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Abstract  1 

Conservation planners must reconcile trade-offs associated with using biodiversity data of 2 

differing qualities to make decisions. Coarse habitat classifications are commonly used as 3 

surrogates to design marine reserve networks when fine-scale biodiversity data are incomplete 4 

or unavailable. Although finely-classified habitat maps provide more detail, they may have 5 

more misclassification errors, a common problem when remotely-sensed imagery is used. 6 

Despite these issues, planners rarely consider the effects of errors when choosing data for 7 

spatially explicit conservation prioritizations. Here we evaluate trade-offs between accuracy 8 

and resolution of hierarchical coral reef habitat data (geomorphology and benthic substrate) 9 

derived from remote sensing, in spatial planning for Kubulau District, Fiji. For both, we use 10 

accuracy information describing the probability that a mapped habitat classification is correct to 11 

design marine reserve networks that achieve habitat conservation targets, and demonstrate 12 

inadequacies of using habitat maps without accuracy data. We show that using more detailed 13 

habitat information ensures better representation of biogenic habitats (i.e. coral and seagrass), 14 

but leads to larger and more costly reserves, because these data have more misclassification 15 

errors, and are also more expensive to obtain. Reduced impacts on fishers are possible using 16 

coarsely-classified data, which are also more cost-effective for planning reserves if we account 17 

for data collection costs, but using these data may under-represent reef habitats that are 18 

important for fisheries and biodiversity, due to the maps low thematic resolution. Finally, we 19 

show that explicitly accounting for accuracy information in decisions maximizes the chance of 20 

successful conservation outcomes by reducing the risk of missing conservation representation 21 

targets, particularly when using finely classified data.  22 

 23 

Key words: Marine Protected Area; conservation; spatial planning; cost-effectiveness; 24 

surrogate; habitat classification  25 



3 

1. Introduction 26 

Through a systematic conservation-planning framework, planners can maximize the chance 27 

that reserves are located in areas that will protect desired proportions of biodiversity (Margules 28 

& Pressey 2000). However, trade-offs are inevitable in any planning situation. Although the 29 

location of marine reserves should be informed by high quality information on the distribution 30 

of biodiversity (Cabeza & Moilanen 2001), often such data are incomplete or inaccurate, with 31 

scarce financial resources and time limiting additional data collection (Grantham et al. 2008). 32 

Habitat maps can be cost-effective data options for informing spatial management decisions, 33 

but all maps have errors (Wilson 2010). Furthermore, their ability to represent biodiversity 34 

varies considerably depending on the features mapped (Mumby et al. 2008). A prevalent 35 

problem in marine spatial planning is using maps without understanding their classification 36 

accuracy (Tulloch et al. 2013). Knowing and accounting for differences in the accuracy of 37 

feature data used to plan reserves is crucial to ensure planning goals are achieved. 38 

Remote sensing is rapidly becoming the most common method used to map marine habitats 39 

cost-effectively at a broad scale (Mumby et al. 1999; Hamel & Andréfouët 2010). However 40 

remotely-sensed habitat maps differ substantially in quality, depending on the types and pixel 41 

grain of satellite images used, the classification method and desired resolution of the final data, 42 

as well as the nature of features to be identified (e.g. geomorphology versus benthic habitat), 43 

and their spatial heterogeneity (Mumby et al. 2004, Goodman et al. 2013). Challenges exist in 44 

obtaining up-to-date accurate data for coral reefs due to their dynamic nature, as well as 45 

spectral similarities of certain reef cover types (Phinn et al. 2012). Because of this, errors and 46 

uncertainty in coral reef habitat map classification can be high (Phinn et al. 2008, Roelfsema & 47 

Phinn 2013). This uncertainty invariably propagates through the decision-making process 48 

(Grand et al. 2007, Moilanen et al. 2006). In the past, many conservation plans using habitat 49 

maps have not accounted for their classification accuracy, often because it was not available, or 50 

hard to obtain. One recent example is the Great Barrier Reef Marine Park Rezoning (Fernandes 51 
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et al. 2005), which used bioregional maps and assumed these were representative of a range of 52 

coral reef habitats without any accuracy information. Management decisions can be prone to 53 

errors of omission (when a feature is mistakenly thought to be absent) or commission (when a 54 

feature is mistakenly thought to be present) if inaccurate spatial data are used (Rondinini et al. 55 

2006, Beech et al. 2008). 56 

The decision to represent certain conservation features in a reserve is constrained by budget 57 

limitations and data availability (Possingham et al. 2001). Remotely-sensed maps of abiotic 58 

coral reef features at coarse thematic resolutions (e.g. geomorphic zones) are useful surrogates 59 

in spatial planning, as they enable identification of priority areas when more detailed 60 

information about species distributions is lacking or too costly to obtain (Heyman & Wright 61 

2011; Sutcliffe et al. 2015). Geomorphic maps can be very accurate due to the ease of 62 

delineating geomorphology at relatively large spatial scales (tens to hundreds of meters) 63 

directly from remote-sensing imagery (Andréfouët et al. 2006), but structural complexity and 64 

heterogeneity can be lost if the thematic scale of the classification is too coarse (Boyce 2006). 65 

Finer habitat classifications are more difficult to delineate using remotely sensed images alone, 66 

but integration of field calibration data can help identify small-scale biotic habitats (e.g. coral, 67 

algae). Although some researchers advocate the use of geomorphic features as surrogates for 68 

ecological processes and biota (Heyman & Wright 2011), others recommend using finer-69 

resolution information describing coral reef habitats, as the higher thematic complexity 70 

provides a better proxy for associated species, ecological functions, and ecosystem services 71 

(Mumby et al. 2008; Dalleau et al. 2010). However, increasing the thematic resolution in a 72 

habitat map typically also increases classification error (Andréfouët 2008; Roelfsema & Phinn 73 

2010). The sensitivity of conservation plans to increasingly complex habitat data, and the value 74 

of these data in representing true biodiversity, is of growing concern (e.g., Van Wynsberge et 75 

al. 2012; Deas et al. 2014). Despite this, error associated with increasingly complex features is 76 

rarely accounted for in spatial planning.  77 
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There are important trade-offs to consider when accounting for error and uncertainties in 78 

conservation planning. Approaches incorporating uncertainty typically result in larger (and 79 

therefore more costly) reserve systems to have a reasonable certainty of meeting targets 80 

(Allison et al. 2003, Tulloch et al. 2013). This is not always practical when management goals 81 

aim to balance economic (e.g., impact to fishers) and conservation objectives. Although 82 

accounting for socio-economic costs of implementing management is common practice in 83 

marine reserve design (Mills et al. 2010), there are other costs to consider for efficient 84 

conservation decisions. Collecting fine-resolution field and image data is expensive (Roelfsema 85 

& Phinn 2010). Given a limited budget for marine conservation and the urgency of 86 

conservation problems, evaluating the benefits of collecting more detailed feature data against 87 

the costs of collection is crucial but rare (see Hermoso et al. 2013; Tulloch et al. 2014).  88 

