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Abstract

The aetiology of many gestational disorders i$ stiknown. However, insufficient trans-
placental nutrient and oxygen transfer due to ababplacentation is characteristic of
several pathologies, and may alter the functioplatental mitochondria. Mitochondria are
multifunctional organelles that respond to a widege of stimuli — such as physiological
changes in cellular energy demands or various fragles — by reshaping via fusion or
fission, increasing/decreasing in number, altedrglative phosphorylation, and signalling
cellular functions such as apoptosis. Mitochorlduaction is integral to tissue functions
including energy production, metabolism, and regoteof various cellular responses
including response to oxidative stress. This reuietails the functions of placental
mitochondria and investigates mitochondrial funetamd structure in gestational disorders
including preeclampsia, intrauterine growth resimit, diabetes mellitus, and obesity.
Placental mitochondrial dysfunction may be criticeh range of gestational disorders which

have important implications for maternal and fetf¢pring health.

Keywords. mitochondria; oxidative stress; preeclampsiaaumierine growth restriction;

diabetes; obesity
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1. Introduction

Mitochondria originated from the symbiosis of prirdial eukaryotic cells and aerobic
bacteria. Mitochondria, which contain their own gaere (mtDNA) and machinery to
synthesise RNA and proteins, work in concert whth nuclear genome and other organelles.
Almost all cellular energy is produced through @tide phosphorylation in mitochondria;
partnered redox reactions transfer electrons thraxygen to water and pump protons into
the mitochondrial inner membrane through respiyatomplexes (complexes I, 1ll, and V).
The electrochemical gradient created by the tramdfprotons is termed mitochondrial
membrane potentiah®m), and is harnessed by ATP synthase (complex Ygterate ATP.
Mitochondria are known as the powerhouses of tHalae to their central role in ATP
generation. However, mitochondria have severaltaohdil functions; they provide important
signalling on cellular homeostasis, and are kewuleggrs of cell fate through
autophagy/apoptosis. Mitochondria form a dynamiicuéum, and the reshaping of this
reticulum in response to differences in mitochoaldmembrane potential helps control
mitochondrial and cellular fate (Figure 1). In aamgtion with the endoplasmic reticulum,
mitochondria can regulate mediators of cell deatthss calcium levels and caspases.
Additionally, in the placenta and other tissueshsag the adrenal glands, mitochondria are

crucial to the production of steroids [1, 2].

Mitochondrial dysfunction is thought to contributea wide range of disorders related to
oxidative stress, such as cardiovascular disegse 2 diabetes, and neurodegenerative
disorders. Partial occlusion of blood flow leadindocal hypoxia is a common feature in
several pathologies which show effects on the rhadria. Mitochondria consume oxygen

to generate ATP via oxidative phosphorylation, pi@dg reactive oxygen species (ROS) as
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a by-product. Oxygen variability can lead to oxidatstress when there is a
disproportionately high production of ROS in comgan to antioxidants [3, 4].
Mitochondria are susceptible to damage by theseradicals, which may result in alterations

in their structure and function [5].

Pregnancy itself is characterised by increasedatixiel stress, which is often heightened in
disorders. Of relevance to this review, increadadgntal oxidative stress is a feature of
several gestational pathologies including preeclaypntrauterine growth restriction
(IUGR), maternal diabetes, and maternal obesityR6¢eclampsia and IUGR are associated
with reduced placental perfusion, potentially leadio oxygen deprivation [7]. Placentae
afflicted by maternal diabetes and/or obesity aposed to a range of insults, including high
glucose and fatty acid levels as well as inflammatoediators. These insults may lead to
abnormal function of the uteroplacental unit, imthg impaired placentation [8]. As a
number of pregnancy pathologies share a mutualqgtizee of restricted or heightened
variability in placental oxygen supply [9], which likely to alter mitochondrial structure and
function [10, 11], placental mitochondria may b&aegically important in several

pregnancy pathologies.

This review details important features of placemébchondria and summarises evidence on
how placental mitochondria are affected in a ramfggregnancy disorders. Gaining a greater
appreciation of mitochondrial content, structumg] &unction in the placenta provides an

opportunity to explore interventional avenues.

