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Abstract 17 

 18 

Multiple pregnancies resulting from the transfer of more than one embryo pose a significant 19 

threat to offspring born through Assisted Reproductive Treatments (ART). Transferring one 20 

embryo at a time would eliminate this risk. However, current approaches of identifying the 21 

highest quality embryo to transfer are either unreliable (e.g. morphology assessment) or 22 

highly invasive and potentially detrimental to embryos (e.g. PGD). Approaches for non-23 

invasive embryo selection would be a major advancement that would increase efficiency and 24 

reduce both the costs and the risks associated with ART. Exosomes are a particular subtype 25 

of extracellular vesicles (EVs) that are secreted from a wide range of cells, including 26 

placental and endometrium cells. Exosomes are very stable vesicles that contain a broad 27 

spectrum of molecules, including proteins, mRNAs and miRNAs. Very little is known about 28 

this form of cell-to-cell communication in the context of ovarian follicular biology and 29 

implantation, but emerging data suggest that exosomes secreted by the blastocyst could 30 

influence gene expression and receptivity of endometrial cells thereby controlling its own 31 

implantation. Here we review emerging findings regarding exosomal signalling in 32 

reproductive biology and the prospects for mapping blastocyst-derived exosomal profiles as a 33 

means for supporting single embryo transfer policies. 34 

  35 
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Introduction 36 

Implantation involves intricate communication between embryos and the maternal 37 

endometrium. Increasing interest is centred on extracellular vesicles (EVs) and their 38 

contained cargo, particularly microRNAs (miRs), as important mediators of this dialogue [1, 39 

2]. Recently, a role for EVs in cell-to-cell communication has been established [3] 40 

EVs are classified according to their size and origin into exosomes and microvesicles (MVs). 41 

Microvesicles are released from budding of plasmatic membrane (PM) while exosomes 42 

originate in the endosomal compartment (early and late endosomes) (Figure 1). Exosomes 43 

circulate inside the cells as intraluminal vesicles (ILV), which are incorporated in the early to 44 

late endosome and multivesicular bodies (MVB) and then travel to the PM and are released 45 

by fusion of the MVB and PM to the extracellular environment as exosomes [4]. Exosomes 46 

and MVs contain a wide array of molecules, including proteins, nucleic acids, and lipids. 47 

Protein constituents of EVs have been widely studied due to their roles in signalling cascades. 48 

As such, the delivery of proteins via exosomes may shape the bioactivity of target cells and 49 

tissues. For example, EVs contain matrix metalloproteinases, commonly secreted in the EVs 50 

of tumours in particular leading to potentially oncogenic effects. It has also been found that 51 

exosomes may contain a subset of proteins that is dependent on the cell type of origin. On the 52 

other hand, exosomes also contain proteins such as membrane-derived proteins and 53 

endosomal proteins that are ubiquitously found in most exosomes. Contrastingly, proteins 54 

derived from other organelles such as the Golgi apparatus and the endoplasmic reticulum are 55 

not included in most exosomes [4]. Some proteins highly abundance in EVs, particularly 56 

exosomes, include ALIX, TSG101, CD63, and CD81. MHC II molecules are also found 57 

abundantly in MVs. Nucleic acids are also a notable component within EVs. Valadi et al. 58 

uncovered the presence of mRNA and miRNA in exosomes, thus further broadening the 59 

understanding of exosomal content [5]. mRNA has also been reportedly found in MVs. Thus, 60 
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this content suggests EVs, particularly MVs and exosomes, may be a pathway for the transfer 61 

of genetic information and the alteration of gene expression in recipient cells. Notably, 62 

mRNA inside EVs is resistant to digestion by RNAse treatment [6]. Lipid composition of 63 

EVs has not been as extensively studied. However, it has been found that EVs tend to be 64 

enriched in sphingomyelin, saturated fatty acids, and cholesterol. Exosomes are particularly 65 

thought to be enriched with ganglioside GM3 and ceramide derivatives. Variations in lipid 66 

content may be indicative of different origins from the plasma membrane, including lipid 67 

rafts. It is also noteworthy that the composition of EVs changes based on the extracellular 68 

environment, as illustrated by various studies. For example, RNA and protein content of EVs 69 

may be altered due to vascular injury or acidic environments as occurs in cancer.    70 

