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Abstract 14 

Remote sensing of nighttime lights has been shown as a good surrogate for estimating 15 

population and economic activity at national and sub-national scales, using DMSP 16 

satellites. However, few studies have examined the factors explaining differences in 17 

nighttime brightness of cities at a global scale. In this study, we derived quantitative 18 

estimates of nighttime lights with the new VIIRS sensor onboard the Suomi NPP satellite 19 

in January 2014 and in July 2014, with two variables: mean brightness and percent lit 20 

area. We performed a global analysis of all densely populated areas (n = 4,153, mostly 21 

corresponding to metropolitan areas), which we defined using high spatial resolution 22 

Landscan population data. National GDP per capita was better in explaining nighttime 23 

brightness levels (0.60 < Rs < 0.70) than GDP density at a spatial resolution of 0.25 24 

degrees (0.25 < Rs < 0.43), or than a city-level measure of GDP per capita (in proportion 25 

to each city's fraction of the national population; 0.49 < Rs < 0.62). We found that in 26 

addition to GDP per capita, the nighttime brightness of densely populated areas was 27 

positively correlated with MODIS derived percent urban area (0.46 < Rs < 0.60), the 28 

density of the road network (0.51 < Rs < 0.67), and with latitude (0.31 < Rs < 0.42) at p < 29 

0.001. NDVI values (representing vegetation cover) were found to be negatively 30 

correlated with cities’ brightness in winter time (-0.48 < Rs < -0.22), whereas snow cover 31 

(enhancing artificial light reflectance) was found to be positively correlated with cities’ 32 

brightness in winter time (0.17 < Rs < 0.35). Overall, the generalized linear model we 33 

built was able to explain more than 45% of the variability in cities’ nighttime brightness, 34 

when both physical and socio-economic variables were included. Within the generalized 35 

linear model, the percent of national GDP derived from income (rents) from natural gas 36 
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and oil, was also found as one of the statistically significant variables. Our findings show 37 

that cities’ nighttime brightness can change with the seasons as a function of vegetation 38 

and snow cover, two variables affecting surface albedo. Explaining cities’ nighttime 39 

brightness is therefore affected not only by country level factors (such as GDP), but also 40 

by the built environment and by climatic factors. 41 

  42 
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1. Introduction 43 

Artificial nighttime lights present one of humanity’s unique footprints that can be seen 44 

from space (Croft, 1978). Resulting light pollution has been shown to negatively impact 45 

the community of astronomers and our ability to observe the night sky (Cinzano et al., 46 

2001). However, the negative effects that light pollution has on ecological systems and 47 

on our health, through changes in circadian exposure to light and changes in the 48 

wavelengths we are exposed to, might have more important and far-reaching 49 

consequences (Longcore and Rich, 2004; Falchi et al., 2011; Gaston et al., 2013). Light 50 

pollution and artificial lighting has been shown to vary greatly in space and in time, as a 51 

function of population and economic activity. However, most studies examining the 52 

factors explaining global spatial variability in lit areas were conducted at national and 53 

provincial levels using the DMSP/OLS sensor (e.g., Elvidge et al., 1997; Chen & 54 

Nordhaus, 2011; Wu et al., 2013; Keola et al., 2015). While offering the only globally 55 

available time series of nighttime lights imagery from 1992 onwards (Bennie et al., 56 

2014a), DMSP imagery has various drawbacks as it is not calibrated, its spatial resolution 57 

is coarse, it contains overglow beyond urban boundaries and it is saturated in urban areas 58 

(Small et al., 2005; Doll, 2008). Temporal changes in cities’ lights and the spatial 59 

characteristics of cities’ nighttime brightness have been examined in several countries 60 

using DMSP data (e.g., Lo, 2002; Ma et al., 2012; Zhang and Seto, 2013). Most of the 61 

studies which used DMSP data for urban studies have used annual datasets, whereas daily 62 

and monthly datasets were used to identify more dynamic and time varying features, such 63 

as forest fires, wars and fishing vessels (Huang et al., 2014). New studies using DMSP 64 

datasets for quantifying urban patterns are continuously being published (e..g, Ma et al., 65 
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2015; Weidmann and Schutte, 2016), however, annual products of DMSP night lights 66 

data are no longer being produced, the last one available being that of 2013. 67 

Recently, new studies have attempted using finer spatial resolution (≤ 1m) nighttime 68 

imagery to examine the factors explaining spatial patterns of nighttime lights within cities 69 

(Kuchly et al., 2012; Hale et al., 2013; Levin et al., 2014; Katz and Levin, 2016). 70 

Astronaut photography taken from the International Space Station presents an additional 71 

source of information about spatial patterns of cities at nighttime (de Miguel et al., 2014, 72 

de Miguel, 2015). Levin and Duke (2012) have used ISS imagery showing that not all 73 

towns and cities are equally lit, and that economic, infrastructure and demographic 74 

factors can explain differences in brightness levels of localities in Israel and the West 75 

Bank. Kyba et al. (2014) have used VIIRS DNB data to study the relationship between 76 

population size and the sum of lights from cities and communities in the USA and 77 

Germany, finding differences in light emission between cities of these two countries, and 78 

several recent studies have used VIIRS data to examine the nighttime brightness of cities 79 

in China (Ma et al., 2014a,b; Shi et al., 2014) and in the USA (Chen et al., 2015). In 80 

addition, Elvidge et al. (2016) have used VIIRS data to detecting and measure radiant 81 

emissions from gas flares globally, forming one of the major industrial sources of light 82 

pollution, which can even be detected night-time images of Landsat 8 in the visible bands 83 