2. Mitochondria reactive oxygen species
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Oxidative stress mediated by ROS is a common featiiseveral gestational disorders.
Mitochondria are the main sites of ROS generatiowl, are also susceptible to ROS-mediated
damage. The generation of ROS result from the fieain$ a single electron from a redox
donor to molecular oxygen, yielding superoxide whtan be converted to hydrogen

peroxide by superoxide dismutase. This often ocstnen oxygen reacts with electrons
generated by complex I and Il but can also octwoanplex Il of the electron transport

chain [12]. Approximately 0.15-4% of oxygen in nubt@ndria produces ROS [13].

Hydrogen peroxide can alter protein structure amattion through altering the redox state of
thiol moieties in sensitive proteins [14].The ambohROS produced is dependent on
mitochondrial characteristics such as activity learel dynamics as well as the type and

amount of available fuel (carbohydrate, lipid, ariao acid) [15].

The production of ROS is physiological and ROS taigumany cellular functions including
autophagy, anti-microbial effects, and act as signgamolecules in many pathways
including cellular differentiation and inflammati¢bh6]. ROS production also regulates
mitochondrial fission and fusion in healthy cepispviding a mechanism that regulates
mitochondrial morphology and function that is degemt on the redox state [17]. Excessive
ROS production can, however, be detrimental taizlfunction, causing oxidative damage
to DNA, proteins and (membrane) lipids, which is@sated with hypertension and insulin
resistance [5]. Chronic oxidative stress can asad ko changes characteristic of senescence,
and senescence of the syncytiotrophoblast mayféatare of the normal progression of
pregnancy which is exaggerated in pathologies [lb8he endothelium, excessive ROS
production can affect vasodilation through the lntion of the expression and function of
endothelial nitric oxide synthase [19]. This regoig effect of ROS on vasodilation may be

involved in the pathogenesis of preeclampsia [20].
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3. Mitochondrial regulation of apoptosis

Mitochondria are key signalling organelles dueh@irtresponsiveness to the metabolic
functioning of the cell. The interactions betweeitochondria and the endoplasmic reticulum
are critical to cell homeostasis and signallingi@geed by [18]). Mitochondria can initiate
apoptosis by the release of mitochondrial internreimé space proteins such as cytochrome ¢
into the cytoplasm through mitochondrial membraeemgabilization or rupture [21]. An

early event in the initiation of apoptosis is thpening of the mitochondrial permeability

transition pore and subsequent swelling of the chibmdrial matrix leading to rupture [21].

Swelling of mitochondria characteristic of apopsdsas been reported in isolated
preeclamptic placental mitochondria [22] and simiferphological alterations of placental
mitochondria are found in instances of gestatidnabetes mellitus (GDM) [23]. Further,
mitochondrial size appears to be reduced in pregudéa [24], and the levels of many
apoptotic proteins are altered in preeclampticgnéae [25]. In vivo or in vitro treatments
with preeclampsia-associated factors have beenrskm@alter placental mitochondria and
potentially lead to some of the perturbations segeeclampsia. An increase in soluble
fms-like tyrosine kinase 1 (sFlt-1) is found in tim@ternal circulation in preeclampsia, and is
thought to be involved in the inhibition of angiogsis by reducing the circulating levels of
proangiogenic factors such as vascular endothgimaith factor [26]. The administration of
sFlt-1 to pregnant mice led to features charadtes$ preeclampsia (hypertension and
proteinuria), as well as increased oxidative stressllen mitochondria, and increased
apoptosis in the placentae [27]. The authors sughassFlt-1 is involved in increased

oxidative stress and the activation of the mitoch@i apoptotic pathway [27].
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Antiphospholipid antibodies (aPLs) are an importaaternal predisposing factor for the
development of preeclampsia, although their medmamf action is not well understood [28-
30]. ¢ [31]. In vitro studies have demonstrated HRLs are internalised by the
syncytiotrophoblast and lead to multiple effectssgncytiotrophoblast mitochondria,
including increased release of cytochrome c, dgpksespiration, and changes in the
expression of mitochondrial/apoptotic proteins [Zdjerefore, aPLs may primarily affect
placental mitochondria, leading to the aberrantgatéal cell death and subsequent maternal
immune activation that is characteristic of presxpaia [32]. Further, rats exposed to a food-
restricted diet exhibited increased expressiorrafgpoptotic proteins and cytochrome ¢
release, indicating that maternal undernutriti@o anhances mitochondria-dependent
apoptosis in the placenta [33]. Therefore, multgeeturbations can lead to dysfunction of