The mechanisms involved in the incorporation of specific molecules such as proteins and 71 

RNAs in EVs remain to be established, however, there exists a paucity of data showing that 72 

changes in the microenvironment milieu regulates the secretion and composition of this 73 

vesicles in a wide range of cells including placental cells [7-10]. Moreover, placental 74 

exosomal signalling has been characterised across gestation [11-13], and placental exosomes 75 

are involved in the maternal immunological response during pregnancy [8, 14].    76 

Here we review recent findings pertaining to EVs secreted by embryos and endometrial 77 

epithelium with a particular focus on instances in which mechanistic pathways have been 78 

elucidated. Because miRs are a prominent cargo of EVs mediating many of their effects [4], 79 

reference will also be made to new findings involving miRs. For more extensive accounts of 80 

miRs during implantation the reader is referred to recent reviews on this topic [15, 16]. 81 

 82 

Overview of implantation and extracellular vesicles 83 
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Successful pregnancy depends on proper implantation involving three recognised stages, 84 

apposition, attachment (or adherence) and invasion. Completion of these stages in turn 85 

depends on a receptive endometrium, a viable embryo at the appropriate developmental stage 86 

and a well-orchestrated dialogue between the two. Inadequate implantation can result in 87 

spontaneous miscarriage whilst defects in trophoblast invasion required for proper placental 88 

formation predispose to complications of later pregnancy such as pre-eclampsia and 89 

intrauterine growth restriction. Surprisingly little is known about the molecular details 90 

underpinning a productive embryo-endometrium rapport. 91 

 In recent years, there has been increasing interest in the role of EVs, particularly 92 

microvesicles (MVs) and exosomes, in mediating the embryo-endometrial cross-talk [1]. EVs 93 

contain diverse cargo including cell surface receptors, lipids, messenger RNAs (mRNAs), 94 

miRs, proteins and even DNA, and are identified by their size and the presence of cell surface 95 

markers such as the tetraspanins, CD9, CD81 and CD63 [4]. EVs are increasingly recognised 96 

as an important mode of cell-to-cell communication as they can transfer their contents to 97 

other cells thereby altering the recipient’s behaviour [17].  98 

 99 

Embryo-derived pathways involving EVs and their cargo 100 

Surprisingly little is known about EVs secreted by preimplantated mammalian embryos. 101 

Indeed, in a review in 2014, it was noted that embryo-derived EVs had not yet been reported 102 

[2]. Since then, two papers have investigated embryo-secreted EVs whilst the majority have 103 

studied embryo-secreted miRs, a well-known EV cargo. miRs are small (18-23 nucleotide) 104 

non-coding RNA sequences that are largely regarded as post-transcriptional silencers of gene 105 

expression through engaging the 3’ untranslated region of target mRNAs via complementary 106 

base-pairing leading to their degradation or repression [18].  107 
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 108 

Embryo-derived EVs exert extra- and intra-embryonic effects 109 

Two papers have shown that EVs produced by embryos contain cargo that can influence the 110 

behaviour of neighbouring cells [19, 20]. In one case the cargo is mRNA with the potential to 111 

impact the viability of other embryos [20] whilst in the other case EVs are proposed to shuttle 112 

protein from embryonic stem cells (ES cells) of the inner cell mass (ICM) to trophectoderm 113 

cells [19]. 114 

Exosomes and MVs have been isolated from conditioned media following culture of 115 

parthenogenetic porcine embryos. These EVs were found to contain mRNAs for the 116 

pluripotency genes, Oct4, Sox2, Klf4, c-Myc and Nanog [20]. The authors found that the in 117 

vitro blastocyst development rates of cloned embryos (produced by somatic nuclear transfer 118 

into enucleated oocytes) were more than doubled by co-culturing them with parthenogenetic 119 

embryos. Notably, co-cultured cloned embryos exhibited increased expression of Oct4, Klf4 120 

