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Abstract 

 

SrCoO3 is a promising material in the field of electrocatalysis. Difficulties in synthesising the 

material in its cubic phase have been overcome by doping it with Sc and Nb ions [Mater. 

Horiz. 2015, 2, 495–501]. Using ab initio calculations and special quasi random structures we 

undertake a systematic study of these dopants in order to elucidate the effect of doping on 

electronic structure of the SrCoO3 host and the formation of oxygen vacancies. We find that 

while the overall electronic structure of SrCoO3 is preserved, increasing the Sc fraction leads 

to a decrease of electrical conductivity, in agreement with earlier experimental work. For low 

Sc and Nb doping fractions we find that the oxygen vacancy formation increases relative to 

undoped SrCoO3. However, as the dopants concentration is increased the vacancy formation 

energy drops significantly, indicating a strong tendency to accommodate high concentration 



of oxygen vacancies and hence non-stoichiometry. This is explained based on the electronic 

instabilities caused by the presence of Sc ions which weakens the B-O interactions as well as 

the increased degree of electron delocalization on the oxygen sublattice. Sc dopants also shift 

the p-band centre closer to the Fermi level, which can be associated with experimentally 

reported improvements in oxygen evolution reactions. These findings provide crucial 

baseline information for the design of better electrocatalysts for oxygen evolution reactions as 

well as fuel-cell cathode materials.  
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1. Introduction 

Energy generation and storage with a low carbon footprint is necessary to mitigate the 

undeniable effect that fossil fuel utilization has on the environment. Renewable energy in the 

form of solar and wind energy transformed into electricity can be used in conjuncture with 

electrocatalysis in electrolyzers to generate hydrogen which can be stored and utilized as a 

fuel [1,2].  

For this to be realized, it is necessary to find low cost, efficient and easily processable 

materials which exhibit the necessary catalytic activity to be used for water splitting and in 

fuel cells. Perovskites have emerged as a key candidate material in the field of 

electrocatalysis, given their moderate cost and good activity, which can in some cases come 

close to and even surpasses that of noble metals [3–5]. The other advantage perovskites offer 

is the capacity to tune their properties by modest changes to the chemical constituents. Issues 

remain regarding their long term stability and the relatively high operating temperature 

(900~1200 C) needed in order to achieve adequate transport of electrons and ions in solid 



oxide fuel cells (SOFC).[6] Also the high overpotentials associated with oxygen evolution 

and reduction reactions are still a major obstacle to fully realize water splitting on a 

commercial scale. 

Among the numerous possible perovskites, SrCoO3 has emerged as a desirable electrode 

material due to its oxygen non-stoichiometry and superior redox capabilities of the Co ions 

[7–11]. The remarkable redox ability of Co has been demonstrated in barium strontium cobalt 

iron oxide (Ba0.5Sr0.5Co0.8Fe0.2O3-δ) which has been widely studied as a cathode material for 

SOFCs [12–14]. Recently, Suntivitch et al [15]. demonstrated that BSCF has one of the 

lowest overpotentials for the oxygen evolution reactions (OER), however, the material suffers 

from low stability and readily amorphizes under operating conditions [16,17].  

Theoretical predictions have placed SrCoO3 at the top of the activity volcano plots for OER 

with overpotentials predicted at 0.25~0.30 eV [18,19]. Experimental work investigating the 

series formed by La1-xSrxCoO3 have demonstrated an improved activity for higher Sr fraction 

[11]. This was recently explained by Cheng et al. [20] on the basis that Sr substitutions 

straightens the Co-O-Co bonds and further oxidizes Co
3+

 increasing the overlap between O 

2p and Co 3d bands, which enhances the electronic conductivity. In this work we examine the 

effect of Sc and Nb dopants inspired by the recent demonstration that SrScxNbyCo1-x-yO3 can 

exhibit low overpotentials and high stability under OER conditions. We show that low doping 

fractions can favour OER due to the suppression of oxygen vacancies, which is reflected in 

higher oxygen stoichiometries. High Sc content, on the other hand, leads to a large decrease 

in the oxygen vacancy formation energy and can impact the crystallinity of the doped 

structure. 