placental mitochondria and the induction of apoigtos

It should be noted that although the role of mitowdiria in apoptosis is well characterised in
many tissues, the progression of apoptosis inytheysiotrophoblast is not fully understood.
The syncytiotrophoblast lacks cell borders, arfthg been suggested that apoptosis cannot
progress in a syncytium as in mononuclear cellabse of the danger of continued
uncontrolled cell death [18].The pro-apoptotic pros$, p53, BCL2 associated X apoptosis
regulator, and cytochrome c, have been reportée ttecreased in syncytiotrophoblast
mitochondria relative to the cytotrophoblast mitoctria from which they are derived [34].
Further, apoptosis is an active process requinreggy, and syncytiotrophoblast
mitochondria appear to have reduced metabolicaffi@and ATP production [34]. Therefore,
mitochondria in the syncytiotrophoblast may notulate apoptosis in the same manner as

other cell lineages.
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4. Mitochondrial content

Cells contain multiple mitochondria arranged inyaamic interconnected reticulum. The
mitochondrial content or mass in cells is plastid able to respond to a wide variety of
stimuli such as caloric restriction, increased gpelemands, and various disease states [35-
38]. In the placenta, pregnancy pathologies relaigdacental insufficiency including IUGR
and preeclampsia, as well as maternal diabeteslagsity, are associated with changes in
mitochondrial content (Table 1). Further, levelsTdDNA in the maternal circulation can be
increased in preeclampsia and placental abrupdia this material is likely to be derived
from the placenta [39, 40]. A common feature oftheonditions is increased oxidative
stress. Hypoxic conditions are thought to occUlJi@R due to placental insufficiency and
the subsequent reduction in placental blood flok].[#ypoxic stress can stimulate
mitochondrial biogenesis and lead to increasedahdndrial content [11, 42, 43].This
protective mechanism may help meet metabolic dembgdncreasing the bioenergetic
capacity of the tissue. Lower p@vels have been found in both the umbilical \aad artery

in [IUGR, indicative of a hypoxic fetal environmgad].

Mitochondrial content was found to be decreasad@eased in the same pregnancy
pathology by different studies (Table 1). In cacdigsue, decreased mitochondrial content
has been linked to ischemic insult and relatediéistamage [45]. Conversely, increased
mitochondrial content has been associated with xigpand oxidative stress in cardiac,
pulmonary, hepatic, and neuronal cells [42, 46, #7pathologies, proliferation of
mitochondria is thought to occur as a compensat@ghanism for the disruption of cellular
bioenergetics [42, 48]. However, increased pladenii@chondrial ROS may directly

damage mtDNA, thus inhibiting the adaptive biogene&the self-replicating mitochondria
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and reducing respiratory activity [49]. The appawdifferences in response within the same
pathologies may be linked to the severity or timifighe insult and the subsequent ability of
the tissue to adapt through increased mitochondoiatent. Either increased or decreased
mitochondrial biogenesis could occur in an attetaphaintain normal fetal growth, with the
effect depending on whether there is a compensatsponse to increase energy output in
nutritionally perturbed environments [44, 50, SIishnyakova et al. (2016) found increased
placental mitochondrial content (mtDNA relativenidNA) in early-onset but not late-onset
preeclampsia, suggesting that the different patysiptogy leads to differences in

mitochondrial response [52].