and Nanog. Since these were the cargo of EVs isolated from conditioned media, this raised 121 

the possibility that the transfer of pluripotency factors via EVs could have a role to play in 122 

improved development. As proof-of-concept that embryos could assimilate EVs from the 123 

surrounding environment, purified exosomes/MVs derived from parthenogenetic embryo 124 

conditioned media were labelled with the green fluorescent dye, PKH67 (which stably 125 

incorporates into lipid regions of cell membranes). Culturing cloned embryos with PKH67-126 

labelled EVs for 22 hours led to the appearance of green fluorescence signals in cloned 127 

blastomeres consistent with uptake of EVs from the media. Interestingly, although it appeared 128 

that transfer of EVs during co-culture improved cloned porcine embryo development, bolus 129 

addition of parthenogenetic embryo conditioned media was not beneficial [20]. The authors 130 

speculated that this could be because of the need for continuous mRNA transfer due to the 131 
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active destruction and reduced translational potential of foreign mRNA. Taken together, these 132 

data show that mammalian embryos secrete EVs into their surrounding environment and 133 

support the notion that such EVs can be taken up by neighbouring cells to influence their 134 

development. 135 

A very recent paper found that MVs were shed by mouse ES cells, which are derived from 136 

the ICM of the blastocyst [19]. These MVs were shown to express the extracellular matrix 137 

proteins, fibronectin and laminin α5. Moreover, MV fibronectin and laminin interacted with 138 

integrin receptors on trophoblast cells in turn leading to the activation of focal adhesion 139 

kinase (FAK) and c-Jun N-terminal kinase (JNK), which are often implicated in promoting 140 

cell migration. Indeed, using an in vitro migration assay, the authors could show that either 141 

ES cell spent media or EVs purified from spent media promoted trophoblast migration that 142 

was abolished when FAK and JNK activation were inhibited. To determine whether ES cell-143 

derived MVs could promote trophoblast migration and invasion of intact murine blastocysts, 144 

an elegant approach was used involving ES cells expressing a plasma membrane-targeted 145 

green fluorescent protein (PM-GFP), which produced fluorescent MVs. Fluorescence that 146 

was restricted to the trophectoderm following microinjection of blastocysts with purified 147 

fluorescent MVs from PM-GFP-expressing ES cells supported that trophectoderm could 148 

indeed internalise MVs produced by cells in the ICM. Strikingly, following transfer to the 149 

uteri of surrogate females, blastocysts injected with MVs from ES cells exhibited 150 

significantly increased implantation rates entirely in keeping with in vitro data showing that 151 

ES cell MVs augmented trophoblast migration [19]. Unlike the majority of studies that have 152 

focused on communication between maternal tissue and embryonic trophoblast during 153 

implantation, here the authors reveal a novel pathway of signalling between the two major 154 

compartments of the preimplantation embryo that ultimately promotes implantation.  155 

 156 
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Evidence for miRNA secretion from human embryos 157 

It has been established that exosomes provide a protective and enriched source of miRs [6]. 158 

The foregoing studies demonstrated that EVs are secreted by mouse and porcine embryos. 159 

Human embryos are routinely cultured as part of in vitro fertilisation (IVF) treatment and 160 

therefore present an opportunity to investigate their secretory products, especially since 161 

analysis of spent media does not incur any risk to the embryo or compromise the patient’s 162 

treatment success. Significantly however, EVs have not yet been shown to be secreted by 163 

human embryos. In addition, initial attempts to isolate miRs from spent human blastocyst 164 

media were unsuccessful. However, in recent years, miRs have been identified in spent media 165 

from human blastocysts derived from IVF treatment [21-25].  166 

Kropp et al. probed for the presence of 5 miRs and identified miRs in spent media following 167 

culture of human and bovine embryos [23]. Around the same time, Rosenbluth and co-168 

workers profiled 754 miRs and detected 10, of which only two (miR-372 and miR-191) were 169 

specific to human embryo conditioned media [25]. Both miRs were increased in spent media 170 

derived from embryos that were fertilised using intracytoplasmic sperm injection (ICSI) 171 

compared to those fertilised by standard insemination. Three miRs (miR-372, miR-191 and 172 

miR-645) were differentially expressed in conditioned media from non-ICSI cycles 173 

depending on whether or not the blastocyst led to a successful pregnancy whilst miR-191 174 

alone was enriched in spent media from aneuploid embryos versus euploid ones [25].  175 

