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Abstract 

 

Microwave imaging systems for medical applications have been widely investigated in recent years 

due to their potential to provide portable diagnostic tools that are safe, low cost, and nonionizing. 

Among many medical applications, brain stroke detection and classification using microwave 

techniques has been attracting an increasing interest due to the need for a portable onsite, real-time 

stroke diagnosis that can be used by paramedics. A complete microwave imaging system includes 

hardware components and software algorithms. The processing and imaging techniques, which are 

the topic of this thesis, use the collected microwave signals via the antenna array to generate the 

images of the brain. Numerous microwave imaging techniques applied on bio-medical applications 

have been researched during recent years. Those proposed techniques exhibited great potential, 

however, they suffer from several serious drawbacks that need to be solved. This thesis aims to solve 

four main problems (including a large number of antenna elements, a large number of frequency 

samples, sensitivity to initial guess of the effective dielectric properties of the image domain and 

sparsity of the imaged domain), in current microwave imaging techniques and in doing so makes four 

main research contributions. 

 

The first contribution is the development of a novel algorithm based on compressive sensing (CS). 

The main target is to develop CS-based imaging algorithm to reduce the number of antennas used in 

the array. A CS model is constructed based on confocal imaging algorithm, and a convex optimization 

problem is solved in order to reconstruct the reflection coefficients of the imaging domain. The 

proposed algorithm is successfully tested on a head model.  Followed by that, another CS-based 

algorithm is proposed to reduce the number of stepped frequencies used in the microwave transceiver 

system. A CS model is constructed based on the sparse time domain signal received by the antenna 

array. The algorithm is tested using a developed microwave head imaging system. The results indicate 

that by using 25% of the original stepped frequencies, the image can be ideally recovered by using 

the proposed algorithm. 

 

The second contribution is the development of an optimization based confocal imaging algorithm. In 

all of the traditional confocal imaging algorithms, the effective dielectric constant of the imaging area 

has to be initially estimated. Since the generated image is sensitive to the effective dielectric constant, 

a small error in the estimation will cause large distortion in the image. The proposed algorithm 

proposes a novel concept in which the effective dielectric constant is considered a variable that 

depends on the signal’s entry point in the imaged object (the head). Based on this concept, multiple 
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effective dielectric constants are optimized with the aim to achieve the most focused (best) image. 

This optimization is implemented by using particle swarm optimization method. The proposed 

method is compared with traditional confocal imaging algorithms. The results indicate that the 

proposed algorithm can achieve much better images with lower cluster effects and insensitive to the 

initial values of the effective dielectric constants.   

 

The third contribution is the development of a CS based tomography method. A critical problem, 

which is the sparsity of the imaging domain, is firstly investigated. Since the electrical properties of 

human head is non-sparse, the wavelet transform is used to transform the non-sparse profile into a 

sparse wavelet domain. After that, a CS based algorithm named block sparse Bayesian learning 

(BSBL) is used to recover the electrical properties of the head by using less number of antennas. The 

proposed algorithm is compared with other traditional tomography methods, and the results indicate 

that since less number of antennas is used in the system, the images generated by using traditional 

methods are largely distorted because less information is obtained from the received signal. However, 

by using the proposed algorithm, the electrical properties of the target area can be ideally recovered 

by using only 4 antennas with satisfactory results whereas traditional methods require at least 32 

antennas.  

 

The last contribution is the development of a framework for brain stroke classification. Two databases 

are firstly constructed by using two numerical head phantoms. The first database is used to train the 

classifier whereas the second database is used to evaluate the performance of the built classifier. The 

databases are composed with brain images generated by using Born iterative method. The validity of 

the framework is verified with various strokes (haemorrhagic or ischaemic) with different sizes and 

positions. Two machine learning based techniques named K-means clustering and support vector 

machine are used to build the classifier. The constructed classifier is tested by using the second 

database, and the results indicate that when different noise levels are considered, the proposed 

framework can achieve 88% accuracy rate. The receiver operator characteristic curve is also used to 

test the framework and the results indicate that the framework can successfully localize the stroke 

and achieve 91% sensitivity and 87% specificity.  
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Chapter 1: Introduction 
 

1.1 Background and Motivation 
 

Brain stroke is a fatal disease which is challenging to detect and classify especially at early stages. In 

Australia, nearly 60,000 stroke patients are diagnosed per year, and the number of new stroke cases 

are increasing. This huge number of stroke cases costs the Australian government $2.14 billion per 

annum. The impact of stroke makes on patients is substantial. For example, 20% of the stroke patients 

will die within a month and more than 30% of them will die within 12 months. Approximately 88% 

survivors suffer several types of disabilities [1].  

Brain stroke can be generally divided into two types: the haemorrhagic stroke and ischaemic stroke. 

The investigation indicates that around 15% of all the strokes are haemorrhagic stroke and nearly 

85% strokes account for ischaemic stroke [2]. Haemorrhagic stroke is caused by either the rupture of 

saccular aneurysms in the subarachnoid area or the rupture of the blood vessel. Blood leaks from the 

vessel, spreads into the brain and results in high pressure, thus damaging the tissues in the brain. 

Ischaemic stroke is caused by a blood clot. The blood vessel is blocked by the blood clot and thus the 

blood cannot reach the brain [3]. Different types of the brain strokes correspond to different therapy 

treatment, and incorrect treatment imposed on the patient will cause fatal results. Therefore, it is vital 

to classify the type of the stroke before any therapy treatment is applied.  

The diagnosis (includes detection and classification) mainly rely on the brain images. Several brain 

stroke detection and imaging techniques have been researched and developed during the past few 

decades such as computed tomography (CT) scans, magnetic resonant imaging (MRI) and ultrasound 

[4]-[6]. The quality of image generated from ultrasound technique is largely influenced by the 

operator who manipulates the scanner thus it is ‘operator-dependent’. Moreover, the image quality is 

also degraded when the patient has thick skull as the penetration depth of ultrasound is decreased 

when bone or air is present. The brain imaging techniques based on CT and MRI provide accurate 

and high resolution images which can be used to detect and classify the stroke, however, some 

drawbacks still exist in these techniques, such as high cost, non-portable and radiative (for CT). Most 

of the brain stroke cases happened under unexpected scenarios and emergent treatment need to be 

performed on the patient. The most important time for a patient to be rehabilitated from brain stroke 

is the first two hours from the onset of the stroke. Therefore, it is important to detect and classify the 

stroke in a short time once the stroke symptom is observed. Due to the high cost and non-portable 
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features of MRI and CT systems, these two systems are not suitable to be used onsite by paramedics 

or utilized in rural areas.  

 

Motivated by this situation, it is desirable to develop low-cost and portable diagnosis system which 

can be used to overcome the drawbacks of conventional instruments such as MRI and CT. The new 

system is required to possess compact size, low-cost, and the ability to detect and classify the brain 

stroke within a short period of time. Driven by these requirements, bio-medical imaging systems 

using microwave technology have been researched and developed during the past few decades. 

Microwave imaging systems were firstly researched as far-field imaging technique such as synthetic 

aperture radar (SAR), inverse synthetic aperture radar (ISAR) or ground penetration radar (GPR). In 

early of 1970s, the nonionizing electromagnetic wave effects in biological materials was investigated 

[7] and in 1982, it was proposed that microwave technique may be used to detect cerebral edema [8]. 

Breast tumour detection using microwave technology was widely researched since 1998 [9]-[10]. The 

proposed concept is based on two properties of breast tissues at microwave frequency range. Firstly, 

the dielectric properties between malignant tumors and normal tissues exhibit significant difference, 

and secondly, the signal attenuation on normal breast tissue is weak for microwave frequencies, thus 

it is possible to distinguish the malignant tumors from the normal tissues using microwave system. 

Based on this concept, various hardware (such as antenna designs for microwave breast imaging) 

[11]-[17] and algorithms [18]-[29] have been proposed and developed for microwave breast imaging 

application.  

Inspired by the successful application of using microwave technique on breast cancer detection, it is 

straightforward to rise up a question: if microwave technique can be applied on other bio-medical 

applications? Followed with this question, numerous researchers proposed diverse bio-medical 

applications using microwave technique. Among all of those proposals, brain stroke detection and 

classification using microwave system is drawing more interests during the past few years. Due to 

the features of microwave imaging system (low-cost, safety and portability), it is becoming a potential 

instrument which can be used to solve the problems from MRI and CT system as mentioned before. 

 

1.2 Microwave Systems Applied for Brain Stroke Diagnosis 
 

In 1982, J. Lin and M. Clarke proposed the idea that use microwave system to detect the cerebral 

edema [8]. This was the first time that microwave imaging system was applied on diagnosing brain 

disease. D. Ireland and M. Bialkowski proposed the idea that apply microwave technique on brain 
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stroke detection in 2010 [30]. The fundamental reason that microwave system can be used on brain 

stroke detection is because the significant contrast among different brain tissues can be observed with 

regard to the dielectric constant at microwave frequency range. This property implies that it is 

possible to distinguish different brain tissues based on the received signals. Some initial investigations 

have been made in [31]-[35] with regard to the antenna’s design and signal processing. A complete 

microwave head imaging system was presented in [36]. The system utilized a circular antenna array 

which was composed with corrugated tapered slot antennas to transmit and receive the signals. The 

signals received from the antenna array were further processed using vector network analyser (VNA) 

which was used to transfer the electromagnetic (EM) wave into S-parameters. The collected S-

parameters were used to generate the head images by using the algorithm proposed in [37]. The 

system was evaluated using a realistic head phantom which was manufactured based on the data 

reported in [38]-[39] and the results indicated that the system can localize the position of the 

haemorrhagic stroke when the stroke was placed at shallow position inside the brain. Similar system 

with enhanced hardware and head phantom was presented in [40]. A new unidirectional antenna 

design was used in the antenna array and more accurate head phantom was manufactured using 3-D 

printing technology. A novel portable transceiver from Agilent Tech (N7081A) was used to collected 

the S-parameters. The results shown in [40] indicated that the position of haemorrhagic stroke can be 

accurately localized even when the stroke was placed at deep position inside the head. Some other 

head stroke imaging or classification systems based on microwave technique were proposed in [41]-

[43]. In [41]-[42], complete microwave head imaging systems were constructed based on tomography 

method. Totally 160 antennas were used in the system and operated at the frequency of 1 GHz. 

Matching medium was used in the system to reduce the strong reflection from the brain skin. In [43], 

a microwave system was built for brain stroke classification purpose. Totally 10-12 patch antennas 

were used in a helmet shaped array to transmit and receive the signals. An integrated network analyser 

was used to collect the reflection coefficients of the antennas. Based on the collected reflection 

coefficients, a machine learning technique was used to classify the types of the strokes (haemorrhagic 

stroke or ischaemic stroke). The system was evaluated in clinic trails, and the results indicated that 

when 90% patients with haemorrhagic stroke can be diagnosed, 65% patients with ischaemic stroke 

can also be correctly diagnosed. These promising results implied that brain stroke classification can 

also be implemented using microwave system.  

A complete microwave imaging system is composed with two parts: the hardware and software. The 

hardware part includes the antenna array, transceiver and switching system. The software part 

includes the imaging and stroke classification algorithm. Apart from the hardware design, software 

design is also an important part in microwave imaging system. Microwave imaging algorithm can be 
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generally divided into two categories: the radar-based algorithms and tomography based algorithms. 

Radar-based algorithms localize the position of the target (brain stroke) based on the time delay 

between the transmitted signals and received signals. To achieve acceptable resolution for the images, 

wideband frequency need to be used in this technique. Under this requirement, the hardware (antennas 

and transceivers) is usually designed with wideband performance. In most of the bio-medical 

applications, such as breast cancer and brain stroke detection, the reflected signals from the skin are 

much stronger than those reflected from the true target (tumor or stroke) thus the reflected signals 

from the targets are buried by those from the skin. This phenomenon largely affects the signals’ time 

delay calculation and further influences the generated images. Some additional methods need to be 

used to eliminate the reflected signals from the skin, such as using matching medium to surround the 

imaging area or using some specific algorithms to pre-process the received signals.  

The radar-based imaging algorithms, which are used to pre-process the signals and generate the final 

images, are widely researched during the past few years. These algorithms can be generally divided 

into two categories, the imaging algorithms and the signals pre-processing algorithms. The imaging 

algorithms include beamforming [26] and confocal techniques [29] and the signals pre-processing 

algorithms include signal subtraction [37] and entropy-based techniques [25]. Tomography-based 

algorithms reconstruct the contrast dielectric properties (permittivity and conductivity) of the imaging 

area using the scattered signals. Multi-static antenna array is used to transmit and receive the scattered 

signals. Tomography-based algorithms operate at single frequency thus the selection of appropriate 

frequency is important for the reconstruction performance. Since the reconstruction process is based 

on solving an ill-posed inverse problem thus signal subtraction method is not applicable to eliminate 

the strong reflection from the skin. Instead of using some signal pre-processing techniques, matching 

medium can also be used to reduce the strong reflection from the skin. The ill-posed inverse problem 

in tomography-based methods is a non-linear problem hence some approximations need to be used 

firstly. Born approximation and Rytov approximation [44] are two main methods which are used to 

linearize the inverse problem. Several tomography methods applied on bio-medical applications have 

been reported in [45]-[50]. The results indicated that the contrast dielectric profiles of the breast or 

the head can be reconstructed based on the received scattered signals. These results implied that 

tomography-based methods could be a suitable choice for brain stroke classification since the types 

of the strokes (haemorrhagic and ischaemic) can be classified from their contrast dielectric properties 

(the contrast dielectric property of haemorrhagic stroke is different from the ischaemic stroke).  
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1.3 Drawbacks of the Current Algorithms 
 

Despite of the successful usage of those imaging algorithms mentioned above on bio-medical 

applications, numerous drawbacks still exist in the current algorithms. In this research project, those 

problems and drawbacks are investigated as summarized below. 