In the majority of placental investigations, tisgisea whole has been considered. However,
mitochondria within different cell lineages ofteave distinct functions and are likely to
respond differently to stimuli. In particular, metwondria within two of the major placental
cell types, cytotrophoblasts and the syncytiotrdghast, have very different structure and
roles [34, 53]. Further, the antioxidant capacitgiéferent regions of the placenta is varied,
meaning that their ability to respond to hypoxipégdusion will be different [54]. In IUGR,
Mando et al. (2014) found increased mitochondmaitent in whole tissue but decreased
content in cytotrophoblasts, indicating that theréased placental mitochondrial content is
due to other cell lineages. The syncytiotropholiast direct contact with maternal blood
and has been suggested to be the cell type mestexdfin IUGR and preeclampsia [55]. The
syncytiotrophoblast possess low levels of antioxiadanzymes, and mitochondria with
reduced membrane potential and increased hydrogrexige production compared to the
cytotrophoblasts which fuse to form the syncytiptroblast [34, 54]. Therefore,

syncytiotrophoblast mitochondria may be more aéfédiy hypoxia/reperfusion and could be



214  the source of the increased mitochondrial contemyever, the mechanisms regulating

215 mitochondrial dynamics in the syncytiotrophoblast mot well characterised.

216

217  Mitochondrial biogenesis is controlled by multiptenscription factors which include nuclear
218  respiratory factor 1 (NRF1), mitochondrial tranption factor A (TFAM), B1 (TFB1M), and
219 B2 (TFB2M) (Figure 2). In addition, the co-activafmeroxisome proliferator activated

220 receptory coactivator-1 alpha (PGGCslis an important stimulator of mitochondrial

221 transcription. PGC-d stimulates mitochondrial biogenesis through tloiation of NRF1,
222 which in turn increases TFAM. Mitochondrial tranption factors TFB1M and TFB2M also
223  interact with TFAM and mitochondrial RNA polymerasesupport transcription [56].

224  Several studies have linked mitochondrial biogenganscription factors to placental

225  mitochondrial content or pathology. In placentathldGR and/or preeclampsia where
226  mitochondrial content was reduced, mRNA expressiddGC-Tr and NRF1 was also

227 decreased [51, 57]. Where IUGR was shown to ineraa@sochondrial content, NRF1

228  expression was also increased [51]. Further, malteatoric restriction in a rodent IUGR
229 model leads to increased placental mitochondridgerrand the upregulation of biogenesis
230 markers [58], whereas PGG-Appears to be decreased in the placentae ofulgected to
231  reduced uterine perfusion pressure [59].

232

233 The regulation of mitochondrial dynamics occursuthio mitochondrial biogenesis, and

234  continuous cycles of fission and fusion. These @sses are thought to target

235 damaged/depolarized mitochondria for autophagy. [8@&hnyakova et al. (2016) reported
236  increased mitochondrial content in preeclampticg@tdae without increased NRF1, as well
237 as lower TFAM protein expression. However, thees\a significant increase in the

238  mitochondrial fusion regulator, optic atrophy 1 eathondrial dynamin like GTPase (OPA1),

10



239  suggesting mitochondrial fusion as a mechanisnmfreased content, potentially by

240  stabilisation of mitochondrial structures [52]. émdl, overexpression of OPAL protects from
241  ischemia in the heart and brain, and ROS produgctigitochrome c release, and apoptosis
242 [61].

243

244 5. Syncytiotrophoblast mitochondria

245

246  As well as generating cellular energy in the fof®®P from oxidative phosphorylation,

247  mitochondria are important in the synthesis ofatehormones (reviewed in the placenta by
248 [2]). In the human placenta, the syncytiotrophoblasns the interface between maternal and
249 fetal systems. Progesterone synthesised by thg/tsymophoblast from maternally-derived
250 cholesterol is central to the establishment andhteaance of the pregnancy. Progesterone
251  functions in modulation of the endometrium and makimmune response to fetal factors,
252 and decreased progesterone levels are associdtedpantaneous abortion/miscarriage [62].
253  The multinucleate syncytiotrophoblast is formedly fusion of underlying mononuclear
254  cytotrophoblasts. During differentiation into thensytiotrophoblast, mitochondria appear to
255  become highly specialised for steroidogenesis.