Here we examine the sensitivity of marine reserve network design to habitat maps of increasing 89 

spatial and thematic resolution, and their associated classification accuracies, using a case study 90 

of the Kubulau District fisheries management area in Fiji. We explore how conservation 91 

prioritization outcomes change given finer classifications, addressing three questions relevant 92 

to reserve planning globally: 93 

1. How do priority conservation areas change when habitat data of increasingly fine 94 

resolution, and different accuracies, are used to plan reserves? 95 

2. How well do reserves designed using mapped habitat data of differing resolution 96 

and accuracy represent biotic habitats, and does this differ when using standard 97 

approaches compared to those that consider classification accuracy? 98 

3. What are the trade-offs between habitat representation, accuracy and cost when we 99 

move from using maps describing coarse reef data to more detailed benthic habitat 100 

data, and consider mapping accuracy during the decision-making process?  101 

We use our results to explore the surrogacy value of different input data in conserving coral 102 

reef habitats. We then evaluate the effect of incorporating socio-economic cost data on the 103 
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prioritization outcomes, and perform a cost-effectiveness analysis to compare the value of 104 

developing and using coarse or fine coral reef data in reserve design. We use this information 105 

to investigate an applied conservation management question for the Kubulau District fisheries 106 

management area in Fiji, where the reserve network was recently reconfigured using habitat 107 

maps without accuracy data (Weeks & Jupiter 2013). We evaluate the adequacy of existing 108 

marine reserve networks at protecting targeted biodiversity, and identify how the existing 109 

marine network might differ if accuracy information had been used to minimize the risk that 110 

habitats were not adequately represented. We identify trade-offs associated with the use of 111 

more readily available data versus more risky and expensive options derived from further data 112 

collection. In doing so, we demonstrate ways to make more informed decisions about choosing 113 

data for reserve design to address issues of scale and find priority areas that are robust to 114 

uncertainty.  115 

  116 
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2. Material and methods 117 

2.1 Study Area 118 

Our study area is the Kubulau District fisheries management area (qoliqoli) situated in 119 

southwest Vanua Levu, Fiji, covering 261.6 km2 (Fig. 1, inset) (WCS 2009). This area was 120 

chosen because hierarchical habitat data at increasingly spatial and thematic resolution are 121 

available. The area includes a diverse array of relatively pristine coral reef, seagrass beds, soft 122 

bottom lagoons, and deep channels (Knudby et al. 2011). 123 

 124 

2.2 Data 125 

We divided the region into 22,815 planning units (each 5000 m2). Hierarchical habitat maps of 126 

the Kubulau qoliqoli have previously been developed using object-based image analysis 127 

(Blaschke et al. 2010) from high resolution satellite data (IKONOS, 2006 and QuickBird, 128 

2007), at four scales of increasing thematic and spatial resolution: reef, reef type, geomorphic 129 

zone, and benthic community (Fig. 1a, see Knudby et al. 2011 for the full hierarchical 130 

classification scheme). The nine geomorphic zone classes describing reef structure and 131 

morphology (low spatial and thematic complexity, hereafter “coarse-classification”, Table 1) 132 

were each further subdivided into smaller segments representing thirty-three finer scale benthic 133 

community classes with higher spatial resolution with more thematic complexity describing 134 

coral, algal, seagrass, and reef substrates (described by dominant habitat first, hereafter “fine-135 

classification”, Table 1). For example, Coral Algae Reef Matrix contained over 70% coral, with 136 

approximately 10% macroalgae and 10% reef matrix, whereas Algae Coral Reef Matrix was 137 

macroalgae dominant (over 70% coverage), and only 10% coral cover (see Knudby et al. 2011 138 

for the full hierarchical classification scheme). Field survey data was obtained from the snorkel 139 

and scuba surveys and was divided in calibration data to create the map and validation data for 140 

accuracy assessment (Fig. 1a).  141 
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We converted overall user classification accuracy for each habitat in each map, derived from an 142 

error matrix comparing reference field data with classification of the same location in the 143 

habitat maps, to calculate a probability value quantifying the chance a classification was 144 

correct, used as input data uncertainty in our spatial prioritization (Knudby et al. 2011; Table 145 

1). Accuracy values for the coarse-classifications ranged from 0.2 to 0.9 (the range reflects 146 

different values for different habitats, mean accuracy = 0.82, Fig. 1b), with a wider range of 147 

accuracy values for the fine-classification of 0.1 – 1.0 (mean accuracy = 0.66, Fig. 1c).  148 

 149 

2.3 Prioritization approach, scenarios and analyses 150 

We used two approaches to compare between the outcomes of prioritizations for reserves that 151 

firstly, use or, secondly, ignore accuracy information. First, to account for accuracy, we used a 152 

modified version of Marxan software v.2.43 (Ball et al. 2009) called Marxan with Probability 153 

(MarProb), which has the ability to include uncertainty measures such as information on the 154 

probability that habitats or species distribution is accurate (hereafter “accuracy” approach). 155 

MarProb identifies near-optimal reserve networks that minimize cost subject to meeting 156 

representation targets, and maximize the chance of protecting targeted habitats given 157 

uncertainty in the conservation feature distribution (here, the classification accuracy). A 90% 158 

certainty target was set for each run to ensure habitat targets achieved high reliability (for more 159 

detail see Tulloch et al. 2013, and Supplementary Material). We note, the probabilistic 160 

representation target for feature capture in MarProb increases as feature accuracy decreases 161 

(Tulloch et al. 2013). For our second approach, we used standard Marxan (hereafter “standard” 162 

approach), which cannot include data inaccuracies, and assumes all data are 100% correct. 163 

For each approach, to compare marine priorities from using habitat data of differing resolution, 164 

we used first the coarsely-classified data (geomorphic zones) as input conservation features, 165 

then the finely-classified data (benthic habitats). We set equal representation targets of 30% for 166 

every conservation feature (Table 2). We recognize that recent conservation strategies had 167 
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differing representation targets for reef and non-reef habitats (Mills et al. 2011), and 168 

acknowledge concerns regarding the setting of arbitrary representation targets (Carwardine et 169 

al. 2009), however for the purposes of a comparative analysis we chose equal representation 170 

targets.  We performed 100 runs for every Marxan scenario. 171 

 172 

2.3.1 Baseline prioritization scenario 173 

In our baseline prioritization, all planning units were assigned an equal cost. We ran spatial 174 

prioritizations using the standard and accuracy approach for each conservation feature dataset 175 

and compared outcomes. Although there is a network of 24 marine protected areas (MPAs) 176 

spanning 130 km2 in the region managed to protect coral reef habitats and maintain small-scale 177 

fisheries (Weeks & Jupiter 2013), we chose to ignore existing Kubulau reserves initially for the 178 

purposes of method testing the sensitivity of solutions to different data, thus every planning 179 

unit was available for selection. 180 

 181 

2.3.2 Planning prioritization scenario 182 

We then developed a more realistic conservation-planning scenario (hereafter “planning” 183 

scenario), which accounted for annual local fishing resource requirements in the region by 184 

using data on socio-economic costs, derived in Adams et al. (2011). This was based on 185 

previous surveys in the Kubulau District that describe catch per unit effort (CPUE) based on 186 

records from four Kubulau villages collected between May 2008 and June 2009, which was 187 

used to model fishing opportunity cost for the Kubulau qoliqoli (Adams et al. 2011).  188 

 189 

2.3.3 Analysis 190 

Reserve solutions were analyzed using the “selection frequency”, where frequently selected 191 

planning units (selection frequency > 75%) represent areas of high priority for protection, 192 
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versus low priority planning units (those selected <25% out of the 100 runs), and the “best 193 

solution”, which is the solution with the lowest objective function score. We used difference 194 

maps to highlight spatial prioritization differences between approaches and datasets. For the 195 

planning prioritization we evaluate socio-economic impact of reserves by calculating the total 196 

opportunity cost to fishermen for each approach, and compared these between datasets. 197 