(Levin and Phinn, 2016). 84 

Urban areas are of high importance as most of the world's population resides in 85 

cities, with 78% of global carbon emissions attributed to cities (Grimm et al., 2008). In 86 

this paper our aim was to use the new monthly global cloud-free mosaics from the VIIRS 87 

sensor onboard the Suomi-NPP (launched in 2011), to examine the factors explaining 88 
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spatial variability in nighttime lights at the city level, comparing densely populated areas 89 

(mostly urban areas) globally. We hypothesized that urban form and urban density (and 90 

other factors including percent urban area, NDVI, snow cover etc.) will also affect 91 

brightness levels, and not just socio-economic factors such as national GDP and 92 

population size. In addition, we aimed to examine the difference between using lit areas 93 

(i.e., areas above a certain threshold of nighttime lights brightness, as usually done in 94 

studies using DMSP data) and using calibrated brightness levels in radiance values, on 95 

the resulting factors explaining inter-city variability in nighttime lights.  96 

 97 

2. Methods 98 

The Visible/Infrared Imager/Radiometer Suite (VIIRS) was launched in October 28, 99 

2011, collecting high quality nighttime images at a spatial resolution of 750 m in the 100 

Day/Night Bands (DNB), between 500-900 nm (Miller et al. 2012, 2013). Recent studies 101 

have shown the improved quality of VIIRS nighttime lights images over those acquired 102 

by the DMSP/OLS sensor (Elvidge et al., 2013; Li et al. 2013;Miller et al., 2013; Shi et 103 

al. 2014). There are now monthly cloud-free global calibrated mosaics that were 104 

compiled from nighttime lights VIIRS images (Baugh et al., 2013), which can be 105 

downloaded from the NOAA’s National Geoscience Data Center 106 

(http://ngdc.noaa.gov/eog/). We have downloaded Version 1 of the composites of January 107 

2014 (representing northern hemisphere winter when snow cover is high) and July 2014 108 

(representing northern hemisphere summer), to quantify the nighttime light brightness of 109 

urban and densely populated areas globally. 110 
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To define the densely populated areas to be analyzed, we used the global Landscan 111 

(Bhaduri et al., 2002) population layer (of 2012; http://web.ornl.gov/sci/landscan/). 112 

Landscan is a derived product based on a variety of different inputs (including roads, land 113 

cover and other remote sensing products) used to spatially disaggregate census data 114 

(Bhaduri et al., 2002). Instead of defining the cities to be analyzed using official 115 

municipal boundaries (which often include unbuilt areas, and split metropolitan areas into 116 

small units; Forstall et al., 2009) we defined densely populated areas (to which we refer 117 

as "cities" throughout the paper) as comprised of adjacent grid cells with more than 1,500 118 

people/km2 each (the threshold used in China to define urban areas; Chan and Hu, 2003), 119 

with a minimum total area of 10 km2 within a single country. For comparison, Angel et 120 

al. (2011) mapped 3,646 metropolitan areas globally with populations in excess of 121 

100,000 people, finding that their median density was 7,600 people/km2. The steps for 122 

generating this spatial layer of cities were the following: (1) we calculated population 123 

density within each grid cell of the Landscan population dataset, by dividing the 124 

population count of each cell by the area of each 30 arc-seconds cell; (2) we used the 125 

post-classification sieve function within Envi 5.2 (© 2014 Exelis) to keep only groups of 126 

25 (or more) adjacent grid cells each with more than 1,500 people/km2 (considering 4 127 

neighboring cells); (3) the resulting binary image was converted to a polygon layer which 128 

was intersected with countries’ boundaries; (4) finally, only those polygons (representing 129 

densely populated areas) whose area within a single country was greater than 10 km2, 130 

were then used for all analyses (n = 4,153). Using this approach, our analysis units often 131 

correspond to metropolitan areas. 132 
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For each of the resulting polygons, we calculated various statistics (minimum, 133 

maximum, mean, standard deviation, sum) using the Zonal Statistics tool within ArcGIS 134 

10.2 (ESRI, Redlands, CA) for three groups of variables: 135 

(1) Anthropogenic variables at the city level: area, population, population density, percent 136 

urban area, density of road network, and GDP density at grid cell resolution of 0.25 137 

degrees (projected to 2014, based on Gaffin et al., 2004). We used percent urban areas  138 

based on the 2013 MODIS Land Cover Type Product (MCD12Q1; Strahler et al., 1999) 139 

because it was found as a highly accurate global map of urban areas in an accuracy 140 

assessment performed by Potere et al. (2009). For assessing the density of road network 141 

within each city, we used shapefiles of OpenStreetMap (Haklay, 2010) obtained from 142 

Geofabrik (http://www.geofabrik.de/). The roads within OpenStreetMap are classified as 143 

Major roads (Motorway/freeway; Important roads, typically divided; Primary roads, 144 

typically national; Secondary roads, typically regional; Tertiary roads, typically local) 145 

and Minor roads (Smaller local roads; Roads in residential areas; Streets where 146 

pedestrians have priority over cars; Pedestrian only streets) (Ramm, 2015). We converted 147 

the layers of major roads and minor roads from polylines to points (using all vertices), 148 

and then counted the number of vertices in each of these layers within each 0.00083 x 149 

