

e
Enterobius,  

f
Toxocara,  

g
Hookworm,  

h
Strongyloides,  

i
overall helminths ,  *numbers are not  reported  
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Table 2.2 shows the number of helminths ova present in treated wastewater, raw 

wastewater and sludge samples in different countries. The information presented in the table 

indicated that using the model organism (A. lumbricoides) to determine the treated 

wastewater quality may not be suitable. In addition, currently used microscopic detection 

methods may not be suitable for estimating the health risk associated with wastewater and 

sludge reuse because of lack of specificity and sensitivity.  

 

2.4. Potential public health risks  

Wastewater and sludge may contain a high number of helminth ova and larvae including 

hookworm that can pose significant public health risks either directly and indirectly (Figure 

2.3). The extent of the health risk, however, depends on several factors such as numbers of 

viable ova/larvae present in the environment, infective dose, exposure routes and the 

susceptibility of the exposed individual (Navarro and Jemenez, 2011).  

Figure 2.3: Potential path of public health risks associated with wastewater and sludge 

reuse  
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2.4.1. Health risks through direct exposure 

People handaling wastewater and sludge including wastewater and sludge treatment plant 

workers, people transporting sludge as well as farmers applying wastewater and sludge to 

land and wastewater applied mine workers can be exposed to helminth ova and larvae 

directly during their work (Seidu et al., 2008; Ackerson and Awuah, 2012). This group has 

higher (40%) rate of helminth infections than indirectly exposed groups (Ensink et al., 2005; 

El Kettani and Azzouzi, 2006; Trang et al., 2007; The World Bank, 2010). In the directly 

exposed group, hookworm infection is found to be more common (Ensink et al., 2005; 

Ensink et al., 2008). This could be due to the transmission mode (oral ingestion and skin 

penetration) of hookworms.  

 

The health risk is higher in developing countries compared to the developed countries 

(The World Bank, 2010). This could be the fact that, people in the developing countries do 

not use personal protective equipment during handling wastewater and sludge which 

increases the risk of infection (Gyawali et al., 2013). Studies have been suggested that the 

health risks in the directly exposed group (wastewater workers and farmers using partially 

treated wastewater) is directly related to working conditions, individual behavior, in 

particular, personal hygiene as well as use of personal protective equipment (El Kettani and 

Azzouzi, 2006; The World Bank, 2010). In addition, the prevalence of helminth infections is 

higher in developing countries compared to developed countries, which significantly 

increases the risk of infection to the directly exposed groups. 

 

2.4.2. Health risks through indirect exposure 

People can also acquire helminth infections via indirect exposure to helminths present in the 

wastewater and sludge by selling and consuming  vegetables and aquaculture products grown 

on farms using wastewater and sludge (Gupta et al., 2009; Navarro and Jimenez, 2011; 

Ackerson and Awuah, 2012). Helminth ova contained in the treated wastewater and sludge 

can easily contaminate crops and aquaculture products. A study has reported that 90% of 

helminths found in the treated wastewater and sludge can be transferred onto green and leafy 

vegetables such as spinach and parsley when treated wastewater and sludge are applied 

(Navarro and Jimenez, 2011).  
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The contamination level of helminth ova on vegetables increases during the rainy season 

(Vuong et al., 2007).  This could be due to the heavy rainfalls lifting the helminth ova/larvae 

from ground and depositing on the vegetables such as spinach, parsley, cabbage and 

cauliflower where they remain infective for a long period of time (Abaidoo et al., 2010). 

Helminth ova present in the treated wastewater and sludge also have the potential to 

contaminate subsurface vegetables such as carrots and radish. However, the magnitude of the 

contamination in the subsurface vegetable is lower (0.16 ova per 100 g) than in leafy 

vegetables (10 ova per 100 g)  (Amahmid et al., 1999; Vuong et al., 2007).  

Another way of indirect exposure to helminth ova/larvae is by using wastewater irrigated 

gardens, parks, and sporting venues for recreational activities (Moubarrad and Assobhei, 

2007).  For example, Moroccan children playing in a park had 18% higher rate of helminth 

infections when compared to children who never visited the park (Moubarrad and Assobhei, 

2007). Moreover, pets especially dogs can carry helminths ova/larvae from park to home 

(Gyawali et al., 2013), and thereby be transmitted to humans. In addition, helminth ova can 

run off from agricultural land during rain and flood events. Those run off ova have the 

potential to contaminate environmental waterways such as rivers, creeks, ponds, and beaches. 

As a result, people can be infected with the helminths by using contaminated waterways for 

different activities including recreation and transport (Horweg et al., 2006; King, 2010).  

 

2.5. Preventive measures used 

To minimise the potential public health risk associated with the reuse of treated wastewater 

and sludge, various guidelines were developed by different national and international health 

regulatory bodies (US EPA, 2003; Gaspard and Schwartzbrod, 2003; NRMMC, 2004; WHO, 

2006; DEC, 2012). These guidelines have established an acceptable limit of helminth ova in 

treated wastewater and sludge depending on their final use. For example, < 1 viable helminth 

ovum in 1L of treated wastewater or 4 g of dry sludge can be used without restriction (WHO, 

2006). This number of helminth ova in treated wastewater and sludge for unrestricted use was 

established on the basis of that, less than one viable ovum in 1L treated wastewater or 4 g of 

sludge is difficult to detect using available detection methods (Carr, 2005).  
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The wastewater and sludge treatment process is the first and most important factor towards 

minimising the potential health risk associated with wastewater reuse. Various wastewater 

and sludge treatment methods also have been proposed to remove helminth ova from 

wastewater and sludge prior to reuse (US EPA, 2003; WHO, 2006). The guidelines have also 

identified the potential points of human health risks associated with treated wastewater and 

sludge reuse and designed multiple barrier approaches. The multiple barrier approaches 

include good safe agriculture, good manufacturing practice and good hygiene practices where 

wastewater and sludge treatment alone is not considered a sufficient pathogen barrier (WHO, 

2006; IWMI AND IWRC, 2010) (Figure 2.4).  

 

 

 

 

Figure 2.4: Flow chart showing multiple barrier approaches in order to minimise the 

public health risk associated with wastewater and sludge reuse 
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The main aim of wastewater treatment process is to remove/inactivate the numbers of 

helminth ova or larvae from wastewater and sludge. Since the density of helminth ova 

including hookworm is higher than raw wastewater, the ova settle down quickly in the raw 

wastewater (Sengupta et al., 2011). Therefore, the retention of wastewater (sedimentation) 

process effectively (2-3 log10 reduction) removes helminth ova from the wastewater (Toze, 

2006; Reinoso et al., 2011; Konate et al., 2013a) (Table 2.3). These methods may remove 

helminth ova from the liquid, however, will concentrate the helminth ova in the solid phase 

(sludge) where they can remain viable for a long period of time (up to 20 months) 

(Sanguinetti et al., 2005). Therefore, sludge may require further treatment.  

 

Different methods have been used to inactivate the helminths ova and other potential 

pathogens from sludge such as ponding, aerobic digestion, anaerobic digestion, lime 

stabilisation, heat treatment depending on the availability of resources and feasibility 

(Mendez et al., 2002; Bina et al., 2004; Capizzi-Banas et al., 2004; WHO, 2006; Mendez-

Contreras et al., 2009; Maya et al., 2010; Maya et al., 2010; Navarro and Jimenez, 2011; 

Reinoso et al., 2011; Toze and Sidhu, 2011; Ruiz-Espinoza et al., 2012; Endale et al., 2012; 

Konate et al., 2013a) (Table 2.3). The helminth inactivation rate of these sludge treatment 

methods varied between studies. For example, a study reported that increasing the pH of 

sludge to 12 for 2 h can provide complete inactivation of  helminth ova (Mendez et al., 2002) 

however, another study reported that only 84% helminth ova can be inactivated by increasing 

the pH of sludge to 12 with 120 h of holding time (Bina et al., 2004) (Table 2.3).  

 

Similarly, WHO has made a recommendation that sludge must be treated at 45ºC for 1h to 

achieve the safe level (< 1 ova per 4 g) for unrestricted use (WHO, 2006).  Conversely, other 

studies did not agree with the treatment conditions recommended by WHO (Capizzi-Banas et 

al., 2004; Maya et al., 2010; Navarro and Jimenez, 2011) (Table 2.3). This discrepancy 

between the calculated helminths ova removal rate could be the fact of inbuilt error of 

currently available detection methods. Other factors, such as climatic conditions may also 

influence the removal rate. The treatment method may provide optimum result in the tropical 

and subtropical climate but may not provide the same result in a temperate climate. 

Therefore, a generalisation efficacy of any sludge treatment method might not be appropriate. 

Another issue that requires considering is the reported removal rate from laboratory scale 

studies which may different in the real world scenario with a large volume of sludge.   
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Table 2.3: Efficacy of different sludge treatment methods on helminth ova inactivation 

Treatment Methods Treatment conditions Helminth ova Inactivation 

rate (%) 

References 

Lime stabilization Ammonia 20% w/w for 2 h 

Ammonia 20% w/w with 50ºC for 2 h 

pH 10.2 for 40 days 

pH 11 for 120 h 

pH 12 for 120 h 

pH 10 with humidity 90% for 8 months of  RT 

pH 12.5 with humidity 80% for 4 months of  RT 

* 

* 

A. lumbricoides 

* 

* 

A. lumbricoides 

A. lumbricoides 

83 

100 

94 

56 

83 

100 

84-95 

(Mendez et al., 2004) 

(Mendez et al., 2004) 

(Endale et al., 2012) 

(Bina et al., 2004) 

(Bina et al., 2004) 

(Maya et al., 2010) 

(Maya et al., 2010) 

Heat treatment 50ºC-51.5ºC for 2 h at normal pH 

70ºC with humidity 80% for 2 h 

75ºC with 5% dryness for 3 h 

78ºC with 5% dryness for 3 h 

74ºC with 5% dryness for 3 h 

73ºC with 5% dryness for 3 h 

72ºC with 5% dryness for 3 h 

A. suum 

* 

A. lumbricoides 

A. suum 

T.  canis 

T. trichiura and T. solium 

H. nana 

100 

100 

100 

100 

100 

100 

100 

(Paulsrud et al., 2004) 

(Maya et al., 2010) 

(Maya et al., 2012) 

(Maya et al., 2012) 

(Maya et al., 2012) 

(Maya et al., 2012) 

(Maya et al., 2012) 

Pond stabilization Facultative pond  for  9.5 days of HRT 

Maturation pond for  5.5 days of HRT 

Anaerobic pond for 0.4 days of HRT 

Facultative pond for  4.1 days of HRT 

A. lumbricoides and Hookworm 

A. lumbricoides and Hookworm 

* 

* 

98 

99 

90 

92 

(Konaté et al., 2013a) 

(Konaté et al., 2013a) 

(Reinoso et al., 2011) 

(Reinoso et al., 2011) 

Anaerobic digestion 

 

Mesophilic temperature (35ºC) for 31 days of HRT 

Thermophilic temperature (55ºC) for 21 days of HRT 

Thermophilic temperature (55ºC) for 120 min 

Thermophilic temperature (40ºC) for 120 min 

Thermophilic temperature (61ºC– 62.5⁰C) for 45 min 

* 

* 

* 

* 

A. suum 

0.3 

85-100 

94 

74 

100 

(Méndez-Contreras et al., 2009) 

(Méndez-Contreras et al., 2009) 

(Ruiz-Espinoza et al., 2012) 

(Ruiz-Espinoza et al., 2012) 

(Paulsrud et al., 2004) 

Aerobic digestion Sludge/40 days of  RT 

Mixed with ash/40 days of RT 

Mixed with soil/40 days  of RT 

Mixed with smooth soil/28 days of  RT 

Mixed with unsmooth soil/28 days of RT 

A. lumbricoides 

A. lumbricoides 

A. lumbricoides 

* 

* 

73 

100 

76 

97 

89 

(Endale et al., 2012) 

(Endale et al., 2012) 

(Endale et al., 2012) 

(Ferreira et al., 2002) 

(Ferreira et al., 2002) 

Compression Compressed for 7 min 42 sec 

Compress for 15 min 47 sec 

Compress for 29 min 53 sec 

A. suum 

A. suum 

A. suum 

86 

90 

100 

(Buitrón and Galván, 1998) 

(Buitrón and Galván, 1998) 

(Buitrón and Galván, 1998) 

*Helminths not specified, RT= Retention time, HRT= Hydraulic retention time 
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2.6. Isolation and quantitative detection of viable helminth ova 

The efficiency of the wastewater and sludge treatment methods has been measured by 

quantifying the numbers of viable helminths ova in treated wastewater and sludge (US EPA, 

2003; NRMMC, 2004; WHO, 2006). Currently, two quantitative detection methods have 

been used to quantify viable helminths ova from wastewater and sludge samples; culture-

based (US EPA, 2003) and vital staining (de Victorica and Galven, 2003).  

 

2.6.1. Isolation and concentration of ova 

Numbers of helminths ova in treated wastewater and sludge is distributed heterogeneously 

(Gantzer et al., 2001). Therefore, detection and quantification of helminths ova from 

wastewater matrices require isolation and concentration of the ova. Ideally, any concentration 

method should be rapid and have the ability to consistently recover high concentrations of 

ova from wastewater matrices. The concentration method developed by the US EPA has been 

the most commonly used to recover helminths ova from wastewater and sludge samples (US 

EPA, 1999). The recovery rate of this method can range from 65-74% from wastewater 

samples (Maya et al., 2006). This method, however, is laborious and time-consuming due to 

the requirement of multiple steps of washing and concentrating the samples (Ferguson et al., 

2004).  

 

Several methods such as centrifugation (Whitmore and Carrington, 1993; Higgins et al., 

2003), hollow fiber ultrafiltration (HFUF) (Simmons et al., 2001; Ferguson et al., 2004; Hill 

et al., 2005; Hill et al., 2007), filtration (Nieminski et al., 1995; Maya et al., 2006; Alli et al., 

2011), and flotation (Bowman et al., 2003; de Victorica and Galván, 2003; Bastos et al., 

2013) have also been used to recover various microorganisms including ova from water and 

soil samples. Some of these methods are rapid and can potentially be used to concentrate 

helminths ova from wastewater matrices.  

 

2.6.2. Quantitative detection of viable helminths ova 

In addition to culture-based and vital staining methods which are time consuming, laborious 

and non specific, other methods such as flow cytometry, PCR/qPCR have been used to detect 

helminths ova and larvae from faecal samples and have the potential to detect viable helminth 

ova from treated wastewater and sludge. The principle of different quantitative detection 

methods can be seen in Figure 2.5. 
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Figure 2.5: Principle of different method for quantifying viable helminth ova 

 

2.6.2.1. Culture-based method 

The culture-based method involves artificially hatching the ova in a laboratory. Helminth ova 

are incubated at 28ºC - 30ºC for up to 28 days depending on the helminths, to allow the 

viable ova to hatch and are observed microscopically (Bowman et al., 2003). Health 

regulators including the US EPA and WHO recommend this method because it has the ability 

to estimate viability of helminth ova recovered from treated wastewater and sludge.  

 

The method, however, has limitations such as the requirement of highly skilled personnel 

to accurately distinguish between larvae of different species of helminths (Verweij et al., 

2007). In addition, the detection limit of the method depends on detection sensitivity of a 
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microscope that may not be sensitive enough to detect low numbers of larvae in a sample 

(Weber et al., 1991). The most important limitation of the culture-based method is the 

lengthy wait for the result to be available which increases congestion in a laboratory. 

Therefore, the operational cost of the method can increase significantly. The main advantages 

and disadvantages of the culture-based method are listed in Table 2.4.  

 

2.6.2.2. Vital stain method 

The stain-based method is rapid, cheap and easy to use compared to the incubation method 

(de Victorica and Galvan, 2003; Dabrowaska et al., 2014; Karkashan et al., 2014). This 

method involves staining helminth ova with a stain such as Trypan blue, Congo red, Eosin Y, 

Hematoxylin, Methyl green, Safranin O, Methylene blue and Lugol’s iodine and counting the 

ova under a microscopic (de Victorica and Galván, 2003).  

 

The vital stain method takes advantage of different working mechanisms of the cell wall 

of viable and non-viable ova. A viable helminth ovum has three layers of intact cell walls that 

act as an alternative sieve and prevent the stain from entering into the cytoplasm (Matthews, 

1986). Once the ovum becomes non-viable, the integrity of cell wall is compromised and it 

becomes permeable to stain (Bae and Wuertz, 2009). The cell wall, however, may not be 

permeable immediately after inactivation, and this can lead to over-estimation of viable ova 

in a sample. 

 

The vital stain method also requires skilled personnel to prepare the samples and identify 

specific helminth ova under a microscope. Previous studies have noted that even skilled 

personnel may fail to distinguish hookworm ova from those of Oesophagostomum bifurcum 

due to highly similar morphologies (Cabaret et al., 2002, Traub et al., 2007, Verweij et al., 

2007). Therefore, result obtained from stain method may not be accurate and reliable (Table 

2.4). 

 

The use of automated quantification of fluorescent microscope and double fluorescent 

dyes (PI and DAPI) may increase the sensitivity of the microscopic method (Rieger et al., 

2010; Branco et al., 2012; Zotta et al., 2012), however, identification of hookworm ova may 

not be possible due to the similar morphology of some other helminth ova (Traub et al., 

2007).  
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2.6.2.3. Flow cytometry 

Flow cytometry combines advantages of microscopy and biochemical analysis in a single 

technique for rapid detection of pathogens (Hammes et al., 2008; Wang et al., 2010). In a 

flow cytometer, helminths ova in suspension intersect with a laser beam and produce a profile 

on the basis of scattered fluorescence. Therefore, detection can be rapid and sensitive.  The 

principle of assessing the viability of helminths ova is similar to the staining method. The 

major issue of using flow cytometry for quantifying viable helminths ova is that the treated 

wastewater and sludge contain similar sized helminths ova of different species which can 

provide similar profiles during flow cytometry. As a result, the method may significantly 

over-estimate the numbers of specific helminths ova in treated wastewater and sludge (Table 

4.3). In addition, treated wastewater or sludge can have a high level of background debris 

which may provide a similar profile to helminths ova during detection/quantification  and 

compromise the sensitivity of the method (Barbosa et al., 2008).  
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Table 2.4: Advantages and disadvantages of different quantitative detection methods for helminths ova 

Detection Methods Advantages Disadvantages References 

Culture-based 
 Viability is possible 

 cheaper chemical and 

equipment 

 Can be done in a small scale 

laboratory 

 

 Prolong time to culture larvae 

 Suitable conditions must maintain 

 Regular observation necessary 

 Low sensitivity and specificity  

(Bowman et al., 2003; Nocker et al., 

2007b; McCarthy et al., 2012) 

Vital stain 
 Cheap and easy process 

 Assessment can be done in 

few hours 

 Less chemical and equipment 

 Can be done in small scale 

laboratory 

 Difficulty on viability assessment  

 Sensitivity depends on detection threshold 

of a microscope 

 Stain might not effective on recently 

inactivate ova 

 Lack specificity 

(Weber et al., 1991; Nelson and Darby, 

2001; Cabaret et al., 2002; Victorica and 

Galvan, 2003; Verweij et al., 2007; 

McCarthy et al., 2012; Gyawali et al., 

2016b)  

Flow cytometry 
 Quick and easy process 

 Higher sensitivity than 

microscopy 

 Automated process 

 Quantification can be done 

 Lack of specificity 

 Difficulty on viability assessment of ova 

 Difficulty distinguishing background debris 

from ova 

(Hammes et al., 2008; Barbosa et al., 2008; 

Wang et al., 2010) 

Molecular 

(PCR/qPCR) 
 Quick and easy process 

 Higher sensitivity and 

specificity 

 Viability could be possible 

 Automated process 

 a
Multiple species can be 

identified from single sample 

 b
Quantification is possible 

 Require advance laboratory and equipment 

 Genomic information is essential 

 Require right genomic target for viability 

 Possibility of providing false positive result 

by extracting DNA from inactivated ova 

 Possibility of false negative result via 

inhibitors present in the samples 

 a
Multiple sets of primers require which can 

reduce the sensitivity 

 b
Triplicate sample required 

(Pecson et al., 2006; Verweij et al., 2007; 

Traub et al., 2007; Traub et al., 2008; 

Janwan et al., 2011; Jonker et al., 2012,  

Ngui et al., 2012b) 

a
= Multiplex PCR, 

b
=Quantitative PCR 
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2.6.2.4. Molecular (PCR/mPCR/qPCR) methods 

The molecular method can detect helminths ova through amplifying a target region of nucleic 

acid, which can be extracted from any samples (Queipo-Ortuno et al., 2008; Sołtysik et al., 

2011). Recent development in PCR methods made detection faster, more accurate and more 

sensitive than culture-based and vital stain methods (Traub et al., 2004; Traub et al., 2007; 

Traub et al., 2008). Ribosomal rRNA or rDNA of Internal Transcribed Spacer (ITS-1 and 

ITS-2) regions contain high variability in a closely related species (Traub et al., 2007; Traub 

et al., 2008) and can be used to distinguish to species level.  