Similarity matrices were then computed using the Bray-Curtis (BC) similarity index (Magurran 198 

1988), and we evaluate how well reserves designed using standard approaches met 199 

representation targets that considered misclassifications. 200 

 201 

2.3.4 Surrogacy evaluation  202 

To test trade-offs between habitat data resolution, accuracy, and costs, we calculated the 203 

fraction of fine-classification habitats that were adequately conserved in the top 10 best reserve 204 

solutions resulting from the coarse data analysis, for both the standard and accuracy 205 

approaches. This allowed us to evaluate the “surrogacy value” of the coarse-classification in 206 

representing coral reef biodiversity, or in this case, in meeting standard and accuracy 207 

representation targets. Here we assumed that the fine-classifications were a truer surrogate for 208 

desired conservation features in the region, since (1) national conservation strategies in the 209 

region target fish species, invertebrates, and biogenic (e.g. coral) habitats (Mills et al. 2011), 210 

and (2) previous research suggests maps with higher habitat thematic complexity provide better 211 

biodiversity surrogates than simpler maps (Dalleau et al. 2010). 212 

 213 

2.3.5 Current reserve evaluation  214 

We evaluated habitat representation within the existing Kubulau reserve network, initially 215 

designed to represent coarse-scale habitats (Andréfouët et al. 2006) without accounting for their 216 

accuracy, to identify how well it represents the classified habitats used in this study once 217 
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accuracy information is considered. By calculating the amount of each habitat in the existing 218 

reserve network, and comparing this with their probability targets in MarProb, we could 219 

evaluate the fraction of habitats in each dataset that are adequately protected in the existing 220 

reserve network.  221 

 222 

2.4 Calculating cost-effectiveness of data 223 

To find the cost-effectiveness of investing in and using different quality data in reserve 224 

planning we calculated the total benefit of reserving the n selected planning units in the best 225 

reserve network solution using the accuracy approach. For fine-classification scenarios, the 226 

reserve biodiversity benefit (B) was the summed area of habitat selected for reservation divided 227 

by the area of habitat, as follows: 228 

𝐵𝐵 = ∑ 𝑥𝑥𝑖𝑖𝑛𝑛
𝑖𝑖=1 .�∑ 𝑎𝑎𝑖𝑖ℎ𝐻𝐻

ℎ=1 .�
∑ ∑ 𝑎𝑎𝑖𝑖ℎ𝐻𝐻

ℎ=1 .𝑛𝑛
𝑖𝑖=1

    (1) 229 

where xi is a control variable for planning unit i (i = 1…n) that takes the values 0 (not selected) 230 

or 1 (selected for reservation), and 𝑎𝑎𝑖𝑖ℎ is the amount of each habitat (h = 1…H) that falls inside 231 

planning unit i. For accuracy scenarios, 𝑎𝑎𝑖𝑖ℎ was multiplied by 𝑝𝑝ℎ, the probability of that habitat 232 

being classified correctly. For the coarse-classification, the reserve biodiversity benefit (B) was 233 

the surrogate value of the data, or the total area of fine-classification habitat selected in the 234 

“locked-in” solutions (again assuming fine-classifications are truer surrogates for biodiversity).  235 

To calculate the total cost of using each dataset, we added the cost for each reserve 236 

network (C) to the cost of data collection (D), which included imagery purchase, field data 237 

collection costs, and paying a consultant at standard industry rates to produce each habitat 238 

dataset using object-based remotely-sensed image analysis integrated with expert knowledge 239 

for geomorphic maps and field calibration data for benthic maps. We assumed that the costs of 240 

data collection and compensation for reserve establishment (both in Fijian dollars, FJD) were 241 

born by the same organization, a not uncommon scenario (e.g., Gunn et al. 2010), and 242 
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calculated the weighted sum relative to total cost for each metric and dataset to provide a 243 

measure of relative “investment”. Although ideally a completely independent survey would be 244 

conducted to gather validation data for accuracy assessment, due to the expense and logistical 245 

challenges of organizing fieldwork, data can be divided in a “training” or “reference” set used 246 

to create the maps and a validation set to assess the accuracy of the maps, keeping costs lower 247 

(Roelfsema 2013). We estimated that the costs of not collecting map validation information 248 

would be 20% less than developing maps with accuracy information. The total scenario cost-249 

effectiveness (CE) was the overall benefit divided by the total summed costs (Tulloch et al. 250 

2014): 251 

𝐶𝐶𝐶𝐶 =  𝐵𝐵
(𝐶𝐶+𝐷𝐷)

       (2)  252 
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3. Results 253 

3.1 Accounting for accuracy 254 

Accounting for accuracy changed the location of reserves (Fig. 2a & b) compared to outcomes 255 

from a standard approach, and increased the size of reserves regardless of the dataset used (Fig. 256 

6). There were more spatial differences between standard and accuracy approaches using the 257 

fine-classification data, which resulted in 75% of the region (17074 planning units) having 258 

higher selection frequencies (higher priority for inclusion in reserves) once accuracies were 259 

considered. There were fewer spatial differences between approaches using the coarse 260 

classification regardless of the cost scenario (Table 3). Larger reserve networks resulted once 261 

accuracy was accounted for both the baseline and planning scenarios regardless of the dataset 262 

used (Fig. 6), though greater size differences were observed when using finely classified data, 263 

with reserve networks almost 1.5 times bigger than those of the standard approach (Fig. 6).  264 

The coarse-classification accuracy reserves were only on average 10% larger overall  than 265 

those from the standard approach. 266 

The planning scenario highlighted more overlapping priorities between standard and accuracy 267 

approaches for each dataset compared to the baseline scenario (Table 3). Including socio-268 

economic data in the planning scenario also led to planning units having higher selection 269 

frequencies overall compared with the baseline scenario. Regardless of the approach, 15% of 270 

the region was always a high priority for meeting targets (selection frequency >50%), with 4% 271 

of these identified as irreplaceable (selected 100% of the time). High-priority areas were 272 

generally either very low cost or contained large amounts of habitats with low classification 273 

error, such as deep slope (99.9% accuracy) or lagoon reef (90.0% accuracy). Over 45% of the 274 

entire study region was excluded from all reserves, either because of high opportunity cost, or 275 

they contained common habitats whose targets had already been met while conserving other 276 

habitats. 277 

When we evaluated how well reserves designed using standard approaches met representation 278 

targets that considered misclassifications, two-thirds of the finely classified features were 279 
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under-represented, in some cases by up to 58% of their probabilistic representation target in 280 

MarProb (see Tulloch et al. 2013). All of the coral and reef-dominant habitats failed to meet 281 

their representation targets, while seagrass-dominant habitats were over-represented by 282 

approximately 20% of their target. In contrast, only one-third of the coarse classifications 283 

missed their representation targets by less than 20%, with the remainder of habitats only 284 

moderately over-represented (<10% of target). 285 

 286 

3.2 Comparing priorities for fine versus coarse data 287 

Regardless of the scenario, comparing priorities from using coarse versus fine habitat 288 

classifications identified some similarities in the location of priority areas using the standard 289 

approach (Table 3). There was significant spatial incongruence between reserves designed 290 

using different datasets once accuracy was accounted for (Table 3), with 18% of the highest 291 

priority planning units (selected 100% of the time) in the fine-classification reserves rarely or 292 

never selected in the coarse-classification reserves in the baseline scenario (Fig. 2c). The spatial 293 

congruence between coarse and fine classification prioritizations was substantially lower for 294 

the planning scenario when accounting for rather than ignoring accuracies (BC index 64.9% 295 

and 72.8% respectively, Table 3). Overall, the fine-classification accuracy reserve network was 296 

bigger than reserves designed using any other data or approach, though one fine classification 297 

consistently failed to meet its representation target using the accuracy approach, regardless of 298 

the cost data used, due to high classification error (coral/algae reef matrix, 27.5% accuracy, 299 