0.00083 degree grid cell (as in Levin et al., 2015). In addition we classified the VIIRS 150 

nighttime light images into radiance classes, calculating the percent lit area of each city 151 

above the following light levels: 2, 5, 10, 25, 50, 100 and 250 nanoWatts/(cm2*sr). We 152 

identified active gas flare sources within cities using the global mapping of gas flares 153 

provided by Elvidge et al. (2016), available for download here: 154 

http://www.mdpi.com/1996-1073/9/1/14/s1 (accessed on December 7th, 2016). Out of a 155 

http://www.geofabrik.de/
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total of 7,464 gas flare point sources, only 97 gas flare sources were within the 156 

boundaries of 75 densely populated areas included in our study. To examine the possible 157 

impact of gas flares on our results, we examined the statistical correlations with and 158 

without cities where gas flare sources were located. 159 

(2) Physical variables at the city level: VIIRS nighttime lights brightness, the 2014 NDVI 160 

values (Rouse et al., 1973) based on the Version 6 of the MODIS/Terra Vegetation 161 

Indices Monthly L3 0.05Deg CMG (MOD13C2) collection (Didan, 2015) as vegetation 162 

cover can absorb and block nighttime lights, and snow cover based on the 2014 163 

MOD10CM product of MODIS as snow cover can enhance surface reflectance. Whereas 164 

spring-time snow cover in the northern hemisphere has decreased between 1971-2014, 165 

winter-time snow cover in the northern hemisphere showed only weak trends 166 

(Hernández-Henríquez et al., 2015). For each of the cities, we calculated its mean snow 167 

cover and mean NDVI values in January and July 2014. We also calculated for each city 168 

the number of cloud-free coverages, or observations, that went in to constructing the 169 

average VIIRS radiance image, because cloud cover can impede observations of 170 

nighttime brightness. 171 

(3) Anthropogenic variables at the country level, based on the assumption that street 172 

lighting standards and types are related to a country’s national income and energy 173 

sources. Street design standards are deeply embedded in design and engineering 174 

practices, as well as in legal and financial structures (Southworth and Ben-Joseph, 1995), 175 

and thus we assumed that street lighting standards will be mostly directed by national 176 

guidelines and norms. The variables we examined at the national level were GDP per 177 

capita and the percent of GDP derived from income (rents) from natural gas and oil. The 178 
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variables of 'GDP per capita' and ' Percent of GDP derived from natural gas and oil rents' 179 

were only available at the country scale, and were thus assigned to each city based on its 180 

country. The motivation for examining the percent of GDP derived from income (rents) 181 

from natural gas and oil, was that major oil exporting countries are known as non-182 

efficient in their energy use (Doukas et al., 2006; Mehrara, 2007), and we hypothesized 183 

that artificial night-lights emissions will also reflect the high energy consumption of some 184 

of those countries. Recognizing however that GDP varies within a country, in addition to 185 

using gridded GDP density at a spatial resolution of 0.25 degrees (by Gaffin et al., 2004, 186 

as described above), we used for some of the analyses GDP per capita as of 2014 at the 187 

city level, available for the world’s 300 largest metropolitan economies (Parilla et al., 188 

2015; https://www.brookings.edu/research/global-metro-monitor/, accessed August 18th, 189 

2016). As city-level GDP from the Brookings Institute was available for only 300 cities, 190 

we could not use it in the analysis of all cities. We have also assigned each city with its 191 

country-level GDP per capita value in proportion to each city's fraction of the national 192 

population, as an additional measure of GDP per capita at the city level. 193 

We examined the correlations between the explanatory variables of population, 194 

percent urban area, road density, NDVI, snow over, GDP per capita, GDP density as of 195 

2014 (GDP/unit land area; calculated by interpolating the 1990 and 2025 GDP density 196 

values at 0.25º grid cell resolution from Gaffin et al., 2004), percent of GDP derived from 197 

income (rents) from natural gas and oil (average between 2010-2013, available from the 198 

World Bank, http://data.worldbank.org/indicator/, accessed on 21/7/2015) and number of 199 

cloud free coverages from which the monthly mosaics of VIIRS brightness were 200 

constructed, with the predicted variables of nighttime light brightness, and lit area, at two 201 

https://www.brookings.edu/research/global-metro-monitor/
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spatial scales: the city scale (n = 4,153, and n = 200 for the largest urban areas globally) 202 

and the country scale after averaging the various variables of all cities within each 203 

country (n = 170). At the country level we examined the statistical relationships 204 

averaging the major cities in each country, and not referring to the entire area of a 205 

country. While previous studies trying to explain nighttime lights often focused on total 206 

lit area (as in Elvidge et al., 1997) or on the sum of lights (as in Kyba et al., 2014), we 207 

aimed to explain the percent lit area within a city and the mean radiance light levels 208 

within cities – variables which will be less biased by a city’s total population. We used 209 

XLSTAT version 2014.6.01 (Copyright Addinsoft 1995-2014) to calculate Spearman’s 210 

rank correlation coefficients. 211 

Following the univariate statistical analysis, we ran general linear models (GLM) for 212 

explaining cities’ brightness. Because seasons in the northern and in the southern 213 

hemispheres are reversed, we first reorganized data by seasons (winter and summer) 214 

instead of months (January and July). To do that we switched all data acquired in winter 215 

with data acquired in summer in the southern hemisphere. We then standardized all data 216 

using the Gaussian standardization method. We built GLM models (using the GLM 217 

function in Matlab) including all variables (full models), including social-economic 218 

variables only (socio-economic models), and including physical variables only (physical 219 

models). After examining distributions of the VIIRS data, we decided to choose a normal 220 

type for all the GLM models. To examine the performances of all the models, we listed 221 

all parameters of the models and generated scatterplots with the observed VIIRS data (Y 222 

axis) and the predicted values (X axis). GLM models were run for all cities, for the 223 

largest 200 cities, as well as at the country level. 224 
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 225 