 

Multiplex PCR (mPCR) method can be used to detect multiple parasites including 

different species of hookworm in a single assay ( Verweij et al., 2007; Jonker et al., 2012; 

Saeki et al., 2013) and reduce detection time, costs  and labor that is otherwise associated 

with running multiple assays (Toplak et al., 2012). However, it should be noted that multiple 

primers pairs must function under the same reaction conditions and do not form primer 

dimers during the reaction. Otherwise, the sensitivity of detection can be reduced (Kattenberg 

et al., 2011).  

 

Quantification of pathogens including helminths is not possible through either binary PCR 

or mPCR methods. A quantitative PCR (qPCR) method, however, can quantify pathogens on 

the basis of amplified gene copy numbers present in the target nucleic acid (Botes et al., 

2013). Therefore, it is imperative to know the exact gene copy number in a target nucleic acid 

(Pecson et al., 2006) for accurate quantification. The qPCR method has been widely used to 

quantify pathogens from different environmental samples (Bustin, 2010; Postollec et al., 

2011; Rusiñol et al., 2013; Ahmed et al., 2014a; Ahmed et al., 2014b).   

 

The qPCR method has improved detection and quantification of pathogens from various 

samples including treated wastewater and sludge. However, the viability of pathogens 

including helminth ova in a sample cannot be determined using a standard DNA target and 

there is a risk of overestimating the infectious pathogens when qPCR is used for 

environmental samples  (Byappanahalli et al., 2010; Srinivasan et al., 2011).  A high number 

of rDNA/rRNA copies in the ITS-1 and ITS-2 region makes detection more sensitive (Pecson 

et al., 2006; Raynal et al., 2012), caution however, is required interpreting the qPCR data to 

minimise the overestimation of helminth ova in environmental samples.  
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2.6.2.4.1. Dye based viability PCR 

Dye based viability PCR has been developed to overcome the limitations of qPCR. In the dye 

based viability PCR, pathogens are incubated with a DNA intercalating dye such as Ethidium 

Bromide Monoazide (EMA) or Propidium Monoazide (PMA). These dyes bind to exposed 

DNA during photo-activation and interfere with PCR amplification. Morphologically 

damaged oocysts and cells have unprotected nucleic acid. Therefore, their amplification is 

restricted after EMA and PMA photo-activation  (Nocker et al., 2006; Hein et al., 2007; 

Brescia et al., 2009; Chen and Chang, 2010; Byappanahalli et al., 2010; Taskin et al., 2011). 

In contrast, morphologically intact viable oocysts and ova exclude dyes (EMA and PMA), 

enabling strong PCR amplification. The operating mechanism is similar to the stain based 

detection method (Figure 2.6).  

 

 

 

Figure 2.6: Operating mechanism and steps of stain based viability PCR (Source: 

Nocker et al., 2007) 
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The effectiveness of EMA and PMA is directly related to the concentration of stain, 

incubating time and light exposure (Rudi et al., 2005; Nocker et al., 2006; Wagner et al., 

2008; Chang et al., 2010). Due to the chemical nature of EMA and PMA, the concentration of 

PMA must be 4-fold higher than EMA to achieve an effective result (Chang et al., 2010).  

However, there is no information available in the literature regarding the application of EMA 

and PMA for discriminating non-viable from viable hookworm ova.  

 

2.6.2.4.2. Molecular viability PCR 

 Molecular viability PCR uses species-specific ribosomal RNA (rRNA) and messenger RNA 

(mRNA) precursors required for basic cell function or life within the cell, as indicators of 

viable ova (Widmer et al., 1999; Kobayashi et al., 2009; Vollmer et al., 2010; Sander et al., 

2011; Vasconcelos et al., 2012). Since, rRNA and mRNA have a short life in the environment 

(Pecson et al., 2006; Sander et al., 2011; Vasconcelos et al., 2012), they can be used for 

detecting viable hookworm ova from treated wastewater and sludge samples. There is, 

however, no information regarding the status of rRNA and mRNA in ova inactivated during 

their incubating phase. 

 

It should be noted that the sensitivity of molecular methods depends on the quantity and 

quality of DNA or RNA of the hookworm ova extracted using commercially available kits.  

Since, the hookworm ova contain hard and multiple cell walls, it is vital that these are lysed 

properly for optimal extraction efficiency. Freeze-thaw cycles with lysis buffer facilitate 

lysing hookworm ova (Traub et al., 2004; Sidhu and Toze, 2008; Gyawali et al., 2015a). 

Treated wastewater and sludge have different chemistries so different freeze-thaw cycles may 

be required for complete lysis the ova in those samples. Another factor that can influence the 

molecular detection method is the presence of PCR inhibitors in treated wastewater and 

sludge.  Treated wastewater and sludge can have traces of heavy metals, fats, polyphenols, 

proteins, humic acid and fulvic acid (Rock et al., 2010; Xu et al., 2010; Schrader et al., 2012). 

Those compounds may not be completely removed during the nucleic acid extraction process. 

Small traces of those compounds in a nucleic acid can prevent PCR amplification. Therefore, 

a PCR inhibition test is important prior to detection and quantification. Skate 22 assay have 

been successfully used to evaluate the presence of PCR inhibitors in nucleic acid samples 

(Cao et al., 2012).  
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In conclusion, hookworm infection is leading cause of malnutrition, anaemia and impaired 

cognitive development in young children. Approximately 8.0 × 10
 6

 million people 

worldwide suffer from hookworm infection. The majority of infections are found in 

economically marginalised population in Africa followed by Asia, and the Americas. This 

could be because people living in those areas expose themselves to soil contaminated with 

hookworm larvae (L3) as a result of using raw wastewater or sludge on agricultural field as 

well as disposing night soil on open areas due to the lack of latrines. Despite the 

implementation of various interventions such as the improved sanitation, improved drinking 

water quality, health education, and MDA, it has been difficult to eradicate hookworm 

infections from an endemic region. Therefore, a rapid, sensitive and specific method for 

detecting viable hookworm ova from environmental samples is necessary in order to identify 

the potential source of hookworm reinfection.  

The numbers of hookworm ova in environmental samples are generally detect or quantify 

by either US EPA recommended culture-based or vital staining methods. Both methods rely 

on the identification of ova and larvae using microscopic observation. Microscopic 

observation is not sensitive enough to detect low numbers of ova in wastewater samples.  It 

has been recommended that molecular methods such as PCR and qPCR have the ability to 

detect hookworm ova with improved sensitivity and precision. The PCR/qPCR method in 

conjunction with PMA (DNA intercalating dye) can provide the viability of bacteria, 

protozoa, and viruses from environmental samples including wastewater and sludge. 

However, none of the published studies have investigated the ability of PCR/qPCR/PMA-

qPCR for quantitative detection of viable hookworm ova from wastewater and sludge 

samples.  
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Experimental Setup 

3.1. Ethical statements 

As human and dog faecal samples were the source of hookworm (A. caninum, A. duodenale 

and Necator americanus) and roundworm Ascaris lumbricoides ova, ethical approvals were 

necessary. Human and dog faecal samples were collected after obtaining ethical approvals 

from the relevant ethics committees.  

 The University of Queensland Animal Ethics Committee, Australia (Reference 

number: AEC/QU/12/2013) for collecting dog faecal samples. 

 The University of Queensland Human Research Ethics Committee (Project number: 

2011000734) for collecting human faecal samples. 

 The Australian National University Human Ethics Committee (Protocol: 2014/311) 

for collecting human faecal samples. 

 Timorese Ministry of Health Research and Ethics Committee (Reference number: 

2011/51) for collecting human faecal samples.  

While collecting human faecal samples, donors were informed about the use of their samples 

and written consent was obtained prior to collecting the samples.  

 

3.2. Rationale of using Ancylostoma caninum as a surrogate 

As human hookworm infection is rare in Australia it was, difficult to obtain large numbers of 

human hookworm ova required for the experiments. Dog hookworm (A. caninum), ova were 

therefore chosen as a surrogate because of their high prevalence in dog faeces in Australia 

and similar size (55-74 µm by 35-42 µm) of human hookworm ova. In addition, A. caninum 

ova have high up to 98% genetic and 100% morphological similarities with other hookworms 

of interest such as A. duodenale (Traub et al., 2004).  It was, therefore, considered as a 

suitable surrogate to conduct the necessary laboratory experiments. 

 

3.3. Obtaining and enumerating A. caninum ova  

The A. caninum ova used in this study were collected from dog faecal samples that tested 

positive at the School of Veterinary Science in University of Queensland, Gatton, Australia 

using a standard microscopy.  A. caninum ova were isolated from approximately 20 g of dog 
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faecal samples using the flotation method (Bowman et al., 2003). After isolation, ova were 

stored in 0.5% formalin. The ova in each sample were enumerated in triplicate by 

microscopic observation (10x × 10x) using a Sedgewick-Rafter Counting Chamber (Pyser-

Sgi
TM

). A photomicrograph of A. caninum ova used for the experiments can be seen in 

appendix A. The enumerated ova were aliquoted into 10 mL volumes in 50 mL tubes and 

stored at 4
o
C for a week and to be used for subsequent seeding experiments. Dog faecal 

samples positive with hookworm ova were collected over the three years period to keep the 

ova fresh for different experiments. The number of ova in each stock solution is presented in 

appendix B. 

 

3.4. Quality control 

Various laboratory safety rules, hygiene, and quality control measures were undertaken 

during each experiment.  

 All standard laboratory safety rules and hygiene controls were followed as described 

in Australian standards for the microbiological laboratory. 

 Background levels of A. caninum DNA were tested in tap water, treated wastewater, 

raw wastewater, and sludge samples prior to every seeding experiment.  

 To minimise qPCR contamination, DNA extraction and qPCR set-up was performed 

in separate laboratories.  

 A method blank was included for each batch of treated wastewater, raw wastewater, 

and sludge samples.  

 A reagent blank was also included during DNA extraction to account for any 

contamination during extraction.  

 Due to the light sensitivity of the PMA, all the PMA treatments were carried out in 

the dark room.  

 For each PCR/qPCR experiment, positive control, standards (also served as a positive 

control) and triplicate negative controls (UltraPure
TM

 water) were included.  

 For the PMA-qPCR experiment, positive (100% viable ova [n = 400 ± 40] without 

PMA) and negative (100% non-viable ova [n = 400 ± 40] without PMA) controls 

were used.  
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Development of real-time PCR method 

4.1. Introduction 

The use of wastewater and sludge in broadacre agriculture have increased significantly 

worldwide (Carr, 2005; Sidhu and Toze, 2009; Pritchard et al., 2010; Hanjra et al., 2012). It 

has been estimated that 5.0 × 10
6
 ha of agricultural land is irrigated with raw wastewater 

(Carr, 2005), and up to 42% of sludge produced globally from wastewater treatment process 

is being used as fertilizer (Kelessidis and Stasinakis, 2012). Since a single viable ovum has 

the potential to cause infections in an individual, the health risks can be high for people 

coming into contact with wastewater and sludge in areas where helminth infections are 

endemic especially in the developing countries (Ensink et al., 2005; WHO, 2006).  

 

Currently employed detection methods for hookworm are not sufficiently specific and 

sensitive to detect viable hookworm ova in wastewater matrices (liquid and solid). Culture-

based and stain-based methods are the most commonly used methods to detect hookworm 

ova in wastewater matrices (US EPA, 2003; de Victorica and Galván, 2003; Bowman et al., 

2003 Do et al., 2007; Wen et al., 2009; Sharafi et al., 2012). The major limitation of the 

culture-based method is that it requires up to seven days to obtain results, which may not be 

practical for situations that demand a large volume of work, fast turnover and rapid risk 

assessment (Boehm et al., 2009).  

 

Vital stain method is relatively rapid compared to the culture-based method. Both methods 

however, require highly skilled personnel to accurately distinguish between ova/larvae of 

different helminths. Due to the similarities in morphological characters of ova/larvae of A. 

duodenale, A. caninum and N. americanus, it is difficult to differentiate them visually into 

species level (Cabaret et al., 2002; Verweij et al., 2007; Traub et al., 2008). In addition, 

hookworm ova recovered from raw wastewater and sludge can have a high level of foreign 

particles that are similar to the ova which makes quantification very difficult for trained staff 

( Weber et al., 1991; Barbosa et al., 2008). The detection limit of both methods depends on 

detection sensitivity of a microscope which may not be satisfactory particularly of low 

numbers of hookworm ova are present in a sample (Weber et al., 1991).  
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Specific detection of hookworm ova/larvae is essential to determine the accurate health 

risks associated with the use of wastewater and sludge as well as to establish mitigation plans. 

Therefore, a rapid more accurate and sensitive detection method is required. The 

developments in real-time PCR method has already enabled rapid, sensitive and specific 

detection of various microbial pathogens in faecal and wastewater samples (Verweij et al., 

2007; ten Hove et al., 2009; Taniuchi, et al., 2011; Ahmed et al., 2015). PCR methods can 

quickly detect pathogens in a one-step closed-tube reaction within 2-4 h (Botes et al., 2013; 

Schar et al., 2013), thus overcoming the limitations of the incubation and staining methods. 

There is no PCR method currently available to detect hookworm ova from wastewater and 

sludge. 

 

Therefore, the main objective of this chapter was to develop a rapid, specific and sensitive 

real-time PCR method to detect hookworm ova and to evaluate the applicability of the 

method for wastewater matrices.  

 

4.2. Materials and methods 

4.2.1. Real-time PCR positive control 

A. caninum larvae were donated by Dr. Rebecca Traub from the University of Melbourne, 

Melbourne, Australia for the development of the real-time PCR assay. DNA was extracted 

from the larvae using DNeasy Blood and Tissue Kit (Qiagen, Valencia, CA) according to the 

manufacturer’s instructions. DNA was eluted in 100 μL AE buffer and concentration was 

measured using a NanoDrop spectrophotometer (ND-1000, NanoDrop Technology) and 

found to be 39 ng per µL. The DNA was stored at -80
o
C freezer until further used.  

 

4.2.2. Primer and probe design  

Nucleotide sequences of the 5.8S rRNA of Internal Transcribed Spacer (ITS) -1 region of A. 

caninum (NCBI accession no KC 755029.1) and A. duodenale (Accession no EU 344797.1) 

were obtained from GenBank. To identify the variation between the genes, the sequences 

were analysed using the NCBI Align Sequences Nucleotide Tool. A new set consisting of 

forward primer DHF (5´-TTT GCT AAC GTG CAC TGA ATG-3´), reverse primer DHR 

(5´-GAA ACA CCG TTG TCA TAC TAG CC-3´) and probe DHP (FAM-5´-AAC TCG 

TTG TTG CTG CTG AA-BHQ1-3´) was designed and used to amplify a 101 base pair (bp) 
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of the 5.8S rRNA gene of ITS-1 at the 626-726 region of A. caninum. The specificity of the 

newly designed primers was checked using NCBI Megablast as well as tested against human 

hookworm DNA.  

 

4.2.3. Real-time PCR optimisation and conditions  

Genomic DNA from A. caninum larvae was used for the optimisation of the real-time PCR 

assay. To ensure optimal performance of the PCR, primer concentrations ranging from 100 

nM-400 nM and probe concentrations ranging from 300 nM-800 nM were titrated. The initial 

annealing temperature (Tm) value was chosen 2⁰C lower than the Tm values provided on the 

primer sets (63⁰C). Once the concentration of primer and probe were titrated, the annealing 

temperature was optimized by performing a gradient analysis ranging from 55- 61⁰C. The 

optimised real-time PCR amplifications were then performed in 25 μL reaction mixtures 

containing 12.5 μL iQ
TM

 Supermix (Bio-Rad Laboratories, Calif), 250 nM of each primer, 

400 nM of probe, 3 μL of template DNA and UltraPure
TM

 DNase/RNase-free distilled water 

(Life Technologies, Australia). PCR cycling parameters were as follow: 95C for 15 min, 45 

cycles of 95C for 15 s, 59C for 1 min. For each PCR assay, positive (A. caninum DNA) and 

negative (UltraPure
TM

 water) controls were included.  

 

4.2.4. Real-time PCR lower limit of detection (LLOD) 

The PCR LLOD was determined using the stored genomic DNA extracted earlier from the A. 

caninum larvae. Ten-fold serial dilutions (10
-1

 to 10
-5

) of 5 ng of DNA were prepared in 

replicates (n = 6) and tested with PCR. The lowest quantity of DNA detected consistently in 

all replicate reactions within the cycle numbers used was considered as the PCR LLOD.  

 

4.2.5. Sample limit of detection (SLOD)  

To determine the SLOD, treated wastewater, raw wastewater and sludge samples were 

collected from two wastewater treatment plants (WWTPs) “A” (27
o
33’14.81”S; 

152
o
59’29.26” E) and “B” (27

o
22’52.71”S; 153

o
08’52.33”E)] located in Brisbane, Qld, 

Australia.  Fifteen liters of treated wastewater and raw wastewater were collected from each 

WWTP in sterile 20 L polypropylene carboy containers. Treated wastewater was collected 

prior to the chlorination stage whereas raw wastewater samples were collected from the 

primary influent.  Dewatered sludge samples were also collected from the belt process from 
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each WWTP in 500 mL sterile polyethylene Zip Lock
TM

 bags. All samples were transported 

on ice to the CSIRO laboratory, Dutton Park, Queensland. Tap water was collected from a tap 

in the laboratory. 

 

The samples (tap water, treated wastewater, raw wastewater, and sludge) were screened 

for the presence of A. caninum rRNA gene using the newly developed PCR method to obtain 

information on any background levels. Approximately 4.0 × 10
3 

of A. caninum ova that were 

previously isolated from dog faeces and stored at 4
⁰
C (see section 3.3) added to 1 L tap water 

(control), treated wastewater and raw wastewater samples. Ten-fold serial dilutions (10
-1

 to 

10
-4

) were made for each sample. For the sludge experiment, 10-fold serial dilutions (10
-1

 to 

10
-4

) of 4.0 × 10
3 

ova were made and added to approximately 4 g of samples. All samples 

were processed in triplicate according to the concentration method described below (in 

section 4.2.6).  A method blank of the unseeded sample was included for each batch of tap 

water, treated and raw wastewater samples to check for cross contamination during sample 

processing.  

 

4.2.6. Sample concentration and DNA extraction 

Sample concentration varied depending on the solids present in the samples. A flow chart of 

sample concentrations is shown in Figure 4.1.  

 

Initial concentration methods for tap water and treated wastewater samples involved 

filtering through 8 m, 90 mm polycarbonate filters (Merck Millipore, Billerica, 

Massachusetts, USA) using glass funnels attached to a vacuum pump.  The trapped ova were 

washed from the filters using 25 mL phosphate buffer saline (PBS) into a 50 mL 

polypropylene tube.  The ova were then pelleted from the PBS suspension by centrifuging at 

800 × g for 15 min.  

 

For raw wastewater, initial attempts to process 1L with the membrane filtration method 

failed due to rapid clogging of the filters by suspended solid materials in the wastewater. 

Subsequently, a centrifugation and flotation approach was used to concentrate the ova from 

raw wastewater samples. The final method involved transferring raw wastewater samples (1 

L) into 700 mL centrifuge containers (Beckman Coulter Inc), and centrifuging at 5,200 × g 
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for 30 min. The remaining volume (300 mL) was added after discarding the supernatant and 

centrifuged again at 5,200 × g for 30 min.  

 

The resulting supernatant was discarded and the pellet was resuspended in 20 mL MilliQ 

water and transferred to a 50 mL polypropylene centrifuge tube and centrifuged at 5,200 × g 

for 10 min to obtain a pellet.  Ova were then separated from the pellet with the MgSO4 

(specific gravity 1.2) floatation method outlined previously by Bowman et al., (2003). In 

brief, the pellet was suspended in 45 mL of MgSO4 solution by vortexing in a centrifuge tube.  