 

2. Methodology 



Our calculations are based on VASP’s implementation [21] of density functional theory with 

the projector augmented waves method [22] to treat core and valence electrons. The Sr 
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treated as valence. The generalized gradient approximation with the PBEsol [23] 

parameterization was used to describe the exchange-correlation, which is more suited to 

describe solids’ properties [20,24–27]. Plane waves with kinetic energy cutoff of 500 eV 

were used to expand the wavefunctions, with larger cutoff of 600 eV leading to changes of ~ 

0.05 eV in the formation energies. Energies were converged with a 1x10
-5

 eV tolerance and 

forces were optimized until they change by no more than 1x10
-2

 eV/Å.  

To mimic the random distribution of the B-site dopants, special quasirandom structures 

(SQS) were used. These were generated using the Monte Carlo SQS tool within the Alloy 

Theoretical Automated Toolkit (ATAT) [28]. The SQS method was used as an efficient and 

reliable tool in modelling disorder in a number of oxides and perovskites.[29–32] Electronic 

interactions between ions are studied using the crystal orbital Hamilton population (COHP) 

as implemented in the LOBSTER code [33,34].  

Vacancies are modelled using a 135 atom supercell which is large enough to reduce image-

image interactions due to periodic boundary conditions. Based on earlier work, this supercell 

size was shown to be large enough to model a vacancy in the dilute limit.[35] 

 

3. Results and Discussions 

SrScxNbyCo1-x-yO3: distributions and structures 

In order to incorporate B-site Sc and Nb doping into SrCoO3 that would justifiably reflect 

experimental structures, we relied on the use of the SQS technique to populate the B sites. 

The starting point was a 3x3x3 ABO3 cell which contains 27 possible B sites. In all the 

models one Nb atom was always present which corresponds to a fraction of y = 0.037. The Sc 



fraction x was varied between 0.037 (1 Co) and 0.222 (6 Co). The remaining sites were 

populated with Co atoms. The choice of these doping fractions stems from the recent work by 

Zhou et al. [36]. For each of the doping fractions a number of cells are generated that attempt 

to minimize an objective function which matches a number of correlation functions. For this 

we use pair and triplet correlation functions set to the 3rd and 2nd neighbour distance, 

respectively. The resulting structures are shown in Fig. 1. 

 

Figure 1. The 135 atom supercell used to mimic the Sc and Nb distribution in 

SrScxNb0.037Co0.963-xO3. 

This was followed by a structural relaxation for each of the configurations shown in Fig. 1. 

We perform this in a series of two stage relaxations: first allowing the atoms to relax and then 

relaxing the cell parameters (but not the shape).  



 

Figure 2. The relaxed cell parameter as a function of the Sc fraction. The linear behaviour is 

in close agreement with Vegard’s law. 

The effect of increasing the Sc fraction is to expand the lattice. If we ignore the effect of the 

small Nb doping fraction, the behaviour shown in Fig. 2 is in good agreement with the 

experimental work of Zeng et al. [37] who investigated Sc doping in the range of 0.02-0.2 in 

SrScxCo1−xO3. The effect of increasing Sc can be simply understood from Vegard’s law. The 

calculated lattice parameter of hypothetical SrScO3 is 4.08 Å while that of SrCoO3 is 3.78 Å 

which leads to an overall similar shape similar to that shown in Fig. 2, when interpolating 

between the two limits. 

 

 

Electronic structure of SrScxNb0.037Co0.963-xO3 

To help understand the electronic interactions in SrScxNb0.037Co0.963-xO3 it is useful to 

examine the electronic interactions between Co/Sc and O. The Sc-O and Co-O interactions in 

SrScO3 and SrCoO3 are shown in Fig. 3. One can clearly see an inherent instability in the Sc-

O interaction with no bonding interactions at the Fermi level and large antibonding 

contribution at about 3 eV below the Fermi level. On the other hand SrCoO3 shows some 



antibonding interactions at the Fermi level but retains a mainly bonding character which leads 

to an overall stable structure. In SrNbO3, the interaction is mainly dominated by a strong 

bonding interaction. However, these bonding states are well below the Fermi level. 

 

Figure 3. The COHP representation (negative and positive values correspond to antibonding 

and bonding interactions, respectively) of the Co-O, Nb-O and Sc-O interactions in SrCoO3, 

SrNbO3 and SrScO3, respectively. SrScO3 exhibits an electronic instability while in SrNbO3 

Nb-O display bonding interactions between -8 to -6 eV. 