256

257  The production of progesterone requires the tramgpaeholesterol to the mitochondria and
258 cleavage of the cholesterol side-chain. Unlikerttichondria of cytotrophoblasts,

259  syncytiotrophoblast mitochondria contain high level cytochrome P450scc [53], which is
260 responsible for the conversion of cholesterol prtegnenolone in the inner mitochondrial
261 membrane. Therefore, mitochondria acquire ster@dmgability during the formation of the
262 syncytiotrophoblast. Steroidogenesis requires rhitadrial contact sites involving multi-

263  protein systems, where outer and inner membrameis @fose proximity. In other

11
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steroidogenic tissues (e.g. adrenal glands anddgyniatracellular transport of cholesterol to
the mitochondria is regulated via the mitochondstalol carrier protein steroidogenic acute
regulatory protein (StAR) [1, 2]. StAR is not expsed in the placenta and it has been
suggested that the regulation of steroidogenesisasigh the structurally-related protein
StAR related lipid transfer domain containing 3 ARD3; MLN64) [1, 2, 53]. In addition,
the mitochondrial heat shock protein (HSP) HSP&0dsen shown to associate with
STARDS in the placenta and may participate in stieigenesis [63]. HSP have known
functions in the cellular response to stress, adtechaperones; however, HSP can have
additional roles. Antibodies against HSP60 are @ased with various autoimmune
conditions and increased serum cholesterol in afieégrosis, indicating that HSP60 may
have a role in cholesterol transport [63-65]. Thanes cholesterol transport in placental

mitochondria appears to utilise tissue-specificays.

Syncytiotrophoblast mitochondria are smaller andemegular in shape than those of the
cytotrophoblasts, and also have atypical cristagphaogy (Figure 3), potentially through
reduced dimerization of ATP synthase which help®itm mitochondrial architecture [53,

66]. It has been suggested that these morphologheaiges are related to steroidogenesis, as
cholesterol could be more efficiently transportedé50scc in the inner mitochondrial

membrane in smaller mitochondria [66].

Syncytiotrophoblast mitochondria have been repardthve a reduced coupling control of
oxidative phosphorylation to ATP production in campon to cytotrophoblast mitochondria,
as well as reduced cardiolipin content, which ipamant in efficient oxidative
phosphorylation [34]. Syncytiotrophoblast mitochoadilso have reduced membrane

potential and increased levels of hydrogen peropfdd¢ P450scc, which is present in high

12
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levels in the syncytiotrophoblast, is involved upsroxide generation and may be source of

oxygen radicals in syncytiotrophoblast mitochondigi, 67].

The fusion of cytotrophoblasts into a syncytiuniinged to early stages of the apoptotic
cascade, with apoptosis-related proteins suchsgmsa 8 required for fusion [68].
Regulation of the progression of the apoptotic ade@ppears to occur at the mitochondrial
level and involve members of the anti-apoptotic RGamily [69]. There is also evidence
that mitochondria are directly involved in the diéntiation of cytotrophoblasts into the
syncytiotrophoblast. In primary villous cytotropHhasts, inhibition of the mitochondrial
respiratory chain leads to a decrease in cell fuaitd hormone production (human chorionic
gonadotropin and leptin). Lactate production alspears to be transiently increased during
cytotrophoblast differentiation, suggesting thaenobic metabolism is important during

differentiation [70].

6. Mitochondriain preeclampsia and intrauterine growth restriction

Preeclampsia is a hypertensive disorder of pregneimaracterised by maternal endothelial
dysfunction. Both preeclampsia and IUGR are assatiith reduced/intermittent placental
perfusion and increased oxidative stress [3, 7&]|d@étailed earlier in this review,
preeclampsia and IUGR can lead to changes in plalcagmoptosis, mitochondrial
fission/fusion, and mitochondrial content (TableAdditionally, proteomic analysis of
placental tissue from preeclamptic pregnancies shbe involvement of multiple
mitochondrial-related functions including the tricaxylic acid cycle, electron transport
chain, fatty acid oxidation, ATP binding, €&inding, apoptosis, HSP70, and the

mitochondrial antioxidant protein peroxiredoxi8P-22 [22, 71-73]. The mitochondria of

13



314  preeclamptic placentae also exhibit swelling andalged cristae, as well as reduced

315  expression/activity of mitochondrial complexes &P synthase [74-76]. A reduction in
316  electron flow through complex Il and possible dge#o other complexes may contribute to
317 the excess ROS production seen in preeclampsiaNi&chondrial respiration is increased
318 in early-onset preeclampsia and these mitochordei@lso less sensitive to‘Ca