The suspension was then centrifuged at 800 × g for 3 min and the supernatant was transferred 

to a 15 mL polypropylene tube. This was then further centrifuged at 800 × g for 10 min to 

obtain a pellet containing the A. caninum ova.   

 

A similar approach was also followed for the sludge. In brief, sludge samples (4 g dry 

weight) were placed into a 50 mL polypropylene tube and 45 mL of MgSO4 solution was 

added.  The tube was vortexed followed by centrifugation at 800 × g for 3 min and the 

supernatant was transferred into a 15 mL polypropylene tube, and further centrifuged at 800 

× g for 10 min to obtain a pellet.  

 

DNA from the concentrated hookworm ova (pellet) in the tap water and treated 

wastewater (WWTP-A) samples was extracted using the DNeasy Blood and Tissue Kit 

(Qiagen, Valencia, CA) with a slight modification. In brief, pellets from the centrifugation 

step were mixed with 180 µL of lysis buffer ATL followed by five freeze -thaw cycles of 10 

min each at -80ºC (standard freezer) and 95ºC (hot water bath).  Due to the presence of high 

suspended solid contents and initially observed PCR inhibition in the treated wastewater from 

WWTP-A, the Mo Bio Power Soil DNA Kit (Mo Bio, Carlsbad, CA, USA) was used to 

extract DNA from all subsequent WWTP-A and WWTP-B samples including sludge 

samples. In this case, pellets from the centrifugation step were mixed with 60 µL of lysis 

buffer C1 followed by five freeze-thaw cycles of 10 min each. A reagent blank was also 

included during DNA extraction.    
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Figure 4.1: Sample concentration methods for tap water, treated wastewater, raw wastewater, and sludge samples 
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4.2.7. Application of the real-time PCR method  

In addition to the seeded samples, the applicability of the developed real-time PCR method 

was tested for unseeded tap water (n = 3), treated wastewater (n = 12), raw wastewater (n = 

18), and sludge (n = 6) samples. Tap water samples were collected for a tap located into the 

laboratory. Treated wastewater, raw wastewater, and sludge samples were collected from two 

different WWTPs in different time intervals. Sample concentration and DNA extraction were 

conducted as described above. 

 

4.2.8. PCR inhibition test 

 A sketa22 real-time PCR assay with previously published primers and the probe was used to 

determine the presence of inhibitors in the DNA samples extracted from tap water, treated 

wastewater, raw wastewater and sludge samples (Haugland et al., 2005). All DNA samples 

were seeded with 10 pg of chum salmon (Oncorhynchus keta) DNA (Ahmed et al., 2015). 

The threshold cycle (CT) values of the O. keta seeded DNA samples were compared to the 

equivalent quantities of O. keta DNA suspended in UltraPure
TM

 water (Life Technologies). 

Where inhibition was detected, the DNA extracts were diluted 10 fold and retested. The 

sketa22 PCR assay was performed in 25 μL reaction mixtures using iQ
TM

 Supermix (Bio-

Raid Laboratories). The sketa22 PCR assay mixture contained 12.5 μL of Supermix, 300 nM 

of each primer, 400 nM of probe, 10 pg of O. keta DNA and 3 μL of template DNA sample. 

 

4.2.9. Statistical analysis  

GraphPad Prism 6 (GraphPad Software) was used to conduct the statistical analysis. A one-

way ANOVA was performed to determine the differences between the CT values obtained for 

O. keta DNA suspended in UltraPure
TM

 water and O. keta contaminated DNA samples 

extracted from tap water and wastewater matrices samples. ANOVA was also used to 

determine whether the CT values obtained for seeded and unseeded treated wastewater, raw 

wastewater and sludge samples varied significantly within and between WWTPs as well as 

tap water samples.  
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4.3. Results 

4.3.1. Real-time PCR optimisation and LLOD 

The specificity of the newly designed primers was checked using NCBI Megablast. The 

results of the BLAST search showed that the sequences of selected primers matched with the 

rRNA of the ITS-1 region of A. caninum. The PCR result indicated that the newly developed 

primer sets does not cross react with human hookworm DNA. 

 

Among the series of primer and probe concentrations tested at an initial annealing 

temperature of 61⁰C, 250 nM of each primer and 400 nM of the probe provided the earliest 

CT value with the smallest standard deviation (29.3 ± 0.1). The mean and standard deviation 

of CT values for different concentrations tested primers and probes can be seen in appendix C.  

The optimized primer and probe concentration was found to produce the best CT value (22.2 ± 

0.07) at the optimised annealing temperature of 59⁰C. The LLOD of the real-time PCR assay 

was performed using genomic DNA from A. caninum larvae. The PCR assay was able to 

detect A. caninum DNA up to a dilution 10
-4

 (equivalent to 500 fg DNA) (Table 4.1).  

 

 

Table 4.1: Real-time PCR lower limit of detection (LLOD) of serially diluted A. 

caninum genomic DNA (n = 6) 

 

 

CT: Threshold cycle 

ND: Real-time PCR not detected 

SD: Standard deviation 

 

4.3.2. PCR inhibitions 

The mean CT value and standard deviation for the O. keta seeded UltraPure
TM

 water was 27.8 

± 0.36. The mean CT values and standard deviations values for O. keta seeded tap water, 

treated wastewater, raw wastewater, and sludge DNA samples were similar to O. keta seeded 

UltraPure
TM

 water (Table 4.2). The treated wastewater DNA samples from WWTP-A, and 

sludge DNA samples from both WWTPs did not amplify O. Keta DNA, indicating the 

DNA 

dilutions 

Positive samples 

(%) 
Mean  SD  of CT 

values 

10
-1

 100 25.6 ± 0.04 

10
-2

 100 29.1 ± 0.04 

10
-3

 100 32.4 ± 0.09 

10
-4

 100 36.6 ± 0.10 

10
-5

 0 ND 
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presence of PCR inhibitors. These DNA samples were serially diluted to reduce any PCR 

inhibitors then re-analysed. The mean CT values and standard deviations value for O. keta 

seeded diluted (10 fold) treated wastewater and sludge samples were 27.9 ± 0.21 and 28.5 ± 

0.54 (WWTP-A) and 28.1 ± 0.11 (WWTP-B), respectively. An ANOVA analysis on the CT 

values obtained for O. keta seeded UltraPure
TM

 water and all the undiluted DNA samples that 

were free of PCR inhibitors as well as the 10 fold diluted samples showed that there was no 

significant (P > 0.05) difference suggesting the absence of PCR inhibitors. Based on these 

results, all the samples without PCR inhibition (undiluted and 10-fold diluted samples) were 

used for the PCR assays.   

 

 

Table 4.2: Sketa22 PCR assay for the evaluation of PCR inhibition in A. caninum ova 

seeded samples 

 

Sample 

sources 

Sample types DNA extraction kit used Mean  SD of CT values 

Undiluted 

DNA 

Diluted 

DNA (10
-1

) 

WWTP-A Treated wastewater DNeasy Blood and Tissue NPA 27.9 ± 0.21 

 Raw Wastewater Mo Bio Power Soil 27.7 ± 0.45 N/A 

 Sludge Mo Bio Power Soil NPA 28.5 ± 0.54 

WWTP-B Treated wastewater Mo Bio Power Soil 27.5 ± 0.30 N/A 

 Raw Wastewater Mo Bio Power Soil 27.5 ± 0.23 N/A 

 Sludge Mo Bio Power Soil NPA 28.1 ± 0.11 

 Tap water DNeasy Blood and Tissue 28.5 ± 0.12 N/A 

 Distilled water N/A 27.8 ± 0.36 N/A 

NPA: No PCR amplification 

N/A: Not applicable 

CT: Threshold cycle 

SD: Standard deviation 

4.3.3. Sample limit of detection (SLOD)  

The real-time PCR method indicated that the background of the tap water treated wastewater, 

raw wastewater and sludge samples used for seeding experiments were free from A. caninum 

rRNA. The method was able to detect A. caninum ova at a dilution of 10
-4

 (< 1 ovum) for ova 

seeded tap water samples (Table 4.3). Similar results were also obtained for ova seeded 

treated wastewater from both WWTPs.  The SLOD of A. caninum ova for the seeded raw 

wastewater and sludge samples from both WWTPs was at a dilution of 10
-3 

(4 ova) indicating 

a lower detection limit of A. caninum ova in these matrices compared to treated wastewater.  
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Table 4.3: Sample limit of detection (SLOD) of real-time PCR method in samples seeded 

with A. caninum ova 

 

Source of 

samples 

Wastewater 

matrices 

Triplicate PCR results at the dilutions tested 

10
-1 

(400 

ova) 

10
-2 

(40 

ova) 

10
-3 

(4 ova) 10
-4 

(< 1 

ova) 

CSIRO Lab Tap water   +  + + + 

WWTP-A Treated wastewater  +  + + + 

Raw wastewater  +  + + - 

Sludge  +  + + - 

WWTP-B 

 

 

 

Treated wastewater  +  + + + 

Raw wastewater  +  + + - 

Sludge  +  + + - 

+: Real-time positive results 

-: Real-time negative results 

 

 

The range of mean CT values obtained for the A. caninum ova seeded tap water samples 

was < treated wastewater < raw wastewater < sludge samples from both WWTPs (Figure 4.2a 

and b). The CT values of tap water samples were significantly different (P < 0.05) than treated 

wastewater from WWTP-A and raw wastewater and sludge samples from both WWTPs. 

Significant differences in CT values were also observed for the treated wastewater with raw 

wastewater and sludge samples for both WWTPs. However, the CT values of raw wastewater 

and sludge did not differ significantly (P > 0.05) from each other for both WWTPs. The CT 

values of the treated wastewater, raw wastewater and sludge samples (for WWTP-A) were 

higher than those obtained for WWTP-B. However, these differences were not statistically 

significant (P > 0.05).  
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Figure 4.2: Mean and standard deviation of CT value of serially diluted A. caninum ova 

seeded into tap water and different wastewater samples collected from treatment plants 

A (a) and B (b) 
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4.3.4. Application of the real-time PCR method to detect A. caninum ova in 

unseeded samples 

 Tap water samples were free from A. caninum DNA. A. caninum DNA was detected in 

treated wastewater (50%), raw wastewater (38%) and sludge (33.3%) samples (Figure 4.3). 

Although more treated wastewater was positive for A. caninum DNA, the treated wastewater 

had the higher CT values (CT = 36.9 ± 0.80) followed by raw wastewater (CT = 35.6 ± 2.43) 

and sludge samples (CT = 34.9 ± 2.43). This means that the raw wastewater and sludge 

samples had higher variations in numbers of ova than treated wastewater samples.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.3: Prevalence of A. caninum DNA in unseeded tap water (n = 3), treated 

wastewater (n = 12), raw wastewater (n = 18) and sludge (n = 6) samples collected from 

different wastewater treatment plants (WWTPs) 

 

4.4. Discussion  

The application of PCR-based methods has generated interest for the direct monitoring of 

parasites in faecal samples (Verweij et al., 2007; Yong et al., 2007; Traub et al., 2008; Ngui 

et al., 2012; Schar et al., 2013). PCR methods are rapid and can be used to detect specific 

parasites of interest with high sensitivity. Detection of helminths ova from wastewater 

matrices, however, requires isolation and concentration of the ova, which is often challenging 

due to the presence of high suspended solids and PCR inhibitors. In this study, a probe-based 
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real-time PCR method was developed for the rapid, sensitive and specific detection of canine 

hookworm (A. caninum) ova from wastewater matrices. 

 

The sensitivity of the real-time PCR assay was thoroughly tested by amplifying a known 

concentration (500 pg to 50 fg) of genomic DNA obtained from A. caninum larvae. The PCR 

LLOD of the newly developed assay was determined to be 500 fg of genomic DNA for all 

replicate samples which is similar or one order of magnitude lower than the LLOD values for 

different helminths reported in previous studies (Thaenkham et al., 2007; Traub et al., 2009; 

Rahman et al., 2011; Taniuchi et al., 2011; Ngui et al., 2012).  

 

This study also determined the effects of PCR inhibitors on the detection of A. caninum 

ova in wastewater matrices. Our results indicated that DNA samples from the treated 

wastewater of one wastewater treatment plant (from WWTP-A) had PCR inhibitors present. 

The DNeasy Blood and Tissue Kit was used to extract DNA from these samples, and it is 

possible that the kit was unable to remove the inhibitors effectively. In view of this, Mo Bio 

Power Soil DNA Kit was used for DNA isolation from the remaining wastewater and sludge 

samples. The main advantage of the Mo Bio Power Soil DNA Kit over the DNeasy Blood 

and Tissue Kit is the ability to remove humic substances and other inhibitors. This is 

supported by the fact that no PCR inhibitors were detected in wastewater samples from 

WWTP-B and raw wastewater samples from both WWTPs when DNA was extracted by 

using this kit. However, sludge DNA samples from both WWTPs indicated the presence of 

PCR inhibitors despite the use of Mo Bio Power Soil DNA Kit. This suggests that the 

concentration of PCR inhibitors in sludge samples was higher than raw wastewater samples 

as reported by (Schrader et al., 2012).  

 

Serial dilution of DNA is the strategy commonly applied in environmental, clinical, food 

samples to overcome PCR inhibition (Drosten et al., 2002; Audemard et al., 2004; Van Doorn 

et al., 2009). Our results indicated that a 10 fold dilution of those samples showing PCR 

inhibition was adequate to remove the inhibitors. Based on the result, it is suggested that 

DNA samples extracted from large volumes of wastewater matrices or complex 

environmental samples should be checked for the presence of PCR inhibitors prior to use for 

PCR amplification.  
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The PCR method used in this study was capable of detecting A. caninum ova in a range of 

<1 in tap water and treated wastewater (1L) and < 4 in raw wastewater (1L) and sludge (4 g) 

across all wastewater matrices from both WWTPs unless PCR inhibition is present. These 

results were consistent for all dilutions across the both WWTPs. The earlier CT values for the 

treated wastewater indicated the better recovery of ova from treated wastewater than raw 

wastewater and sludge samples. This could be attributed to the low suspended solid content 

of treated wastewater making it possible to pass through the membrane using the membrane 

filtration method. It has been previously reported that ova were better retained on the 

membranes during filtering of water samples compared to a potential loss of ova during 

floatation (Nieminski et al., 1995; Ferguson et al., 2004). Because of the high solid contents 

and turbidity, the membrane filtration method was not suitable for processing raw wastewater 

and sludge samples. In view of this, the flotation technique was used for concentrating ova 

from raw wastewater and sludge samples. Another important point to consider is that the 

flotation technique involves multiple steps of centrifugation, flotation and concentration with 

the potential loss of ova in each step compared to the membrane filtration method, which 

involves a single step for recovering the ova directly from the filters. 

  

The newly developed real-time PCR method was validated by testing of tap water, treated 

wastewater, raw wastewater and sludge samples from two different WWTPs. The method 

was able to detect low levels of A. caninum DNA from all three matrices. The earlier CT 

values (Figure 4.3) obtained for the sludge and raw wastewater samples than treated 

wastewater suggest the presence of relatively more DNA in the sludge and raw wastewater 

samples despite the potential poor recovery of the flotation method. This indicates that the 

developed method could be easily adapted by designing species-specific primers to detect 

other pathogenic helminth ova that have a public health concern such as A. duodenale, N. 

americanus, Ascaris lumbricoides from wastewater matrices and other environmental 

samples.  

 

A significant challenge still remains to develop a rapid and effective ova recovery method 

for helminths from raw wastewater and sludge. This requires further research to develop and 

validate new rapid concentration methods. For instance, hollow-fibre ultrafiltration has been 

shown to recover up to 83% Giardia and Cryptosporidium oocysts from environmental 

waters (Kuhn and Oshima, 2002; Hill et al., 2009). It is, therefore, recommended that 

concentration methods such as hollow-fibre ultrafiltration need to be compared with 
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membrane filtration and flotation methods for ova recovery efficiency. Although 

improvement of ova recovery rate was not a part of this thesis, it was noted the importance of 

rapid ova recovery method to be the success of PCR method.  Therefore, the performance 

characteristic of various recovery methods was evaluated in Chapter 6.  

 

4.5. Conclusions 

In conclusion, a real-time PCR method was successfully developed for rapid, sensitive and 

specific detection of canine hookworm (Ancylostoma caninum) ova from wastewater matrices 

(liquid and solid). The newly developed PCR method has high detection sensitivity with the 

ability to detect less than one A. caninum ova from 1 L of treated wastewater. The method is 

also able to detect four A. caninum ova from 1 L of raw wastewater and from ~ 4 g of treated 

sludge, respectively. The better detection sensitivity obtained for treated wastewater 

compared to raw wastewater and sludge samples could be a matrix issue given the higher 

concentration of suspended solid particles in raw wastewater and sludge compared to treated 

wastewater. The developed method is rapid, sensitive and specific compared to traditional 

methods and has the potential to aid in the public health risk assessment associated with land 

application of wastewater matrices. Since the morphology of STHs ova is similar to the A. 

caninum, it is anticipated that the method could be adapted to detect other pathogenic 

helminth ova such as A. duodenale, N. americanus and A. lumbricoides from wastewater 

matrices. Despite the rapidness, specificity, and high sensitivity, the real-time PCR method is 

unable to quantify the numbers of hookworm ova from treated wastewater and sludge which 

is necessary to assess public health risks. Quantitative (q)PCR however, has been used to 

quantify various pathogens from wastewater and sludge. Therefore, real-time PCR method 

requires upgrading to qPCR and attempt to quantify hookworm ova from wastewater 

matrices.  

 

 

 

 

 

 

 



 

53 
 

 

 

 

 

Chapter: 5 

Quantification of hookworm ova 
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Quantification of hookworm ova using qPCR 

5.1. Introduction 

Recent development in real-time PCR method can enable rapid, specific and sensitive 

detection of Ancylostoma caninum (dog hookworm) ova from wastewater matrices (Gyawali 

et al., 2015a). The detection sensitivity of the method was determined to be < 1 ova per L of 

treated wastewater, < 4 ova per L of raw wastewater and < 4 ova per 4 g of sludge.  The 

results can be obtained within few hours compared to the incubation method that requires up 

to few weeks. However, to assess the magnitude of the public health risks from hookworm 

ova present in the wastewater and sludge need to quantify the targeted gene.  

 

Quantitative PCR (qPCR) has already been used to quantify different types of pathogens 

from environmental samples (Shanks et al., 2008; Ahmed et al., 2014; Ahmed et al., 2015). 

However, no information is available on the application of qPCR-based methods to quantify 

hookworm ova from such samples. A handful of studies attempted to quantify Ascaris ova 

using qPCR in the laboratory setting (Pecson et al., 2006; Raynal et al., 2012). For instance, 

Pecson and colleagues (2006) created profiles of the ITS-1 rDNA and rRNA levels during the 

development of Ascaris ova from single cells to mature larvae.  

 

However, hookworm ova present in the faecal samples may contain 4 to 8 cell stages, and 

the ova multiply rapidly under suitable conditions. In addition, it is highly likely that 

wastewater and sludge samples may contain mixed population (early to late cell staged) of 

hookworm ova. Therefore, estimating gene copy numbers according to the Pecson et al., 

(2006) and Raynal et al., (2012) may not yield an accurate result. Therefore, determining the 

average gene copy numbers for an ovum from a mixed population may be appropriate.  

 

In view of this, work was undertaken to convert the real-time PCR method developed in 

Chapter 4 to a qPCR method. The successful development of a qPCR method will assist to 

determine the magnitude of health risks associated with the use of treated wastewater, raw 

wastewater and sludge for agricultural purposes.  
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5.2. Materials and methods 

5.2.1. Development of qPCR method 

A DNA standard involving 101 base pairs of the 5.8S rRNA gene from the ITS-1 region of A. 

caninum plasmid DNA sequence (TTTGCTAACGTGCACTGAATGACAGCAAACTCG 

TTGTTGCTGCTGAATCGTTTACCGACTATAAAACGTTTTGGCAGTGGCTAGTAT 

GACAACGGTGTTTC) was designed. This DNA segment was synthesised by Integrated 

DNA Technologies (IDT) (IDT Technology, USA). Of on receipt, 100 µL UltraPure
TM

 water 

was added to the tube to obtain 40 ng per/µL of plasmid DNA. Gene copy numbers were 

calculated by multiplying the DNA concentration by Avogadro’s number and dividing by the 

product of the plasmid size (bp) and an average weight of a base pair (Yun et al., 2006). 