 

The projected densities of the Co 3d and O 2p states for each of the compositions considered 

here are shown in Fig. 4. At low Sc fractions (x = 0.037 and 0.074)  there is a strong mixing 

of the Co and O states in the valence band, with clear indications of hybridizations in the 

range of -3 to -1 eV which is characteristic of the expected degree of covalency in SrCoO3. A 

sizable density of states occurs at the Fermi level, which is dominated mainly by the minority 

spin channel of the Co ions. As the Sc fraction is increased the Co 3d peak starts to diminish 

and clearly disappears for the Co 3d minority spin electrons in the valence band signalling a 



reduction in hybridization between Co and O in agreement with previous theoretical 

calculations [38].  

 

Figure 4. The PDOS evolution with Sc content showing contributions from the Co 3d and O 

2p states. 

Furthermore, Sc doping shifts some of the states above the Fermi level as can be seen in Fig. 

4 where the Co/O peak at the Fermi level moves to higher energy. This implies an increased 

hole concentration and an emergence of p-type conductivity which was experimentally 

reported by Zeng et al. [37]. Increasing the Sc content will eventually lead to a decrease in 

conductivity as the Sc
3+ 

have a fixed valency and would not contribute to electrical 

conductivity, which is expected to be mediated by a Zener double exchange process 

controlled by the strongly overlapping B–O–B bonds [37].  



The charges on the ions where calculated using the Bader decomposition algorithm [39]. 

Table 1 shows the effective charges for each composition. The charges were averaged over 

each species and compared to the values obtained in bulk SrCoO3, SrScO3 and SrNbO3. 

 

Table 1. Bader charges for each species in the parent perovskite compound and at each 

SrScxNb0.037Co0.963-xO3 composition and the corresponding lattice parameters. 

  Charges  

  qSr qSc qNb qCo qO Lattice parameter (Å) 

 SrCoO3 1.57 - - 1.52 -1.03 3.78 

 SrScO3 1.59 1.90 - - -1.16 4.08 

 SrNbO3 1.58 - 2.27 - -1.28 4.05 

x 

0.037 1.57 1.88 2.61 1.47 -1.03 3.79 

0.074 1.57 1.90 2.47 1.47 -1.03 3.80 

0.111 1.57 1.89 2.47 1.48 -1.04 3.81 

0.148 1.57 1.89 2.54 1.48 -1.05 3.82 

0.185 1.57 1.90 2.57 1.49 -1.06 3.83 

0.222 1.57 1.90 2.53 1.50 -1.06 3.84 
 

The charge on Sr is about +1.57e which is close to the formal charge of +2e in SrBO3 bulk 

systems. This value remains constant and shows no dependence on the values of x. Similarly 

the charge on Sc, which formally adopts a +3 oxidation state, remains close to the bulk value 

of +1.90e. Nb and Co are more flexible. Nb shows a markedly different oxidation when 

incorporated with Sc in SrScxNb0.037Co0.963-xO3. On average Nb donates about 0.2e more 

electrons in SrScxNb0.037Co0.963-xO3 compared with bulk SrNbO3 whereas the charge on Co 

decreases from its bulk SrCoO3 value before increasing again as the Sc fraction is increased. 

In general the small charges acquired by each species is an indication of the covalent 

character and is typical for this type of compounds [31,32,40–42].  

 

Oxygen vacancies SrScxNb0.037Co0.963-xO3 



The presence of oxygen vacancies is inevitable in oxides. They can affect electrochemical 

activities in catalysts and they play a pivotal role in SOFC as they mediate the oxygen ions 

reduction and diffusion. Here we model the oxygen vacancies by removing a neutral O atom 

from the SQS corresponding to a particular composition for which the formation energy is 

calculated as: 

  (  )   (  )   (    )  
 

 
     (  )  

Where  (  ),  (    ) and  (  ) are the total energies of the defect containing supercell, 

perfect SQS supercell and the energy of an O2 molecule.    is a correction term added to 

account for the well-known O2 overbinding in DFT calculations. This value is obtained by 

fitting the heats of formation of a range of oxides and determining the offset from the well 

characterized experimentally determined heats of formation [43,44]. The oxygen overbinding 

correction is functional dependent. For PBEsol we find that        eV which is in good 

agreement with previous work [45]. The above definition of    corresponds to oxygen rich 

conditions. 