Table 1). 300 

 301 

3.3 Surrogacy evaluation 302 

When reserves designed using coarse-classification data were evaluated to see how well they 303 

represented fine-classifications, we found only four fine-classification habitats failed to meet 304 

their targets in the standard baseline scenario, requiring on average 1- 17% more area to reach 305 
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their target. Once accuracies were considered, the number of fine-classification habitats failing 306 

to meet their targets increased, with three-quarters of the coral-dominant habitats under-307 

represented by up to 50%, while one seagrass-dominant habitat met only less than one-third of 308 

its target (seagrass sediment, Fig. 4). The inclusion of socio-economic data in the accuracy 309 

planning scenario resulted in a higher number of fine-classification targets being met, though 310 

three of the four coral-dominant habitats still failed to meet their targets, while four of the six 311 

sediment-dominant habitats over shot their target by 100% or more regardless of whether 312 

accuracy was accounted for (Fig. 4). 313 

 314 

3.4 Current reserve evaluation 315 

The current reserve network, which covers 37% of the planning region, met almost all our 316 

coarse conservation feature targets of 30% when mapping accuracy was considered, with the 317 

one exception being reef crest (<1% of total habitat protected, Fig. 5a). The current reserve 318 

network also performs well at meeting most conservation targets for biogenic habitats, however 319 

four habitats failed to meet their targets (Fig. 5b). Notably, a key coral habitat and one 320 

seagrass-dominant habitat (seagrass sediment) met only 40% and 20% of their conservation 321 

targets respectively, whilst several sand, algae and rubble dominant habitats were significantly 322 

over-represented, in one case up to 9 times the targeted amount (sediment rubble patch features, 323 

Fig. 5b).  324 

 325 

3.4 Cost-effectiveness of using different data 326 

We found trade-offs between the accuracy of data and costs, with smaller reserve networks and 327 

lower opportunity costs for fishermen when accuracy values were not included, regardless of 328 

which data were used (Fig. 6). For the planning scenario, fish catch opportunity costs for the 329 

accuracy reserve network using coarse-classifications were on average ~30% more than those 330 

from the standard approach. Using fine classifications and accounting for mapping accuracy 331 
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almost tripled potential fishing catch losses compared with when mapping accuracy was 332 

ignored (Fig. 6), with total costs to fishers reaching up to 17% of their total income. Reserves 333 

designed using coarsely classified habitats and accounting for classification accuracies cost on 334 

average half that of the reserves designed using the finely classified habitats (Fig. 6). Some 335 

areas with high opportunity cost were prioritized in reserve networks, not only because they 336 

contained highly accurate habitats, but also because they contained low accuracy habitats 337 

needing more of their area conserved to ensure targets were met. 338 

Although the reserve networks designed using coarse-classifications had lower biodiversity 339 

benefits and met fewer representation targets for small-scale coral reef benthos when 340 

accounting for accuracy, the cost of deriving coarsely classified data was approximately one-341 

tenth of the finely classified map (Fig. 6). Furthermore, total costs (data acquisition/processing 342 

and opportunity cost combined) for fine-classification accuracy reserves were almost six times 343 

that of the coarse-classification reserve network (Fig. 6b). Regardless of whether accuracy 344 

information was included, when the cost of data acquisition and processing was added to the 345 

opportunity costs, using coarsely classified data was most cost-effective (Fig. 6). 346 

  347 
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4. Discussion 348 

Planners often have to use remotely sensed habitat maps to design reserve systems because 349 

species distribution data are scarce (Mumby & Edwards 2002), but these maps can be highly 350 

inaccurate. Despite this, only limited work has been done to explore issues of habitat mapping 351 

errors in marine conservation planning (Beech et al. 2008, Tulloch et al. 2013). Our findings 352 

demonstrate possible inadequacies in, and risks of, spatial prioritization analyses that do not 353 

consider habitat map accuracy, particularly when using remotely-sensed habitat maps with high 354 

thematic complexity, where detection and misclassification errors are more likely than with 355 

coarse-classifications (Roelfsema & Phinn 2013). We highlight trade-offs between cost-356 

effectiveness and biodiversity representation that emerge from choosing coarse or fine habitat 357 

classifications to plan reserves. Using coarsely classified but highly accurate information to 358 

plan reserves is cheaper overall, as fine-classifications are more expensive to develop and have 359 

more error. However, use of these coarse-classifications as surrogates for broader coral reef 360 

biodiversity in planning processes can result in under-representation of high value reef habitats 361 

such as coral and seagrass. Planners can improve their chances of adequately representing more 362 

complex fine-classification habitats by obtaining classification accuracies for these data, and 363 

including them in the decision-making process.  364 

We observed greater differences in the location of priority areas between standard and accuracy 365 

approaches using fine-classification data, resulting in larger errors of omission and commission 366 

in habitat representation (Fig. 3). This was driven largely by the proportion of highly inaccurate 367 

(less than 50% accuracy) classifications resulting in more area required to meet habitat targets 368 

with reasonable certainty (see Tulloch et al. 2013), which in turn drives greater differences in 369 

reserve size. Given the high misclassification errors, planners that use these data without 370 

considering accuracy risk protecting too much of some features, thereby misallocating 371 

resources and wasting funding, and not enough of others, thereby failing to achieve 'safe' levels 372 

of protection (Possingham et al. 2007). However this creates an added challenge for planners – 373 
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although validation methods are improving, accuracy information is rarely provided with 374 

habitat maps (Roelfsema & Phinn 2013). The onus is thus on map producers as well as map 375 

users to ensure that classification error information is calculated, made available, and then 376 

considered in conservation decisions.  377 

By comparing reserve networks built using different habitat data we found important trade-offs 378 

between costs of developing and using a habitat map, and its accuracy. It was possible to 379 

reduce fishing opportunity costs using coarser geomorphic data, which supports the findings of 380 

previous studies (Deas et al. 2014). We took this research one step further by including data 381 

accuracy in our planning approach, which reduced the risk of missing habitat targets, though 382 

this was at an additional cost to the fishing community, particularly when we use finely 383 

classified habitat data that includes more detail and complexity (Fig. 5). Importantly, not only 384 

were the finer detail classifications more inaccurate, once we considered data acquisition costs, 385 

we found important savings could be achieved using the coarsely-classified data due to high 386 

costs of obtaining and ground-truthing more detailed habitat data (Fig. 6).  387 

Limited resources mean these sorts of trade-offs are an important part of efficient decision-388 

making (Stewart & Possingham 2005). One alternative is to defer reserve selection until we can 389 

better map low accuracy habitats, however inaction might increase the risk of further 390 

biodiversity loss (Grantham et al. 2008). If budgets were very limited, our results show cost 391 

savings might be found by obtaining freely available geomorphic data (e.g. Millenium Coral 392 