Serial dilutions were prepared ranging from 10
5
 to 10

0 
gene copies per L and served as the 

standards for the qPCR method. The qPCR method performance criteria such as efficiency 

(E), slope, intercept, R
2
 and lower limit of quantification (LLOQ) were determined by 

analysing standard curves over the course of the study. The qPCR assay was performed using 

previously designed and optimized primers and probe (Chapter 4). A Bio-Rad CFX96 

thermal cycler (Bio-Rad Laboratories, USA) was used to run the thermal cycler program 

described in Chapter 4. All qPCR reactions were performed in triplicate.  

 

5.2.2. qPCR reproducibility and lower limit of quantification (LLOQ) 

 The reproducibility of the qPCR assay was assessed by determining the intra-assay 

repeatability and inter-assay reproducibility. The coefficient of variation (CV) of the assay 

was calculated by analysing the DNA standards described above. The intra-assay 

repeatability was calculated based on the quantification cycle (Cq) value by testing the DNA 

standard series in the same experiment (n = 6). The inter-assay reproducibility was calculated 

based on the Cq value of standard series on six different days (n = 6). The qPCR lower limit 

of quantification (LLOQ) value was determined from the DNA standard series in replicates 

(n = 6) at 95% confidence level. The DNA detected in the lowest dilution consistently for all 

DNA standard series (3 × 10
5
 – 3 × 10

0
 gene copies) were considered as the qPCR LLOQ.  
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5.2.3. Estimation of gene copy numbers per ova 

To estimate the gene copy numbers in a single A. caninum ovum, known numbers of ova (5 ± 

3, 50 ± 18 and 500 ± 27 ova) were used in replicates (n = 10). DNA was extracted directly 

from these 30 samples using a Mo Bio Power Soil DNA Extraction Kit (Mo Bio, Carlsbad, 

CA) as described in Chapter 4. The number of gene copies in each DNA sample was 

determined using the qPCR assay described above (section 5.2.1). The qPCR estimated gene 

copy numbers were then divided by corresponding ova numbers to obtain gene copy numbers 

per ovum. Based on the information available in the literature (Pecson et al., 2006; Raynal et 

al., 2012) that different cell staged ova produced different gene copy numbers and A. 

caninum ova are excreted in the dog faeces present in the fresh dog faeces may contain 4 to 8 

cell staged a minimum, average and maximum numbers of gene copies for an ovum were 

determined.   

 

5.2.4. Seeding experiment for qPCR accuracy 

 A seeding experiment was conducted to determine the accuracy of the qPCR method. To 

conduct the seeding experiment, 20 L treated wastewater (before chlorination) was collected 

in sterile 2 × 10 L polypropylene carboys from a wastewater treatment plant (WWTP A) 

located in Brisbane, Queensland, Australia. The samples were transported on ice to the 

laboratory.  The sample (1 L) was screened for the presence of background A. caninum ova 

using the real-time PCR assay described in Chapter 4. As no A. caninum DNA was detected 

in the treated wastewater sample, approximately, 100 ± 21, 10 ± 2 and 1 ± 1 A. caninum ova 

were seeded into 1 L of treated wastewater samples in triplicate. Ova from treated wastewater 

samples were concentrated using the filtration method as described in Chapter 6 and DNA 

was extracted from each concentrated sample using a Mo Bio Power Soil DNA Kit described 

in Chapter 4. All the extracted DNA samples were evaluated for PCR inhibitions using Sketa 

22 PCR described in Chapter 4. Since the DNA samples were free from PCR inhibitions 

(appendix D), the qPCR analysis was performed.  
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5.2.5. Conversion of qPCR estimated gene copies to ova numbers 

The gene copy numbers estimated by qPCR for ova seeded wastewater samples were 

converted to ova by using equation 1.  

     
      

      
                                        

N (O) = Numbers of ova 

N (GCs) = Gene copy numbers for wastewater samples estimated by qPCR 

N (GCO) = Gene copy numbers for an ovum (minimum, average and maximum) estimated by 

qPCR 

 

5.2.6. Validation of qPCR method on unseeded wastewater samples 

The qPCR method was also applied to quantify the A. caninum ova in unseeded treated 

wastewater (n = 4), raw wastewater (n = 10) and sludge (n = 6) samples collected from three 

different WWTPs (A, B, and C) across Southeast Queensland, Australia. One L of treated 

wastewater and raw wastewater samples were collected from each WWTP in sterile 1 L 

Schott Glass Bottles. Treated wastewater was collected at the point of discharge into the 

environment, whereas, raw wastewater sample was collected from the influent.  Sludge 

samples were collected in a 50 mL sterile polyethylene tube from the belt (dewatering) press 

as well as the sludge holding pond. All samples were transported on ice to the laboratory and 

processed within 48 h.   

 

Ova from treated wastewater samples were concentrated using the filtration method, 

however, raw wastewater and sludge samples were processed using the flotation method 

described in Chapter 6.  DNA was extracted from all the concentrated samples using a Mo 

Bio Power Soil DNA Kit described in Chapter 4. All the extracted DNA samples were 

evaluated for PCR inhibitions using Sketa 22 PCR described in Chapter 4. Since the DNA 

samples were free from PCR inhibitions (appendix D), the qPCR analysis was performed. 

The qPCR estimated gene copy numbers were converted to the ova numbers as described in 

earlier (5.2.5) section. 
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5.2.7. Statistical analysis 

GraphPad Prism 6 (GraphPad Software, USA) was used to perform the statistical analysis 

and produce graphs. An analysis of variance (ANOVA) was performed to determine the 

minimum, average and maximum numbers of ova estimated by qPCR for 1 ± 1, 10 ± 2 and 

100 ± 21ova.  A t-test for equal means was performed to determine the differences between 

ova estimated by qPCR and seeded ova in treated wastewater.   

 

5.3. Results 

5.3.1. qPCR standard, reproducibility, and LLOQ 

qPCR DNA standards were analysed to determine the reaction efficiencies. The DNA 

standards had a linear range of quantification from 310
5 

- 310
1
gene copies per 3 μL of 

plasmid DNA. The efficiency, slope of the DNA standards, correlation coefficient (r
2
), and 

intercept ranged from 97.3% to 102.2%, -3.28 to -3.39, 0.993 to 0.998 and 33.96 to 35.23, 

respectively. The qPCR amplification output for A. caninum standards can be seen in Figure 

5.1.  The qPCR LLOQ was 30 gene copies for all triplicate samples. The intra-assay and 

inter-assay Coefficient of Variation (CV) of the standards were also determined. These values 

were less than 1% and 3%, respectively, indicating high reproducibility of the qPCR assay 

(Table 5.1).  

 

 

Table 5.1: The intra - assay and inter - assay coefficient of variation (CV) for the qPCR 

method of Ancylostoma caninum ITS-1 rDNA gene 

 

Dilution series of 

DNA standards 

Coefficient of variation 

(%) 

Inter - assay Intra - assay 

10
5
 0.30 0.05 

10
4
 0.50 0.30 

10
3
 0.30 0.30 

10
2
 0.70 0.20 

10
1
 0.60 0.30 
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Figure 5.1: qPCR amplification output for A. caninum DNA standards (3 × 10
5 

– 3 × 

10
1
) gene copy numbers 

 

 

5.3.2. qPCR estimation of gene copy numbers for an ovum 

 The qPCR estimated gene copy numbers for 5 ± 3 A. caninum ova ranged from 2.8 × 10
3
 to 

1.9 × 10
4
. Similarly, the gene copy numbers for 50 ± 18 and 500 ± 27 ova ranged from 1.7 × 

10
5
 to 7.6 × 10

5 
and 1.4 × 10

6
 to 5.1 × 10

6
  (Figure 5.2).  The gene copy numbers obtained for 

5 ± 3 ova had observed high variations in gene copy numbers within the replicate samples 

compared to samples containing 50 ± 18 and 500 ± 27 ova. The qPCR estimated gene copy 

numbers for an ovum range from 5.6 × 10
2
 to 1.0 ×10

4
 with an average of 3.7 × 10

3
.  

 

5.3.3. qPCR estimated A. caninum ova in seeded wastewater samples 

The qPCR estimated gene copy numbers for 1 ± 1, 10 ± 2 and 100 ± 21 ova that were seeded 

in wastewater ranged from  0.4 - 7.4, 2.5 - 45 and 24 - 440  with an average of 1.1, 8.6 and 

67.3 ova,  respectively (Figure 5.3). The difference between minimum, average and 

maximum ova that were estimated by qPCR was statistically significant (P < 0.05). The t-test 

for equal means indicated that there was a significant difference between seeded ova and 

qPCR estimated ova for 100 ± 21 and 1 ± 1 ova (P < 0.05). However, for 10 ± 2 ova, no 

significant (P > 0.05) difference was observed.  
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Figure 5.2: Box and whisker plots of the number of ITS-1 rRNA gene copy estimated by 

qPCR from 5 ± 3, 50 ± 18 and 500 ± 27 A. caninum ova. The inner box lines represent 

the mean while the outer box lines represent 5
th

 and 95
th

 percentiles (n = 10)  

Figure 5.3: Mean and standard deviation of maximum, average and minimum ranges of 

qPCR estimated ova from 1 ± 1, 10 ± 2 and 100 ± 21 A. caninum ova seeded into treated 

wastewater (1L) (n = 10) 
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5.3.4. Numbers of ova in non-seeded wastewater samples  

The qPCR method indicated that A. caninum DNA was present in 50% treated wastewater, 

90% raw wastewater, and 67% sludge samples (Table 5.2). Converting the qPCR estimated 

gene copies to the ova numbers indicated that treated wastewater (1 L), raw wastewater (1 L) 

and sludge samples (4 g) had an average of 0.02, 1.24 and 67.0 ova, respectively. The 

minimum and maximum range of qPCR estimated ova in treated wastewater, raw wastewater, 

and sludge samples were 0.007 - 0.14, 0.45 - 8.16 and 24.2 - 438, respectively (Table 5.2).  

 

Table 5.2: Mean and standard deviation of minimum, average and maximum range of 

Ancylostoma caninum ova in non-seeded treated wastewater (n = 4), raw wastewater (n 

= 10) and sludge (n = 6) samples from different wastewater treatment plants across 

Brisbane.  

 

 

5.4. Discussion 

Hookworm ova have been detected frequently in wastewater and sludge samples around the 

world (Mahvi and Kia, 2006; Jimenez et al., 2007; Wichuk and McCartney, 2007; Konate et 

al., 2013). Guidelines have been developed to minimise the risk of hookworm infections 

associated with wastewater and sludge reuse ( US EPA, 2003; NRMMC, 2004; WHO, 2006). 

Due to the lack of a universal protocol for the quantification, hookworm ova have been 

quantified using either culture-based (US EPA, 2003) or vital stain (de Victorica and Galvan, 

2003) methods. Both quantification methods rely on microscopic observation, which is not 

sensitive enough to detect low numbers of ova in wastewater and sludge samples (Weber et 

al., 1991).   

 

A real-time PCR detection method was developed (Chapter 4). The method is specific and 

sensitive for the detection of hookworm ova compared to microscopy (Gyawali et al., 2015a). 

However, real-time PCR method provides only presence and absence information, which is 

not sufficient to estimate the magnitude of health risks. A qPCR method on the other hand 

Sample matrices  No of positive/ 

tested samples 

Ova recovery 

rate (%) 

Mean and standard deviation of qPCR 

estimated ova 

Minimum Average Maximum 

Treated wastewater  2/4 43.4 0.007 ± 0.001 0.02 ± 0.01  0.14 ± 0.07 

Raw wastewater  9/10 7.2 0.45 ± 0.84 1.24 ± 2.32 8.16 ± 15.2 

Sludge  4/6 0.02 24.2 ± 41.7 67.0 ± 115 438 ± 754 
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simultaneously detects and quantifies pathogens on the basis of amplified gene copy numbers 

present in the target DNA/RNA (Botes et al., 2013). However, these qPCR generated gene 

copy numbers need to be converted to the numbers of pathogen to determine the health risks. 

This information is critical for the successful application of qPCR for utility providers and 

health regulators. However, this information for hookworm ova was not available in the 

literature. Therefore, direct DNA was extracted from different numbers of A. caninum ova (5 

± 3, 50 ± 18 and 500 ± 27) previously isolated from various dog faecal samples in different 

time. This was done to capture the variability of different cell staged ova that may be present 

in different dog faecal samples. In this study, the estimated gene copy numbers for a single 

ovum ranged from 5.6 × 10
2
 to 1.0 ×10

4
 with an average of 3.7 × 10

3
. Such a high variation 

in gene copy numbers has also been reported for the Ascaris suum (Pecson et al., 2006; 

Raynal et al., 2012). According to these authors, a single A. suum ovum can have 1 to 600 

cells depending on the development stage which provides 32 to 42 (1 cell stage) - 1.9 ×10
4 

to
 

2.5 ×10
4
 (600 cells stage) gene copies.  

 

Apart from variations in gene copy numbers associated with cell numbers per ovum, there 

are other potential sources of this variation. For example, DNA extraction process, that can 

be a source of variation in gene copy numbers since commercially available DNA extraction 

kits may not yield 100% DNA. Loss of DNA during extraction is common, and may cause 

inability to capture all potential PCR signals from a sample that has low numbers of ova 

(Kishore et al., 2006; Colussi et al., 2009). Another factor that can have an impact on qPCR 

results is that the structure of ova. The cell wall of an ovum contains three layers that may be 

difficult to lysis during the DNA extraction process, especially when extracting DNA from a 

large number of ova compacted in an extraction tube. Therefore, further study should 

investigate the DNA extraction efficiency of the DNA extraction kit prior to adopting a qPCR 

method for monitoring purposes.   

 

Such high variations in gene copy number per ovum indicated that conversion of qPCR 

estimated gene copy numbers to hookworm ova may not be accurate. To circumvent this 

issue, a range (minimum, average and maximum) of gene copies per ovum was determined 

which may yield meaningful semi-quantitative results. The minimum (5.6 ×10
2
 gene copies), 

average (3.8 ×10
3
 gene copies) and maximum (1.0 ×10

4 
gene copies) values indeed suggested 

the presence of variable stages of A. caninum ova in our stock ova solution. This approach 
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taken in this study mimics the real world scenario, where it is highly likely that ova 

containing different numbers of cells may be present in a wastewater sample.  

 

Despite the difficulty in estimating the gene copy number for one ovum, the qPCR assay 

estimated ova for 1 ± 1, 10 ± 2 and 100 ± 21 were 1.1 ± 0.1, 8.6 ± 2.9 and 67.3 ± 10.4, 

respectively. The qPCR estimated ova were reasonably close to the numbers of seeded ova, 

however there were a small variations. These variations could be due to factors such as the 

numbers of ova seeded had some standard deviations associated with them. Since qPCR can 

generate a variable number of gene copies for a single ovum, it is likely that qPCR estimated 

ova numbers would also be variable. For accurate estimation of ova numbers from qPCR 

generated gene copies, a kinetic assessment would assist in determining the gene copy 

numbers in ova isolated from fresh faeces until just before the larvae are hatched. This work 

still remains to be done. 

 

In this study, the qPCR method was used to quantify hookworm ova from unseeded 

wastewater samples. The results indicated that the treated wastewater (1 L), raw wastewater 

(1 L) and sludge (4 g) contained A. caninum ova ranged from 0.007- 0.14, 0.45- 8.2 and 24.2-

438 ova, respectively (Table 5.2). Since, flushing dog faeces down the toilet is considered as 

an eco-friendly method for dog waste disposal in Australia, large numbers A. caninum ova 

could be released in wastewater streams. Once raw wastewater is retained in the treatment 

plant, the hookworm ova will begin to settle into the sludge because of their high settling 

velocity (Sengupta et al., 2011; Sengupta et al., 2012). As a result, their numbers could be 

higher in sludge than raw wastewater samples. This is also supported by the data presented in 

this study where the numbers of A. caninum ova were higher in sludge samples than treated 

and raw wastewater samples. The range of A. caninum ova in the sludge samples was almost 

similar to those (70-735 human hookworm ova) reported for developing countries (Jimenez et 

al., 2007). This could be the fact that, qPCR is more sensitive (Traub et al., 2004; Verweij et 

al., 2007; Gyawali et al., 2015a), than culture based method which Jimenez and her 

colleagues used in their study. Additionally, the numbers of A. caninum ova in the sludge 

samples might contain more cells than the one isolated from dog faecal samples in this study. 

Therefore, the maximum range of gene copy numbers may be appropriate while converting 

qPCR estimated gene copy numbers for hookworm ova isolated from environmental samples.  
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Treated wastewater contained less than one A. caninum ovum which could be the qPCR 

method amplifies DNA from non-viable ova. Since non-viable ova cannot pose any risk to 

humans, further studies (Chapter 6) will investigate use of Propidium Monoazide (PMA) to 

discriminate between non-viable ova from viable ova. 

 

5.5. Conclusions 

qPCR method has the potential to provide information on the magnitude of hookworm gene 

copies in wastewater and sludge samples. However, the utility of the qPCR method may be 

limited for interpreting health risks, which requires conversion of qPCR estimated gene copy 

numbers to ova. In this chapter, an attempt was undertaken to quantify hookworm ova using 

qPCR method. The results indicated that gene copy numbers estimated by qPCR are 

proportionally related to the numbers of ova present in wastewater samples. This means that 

qPCR can be used to quantify hookworm ova. However, there was variation in gene copy 

numbers for an ovum due to various factors such as numbers of cells in an ovum. Therefore, 

quantification of hookworm ova from environmental samples using qPCR may not be 

accurate.  

 

Further studies are required in order to determine gene copy numbers in a kinetic fashion 

according to the ova cell stage and also investigate a new target that is not variable with the 

cell development. Another factor influencing the qPCR estimated gene copy numbers is the 

recovery of ova from complex matrices such as wastewater and sludge, which is not easy and 

consistent. It was also determined to be important to have a rapid ova recovery method that 

could provide consistency in the future development of this method. Therefore, further study 

was conducted to evaluate the recovery rate of hookworm ova from wastewater and sludge 

using various recovery methods in order to standardise the qPCR method. 
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Chapter: 6 

Development of a standardised ova 

recovery method 
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Development of a standardised of ova recovery 

method 

6.1. Introduction 

The distribution of hookworm ova in wastewater and sludge samples is not homogeneous. 

Quantifying unevenly distributed ova using microscopy and qPCR methods may result in 

significantly under or over estimation of ova.  Therefore, it is essential to recover and 

concentrate them prior to quantification. Several methods have also been used to recover 

various microorganisms including ova from water and soil samples. Those include 

centrifugation (Whitmore and Carrington, 1993; Higgins et al., 2003), hollow-fiber 

ultrafiltration (HFUF) (Simmons et al., 2001; Ferguson et al., 2004; Hill et al., 2005; Hill et 

al., 2007), filtration (Nieminski et al., 1995; Maya et al., 2006; Alli et al., 2011), and flotation 

(US EPA, 1999; Bowman et al., 2003; de Victorica and Galván, 2003; Bastos et al., 2013). 

Some of these methods are rapid and could potentially shorten the detection time of 

hookworm ova from wastewater matrices.  

 

Despite the availability of different concentration methods, the flotation method proposed 

by the US EPA has been the most commonly used to recover hookworm ova from 

wastewater and sludge samples (US EPA, 1999). This method, however, is laborious and 

time-consuming due to the requirement of multiple steps of blending, washing, settling, 

filtering, floating and centrifuging (Ferguson et al., 2004). The recovery rate of this method is 

reported as being suboptimal and variable depending on the matrices (65-74% and 26-82% 

from raw wastewater and sludge) (Bowman et al., 2003; Maya et al., 2006; Bastos et al., 

2013).  