3. Results 226 

3.1 City level 227 

Altogether, we identified 4,153 populated areas globally, mostly corresponding to cities 228 

and metropolitan areas (Figure 1; see supplementary KML file for the polygons of all 229 

cities). Their median area was 29.3 km2 (with a maximum of 3927 km2, for Jakarta, 230 

Indonesia), their median population being 172,000 (with a maximum of 30.4 million 231 

people for Tokyo, Japan), the median population density being 5,476 people/km2 (with a 232 

maximum of 39,605 people/km2 for Hong Kong), and the median brightness of these 233 

cities was 19 and 16.5 nanoWatts/(cm2*sr) in January and July 2014, respectively 234 

(Figures 2, 3, S1). The overall population included within these 4,153 populated areas 235 

was 2.018 billion, 30% of the world’s population. Whereas in some of the metropolitan 236 

areas (as defined in this study) such as Jakarta, there were areas which were quite dark, in 237 

some of the metropolitan areas (e.g., Ryadh and Moscow), very bright areas extended 238 

beyond the populated areas (Figures 2, 3). 239 

Using at least two cloud free coverages within a monthly mosaic as a threshold 240 

(representing a higher signal to noise ratio), 3,955 (95%) and 3,871 (93%) of all cities (in 241 

January and July 2014, respectively), and 188 (94%) and 192 (96%) of the largest 200 242 

cities (in January and July 2014, respectively), were above this threshold. We examined 243 

all univariate correlations only for those cities above this threshold, and found (as shown 244 

in the supplementary tables) that the univariate correlations between the explanatory 245 

variables and with VIIRS night-time brightness levels were not affected by low cloud 246 
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free coverage. Using only cities with no gas flare sources, 4,078 (98%) of all cities, and 247 

181 (91%) of the largest 200 cities, were found to have no artificial lights from gas flares. 248 

We examined all univariate correlations only for those cities with no gas flare sources, 249 

and found (as shown in the supplementary tables) that the univariate correlations between 250 

the explanatory variables and with VIIRS night-time brightness levels were not affected 251 

by gas flare sources. 252 

Globally, a consistent spatial pattern was observed with high-latitude northern 253 

hemisphere cities being observed as brighter on the January 2014 image than on the July 254 

2014 image (Figure 1c, d). Changes in VIIRS brightness values between January and July 255 

2014, were significantly correlated with changes in NDVI values (Rs = -0.405, p < 256 

0.001), changes in snow cover (Rs = 0.358, p < 0.001) and with changes in cloud-free 257 

coverage (Rs = 0.315, p < 0.001) (Figure 4). 258 

  259 
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  261 
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  262 

Figure 1: The distribution of the 4,153 urban areas analyzed in this study, presenting 263 
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mean VIIRS radiance values in January 2014 (a) and in July 2014 (b). Changes in 264 

brightness between the two months are given in absolute values (c) and as percentages 265 

(d). 266 
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 267 
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Figure 2: VIIRS radiance values in January 2014 (first and third row) and Landscan 268 

population density (per square kilometer; second and fourth row) in 2012 in six selected 269 

urban areas, ordered by their brightness from the top-left (Chicago) to the bottom-right 270 

(Moscow). The grey lines delineate the urban areas as defined based on the global 271 

Landscan population data (see Methods). 272 



19 
 

 273 



20 
 

Figure 3: VIIRS radiance values in January 2014 (first and third row) and Landscan 274 

population (per square kilometer, second and fourth row) in 2012 in six selected urban 275 

areas, ordered by their brightness from the top-left (Hong Kong) to the bottom-right 276 

(Jakarta). The grey lines delineate the urban areas as defined based on the global 277 

Landscan population data (see Methods). VIIRS radiance values for Jakarta are from July 278 

2014, due to low cloud-free coverage in January 2014. 279 

  280 
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 283 

Figure 4: Changes in VIIRS brightness values between January 2014 and July 2014, as a 284 

function of: (a) changes in NDVI values; (b) changes in snow cover values; (c) changes 285 

in cloud-free coverage. The largest 200 cities are colored by their respective continent.  286 
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We found statistically significant correlations for most of the variables analyzed for the 287 

VIIRS nighttime lights variables of both January and July 2014. However the variables of 288 

area, population density and percent of GDP derived from natural gas and oil rents were 289 

the least strongly correlated variables when each variable was examined separately 290 

(Table 1). Nighttime light brightness of cities was positively correlated with national 291 

GDP per capita (0.60 < Rs < 0.66; but less so with GDP density: 0.26 < Rs < 0.43), 292 

percent urban area (0.55 < Rs < 0.60; Figures 5, S2), road density (0.58 < Rs < 0.67) and 293 

snow cover (Figure 6; R2 = 0.55), and negatively (albeit weakly) correlated with NDVI 294 

values (Figures 6, S4; Table 1). Examining the correspondence of GDP per capita data 295 

and VIIRS night-time brightness for the 285 cities for which there was GDP per capita 296 

data at the city level (from the Brookings Institution; Parilla et al., 2015), GDP per capita 297 

at the city level was correlated with VIIRS night-time brightness (Rs = 0.339 and 0.220, 298 

p < 0.001, for January and July, respectively), but it was not significantly a better 299 

predictor of VIIRS night-time brightness, than GDP per capita at the national level (Rs = 300 