Reef Mapping Project (MCRMP), Andréfouët et al. 2006), which require no fieldwork, 393 

typically do not change over short time scales, can be highly accurate, and some argue are the 394 

most practical foundation for marine planning (Heyman & Wright 2011). However information 395 

on the accuracy of these freely available maps is typically unavailable, or hard to come by. Our 396 

analysis of the current reserve network that was designed using MCRMP data and no 397 

classification accuracies identified a number of over-represented sand, rubble and algal 398 

dominant habitats, which might be considered an unacceptable opportunity cost, as this habitat 399 

type supports fewer species and less fisheries production compared with mangroves and reefs 400 
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(Mills et al. 2010). Local communities could help verify the accuracy of maps at small scales, 401 

though this would be challenging for large regions. Moreover, research suggests that local-402 

knowledge derived maps achieve a lower overall accuracy than remotely-sensed maps 403 

(Selgrath et al. 2016), and thus should be relied on with caution in particular for fine-scale 404 

habitat classification. 405 

Maps of geomorphology cannot discriminate between differing biogenic communities across 406 

time or space, and thus may not be useful in informing short-term impacts of reserve 407 

establishment, even if they are highly accurate (Stevens and Connolly 2004). Instead, the 408 

hierarchical classification for the finely classified data used here could be used as a proxy for 409 

condition (with coral-dominance indicating better condition than algal-dominance), which is a 410 

more useful monitoring metric, given that these types of habitats can change and improve in 411 

condition substantially if protected (Mumby and Harborne 2010). This would however require 412 

the finely-classified data to be re-collected on a regular basis, requiring further funds and 413 

reducing even more the cost-effectiveness of this data over longer timeframes. Importantly, any 414 

conservation plan should be adaptive, and data used to create reserves should also be used to 415 

monitor the success of the reserves in the future. Building adaptive management into the 416 

process of creating, maintaining, and evaluating MPAs could help when the data available has a 417 

lot of accuracy problems. 418 

A crucial issue for planners is how to decide on a scale for decisions and biological data that 419 

represents biota adequately and is relevant to management objectives and actions, whilst 420 

working within limited budgets. This can be achieved in three ways: firstly, by understanding 421 

the ecological surrogacy value of the data such as through pairing with field data (Mumby et al. 422 

2008; Sutcliffe et al. 2015); secondly, by accounting for errors associated with mapped data 423 

during prioritization (Rondinini et al. 2006, Guisan et al. 2013, Tulloch et al. 2013); and 424 

thirdly, by accounting for data acquisition costs (Tulloch et al. 2014). The relevant spatial and 425 

thematic resolution of data will differ depending on the planning objective and values (e.g. 426 
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coastal protection, or increase biomass of fish), and target species (e.g. microhabitat of a table 427 

coral, or lagoon reef complex). Spatial resolution strongly influences surrogate effectiveness in 428 

complex systems such as coral reefs (Mellin et al. 2011). High thematic complexity is 429 

important for coral reef maps to be effective proxies for fish and invertebrate species richness 430 

(Chabanet et al. 1997, Jenkins and Wheatley 1998, McArthur et al. 2010). Our findings from 431 

the surrogacy evaluation of coarse-classification reserves highlight important concerns for 432 

plans that use a standard approach only. Initially, one might believe key coral habitats have 433 

exceeded representation targets when using a cheaper geomorphic map. However once 434 

mapping accuracies were considered, coral-dominant habitats are all significantly under-435 

represented when a more coarsely classified geomorphic map was used to plan reserves, 436 

regardless of whether cost data were included. Similarly, the current MPA network in Kubulau 437 

(Weeks & Jupiter 2013) significantly under-represents two of the dominant coral and seagrass 438 

habitats in our finely-classified habitat map. Under-representing key coral habitats could have 439 

consequences for biodiversity and fisheries production (Jenkins and Wheatley 1998, McArthur 440 

et al. 2010). Coral-dominant substrates play an important role in structuring associated reef fish 441 

communities (Messmer et al. 2011), while seagrass supports fish nursery grounds as well as 442 

providing important ecosystem services through improving water quality (Beck et al. 2001). 443 

Inadequately conserving these key biogenic habitats makes the coarsely classified dataset risky 444 

to use. Although more detailed habitat maps provide more informative class structure (Banks & 445 

Skilleter 2007), they are typically less accurate and more costly to obtain (Fig. 4). Given these 446 

trade-offs, planners must decide on a tolerable level of error in their data, and weigh this 447 

against the amount of time and money it would take to reduce this uncertainty.  448 

A number of other uncertainties are worthy of consideration here, though were beyond the 449 

scope of this research. We assumed opportunity cost data were accurate, however errors in 450 

socio-economic data are common, such as misreporting of catches (Adams et al. 2011).  451 

Expected value-of-information analyses (Runge et al. 2011) could be used in this case to 452 

evaluate which are the most important uncertainties, and identify where investment in 453 
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improving accuracies through data collection would improve conservation outcomes. Further 454 

ground-truthing could be conducted to minimize the risk of errors in data classifications 455 

misleading site prioritization (Roelfsema & Phinn 2010), however this would come at an 456 

additional cost and possibly delay reserve establishment. To systematically deal with detection 457 

errors, the full range of classification errors could be included in the planning process, 458 

including the probabilities that habitats were misclassified, which can be calculated from the 459 

error matrix user/producer errors (Table S.1).  460 

The cost-effectiveness approach used here has some limitations. We assumed all habitat 461 

features to have equal conservation value, irrespective of their species composition (for which 462 

no data were available), overall coverage in the study area (habitats covering smaller areas 463 

might be more important from a conservation perspective than habitats covering large areas), or 464 

sensitivity to human activities (habitats that are little affected by human activities might require 465 

a lower level of protection or no protection at all than habitats that are sensitive to activities). 466 

But this is not necessarily the case, and depending on the conservation objective, there may be 467 

costs associated with not adequately protecting critical habitats (such as nursery grounds for 468 

species of conservation concern), particularly if this results in reduced fish catches or loss of 469 

fish biodiversity. The static nature of our cost-effectiveness approach means that costs at the 470 

moment of reserve planning are accounted for, but future costs arising from insufficiently 471 

grounded reserve planning (such as from using coarsely-classified data that does not adequately 472 

represent biodiversity) are not. Similarly, our biodiversity benefit calculation might change 473 

dramatically depending on the subjective value placed on biodiversity versus socio-economic 474 

costs, which would affect final calculations and likely increase the overall cost-effectiveness of 475 

the fine classifications. In the end, gaining more knowledge through gathering more accurate 476 

data might actually be more cost efficient by creating more efficient reserves. Because of this, 477 

rather than advocate the use of cheaper coarsely-classified data to plan conservation, we instead 478 

highlight the risks associated with using finely-classified data without considering its accuracy, 479 

and its cost. 480 
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The issue of the quality and quantity of data required to adequately protect biodiversity is 481 

increasingly important to conservation planning. We show that trade-offs between the choice of 482 

habitat data, their accuracy, costs, and surrogacy value are important considerations during 483 

decision-making, affecting the location, size, and cost-effectiveness of priority conservation 484 

areas. We highlight here the need for error information to be provided with any habitat map, 485 

and then included in the decision-making process, to avoid risks of under-representing features, 486 

particularly when maps of high thematic complexity and error are used. This study not only 487 

provides valuable information for decision-makers deciding on data for conservation planning, 488 

but also has far-reaching implications for protecting global biodiversity, including prospects for 489 

redesigning existing reserves selected without considering data uncertainties. 490 



23 

References 

Adams, V.M., M. Mills, S.D. Jupiter, and R. Pressey. 2011. Improving social acceptability of 

marine protected area networks: A method for estimating opportunity costs to multiple 

gear types in both fished and currently unfished areas. Biological Conservation 144:350-

361. 