 

Although improving hookworm ova concentration was not the main aim of this research, it 

was recognised that a rapid and reliable standardised concentration method is necessary to 

improve the qPCR method. Therefore, in this chapter, the performance of various rapid 

concentration methods was evaluated using the qPCR method developed in chapter 5. For 

wastewater samples, (A) centrifugation, (B) HFUF, (C) filtration, and (D) flotation, and for 

sludge samples, (E) flotation, and (F) direct DNA extraction methods were chosen for their 

efficiency on recovering hookworm ova. Known numbers of A. caninum ova were seeded 

into the wastewater and sludge samples in order to identify the best performing method(s).    
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6.2. Materials and methods  

6.2.1. Sample collection  

Ten litres of raw and treated wastewater samples were collected from two metropolitan 

wastewater treatment plants (WWTPs) in Brisbane, Queensland (WWTP-A) and Perth, 

Western Australia (WWTP-B), Australia. The WWTP-A is a large biological treatment 

facility, whereas the WWTP-B is a ponding facility. Once wastewater samples were 

collected, pH and turbidity were measured using 90 FL-T field lab analyser (McVan 

Instruments, Pty Ltd, Melbourne, Australia). The pH of the wastewater samples was 

determined to be 7.2 ± 0.1 (treated wastewater; WWTP-A), 8.9 ± 0.2 (raw wastewater; 

WWTP-A) and 7.2 ± 0.1 (treated wastewater; WWTP-B), 6.7 ± 0.3 (raw wastewater; 

WWTP-B). The turbidity values of the wastewater samples were determined to be 86 ± 8 

NTU (treated wastewater; WWTP-A), 197 ± 17 NTU (treated wastewater; WWTP-B), and 

286 ± 6 (raw wastewater; WWTP-A), 246 ± 4 NTU (raw wastewater; WWTP-B).  

 

Sludge samples were collected from the dewatering belt from WWTP-A, and from the 

facultative pond from WWTP-B in 500 mL sterile polyethylene zip-locked bags. Samples 

were then placed on ice for transportation to the laboratory and kept at 4
o
C in the dark until 

processing (2-4 days).  

 

The background levels of A. caninum ITS-1 rRNA gene copies in all samples (treated 

wastewater, raw wastewater, and sludge) were determined using the developed qPCR 

method. All samples were determined to be free of A. caninum ITS-1 rRNA.  

 

6.2.2. Sample preparation 

Approximately, 400 ± 40 A. caninum ova were seeded into 1 L of treated wastewater, raw 

wastewater, and sludge (~ 4 g dry weight) samples. Three repeat trials were undertaken, and 

all samples were tested in triplicate in each trial.  

 

6.2.3. Ova recovery from wastewater  

Ova concentration methods flow chart is shown in Figure 6.1. These methods are referred to 

as Method A [centrifugation (Whitmore and Carrington, 1993)], Method B [HFUF (Hill et 

al., 2005)], Method C [filtration (Hawksworth et al., 2012)], Method D [flotation (Bowman et 



 

68 
 

al., 2003)] for wastewater matrices, and Method E [flotation (Bowman et al., 2003)], and 

Method F [Direct DNA extraction (Ahmed et al., 2015)] for sludge samples.  

 

Method A began with the centrifugation of each sample (1 L) in a bucket at 5,200 × g for 

30 min (Allegra -15R, Beckman Coulter, USA) in two consecutive steps (700 mL first 

followed by 300 mL). The pellet was then transferred into a 50 mL polypropylene tube, 

further centrifuged at 5,200 × g for 10 min to obtain a pellet, which was stored at -20ºC until 

DNA was extracted.  

 

Method B involved amending the sample with sodium hexametaphosphate (NaPO3) 

(Sigma-Aldrich, Australia) to achieve a final concentration in the water samples of 0.01%. 

Each water sample was pumped with a peristaltic pump in a closed loop with sterile high-

performance, platinum-cured L/S 36 silicone tubing (Masterflex, Cole-Parmer Instrument 

Co.). The tubing was sterilized by soaking in 10% bleach for 30 min, washed with sterile 

distilled water, and autoclaved at 121ºC for 15 min prior to use. A Fresenius Hemoflow F80A 

polysulfone dialysis filter with a surface area of 1.8 m
2
 and a fiber inner diameter of 200 µm 

(Fresenius Medical Care, Lexington, MA) was used to process the treated and raw 

wastewater samples. A new filter cartridge was used for each sample. The sample (1 L) was 

concentrated to approximately 150-200 mL, depending on the turbidity. A 500-mL elution 

solution consisting of 0.01% Tween 80, 0.01% NaPP, and 0.001% Antifoam A was 

recirculated through the filter for 5 min and then allowed to concentrate the sample to 150 

mL (Hill et al., 2007). This elution solution was added to the concentrated sample to achieve 

a final volume of approximately 300-350 mL. The secondary concentration of A. caninum 

ova from the HFUF concentrated samples was performed by centrifugation at 5,200 × g for 

15 min. After the centrifugation, the supernatant was discarded and the pellet was stored at -

20ºC for DNA extraction.   

 

Method C began with filtering a sample through series of sieves (800-38 μm pore size, 

larger to smaller pore size) (Rowe scientific Pty Ltd, Australia) with the help of a stream of 

tap water. Particles including ova retained in the smallest pore size (38 μm) sieve were 

collected in a 50 mL polypropylene tube and centrifuged at 5,200 × g for 15 min to obtain a 

pellet. The pellet was then stored at -20ºC until DNA was extracted.   
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Method D began with centrifuging sediments of treated and raw wastewater samples (1 L) 

at 5,200 × g for 10 mins to achieve a pellet. The pellet was then transferred into a 50 mL 

polypropylene tube and approximately 40-45 mL flotation solution (MgSO4) was added. The 

pellet was mixed with the flotation solution by vortexing. The mixture was centrifuged for 3 

min at 800 × g and the materials present in the top 10 mL were transferred into a 15 mL 

polypropylene tube. Water was added to make up the volume to 15 mL and further 

centrifuged at 800 × g for 10 min to obtain a pellet. The pellet was then stored at -20ºC until 

DNA was extracted.  

 

6.2.4. Ova recovery from sludge 

Ova from sludge samples were concentrated using Methods E and F. Method E began with 

centrifugation of ova seeded sludge (~ 4 g dry weight) samples at 800 g for 10 min. The 

supernatant was discarded, and 40-45 mL flotation solution was added to each sample. The 

mixture was then centrifuged for 3 min at 800 × g and floated materials were transferred into 

15 mL polypropylene tube.  Water was added to make up the volume to 15 mL and further 

centrifuged at 800 × g for 10 min to obtain a pellet. The pellet was then stored at -20ºC until 

DNA was extracted. For Method F, direct DNA extraction was performed from ova seeded 

sludge samples (~ 4 g dry weight). 
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Figure 6.1: Hookworm ova concentration methods for 400 ± 40 ova seeded raw wastewater, treated wastewater, and sludge samples. 

Method A = centrifugation, Method B = HUFU, Method C = Filtration, Method D = Floatation (for wastewater samples), Method E = 

Floatation (for sludge samples) and Method F = Direct DNA extraction 
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6.2.5. DNA extraction and inhibition test 

DNA was extracted from each pellet obtained through all concentration methods (A, B, C, D, 

E) and sample from method F using a Mo Bio Power Max DNA Extraction Kit (Mo Bio, 

Carlsbad, CA) with minor modifications. All samples were mixed with lysis buffer C1, and 

freeze-thawed for 10 min -80ºC (standard freezer) and 95ºC (hot water bath) (repeated 5 

times). In addition, the protocol was amended to allow all the supernatant to be removed at 

each step, and therefore, increased volumes of solutions C3 and C4 were added to 

compensate. Extracted DNA was eluted through the spin filter membranes by adding 2 mL of 

Solution C6. All the DNA samples were tested for potential PCR inhibition as described in 

Chapter 4. Some samples (35%) contained PCR inhibition (appendix E). Samples that 

showed PCR inhibition were then serially diluted (10-fold) and re-analysed to remove the 

PCR inhibition. Once the DNA samples were free from PCR inhibitions the qPCR analysis 

was performed. 

 

6.2.6. Determination of seeded gene copies numbers  

To determine the seeded gene copy numbers, DNA was extracted from approximately 400 ± 

40 ova in replicates (n = 6) using a Mo Bio Power Max DNA Extraction Kit as described in 

section 6.2.5. The numbers of ITS-1 rRNA gene copies in A. caninum DNA samples were 

determined using a qPCR method described in Chapter 5.   

 

6.2.7. qPCR method for the quantification of ITS-1 rRNA 

The qPCR method was performed using previously designed and optimized primers and 

probe (Chapter 4). All qPCR reactions were performed in triplicate. The qPCR assay 

performance criteria such as efficiency (E), slope and intercept, R
2
 were determined by 

analysing the standard curves as described in Chapter 5.  

 

6.2.8. Recovery rate determination 

The recovery rate of hookworm ova in the wastewater and sludge samples by the different 

concentration methods was calculated using equation 1.   

  
      

      
                             

Where, R is recovery efficiency, N (QGC) is quantified gene copies numbers and N (SGC) is 

seeded gene copies numbers. 
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6.2.9. Statistical analysis 

GraphPad Prism 6 (GraphPad Software, CA, USA) was used to conduct the statistical 

analysis. A one-way ANOVA was performed to determine the differences between the CT 

values obtained for O. keta DNA suspended in UltraPure
TM

 water and O. keta seeded DNA 

samples extracted from wastewater matrices. ANOVA was also used to assess whether the 

numbers of A. caninum gene copies obtained through Methods (A-D) for treated and raw 

wastewater samples were statistically different within and between WWTPs. A paired T- test 

was used to assess the significant difference between Methods (E and F) for sludge samples 

within and between WWTPs. Statistical significances were determined at α = 0.05. 

 

6.3. Results  

6.3.1. qPCR standards and lower limit of quantification (LLOQ) 

The standards had a linear range of quantification from 3 × 10
5 

– 3 × 10
1 

gene copies per 3 μL 

of plasmid DNA. The slope of the standards ranged from -3.31 to -3.38. The amplification 

efficiencies ranged from 97.8% to 100.7%, and the correlation coefficient (R
2
) ranged from 

0.98-0.99. The intercepts for the qPCR standards were 35.8 to 38.4 (appendix F).  

 

6.3.2. Recovery rate of A. caninum ova from wastewater and sludge 

To obtain the recovery rates for each method, 400 ± 40 viable ova (equivalent to 3.310
7
 ± 

8.5  10
6
 gene copies) were seeded into each wastewater and sludge samples. The mean 

number of A. caninum gene copies recovered from treated wastewater collected from 

WWTP-A did not vary significantly (P ˃ 0.05) among the methods tested. The numbers 

ranged from 4.610
5
 (Method A) to 1.310

6
 (Method D) for wastewater sample collected 

from WWTP-A (Figure 6.2a). Similar results were also obtained for WWTP-B except when 

using Method D. The mean gene copy numbers (3.510
3
) recovered through Method D was 

2-3 orders of magnitude lower than recovered using the Methods (A-C). Furthermore, this 

difference was significant (P < 0.05).  
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Figure 6.2:  Mean and standard deviation of the number of gene copies recovered 

through different methods [(Method A = centrifugation, Method B = HUFU, Method C 

= Filtration, Method D = Floatation (for wastewater samples), Method E = Floatation 

(for sludge samples) and Method F = Direct DNA extraction)] tested from A. caninum 

ova seeded into (a) treated wastewater, (b) raw wastewater, and (c) sludge samples. 

Statistically significant differences were representing using star (*). 
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For raw wastewater samples, the mean number of A. caninum gene copies recovered using 

Method C was the highest (3.810
5
) followed by Method D (2.310

5
) for WWTP-A (Figure 

6.2b). However, Methods A and B yielded 2 orders of magnitude lower gene copy numbers, 

and this difference was found to be statistically significant (P < 0.05). For WWTP-B, Method 

B yielded the highest number (1.110
6
) of gene copies followed by Methods D and C, 

although these results did not differ significantly (P > 0.05). The mean number of gene copies 

(1.510
4
) recovered through Method A was 1-2 orders of magnitude lower than the other 

methods (P < 0.05). 

 

For the sludge samples collected from WWTP-A, Methods E (7.810
2
) and F (2.710

3
) 

yielded a similar number of gene copies (Figure 6.2c), and were not significantly different (P 

> 0.05). Sludge samples collected from WWTP-B also yielded a similar number of gene 

copies for Method E (1.2 10
5
) and F (1.510

5
), and again the difference was not 

statistically significant (P > 0.05). Both methods (D and E) were able to recover ~ 2 orders of 

magnitude higher gene copies from WWTP-B samples compared to WWTP-A samples (P < 

0.05).  

 

The recovery rate was calculated from the qPCR estimated gene copy numbers (Table 

6.1). For treated wastewater, Method D outperformed all other methods closely followed by 

Method C for WWTP-A (Table 6.1). However, for WWTP-B, Method C performed better 

than the other methods.  

 

For raw wastewater, Methods C had much better recovery rate followed by Method D for 

WWTP-A (Table 6.1) For WWTP-B, the recovery rate of Method B outperformed all other 

methods.  

 

For sludge samples, the recovery rate of ova was poor compared to treated and raw 

wastewater samples. For both WWTPs Method F yielded 1-2 orders of magnitude higher (3.7 

± 9.0%, WWTP-A; 4.7 ± 6.2%, WWTP-B) recovery rate than Method E (Table 6.1).   

 

 

 

 

 

 

 



 

75 
 

 

  

Table 6.1: Evaluation of recovery rate of A. caninum ova from raw wastewater, treated 

wastewater, and sludge samples from six concentration methods [(Method A = 

centrifugation, Method B = HUFU, Method C = Filtration, Method D = Floatation (for 

wastewater samples), Method E = Floatation (for sludge samples) and Method F = 

Direct DNA extraction)] using qPCR 

 

Concentration 

methods 

Wastewater 

Sample types 

Mean and standard deviation of recovery rate 

(%) 

WWTP-A WWTP-B 

Method A Treated  

Raw  

14 ± 35 

0.3 ± 0.2 

7.6 ±14 

0.5 ±1.4 

Method B Treated  

Raw  

18 ± 26 

0.3 ± 0.4 
17 ± 20 

35 ± 30 

Method C Treated  

Raw  
39 ± 26 

12 ± 10 

50 ± 39 

7.1 ± 13 

Method D Treated  

Raw  
40 ± 57 

7.1 ± 2.0 

0.2 ± 0.1 

7.4 ± 31 

Method E Sludge 0.02 ± 0.03 3.7 ± 9.0 

Method F Sludge 0.10 ± 0.15 4.7 ± 6.2 

 

6.4. Discussion 

The research described in Chapter 7 required a reliable and rapid ova recovery method that 

will consistently recover the low numbers of hookworm ova from complex matrices such as 

wastewater, sludge, and environmental soil samples. Various methods have been used 

previously to recover hookworm ova from wastewater matrices with variable degrees of 

success (Bowman et al., 2003; McCuin and Clancy, 2005; Maya et al., 2006; Ensink et al., 

2008). In light of this, several rapid concentration methods for the recovery of hookworm ova 

from wastewater matrices including sludge samples were evaluated. For the methods 

evaluation, wastewater and sludge samples were collected from two WWTPs with very 

different characteristics.  

 

Method A (centrifugation) was originally developed to separate helminth ova from 

environmental water samples that have low turbidity (Whitmore and Carrington, 1993). The 

results obtained in this study suggest that the recovery rate of the Method A was 1-2 orders of 

magnitude higher for treated wastewater than raw wastewater samples. Raw wastewater 

samples generally contain a large amount of heavy particles and grease that may bind to ova 

(Kuczynska and Shelton, 1999), potentially leading to inefficient DNA extraction.  
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Method B (HFUF) has been widely used to simultaneously concentrate bacterial, viral and 

protozoan pathogens from environmental water samples (Hill et al., 2005; Hill et al., 2007). 

The recovery rates of ova using HFUF from treated wastewater samples were better than the 

centrifugation method (Method A).  However, the recovery rates of ova using HFUF from 

raw wastewater were found to be highly variable (0.3-35%) between the WWTPs. Such 

discrepancy again could be attributed to the variable solid contents present in wastewater 

samples in time and space (Simmons et al., 2001; Ferguson et al., 2004). The turbidity of raw 

wastewater collected from both the WWTPs were much higher (246-286 NTU) than the 

treated wastewater (86-197 NTU). The result obtained in this ova concentration study 

suggested that the HFUF method is more suitable for concentrating ova when the turbidity of 

the water samples is low. Mull and Hill (2012) and Ferguson and lleagcoues (2004) have also 

demonstrated that the turbidity of water samples is inversely proportional to the recovery 

rates.  

 

Method C (filtration) tested in this study is based on retaining hookworm ova by filtering 

through a series of sieves. This method is simple, involves only a few steps, and therefore, 

has the potential to recover higher numbers of ova from wastewater samples. The results 

indicated that the recovery rate of Method C was as high as 50% for treated wastewater and 

12% for raw wastewater samples. This is comparable to a 26% recovery rate of Ascaris from 

treated wastewater reported by Maya et al., (2006), and 9-49% recovery rate of 

Cryptosporidium oocysts and Giardia cysts from environmental waters reported by 

Nieminski et al., (1995) using a similar methodology. One drawback of this method is the 

potential clogging of the sieve with large solid wastewater particles. This may leave behind a 

portion of ova attached to the solid particles on the sieve (Nieminski et al., 1995; Zarlenga 

and Trout, 2004).  

 

The flotation method (Method D) separates helminth ova by selecting their specific 

gravity while other denser particles present in a sample sink to the bottom for removal 

(Dryden et al., 2005; Goodman et al., 2007). Thus, this method is more suitable to recover 

helminth ova from highly turbid samples like raw wastewater and sludge. Studies have shown 

that the flotation method can provide variable recovery rates (12%-32%) from wastewater 

samples (Maya et al., 2006). This is in agreement with the findings of this study. The 

recovery rate obtained through Method D for the treated wastewater collected from WWTP-

A was high, although the result was not consistent for both WWTPs. Treated wastewater 
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samples from the WWTP-B contained a large amount of blue-green algae, which may have 

attached to hookworm ova, therefore may be discarded during the process (Jakubowski et al., 

1996; Ferguson et al., 2004).  

 

The flotation method (Method E) has also been used to recover hookworm ova from 

sludge samples. The result of this study indicated that the recovery rates of this method were 

very poor (0.02-3.7%). McCuin and Clancy (2005) could not recover any Cryptosporidium 

oocysts from lime-stabilized sludge samples using the flotation method. In contrast, several 

other studies reported a 26-82% recovery rate of helminth ova from different sludge samples 

using the flotation method (Bowman et al., 2003; Maya et al., 2006). Several factors such as 

sample matrix, sample volume and the numbers of ova present in samples may influence the 

recovery rate.  

 

It has been reported that direct DNA extraction from water samples may yield better 

recovery of viruses as it bypasses the concentration procedure (Ahmed et al., 2015). In view 

of this, DNA was directly extracted from sludge samples (Method F). Method F was indeed 

able to recover higher numbers of ova from sludge samples than Method E. However, the 

DNA samples obtained through this method had PCR inhibitors present despite the DNA 

extraction kit used in this study being equipped with inhibitor removal technology. PCR 

inhibitors are known to be matrix associated, and a wide array of PCR inhibitors with varying 

concentration could be present in sludge samples (Schrader et al., 2012). Results of this study 

also indicated that the 35% of DNA samples extracted from wastewater matrices had PCR 

inhibitors. This problem associated with PCR inhibition could still, however, be overcome by 

a serial dilution of DNA.   

 

6.5. Conclusions 

In conclusion, this study showed that the recovery rates of A. caninum ova from wastewater 

matrices can be highly variable and matrix-specific. The results indicated that centrifugation 

(Method A), HFUF (Method B), filtration (Method C), and flotation (Method D) were able to 

yield better recovery rates from treated wastewater samples than raw wastewater. The 

recovery rates obtained through flotation (Method E) and direct DNA extraction (Method F) 

from sludge samples were low compared to treated and raw wastewater samples. Among the 

four concentration methods tested, the filtration (Method C) was able to recover higher 
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numbers of A. caninum ova consistently from treated wastewater and raw wastewater 

samples collected from both WWTPs. Both methods (Methods E and F) failed to recover A. 

caninum ova efficiently from sludge samples. The best performing recovery method (Method 

C, filtration) was therefore used to concentrate the ova from treated wastewater and raw 

wastewater, respectively for the experiments listed in Chapter 7.  Despite the poor recovery 

rate of the (Method E, flotation) method was used for sludge, soil and faecal samples in 

Chapter 7. This method was selected over direct DNA extraction method (Method F) due to 

the lower processing costs.  

 

While improving the hookworm ova recovery rate was not a major focus of this research, 

further study is needed to develop more reliable recovery method is to be used with the 

developed qPCR method to ensure that comparable, consistent results can be obtained from 

different types of samples.  Despite the better sensitivity of qPCR method, the method is 

unable to distinguish between viable and non-viable hookworm ova present in a sample. 