0.307 and 0.203, p < 0.001, for January and July, respectively Table S3) for those 285 301 

cities. In addition, the correlation coefficient between the city-level measure of GDP per 302 

capita (in proportion to each city's fraction of the national population) with night-time 303 

brightness, was lower than the correlation coefficient between the simple national GDP 304 

per capita with night-time brightness (see tables S1, S2). National GDP per capita was 305 

highly correlated with GDP density (Rs = 0.645, p < 0.001) and with the city-level 306 

measure of GDP per capita (in proportion to each city's fraction of the national 307 

population; Rs = 0.644, p < 0.001). We therefore preferred to keep using national GDP 308 
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per capita assigned to each city in our following multivariate analyses, to avoid 309 

collinearity. 310 

VIIRS brightness values were highly correlated between January 2014 and July 311 

2014, the main outliers presenting higher brightness values in January being cities located 312 

in northern latitudes with high snow cover (Figures 1c,d, 7). Correlations between the 313 

explanatory variables and the nighttime light variables (of mean radiance values and of lit 314 

area) did not differ much, however the highest correspondence between mean VIIRS 315 

radiance values and percent lit area was obtained for lit areas above 10-100 316 

nanoWatts/(cm2*sr) (Figure 8; Table S1, S2, S4), and the relationship between lit area 317 

and mean brightness levels was found to be non-linear (Figure 9). In the GLM analysis 318 

(run separately for all cities, or just for the largest 200 cities), both physical and socio-319 

economic variables were found as statistically significant (Figure 10). At the city level, 320 

the adjusted Rsquared value of a GLM model was mostly higher when only physical 321 

variables were included, than when only socio-economic variables were included (Figure 322 

11). However, in all cases, the explanatory power of the model increased when both 323 

socio-economic variables and physical variables were combined in a full GLM model 324 

(adjusted R2 values increasing from between 0.29-0.43 to 0.46-0.63 in the full GLM; 325 

Figures 10, 11, S4). Amongst the physical variables, NDVI and major roads were 326 

statistically significant in all models in both seasons, whereas cloud-free coverage was 327 

more important for the model in the summer season (Figure 10), and snow cover was 328 

only statistically significant in the winter season (Figure 10; note that the GLM 329 

coefficients of snow cover were higher than the GLM coefficients of latitude in the 330 

winter season). Amongst the socio-economic variables, both national GDP per capita and 331 
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the percent of GDP derived from natural gas and oil rents were positively contributing to 332 

the explanation of cities’ night-time brightness (Figure 10).   333 
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Table 1: Spearman rank correlation coefficients between explanatory variables and mean 334 

VIIRS radiance values (in January and July 2014), at different spatial scales (individual 335 

cities, average for cities within countries). The variables of 'GDP per capita' and ' Percent 336 

of GDP derived from natural gas and oil rents' were only available at the country scale, 337 

and were thus assigned to each city based on its country.  338 

(*** p < 0.001, ** p < 0.01, * p < 0.05) 339 

 City level, n = 4,153 City level, n = 200 

largest 

Country level, n = 170 

 Mean 

VIIRS Jan 

2014 

Mean 

VIIRS July 

2014 

Mean 

VIIRS Jan 

2014 

Mean 

VIIRS July 

2014 

Mean 

VIIRS Jan 

2014 

Mean 

VIIRS July 

2014 

GDP per capita 0.637 *** 0.657 *** 0.604 *** 0.627 *** 0.694 *** 0.697 *** 

GDP density 0.264 *** 0.291 *** 0.433 *** 0.433 *** 0.395 *** 0.362 *** 

GDP per capita 

* % of city’s 

share of 

national 

population 

0.532 *** 0.619 *** 0.494 *** 0.577 *** 0.581 *** 0.618 *** 

Percent of GDP 

derived from 

natural gas and 

oil rents 

0.039 * 

 

-0.069 *** 

 

-0.062 

 

-0.129 

 

0.309 *** 0.278 *** 

Area sq.km. 0.083 *** 0.118 *** -0.029 -0.046  0.071 0.099 

Population 

density 

0.046 ** 0.057 *** -0.073 -0.100 -0.178 * -0.175 * 

% urban area 0.576 *** 0.596 *** 0.582 *** 0.555 *** 0.461 *** 0.498 *** 

Major roads 0.583 *** 0.667 *** 0.586 *** 0.619 *** 0.513 *** 0.581 *** 

Mean NDVI -0.405 *** -0.237 *** -0.485 *** -0.260 *** -0.220 ** -0.142 
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Mean snow 0.334 *** 0.032 * 0.348 *** -0.034 0.175 * 0.028  

Latitude (abs) 0.386 *** 0.309 *** 0.351 *** 0.313 *** 0.416 *** 0.386 *** 

Number of 

VIIRS cloud-

free coverages 

0.230 *** 0.461 *** 0.194 ** 0.507 *** 0.367 *** 0.444 *** 

 340 

  341 
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342 
Figure 5: Mean VIIRS radiance values in January 2014 in the 200 largest urban areas, as 343 

a function of percent urban area. 344 
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Figure 6: Mean VIIRS radiance values in January 2014 in the 200 largest urban areas, as 348 

a function of mean NDVI values (a); Difference between January and July VIIRS 349 

brightness values in the largest 200 urban areas, as a function of snow cover  in January 350 