Allison, G. W., S. D. Gaines, J. Lubchenco, and H. P. Possingham. 2003. Ensuring persistence of 

marine reserves: Catastrophes require adopting an insurance factor. Ecological 

Applications 13:S8-S24. 

Andréfouët, S. 2008. Coral reef habitat mapping using remote sensing: A user vs producer 

perspective. Implications for research, management and capacity building. Journal of 

Spatial Science 53:113-129. 

Andréfouët, S., F.E. Muller-Karger, J.A. Robinson, C.J. Kranenburg, D. Torres-Pulliza, S.A. 

Spraggins, and B. Murch. 2006. Global assessment of modern coral reef extent and 

diversity for regional science and management applications: a view from space. 

Proceedings of the 10th International Coral Reef Symposium 1:1732–1745. 

Ball, I.R., H.P. Possingham, and M.E. Watts. 2009. Marxan and relatives: software for spatial 

conservation prioritization. Pages 260-268 in A. Moilanen, K.A. Wilson, and H.P. 

Possingham, editors. Spatial Conservation Prioritization: Quantitative Methods and 

Computational Tools. Oxford University Press, Oxford, UK. 

Ban, N.C., and C.J. Klein. 2009. Spatial socioeconomic data as a cost in systematic marine 

conservation planning. Conservation Letters 2:206-215. 

Banks, S.A., and G.A. Skilleter. 2007. The importance of incorporating high-resolution habitat 

data into the design of an intertidal marine reserve system. Biological Conservation 

138:13-29. 



24 

Beck, M.W., K.L. Heck Jr, K.W. Able, D.L. Childers, D.B. Eggleston, B.M. Gillanders, B. 

Halpern, C.G. Hays, K. Hoshino, and T.J. Minello. 2001. The identification, 

conservation, and management of estuarine and marine nurseries for fish and 

invertebrates: A better understanding of the habitats that serve as nurseries for marine 

species and the factors that create site-specific variability in nursery quality will improve 

conservation and management of these areas. Bioscience 51:633-641. 

Beech, T., M. Dowd, C. Field, B. Hatcher, S. Andrefouet. 2008. A stochastic approach to marine 

reserve design: incorporating data uncertainty. Ecological Informatics 3:321-333. 

Blaschke, T. 2010. Object based image analysis for remote sensing. Isprs Journal of 

Photogrammetry and Remote Sensing 65:2-16. 

Boyce, M.S. 2006. Scale for resource selection functions. Diversity and Distributions 12:269-

276. 

Cabeza, M., and A. Moilanen. 2001. Design of reserve networks and the persistence of 

biodiversity. Trends in Ecology & Evolution 16:242-248. 

Carwardine, J., C.J. Klein, K.A. Wilson, R.L. Pressey, and H.P. Possingham. 2009. Hitting the 

target and missing the point: target-based conservation planning in context. Conservation 

Letters 2:4-11. 

Chabanet, P., H. Ralambondrainy, M. Amanieu, G. Faure, and R. Galzin. 1997. Relationships 

between coral reef substrata and fish. Coral reefs 16:93-102. 

Dalleau, M., S. Andréfouët, C. Wabnitz, C. Payri, L. Wantiez, M. Pichon, K. Friedman, L. 

Vigliola, and F. Benzoni. 2010. Use of Habitats as Surrogates of Biodiversity for 

Efficient Coral Reef Conservation Planning in Pacific Ocean Islands. Conservation 

Biology 24:541-552. 



25 

Deas, M., S. Andréfouët, M. Léopold, and N. Guillemot. 2014. Modulation of Habitat-Based 

Conservation Plans by Fishery Opportunity Costs: A New Caledonia Case Study Using 

High-resolution Catch Data. PloS one 9:e97409. 

Fernandes, L., J. O. N. Day, A. Lewis, S. Slegers, B. Kerrigan, D. A. N. Breen, D. Cameron, B. 

Jago, J. Hall, D. Lowe, J. Innes, J. Tanzer, V. Chadwick, L. Thompson, K. Gorman, M. 

Simmons, B. Barnett, K. Sampson, G. De'Ath, B. Mapstone, H. Marsh, H. Possingham, I. 

A. N. Ball, T. Ward, K. Dobbs, J. Aumend, D. E. B. Slater, and K. Stapleton. 2005. 

Establishing Representative No-Take Areas in the Great Barrier Reef: Large-Scale 

Implementation of Theory on Marine Protected Areas. Conservation Biology 19:1733-

1744. 

Goodman, J. A., J. Samuel, and R. Stuart 2013. Coral reef remote sensing. Springer Science. 

Grand, J., M.P. Cummings, T.G. Rebelo, T.H. Ricketts IV, and M.C. Neel. 2007. Biased data 

reduce efficiency and effectiveness of conservation reserve networks. Ecology Letters 

10:364-374. 

Grantham, H.S., A. Moilanen, K.A. Wilson, R.L. Pressey, T.G. Rebelo, and H.P. Possingham. 

2008. Diminishing return on investment for biodiversity data in conservation planning. 

Conservation Letters 1:190-198. 

Guisan, A., R. Tingley, J. B. Baumgartner, I. Naujokaitis-Lewis, P. R. Sutcliffe, A. I. T. Tulloch, 

T. J. Regan, L. Brotons, E. McDonald-Madden, C. Mantyka-Pringle, T. G. Martin, J. R. 

Rhodes, R. Maggini, S. A. Setterfield, J. Elith, M. W. Schwartz, B. A. Wintle, O. 

Broennimann, M. Austin, S. Ferrier, M. R. Kearney, H. P. Possingham, and Y. M. 

Buckley. 2013. Predicting species distributions for conservation decisions. Ecology 

Letters 16:1424-1435. 

Gunn, J., Fraser, G., and Kimball, B. 2010. Review of the Great Barrier Reef Marine Park 

Structural Adjustment Package. Report for the Department of Environment, Water, 

Heritage and the Arts (DEWHA). 129 pp 



26 

Hamel, M.A., and S. Andréfouët. 2010. Using very high resolution remote sensing for the 

management of coral reef fisheries: Review and perspectives. Marine Pollution Bulletin 

60:1397-1405. 

Hermoso, V., M.J. Kennard, and S. Linke. 2013. Data Acquisition for Conservation 

Assessments: Is the Effort Worth It? PLoS ONE 8:e59662. 

Heyman, W.D., and D.J. Wright. 2011. Marine geomorphology in the design of marine reserve 

networks. The Professional Geographer 63:429-442. 

Jenkins, G., and M. Wheatley. 1998. The influence of habitat structure on nearshore fish 

assemblages in a southern Australian embayment: Comparison of shallow seagrass, reef-

algal and unvegetated sand habitats, with emphasis on their importance to recruitment. 

Journal of Experimental Marine Biology and Ecology, 221:147-172  

Knudby, A., C. Roelfsema, M. Lyons, S. Phinn, and S. Jupiter. 2011. Mapping fish community 

variables by integrating field and satellite data, object-based image analysis and modeling 

in a traditional Fijian fisheries management area. Remote Sensing 3:460-483. 