Selective detection of viable hookworm ova is important to assess the potential public health 

risk accurately. Therefore, further study was undertaken to develop a PMA-qPCR for 

selective detection of viable hookworm ova.  
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Quantitative detection of viable helminths ova using 

PMA-qPCR 

7.1. Introduction 

Detection of viable ova is critical to evaluate the potential human health risks from 

hookworm because the viable hookworm ova have the potential to hatch infectious (L3) 

larvae and infect human. Since the dose of hookworm infection is quite low (1-10 ova) 

(WHO, 2006), it is vital that the detection method used is sensitive enough to detect small 

numbers of viable ova in environmental samples such as wastewater and sludge which could 

be the source of environmental transmission (US EPA, 2003; WHO, 2006). Traditional 

detection methods (microscopy) lack sensitivity and specificity and require extended time to 

obtain results (Traub et al., 2004; Traub et al., 2007; McCarthy et al., 2012). Some of these 

limitations such as sensitivity and specificity can be overcome by using PCR/qPCR methods 

(Chapter 4 and 5). However, PCR/qPCR does not discriminate between viable and non-viable 

cells in a sample (Rudi et al., 2005), resulting in a potential overestimation of infectious ova. 

Since only viable ova are capable of hatching infectious (L3) larvae and consequently causing 

infections in humans, it is important to know what fraction of the PCR amplified ova are 

viable for the accurate assessment of public health risks.  

 

It has been demonstrated that Propidium Monoazide (PMA), a DNA intercalating dye, 

combined with PCR/qPCR methods can be used for selective detection and quantification of 

viable bacteria, protozoa and viruses from wastewater, sludge and environmental samples 

(Fittipaldi et al., 2011; Taskin et al., 2011; Nkuipou-Kenfack et al., 2013; Alonso et al., 2014; 

Li et al., 2014; Gensberger et al., 2014; Santiago et al., 2015). The working mechanism of 

PMA is that it penetrates non-viable cells, and makes a covalent bond with DNA upon 

photoactivation. This covalent bonding causes the formation of a stable DNA-PMA complex, 

which prevents the DNA from being to amplify during the PCR reaction (Nocker et al., 2006; 

Nocker et al., 2007). However, there have been no published studies that have investigated 

the ability of PMA to discriminate between viable and non-viable hookworm ova.  

 

As a proof-of-concept, the primary aim of this chapter was to evaluate the use of PMA to 

discriminate between viable and non-viable hookworm ova by developing a PMA-qPCR 

method using A. caninum ova. Finally, the newly developed PMA-qPCR method was to be 
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tested for applicability to detect viable Ancylostoma duodenale, Ascaris lumbricoides and 

Necator americanus ova from complex matrices such as raw wastewater, human faeces, and 

contaminated soil samples.  

 

7.2. Materials and methods 

7.2.1. Optimisation of method for producing non-viable A. caninum ova  

Incubation temperature and time was optimised to produce non-viable A. caninum ova that 

were used to develop PMA-qPCR method. Approximately 400 ova were suspended in 230 

μL phosphate buffer saline (PBS) in 1.5 mL tubes and incubated at temperatures ranging 

from 50 to 80⁰C at 10⁰C intervals for 15, 30 and 60 min. This procedure was performed in 

triplicate. The heat inactivated ova were kept at room temperature for 12 h to allow the cell 

wall to become permeable (Gyawali et al., 2016a). After incubation, the tubes were 

centrifuged at 10,000 g for 2 min. The supernatant was discarded and ova were stained with 

the vital stain (Methylene blue 0.05%) and observed under a microscope (Olympus, Japan). 

Incubation at 80⁰C for 15 min was found to be suitable for consistently producing non-viable 

ova and was further used for all PMA-qPCR experiments (Figure 7.1). 

 

 

  

  

 

 

 

 

 

 

 

 

Figure 7.1: Percentage of viable ova identified using microscope before and after 

heating to different temperatures for different time (n = 3) 
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7.2.2. Optimisation of PMA concentration  

To optimise the PMA (C27H33Cl2N6; Biotium, Inc., USA) concentration, 2 mM working 

solution was prepared by dissolving 1 mg PMA with 20% dimethyl sulfoxide (978 µL) 

(Sigma-Aldrich, Australia).  

 

Approximately 400 non-viable ova were transferred into 1.5 mL transparent centrifuge 

tubes (GeniUL, Spain) and treated with varying concentrations of PMA (50, 100, 200, 300 

and 400 µM). PMA treated non-viable ova were then incubated in the dark for 5 min to allow 

PMA to penetrate the damaged ova. Photo-induced cross-linking of PMA in all samples was 

achieved using PhAST Blue (GeniUL, Spain) light for 15 min. The tubes were then incubated 

on ice for 5 min. Triplicate samples were used to ensure the reproducibility of the assay.  

 

DNA was extracted from the ova by using Mo Bio Power Soil Kit (Mo Bio, Carlsbad) and 

tested with qPCR described elsewhere (Gyawali et al., 2015a; Gyawali et al., 2015b). Non-

viable ova treated with PMA at a concentration of 50 µM permitted qPCR amplification 

suggesting that this concentration is not sufficient to distinguish between viable and non-

viable ova. However, other concentrations (100, 200, 300 and 400 µM) did not permit qPCR 

amplification. Based on these results, the lowest concentration (100 µM PMA) which did not 

permit qPCR amplification was chosen to distinguish viable from non-viable A. caninum ova 

using the PMA-qPCR method.   

 

7.2.3. Primer and probe design  

Nucleotide sequences of A. duodenale (accession No EU 344797.1) and A. lumbricoides 

(accession No KL872896) were obtained from National Centre for Biotechnology 

Information (NCBI). New sets of primers and probes were designed using Integrated DNA 

Technology (IDT) Primer Quest software (IDT, USA) and used to amplify a 75 bp (A. 

duodenale) and 104 bp (A. lumbricoides) of the rRNA gene of Internal Transcribed Spacer 

(ITS-1 and ITS-2) region (Table 7.1). For N. americanus, and A. caninum previously 

published 190 and 101 bp primer sets were used (Wang et al., 2012, Chapter 4). However, for 

N. americanus, a new probe was designed and tested in this study (Table 7.1). The specificity 

of the newly designed primers and probes were tested using NCBI Megablast. The results of 

the BLAST search showed that the sequences of selected primers matched with the rRNA of 

the ITS-1 region of A. duodenale, A. lumbricoides and N. ameroicanus.   
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7.2.4. qPCR standards and optimisation 

A. duodenale, N. americanus and A.  lumbricoides gene fragments matching the PCR target 

region were synthesized by Integrated DNA Technologies (IDT) and cloned into a vector 

followed by plasmid extraction (IDTDNA.com). Procedure of obtaining A. caninum plasmid 

was described previously in Chapter 5. The standards were prepared as described in chapter 

5. Serial dilutions were prepared from 10
6
 to 10

0 
gene copies per L. Each qPCR method was 

optimised for primer and probes concentrations and annealing temperature (Table 7.1).  

 

7.2.5. qPCR methods and lower limit of quantification (LLOQ) 

qPCR amplifications for each of the standards listed in section 7.2.4. were performed in 25 

μL reaction mixtures containing 12.5 μL iQ
TM

 Supermix (Bio-Rad Laboratories, CA, USA), 

3 μL of template DNA, appropriate concentrations of primers and probes (Table 7.2) and 

UltraPure
TM

 water (Invitrogen, USA). The qPCR cycling parameters are shown in Table 7.1. 

qPCR assays were performed using the Bio-Rad CFX96 thermal cycler (Bio-Rad 

Laboratories, CA, USA). Each qPCR lower limit of quantification (LLOQ) value was 

determined from the standard series in replicates (n = 6) at 95% confidence level. The lowest 

quantity of DNA detected consistently in all replicate reactions was considered as the qPCR 

LLOQ.  
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 Table 7.1: Primer sequences, cycling parameters and concentrations of primers and probes for qPCR methods   

Species Primer and probe sequences
a
 PCR cycling parameters Primer/probe 

concentrations 

(nM) 

References 

A. caninum F: (5’- TTT GCT AAC GTG CAC TGA ATG -3’) 

R: (5’- GAA ACA CCG TTG TCA TAC TAG CC -3’) 

P: (FAM-5’- AAC TCG TTG TTG CTG CTG AA -3’TAMRA) 

15 min at 95
0
C, 35 

cycles of 15 sec at 

95
0
C, 60 sec at 57

0
C 

250  

250  

300  

Chapter 4 

A. duodenale 

 

F: (5’-ATA GCC CTA CGT AAG GTG TCT ATG T-3’) 

R: (5’-CGA ACT TCG CAC AGC AAT CAC-3’) 

P: (FAM-5’-CAA GAG TCG TTA CTG GGT GAC GGC-

3’TAMRA) 

15 min at 95
0
C, 35 

cycles of 15 sec at 95
0
C, 

60 sec at 58
0
C 

250  

250  

300  

This study 

A. lumbricoides F: (5’- GAG CCA CAT AGT AAA TTG CAC A -3’) 

R: (5’- CTC CCT CAA CAC ATA GCA AAT C-3’) 

P: (FAM-5’- ACC GCC GAC TGC TAT TAC ATC ACC-

3’TAMRA) 

10 min at 95
0
C, 40 

cycles of 15 sec at 

95
0
C, 60 sec at 60

0
C 

300  

300  

300  

This study 

N. americanus F: (5’-TGT TCA GCA ATT CCC GTT TA-3’) 

R: (5’- GTC CTT CAC ATT GTC TCC GT-3’) 

P: (FAM-5’-ATT CGC TCT CGC GAC TTA TGA GCG-3BHQ1) 

10 min at 95
0
C, 35 

cycles of 15 sec at 

95
0
C, 60 sec at 60

0
C 

300  

300  

400  

(Wang et al., 2012) 

a
 F: forward primer; R:  reverse primer; P: probe 
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7.2.6. PMA-qPCR method development and validation 

To develop a method for quantification of viable A. caninum ova, 100% viable (n = 400), 

50% viable (n = 200) + 50% non-viable (n = 200) and 100% non-viable (n = 400) ova were 

transferred into 1.5 mL transparent centrifuge tubes (GeniUL, Spain). The ova were treated in 

triplicate with 100 μM PMA (see section 7.2.2).  

 

To validate the newly developed PMA-qPCR method for the quantification of viable A. 

caninum ova in raw wastewater, 10 L samples was separately collected from two 

metropolitan wastewater treatment plants (WWTPs A and B) located in Brisbane, QLD, 

Australia. Triplicate wastewater samples (1 L) were seeded with 100% viable, 50% viable + 

50% non-viable and 100% non-viable ova.   

 

Each of the seeded samples was filtered through a series of sieves (800-38 μm pore size, 

larger to smaller pore size) (Rowe scientific Pty Ltd, Australia) with the help of a stream of 

tap water. Particles including ova retained in the smallest pore size (38 μm) sieve were 

collected in a 50 mL polypropylene tube and centrifuged at 5,200 g for 15 min to obtain a 

pellet. Ova were separated from the pellet using the flotation method (Bowman et al., 2003; 

Gyawali et al., 2015b). Separated ova were then treated with 100 μM PMA (see section 7.2.2. 

for detail).  

 

7.2.7. Application of PMA-qPCR method in real world samples  

The optimized parameters for PMA-qPCR method for A. caninum were adapted to develop A. 

duodenale, N. americanus and A. lumbricoides PMA-qPCR methods.  

 

All PMA-qPCR assays were used to determine the numbers of helminth ova in raw 

wastewater samples (n = 5) collected from a WWTP located at Sunshine Coast, Australia. A 

10 L raw wastewater sample was collected in sterile 20 L polypropylene carboys and 

transported to the laboratory with an ice pack. In addition, human faecal (n = 10) and 

environmental soil samples assumed to be contaminated with STHs (n = 24) were collected 

from STHs endemic communities in East Timor. Approximately, 5 g of individual human 

faecal and 50 g of soil sample were collected in sterile 50 mL polypropylene tubes. The 

samples were mixed with potassium carbonate (K2CO3), and transported on ice to the CSIRO 
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laboratory, Australia for analysis. Upon arrival, ova were recovered from human faecal and 

soil samples using the flotation method (Bowman et al., 2003).  

 

Each pellet containing STHs ova recovered by the flotation method was suspended in 1 

mL PBS and divided into two aliquots (500 µl each). Both tubes containing aliquots were 

centrifuged at 1,000 g for 5 min to obtain pellets. One of the pellets was treated with 100 μM 

PMA and the remaining pellet was not treated with PMA.  

 

7.2.8. DNA extraction and inhibition test 

DNA from each PMA treated and untreated concentrated samples were extracted using Mo 

Bio Power Soil DNA Isolation Kit (Mo Bio, CA, USA) (Chapter 4). A Sketa22 real-time 

PCR assay was used to determine the presence of inhibitors in the DNA samples (Chapter 4). 

All samples indicated the absence of PCR inhibitors and were used for further analysis.  

 

7.2.9. Ova recovery rate and DNA extraction efficiency 

The ova recovery rate from raw wastewater (1 L), human faeces (1 g) and environmental soil 

(20 g) was conducted as described in Chapter 6. To determine the DNA recovery efficiency 

of the Mo Bio Power Soil DNA kit, 15 ng of Oncorhynchus keta DNA was seeded into the 

raw wastewater, human faecal and environmental soil samples prior to extract DNA. A 

Sketa22 qPCR was performed on extracted DNA samples (Haugland et al. 2005). The DNA 

recovery efficiency was determined according to Rogers et al., (2011). 

 

7.2.10. Statistical analysis 

Microsoft excel ver. 2010 (Microsoft, USA) was used to conduct the statistical analysis. One-

way ANOVA was performed to determine the significant difference between numbers of 

gene copies determined by qPCR and PMA-qPCR in laboratory condition as well as ova 

seeded raw wastewater samples collected from WWTP-A and B (section 7.2.6).  

 

A paired T-test for means was performed to determine the significant difference between 

numbers of gene copies determined by qPCR and PMA-qPCR for N. americanus in human 

faecal samples and A. lumbricoides for environmental soil samples (section 7.2.7).  
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7.3. Results 

7.3.1. qPCR standards and lower limit of quantitation (LLOQ) 

qPCR standard curves for target hookworms (A. caninum, A.duodenale, and N. americanus) 

and the roundworm (A. lumbricoides) had a linear range of quantification from 10
6
 to 10

1
 

gene copies per µL of DNA. The qPCR amplification efficiencies ranged from 90.0% to 

98.3%, and the correlation coefficients (r
2
) were 0.99 for all qPCR assays (Table 7.2). The 

slope of the line ranged from -3.36 to -3.59. The qPCR LLOQ were 3 × 10
1
 gene copies for 

all four methods tested in this study which is equivalent to approximately one ovum (Table 

7.3).  

 

Table 7.2: Performance characteristics of qPCR assays of Ancylostoma duodenale,  

Necator americanus, Ancylostoma caninum and Ascaris lumbricoides 

 

 qPCR assays Amplification 

efficiency (E) 

Correlation 

coefficient (r
2
) 

Slope Intercepts 

A. caninum 98.3 0.99 -3.36 36.89 

A. duodenale 94.4 0.99 -3.46 38.26 

A. lumbricoides 94.5 0.99 -3.46 38.48 

N. americanus 90.0 0.99 -3.59 37.51 

 

7.3.2. Ova recovery rate  

The A. caninum qPCR result indicated that the average ova recovery rate was highest for 

human faecal samples (50%) followed by raw wastewater (12%) and environmental soil (4%) 

samples. The ova recovery rate was factored in for all calculation of gene copy numbers 

determined by qPCR and PMA-qPCR methods.    

 

7.3.3. DNA recovery efficiency  

The Sketa22 qPCR indicated that the average DNA recovery efficiency rate of the Mo Bio 

Power Soil DNA Isolation Kit for soil, human faecal and raw wastewater samples were 59%, 

47%, and 30%, respectively. The DNA extraction efficiency rate was also factored in while 

calculating gene copy numbers determined by qPCR and PMA-qPCR methods.     
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Table 7.3: qPCR lower limit of quantification (LLOQ) of serially diluted standards of Ancylostoma duodenale, Necator americanus, 

Ancylostoma caninum and Ascaris lumbricoides (n = 6) 

Serial 

dilutions of 

gene copies 

A. caninum  A. duodenale A. lumbricoides  N. americanus 

Positive 

Samples 

Mean ± SD of 

CT values 

Positive 

Samples 

Mean ± SD of CT 

values 

Positive 

Samples 

Mean ± SD of 

CT values 

Positive 

Samples 

Mean ± SD of 

CT values 

3 × 10
6
 6 15.5 ± 0.11 6 15.8 ± 0.10 6 15.8 ± 0.14 6 14.4 ± 0.17 

3 × 10
5
 6 18.7 ± 0.10 6 19.3 ± 0.15 6 19.3 ± 0.07 6 17.5 ± 0.16 

3 × 10
4
 6 23.1 ± 0.01 6 22.9 ± 0.11 6 22.7 ± 0.37 6 21.6 ± 0.33 

3 × 10
3
 6 26.6 ± 0.40 6 26.3 ± 0.06 6 27.0 ± 0.30 6 25.3 ± 0.22 

3 ×10
2
 6 30.7 ± 0.18 6 29.5 ± 0.07 6 30.3 ± 0.06 6 28.7 ± 0.14 

3 × 10
1
 6 33.6 ± 0.20 6 33.2 ± 0.25 6 32.6 ± 0.13 6 32.4 ± 0.31 

3 × 10
0
 0 - 0 - 0 - 0 - 

-: No amplification 

SD: Standard deviation 

CT = Threshold cycle 
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7.3.4. Detection of viable A. caninum ova by PMA-qPCR 

For 100% viable ova, the mean number of gene copies determined by PMA-qPCR was 4.6 × 

10
5
 Figure 7.2. For 50% viable + 50% non-viable ova, the number of gene copies was (5.4 × 

10
4
) which was approximately one order of magnitude lower than 100% viable ova. For 

100% non-viable ova a sample produced detectable gene copy numbers (6.7 × 10
1
). The 

reduction in gene copy numbers was four orders of magnitude compared to 100% viable ova.  

 

One-way ANOVA indicated that the numbers of gene copies for the three mixtures were 

significantly different (P < 0.05) from each other. On the other hand, the qPCR results for 

100% viable and 100% non-viable control ova samples (without PMA treatment) were 5.8 × 

10
5
 and 4.7 × 10

5
 gene copies, respectively.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7.2: Box and whisker plots of the numbers of gene copy detected from ~ 400 A. 

caninum ova mixed in a ratio of 100% viable (V), 50% viable + 50% non-viable and 

100% non-viable (N-V) under laboratory conditions. The inner box lines represent the 

medians while the outer box lines represent 5
th

 and 95
th

 percentiles (n = 9) 
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7.3.5. Validation of PMA-qPCR methods for ova seeded wastewater  

 For 100% viable ova, the mean numbers of gene copies were 1.1 × 10
6
 in raw wastewater 

samples from WWTP-A and 1.8 × 10
6
 in raw wastewater from WWTP-B, respectively 

(Figure 7.3a and b). For 50% viable + 50% non-viable ova, the mean numbers of gene copies 

were 2.3 × 10
5
 in samples from WWTP-A and 3.7 × 10

5
 in samples from WWTP-B. Overall, 

79-80% reductions in gene copies were observed for 50% viable + 50% non-viable ova 

seeded wastewater samples compared to 100% viable ova.  

 

The reductions of gene copies were statistically significant (P < 0.05). For 100% non-

viable ova, the gene copies were not quantifiable (< LLOQ) for both raw wastewater samples.  