Given that a defect’s formation energy is dependent on its local environment we calculated 

the O formation for all possible configurations which were classified according to Sc-VO-Co, 

Nb-VO-Co, Sc-VO-Sc and Co-VO-Co. The most recurring pairs are shown in Fig. 5. It is clear 

from the figure that there is a spread of the formation ranging about 1 eV in some cases. In 

general, defects with the lowest formation energies are thermodynamically favourable, 

however, under experimental synthesis and operating conditions temperatures can reach 1000 

K which implies that a proportion of high energy defects could become thermodynamically 

accessible. A configurational average could then be used to estimate the formation energy for 

an O vacancy in a particular B-VO-B’ configuration according to [46]:  
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Where 〈  〉 is the configuration average over the   possible configuration each with 

formation energy   
 ,    is Boltzmann’s constant and the temperature   is set to 1000 K 

which is a typical processing temperature for a ceramic solid state reaction and SOFC 

operation.[36]  

 

Figure 5. Oxygen vacancy formation energy for each composition x = 0.037-0.222. Each data 

point corresponds to a different local environment surrounding the oxygen vacancy. The local 

environments are classed into three major groups (a) Co-VO-Co, (b) Sc-VO-Co and (c) Nb-

VO-Co. The O p-band centres calculated in the defect free systems is shown in (d). The 

COHP interactions for the highest and lowest formation energy sites in the Sc-VO-Co 

configuration at x = 0.222. Configurationally averaged oxygen vacancies are represented by 

red dots and are joined by a red (dashed) line. The larger green dots in (a) were obtained 

using GGA+U. 

 



Starting from low Sc doping fractions (x = 0.037), oxygen vacancies adjacent to the dopant 

atoms have high formation energies relative to a single isolated vacancy in SrCoO3 [35] 

which was found to be 1.26 eV in the dilute limit (1.37 eV in a 3x3x3 supercell). For instance 

the Nb-VO-Co forms at 1.9 eV whereas Sc-VO-Co forms at 1.54 eV. The increase in the 

vacancy formation energy is the highest in the vicinity of Nb. This is supported by 

experimental evidence that showed a strong correlation between Nb content and oxygen 

stoichiometry in SrCoO3 [47].  

The trends shown in Fig. 5(a)-(c) show that as the fraction of Sc is increased the average cost 

to form an oxygen vacancy decreases regardless of the B-VO-B’ configuration type. Two 

major contributions to the defect formation in a perovskite (or solids in general) are the extent 

of structural distortions (such as the rotations and tilting of the MO6 octahedra in this case) 

and the electronic redistributions. While the formation of an oxygen vacancy causes a clear 

distortion in the lattice which is marked by B-O-B bond angles deviating significantly from 

the      as in the cubic case, we find that the degree of distortion is similar in all cases, i.e. at 

the same Sc doping fractions as well as for low and high doping fractions. Therefore, lattice 

distortions cannot explain the variation in formation energies. To understand this we focus on 

the bonding of the O atom at a given configuration. Considering the bonding/antibonding 

interactions of an O atom with its surrounding transition metal sites we see that the 

introduction of Sc species increases the antibonding contribution in the structure (Fig. 3). For 

instance Fig. 5(b) shows that for Sc-VO-Co at x = 0.222 the most stable O defect has 

formation energy of 0.21 eV while the least favourable one occurs at 1.35 eV. Taking these 

two defects as an example to illustrate the effect of bonding/antibonding interactions, we 

consider the two O sites at these two configurations in the perfect SQS supercell for x = 

0.222. We calculate the interaction of each of the O atoms with its neighbouring transition 

metal sites using the COHP technique as shown in Fig. 5(e). We can clearly see that the 



easily-formed VO defect has a high proportion of states at the Fermi level with a strong 

antibonding character. On the other hand, the high formation energy VO defect exhibits 

negligible antibonding character at the Fermi level. Similarly, Nb ions show a strong bonding 

character in bulk SrNbO3 which will lead to an increase in VO formation energy as is the case 

for the considered range of x. To test the robustness of the observed trends in VO formation 

energies we performed additional calculations using GGA   (         eV [43,48,49]) 

focusing on the Co-VO-Co case. We found that while the absolute values of   (  ) change 

compared with pure PBE, the same trend holds showing a clear drop in formation energies as 

the Sc content is increased (see Fig. 5(a)). 