2014 (b). 351 

  352 
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 353 

Figure 7: Mean VIIRS radiance values in January 2014 in the 200 largest urban areas, as 354 

a function of mean VIIRS radiance values in July 2014. 355 
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Figure 8: Spearman rank correlation coefficients between various variables and the 361 

percent lit area (in January 2014) as a function of the threshold used to define the percent 362 

lit area, in radiance units of nano-Watts/(cm2*sr), for the 200 largest urban areas (a) and 363 

for countries (b). The threshold used for defining binary images of lit and unlit areas, 364 

from which we calculated the percent lit area, is shown on the x-axis. 365 

  366 
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 367 

 368 

Figure 9: Mean VIIRS radiance values in July 2014 in the 200 largest urban areas, as a 369 

function of the percent lit area greater than 25 nano-Watts/(cm2*sr). 370 
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 372 

Figure 10: Coefficients of socio-economic and physical variables included in full GLM 373 

analysis of cities’ night-time brightness, for the winter and summer seasons, at the 374 

country level, for all cities, and for the 200 largest cities. 375 

(*** p < 0.001, ** p < 0.01, * p < 0.05) 376 
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 378 

Figure 11: Coefficients of socio-economic and physical variables included in separate 379 

GLM analysis of cities’ night-time brightness, for the winter and summer seasons, at the 380 

country level, for all cities, and for the 200 largest cities. The parentheses after the 381 

adjusted R squared values in the legend represent whether they are for a model including 382 

only physical variables (P), or for a model including only socio-economic variables (S). 383 

(*** p < 0.001, ** p < 0.01, * p < 0.05)  384 
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3.2 Country level 385 

In this section we report the results obtained at the country level, i.e. after averaging all 386 

cities within each country. Overall, the three leading countries in number of densely 387 

populated areas included in our analysis were China (514), India (437) and the USA 388 

(306). At the country level (in which we analyzed the major cities in each country, and 389 

not the entire area of a country), the brightest cities in July 2014 were all found in the 390 

Middle East, whereas in January 2014 some countries located in higher latitudes were 391 

also amongst the ones with the brightest cities (Figure 12; brightness data was not 392 

available in July for cities in Iceland, Finland and Norway due to long days). At the 393 

country level, statistically significant correlations were found for VIIRS nighttime lights 394 

for all variables analyzed in both seasons (January and July 2014), except for four 395 

variables in which the correlations were weak or non-significant: area, population 396 

density, NDVI and snow (Table 1). Nighttime light brightness of cities was positively 397 

correlated with GDP per capita (Figure 13), percent of GDP derived from natural gas and 398 

oil rents (Figure 14), percent urban area (Figure 15) and road density (Figure 16, Table 399 

1). At the country level, snow cover and NDVI were only weakly correlated with VIIRS 400 

night-time brightness in January, and were not correlated with VIIRS night-time 401 

brightness in July (Table 1). VIIRS brightness values were highly correlated between 402 

January 2014 and July 2014, the main outliers presenting higher brightness values in 403 

January being countries located in northern latitudes with high snow cover in winter-time 404 

such as Canada, Estonia and the Russian Federation (Figure 12). In the GLM analysis, 405 

both physical and socio-economic variables were found as statistically significant (Figure 406 

10). At the country level, the adjusted Rsquared value of a GLM model was higher when 407 
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only socio-economic variables were included, than when only physical variables were 408 

included (Figure 11). However, in all cases, the explanatory power of the model 409 

increased when both socio-economic variables and physical variables were combined in a 410 

full GLM (adjusted R2 values increasing from between 0.24-0.37 to 0.49-0.54 in the full 411 

GLM; Figures 10, 11, S4). Amongst the physical variables, NDVI, cloud-free coverage 412 

and major roads were statistically significant in all models in both seasons, whereas snow 413 

cover was not found as statistically significant at the country level (Figure 10). Amongst 414 

the socio-economic variables, both national GDP per capita and the percent of GDP 415 

derived from natural gas and oil rents were positively contributing to the explanation of 416 

cities’ night-time brightness at the country level (Figure 10). 417 

  418 
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 419 

Figure 12: Mean VIIRS radiance values in January 2014 at the country level (i.e. 420 

averaging all cities within a country), as a function of mean VIIRS radiance values in 421 

July 2014 (mean value for the urban areas of each country).  422 
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 423 

Figure 13: Mean VIIRS radiance values in January 2014 at the country level (i.e. 424 

averaging all cities within a country), as a function of national GDP per capita.  425 
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 426 

Figure 14: Mean VIIRS radiance values in January 2014 at the country level (i.e. 427 

averaging all cities within a country), as a function of percent of GDP from natural gas 428 

and oil rents.  429 
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 430 

Figure 15: Mean VIIRS radiance values in July 2014 at the country level (i.e. averaging 431 

all cities within a country), as a function of percent uraban area (mean value for the cities 432 

of each country).  433 
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 434 

Figure 16: Mean VIIRS radiance values in July 2014 at the country level (i.e. averaging 435 

all cities within a country), as a function of Open Street Map major road density (mean 436 

value for the urban areas of each country).   437 
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4. Discussion 438 

Overall, our global mapping identified 4,154 densely populated areas, 13.9% more than 439 

the 3,646 metropolitan urban areas identified by Angel et al. (2011) who used MODIS 440 

derived urban land cover and population data. Previous global studies which analyzed 441 

differences in nighttime light brightness at the country or state level often focused on four 442 

main variables: population size, urban area, GDP and electric power consumption (e.g., 443 