On the other hand, the qPCR results for 100% viable and 100% non-viable control ova 

samples (without PMA treatment) were 5.1 × 10
6
 and 4.5 × 10

6
 for WWTP-A and 2.5 × 10

6
 

and 2.0 × 10
6
 gene copies for WWTP-B, respectively.   
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Figure 7.3:  Box and whisker plots of the gene copy numbers detected from ~ 400 A. 

caninum ova mixed in a ratio of 100% viable, 50% viable + 50% non-viable and 100% 

non-viable seeded into raw wastewater (a) WWTP-A (b) WWTP-B. The inner box lines 

represent the medians while the outer box lines represent 5
th

 and 95
th

 percentiles (n = 9) 
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7.3.6. Application of PMA-qPCR methods in real world samples 

None of the unseeded raw wastewater samples from the Australian WWTPs were positive for 

helminth ova (A. caninum, A.duodenale, N. americanus and A. lumbricoides). Of the 10 

unseeded human faecal samples collected from East Timor, six were positive for N. 

americanus using qPCR with an average of 6.8 × 10
5
 ± 6.4 × 10

5 
gene copy numbers per g of 

faeces. However, using the PMA-qPCR method only five out of the six qPCR positive 

samples were positive with an average of 6.3 × 10
5
 ± 4.7 × 10

5 
gene copies per g of faeces 

(Figure 7.4). A paired T-test for means indicated that the numbers of gene copies determined 

by qPCR were not statistically significantly (P > 0.05) different than those gene copies 

determined using PMA-qPCR. 

 

 Out of 24 environmental soil samples collected from East Timor, all samples were 

negative for all STHs apart from only one sample which was positive for A. lumbricoides. 

The mean gene copy number in the environmental soil sample that tested positive for A. 

lumbrocides was 1.0 × 10
5
 ± 1.5 × 10

4
 (determined by qPCR) compared to 4.9 × 10

4
 ± 3.7 × 

10
3
 (determined by PMA-qPCR). The number of A. lumbricoides gene copies in the 

environmental soil sample determined by qPCR was significantly (P = 0.02) different from 

the gene copies determined using PMA-qPCR. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7.4: Mean and standard deviation of Necator americanus gene copies per gram of 

unseeded human faeces determined by qPCR and PMA-qPCR. Sample numbers were 

plotted in the graph and for each sample, a mean value was used 
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7.4. Discussion  

Differentiation between viable and non-viable hookworm ova in environmental samples such 

as wastewater and sludge is necessary in order to identify hookworm contamination and 

implement strategies to mitigate re-infections in endemic regions (Gyawali et al., 2016b).  

The traditional detection method (microscopy) lacks sensitivity and specificity and requires 

extended time to obtain results (Traub et al. 2004; Traub et al. 2007; McCarthy et al. 2012). 

Some of these limitations can be overcome by using molecular detection methods such as 

qPCR, which has better sensitivity and specificity than the microscopy method (Gyawali et 

al. 2015a; Gyawali et al., 2015b). However, qPCR does not discriminate between viable and 

non-viable cells in a sample (Rudi et al. 2005), resulting in an overestimation of the total 

number of target gene copies. Information on the viability of cells is important for accurate 

risk assessment and mitigation (Li et al. 2014; Gensberger et al. 2014).  

 

The preliminary results indicated that PMA-qPCR is able to differentiate between 

mixtures of viable and non-viable ova (Figure 7.2). In this study, PMA-qPCR did not 

completely (100%) prevent amplification for 100% non-viable ova. Only a small fraction 

(0.01%) gene copies were amplified using PMA-qPCR. This could be due to the fact that, 

heat inactivated ova may attach with each other and prevent PMA from entering in the 

cytoplasm. Another factor that should be noted is that heat inactivated ova require up to 12 h 

to become permeable to high molecular weight stains (Gyawali et al., 2016a). Nonetheless, 

this would not affect the application of PMA-qPCR to distinguish between viable and non-

viable ova in environmental samples or human faeces.  

   

Based on these results, the newly developed PMA-qPCR method was further evaluated to 

determine the numbers of gene copies in viable and non-viable hookworm ova seeded into 

raw wastewater samples. As with any laboratory procedure, PMA-qPCR has some limitations 

in detecting viable pathogens in wastewater matrices especially raw wastewater. Sample 

turbidity can prevent photoactivation; therefore, samples must be diluted in a state that will 

enable light to reach the PMA (Varma et al., 2009; Li et al., 2014). Previous studies reported 

that the performance of PMA treatment on the enumeration of viable faecal indicator bacteria 

was poor for wastewater matrices (Varma et al., 2009; Li et al., 2014). This could be 

attributed to the sample processing procedures where authors used a centrifugation method to 

concentrate faecal indicator bacteria, which may have co-concentrated PCR inhibitors and 
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other unwanted debris. However, in this study, when mixtures of viable and non-viable ova 

were seeded into wastewater samples, the PMA-qPCR was able to measure signals from 

viable hookworm only. It is possible that the flotation method used to recover the hookworm 

ova from wastewater samples effectively eliminated unwanted debris, PCR inhibitors and 

chemical compounds from the wastewater samples (Schrader et al., 2012).    

 

The percentage of gene copy reduction for ova seeded wastewater samples in different 

trials was not always consistent. The numbers of gene copies of helminth ova can vary 

depending on the target region and development stage, with embryonated ova having higher 

gene copies compared to unembryonated ova (Pecson et al., 2006; Raynal et al., 2012). The 

ova seeded into the wastewater samples may have had variable numbers of gene copies and 

may have produced variable results using qPCR and PMA-qPCR. Therefore, more studies 

would be required to determine the numbers of gene copies for each cell development stage. 

This may provide a threshold value of gene copy numbers for different stages of ova.  

 

The PMA-qPCR method was adapted to determine the viable helminth ova in human 

faecal and soil samples presumed to be contaminated with helminths. The results indicated 

the presence of A. lumbricoides ova in one out of 24 environmental unseeded soil samples. 

The numbers of gene copies determined by qPCR and PMA-qPCR was significantly different 

suggesting presence of some non-viable ova in the environmental soil samples. This indicates 

that the PMA-qPCR method may serve as an appropriate diagnostic tool for undertaking 

interventions to control soil-transmitted helminth infections in developing countries.  

 

The results also indicated the presence of viable N. americanus ova in five out of 10 

unseeded human faecal samples. The number of N. americanus gene copies in faecal samples 

measured with qPCR and PMA-qPCR were slightly different suggesting majority of viable 

ova in faecal samples.  

 

Concentration of PMA and light exposure time may affect accurate measurements of 

viable microorganisms in wastewater and environmental samples (van Frankenhuyzen et al., 

2011). Unwanted debris and compromised cells in wastewater and environmental samples 

may absorb PMA. As a result, low concentration of PMA may not be sufficient to bind 

extracellular DNA or those contained in dead cells. On the other hand, high PMA 

concentration may cause infiltration to live cells as well as PCR inhibition. Several studies 
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have recommended using 100 μM PMA to detect viable pathogens from wastewater and 

other environmental samples (Varma et al., 2009; Chen and Chang, 2010; Alonso et al., 

2014; Li et al., 2014). The PMA optimization result in this study indicated that PMA 

concentrations > 100 μM did not permit qPCR amplification.  

 

Finally, the variation in DNA recovery from DNA extraction kit may have influenced the 

numbers of gene copies. In this study, the recovery efficiency of the Mo Bio Power Soil DNA 

Kit was determined. The results indicated that better recovery efficiency for soil samples than 

wastewater and faecal samples. Organic matters and fatty acids present in wastewater and 

faecal samples can have a negative impact on DNA recovery efficiency (Dineen et al., 2010). 

Further studies would be required to improve the DNA recovery efficiency by comparing 

multiple kits.  

 

7.5. Conclusions 

In conclusion, a PMA-qPCR method has been successfully developed. The method was 

demonstrated to be able to distinguish between viable and non-viable A. caninum ova under 

laboratory condition.  The PMA-qPCR method was also able to distinguish between viable 

and non viable A. caninum, N. americanus and A. lumbricoides ova present in wastewater, 

environmental soil and human faeces.  

 

This new method will aid in identifying the potential environmental source of STHs re-

infections in endemic regions. In addition, more accurate risk assessments of wastewater 

reuse for agriculture can be assessed; therefore, a practical risk management plan can be 

formulated. Since treated wastewater and sludge guidelines specify ≥ 1 viable ovum per L 

(liquid) or 4 g (solid) for unrestricted use, any PMA-qPCR amplification can suggest the 

potential public health risks; therefore, appropriate wastewater and sludge treatment plans can 

be put in place.  

 

The variations in the number of detectable gene copies within trials (~ 400 ova) indicate 

that there is a need for further study to determine the gene copy numbers according to the cell 

development stage of helminth ova. The suitability of the PMA-qPCR method, however still 

requires comparison with culture-based and vital stain methods prior to recommending for 

regular monitoring proposes.  
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Comparison of PMA-qPCR, culture based and vital 

stain methods 

8.1. Introduction 

The numbers of viable hookworm ova in environmental samples including wastewater and 

sludge are generally quantified by the culture based method, which is the standard method 

and involves incubating the ova at 28-30ºC for up to a week (US EPA, 2003; WHO, 2006). 

The viable ova become larvae (L1), and then they are enumerated by microscopic 

observation.  The method, however, has limitations such as prolonged time to obtain results 

(de Victorica and Galván, 2003; Nocker and Camper, 2008; Gyawali et al., 2015a), which not 

only increases the operating cost, but also may not be ideal for a scenario where rapid 

monitoring is required (Boehm et al., 2009). Another issue is that the culture based method 

requires highly skilled personnel to differentiate the larvae of different species of hookworm 

(Traub et al., 2004; Verweij et al., 2007).   

 

To overcome the limitations of the culture-based method, a rapid, simple and a relatively 

cheaper vital staining method has been developed to quantify STHs ova including hookworm 

(de Victorica and Galven, 2003). This method relies on the difference in structural integrity 

of viable and non-viable ova. The cell wall of a viable ovum has three layers that act as an 

alternative barrier and prevents the vital stains from entering into the cytoplasm (Matthews, 

1986; Gregori et al., 2001). Once the ovum becomes non-viable, the integrity of cell wall is 

compromised and becomes permeable to the vital stain (Bae and Wuertz, 2009). The cell 

wall, however, requires 12 h to become permeable to vital stains after becoming non viable 

(Gyawali et al., 2016a). Therefore, this method has the potential to overestimate the numbers 

of viable ova in a sample. Moreover, this method also relies on skilled personnel to 

differentiate hookworm ova to the species level, which may introduce bias (Cabaret et al., 

2002; Traub et al., 2004; Verweij et al., 2007). 
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PMA-qPCR methods can quantify viable hookworm ova in a one-step closed-tube 

reaction with much higher sensitivity and specificity by directly amplifying a specific gene 

(Gyawali et al., 2016c). In this chapter, the viability assessment performance of the PMA-

qPCR method was compared with the culture based and vital stain methods. Due to the 

unavailability of sufficient fresh human hookworm ova in Australia, the method comparison 

experiment was conducted using A. caninum ova. 

 

8.2. Materials and methods 

8.2.1. Ova collection and enumeration 

Since the viability of A. caninum ova can decrease during storage at 4ºC, fresh dog faecal 

samples were collected from the School of Veterinary Science University of Queensland, 

Gatton, Australia. A. caninum ova were isolated from approximately 20 g of dog faecal 

samples using the flotation method described elsewhere (Bowmen et al., 2003). The ova were 

enumerated using a Sedgewick-Rafter Counting Chamber (PYSER – SGI, UK) as described 

in Chapter 4.   

 

8.2.2. Methods used for quantification of hookworm ova 

8.2.2.1. Culture based method 

The methods used for quantifying of viable hookworm ova are shown in Figure 8.1. The 

procedure used in this study has been described elsewhere (Bowmen et al., 2003). In brief, 

approximately 1,000 ± 50 ova were transferred into a 5 mL tube. Four mL of 0.1 N H2SO4 

(cultural fluid) was added into the tube. The level of liquid in the tubes was marked on the 

outside using a permanent marker. Replicate uncapped tubes (n = 6) containing ova were 

incubated at 30ºC in an incubator for one week. The liquid in the tubes was observed daily 

for loss due to evaporation, and culture fluid was added to compensate the evaporated volume 

as required. After a week of incubation, the tubes were centrifuged at 800 × g for 5 min and 

3.5 mL supernatants discarded from each tube. The remaining volume of liquid was vortexed 

and 20 µL transferred onto a slide.  

 

Embryonated ova/larvae and unhatched ova were enumerated using microscopic 

observation (Figure 8.2). Each sample was enumerated three times and the total numbers of 

viable ova were estimated using the equation 3.   
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                            3) 

Where, NVO is numbers of embryonated ova/larvae in a sample, OEO is observed embryonated 

ova/larvae on a slide, TV is the total volume of sample and OV is observed volume of sample.  

Similarly, the total numbers of non-viable ova were estimated using equation 4.   

     
    

  
                         ) 

Where, NNVO is numbers of non-viable ova in a sample, ONVO is observed non-viable ova on a 

slide, TV is the total volume of sample and OV is observed volume of sample.  

 

 

 

 

Figure 8.1: Flow chart showing the procedure for quantitative detection of hookworm 

ova and larva 
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8.2.2.2. Vital stain method 

The vital stain method used in this study has been described elsewhere (de Victorica and 

Galvan, 2003). In brief, approximately 1,000 ± 50 ova were transferred into a 1.5 mL 

centrifuge tube (n = 6). The ova were stained with 0.05% (v/v) methylene blue for 5 min at 

room temperature. The tube was vortexed, and 20 µL of liquid was transferred onto a slide 

and viable (unstained) and non-viable (stained) ova were recorded (Figure 8.2). Each sample 

was enumerated three times and the total numbers of viable ova were estimated using the 

equation 3. Similarly, the total numbers of non-viable ova were estimated using equation 4.   

 

 

Figure 8.2: Photomicrographs of (a) embryonated ova, (b) larva, (c) viable ova and (d) 

non-viable ova of hookworm (A. caninum) obtained using culture-based and vital stain 

methods 
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8.2.2.3. PMA-qPCR method 

Approximately 1,000 ± 50 ova were transferred into 2 mL transparent centrifuge tube (n = 6) 

and treated with 100 µM PMA (Figure 8.1). The ova were incubated in the dark for 5 min to 

allow PMA to penetrate non-viable ova. Photo-induced cross-linking of PMA to DNA was 

achieved by using a PhAST Blue light (GeniUL, Spain) for 15 min. The tubes were further 

incubated on ice for 5 min. DNA from each sample was extracted using a Mo Bio Power Soil 

DNA Extraction Kit (Mo Bio, Carlsbad, USA) as described in Chapter 4.  

 

To determine the gene copy numbers in the A. caninum ova (1,000 ± 50) used for PMA-

qPCR, DNA was extracted directly from 1,000 ± 50 ova using a Mo Bio Power Soil DNA 

Extraction Kit (Mo Bio, USA) in replicates (n = 6) samples without PMA treatment and 

quantified using qPCR described in Chapter 5.   

 

8.2.2.3.1. qPCR standard and cycling parameters  

Previously published primer and probe sets were used for the qPCR/PMA-qPCR assay 

(Chapter 7). The qPCR amplifications were performed in 25 μL reaction mixtures containing 

12.5 μL iQ
TM

 Supermix (Bio-Rad Laboratories, Calif), 3 μL of template DNA, 250 nM of 

each primer, 400 nM of probe and UltraPure
TM

 DNase/RNase-free distilled water (Life 

Technologies, Australia). For each qPCR/PMA-qPCR assay, a standard series (developed in 

the previous chapter) and a negative (UltraPure
TM

 water) control (in triplicate) were included. 

The PCR cycling parameters cycling parameters were as follows: 95C for 15 min, 95C for 

15 s, 59C for 1 min for 40 cycles. The qPCR analysis was performed using the Bio-Rad 

CFX96 thermal cycler (Bio-Rad Laboratories, USA). All qPCR reactions were performed in 

triplicate.  

 

8.2.2.3.2. Conversion to numbers of ova from PMA-qPCR estimated gene copy numbers  

The PMA-qPCR estimated gene copies numbers were converted to viable ova numbers by 

using the equation 5.   

    
           

      
                   5) 
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Where, NVO  is numbers of viable ova, NGPMA(qPCR) is average gene copy numbers estimated 

by PMA-qPCR, NGqPCR is average gene copy numbers estimated by qPCR and NO is total 

numbers of ova. Similarly, the numbers of non-viable ova were obtained by using the 

equation 6. 

 

     
                  

      
                     

Where, NNVO  is numbers of non-viable ova, NGPMA(qPCR) is average gene copy numbers 

estimated by PMA-qPCR, NGqPCR is average gene copy numbers estimated by qPCR and NO 

is total numbers of ova. 

 

8.2.3. Statistical analysis 

Microsoft excel ver. 2010 (Microsoft, USA) was used to conduct the statistical analysis. A T-

test for equal means was performed to determine the significant difference between the 

numbers of viable ova.  

 

8.3. Results 

8.3.1. Numbers of viable and non-viable ova using different methods 

Out of the 1,000 ± 50 ova analysed by the culture based method, it was determined that an 

average of 694 ± 27 ova were quantifiable (viable and non viable), and the 306 ± 27 ova were 

unaccounted for due to inbuilt analytical errors. Among the quantified ova, 397 ± 59 were 

found to be viable and 296 ± 52 non viable (Figure 8.3).  

 

Similarly, the vital stain method quantified an average of 751 ± 50 ova (viable and non 

viable), with 249 ± 50 ova unaccounted for due to analytical errors. Among the quantified 

ova using the vital staining, 644 ± 57 were viable and 107 ± 31 were non viable (Figure 8.3). 

Of the 1,000 ± 50, the PMA-qPCR quantified an average of 595 ± 74 viable and 405 ± 75 

non viable ova (Figure 8.3). Due to the PCR method, no ova were unaccounted for.  
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Figure 8.3: Numbers of viable, non viable and unaccounted ova estimated by three 

different quantitative methods  

 

8.3.2. Comparison of viability assessment  

The PMA-qPCR method estimated an average of 54 ± 6% viability of A. caninum ova in the 

tested samples (Figure 8.4). The PMA-qPCR estimated the viability of ova in the test samples 

was 19% lower than the percentage of viability of ova (64 ± 5%) estimated by the vital stain 

method. In comparison, the percentage of viability estimated by the PMA-qPCR was 38% 

higher than the viability of ova estimated by the culture based method (40 ± 6%).   

 

The viability assessed by the culture based method were significantly (P < 0.05) lower 

than that estimated by both PMA-qPCR and vital stain methods. T-test for equal means 

indicated that the viability assessed by vital stain method and PMA-qPCR method were not 

statistically significant (P > 0.05).  
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Figure 8.4: Box and Whisker plots of an average percentage of viability assessed by 

three different detection methods for A. caninum ova. The inner box lines represent the 

medians while the outer box lines represent 5
th

 and 95
th

 percentiles (n = 6). Statistically 

significant result is indicated with star (*). 

 

8.4. Discussion 

Quantitative detection and differentiation between viable and non-viable hookworm ova in 

point source samples such as environmental soil, wastewater, sludge and contaminated foods 

are necessary in order to implement strategies to eliminate re-infections in endemic regions 

(McCarthy et al., 2012; Gyawali et al., 2016b). Despite the advancements of PCR/qPCR 

methods, the viability of hookworm ova has been determined by either culture-based or vital 

stain methods.  This might be because PCR/qPCR methods are unable to differentiate 

between viable and non-viable ova. The recent development of PMA-qPCR method 

overcomes such as limitations of qPCR method and allows quantitative detection of viable 

hookworm ova from environmental samples (Chapter 7). In this study, viability assessment 

performance of PMA-qPCR method was compared against culture-based and vital stain 

methods in the laboratory settings.   

 

Among the three methods compared, the culture based method has estimated the lowest 

percentages of viable ova in the samples compared to the PMA-qPCR and vital stain 

methods. Such discrepancy could be the fact that, the hookworm ova tested in this study were 

recovered from dog faecal samples using a flotation method described by Bowmen et al., 
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(2003) and stored in 0.5% formalin for a day. The recovery method involves various steps 

and chemicals that can compromise the structural integrity of the cell wall of ova (Nelson and 

Darby, 2001). Incubating those cell wall-compromised ova at 28-30ºC for a week might 

result in the loss of ova prior to microscopic observation. In addition, microscopic 

observation always has inbuilt errors which significantly reduce the sensitivity of the method 

(Weber et al., 1999; Verweij et al., 2007; Gyawali et al., 2015a).   