1. In the current microwave head imaging systems, large number of antennas are required to be 

used in the antenna array. For radar-based imaging algorithms, large number of antennas 

represent more illumination views, thus it will decrease the possibility that the algorithms 

focuse on false targets (especially for confocal algorithms). For tomography-based methods, 

large number of antennas are used to collect more scattered data thus the ill-posedness of the 

inverse problem can be somehow alleviated. However, increasing the number of antennas in 

the array brings about several problems. Firstly, the mutual coupling between adjacent 

antennas will largely affect the received signals since it will change the radiation properties 

of the antennas and distort the generated images [51]. Secondly, the usage of large number of 

antennas in the array largely increase the size of the entire system. This limitation impedes 

researchers from building portable microwave brain imaging system.    

2. For the systems using radar-based technique, wideband frequency range is required to achieve 

satisfied resolution. To generate the required incident signals with wideband frequency, step-

frequency-continuous-wave (SFCW) is usually used since it is difficult to generate single 

pulse with wideband spectrum. The generation of SFCW signals can be easily achieved by 

using VNA, however, under the requirement of constructing portable and low-cost microwave 

imaging system, the usage of VNA is replaced by portable transceiver [16], [56] or software-

defined-radar (SDR) technique [52]-[55]. Either portable transceiver or SDR system needs to 

use wide frequency band which implies large number of pulses with stepped frequencies has 

to be generated. In portable transceiver design, dense stepped frequencies increase the 

difficulties for designing the sampling circuit or analog-to-digital converter (ADC). Also, in 

SDR system design, dense stepped frequencies imply large amount of time is required for the 

calibration procedure since for each frequency step the system needs to calibrate the signal 

one time [52]-[55]. These drawbacks prohibit designing efficient and high-speed portable 

transceiver or SDR systems.  
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3. Confocal imaging algorithm [29] is widely used in bio-medical microwave imaging systems. 

To focus the received signals on the target correctly, effective dielectric constant of the imaged 

area is needed. All the current microwave imaging algorithms based on confocal method use 

one certain dielectric constant without considering the position of the target to be imaged, the 

position of the transmitters, or the entry point of the signal in the imaging area. This 

assumption might be valid when the imaging area contains small number of bio-tissues with 

relatively similar electrical properties, such as the imaging scenario in breast cancer detection, 

however, it is not suitable for the scenario where the imaging area contains highly 

heterogeneous targets, such as brain stroke detection. In such scenario, the effective dielectric 

constant depends on the signals’ entry points in that imaging area, the tissues through which 

the signals propagate before being reflected and the locations of the transmitting or receiving 

antennas. The usage of single effective dielectric constant with inappropriate choice leads to 

serious distortion in the generate images for microwave brain imaging application.  

4. Radar-based microwave imaging technique can only localize the position of the targets (tumor 

and brain stroke), however, it cannot distinguish the electrical properties (permittivity and 

conductivity) of different targets. This drawback might not affect the practical value of 

microwave breast imaging system since for that application, localizing the position of tumor 

is considered as the most important purpose. Conversely, for microwave brain imaging 

system, a stroke can be either haemorrhagic stroke or ischaemic stroke and different types of 

stroke correspond to different treatment therapies (incorrect treatment on brain stroke patient 

might lead to fatal results). Thus, the ability of distinguishing the electrical properties of 

different target is considered as another important purpose. For most of current microwave 

head imaging systems, localizing the position of stroke is the only purpose considered in their 

systems and the classification of stroke is rarely considered. Although one system was 

proposed in [43] with stroke classification ability, the imaging ability was dropped and the 

classification accuracy still need to be improved.  

In this research project, these problems and challenges will be described and analysed in details. The 

solutions for each of the four problems will be proposed and evaluated. The proposed methods to 

solve these problems are helpful to build more efficient and accurate microwave head imaging 

systems.  
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1.4 Original Contributions 
 

Four major drawbacks in current microwave head imaging algorithms were illustrated in the previous 

section. The works undertaken in this thesis aim to solve these four independent problems one by 

one. Due to the limitations of experimental conditions, some of the algorithms are tested in a realistic 

simulation environment. High resolution head phantom from MRI scan is used in the simulation and 

related interpretations are given in the corresponding chapters.  

To solve these four drawbacks in current microwave head imaging algorithms, this thesis possesses 

four original contributions which were listed below: 

1. Novel algorithms using compressive sensing technique are proposed in radar-based 

microwave imaging techniques which can be used to reduce the number of antennas in the 

antenna array or decrease the number of stepped frequencies used in the portable transceiver 

and SDR system. The proposed algorithms are firstly implemented and evaluated on simple 

numerical head model, then measurement data collected from developed microwave head 

imaging system is used to evaluate the proposed algorithms. The detailed illustrations of the 

verification for this algorithm using measurement data collected from developed microwave 

head imaging system are exhibited in Chapter 3. 

2. Novel algorithm using wavelet transform and block sparse Bayesian learning is proposed on 

tomography-based microwave imaging technique which can be used to reduce the number of 

antennas used in the antenna array. The proposed algorithm is evaluated using numerical head 

phantom from MRI scan, and the method is also compared with several other algorithms to 

indicate the advantage of the proposed algorithm. The detailed illustrations of the verification 

for this algorithm using MRI scanned phantom are exhibited in Chapter 4.  

3. Novel algorithm based on particle swarm optimization is proposed for confocal microwave 

imaging techniques. The proposed algorithm solves the problem in traditional confocal-based 

methods that single effective dielectric constant has to be guessed at beginning. The proposed 

algorithm is firstly implemented and evaluated using simulation data from CST microwave 

studio. Accurate head phantom is used in the simulation and follow with the simulation results, 

measurement data from up-to-data microwave head imaging system are used to test the 

proposed algorithm. Realistic head phantom manufactured with 3-D printing technology is 

used in the measurement. Both the simulation and measurement results are compared with 

those from traditional confocal-based algorithms and the comparison results indicate obvious 

advantage and improvement of the proposed method. The detailed illustrations of the 
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verification for this algorithm using measurement data collected from developed microwave 

imaging system are exhibited in Chapter 5. 

4. A novel framework based on k-means clustering and support vector machine (SVM) is 

proposed for brain stroke detection. The framework is based on several machine learning 

techniques, such as K-mean clustering and SVM technique. A database includes sets of 

images with different types, size, and positions of strokes is constructed. Two different 

numerical head phantoms from MRI scans are used to build the database then the database is 

used to construct the SVM model. The constructed SVM model is used to classify the types 

of strokes (haemorrhagic or ischaemic) when the new case is under tested. The classification 

results indicate the proposed framework can classify the types of strokes with desirable 

accuracy. The detailed illustrations of the verification for this algorithm using MRI scanned 

phantom are exhibited in Chapter 6. 

 

1.5 Thesis Organization 
 

1. Chapter 2 presents a brief overview on the current microwave imaging techniques. Two main 

techniques used in bio-medical applications, which are radar-based technique and 

tomography-based technique, are separately introduced. For radar-based technique, three 

main aspects are reviewed in details; the surface reflection suppression, beamforming 

algorithms and confocal algorithms. For tomography-based technique, two main algorithms 

are reviewed in details which are Born iterative method (BIM) and distorted Born iterative 

method (DBIM). The challenges and problems existed in these two techniques are also 

presented and discussed.  

2. Chapter 3 presents two novel algorithms which apply compressive sensing (CS) technique on 

radar-based imaging technique. The usage of CS technique aims to reduce the number of 

antennas used in the array or decrease the number of stepped frequencies required in the 

transceiver system. The theories of these two algorithms are explained in this chapter. The 

first algorithm is tested using a simple head model and the second algorithm is evaluated using 

measurement data from developed microwave head imaging system. The results for both of 

the two algorithms are exhibited to indicate the feasibility of these two algorithms on 

microwave head imaging system.  

3. Chapter 4 presents a novel algorithm that applies CS technique on tomography-based imaging 

technique. The main problem in current CS technique for tomography-based technique is 
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illustrated, and a method to solve this problem is also proposed in this chapter. Simple model 

is firstly used to test the proposed algorithm, followed with the evaluation on realistic model. 

A comparison among the proposed algorithm and several other methods is presented to 

indicate the superiority of the proposed algorithm.  

4. Chapter 5 presents a novel algorithm that applies optimization method on current confocal-

based algorithm to significantly improve the performance. The main problem in current radar-

based techniques for bio-medical imaging is firstly illustrated. A novel method based on 

particle swarm optimization (PSO) is proposed to solve that problem. The proposed algorithm 

is firstly tested in full-wave simulation environment, followed with the evaluation on realistic 

measurement data from developed microwave head imaging system. The results are compared 

with those achieved using conventional methods to exhibit the superiority of the proposed 

algorithm.  

5. Chapter 6 presents a brain stroke classification framework using microwave technique. The 

current development and problems for brain stroke classification using microwave technique 

are firstly illustrated in details. The method of constructing the database which is used to build 

the classifier model is explained in this chapter, then the method of building the classifier 

model is proposed, followed with the evaluation on realistic head phantom from MRI scan. 

The classification results are presented at the end of this chapter to illustrate the advantage of 

the proposed framework.  
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Chapter 2: Literature Review of Microwave 

Imaging Techniques 
 

2.1 Introduction 
 

Microwave imaging techniques are widely investigated in traditional applications such as synthesis 

aperture radar (SAR), inverse synthesis aperture radar (ISAR) or ground penetration radar (GPR). 

Microwave imaging techniques for bio-medical application were firstly proposed in 1970s by C. 

Johnson et al., which was utilized to investigate the electromagnetic effects in biological materials 

[7]. This concept was then developed and utilized on breast cancer detection in 1998 [9]. Further 

researches were conducted based on [9] and two clinical microwave breast imaging systems were 

built at Dartmouth College by Meaney et al. [57] in 2000, and by Klemm et al. at the University of 

Bristol [58] in 2009. A complete microwave imaging system is composed of antenna array, signal 

transceiver and processing and imaging algorithms. This thesis focusses on the processing and 

imaging algorithm part, which can be categorized into two types, the radar-based imaging algorithm 

and tomography-based algorithm. Radar-based methods utilize wideband signals to localize the 

position of the target (such as tumor or brain stroke), whereas tomography-based methods reconstruct 

the electrical properties of the imaging area (permittivity and conductivity) through solving an ill-

posed inverse problem. The following sections introduce some recent developments on both radar-

based and tomography-based algorithms. Some challenges and problems existed in those methods 

are also discussed.     

2.2 Development of Radar-Based Technique for Bio-Medical 

Application 
 

2.2.1 Beamforming Imaging Algorithm  
 

Delay-and-sum beamforming algorithm is widely used in microwave bio-medical imaging 

applications. The algorithm is based on special filtering concept illustrated in [66] and was firstly 

applied on microwave breast cancer detection in [26]. The concept of the algorithm is based on the 

time delay of the received signals from all the used antennas and sum the signals to generate a 

synthetically focused signal.  

The essential theory of this algorithm is based on a penalized least square problem shown as: 
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                                                                 min
𝒘
‖𝒘𝑇𝑨 − 𝒇𝑑‖2

2 + 𝜆‖𝒘‖2
2                                                       (2.1) 

where 𝒘  is the filtering coefficient vector expressed as 𝒘 = [𝒘1
𝑇 , … ,𝒘𝑁

𝑇 ]𝑇 , 𝑁  is the number of 

antennas, matrix 𝑨  is defined as 𝑨 = [𝒅(𝑟𝒐, 𝜔𝑙), … , 𝒅(𝑟𝒐, 𝜔𝑢)] , 𝒇𝑑  is a vector defined as 𝒇𝑑 =

[𝑒
−𝑗𝜔𝑙

𝐿−1

2𝑓𝑠 , … , 𝑒
−𝑗𝜔𝑢

𝐿−1

2𝑓𝑠 ] , 𝜔  is the angular frequency of the transmit signal, 𝑓𝑠  is the sampling 

frequency of the time domain signal and 𝜆 is a parameter used to trade the balance between the system 

error and the solution norm. The element in matrix 𝑨 can be defined as: 

                                                                    𝒅(𝑟𝒐, 𝜔) = [

�̃�11(𝑟𝑜,𝜔)𝒅(𝜔)

�̃�22(𝑟𝑜,𝜔)𝒅(𝜔)

⋮
�̃�𝑁𝑁(𝑟𝑜,𝜔)𝒅(𝜔)

]                                                      (2.2) 

where �̃�𝑘𝑘(𝑟𝑜, 𝜔) is an effective transfer function which represents the propagation from the 𝑘th 

antenna to the tumor located at 𝑟𝑜 and reflected back and 𝒅(𝜔) = [1, 𝑒
−
𝑗𝜔

𝑓𝑠 , … , 𝑒
−
𝑗𝜔(𝐿−1)

𝑓𝑠 ].  