Elvidge et al., 1997, 1999; Small et al., 2005; Ma et al., 2012, 2014a). Here we found that 444 

population density was not a statistically significant variable for explaining cities’ night-445 

time brightness when comparing cities between countries globally; this lack of 446 

correlation may be explained by our focus on highly densely populated areas (excluding 447 

sparsely populated areas from the analysis), by additional socio-economic factors which 448 

are unrelated to population density (e.g., GDP per capita), by physical factors influencing 449 

surface albedo (such as snow cover and NDVI), and by the great variability in lighting 450 

standards between countries (e.g., lighting levels, distance between street lights, whether 451 

there are regulations to reduce light pollution by using full cut-off lamps, etc.), the type of 452 

street lighting used (lamp type, which can be identified using hyperspectral imagery; 453 

Elvidge et al., 2010), etc. It is worthy of noting that slums with very high population 454 

density in many developing country cities are often poorly lit (Jones, 2000). While there 455 

are various attempts to map GDP spatially at regional and city levels (Gaffin et al., 2004; 456 

Parilla et al., 2015), we found that city level GDP estimates were not better in explaining 457 

nighttime brightness of cities, than national GDP per capita values. This finding  may 458 

indicate the importance of national lighting standards in explaining cities’ nighttime 459 
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brightness and the percolation of governmental revenue to municipal budgets which are 460 

also responsible for street lighting. 461 

We found that there are additional socio-economic factors beyond population size 462 

and GDP which explain cities’ brightness levels. We have found that cities located in 463 

countries where a large percent of the GDP is derived from natural gas and oil rents, tend 464 

to be highly lit – this is especially evident in the countries surrounding the Persian Gulf, 465 

where oil revenues have led to rapid urban development (Zhang et al., 2015), and where 466 

energy consumption and carbon dioxide emissions per capita are high (Reiche, 2010). 467 

Indeed, in major oil exporting countries, government policies often drive domestic energy 468 

prices under free market level, leading to high levels of domestic energy consumption, 469 

and to higher growth rates in energy use per capita than the growth rate of GDP per 470 

capita (Mehrara, 2007). Recent studies using finer spatial resolution sources of nighttime 471 

lights have incorporated additional explanatory variables which were found to be 472 

statistically significant in explaining differences between localities in nighttime light 473 

brightness (e.g., house vacancy rates; Chen et al., 2015), with one of the most consistent 474 

variables being the density of the road network (Levin and Duke, 2012; Kuechly et al., 475 

2012; Hale et al, 2013; Levin et al., 2014), a variable which was also shown to be 476 

statistically significant in our results. Whereas in previous studies official road data sets 477 

were used to estimate road density and correlate it with light emission, we used 478 

OpenStreetMap data, which has also been recently used to map roadless areas globally 479 

(Ibisch et al., 2016). Although the spatial coverage of OpenStreetMap data varies 480 

between countries and cities, with most contributors originating from the developed 481 

countries (Neis and Zielstra, 2014), our findings indicate that road density as derived 482 
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OpenStreetMap succeeded in contributing to the explanation of spatial variability in light 483 

emission from densely populated areas. 484 

Few studies have explicitly incorporated variables related to surface reflectance to 485 

explain nighttime brightness (but see Kim, 2012; Katz and Levin, 2016), and none as far 486 

as we know have done this at the global scale. We found that NDVI (representing 487 

vegetation cover) was negatively correlated with nighttime brightness, whereas snow 488 

cover was positively correlated with nighttime brightness. Higher NDVI values in urban 489 

areas may indicate greater foliage cover, which can partly or fully block upward light 490 

emission (Bennie et al., 2014b), or large vegetated areas (e.g., grassy areas) whose low 491 

reflectance will decrease the reflectance of artificial lights towards the sky. This effect of 492 

vegetation cover on a city’s night-time brightness as observed from space was recently 493 

reported using an EROS-B night-time image of Jerusalem (Katz and Levin, 2016). Cities 494 

in the countries surrounding the Persian Gulf often show low NDVI values (they are 495 

mainly located in an arid region), which might be one of the factors further enhancing the 496 

observed nighttime brightness of these cities. In contrast with vegetation, snow cover 497 

leads to increased land surface reflectance in the visible and near-infrared ranges, 498 

increasing the upwards reflectance of downward lights (as demonstrated in Figure 17) 499 

and thus enhancing the radiance measured by space-borne sensors (Román and Stokes, 500 

2015). Indeed, snow cover has been reported to increase surface albedo by as much as 501 

350% (Robinson and Kukla, 1985). While the increase in night-time brightness in 502 

January (with respect to July) of northern high latitude cities can be explained by snow 503 

cover in winter time (Figure 6b; see Wu et al., 2013), some low latitude areas (especially 504 

India) presented some increase (in percentages more than in absolute values) in night-505 
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time brightness from July to January. This may be related to more consistent cloud 506 

coverage during the summer months (monsoon season) in India (Wilson and Jetz, 2016), 507 

hampering night-time observations of cities’ brightness. This assumption is partly 508 

supported in our GLM analysis, where the number of cloud-free observations used to 509 

construct the monthly mosaics of the VIIRS, was positively correlated with cities’ night-510 

time brightness (Figures 10, 11). Latitudinal differences in cities’ night-time brightness 511 

may be explained not only by greater snow cover in high latitudes and persistent cloud 512 

cover in tropical latitudes, but also by seasonal changes in lighting strategy due to longer 513 

nights in high latitudes (Gaston et al., 2012; Wu et al., 2013). 514 

Most studies on nighttime light brightness used lit area and not radiance calibrated 515 

values of brightness, because previous sources of remotely sensed images of nighttime 516 

lights (DMSP, astronaut photographs from the ISS, SAC-C images) were mostly not 517 