319 depolarization, suggesting an adaptive responsgitative stress [52]. Galevels are

320 important in cellular homeostasis andOa a critical signalling molecule between

321  mitochondria and the endoplasmic reticulum [18geRtampsia has been with associated
322 alterations in intracellular Gawhich may affect apoptosis in the placenta [76[5R

323 independent of preeclampsia leads to changes othahdrial content (Table 1), and also
324 increased mitochondrial respiration in cytotroplasits [51]. Maternal food restriction

325 resulting in fetal growth retardation can leadhamges in placental mitochondrial proteins,
326 and mitochondria from these placentae have incdeasggen consumption but fail to

327 maintain ATP production [58].

328

329 7. Mitochondriain maternal diabetes

330

331 High circulating glucose concentrations in mateiabetes, which includes both pre-

332  existing diabetes and GDM, may adversely impaqgtlanental function. In individuals with
333 diabetes, there are ample studies reporting dttesain mitochondrial content, respiratory
334 function, and complex activity in non-gestationasties. However, studies examining

335  specific mitochondrial changes in the placentdiarged. In whole placentae from women
336  with type 1 diabetes, activity of complexes | aHdMere reduced and, in type 2 diabetes,
337 combined activity of complexes Il and Ill were redd [49]. In the same study, the level of

338  mitochondrial hydrogen peroxide in placentae wasakd in type 1 diabetes only. This

14
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aligns with the reductions seen in complex | attivin being a major source of ROS
production. Placental mitochondrial content remdineaffected in both types of diabetes,
which differs from previous studies in other gdstadl pathologies, including reduced
MtDNA in preeclampsia and IUGR [51] (Table 1). Roexsly, Qiu et al. reported that
placental mtDNA copy number was positively asseclavith a marker of oxidative stress, 8-
hydroxy-2 -deoxyguanosine, in both uncomplicated and GDMypaacies [77]. There was
no difference in this relationship between non-GBiMl GDM placentae, but this study was
carried out in only 40 women and may have beennpodesred. In villous tissue from GDM
pregnancies, the expression of mitochondrial corgdevas also significantly reduced, but
varied depending on whether women had been treatedliet alone or either insulin or
glyburide [78]. Regardless of treatment, proteipression of PGGd, the master regulator of
mitochondrial biogenesis, and PPARN important regulator of fatty acid oxidatiorere
reduced in placentae from these women with GDM #tudy that examined placental
ultrastructure from 10 women with GDM, mitochondmare found to be swollen or
completely destroyed, and architecturally disrug®3g]. In rats rendered mildly diabetic,
using streptozotocin prior to mating, an increasmitochondrial membrane fluidity was
observed in placental tissue, along with increasése ratio of unsaturated to saturated fatty
acids [79]. This was associated with an increasmth placental and fetal weights; however,
a direct cause and effect relationship remainsttebted. Indeed, in humans, placental lipid
metabolism is known to be altered in maternal dedb§80], but larger cohort studies are
required to clarify the association between plaglemitochondrial content, structure, and

function, and adverse fetal outcomes.

8. Mitochondriain obesity

15



364 Obesity is associated with excess circulating fattigs, which can affect placental

365  mitochondrial function [81]. Mitochondrial conterats measured in mitochondrial DNA

366 amount, is decreased in placentas from obese waatteough when measured by citrate
367 synthase activity, is unaltered [49]. This suggésas despite a lower mitochondrial number,
368 the oxidative capacity of the mitochondria to proeld TP remains the same.

369

370 The lower mitochondrial content is, however, assted with lower complex | (but not

371 complex Il, I, or IV) activity but higher mitochalrial ROS production [49]. Placental

372 villous tissues from overweight and obese womerelaa@ and 14-fold increase in ROS

373  production [82] and to a similar extent in male &mahale offspring. Placental cellular ATP
374  production, a marker of mitochondrial function, aEases with maternal obesity [82]. This
375 may be due to decreased placental mitochondrideabas well as reduced expression of
376  complex -1V, and this is associated with a deaeaasnitochondrial function as measured
377 by respiration [82]. Similarly, in the placentalldene Swan 71, incubation with palmitate
378  stimulates overall cellular ROS production as vaslimitochondrial ROS production

379  resulting in reduced secretion of II3;1L-6, and IL-8 [81]. The increases in mitochoradri
380 ROS production in obesity may result in damageaaohibndrial DNA and thereby decreased
381  mitochondrial content. Placental mitochondrial emtand function have high inter-

382 individual variability in both lean and obese wonjé8] whilst unclear, (epi)genetic make-
383 up, infant gender, and levels of insulin resistacmald contribute to the variability.