Magurran, A.E. 1988. Ecological diversity and its measurement. Princeton University Press, 

Princeton, N. J. 

Margules, C.R., and R.L. Pressey. 2000. Systematic conservation planning. Nature 405:243-253. 

McArthur, M., B. Brooke, R. Przeslawaki, D. Ryan, V. Lucieer, S. Nicol, A. McCallum, C. 

Mellin, I. Cresswell, and L. Radke. 2010. A review of surrogates for marine benthic 

biodiversity. GeoScience Australia. Geoscience Australia, Canberra. 

Mellin, C., S. Delean, J. Caley, G. Edgar, M. Meekan, R. Pitcher, R. Przeslawski, A. Williams, 

and C. Bradshaw. 2011. Effectiveness of Biological Surrogates for Predicting Patterns of 

Marine Biodiversity: A Global Meta-Analysis. PLoS ONE 6:e20141. 



27 

Messmer, V., G.P. Jones, P.L. Munday, S.J. Holbrook, R.J. Schmitt, and A.J. Brooks. 2011. 

Habitat biodiversity as a determinant of fish community structure on coral reefs. Ecology 

92:2285-2298. 

Mills, M., S.D. Jupiter, R.L. Pressey, N.C. Ban, and J. Comley. 2011. Incorporating 

Effectiveness of Community-Based Management in a National Marine Gap Analysis for 

Fiji. Conservation Biology 25:1155-1164. 

Mills, M., R.L. Pressey, R. Weeks, S. Foale, and N.C. Ban. 2010. A mismatch of scales: 

challenges in planning for implementation of marine protected areas in the Coral 

Triangle. Conservation Letters 3:291-303. 

Moilanen, A., B.A. Wintle, J. Elith, and M. Burgman. 2006. Uncertainty analysis for regional-

scale reserve selection. Conservation Biology 20:1688-1697. 

Mumby, P.J., K. Broad, D.R. Brumbaugh, C.P. Dahlgren, A.R. Harborne, A. Hastings, K.E. 

Holmes, C.V. Kappel, F. Micheli, and J.N. Sanchirico. 2008. Coral reef habitats as 

surrogates of species, ecological functions, and ecosystem services. Conservation 

Biology 22:941-951. 

Mumby, P.J., and A.J. Edwards. 2002. Mapping marine environments with IKONOS imagery: 

enhanced spatial resolution can deliver greater thematic accuracy. Remote Sensing of 

Environment 82:248-257. 

Mumby, P.J., E.P. Green, A.J. Edwards, C.D. Clark. 1999. The cost-effectiveness of remote 

sensing for tropical coastal resources assessment and management. Journal of 

Environmental Management 55:157-166. 

Mumby, P.J., and A.R. Harborne. 2010. Marine reserves enhance the recovery of corals on 

Caribbean reefs. PLoS One 5:e8657. 



28 

Mumby, P.J., W. Skirving, A.E. Strong, J.T. Hardy, E.F. LeDrew, E.J. Hochberg, R.P. Stumpf, 

and L.T. David. 2004. Remote sensing of coral reefs and their physical environment. 

Marine Pollution Bulletin 48:219-228. 

Naidoo, R., A. Balmford, P.J. Ferraro, S. Polasky, T.H. Ricketts, and M. Rouget. 2006. 

Integrating economic costs into conservation planning. Trends in Ecology & Evolution 

21:681-687. 

Phinn, S.R., C.M. Roelfsema, and P.J. Mumby. 2012. Multi-scale image-analysis for mapping 

coral reefs. International Journal of Remote Sensing 33:3768-3797. 

Phinn, S.R., Roelfsema, C.M., Scopelitis, J., Kamal, M., 2008. Linking Structures to Processes: 

Multi- scale Image and Field Data Analyses, In Proceedings of the SPIE Asia-Pacific 

Remote Sensing Conference, November 17-20. Noumea, New Caledonia. 

Possingham, H.P., S.J. Andelman, B.R. Noon, S. Trombulak, and H.R. Pulliam. 2001. Making 

smart conservation decisions. Conservation Biology: Research Priorities for the Next 

Decade: 225-244. 

Possingham, H.P., H. Grantham, and C. Rondinini. 2007. How can you conserve species that 

haven't been found? Nature 34:758–759. 

Roelfsema, C., and S. Phinn. 2010. Integrating field data with high spatial resolution 

multispectral satellite imagery for calibration and validation of coral reef benthic 

community maps. Journal of Applied Remote Sensing 4:043527. 

Roelfsema, C.M., and S.R. Phinn. 2013. Validation (Chapter 14) in J. Goodman, S. Purkis, and 

S. R. Phinn, editors. Coral Reef Remote Sensing: A Guide for Multi-level Sensing 

Mapping and Assessment. Springer Publishing. 

Rondinini, C., K.A. Wilson, L. Boitani, H. Grantham, and H.P. Possingham. 2006. Tradeoffs of 

different types of species occurrence data for use in systematic conservation planning. 

Ecology Letters 9:1136-1145. 



29 

Runge, M.C., S.J. Converse, and J.E. Lyons. 2011. Which uncertainty? Using expert elicitation 

and expected value of information to design an adaptive program. Biological 

Conservation 144:1214-1223. 

Sutcliffe, P., C.J. Klein, C.R. Pitcher, and H.P. Possingham (2015). The effectiveness of marine 

reserve systems constructed using different surrogates of biodiversity. Conservation 

Biology in press 

Stevens, T., and R.M. Connolly. 2004. Testing the utility of abiotic surrogates for marine habitat 

mapping at scales relevant to management. Biological Conservation 119:351-362. 

Stewart, R.R., and H.P. Possingham. 2005. Efficiency, costs and trade-offs in marine reserve 

system design. Environmental Modeling & Assessment 10:203-213. 

Tulloch, A.I.T., V.J. Tulloch, M. Evans, and M. Mills. 2014. The value of using feasibility 

models in systematic conservation planning to predict landholder management uptake 

Conservation Biology 28:1462-73. 

Tulloch, V.J., H.P. Possingham, S.D. Jupiter, C. Roelfsema, A.I.T. Tulloch, and C.J. Klein. 

2013. Incorporating uncertainty associated with habitat data in marine reserve design. 

Biological Conservation 162:41-51. 

Van Wynsberge, S., S. Andréfouët, M.A. Hamel, and M. Kulbicki. 2012. Habitats as Surrogates 

of Taxonomic and Functional Fish Assemblages in Coral Reef Ecosystems: A Critical 

Analysis of Factors Driving Effectiveness. PLoS ONE 7:e40997. 

WCS. 2009. Ecosystem Based Management Plan: Kubulau District, Vanua Levu, Fiji. Wildlife 

Conservation Society, Suva, Fiji. 

Weeks, R., and S.D. Jupiter. 2013. Adaptive Comanagement of a Marine Protected Area 

Network in Fiji. Conservation Biology 27:1234-1244. 

Wilson, K.A. 2010. Dealing with Data Uncertainty in Conservation Planning. Nature and 

Conservation 8:145-150. 



30 

Tables 

Table 1. Habitats, area and accuracies for the input conservation feature data used in the reserve 

design analyses. Coarse classifications describe geomorphology, while fine benthic 

classifications are composed of a combination of coral, algal, seagrass, sand, rubble and reef 

matrix substrata, described by the dominant habitat first, followed by sub-dominant, and so on. 