calibrated (but see Doll et al., 2006, where calibrated radiances from DMSP were used to 518 

map regional economic activity from night-time imagery). The DNB band of the VIIRS 519 

onboard the Suomi NPP satellite presents a breakthrough in our ability to map the world 520 

at night (Miller et al., 2013), and is the first mission providing monthly average radiance 521 

composite images (available for downloading from 522 

http://ngdc.noaa.gov/eog/viirs/download_monthly.html, accessed on 22/7/2015). Cities’ 523 

mean brightness levels were not linearly correlated with percent lit area, however both 524 

variables were found to be highly correlated with the explanatory variables examined 525 

here. Differences between using these two variables (percent lit area, mean brightness 526 

levels) were mostly noted when setting high threshold values; when thresholds of 527 

brightness levels were set high (above 100 nanoWatts/(cm2*sr)), correlations between all 528 
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explanatory variables and percent lit area decreased, except for the physical variables of 529 

snow cover and NDVI. 530 

Our finding that multiple factors can affect nighttime light brightness at the city level 531 

confirms the findings of other studies at the country level (Wu et al., 2013; Ma et al., 532 

2012). Given the fact that some studies have looked into predicting GDP with nighttime 533 

lights (Chen and Nordhaus, 2010; Elvidge et al., 2007; Shi et al., 2014; Sutton et al., 534 

2007), our findings suggest that caution must be taken when interpreting monthly 535 

nighttime lights as a proxy for economic activity, because there are additional factors 536 

which drive the emissions night lights besides economic activity. Indeed, Bickenbach et 537 

al. (2013) concluded that night lights data may be poor proxies for regional GDP. Due to 538 

the phenological cycle of vegetation and seasonal changes in snow cover, variations 539 

which are not related to the emission of nighttime lights can be introduced into nighttime 540 

light time series. Such variations must be first identified and decoupled from nighttime 541 

light time series before they can be used to track real seasonal changes in nighttime 542 

lights, which have been used to track human activities, such as holiday celebrations 543 

(Zhang et al., 2015; Román & Stokes, 2015) or seasonal population gathering around 544 

cities in Africa (Bharti et al., 2011). Given the availability of a monthly cloud-free night-545 

time lights product from VIIRS, we call for further studies to examine the effects of 546 

seasonal changes on nighttime lights intensity observed from space, using time series 547 

approaches which have been developed in recent years for analyzing vegetation (e.g., 548 

Verbesselt et al., 2010). Seasonal changes in observed night-light may be due to changes 549 

in surface reflectivity (e.g., snow and vegetation cover) or due to seasonal changes in 550 
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human activity, and separating these factors is a challenge for the remote sensing 551 

community. 552 

 553 

5. Conclusions 554 

Nighttime light remote sensing is still in its infancy stage and is basically qualitative, 555 

compared with daytime optical remote sensing and microwave remote sensing. There is 556 

still a lack of understanding of the mechanisms behind nighttime light remote sensing, 557 

due to the lack of studies at the ground level and the relative lack of understanding 558 

nighttime light transfer from lighting sources through the air to the sensor. To advance 559 

nighttime light remote sensing, there is an urgent need for studies on factors that can 560 

influence nighttime light variation. With its dynamic radiometric range and advanced 561 

onboard calibration facilities, VIIRS takes continuous and consistent measurements of 562 

nighttime lights with significantly improved data quality, making the call for newer 563 

generation algorithms more urgent. Our current analysis is a direct response to that call. 564 

We have shown that cities’ night-light brightness is a function not only of fixed 565 

variables at both the country scale (e.g., GDP) and the city scale (e.g., density of the road 566 

network), but also of factors that have seasonal patterns, such as vegetation and snow 567 

cover. Our findings demonstrate some of the new insights which are now becoming 568 

possible thanks to the availability of global monthly radiance calibrated night-light 569 

mosaics from the VIIRS. Our findings suggest that in order to understand spatial and 570 

temporal variation in nighttime light intensity measured from space it is critical to first 571 

identify and separate variations caused by phenological cycles of vegetation and snow 572 
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cover, as well as by moon lighting. This is especially important for applications to track 573 

human activities over time with nighttime light time series data. The next step is to 574 

quantitatively model factors that can influence nighttime light intensity in order to extract 575 

true light signals on the ground from nighttime light remote sensing imagery.  576 
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 577 

 578 
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 579 

 580 

Figure 17: Motsa Valley, on the western outskirts of Jerusalem, Israel. Snow covered at 581 
day-time (20/2/2015, 2:50 pm, exposure time of 1/125 s) and at night-time (21/2/2015, 582 
2:57 am, exposure time of 1/4 s). The night-time photo demonstrates light-pollution 583 
under snow-cover conditions, due to increased surface reflectance. Notice that during the 584 
summer season (10/7/2008, 7:00 pm and 3:00 am), the valley is very dark at night-time, 585 
with no observed surface reflectance, due to low albedo of vegetation cover. Note that in 586 
addition to differences in snow cover, the winter photos show considerable downward 587 
atmospheric scattering of light from clouds which amplify light pollution (Kyba et al., 588 
2011), while the summer photos show clear skies with negligible downward atmospheric 589 
scattering. All photos were taken by NL, using a Kodak Easyshare ZD710 (in 2008) and 590 
a Canon PowerShot SX40 HS (in 2015). It should be noted that snowfall is a rare event in 591 
Jerusalem, with two days of snow a year on average (Bitan and Ben-Rubi, 1978).  592 
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