Capalbo et al. found that 59 out of 377 miRs could be detected in 3 out of 5 replicates of 176 

spent media from human blastocysts [21]. Furthermore, 57 of these 59 miRs (96.6%) could 177 

also be detected in biopsied trophectorderm cells suggesting their release from blastocysts 178 

into media. They next sought to determine whether miR profiles in spent media might 179 

correlate with implantation potential. To rule out confounding effects of embryonic 180 
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aneuploidy, analyses were restricted to embryos that were proven to be euploid by 181 

comprehensive chromosome screening of trophectorderm biopsies. Spent media from 53 182 

euploid blastocysts were prospectively analysed, 25 of which resulted in an on-going 183 

pregnancy. Two miRs (miR-20a and miR-30c) were found to be increased in media from 184 

implanting blastocysts and 5miRs (miR-220, miR-146b-3p, miR512-3p, miR-34c and miR-185 

375) were preferentially detected with implanted blastocysts. Interestingly, based on in silico 186 

prediction and experimentally validated miR targets, miR-20a and miR-30c miRNAs would 187 

be predicted to influence endometrial cell growth and proliferation [21].  188 

The same group subsequently compared the profiles of 377 miR sequences in spent media 189 

from “twin” human blastocysts created by artificial embryo splitting at the cleavage stage 190 

with that of control blastocysts that produced healthy pregnancies [24]. They found 59 miRs 191 

secreted by control blastocysts and 48 miRs by twin embryos of which, only 22 were shared. 192 

Interestingly, in twin embryo spent media, they found significantly lower levels of miR-30c, 193 

which they previously identified as a putative biomarker of implantation potential.  194 

  195 

Embryo-mediated regulation of the uterine epithelium 196 

Studies showing that embryos secrete EVs and/or miRs, which target genes predicted to 197 

mediate cellular activities such as adhesion and migration, suggest that embryos could 198 

potentially modify implantation events. The next question pertains to whether secreted 199 

miRs/EVs can be internalised by uterine cells and can alter endometrial function and 200 

implantation. 201 

Cuman et al. showed that human blastocysts secrete miRs into media and went one step 202 

further by interrogating the mechanisms by which the secreted miRs might influence 203 

implantation [22]. Using a 784 miR array panel, they found that the miR profile of spent 204 
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media from human blastocysts failing to implant differed markedly from implanting media 205 

and identified miR-661 as the most highly differentially expressed miR. In vitro studies 206 

showed that miR-661 was readily internalised by primary human endometrial epithelial cells 207 

(HEEC) cultured in non-implanting spent media supporting that human endometrial cells 208 

could take up blastocyst-secreted miR-661. Following ultracentrifugation of spent media, 209 

miR-661 did not co-segregate with the pellet containing MVs but was enriched in the 210 

supernatant where it co-immunoprecipitated with the RNA binding complex (RBC) protein, 211 

Argonaute 1, indicating that miR transport involved RBC-binding rather than encapsulation 212 

within MVs. In silico analyses revealed that miR-661 targets included genes involved in 213 

adhesion/invasion. Significantly, the protein levels of two of these genes, PVRL1 and MTA2, 214 

which were shown to be expressed in human endometrial glandular and luminal epithelial 215 

sections, were down-regulated in HEEC exposed to miR-661-containing conditioned media. 216 

Collectively, these data indicated that miR-661 could be secreted from blastocysts and taken 217 

up by endometrial cells to reduce the expression of key pro-implantation factors. To further 218 

test this, the authors employed an in vitro adhesion assay and showed that adhesion of 219 

spheroids to HEEC was severely hampered following miR-661 treatment and importantly, 220 

that protecting PVRL1 from being targeted by miR-661 could rescue adhesion [22]. Although 221 