  

                                         (a)                                                                                              (b) 

Fig 2. 1: The generated images using delay-and-sum beamforming algorithm. (a) a 2 mm diameter tumor was placed at 

(5.0 cm, 1.1 cm), (b) a 2 mm diameter tumor was placed at (8.0 cm, 2.1 cm) [26]. 

The solution of (2.2) can be achieved as: 

                                                                      𝒘 = (𝑨𝑨𝐻 + 𝜆𝑰)−1𝑨𝒇𝒅
𝐻                                                       (2.3) 

After the filtering coefficients 𝒘 were calculated, the time-delayed and filtered signals at all the 𝑁 

antennas are summed up and the summed signal was denoted as 𝑧[𝑛]. Before 𝑧[𝑛] was used to 

generate the final image, it was windowed through a window function to eliminate the clutter effect 

outside the portion of tumor reflection signal. The window function was designed as: 

                                                 ℎ[𝑟𝑜 , 𝑛] = {
1,            𝑛ℎ ≤ 𝑛 ≤ 𝑛ℎ + 𝑙ℎ
0,                         𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

                                                   (2.4) 

where the time area (𝑛ℎ, 𝑛ℎ + 𝑙ℎ) contain the scattered signal from the tumor. The final image was 

generated by using the energy function which is dependent on the location 𝑟𝑜 
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                                                                 𝑝(𝑟𝑜) =∑ 𝑧[𝑛]
𝑛

ℎ[𝑟𝑜 , 𝑛]
2                                                         (2.5) 

The delay-and-sum beamforming algorithm illustrated above was evaluated by using a numerical 

breast model in [26]. The model was built based on MRI scan, the thickness of the skin is 2 mm and 

the diameter of the tumor is 2 mm. Totally 17 electric-current sources were placed on the surface of 

the breast and the incident signal was selected as a 100 ps differentiated Gaussian pulse. The 

backscatter signals were computed using the finite-difference time-domain (FDTD) method. The 

dispersive properties along with the inhomogeneous properties of the breast were also included in the 

FDTD simulation. The obtained results in [26] are shown in Fig 2.1. It can be seen from Fig 2.1 that 

the position of the tumor can be clearly localized by using the delay-and-sum beamforming algorithm 

presented in [26].  

2.2.2 Confocal Imaging Algorithm 
 

Microwave confocal imaging algorithm was evolved from the delay-and-sum beamforming method 

and it is widely used in current microwave head imaging systems [36], [40]. It was firstly proposed 

by X. Li, in 2001 [29], for breast cancer detection. In [29], the calibrated signals after integrating over 

time was denoted as vectors: 𝐵1, 𝐵2, …, 𝐵𝑀, where 𝑀 is the number of antennas. The reconstructed 

images was generated by time shifting the signals 𝐵𝑚 based on the round-trip time from the 𝑚th 

antenna to a certain point in the breast and summing the signals from all the 𝑀 antennas as: 

                                                               𝐼(𝒓) = [∑ 𝑤𝑚𝐵𝑚(𝜏𝑚(𝒓))
𝑀

𝑚=1
]
2

                                              (2.6) 

where 𝐼(𝒓) is the image intensity for a certain point located at position 𝒓 inside the breast, 𝑤𝑚 is the 

coefficient for the 𝑚th antenna aim to compensate the radial spreading of the propagating wave, and 

𝜏𝑚(𝒓) is the time shift from the 𝑚th antenna to the point 𝒓. The time shift value was based on the 

length of the round-trip path and the velocity of the propagating wave. It can be calculated as: 

                                                                                𝜏𝑚(𝒓) =
2𝑑𝑚(𝒓)

𝑣∆𝑡
                                                          (2.7) 

where 𝑑𝑚(𝒓) = 𝒓 − 𝒓𝒎, 𝒓𝒎 is the position of the 𝑚th antenna located outside the breast, 𝑣 is the 

speed of the propagating wave and ∆𝑡 is the interval of the sampling time. The proposed confocal 

algorithm was evaluated using a breast model from MRI scan shown in Fig 2.2 (a) and the imaging 

result is shown in Fig 2.2 (b). The simulation was implemented using FDTD method and totally 17 

monopoles were placed along the surface of the breast with a distance of 8 cm between any two of 
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them. Fig 2.2 indicates that the position of the tumor could be localized using the confocal imaging 

algorithm proposed in [29]. Followed with the successful application of confocal imaging algorithm 

on microwave breast cancer detection, the algorithm was widely applied on microwave head imaging 

system such as the system built by B. Mohammad [36] and A. Mobashsher [40] in 2014. The confocal 

imaging algorithm used in microwave imaging system was modified from its original version and the  

 

                                                   (a)                                                                                           (b) 

Fig 2. 2: (a) The breast model from MRI scan, (b) the generated image using confocal imaging algorithm [29] 

              

                                                             (a)                                                                                        (b) 

Fig 2. 3: The wave propagation mode for (a) incident wave and (b) scattered wave [72]. 

details of applying this method on head stroke detection was illustrated by D. Ireland and M. 

Bialkowski in [69]. The method described in [69] was based on the confocal imaging algorithm 

developed for breast imaging by the same research group in [70]-[72]. The algorithm can be generally 

concluded as nine steps [72]: 

1. The time domain signals were obtained from 24 antennas denoted as {𝑥𝑘(𝑡)}, 𝑘 = 1,2, … ,24. 

2. The strong reflection from the background (skin) was removed by subtracting the signals 

between two adjacent antennas, which was expressed as: 𝐶1(𝑡) = 𝑥2(𝑡) − 𝑥1(𝑡), 𝐶2(𝑡) =

𝑥3(𝑡) − 𝑥2(𝑡), …, 𝐷24(𝑡) = 𝑥1(𝑡) − 𝑥24(𝑡), where 𝐶𝑘(𝑡) represented the calibrated signal. 

3. The positive values of the calibrated signals were kept and the negative values were eliminated 

to avoid the “ghost image”. The final signals were denoted as 𝐹𝑘(𝑡). 

4. The signals obtained from step 3 were normalized as 𝑁𝑘(𝑡) = 𝐹𝑘(𝑡) max (𝐹𝑘(𝑡))⁄ . 
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5. The relative dielectric constant 휀𝑒𝑟 of the imaging area was estimated for further calculating 

the length of the propagation path.  

6. The length of the wave propagation path was calculated using the estimated relative dielectric 

constant and the radiation mode shown in Fig 2.3. The incident wave propagated as planar 

wave as shown in Fig 2.3 (a) and the scattered wave propagated as radial wave. The round-

trip time taken from one antenna to a certain position in the imaging area was calculated as 

𝜏 = 2[𝐷 + √휀𝑒𝑟(𝑅 + 𝑋)] 𝑐⁄  where 𝑐 is the velocity of light in the free space. 

7. Map the signal 𝑁𝑘(𝑡) onto all the points in the imaging area using the round-trip time obtained 

from step 6. 

8. Repeat step 7 for all the 24 antennas. 

9. Superimpose the results obtained from step 7 and 8 and achieve the final image. The location 

of the target can be identified by the maximum image intensity. 

This process illustrated in [72] was further applied on microwave head imaging scenario and the 

pseudocode of the algorithm was presented as [69] 

Monostatic Confocal Imaging Algorithm 

begin 

      for 𝑛 ← 1 to 𝑁 do 

            for ∀𝑝 ∈ Ƶ do 

                   for 𝑑 ← 1 to 𝑁𝑏 do 

                         𝐷𝑑 ← ‖𝑆𝑛 − 𝐵𝑑‖ + √휀𝑒𝑟‖𝑝 − 𝐵𝑑‖ 

                         𝑑 ← 𝑚𝑖𝑛{𝐷1, 𝐷2, … , 𝐷𝑁𝑏} 

                         𝜏 ← 2 × 𝑑/𝑐 

                         𝐼(𝑝) ← 𝐼(𝑝) + |𝐹𝑛(𝜏)|  

      return 𝐼(𝑝) 

                       

The parameters used in the pseudocode were indicated in Fig 2.4 and 𝐹𝑛(𝜏) was the compensate value 

which was used to compensate the signal losses result from the wave propagation. The value of 𝐹𝑛(𝜏) 

was calculated by 𝐹𝑛(𝑡) = 𝐷𝑛(𝑡)𝑦(𝑡) where 𝑛 = 1, 2, … ,𝑁. 𝑦(𝑡) is the compensation factor and it 

was defined as 𝑦(𝑡) = 1 𝑒−𝛼𝑡⁄  in [69] where 𝛼  is another factor used to adjust the slope of the 

compensation factor. It is notable that in the algorithm elaborated above, the length of the wave 

propagation path was selected as the minimum length among all the distance between each boundary 

points to the imaging point inside the brain. This criterial was proposed by Y. Wang in [73]. In [73],  
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Fig 2. 4: The configuration of the microwave head imaging scenario in [69]. The imaging domain was denoted as Ƶ 

with gray color, the boundary points 𝑩𝒊 was used to represent the entry point of the signal and the point inside the brain 

was denoted as 𝒑 

           

                                            (a)                                                                                  (b) 

Fig 2. 5: The numerical head phantom used to test the confocal imaging algorithm in [69]. (a) the dielectric constant 

profile of the head phantom, (b) the conductivity profile of the head phantom 

 

Fig 2. 6: The generated images using confocal imaging algorithm when the haemorrhagic stroke was placed at four 

different positions. The position of the stroke was marked with cross-hairs [69]. 
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the authors proposed that the length of the wave propagation path should follow the Fermat’s 

principle, which indicates that the wave propagation path should be the path with least travelling time. 

Under this principle, the path was selected as the minimum one among all of the possible pathes. The 

confocal imaging algorithm illustrated in [69] was evaluated using numerical head phantom derived 

from MRI scan as shown in Fig 2.5.The simulation was implemented using FDTD method, and totally 

72 antennas were used to transmit and receive the signals. A Gausssian pulse with 0.5-2 GHz 

bandwidth was used as the incident signal and a white noise with 20 dB signal to noise ratio was 

added to the received signals. A haemorrhagic stroke composed with bleeding was placed inside the 

brain and the imaging results were shown in Fig 2.6. Fig 2.6 indicates that the position of the 

haemorrhagic stroke can be generally localized using the confocal imaging algorithm in [69].  

2.2.3 Radar-based Microwave Head Imaging System 
 

The microwave imaging algorithms proposed in [26], [29], [69], [72] were evaluated using numerical 

breast or head phantoms due to the fact that these algorithms built the fundamental of microwave bio-

medical imaging technique and they were developed on initial step. Several microwave imaging 

systems were constructed based on these algorithms during the following years. Microwave head 

imaging system is an up-to-date application for these algorithms and the development of this system 

is drawing increasing interests during recent years. Three microwave head imaging systems 

developed by A. Abbosh, etc., [36], [40] and M. Persson, etc., [43] are typical systems and can be 

used to represent the mainstream of the development in microwave head imaging community. Figure 

2.7 illustrates the configurations and detailed platforms of two microwave head imaging systems 

developed by A. Abbosh, etc. The system exhibited in Figure 2.7 (a)-(b) was constructed by using 

stationary antenna array. The antenna array was composed with 16 exponentially corrugated tapered 

slot antennas with the operation band of 1-4 GHz and directional radiation pattern. The directional 

radiation pattern guaranteed that the radiated power was confined in the target area. The details of the 

antenna design can be found in [34]. The platform was fabricated by using polyvinyl-chloride and 

separated with two levels. The first level had an inner radius of 17 cm and outer radius of 47 cm. This 

level was adjustable so the antenna array can be longitudinally adjusted to fit different size of head 

phantom. The antennas were inserted into 16 slits in the first level thus they were all fixed. The second 

level was used to hold the head phantom with the radius of 34 cm. The signals were transmitted and 

received by using R&S ZVA24 vector network analyser (VNA) and the antennas were selected by 

using two single-pole eight-throw (SP8T) microwave, coaxial switches. The antennas numbered with 

1-8 were selected using the first switch and the antennas numbered with 9-16 were selected using the 

second switch. The head phantom used in the system shown in Fig 2.7 (a)-(b) included the major  
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                                (a)                                                                                                           (c) 

                        

                               (b)                                                                                                           (d) 

Fig 2. 7: (a)-(b) the configuration and platform of microwave head imaging system developed in [36] and (c)-(d) the 

configuration and platform of microwave head imaging system developed in [40]. 

 

tissues in human brain, which are skull, white matter, cerebral spinal fluid (CSF) and gray matter. 

Mixture materials were used to fabricate the phantom and the details of the fabrication procedure can 

be found in [144].  

The system exhibited in Fig 2.7 (c)-(d) was constructed by using rotational antenna array. An 

adjustable holder was used to fix the position of the antenna thus through adjusting the holder, the 

position of the antenna can be changed. A horizontal rotation platform was used to place the head 

phantom and through varying the orientations of the platform, different scanning angles can be 

achieved thus a virtual antenna array was built by using a single antenna. The antenna used in this 

system is composed with a slotted dipole element and a folded parasitic structure [40]. The operating 

band for the antenna is from 1.1-3.4 GHz with unidirectional radiation pattern. The detailed design 

procedures can be found in [40]. Compared with the previous system as shown in Fig 2.7 (a)-(b), one 

critical and important improvement was the usage of a low-cost and portable transceiver system. As 

shown in Fig 2.7 (d), a portable custom-made transceiver system from Agilent Tech (N7081A) was 

used to transmit and receive the signal thus largely reduce the size and cost of the entire imaging 
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system. Another important improvement in this system was the usage of a more accurate head 

phantom. The head phantom used in this system was built by a 3D printer facility (Sinterstation 

2500plus) with a resolution of 2 mm. The major tissues inside human brain were contained in the 

phantom which included skin, skull, fat, some muscular part, Dura, CSF, white matter and gray matter. 