 

Figure 6. Electron delocalization over the oxygen sublattice for Co-VO-Co configurations. 

Oxygen vacancy formation energies were also successfully described based on the degree of 

charge delocalization of the electrons left behind upon the removal of an oxygen 

atom.[32,41,50,51] It was established that a higher degree of charge delocalization on the 

oxygen sublattice results in lower vacancy formation energies.[50,51]. The degree of 

localization ( ) was calculated using:[32] 



  
(   )(〈                    〉 〈                 〉)

〈                 〉
     (2) 

Where N is the number of oxygen in the perfect reference system and 〈 〉 is the averaged 

Bader charges on the oxygen sublattice. Fig. 6 shows the charge delocalization over the 

oxygen sublattice for each Sc fraction considered here. The trend clearly shows that there is a 

marked increase in charge delocalization with Sc content which corresponds to lower 

vacancy formation energies as shown in Fig. 5(a). This differs from the undoped case of 

SrCoO3 where the two electrons tend to localize on neighbouring Co sites.[35] 

It has been shown that the vacancy formation energy correlates with the p-band centre, such 

that either of which could be used as an activity descriptor [16,52]. This correlation also 

holds for the structures considered here. The p-band centre for SrScO3 is -0.63 eV whereas in 

SrCoO3 and SrNbO3 it is found to be -1.92 eV and -4.40 relative to the Fermi level, 

respectively. Grimaud et al. [16] have argued that moving the p-band centre close to the 

Fermi level can increase the OER activity but having it too close will decrease the oxide 

stability. For this reason BSCF which has its p-band centre at ~ -1.5 eV exhibits low OER 

overpotentials but readily amorphizes leading to a drop in activity. 

The recent demonstration that Sc and Nb additives to SrCoO3 help achieve high OER activity 

can therefore be understood based on the fact that small fractions of Sc and Nb help stabilize 

the cubic structure by preserving the cubic perovskite structure as well as the electronic 

structure of SrCoO3. The increased oxygen vacancy formation energy for low Sc and Nb 

doping fractions maintains a near stoichiometric concentration of oxygen ions. Our earlier 

work has revealed a detrimental role of surface oxygen vacancies on the OER activity in 

SrCoO3 [35]. Hence, minimizing oxygen vacancy concentrations can be expected to help 

minimize the overpotential for OER. Sc on the other hand helps move the p-band centre close 

to the Fermi level (Fig. 5(d)) which contributes to the OER activity and offsets the effect of 



Nb which tends to shift the p-band centre in the opposite direction. However, at x = 0.222 the 

p-band centre is already at ~-1.7 eV relative to the Fermi level and is therefore at the edge of 

materials stability [16]. On the other hand, increasing the Sc fraction clearly leads to a 

significant increase in oxygen vacancy concentration and would therefore be beneficial in 

SOFCs. This is in very good agreement with earlier experimental studies [53,54] where it was  

demonstrated that Sc additives in SrCoO3 did lead to an extremely high oxygen vacancy 

concentration and an improved performance as a cathode material.  

 

Conclusions  

In summary, we have examined Sc and Nb dopant distributions in SrCoO3. We have shown 

that SrScO3 exhibits a high degree of electronic instability due to the presence of a significant 

contribution of antibonding states below the Fermi level. Sc additives lead to a lattice 

expansion and within the doping fractions considered here Vegard’s law is obeyed.  

Oxygen vacancies in the vicinity of Nb ions have large formation energies relative to 

vacancies in bulk SrCoO3. This makes Nb efficient in preserving oxygen stoichiometry as it 

acts as oxygen traps. On the other hand, increasing Sc concentration introduces electronic 

instabilities as revealed from the COHP analysis which drives the vacancies formation to 

lower values. The p-band centre of SrCoO3 at -1.92 eV can be further tuned by the dopants. 

We find that Sc has a tendency to shift p-band centre closer to the Fermi level. However, the 

expected amorphization in the doped structures and the increased oxygen vacancies means 

that increasing the Sc content is not ideal for OER operations. Our analysis sheds light at the 

origin of the high oxygen vacancy concentration induced by Sc at larger doping percentages 

which helps explain the successful demonstration of Sc doped SrCoO3 as a cathode in fuel 

cells [53,54].  
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