Habitat type Percent total study area 
(%) Accuracy (p) 

GEOMORPHIC – COARSE CLASSIFICATION 
 

 

Inner Reef Flat 17.41 0.70 

Inner Reef Flat Deep 6.84 0.90 

Inner Reef Flat Terrace 9.71 0.90 

Lagoon Reef 23.93 0.90 

Lagoon Slope 15.86 0.85 

Outer Reef Flat 13.23 0.85 

Reef Crest 4.90 0.80 

Reef Slope 8.11 0.80 

BENTHIC – FINE CLASSIFICATION 
 

 

Algae Coral Reef Matrix 0.55 0.467 

Algae Reef Matrix 0.46 0.61 

Algae Rubble Sand 2.00 0.644 

Coral 1.85 0.515 

Coral Reef Matrix 5.55 0.769 

Coral Rubble 6.04 0.697 

Coral Rubble Sand 5.81 0.679 

Coral/Algae Reef Matrix 0.43 0.275 

Deep Lagoon 11.54 0.793 

Deep Slope 4.63 0.999 

Reef Matrix Coral 2.35 0.741 

Reef Matrix Coral Algae 2.27 0.465 

Reef Matrix Top 0.38 0.955 

Rubble Coral 0.29 0.999 

Rubble Reef Matrix Coral 1.92 0.88 

Seagrass Sand 0.35 0.999 

Seagrass/Algae Rubble Sand 10.19 0.429 

Sand 28.67 0.637 

Sand  Seagrass/Algae 2.90 0.999 

Sand Rubble 1.20 0.375 

Sand Rubble Algae 0.66 0.9 

Sand Rubble Coral 7.89 0.689 

Sand Rubble patch features 0.37 0.6 
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Table 2. Details of the prioritization scenarios employed, detailing which approach was used 
(either standard Marxan, or MarProb to account for mapping error), dataset used, and cost 
information. 
 

 

Prioritization 
name 

Approach Dataset used Cost data 

Scenario 
MarProb 

(accuracy 
values 

included) 

Marxan (no 
accuracy 

values 
Geomorphic 

zones 

Benthic 
habitats 

and 
substrat

a 

Equal costs 
for all 

planning 
units 

Fishing 
opportunity 

costs 

Ba
se

lin
e 

Coarse-
classification 

standard 
 x x  x  

Coarse-
classification 

accuracy 
x  x  x  

Fine-
classification 

standard 
 x  x x  

Fine-
classification 

accuracy 
x   x x  

Pl
an

ni
ng

 

Coarse-
classification 

standard 
 x x   x 

Coarse-
classification 

accuracy 
x  x   x 

Fine-
classification 

standard 
 x  x  x 

Fine-
classification 

accuracy 
x   x  x 
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Table 3. Comparison of spatial dissimilarity for the eight prioritization scenarios using the Bray–
Curtis similarity index (0 = completely dissimilar, 100 % = identical).  Grey boxes indicate 
scenarios that were compared in the analysis. 
 

  Baseline Planning 

  
Coarse-

classification 
accuracy 

Fine-
classification 

standard 

Fine-
classification 

accuracy 

Coarse-
classification 

standard 

Coarse-
classification 

accuracy 

Fine-
classification 

standard 

Fine-
classification 

accuracy 

Ba
se

lin
e 

C
oa

rs
e-

cl
as

si
fic

at
io

n 
st

an
da

rd
 

79.1% 81.1% 74.0% 40.2% 42.8% 39.8% 49.0% 

C
oa

rs
e-

cl
as

si
fic

at
io

n 
ac

cu
ra

cy
 

- 86.3% 74.0% 48.3% 51.8% 46.1% 55.7% 

Fi
ne

-
cl

as
si

fic
at

io
n 

st
an

da
rd

 

- - 63.9% 45.1% 46.7% 44.5% 51.7% 

Fi
ne

-
cl

as
si

fic
at

io
n 

ac
cu

ra
cy

 

- - - 46.6% 51.3% 47.2% 61.4% 

Pl
an

ni
ng

 

C
oa

rs
e-

cl
as

si
fic

at
io

n 
st

an
da

rd
 

- - - - 89.3% 72.8% 64.7% 

C
oa

rs
e-

cl
as

si
fic

at
io

n 
ac

cu
ra

cy
 

- - - - - 68.2% 64.9% 

Fi
ne

-
cl

as
si

fic
at

io
n 

st
an

da
rd

 

- - - - - - 78.7% 
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Figures 

 

Figure 1. (a) Flowchart of classification process for habitat maps, identifying a snapshot of the 

full hierarchical classification process, (b) map of accuracy values for the geomorphic map 

(coarse-classification) and (c) benthic habitats (fine-classification), identifying areas of low 

classification accuracy and high error (10% accuracy value) to high classification accuracy and 

minimal error (100% accuracy value), derived from the error matrix for each habitat. Inset shows 

location of Kubulau in Fiji. 

 

Figure 2. Differences in priority conservation areas between the standard (red, orange, yellow 

colors) and accuracy (blue shades) approaches using (a) the coarse-scale dataset, and (b) the fine-

scale dataset. Highest priority areas are those selected as a priority 100% of the time for one 

approach, and never for the other. The final difference map (c) highlights priority areas identified 

using either the coarse-scale data (blue) or fine-scale data (red), using the accuracy approach. 

Highest priority areas in (c) are those selected as a priority 100% of the time using one dataset 

but never using the other dataset. 

 

Figure 3. Maps showing the differences in spatial location of priority planning units using 

different habitat data, when opportunity costs were included, using a standard approach (a) and 

an accuracy approach (c). The scatterplots display the selection frequency of planning units 

when coarsely classified geomorphic zones are used compared to fine-classifications, using a 

standard (b) and accuracy (d) approach. Yellow units were important to meeting targets for both 

datasets, blue units were considered more important to meeting targets for the coarsely classified 

habitats, and red units were considered more important to meeting targets for the finely classified 

habitats. Grey planning units were considered relatively unimportant using either dataset.  
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Figure 4. Errors of omission (amount of under-represented habitats) and commission (over-

represented benthic habitats) from the surrogacy scenario incorporating accuracy information, 

identifying which fine-scale benthic habitats failed to achieve representation targets in the 

reserves designed using coarse-scale geomorphic data. Negative values mean habitat targets 

were not met, positive values mean habitat targets were exceeded. 

 

Figure 5. Errors of omission (amount of under-represented habitats) and commission (over-

represented benthic habitats) from assessing which habitats failed to achieve representation 

targets once mapping accuracy was considered in existing reserves designed using habitat data 

(Andrefouet et al. 2006) that did not have accuracy information, for (a) geomorphic zones, and 

(b) benthic habitats. Features are ordered by highest mapped error at the top (inner reef flat, and 

coral/algae reef matrix), to lowest error at the bottom of each data set. Negative values mean 

habitat targets were not met, positive values mean habitat targets were exceeded. 

 

Figure 6.  Costs (opportunity and data acquisition in FJD), size, relative biodiversity benefit and 

final cost-effectiveness for the best reserve network (defined by Marxan as the solution with the 

lowest objective function score) designed using coarse or fine-classifications. We highlight 

differences between using the standard and accuracy approaches for the planning scenario where 

fishing opportunity costs were included. 
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