Same mixture materials as reported in [144] were used in the fabrication and the fabricated phantom 

was tested using dielectric probe HP85070. The accuracy with regard to the electrical properties was 

less than ±5% differences between the actual values [80] and the measured values over the entire 

operating band.  

             

                                           (a)                                                                                                     (b) 

Fig 2. 8 (a) Distribution of the isosceles triangle patch antenna; (b) prototype of the microwave head stroke detection 

system [43] 

 

Figure 2.8 exhibited a brain stroke detection system built by M. Persson, etc. [43]. The system 

contained 12 triangle antennas operating from the band from 0.3-3 GHz. The antennas were mounted 

on a bicycle helmet. The main difference between the system in [43] and the systems reported in [36], 

[40] is that in [36], [40], the systems were built for brain imaging task and only haemorrhagic stroke 

was considered in the imaging task whereas in the system reported in [43], the design purpose of the 

system was merely for brain stroke detection and classification (distinct the types of stroke between 

haemorrhagic and ischaemic stroke). Briefly speaking, the systems in [36], [40] can localize the 

position of the stroke but without the knowledge of the types of stroke and the system in [43] can 

classify the types of stroke but with the disability to localize the position of stroke. A two-port network 

analyser (Agilent E8362 B PNA) was used to transmit and receive the signal in [43] and a 

classification algorithm based on singular value decomposition (SVD) was used to classify the types 

of stroke depend on the received signal.  
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2.3 Development of Tomography-Based Technique for Bio-

Medical Application 
 

2.3.1 Inverse Scattering Problem 
 

Different from radar-based imaging techniques in which only the position of the target can be 

localized, tomography-based techniques can reconstruct the electrical properties (dielectric constant 

and conductivity) of the targets by using the scattered signals. Microwave tomography was originated 

by solving an integral equation [74]. In [74], the procedure of deriving the integral equation was 

thoroughly explained and it was summarized below. 

The integral equation is generated from solving an inhomogeneous wave equation and the core 

equation after implementing some algebra implementations is  

                                                   𝐸𝑖𝑛𝑐(𝑟) = 𝐸(𝑟) − ∫ 𝐺(𝑟, 𝑟′)

𝑉

𝒪(𝑟′)𝐸(𝑟′)𝑑𝑟′                                      (2.8) 

where 𝒪(𝑟′) = 𝜔2𝜇𝑏[𝜖(𝑟
′) − 𝜖𝑏] = 𝑘2(𝑟′) − 𝑘𝑏

2 . The integral equation (2.8) is also known as 

Fredholm integral equation of the second kind since the unknown values are both inside and outside 

the integral operator. In the integral equation (2.8), the incident field 𝐸𝑖𝑛𝑐(𝑟) usually can be calculate 

since the pattern of the current source is known. However, the total electric field 𝐸(𝑟) is unknown 

thus the integral equation can only be solved by using numerical method. In the following section, 

two commonly used numerical methods, Born iterative method [75] and distorted Born iterative 

method [76] are introduced in details.  

2.3.2 Born Iterative Method and Distorted Born Iterative Method 
 

The details of Born iterative method (BIM) was elaborated in [50] which was applied on head stroke 

detection. To utilize BIM on electrical properties reconstruction, the normalized dielectric profile 

(NDP) was firstly defined as: 

                                                                𝜒(𝑥, 𝑦) =
[휀𝑟(𝑥, 𝑦) +

𝜎(𝑥, 𝑦)
𝑗𝜔 ]

휀�̃�
                                                  (2.9) 

where 휀�̃�  is the effective dielectric constant of the surrounding medium expressed as 휀�̃� = 휀𝑠 +

𝑗𝜎𝑠/𝜔. The Green’s function in (2.8) can be expressed using the zero order Hankel function as 

𝐺(𝑟, 𝑟′) = 𝐻𝑜
(2)(𝑘𝑠𝜌) where 𝜌 = √(𝑥′ − 𝑥)2 + (𝑦′ − 𝑦)2 is the distance between the antenna and a 
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certain point in the imaging area, 𝑘𝑠 = √𝜔2𝜇𝑜휀𝑜휀𝑠 −
𝑗𝜔𝜇𝑜𝜎𝑠

𝑜
 is the wave number in inhomogeneous 

environment, 휀𝑜 and 𝜇𝑜 are the permittivity and permeability of free space. Under this substitution of 

𝐺(𝑟, 𝑟′), the integral equation in (2.8) can be re-expressed as: 

𝐸𝑖𝑛𝑐
𝑞 (𝑟) = 𝐸𝑡𝑜𝑡

𝑞 (𝑟) +
𝑗𝑘𝑠
2

4
∬ [𝜒(𝑟′) − 1]𝐸𝑡𝑜𝑡

𝑞 (𝑟′)𝐻0
(2)(𝑘𝑠𝜌)𝑑𝑟

′

𝑉

, 𝑟 ∈ 𝑆; 𝑟′ ∈ 𝑉; 𝑞 = 1,… , 𝑄  (2.10) 

where 𝑟 = (𝑥, 𝑦) is the coordinate of a point on the measurement contour 𝑆, 𝑟′ = (𝑥′, 𝑦′) is the 

coordinate of a point in the imaging domain 𝑉, 𝑞 is the index of antenna and 𝑄 is the total number of 

antennas used in the array. Based on the fact that 𝐸𝑠𝑐𝑎𝑡
𝑞 (𝑟) = 𝐸𝑡𝑜𝑡

𝑞 (𝑟) − 𝐸𝑖𝑛𝑐
𝑞 (𝑟), the scattered filed 

received by the antenna 𝑞 can be calculated as: 

𝐸𝑠𝑐𝑎𝑡,𝑞(𝑟) = −
𝑗𝑘𝑠

2

4
∬ [𝜒𝑖(𝑟′) − 1]𝐸𝑡𝑜𝑡,𝑞

𝑖−1 (𝑟′)𝐻0
(2)(𝑘𝑠𝜌)𝑑𝑟

′,
𝑉

 𝑟 ∈ 𝑆; 𝑟′ ∈ 𝑉; 𝑞 = 1,… , 𝑄        (2.11) 

where 𝑖 is the iteration index, 𝐸𝑡𝑜𝑡,𝑞
𝑖−1 (𝑟′) is the total filed of the imaging domain calculated in the last 

iteration step, and 𝜒𝑖(𝑟′) is the unknown NDP need to be reconstructed in the current iteration. The 

integral equation (2.11) can be rearranged to a matrix form as: 

                                                                               ℬ𝑞
𝑖−1�⃗�𝑖 = �⃗⃗⃗�𝑞                                                                  (2.12) 

where �⃗⃗⃗�𝑞 = [𝐸𝑞(𝑟1), … , 𝐸𝑞(𝑟𝑀)]
𝑇 , �⃗�𝑖 = [𝜒𝑖(𝑟1),… , 𝜒

𝑖(𝑟𝑁)] ; 𝑟𝑚 ∈ 𝑆,𝑚 = 1,… ,𝑀 , 𝑟𝑛 ∈ 𝑉, 𝑛 =

1, … , 𝑁, (𝑀 is the number of receiving antennas 𝑀 = 𝑄 − 1, and 𝑁 is the number of imaging cells),  

 

                            (i)                                                             (ii)                                                          (iii) 

Fig 2. 9: Comparison between the dielectric constant profile of the head phantom and the reconstructed profile at (i) 0.6 

GHz, (ii) 0.85 GHz and (iii) 1 GHz. (a) were the original dielectric constant profiles of the head phantoms, (b) were the 

reconstructed profiles with noiseless data, (c) were the reconstructed profiles with SNR=20 dB and (d) were the 

reconstructed profiles with SNR=10 dB [50]. 
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and ℬ𝑞
𝑖−1 is the Born iterative integral matrix which was calculated in the last iteration under the 𝑞th 

incident wave. The element in the integral matrix ℬ𝑞
𝑖−1 can be calculated as: 

                                                    𝑏𝑚𝑛 = −
𝑗𝑘𝑠

2

4
∬ 𝐸𝑡𝑜𝑡,𝑞

𝑖−1 (𝑟𝑛
′)𝐻0

(2)(𝑘𝑠𝜌)𝑑𝑟
′

𝑉𝑛

                                        (2.13) 

The surface integral in (2.13) can be numerically calculated using Richmond’s method in [77]. To 

alleviate the ill-poseness of the under-determined system (2.12), Tikhonov’s regularization scheme 

[78] was used and (2.12) can be re-wrote as: 

                                                                             [
ℬ𝑞
𝑖−1

𝜆𝐼
] �⃗�𝑖 = [

�⃗⃗⃗�𝑞

0
]                                                           (2.14) 

where 𝐼 is an identity matrix with the size of 𝑁 ×𝑀, 0 is a null vector with the length of 𝑀 and 𝜆 is 

the scalar regularization factor which is chosen as 0.1 in [50]. The reconstructed NDP �⃗�𝑖  for the 

current iteration 𝑖 was determined by solving the least squares optimization problem: 

                                                          �⃗�𝑖 = 𝑎𝑟𝑔min
�⃗⃗⃗�𝑖
‖[
ℬ𝑞
𝑖−1

𝜆𝐼
] �⃗�𝑖 − [

�⃗⃗⃗�𝑞

0
]‖

2

                                            (2.15) 

In [50], the Born iterative method described above was evaluated using a numerical head phantom 

derived from MRI scan [79] and the dielectric properties of the brain tissues were derived from [80]. 

The method was tested under three different signal to noise ratio (SNR) which was defined as [81] 

𝑆𝑁𝑅 = 10𝑙𝑜𝑔(‖�⃗⃗⃗�‖2 2𝑄𝑀𝜎2⁄ ) and three different incident frequencies were used to reconstruct the 

NDP of the brain. Figure 2.9 shows the original dielectric constant profile of the head phantom along  

 

                            (i)                                                               (ii)                                                        (iii) 

Fig 2. 10: Comparison between the conductivity profile of the head phantom and the reconstructed profile at (i) 0.6 

GHz, (ii) 0.85 GHz and (iii) 1 GHz. (a) were the original conductivity profiles of the head phantoms, (b) were the 

reconstructed profiles with noiseless data, (c) were the reconstructed profiles with SNR=20 dB and (d) were the 

reconstructed profiles with SNR=10 dB [50]. 
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with the reconstructed profiles under different SNR level and incident frequencies. Figure 2.10 shows 

the original conductivity profile of the head phantom along with the reconstructed profiles under 

different SNR level and incident frequencies. It can be seen from Figure 2.9 and 2.10 that the NDP 

of the numerical head phantom can be generally reconstructed by using Born iterative method. The 

position of the haemorrhagic stroke can be localized especially when the incident frequency was 0.85 

GHz. It is also notable that the conductivity profile can be recovered better than the dielectric constant 

profile for all the three different incident frequencies. The reconstruction results were also 

quantitatively assessed using the 𝑁𝑅𝑀𝑆2 metric defined as: 

                                                   𝑁𝑅𝑀𝑆2 = √
1

𝑁
∑ |

𝜒𝐺(𝑥𝑛, 𝑦𝑛) − �⃗�(𝑥𝑛, 𝑦𝑛)

𝜒𝐺(𝑥𝑛, 𝑦𝑛)
|

2𝑁

𝑛=1

                                   (2.46) 

where 𝜒𝐺(𝑥𝑛, 𝑦𝑛) is the NDP of the ground truth, i.e., the real profile. The value of 𝑁𝑅𝑀𝑆2 represent 

the reconstruction error with regard to the difference between the reconstructed and real NDP and the 

value of 𝑁𝑅𝑀𝑆2 close to 0 implies perfect reconstruction. Figure 2.11 shows the change of 𝑁𝑅𝑀𝑆2 

values varied with the iteration numbers. It can be seen from Figure 2.11 that the Born iterative 

method achieved convergent results after 30 iteration times and the best 𝑁𝑅𝑀𝑆2 value (around 1.5) 

can be achieved when the incident frequency was 0.6 GHz.  

Distorted Born iterative method (DBIM) is an alternative method which can be used to reconstruct 

the NDP of the imaging domain from the received scattered data. The main difference between BIM 

and DBIM is that DBIM can achieve faster convergence rate but with the cost of additional 

computational complexity. BIM requires more iterations times to achieve convergent result but it is  

 

                                (a)                                                            (b)                                                            (c) 

Fig 2. 11: 𝑵𝑹𝑴𝑺𝟐 values varied with the iteration numbers under different SNR levels when the incident frequencies 

are (a) 0.6 GHz, (b) 0.85 GHz and (c) 1 GHz [50]. 

more robust to the noise. From the numerical implementation point of view, the difference between 

BIM and DBIM is that BIM uses homogeneous Green’s function in each iteration steps and DBIM 

updates the Green’s function during each iteration steps using the NDP reconstructed from the last 

iteration. The general steps of implementing DBIM can be summarized as follows [76]: 
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1. In the first step, solve of inverse problem (2.12) by using the Born approximation to calculate 

the integral matrix ℬ (Born approximation assumes the total field in the imaging domain can 

be approximated as the incident field) and the homogenous Green’s function is used to 

calculate the surface integral (2.13). 