384

385 9. Conclusion

386

387  Mitochondria are critical to cellular viability, dmitochondrial function can be disturbed by

388  variability in oxygen supply. Reduced/intermentdaddlow to the placenta resulting in

16
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oxidative stress is thought to be a common feattiseveral pregnancy complications, and
this oxidative stress is likely to affect placentatochondria. Indeed, placental mitochondrial
function is altered in a number of pregnancy disosdWhilst the majority of studies
observed an increase in oxidative stress, the gubsé mitochondrial damage, mitochondrial
bioenergetics, and adaptive responses varied eitbimthe same pathology. Although the
pathophysiology underlying various gestational disos may be different, alterations in
mitochondrial function and structure are a comnmemtnal pathway and may offer avenues
for the development of therapeutics. However, tleemanisms controlling the mitochondrial

response to stress are complex and require furthiestigation.
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Table 1. Changesin placental mitochondrial content in pregnancy pathologies.

Pathology Results Publication

IUGR Increased Lattuada et al. (2008) [44]
IUGR + PE Increased

IUGR Decreased Poidatz et al. (2015) [57]
IUGR + PE Decreased

IUGR (whole tissue) Increasell  Mando et al. (2014) [51]
IUGR (cytotrophoblasts)  Decreaset

PE No change

PE Increased Wang et al. (1998) [73]
PE Decreased He et al. (2004) [83]

PE (+IUGRY Increased Vishnyakova et al. (2016) [52]
GDM No Change Qiu et al. (2013) [84]
Type | DM No Change Hastie et al. (2014) [49]
Type Il DM No Change

Maternal obesity Decreased

Maternal obesity Decreased Mele et al. (2014) [82]

"Mando et al. (2014) found increased mitochondigaitent in whole tissue but decreased

mitochondrial content in isolated cytotrophoblasts

%|UGR reported in 61% of early onset PE and 27%tsf bnset PE

IUGR=intrauterine growth restriction; PE=preeclamp®M=diabetes mellitus;

GDM=gestational diabetes mellitus
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Figure 1. Model of mitochondrial regulation. Mitochondria form an interconnected
network which is broken apart and reformed by theosing forces of fission and fusion.
Mitochondria with low membrane potential are taegefor mitophagy (a specialised form of
autophagy targeting mitochondria), mitochondrighwitgh membrane potential are more
likely to fuse with other mitochondria. This balanalows the maintenance of a healthy pool
of mitochondria with high membrane potential. laege proportion of mitochondria are
depolarised, this may lead to opening of the mibochial transition pore, release of inner
membrane components such as cytochrome ¢, andogmptm=mitochondrial membrane

potential.
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Figure 2. Control of mitochondrial biogenesis. Mitochondrial biogenesis is regulated by
coordination of the nuclear and mitochondrial geasnUpregulation diRF1 leads to
production of TFAM, TFB1M and TFB2M which signalpteation of the mitochondrial
genome. NRF1=nuclear respiratory factor 1, TFAM=atitondrial transcription factor A,
TFB1M=mitochondrial transcription factor B1; TFB2Mwtochondrial transcription factor

B2; mtDNA=mitochondrial DNA; D-loop=displacementp.
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Figure 3. Syncytiotrophoblast and cytotrophoblast mitochondria. (A) Cartoon derived
from published electron microscopy images [53,@icting general structural features of
mitochondria from the syncytiotrophoblast and agiphoblasts. (B) Mitochondria with the
syncytiotrophoblast are small, and have a non-dalsgesicular cristae structure and dense
matrix. (C) Mitochondria with cytotrophoblasts aetatively larger than syncytiotrophoblast

mitochondria and have a more typical cristae stnact
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