 

Despite inbuilt errors such as (low detection threshold of a microscope, ova need to be 

observed within 30 min) associated with the microscopic observation, the vital stain method 

has estimated highest percentages of viable ova in the samples compared to the culture based 

and PMA-qPCR methods. This could be because the cell wall of inactivated ova may act as 

an alternative filter (Matthews, 1986; Bae and Wuertz, 2009) and prevent stains from 

reaching the cytoplasm of  the ova. Gyawali et al., (2016a)  reported that the inactivated ova 

require up to 12 h to become permeable to the stains. Similar results of overestimation of 

viable ova using vital stain methods have already been reported by others (Nelson and Darby,  

2001; Kato et al., 2001; Schlosser et al., 2001; O’Grady and Smith, 2002). In this study, the 

ova were stained for 5 min prior to the microscopic observation, which is acceptable for the 

vital stain method. Although PMA is a dye (DNA binding), the process of PMA treatment 

involves incubating the ova in a bright light for 15 min followed by ice for 5 min (Nocker et 

al., 2006; Nocker et al., 2007; Nocker et al., 2009). This incubation process may help PMA to 

enter to the cytoplasm of recently inactivated ova and make a covalent bond with DNA. This 

could be reason for lower percentages of viable ova estimated by PMA-qPCR than the vital 

stain method. Therefore, further study would focus identifying whether staining the ova for 

more than 5 min would reduce the numbers of viable ova in a sample using vital stain 

method.   

 

The major disadvantage of culture based and vital stain methods identified in this study 

was a loss of significant numbers of ova. This might be associated with either inbuilt errors of 

microscopy or individual judgement while identifying hookworm ova during visualisation. 

This phenomenon, however, was not observed while using PMA-qPCR method because the 

method quantify ova on the basis of amplified gene copy numbers with no inbuilt error and 

less individual judgement. However, the PMA-qPCR generated gene copy numbers need to 

be converted to ova. There is a lack of clear information regarding the accurate gene copy 
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numbers per ovum. Therefore, total gene copy numbers for 1,000 ± 50 ova needed to be 

estimated using qPCR method in parallel with PMA-qPCR method.  

Despite difficulty estimating accurate gene copy numbers per ovum, the result indicated 

that the approach taken in this study could be used for assessing the in-vitro viability of 

hookworm ova. The percentage of viability assessed by PMA-qPCR method was 19% lower 

than vital stain and 38% higher than culture based methods. Since the culture based and vital 

stain, the methods can underestimate and overestimate the viability of ova, respectively 

(Maya et al., 2006; Katakam et al., 2014), the viability assessed by PMA-qPCR could be 

more reliable than that of the other two methods. In addition, PMA-qPCR method is specific 

and more sensitive than both methods (Botes et al., 2013; Schar et al., 2013; Gyawali et al., 

2016c) and the result can be obtained within 4-6 h,  the method could be an alternative option 

for detecting viable hookworm ova from environmental samples including wastewater and 

sludge. Further study using environmental samples however, would be required to validate 

the results obtained in this study.   

 

8.5. Conclusions 

In conclusion, specific detection/quantification of viable hookworm ova from environmental 

samples is fundamental to assess the potential human health risks. Culture-based and vital 

stain methods rely on the sensitivity of a microscope. The sensitivity of a microscope 

associates with the inbuilt error, such as loss of ova during observation. The PMA-qPCR 

method has provided more viable hookworm ova in the tested samples than culture-based and 

less viable ova than vital stain method. Since the vital stain method has a tendency of 

overestimating viable ova in a particular sample, the viability of hookworm ova estimated by 

PMA-qPCR could be applicable for assessing the potential health risks. The viability of 

hookworm ova assessed by vital stain method was not significantly different from the PMA-

qPCR, therefore, vital stain method can still be a cheaper option for quantifying viable 

hookworm ova unless there is a need for specific detection.  
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General discussion 
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9.1. Discussion 

With an estimation of 8.0 × 10
8
 million infections, hookworm is a major public health 

problem in developing countries (Hotez et al., 2005; Brooker et al., 2008; WHO, 2012; 

Knopp et al., 2012). Various interventions such as mass drug administration (MDA), water 

sanitation and hygiene (WASH)  programs combined with public health education such as, 

always wearing shoes, washing your hands before eating, and staying away from water/area 

contaminated by human faeces have been introduced to control the hookworm infection in 

the developing countries (WHO, 2012a; WHO, 2012b; Campbell et al., 2015).  

 

Regardless the combined efforts to control hookworm infection in poverty-stricken 

communities, it has proven difficult (Brooker et al., 2010; Hotez et al., 2014). This could be 

because of multiple reasons such as i) people living in poverty may not be able to afford 

shoes to wear, ii) may not have access to clean water, iii) live in environments without proper 

sanitation (Hotez et al., 2005; WHO, 2006; Gyawali, 2012), and, iv) their livelihood depends 

on agriculture (Carr, 2005) where partially treated wastewater, raw wastewater and sludge is 

widely used (Carr, 2005; Vuong et al., 2007; Gupta et al., 2009) that significantly increase a 

load of viable hookworm ova on the environment and infects human (Vuong et al., 2007; 

Gupta et al., 2009; Trang et al., 2007; Karkashan et al., 2012).  

 

Since WHO established the relationship between diarrhoeal disease and reuse of 

wastewater and sludge for agriculture in 1989, safe use of wastewater and sludge reuse 

guideline has been developed (WHO, 2006). The guideline suggests ≤ 1 helminth ova 

(Ascaris lumbricoides) per L treated wastewater. This lower limit of helminth ova in 

wastewater was recommended because the available detection methods were unable to detect 

less than that. A QMRA conducted by Navarro and his colleagues in 2011 indicated that, 

treated wastewater and sludge treated to WHO standards can have public health 

consequences while using for crop production.   

 

Therefore, there was a strong interest to modify the WHO guidelines and lower, the limit 

of helminth ova in treated wastewater from ≤ 1 ova to ≤ 0.1 ova per L (IWMI, 2010). This 

proposal was not adopted because there was not a method for detecting less than an ovum 

from treated wastewater. Despite the little importance has been given to develop a 

standardised sensitive detection method that can quantify the low numbers of ova from 
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wastewater and sludge. In this study, a real time PCR method has been successfully 

developed using A. caninum ova as a surrogate of human hookworm, for detection of viable 

hookworm ova from environmental samples such as wastewater, sludge, and soil. The 

sensitivity of the method was found to be less than one ovum for treated wastewater (1L). 

Therefore, with this newly developed PCR method, WHO guideline can be modified with 

purposed limit of helminth ova (< 0.1) in treated wastewater (1L). In addition, the PCR 

method does not require skill personal identify helminth ova. Therefore this method has the 

potential to be a standardised method for monitoring treated wastewater quality across the 

world.    

 

The detection sensitivity of the PCR method however, decreased one order of magnitude 

for raw wastewater and treated sludge. The decreased sensitivity obtained for raw wastewater 

and sludge samples could be because the samples were more turbid than treated wastewater. 

Therefore, further study is needed developing a reliable, rapid and improved method for 

recovering hookworm ova from raw wastewater and sludge samples.  

 

Specific detection hookworm ova to the species level is another advantage of PCR method 

(Traub et al., 2007; Ye et al., 2012) over culture based and vital stain methods while detecting 

hookworm ova from environmental samples, which is important to determine the potential 

public health risk because some species of hookworms are only accidental parasite for human 

species (Traub et al, 2007; Traub et al., 2008). Another benefit of the specific detection of 

hookworm is that, it potentially can assist to answer whether canine are reservoir host for 

human hookworm. Due to the morphological similarity between canine and human 

hookworm ova, microscopic methods (culture based and vital stain) are unable to distinguish 

ova to the species level (Verweij et al., 2007; Traub et al., 2007; Traub et al., 2008; Ngui et 

al., 2012). This could be a reason for hookworm re-infection to baseline levels soon after 

MDA programmes are ceased in endemic regions (Campbell et al., 2014). In conjunction 

with MDA and other interventions, the newly developed method can assist to eliminate 

hookworm infection from endemic regions.  

 

Detection of viable hookworm ova in the sources such as food, soil and water of 

hookworm reinfection is fundamental to eradicate the hookworm infection from an endemic 

region.  Currently used detection methods to detect viable hookworm ova/larvae from point 

of sources have unsatisfactory performance and are not well suited for use in the parasite 
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control programmes (Traub et al., 2007; Traub et al., 2008; McCarthy et al., 2015; Gordon et 

al., 2015; Gyawali et al., 2015a); because culture based method potentially underestimate and 

vital stain method overestimate the viability (Maya et al., 2006; Katakam et al., 2014). Since 

the viability of hookworm ova assessed by PMA-qPCR was 30% higher than the culture 

based method and 18% lower than the vital stain method, the viability assessed by PMA-

qPCR method could be more accurate than other two methods. Therefore, the PMA-qPCR 

method can be a tool to detect viable hookworm ova more accurately from the point of source 

samples and fight against hookworm infection. 

 

        Although A. caninum ova were used in this study to develop the PMA-qPCR method, 

the general structure of the ova is similar to other pathogenic STHs. This means that the 

method can be customised to detect other STHs ova such as A. duodenale, N. americanus, 

and A. lumbricoides from environmental samples including wastewater matrices by designing 

the species-specific primers and probes (Traub et al., 2007; Ye et al., 2012). The future 

outcome of this study could be the development of gene-based oligonucleotide microarray 

that can detects multiple pathogenic helminths from environmental and faecal samples, 

similar to the array that has already been used to monitor bacterial community in the 

environment (Sergeev et al., 2004; Dugat-Bony et al., 2012).  

 

Another advantage of the new PMA-qPCR method is its ability to quantify the number of 

viable hookworm ova from environmental samples which is fundamental for assessing the 

magnitude of risks (Navarro and Jimenez, 2011).  The PMA-qPCR method quantifies viable 

hookworm ova on the basis of amplified target gene copies. Since the targeted gene (rRNA) 

from ITS-1 region has multiple copies, a kinetic study starting with an early stage of ova and 

ending just before larvae would be appropriate to estimate the numbers of gene copies per 

ovum. However, there is a problem of conducting such kinetic study for hookworm ova 

because ova excreted in the host faecal sample may not be at the same cell stage. In addition, 

the ova are three-dimensional and it is difficult to estimate the actual cell number using 

simple microscope. Since the infectious dose of hookworm is low (1-10 larvae), any PMA-

qPCR positive signals should be considered as health risks. 
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PCR inhibitors could be an issue using this method for regular monitoring hookworm ova 

in wastewater and sludge samples (Rock et al., 2010; Schrader et al., 2012; Xu et al., 2010). 

Therefore, a PCR inhibition test should be conducted prior to analysing the samples. 

Commercially available DNA extraction kits may not always eliminate the PCR inhibitors, 

especially from sludge samples. This issue, however, can be resolved by applying common 

strategy of diluting the DNA (10 to 100 fold) depending on the concentration of PCR 

inhibition in the DNA samples (Drosten et al., 2002; Audemard et al., 2004; Van Doorn et al., 

2009).  
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Conclusion 
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10.1. Conclusion 

The increasing use of the wastewater and sludge for crop production or the direct discharge 

into surface water can have negative public health implications due to the presence of viable 

hookworm ova. Several guidelines have been developed to set the standard and set the limit 

of numbers of helminth ova in the treated wastewater and sludge. This limit was established 

on the basis of the minimum level of detection using currently available methods. However, 

there is evidence of infections occurring when the WHO standard wastewater and sludge is 

applied for agriculture. Therefore, there was a strong expression to improve the guideline and 

lower the threshold limit of helminth ova to 0.1 per L in treated wastewater for unrestricted 

use. Detection of helminth ova into the treated wastewater and sludge using currently used 

method is complicated by the presence of multiple species. Furthermore, the sensitivity of 

those methods can be low because of the low detection limit of a microscope. Since a 

hookworm ovum contains large numbers of gene copy PCR method can detect low numbers 

(0.1 per L) of ova from wastewater and sludge samples.  The main findings of this study, 

potential impact, limitations and future directions are as follow. 

 

10.2. Major findings 

i. The PCR/qPCR method developed in this study offers specific detection of 

hookworm ova from wastewater and sludge.  

ii. The sensitivity of the PCR method is ~ 0.4 ova in treated wastewater (1 L) and ~ 4 

ova in raw wastewater (1 L) and sludge (4 g) samples. 

iii. The PCR method is rapid and the result can be obtained within 6 h. 

iv. Since the detection of hookworm ova from treated wastewater, raw wastewater, and 

sludge samples require isolation and concentration of ova, the rapidness of the method 

depends on the time taken to isolate and concentrate the ova from the wastewater and 

sludge samples.  

v. The detection sensitivity of the PCR method depends on the effective recovery of 

hookworm ova from wastewater and sludge. 

vi. The sieve filtration (series of sieves) provides consistency and good recovery rate of 

the hookworm ova from treated wastewater (39 ± 26 – 50 ± 38%) and raw wastewater 

(12 ± 10 – 7 ± 13%) samples.  
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vii. The recovery rate of hookworm ova from sludge samples using the flotation method 

is poor (3.7 ± 9%).  

viii. Wastewater and sludge samples may contain PCR inhibitors, therefore, a PCR 

inhibition test on the DNA samples should be mandatory.   

ix. A significant amount of DNA can be lost during the DNA extraction process 

therefore, DNA recovery efficiency of the kit should be mandatory.  

x. Since the qPCR quantifies the numbers of ova on the basis of gene copy numbers 

present in the DNA samples, an accurate quantitation of hookworm ova using qPCR 

method is not possible when targeting ITS-1 rRNA or rDNA gene.  

xi. Despite the difficulties quantifying hookworm ova using qPCR, when combined with 

photoactive dye (PMA), the method can be used for selective detection of viable 

hookworm ova from wastewater and environmental samples. 

xii. The viability assessment performance of the developed PMA-qPCR method was 30% 

more than culture based method and 20% lower than vital stain method. 

 

10.3. Potential impacts relating to health risk assessments 

i. Since the PCR method is specific the method can be used to distinguish human 

hookworm with animal ones. 

ii. Since the sensitivity of the method is ~ 0.4 ova from treated wastewater (1 L) 

samples, this method can be used to purposed limit of helminth ova in wastewater and 

sludge.  

iii. Since the infectious dose of hookworm ova is low (1-10 viable ova/larvae), the PMA-

qPCR has potential to measure the public health risk associated with treated 

wastewater and sludge use for agriculture.  

iv. Since the structures of the soil-transmitted helminth ova are similar, the PMA-qPCR 

would be useful for detecting viable ova for other helminths of interest.  

v. Given the ability to discriminate non viable ova from viable ones in a short period of 

time, the PMA-qPCR has the potential to test more samples with reduced labor cost.  

vi. Since the results can be obtained in a short period of time, the health regulators and 

utility operators can assess the efficiency of the wastewater and sludge treatment 

methods in real time.   
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vii. The method can be a useful tool for identifying the source of re-infection of 

hookworm as well other STHs in MDA and water sanitation and hygiene (WASH) 

implemented communities.  

10.4. Future study  

i. Future study would focus on improving ova isolation and recovery from raw 

wastewater and sludge samples. This would improve the sensitivity of the qPCR 

method.  

ii. Since the ITS-1 rRNA/.rDNA gene copy numbers in the ova vary according to the 

cell development stage, further kinetic studies would require estimating the gene 

copy numbers in the each cell development stage of the hookworm ova.  

iii. Further study should focus on identifying a stable target that would improve the 

accuracy of quantification of hookworm ova using qPCR method.  

iv. The PMA exploits the structural integrity of the cell wall of the inactivated ova, 

which requires 12 h of incubation at room temperature to become permeable to 

the stains. Therefore, ova isolated from the samples should be incubated at room 

temperature for 12 h prior to PMA treatment. 

v. Although the PMA-qPCR method is rapid, sensitive and specific, it requires 

advanced equipment, reagents, and facilities. This might restrict the application of 

PMA-qPCR method in poor countries where the hookworm infection is endemic.  

vi. Multi-omics (metagenomics, metabolomics, and proteomics) are the most rapidly 

growing technologies that might identify low-cost biomarkers from infectious 

helminths, including hookworm. Further study would focus on identifying 

biomarkers from individual helminths and developing a library of biomarkers, 

which can be used to assist in detecting, identifying and quantifying helminths in 

the future.  
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Photomicrograph (100x) of A. caninum ova isolated from dog faecal samples and 

further used for the experiments 
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Appendix-B 

 

 

 

 

 

 

 

 

 

 

 

Numbers of A. caninum ova in each stock solution 

 

Stock 

No 

Volume of stock 

(mL) 

Stock use for 

enumeration (µL) 

Mean ± SD No of ova/20 

µL 

1 10  20 

20 

20 

20 

20 

20 

4.1 × 10
2
 ± 16 

2 10  3.9 × 10
2
 ± 18 

3 10  4.8 × 10
2
 ± 19 

4 10  4.6 × 10
2
 ± 21 

5 10  4.0 × 10
2
 ± 18 

6 10  7.5 × 10
2
 ± 27 
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Appendix-C 

 

 

 

 

 

 

 

 

 

 

 

 

Mean and standard deviation (SD) of CT values for different concentration of primer 

and probe concentration 

 

Primer 

concentration 

(nM) 

Probe concentration (nM) 

300 400 500 600 700 800 

100 30.3 ± 1.4 29.3 ± 0.7 29.6 ± 0.5 31.7 ± 0.8 29.6 ± 1.4 30.8 ± 1.9 

200 30.6 ± 1.2 29.7 ± 0.4 30.4 ± 0.4 31.0 ± 1.2 30.1 ± 1.1 30.6 ± 1.4 

250 30.3 ± 0.5 29.3 ± 0.1 30.3 ± 0.7 31.8 ± 0.6 30.6 ± 1.6 29.8 ± 1.5 

300 31.8 ± 0.4 30.8 ± 0.2 30.8 ± 0.5 30.7 ± 1.6 31.5 ± 1.7 29.7 ± 1.2 

350 30.9 ± 0.3 31.2 ± 0.2 31.6 ± 0.9 31.1 ± 0.9 29.7 ± 0.6 30.3 ± 1.5 

400 32.1 ± 0.7 31.2 ± 0.5 31.5 ± 0.7 31.2 ± 0.5 31.1 ± 1.4 30.4 ± 0.8 

 

 

 

 

 

 

 

 

 



 

136 
 

Appendix-D 

 

 

PCR amplification of Sketa22 PCR assay for the evaluation of PCR inhibition in A. 

caninum ova seeded secondary treated wastewater and unseeded treated wastewater,  

raw wastewater and sludge DNA samples as opposed to O. keta DNA (10 pg) seeded 

UltraPure
TM

 water samples 
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Appendix-E 

 

 

 

 

 

 

 

 

 

 

Sketa22 real-time PCR assay for the evaluation of PCR inhibition in ova seeded DNA 

samples as opposed to distilled water samples. Mean ± standard deviation of CT values 

for distilled water samples = 28.5 ± 0.2 

 

Concentrations 

methods 

Wastewater 

Sample types 

Mean ± standard deviation of threshold cycle (CT) values 

for Sketa22 PCR assay 

Undiluted DNA samples 10-fold diluted DNA 

samples 

  WWTP-A WWTP-B WWTP-A WWTP-B 

Method A Treated  

Raw  

27.8 ± 0.2 

28.0 ± 0.1 

31.2 ± 1.9 

31.4 ± 1.2 

NA 

NA 

29.0 ± 1.7
 
 

27.0 ± 0.2 

Method B Treated  

Raw  

27.7 ± 0.1 

28.0 ± 0.1 

30.5 ± 0.2 

30.0 ± 0.1 

NA 

NA 

29.2 ± 1.8 

NA 

Method C Treated  

Raw  

28.1 ± 0.1 

28.3 ± 0.4 

29.9 ± 0.1 

33.0 ± 1.5 

NA 

NA 

NA 

27.0 ± 0.1 

Method D Treated  

Raw  

28.1 ± 0.2 

28.2 ± 0.1 

29.8 ± 0.1 

29.8 ± 0.1 

NA 

NA 

NA 

NA 

Method E Sludge 28.2 ± 0.2 31.3 ± 2.0 NA 27.9 ± 1.7 

Method F Sludge NAP NAP 29.2 ± 0.1 27.1 ± 0.1 

NA: Not applicable 

NAP: No amplification 
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Appendix-F 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

A standard curves generated using the plasmid DNA. The numbers of gene copies are 

plotted against CT values. The CT is the cycle number at which the fluorescence signal 

increased above the defined threshold value, calculated by the real-time PCR software. 
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Appendix-G 

 

 

 

A letter from the Journal of Environmental Sciences regarding accepting article 

“Quantification of hookworm ova from wastewater matrices using quantitative PCR” 

came out from this thesis. 