2. The total field in the imaging domain and at the receiving antenna points are calculated by 

solving a forward problem as shown below by using the method of moments [77], [82]: 

                                                 ∑ 𝐶𝑚𝑛𝐸𝑡𝑜𝑡,𝑛 = 𝐸𝑖𝑛𝑐,𝑚

𝑁

𝑛=1

, 𝑚 = 1,… , 𝑁                                       (2.17) 

where 𝐶𝑚𝑛 are calculated as: 

                      𝐶𝑚𝑛 = 1 +
𝑗

2
(𝜒𝑚 − 1)[𝜋𝑘𝑠𝑎𝑚𝐻1

(2)(𝑘𝑠𝑎𝑚) − 2𝑗], 𝑤ℎ𝑒𝑛 𝑛 = 𝑚                  (2.18) 

                      𝐶𝑚𝑛 =
𝑗𝜋𝑘𝑠𝑎𝑛
2

(𝜒𝑚 − 1)𝐽1(𝑘𝑠𝑎𝑛)𝐻0
(2)(𝑘𝑠𝜌𝑚𝑛), 𝑤ℎ𝑒𝑛 𝑛 ≠ 𝑚                      (2.19) 

In (2.18) and (2.19), 𝑎𝑚  is the radius of each imaging cells, and 𝜌𝑚𝑛 =

√(𝑥𝑚 − 𝑥𝑛)2 + (𝑦𝑚 − 𝑦𝑛)2. To update the Green’s function, the incident field in the imaging 

domain for each of the receiving antennas are calculated and substitute in the right-hand side 

of (2.17) to calculate the new Green’s function with the updated 𝜒 as the background NDP.  

3. The calculated filed and new Green’s function are substituted in the inverse problem (2.12) 

and subtract the scattered field at the receiving antennas from the right-hand side of (2.12). 

Then solve the new generated inverse problem and obtain the corrections for the last 

reconstructed NDP. The new NDP is calculated by adding the corrections to the previous 

NDP. 

4. Repeat step 2 and 3 until the entire process is convergent.  

The distorted Born iterative method was applied on breast imaging in [47]. Numerical breast phantom 

derived from MRI scans [83]-[84] were used in [47] to assess the method. The dielectric properties 

of the breast tissues were derived from [85]-[86], and three different breast phantoms with varied 

constitution of breast tissues were used in the evaluation. Figure 2.12 shows the three original breast 

phantoms along with the reconstructed dielectric constant profiles using frequency of 1 GHz. The 

results shown in Figure 2.12 indicate that the dielectric constant profile of the three breast phantoms 

can be generally recovered using distorted Born iterative method. 
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                    (a)                                              (b)                                             (c)                                          (d) 

  

                 (e)                                              (f)                                            (g)                                            (h) 

Fig 2. 12: (a), (c) (e), and (g) are the breast phantoms with different distributions of breast tissues, (b), (d), (f), and (h) 

are the reconstructed dielectric profiles using DBIM corresponding to the phantoms in (a), (c), (e), and (g), respectively 

[47]. 

 

2.3.3 Tomography-based Microwave Head Imaging System 
 

Compared with traditional radar-based microwave imaging system, tomography-based imaging 

system is drawing more attentions during recent years particularly on medical imaging application.  

                                    

                                                (a)                                                                                                     (b) 

Fig 2. 13 (a) Configuration of the tomography-based head imaging system, (b) system prototype of the tomography-

based imaging system [41]-[42] 
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However, only a few tomography-based microwave head imaging systems were built over the past 

few years and the system reported in [41]-[42] is a typical one. Fig 2.13 (a)-(b) illustrate the 

configuration and prototype of the tomography-based head imaging system. The basic structure of 

the system was a cylinder with radius of 14.25 cm. Five circular rings were mounted on the cylinder 

and each ring was composed with 32 antennas. Each antenna was built with ceramic loaded 

waveguide and the operation bandwidth of the antenna was between 0.9 GHz and 1.1 GHz. The data 

acquisition process was electronically controlled thus short data acquisition time was needed in the 

system. An imaging chamber was designed to fit the human head and the chamber was filled with 

matching liquid. The matching liquid was made with a mixture of glycerol and saline. Specific 

membrane was used to isolate the human head from the matching medium and the membrane was 

manufactured in a special way so the shape was fit to the human head. 160 antennas were contained 

in the system and all of them can work as receivers whereas only 32 antennas were working as 

transmitters and receivers. Different from the radar-based microwave head imaging systems 

introduced in the previous section in which monostatic configuration was used in the array, multistatic 

configuration was used in the tomography-based system which means the transmitting antennas 

consequentially radiated signals and all the other antennas received the scattered signals. This process 

was repeated for all the remaining transmitting antennas until all of them performed the transmitting 

function.  

The system was tested on volunteers in the hospital and promising results can be seen in [42]. 

However, some drawbacks still exist in this system and will be illustrated in the later section.  

 

2.4 Discussions and Conclusions 
 

2.4.1 Challenges and Problems in Radar-based Microwave Imaging Techniques 
 

The radar-based imaging algorithms described above can achieve satisfactory results, the position of 

the target can be localized using received signals. The computation complexity is low thus the results 

can be generated within a short time. Those algorithms constructed the fundamentals of microwave 

bio-medical imaging using radar-based techniques. However, several drawbacks still existed in those 

algorithms and they are summarized below: 
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1. In the radar-based bio-medical microwave imaging algorithms, large number of antennas 

should be used in the array. For instance, totally 17 antennas were used in [26], [29] for 

achieving two dimensional breast image, 45 antennas were used in [27] for achieving three  

 

Fig 2. 14: Dielectric constant of different head tissues across the band 0.1-3 GHz used in head imaging [139] 

dimensional image, and 32 antennas were used in [36], [40] for achieving two dimensional 

brain image. The large number of antennas used in the array lead to several problems. Firstly, 

the mutual coupling between two adjacent antennas will be increased and this undesirable 

mutual coupling results in image distortion [51]. Secondly, the usage of large number of 

antennas will increase the size of the entire system. This limitation is opposite to the object 

that build a portable microwave imaging system for bio-medical application. Although for 

monostatic imaging systems, virtual antenna array can be used (only one antenna was used in 

the system and the antenna was rotated to cover all the positions required in the array), a 

mechanical rotation motor was required in the system and it also increased the complexity of 

the entire system [40].   

2. To achieve high resolution images, wideband signals were used in the aforementioned radar-

based algorithms. For example, ultra-wideband (UWB) signals were used in [26], [29] to 

generate high resolution breast images, the microwave head imaging system in [36] used the 

signal cover the band from 1 to 4 GHz (120% fractional bandwidth), and the head imaging 

system presented in [40] used the signal cover the band from 1.1 to 3.4 GHz (102% fractional 

bandwidth). Since it is difficult to generate a single pulse with more than 100% fractional 
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bandwidth, stepped frequency continuous wave (SFCW) are usually used in the signal 

generator’s design. The usage of wideband signal might be suitable for the systems using 

vector network analyser (VNA) as the signal generator [36], [40], however, to design portable 

and low-cost microwave imaging systems, the bulky and expensive VNA need to be replaced 

by portable transceivers [16], [56] or software defined radio (SDR) [52]-[55]. In the portable 

transceiver or SDR designs, wideband signal implies more stepped frequencies, and the large 

number of stepped frequencies implies high performance sampling circuit or analog-to-digital 

converter (ADC) have to be designed [16], [56]; and longer calibration time was required in 

the system [52] since for each stepped frequency, the system need to implement the calibration 

procedure one time.  

In Chapter 3, two algorithms based on compressive sensing (CS) technique are proposed to 

reduce the number of antennas and reduce the number of stepped frequencies, respectively. 

The CS reconstruction model is built based on the confocal imaging algorithms. Through 

solving the 𝑙1 norm optimization problem, high quality images can be achieved by using less 

number of antennas or less number of stepped frequencies. The proposed algorithms are firstly 

evaluated by using simple head model, then the measurement data from developed microwave 

head imaging system is used to further assess the performance of the proposed algorithms. A 

quantitative analysis is also implemented to indicate the minimum number of stepped 

frequencies which can be used to ideally recover the image 

3. Confocal imaging algorithm has been proved to be a simple and efficient algorithm which are 

used in current microwave head imaging systems [36], [40]. However, to map scatterers 

within the imaged object, confocal algorithm requires the effective dielectric constant of the 

area within that object extending from the signal entry point to the assumed location of each 

scatterer. All the published papers that are based on confocal algorithms use one certain 

dielectric constant irrespective of the position of the scatterer to be mapped, position of the 

antennas, or the entry point of the signal in the imaged object. While such an assumption 

might be acceptable when imaging an object that has small number of tissues with relative 

close electrical properties, a fatty breast for example [137]-[138], it cannot be used when 

imaging other highly heterogeneous objects. In such objects, the effective dielectric constant 

depends on the location of the antennas transmitting or receiving the signals, signal’s entry 

point in that object and tissues through which the signal penetrates before being reflected. One 

of the notable examples of such objects is the head, which includes many tissues with wide 

range of values for their dielectric constants as depicted in Figure 5.1 [139]. Therefore, 
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assuming one certain average value for the dielectric constant when using confocal algorithms 

in microwave head imaging might result in an incorrect detection, such as false positives or 

wrong stroke location. While a trial-and-error approach to find a proper effective dielectric 

constant might be possible in experimental works involving artificial phantoms, this is not 

possible when imaging subjects with no a priori knowledge of the exact electrical properties 

of their heads and their health conditions. Obviously, a trial-and-error cannot be used in that 

real-life scenario. Instead, an automated technique is needed to guide the confocal algorithm 

to the correct value(s) of the dielectric constant when mapping the subject’s head in search 

for any notable scatterer that can be a stroke or tumour, for example.  

In Chapter 5, an optimization-based confocal algorithm is proposed and verified in 

haemorrhagic brain stroke detection. The algorithm divides the boundary of the head into 

certain number of uniformly distributed signal’s entry points. Each of those points is assigned 

a certain initial effective dielectric constant. A confocal imaging algorithm is then used to 

generate an initial image of the head. The quality of that image is quantified using a certain 

metric. The values of the initial assumed dielectric constants are then optimized based on the 

calculated metric using particle swarm optimization (PSO) [140]. The final image is obtained 

when the metric value converges to its maximum value indicating a high quality image. The 

proposed method is assessed in simulations using an accurate numerical head model [139] 

and experiments using realistic head phantoms [40], [141]. The simulated and experimental 

results indicate that the image quality and thus accuracy of detection are dramatically 

improved compared with using the traditional confocal algorithm without introducing false 

positive targets.  

4. The radar-based imaging techniques mentioned above can localize the position of the target, 

however, they cannot differentiate the type of the target with respect to its dielectric constant 

or conductivity. This disadvantage largely affects the practical value of those techniques 

applied in microwave head imaging systems since classify the type of brain stroke 

(haemorrhagic or ischaemic) is another important object in head imaging scenario. It might 

be possible to derive different head images with haemorrhagic and ischaemic strokes and 

distinguish the type of stroke based on the image intensity of the stroke. However, it is still 

difficult to define a hard threshold between these two strokes because the obtained images are 

diverse with different measurement environment and conditions of the head.  
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In Chapter 6, the stroke classification problem is investigated and a solution based on support 

vector machine is proposed. The detailed statements with regard to the brain stroke 

classification using microwave technique will be discussed in the following section.  

 

2.4.2 Challenges and Problems in Tomography-based Microwave Imaging 

Techniques 
 

The tomography-based imaging algorithms described above can achieve satisfied results. The 

electrical properties of the imaging area can be reconstructed from the received scattered data and the 

described algorithms were evaluated using numerical phantoms (head phantom or breast phantom) 

from MRI scans. Although this technique exhibited promising results when it was applied on bio-

medical applications, some problems still exist in the current algorithms and they are summarized 

below: 

1. Tomography-based methods reconstruct the electrical properties of the imaging area by 

solving an ill-posed inverse problem. A wide range of techniques were applied to solve this 

problem, such as Born/distorted Born iterative methods [50], [76] and the optimization-based 

techniques like the conjugate-gradient method, genetic algorithm, differential evolution 

algorithm, and ant colony optimizer [111]-[115]. To mitigate the intrinsic ill-posedness of the 

inverse problem or avoid local optimum results, the aforementioned techniques require a large 

number of antennas with huge computational time. Compressive sensing (CS) technique is an 

alternative class of methods which has drawn a huge attention due to its potential to solve the 

ill-posed inverse problem efficiently, while using small number of antennas. In recent 

developments, CS techniques combined with microwave tomography methods have been 

proposed for biomedical applications [116]-[119]. In [116], a CS-based method based on 𝑙1 

norm minimization was used to find the sparse solution in a sparse domain. In [117]-[119], a 

method based on the Bayesian compressive sensing (BCS) [120] was utilized to solve an 

inverse scattering problem. Compared with the traditional 𝑙1  norm minimization, BCS 

searches for the sparse solution from a Bayesian probability perspective [121]. The algorithms 

proposed in [117]-[119] were constructed based on a-priori sparsity information. That 

information ensures the unknowns, such as the equivalent currents [117] or the contrast 

function [118], are sparse enough with respect to single-resolution pixels for a successful 

reconstruction. However, those methods cannot accurately recover the non-sparse unknowns 

for non-sparse scatterers that include multiple single-resolution connected pixels such as in 

microwave biomedical imaging scenarios. Based on the experimental results included in 
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[117]-[119], the performance of BCS-based algorithms degrades significantly if the sparsity 

of the investigated domain decrease. Recently, an alternative method to deal with the non-

sparse scenario was proposed [122]. That method is based on the total variation (TV), which 

considers the discrete gradient of large size scatterers [123]-[125]. The method is accurate in 

reconstructing the contrast-field profile of large non-sparse objects that are composed of 

multiple connected single-resolution pixels. However, in many microwave biomedical 

applications, such as head imaging, the variation in the dielectric properties of different tissues 

are not significant and thus the imaged domain has a relatively “smooth” contrast-field profile, 

where the discrete gradient values at the edges of the objects are very small even compared 

with the zero values at the non-edges areas. Furthermore, many biomedical imaging domains, 

such as the human head, are complex with many tissues and thus many edges that can degrade 

the sparsity of the TV transform causing a reduction in the accuracy of the reconstructed 

profile. 