MV-dependent pathways are the focus of this review and miR-661 in this paper partnered 222 

with RBC rather than MVs, it nevertheless provides compelling proof-of-concept that 223 

embryos actively modulate endometrial receptivity via miR-mediated pathways and offer a 224 

paradigm by which EV cargo might also influence implantation through their miR cargo. It is 225 

possible that miR cargo might act at the epigenetic level to bring about changes in 226 

endometrial gene expression. In line with this, transient over-expression of miR-30d in HEEC 227 

led to changes in the levels of regulatory factors involved in DNA methylation such as DNA 228 

methyltransferase 1 (DNMT1)[26].   229 
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Whilst miRs and/or EVs might be taken up in vitro by cultured cell-lines as shown in the 230 

above study, does this also apply in the in vivo context of a 3-dimensional uterine cavity? 231 

Recent data from the ovine model provide evidence in this regard [27]. In sheep, attachment 232 

to the uterine epithelium begins by Day 16 post-mating at the filamentous stage, an elongated 233 

stage that arises 8 days after blastocyst hatching. Conditioned media obtained following in 234 

vitro culture of elongated Day 14 conceptuses for 24 h was found to contain EVs with an 235 

average diameter of 150 nm and a size range consistent with both exosomes and MVs. Mass 236 

spectrometry analysis of EV content identified 231 proteins while RNA sequencing detected 237 

512 mRNAs. To investigate which cells were targeted by embryo-secreted EVs, an in vivo 238 

model was used in which EVs isolated from spent media were first labelled in vitro with the 239 

PKH67 green fluorescent dye and then infused into the uterine horn using a catheter and 240 

osmotic pump from Days 8-14 postestrus prior to necropsy [27]. Distinct green fluorescence 241 

signals were observed in cross-sections of luminal epithelium and superficial glandular 242 

epithelium of the uterine horn but not in the uterine stroma or myometrium or more distant 243 

sites such as ovary, parametrial lymph nodes or lung. Thus, these findings provide evidence 244 

that uterine epithelia can take up EVs secreted by embryos in vivo. 245 

  246 

Extracellular vesicles secreted by the endometrium 247 

The success of human pregnancy is dependent of the interaction between blastocyst and 248 

endometrium. The human endometrium is a complex tissue in which the implantation takes 249 

place [28]. The endometrium exhibits several morphological changes that allow the 250 

interaction with the blastocyst. Interestingly, it has been proposed that exosomes secreted 251 

from the endometrium influence the blastocyst to attach and invade the endometrial 252 

epithelium [29, 30]. Synchronous crosstalk between the endometrium and blastocyst in the 253 
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placental developmental and pre-implantation phase is essential for initiating pregnancy. It 254 

has previously been suggested that the endometrial luminal epithelium may become more or 255 

less receptive to extracellular signals through molecular exchange by exosomes and other 256 

EVs. Ng et al., suggested that exosomes could be released from the endometrial epithelium, 257 

thereby transferring molecular cargo to the blastocyst or the endometrium. Exosomes as well 258 

as MVs were found to be present in preparations of uterine fluid/mucus and endometrial 259 

epithelial cells. miRNA were found to be sorted into exosomes/MVs, with 13 of the 227 260 

isolated miRNAs being exclusively found to the EVs. Has-miR-200c, has-miR-17 and has-261 

miR-106a were found at the highest levels within the EVs. Bioinformatic analysis revealed 262 

that these particular miRNAs may have roles in biological processes associated with 263 

implantation [30]. The endometrium is marked by cyclical changes, including the transitions 264 

between the proliferative (nonreceptive) and secretory (receptive) phases throughout 265 

menstruation. During the non-receptive phase, these transitions are modulated by estrogen. 266 

On the other hand, progesterone is the key modulatory factor during the receptive phase. 267 

Recently, Greening et al., have establish that the exosomal cargo is regulated by both 268 

hormones, as well as the phase of the menstrual cycle during which the exosome is packaged 269 

and secreted [29]. Interestingly, uptake of exosomes and release of exosomal content has 270 

been associated with changes in the properties of trophoblasts. For example, exosomal uptake 271 

has been linked to increased trophoblast adhesive capacity at the time of implantation. 272 