In Chapter 4, an imaging scheme using the wavelet transform and block sparse Bayesian 

learning (BSBL) [126]-[127] combined with Born iterative method (BIM) is proposed. The 

wavelet transform is adopted because of the relative “smooth” representation of the contrast-

field profile of the targeted imaging domain, the human head. The non-significant changes on 

the values of the contrast profile result in a sparse representation on the wavelet domain. The 

reason for the utilization of BSBL is that unlike BCS-based methods [117]-[119], BSBL 

adopts the correlation between each unknown elements in the sparse domain and this merit 

significantly improves the accuracy of the sparse recovery. The proposed imaging scheme 

needs only a small number of antennas (receivers) unlike most of the inverse problem solvers 

(such as BIM) which requires a large number of antennas to mitigate the ill-posedness of the 

problem. To that end, the transformation from the non-sparse domain to sparse domain with 

respect to the normalized dielectric profile is implemented using Haar wavelet, which is 

suitable for microwave biomedical imaging application. The unknown sparse domain is then 

divided into several blocks and hyper-parameters are imposed on these blocks to enable using 

the Bayesian inference theory. The expectation-maximization (EM) method is used to solve 

these hyper-parameters and then the unknown blocks can be analytically solved. The inverse 

Haar wavelet transform is then implemented on the solved blocks to reconstruct the original 

dielectric profile.  

2. The diagnosis and therapy of brain stroke is a world-wide problem. Brain stroke is the leading 

cause of disabilities in the world. The quick and exact detection by means of head imaging 
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within four hours of the incident is the governing factor of proper, fast treatment to ensure the 

best possible recovery of the patient. Current imaging systems, such as MRI or CT scan, can 

diagnose stroke but the size and cost of the system limit their applications especially in rural 

areas and outside the hospital environment. During the past few years, microwave imaging 

systems have exhibited their potential as a low-cost and portable approach in bio-medical 

applications, especially in stroke detection [36], [40]. Several imaging algorithms for 

microwave stroke detection have also been presented [49]-[50], [145]-[147]. These algorithms 

can be generally divided into three types: tomography-based algorithms [49]-[50], radar-based 

algorithm [145] and compressive sensing based algorithms [146]-[147]. Although the 

algorithms in [49]-[50], [145]-[147] achieved satisfying results with regard to localizing the 

position of the stroke, one important and critical aspect, that is stroke classification, has not 

been addressed in these imaging algorithms. Stroke classification cannot be done by 

physicians based on the symptoms as they are the same for the two types of stroke. It is to be 

noted that even after stroke detection, medication cannot be given to stroke affected patients 

unless the stroke is classified. The reason behind this comes from the fact that the medication 

needed for Ischaemic stroke has exactly the opposite effect to that needed for Haemorrhagic 

stroke. In the algorithms described in [49]-[50], [145]-[147], intra-cerebral haemorrhagic 

stroke (a break of the blood vessel causing bleeding in the brain, known as ICH) was the only 

focus. However, ICH is not the most common case among patients suffering from stroke. In 

fact, almost 85% of strokes are ischaemic (a blood clot blocking the blood vessel, known as 

IS).  

In [43], a microwave-based stroke classification system was built based on the reflection 

coefficients of the antennas and singular value decomposition (SVD)-based classifier. The 

system utilized a helmet-shaped patch antenna array to measure the reflected signals 

(reflection coefficients of each of the antennas) from the brain. The measured signals were 

then used to construct (train) the SVD-based classifier. In that study, 45 patients with detected 

stroke (either ICH or IS stroke) were tested using the system. Despite the promising results, 

there were some drawbacks of the system. Firstly, the system cannot localize the position of 

the stroke (no images were generated from the system) and secondly, while 90% of ICH 

patients were correctly differentiated by the system, only 65% of IS patients were correctly 

classified. Therefore, it is important to develop an algorithm which can fulfil two main aims: 

(1) localize and (2) classify the stroke with satisfactory sensitivity and specificity. 

Tomography-based imaging algorithms [49]-[50] have the potential to meet the first required 

aim, i.e. localization. Based on [148]-[149], the dielectric properties (permittivity and 
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conductivity) of ischaemic affected brain tissues are around 10%-15% lower than the healthy 

tissue while the dielectric properties of ICH stroke are higher than the main healthy brain 

tissue [108], and only lower than those of cerebral spinal fluid. Since the tomography-based 

imaging algorithm is capable of calculating the dielectric properties in the imaging domain, it 

is possible to image and classify the stroke. After finding the dielectric properties, the type of 

the stroke can be differentiated using a sample trained classifier. To that end, a support vector 

machine (SVM) [150] can be used to fulfil the classification requirements. SVMs originated 

from statistical learning theory [151] and have found numerous applications, such as face 

recognition, speech identification, handwritten digits recognition, text categorization and 

DNA analysis [152]-[156]. Besides these traditional applications, SVMs have also been 

recently developed for biomedical imaging applications [157]. Therefore, it is possible to both 

localize and classify stroke with requisite accuracy by combining a tomography-based 

algorithm with an SVM classifier.  

In Chapter 6, a framework for microwave-based stroke localization and classification is 

proposed. It is based on microwave tomography technique, k-means clustering, and support 

vector machine. The general framework includes three steps: (1) Tomography to calculate the 

dielectric property profile of the brain, (2) k-mean clustering to categorize the calculated 

properties, and (3) SVM classifier to carry out the classification (decide the type of the stroke). 

The details of the framework are introduced in the following sections.  
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Chapter 3: Compressive Sensing in Radar-

based Imaging Techniques 
 

3.1 Theory of Compressive Sensing 
 

Compressive sensing (CS) technique is used to reconstruct the original signal (full-sampled signal) 

from using under-sampled signal [87]-[89]. It is essentially an alternative method to obtain the signal. 

Based on the CS theory, the original signal can be reconstructed by using fewer signal samples which 

is obtained from a random measurement matrix. For example, the original signal 𝑠 with 𝑁 samples 

can be reconstructed by using a random measurement matrix to randomly select 𝑀 samples in which 

𝑀 ≪ 𝑁 [90]. One of the major requirement of CS reconstruction is that the signal has to be sparse; 

thus, non-sparse signal used in CS reconstruction may lead to distorted results. The meaning of 

sparsity is that the non-zero elements in the signal is small compared with the entire length of the 

signal. The sparse representation of a set of signal can be achieved by properly selecting the basis of 

the signal. A time domain signal 𝑔(𝑡) can be expressed as a linear combination of 𝑁 orthonormal 

basis vectors: 

                                                                   𝑔(𝑡) =∑ 𝑥𝑗𝜓𝑖(𝑡)
𝑁

𝑗=1
                                                               (3.1) 

When the number of nonzero values in 𝑥 is 𝐾 ≪ 𝑁, then the time domain signal 𝑔(𝑡) is 𝐾 sparse. 

The entire process of CS reconstruction can be summarized below [90]: 

1. A set of randomly selected 𝑀 samples are obtained from the original signal 𝑔 with the size of 

𝑁 × 1 by using a random measurement matrix 𝜙 with the size of 𝑀 ×𝑁: 

                                                                           𝑦 = 𝜙𝑔                                                                     (3.2) 

2. Based on the requirement of CS reconstruction, the original signal 𝑔 has to be sparse aim to 

be properly recovered from CS algorithm. For non-sparse signal 𝑔, a transformation need to 

be implemented on it to transfer the non-sparse signal into its sparse domain. This 

transformation is implemented by using an orthogonal matrix 𝜓 with the size of 𝑁 × 𝑁: 

                                                                           𝑔 = 𝜓𝑠                                                                     (3.3) 

3. Combining (3.2) and (3.3), a linear under-determined system can be obtained as: 

                                                                    𝑦 = 𝜙𝜓𝑠 = 𝐴𝑠                                                               (3.4) 
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The linear under-determined system (3.4) may have numerous solutions thus numerical optimization 

algorithms need to be used to achieve the sparest solution. The entire process of CS reconstruction is 

shown in Figure 3.1.  

 

Fig 3. 1: The entire process of compressive sensing reconstruction [90]. 

The random measurement matrix 𝜙 and the transformation matrix 𝜓 need to satisfy two criteria in 

order to successfully recover the under-sampled signal; the incoherence principle [91]-[92] and 

restricted isometry property (RIP) [93]. The incoherence between the measurement matrix 𝜙 and 

transformation matrix 𝜓 implies the probability of successfully recovering the original signal from 

the under-sampled signal [90] and the RIP implies the robustness of the reconstruction when the 

noises are imposed on the signal [94]-[95]. If the measurement matrix 𝜙 and the transformation 

matrix 𝜓 are completely coherent,  the original signal can only be recovered using full-sampled 

coefficients. Conversely, if the rows of matrix 𝜙 cannot be used to express a sparse representation of 

the columns of matrix 𝜓, t these two matrix are incoherent [90]. The coherence of the two matrix 𝜙 

and 𝜓 can be calculated as [90]: 

                                                               𝜇(𝜙, 𝜓) = √𝑁 max
𝑘≥1,𝑗≤𝑁

|〈𝜙𝑘, 𝜓𝑗〉|                                                   (3.5) 

where 𝑁 is the length of the signal, 𝜙𝑘 is the 𝑘th row of matrix 𝜙 and 𝜓𝑗 is the 𝑗th column of matrix 

𝜓. The value of 𝜇 satisfies the relation shown below: 

                                                                              1 ≤ 𝜇 ≤ √𝑁                                                                       (3.6) 

The coherence value 𝜇 can be used to define the minimum number of measurements which is required 

to obtain the maximum probability of successful reconstruction since the number of measurements 

𝑀 and the coherence value 𝜇 satisfy the following relation: 

                                                                     𝑀 ≥ 𝐶 ∙ 𝐾 ∙ 𝜇(𝜙, 𝜓) ∙ 𝑙𝑜𝑔𝑁                                                     (3.7) 
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where 𝐾 is the sparsity of the signal in its corresponding sparse domain and 𝐶 is a constant. From 

(3.7), we can induce that when lower value of 𝜇 is achieved, then smaller number of measurements 

need to be used for reconstructing the original signal. The isometry constant 𝛿𝐾 is defined as the 

smallest number which satisfy the following relation [90]: 

                                                          (1 − 𝛿𝐾)‖𝑠‖𝑙2
2 ≤ ‖𝐴𝑠‖𝑙2

2 ≤ (1 + 𝛿𝐾)‖𝑠‖𝑙2
2                                     (3.8) 

where 𝑠 is the sparse representation of the original signal 𝑔, 𝐾 is the sparsity of 𝑠, 𝐴 = 𝜙𝜓, and ‖∙‖𝑙2  

is the second-order norm operator. The RIP implies that the subset of columns of matrix 𝐴 is almost 

orthogonal. The sensing matrix 𝐴 will satisfy the RIP with high probability if the following relation 

is hold for 𝐴 [90]: 

                                                                          𝑀 ≥ 𝐶 ∙ 𝐾 ∙ 𝑙𝑜𝑔 (
𝑁

𝐾
)                                                            (3.9) 

The linear under-determined system in (3.4) can be solved by searching the sparsest solution of 𝑠 

with respect to the 𝑙1 norm which is expressed as: 

                                                                   𝑚𝑖𝑛‖𝑠‖𝑙1 , 𝑠. 𝑏. 𝑗: 𝑦 = 𝐴𝑠                                                 (3.10) 

When the noise factor is imposed on the signal, the under-determined system (3.4) is re-wrote as: 

                                                                    𝑦 = 𝜙𝜓𝑠 + 𝑒 = 𝐴𝑠 + 𝑒                                                          (3.11) 

where 𝑒  is the noise and the energy 𝑒  is restricted as ‖𝑒‖𝑙2 = 𝜖 . The optimization problem 

corresponds to (3.11) can now be expressed as: 

                                                      𝑚𝑖𝑛‖𝑠‖𝑙1 , 𝑠. 𝑏. 𝑗: ‖𝑦 − 𝐴𝑠‖𝑙2 ≤ 𝜖                                               (3.12) 

Both the optimization problems in (3.10) and (3.12) are convex optimization thus they can be solved 

by using linear programming (LP) methods.  

CS technique in radar-based imaging systems has been investigated by several research groups. In 

[96]-[101], CS technique is applied in high resolution synthetic aperture radar (SAR) or inverse 

synthetic aperture radar (ISAR) systems. CS technique has also been used in three-dimensional (3D) 

microwave imaging [102]-[103] and ground penetrating radars (GPR) [104]-[105]. Although CS 

technique has been used in several radar-imaging applications, the utilization on radar-based bio-

medical applications is seldom investigated. In the following sections, two CS-based algorithms will 

be proposed for radar-based head imaging system. The proposed algorithms aim to solve the first two 
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problems elaborated in Chapter 1 which are reducing the number of antennas used in the array and 

decreasing the number of stepped frequencies used in the transceiver system.  

3.2 Compressive Sensing to Reduce the Number of Antennas 

 

3.2.1 Theory 
 

In traditional radar-based microwave imaging systems, step frequency continues waveform (SFCW) 

is chosen as the transmitted signal and based on the definition of SFCW, it can be expressed as: 

                                                      𝑆𝑇(𝑡) =∑ 𝑟𝑒𝑐𝑡
𝑁−1

𝑛=0
(
𝑡 − 𝑛𝑇𝑟
𝑇𝑝

) 𝑒𝑗2𝜋(𝑓0+𝑛∆𝑓)𝑡                                  (3.13) 

where 𝑟𝑒𝑐𝑡() is the rectangular function, 𝑁, 𝑇𝑟 , 𝑇𝑝, 𝑓0  and ∆𝑓 are the number of sub-pulses, pulse 

repetition interval, pulse width, initial frequency and frequency step size, respectively. For head 

imaging application, the desirable frequency range is proved to be 1-2 GHz. The target area is selected 

as a horizontal cross section of the entire brain. Assuming the target area contains 𝐼 scatters with 

reflection coefficient 𝛿𝑖 =̂ 𝛿(𝑥𝑖, 𝑦𝑖) and the distance from current used antenna to the 𝑖th scatter is 

𝑅𝑖 , thus the corresponding time delay is 𝜏𝑖 = 2𝑅𝑖/𝑐 (𝑐 is the wave speed of propagation in free 

space). Consequently, the received signal (echo) is: 

                               𝑆𝑅(𝑡) =∑ 𝛿𝑖∑ 𝑟𝑒𝑐𝑡 (
𝑡 − 𝑛𝑇𝑟 − 𝜏𝑖

𝑇𝑝
) 𝑒𝑗2𝜋[(𝑓0+𝑛∆𝑓)(𝑡−𝜏𝑖)]

𝑁−1

𝑛=0

𝐼

𝑖=1
                   (3.14) 

The reflection coefficient 𝛿 for stroke and other tissues can be calculated using formulas in [106]: 

                                                                              𝛿 =
𝑍𝐿 − 𝑍𝑜
𝑍𝐿 + 𝑍𝑜

                                                                   (3.15) 

𝑍𝐿 and 𝑍𝑜 are the wave impedance of brain tissues and air which can be calculated using formulas 

shown below: 

                                                                             𝑍 = √
𝑗𝜔𝜇

𝜎 + 𝑗𝜔휀
                                                                (3.16) 

where 𝜇 is the magnetic permeability, 휀 is the electric permittivity and 𝜎 is the electrical conductivity 

of the tissue the wave is travelling through. The value of these dielectric properties of human tissues 

can be achieved in [39]. In order to use CS theory in SFCW radar imaging problem, a linear system 
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has to be constructed through row or column stacking. Based on the method described in [99], suppose 

the reflection coefficient for the 𝑖th cell of the imaging area is 𝛿𝑖, then the reflection coefficient vector 

for the entire imaging area is: 

                                                                       𝝑 = [𝛿1;  ⋯ ; 𝛿𝑖;  ⋯ ; 𝛿𝐼]                                                      (3.17) 

where 𝐼 is the total number of cells inside the imaging area and 𝛿𝑖 can be calculated using (3.15). 

Assume the total number of antennas used in the array before performing CS is 𝑀=16 and the received 

signal from the 𝑚th antenna is a 𝑁 × 1 vector 𝒘(𝑚), where 𝑁 is the total number of step transmitted 

frequencies. The received signal 𝒘(𝑚) can be modelled as: 

                                                                           𝒘(𝑚) = 𝜳(𝑚)𝝑                                                                  (3.18) 

where 𝜳(𝑚) is an 𝑁 × 1 sparse dictionary matrix which can be expressed as: 

                                                                𝜳(𝑚) = [
𝜳11 ⋯ 𝜳1𝐼

⋮ ⋱ ⋮
𝜳𝑁1 ⋯ 𝜳𝑁𝐼

]                                                         (3.19) 

where 𝜳𝑛𝑖 is calculated as: 

                                𝜳𝑛𝑖(𝒕𝑠𝑡𝑒𝑝) = 𝑟𝑒𝑐𝑡 (
𝒕𝑠𝑡𝑒𝑝 − 𝑛𝑇𝑟 − 𝜏𝑖

𝑇𝑝
) 𝑒𝑗2𝜋[(𝑓0+𝑛∆𝑓)(𝒕𝑠𝑡𝑒𝑝−𝜏𝑖)]                          (3.20) 

In (3.20), 𝒕𝑠𝑡𝑒𝑝 is the time vector for one signal step frequency pulse. To use CS to recover the image, 

two dimensional reconstruction process is implemented on the received signal. Firstly, the 

measurement antennas are randomly selected from the entire 𝑀  antennas, which means that the 

measurement aspect angle is randomly selected. Secondly, the transmitted step frequencies are also 

selected randomly which means that not all the step frequencies are used over the whole frequency 

band. Assume the number of selected antenna is 𝑃 (𝑃 ≤ 𝑀) and the number of selected frequencies 

is 𝐾 (𝐾 ≤ 𝑁). The process of the random selection of frequency can be implemented by using a 𝐾 ×

𝑁 measurement matrix 𝜱(𝑝) for the 𝑝th angle of antenna and it can be modelled as a permutation 

matrix. Therefore, the received signal from the 𝑝th antenna by using randomly selected frequencies 

is: 

                                                               𝒚(𝑝) = 𝜱(𝑝)𝒘(𝑚) = 𝜱(𝑝)𝜳(𝑚)𝝑                                                (3.21) 

where 𝒚(𝑝) is a 𝐾 × 1 vector and 𝜱(𝑝) is a 𝐾 × 𝑁 permutation matrix.  
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Let 

                                                        𝒚 = [𝒚(1);  𝒚(2);  ⋯ ; 𝒚(𝑝);  ⋯ ; 𝒚(𝑃)]                                               (3.22) 

                                                       𝜳 = [𝜳(1);  𝜳(2);  ⋯ ; 𝜳(𝑝);  ⋯ ; 𝜳(𝑃)]                                           (3.23) 

                                                   𝜱 = 𝑑𝑖𝑎𝑔{𝜱(1);  𝜱(2);  ⋯ ; 𝜱(𝑝);  ⋯ ; 𝜱(𝑃)}                                      (3.24) 

then the compressive sensing model for head imaging is  

                                                                               𝒚 = 𝜱𝜳𝝑                                                                       (3.25) 

Considering the sparsity of the target reflection coefficient 𝝑 and CS theory, 𝝑 can be recovered via 

solving a nonlinear convex optimization problem: 

                                                                
                 �̂� = 𝑎𝑟𝑔𝑚𝑖𝑛‖𝝑‖1
𝑠. 𝑏. 𝑗       ‖𝒚 − 𝜱𝜳𝝑‖2 ≤ 𝜖

                                                      (3.26) 

where 𝜖 is the amount of noise in the measured data. There are numerous algorithms to solve this 

convex optimization problem and a fast and accurate first-order algorithm named NESTA [107] is 

applied here.  

The CS algorithm elaborated above is based on the assumption that that target area is sparse enough, 

which means the reflection coefficient of the stroke is much higher than the other tissues surround it. 

However, this assumption is not appropriate in the realistic scenario. For the real situation, the 

difference of reflection coefficient between stroke and surrounded tissues might be small. Consider a 

more reasonable scenario that the reflection coefficients of the tissues around the stroke are the same 

but with small difference from the stroke. Under this assumption, the CS algorithm proposed above 

is not suitable since the target area is far from sparse. However, through implementing an extra 

transformation, the CS algorithm is still able to be utilized in this situation. A transformation similar 

with total variation transform is applied as: 

                                                     𝑇𝑖,𝑗 = (𝛿𝑖,𝑗 − 𝑗𝛿𝑖,𝑗+1) + (𝑗𝛿𝑖,𝑗 − 𝛿𝑖+1,𝑗)                                             (3.27) 

where 𝛿𝑖,𝑗  is the reflection coefficient at (𝑖, 𝑗)th cell. Figure 3.2 indicate a configuration of the 

imaging cells aim to illustrate (3.27). 
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Fig 3. 2: Configuration of the imaging cells 

Based on (3.27), the convex optimization problem in (3.26) can be modified as an analysis-based 

problem: 

                                                            
                 �̂� = 𝑎𝑟𝑔𝑚𝑖𝑛‖𝑻𝝑‖1
𝑠. 𝑏. 𝑗       ‖𝒚 − 𝜱𝜳𝝑‖2 ≤ 𝜖

                                                         (3.28) 

where 𝑻 is the transformation matrix which implements the linear transform expressed in (3.27). The 

same optimization algorithm (NESTA) is still used to solve this problem. Figure 3.3 illustrates the 

block diagram contains the entire process of the CS reconstruction using the 𝑻 transformation. It can 

be seen from Figure 3.3 that the entire process of CS reconstruction can be divided into four steps for 

the low-contrast scenario: 

1. Collect the received signals from the transceiver system. The received signals are from the 𝑁 

antennas (full-sampled spatial data). 

2. The signals received from a certain number of antennas (say 𝑀 antennas and 𝑀 ≪ 𝑁) are 

randomly selected from the original received signals (the signals received from 𝑁 antennas). 

This random selection process is implemented by using a random permutation matrix 𝜱. 

3. A dictionary matrix 𝑻𝜳 is constructed aim to transfer the non-sparse imaging domain into a 

sparse domain. The entries in the matrix 𝑻 and 𝜳 are determined using (3.20) and (3.27). 

4. An under-determined system is built for CS reconstruction. The unknown reflection 

coefficients for the imaging area are achieved by solving a 𝑙1 norm-based convex optimization 

problem which is expressed in (3.28). A numerical method named NESTA is used to solve 

the problem in (3.28). 
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Fig 3. 3: The block diagram of the entire CS reconstruction process 

 

3.2.2 Simulation Results and Discussions 
 

As an initial test of the CS approach, a homogeneous head model with realistic shape and size as the 

human head is constructed (with dimensions x=160 mm and y=130 mm). The configuration of the 

antenna array around the head is shown in Figure 3.4. The range of the frequency band is chosen from 

1-2 GHz which is proven to be suitable for head imaging application [108]. Initially, the number of 

stepped frequencies is taken as 𝑁=50 and the number of antennas is 𝑀=16 with interval angel of 

22.5°. One stroke is assumed in the head model with a size of 5𝑚𝑚 × 5𝑚𝑚, conductivity 𝜎 = 1.8 

and relative permittivity 휀𝑟 = 60 i.e. haemorrhagic stroke. Based on this dielectric property, the 

reflection coefficient of the stroke is calculated using (3.15)-(3.16) as 0.2 and the reflection coefficient 

surround the stroke is assumed to be 0. A full number of antennas are used firstly and the confocal 

imaging algorithm is used for the imaging. After producing the image using 16 antennas, the number 

of antennas is reduced to 4 (only 4 antennas are randomly selected from the full 16 antennas) and the 

confocal algorithm is used again without implementing the CS technique. Then, CS-based imaging 

algorithm as proposed above is carried out and the results after using CS imaging algorithm are 

compared with the results using traditional confocal imaging algorithm as shown in Figure 3.5. 

It can be seen from Fig 3.5 (b) that by using 16 antennas and performing confocal algorithm for the 

imaging, the position of the target can be detected but with some noise emerged from the used 

confocal processing (mainly from the sidelobes of the match filter). When the number of antennas is 

reduced to 4, the position of the target cannot be determined if the traditional confocal imaging 

algorithm is used (Fig 3.5 (c)). However, after using CS-based imaging algorithm with 4 antennas, 

the position of the target is successfully detected with very clear image (Fig 3.5 (d)). The noise in the  
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Fig 3. 4: Antenna array setup. The elliptical area represents the head model and the discrete red points denote M 

antenna array elements. 

 

                                            (a)                                                                                           (b) 

 

                                            (c)                                                                                             (d) 

Fig 3. 5: Head imaging results with high contrast of target area. (a) The used head model with a bleeding stroke 

indicated by a bright square; (b) Image from using 16 antennas and confocal imaging algorithm; (c) Image from using 4 

antennas and confocal algorithm; (d) Image from using 4 antennas and CS-based imaging algorithm. 
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                                             (a)                                                                                           (b) 

Fig 3. 6: CS-based imaging result with low contrast of target area. (a) Image from using original CS algorithm; (b) 

Image from using improved CS algorithm (with approximated TV transformation) 

image is eliminated in this case because of the well sparsity of the target area. However, in realistic 

scenario, the target area is commonly not sparse enough. Being lack of the well sparsity, the original 

CS-based imaging algorithm is not suitable and an extra transformation has to be implemented to 

overcome the problem of non-sparsity. In the next step, the CS-based imaging algorithm is tested in 

low contrast target area which is more close to the realistic situation by using reflection coefficient 

of the stroke as 0.2 and an average reflection coefficient of other tissues surround the stroke as 0.12. 