Proteomic analysis in exosomes isolated from endometrial cells suggest that glycoproteins 273 

(fibulin-1, in particular) and integrins in exosomes are associated with cell adhesion factors, 274 

cell migration, and remodeling of the ECM. Furthermore, Fibulin-1, was expressed ~9-fold 275 

higher in estrogen/progesterone exosomes, compared to estrogen exosomes [29]. This 276 

suggests selective packaging of integrins into endometrium-derived exosomes. Taken 277 

together, these results suggest that endometrium exosomes may play an important role in cell-278 
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to-cell communication crosstalk between the endometrium and blastocyst during 279 

implantation. Therefore, exosomes of endometrial origin may be a platform for potentiating 280 

implantation of the embryo and enhancing fertility and gestational outcomes.  281 

 282 

Potential clinical applications 283 

Recent IVF data for Australia show that of 71,516 initiated IVF cycles in 2013, only 23.8% 284 

resulted in a clinical pregnancy and even fewer, 18.2%, in a live delivery. To increase success 285 

rates, the temptation is to transfer more than one embryo but at the risk of increasing perinatal 286 

morbidity well-known to be associated with multiple pregnancies. A major reason for poor 287 

success rates is failed implantation. Surprisingly however, very little is known regarding the 288 

molecular embryo-endometrium “cross-talk” required for successful implantation. Exosomes 289 

mediate communication between different cell-types via their content of signalling molecules 290 

including miRNAs and mRNAs. An intriguing possibility is that the miRNA profile of 291 

exosomes from high-quality blastocysts is pivotal for their higher implantation potential and 292 

that defining such a profile could improve embryo selection capability and greatly refine 293 

Assisted Reproductive Treatment (Figure 2). The capacity to identify a predictive biomarker 294 

from spent media – and therefore at no risk to the embryo – would be a powerful non-295 

invasive innovation. This can be contrasted with current selection approaches involving 296 

tedious scoring systems for embryologic morphology, which have notoriously poor predictive 297 

value, and invasive embryo biopsy for chromosomal analyses, which are traumatic to 298 

embryos. It should be noted however, that EVs have been reported to be present in IVF 299 

culture media alone [2]. Furthermore, some findings indicate that media components such as 300 

protein supplements could be miRNA carriers [23, 25]. Use of spent media would therefore 301 

need to take into account possible contaminants from the media itself, which could vary from 302 
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one lab to the next if different media formulations are used, making it important to 303 

incorporate steps for ensuring that only embryo-derived products are being analysed. Given 304 

that exosomes secreted by the endometrium might promote implantation, another potential 305 

clinical application could be the delivery of specific cargo via exosomes into the uterine 306 

cavity for the purposes of enhancing embryonic implantation and placentation. 307 

 308 

 309 

 310 
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Figure 1. Biogenesis and content of exosomes and microvesicles.  Exosomes are nanosized 399 

vesicles (30-150 nm) of endocytic origin that are released from cells into the extracellular 400 

space by exocytosis following the fusion of multivesicular bodies with the cell membrane. 401 

MVs are larger (100 nm – 1.5 µm) and are produced by direct budding of the plasma 402 

membrane. Exosomes and microvesciles contain proteins, lipids and nucleic acids, mediating 403 

intercellular communication to modify the different biological function of target cells.  404 

 405 

Figure 2. Single embryo selection via exosomes profile. Current approaches for identifying 406 

the highest quality embryo to transfer are either unreliable (e.g. morphology assessment) or 407 

highly invasive and damaging to embryos (PGD). Approaches for non-invasive embryo 408 

selection would be a major advance that would increase efficiency and reduce both cost and 409 

risks associated with ART. We suggest that embryo-derived exosomes profile may be used to 410 

single embryo selection to in vitro fertilisation implantation potential as a means for deriving 411 

a novel non-invasive biomarker which will greatly advance embryo selection and single 412 

embryo transfer capability. 413 
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