The result by using original CS algorithm on this scenario is shown in Figure 3.6 (a). It can be seen 

from Fig 3.6 (a) that the image recovered from original CS algorithm is corrupted and there is no 

information can be extracted from the image. This is mainly because the lack of sparsity of the target 

area. The non-sparsity of the target area can be alleviated by using an approximated total variant (TV) 

transform as defined in (3.27). The result from using improved CS algorithm (after adding 

approximated TV transform in the convex optimization) is shown in Figure 3.6 (b). Compared with 

the result obtained from using original CS algorithm, it can be seen from Figure 3.6 (b) that the 

location of the target can be recovered accurately by using improved CS algorithm after implementing 

the approximated TV transformation.  

 

3.3 Compressive Sensing to Reduce the Number of Stepped 

Frequencies 
 

Beside using large number of antennas in the array, to achieve reasonable images that enable a 

successful detection, microwave systems designed for head imaging use wide frequency bands 

extending from 1 GHz up to 4 GHz [36]. Thus, the antenna arrays utilized in those frequency domain  
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systems collect huge   data at many frequency steps within the used band. For example, the system 

explained in [36] uses 401 frequency steps to achieve acceptable imaging results. However, the large 

number of frequency steps also increases the time needed for data acquisition and scanning. 

Moreover, to make microwave imaging systems portable, recent designs replace the conventional 

vector network analyser with a CMOS based stepped frequency continuous-wave transceiver, which 

requires a long calibration procedure for all the frequency steps [16]. On the other hand, it is well 

known that a patient with brain injury is an emergency case and the procedure for diagnosis and 

medication should be finished within several hours from the onset of the symptoms [36]. Therefore, 

it is vital for such an application to use a minimum number of frequency steps without degrading the 

quality of the image.  

In the following section, the CS theory is implemented to recover the time domain correlation (TDC) 

signals from limited number of frequency steps by utilizing the sparsity of those signals. The final 

image is generated from those recovered TDC signals using the well-known confocal algorithm. To 

validate the proposed approach, it is tested using three different CS techniques on measurements done 

using a recently developed head imaging system [36]. The presented results indicate that the 

suggested technique can produce satisfactory images based on two quality metrics using less than 

half the number of frequency steps needed in the non-CS traditional confocal imaging approach.  

 

3.3.1 Theory 
 

Figure 3.7 shows the general configuration of a microwave imaging system using antenna array of P 

elements. In the conventional stepped frequency microwave imaging approach, each of the antenna 

elements in the array is used to transmit continuous signals at 𝑁 frequency steps from 𝑓1 to 𝑓𝑁. The 

same transmitting antenna (monostatic) or all the antennas of the array (multistatic) collect the 

reflected/scattered signals. Figure 3.8 shows the time domain signals received by 16 antennas from 

the recently developed microwave head imaging system [36]. The antennas used in the array is 

exponentially corrugated tapered slot antenna which can be operated across the band from 1 to 4 GHz. 

The optimized distance between the adjacent antennas is 6 cm which is aiming to achieve better than 

20 dB mutual coupling between two antennas. The incident pulse with the band from 1 GHz to 4 GHz 

was generated by using R&S ZVA24 VNZ and totally 401 stepped frequency points were generated 

to synthetize the wideband pulse. To transmit the signals to the antenna array, two single-pole eight-

throw (SP8T) microwave coaxial switches were used in the system. The first switcher was used to 

control the signals transmitted to the 1-8 antennas in the array and the second switcher was used to  
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Fig 3. 7: A general domain of microwave imaging system using antenna array of P antenna elements. 

control the signals transmitted to the 9-16 antennas in the array. A realistic head phantom was used 

to obtain the measured scattered data. The head phantom includes gray matter, white matter, cerebral 

spinal fluid (CSF), and skull. To model a brain stroke, an elliptic object with volume of 1.4 × 0.7 ×

0.5 𝑐𝑚3 and electrical properties of blood was embedded inside the phantom. The materials used to 

fabricate the head phantom are gelatin, corn flour, water, sodium azide, agar, and propylene. To 

achieve close approximation to the real electrical properties of the brain tissues, the values reported 

in [38]-[39] were used to guide the mixture procedure of the aforementioned materials. Figure 3.9 

and 3.10 show the system platform and used realistic head phantom to obtain the measurement data 

shown in Figure 3.8. It can be seen from Figure 3.8 that the time domain correlated signals received 

by the 16 antennas all exhibited sparse characteristic (the high energy of the time domain signals are 

all focused in a certain period of time, which is from 0.5 ns to 1.5 ns). This sparse characteristic is  

result from the truth that only one stroke will be emerged in the brain, thus the strong reflection only 

happened within a small district, which is the district contained the stroke. The sparse characteristic 

supplies the possibility that the time domain correlated signals can be reconstructed using less number 

of frequency points if a transformation from the frequency domain data to time domain data can be 

found.  

Assume the frequency domain data (reflection coefficients) using monostatic approach is expressed 

as: 
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Fig 3. 8: Examples of time domain correlation signals received at each of the 16 antennas from 401 frequency steps 

using the head imaging system in [36]. 

 

Fig 3. 9: System platform used to obtain the measured data [36]. 

                                                                𝑺 = [
𝑆1(𝑓1) ⋯ 𝑆𝑃(𝑓1)
⋮ ⋱ ⋮

𝑆1(𝑓𝑁) ⋯ 𝑆𝑃(𝑓𝑁)
]                                                      (3.29) 

where 𝑆𝑝(𝑓𝑛) is the reflection coefficient for the 𝑝th antenna at the 𝑛th frequency step. The inverse 

Fourier transform of 𝑺 is the time domain correlation matrix 𝓣 which can be expressed as: 
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                                                𝓣 = 𝓕−1𝑺 = [

𝓉1(0) ⋯ 𝓉𝑃(0)
⋮ ⋱ ⋮

𝓉1 (
𝑁 − 1

∆𝑓𝑁
) ⋯ 𝓉𝑃 (

𝑁 − 1

∆𝑓𝑁
)
]                                    (3.30) 

where 𝓉𝑃 (
𝑛−1

∆𝑓𝑁
) is the time domain correlation coefficient for the 𝑝th antenna at 

𝑛−1

∆𝑓𝑁
th time step. 𝓕 is 

the Fourier transform matrix which can be represented as: 

                                                           𝓕 =

[
 
 
 
 

1 1 1
1 𝑊𝑁

1 𝑊𝑁
2

1 𝑊𝑁
2 𝑊𝑁

4
⋯

1
𝑊𝑁

𝑁−1

𝑊𝑁
𝑁−2

⋮ ⋱ ⋮
1 𝑊𝑁

𝑁−1 𝑊𝑁
𝑁−2 ⋯ 𝑊𝑁

1 ]
 
 
 
 

                                      (3.31) 

where 𝑊𝑁
𝑛 can be expressed as: 

                                                                      𝑊𝑁
𝑛 = exp (−

𝑗2𝜋𝑛

𝑁
)                                                            (3.32) 

and 𝓕 ∈ ℂ𝑁×𝑁 . The time domain correlation coefficients represent the time delays between the 

incident and reflected signals. The head imaging scenario has usually a sparse characteristic with up 

to two strong scatterers (skin interface and any brain stroke). Thus, the time domain correlation 

coefficients exhibit a sparse characteristic which means that correlation coefficients with significant 

values only occupy a certain period of time. This property indicates that through using compressive 

sensing techniques to recover the time domain correlation signal using under-sampled frequency 

domain data.  

The target is to generate the same quality images using much smaller number of frequency steps 𝑀 

(𝑀 ≪ 𝑁) than the steps needed in the previously explained traditional approach. The under-sampled 

frequency domain data can be represented in this case as: 

                                                           𝑺𝑐𝑠 = [
𝑆1(𝑓1

′) ⋯ 𝑆𝑃(𝑓1
′)

⋮ ⋱ ⋮
𝑆1(𝑓𝑀

′ ) ⋯ 𝑆𝑃(𝑓𝑀
′ )
]                                                      (3.33) 

where 𝑓1
′ ≥ 𝑓1

  and 𝑓𝑀
′ ≤ 𝑓𝑁 . This under-sampling process can be implemented using a random 

permutation measurement matrix 𝝓; 

                                                                                 𝑺𝑐𝑠 = 𝝓𝑺                                                                       (3.34) 

If this under-sampled data is directly used to generate an image, it will be distorted by the level of 

under-sampling of the frequency domain signals. Nevertheless, if the original time domain data for  
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Fig 3. 10: The fabricated realistic head phantom used to obtain the measurement data [36] 

each of the antennas is sparse enough, it can be reconstructed accurately from solving a constraint 𝑙1 

norm convex optimization problem: 

                                                𝑚𝑖𝑛‖𝓣∙𝑝
𝑐𝑠‖

1
, 𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 ‖𝑺∙𝑝

𝑐𝑠 −𝝓𝓕𝓣∙𝑝
𝑐𝑠‖

𝑙2
≤ 𝜖                                    (3.35) 

where 𝓣∙𝑝
𝑐𝑠 and 𝑺∙𝑝

𝑐𝑠 is the pth column of 𝓣𝑐𝑠 and 𝑺𝑐𝑠, respectively, 𝓣∙𝑝
𝑐𝑠 represents the recovered time 

domain correlation signal for the pth antenna using the under-sampled frequency steps, and 𝜖 is the 

tolerated error for the convex optimization problem. This 𝑙1 norm convex optimization problem can 

be solved using several algorithms. In this paper, the three accurate and fast algorithms NESTA [107], 

SPGL1 [109], and CoSaMP [110] are used and compared to evaluate the proposed approach.  

 

3.3.2 Imaging Results and Discussions 
 

The correlation coefficients of the original and recovered TDC signals are used to quantitatively 

evaluate the performance of the reconstruction for all the TDC signals of the 16 antennas. A value of 

correlation coefficient close to 1 indicates a high similarity between with the original signal, whereas 

a value close to 0 indicates dissimilarity. The correlation coefficients are calculated based on 100 

trails of the CS reconstruction and an average correlation coefficient (ACC) is taken for the 
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evaluation. The number of the frequency steps M in the reconstruction is chosen as 300, 200 and 100. 

It is notable that since the TDC signals are zero for the 1st and 9th antennas due to the skin interface 

effect removal process [37], the TDC correlation coefficients for these two antennas are ignored here. 

The results depicted in Figure 3.11 show that when 𝑀 = 300, the values of ACC are close to 1 for 

the three CS techniques indicating a high similarity between the original and reconstructed TDC 

signals. However, when 𝑀 = 100, the ACC values are around 0.3 indicating distorted TDC signals. 

It also can be seen from Figure 3.11 that the signals reconstruction using SPGL1 are generally better 

than reconstructed signals using the other two methods. Figure 3.11 also shows that CoSaMP has the 

worst performance due to its need for pre-defined signal sparsity, which is usually antenna-dependent 

(the TDC signal from different antennas possess different sparsity) and thus difficult to define. In this 

assessment, the sparsity of the signal is defined as 20% of the TDC signal length for all the antennas’ 

signals when implementing CoSaMP method. 

 

 

Fig 3. 11: Comparison between the average correlation coefficients (ACC) of the original and recovered TDC signals 

for different antennas using three different 𝒍𝟏 norm optimization solvers. 

To further verify the quality of images after using the explained CS technique to recover TDC signals 

at different frequency steps, the radar-based imaging algorithm [37] is utilized. To that end, the 

recovered TDC signals are used to produce an image of the head after applying that confocal-based  
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Fig 3. 12: Constructed head images from using (a) full number (M=401) of available frequency steps in the traditional 

method, and (b), (c), and (d) under-sampled frequency steps (M=300, M=200, and M=100, respectively) using 

traditional and three CS methods. 

 

algorithm. Figure 3.12 shows the produced images with and without CS for different numbers of 

frequency steps that are randomly selected within the band 1-4 GHz. It can be seen from Fig 3.12 that 

the position of the brain stroke can be accurately located when using CS methods (SPGL1, NESTA  
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Fig 3. 13: Average NER using traditional and CS methods under different number of frequency steps 

 

Fig 3. 14: Number of successful reconstructions and values of quality metric 𝜷 using non-CS and CS methods for 

different number of frequency steps. 

 

and CoSaMP) when the number of frequency steps is less than half of the original steps. It is also 

notable that when M=100 (quarter of the original frequency steps), the CS methods using SPGL1 and 

NESTA can still recover the image accurately, whereas CoSaMP results in a low quality image. On 

the other hand, the reconstructed images from TDC signals without using CS are highly distorted 

when using small number of frequency steps. 
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Besides assessing the recovered images using CS and non-CS methods, it is also important to 

investigate the lowest number of frequency steps needed for an acceptable image reconstruction. To 

that end, two metrics are defined for quantitatively find the quality of the images and decide the 

lowest value of M for satisfactory images. The reconstruction normalized error rate (NER), which is 

the difference between the intensity of all pixels of the imaged domain using the under-sampled steps 

and the original full steps intensity: 

                                               𝑁𝐸𝑅 = √
1

𝐾
∑ |

𝐼𝐺(ℎ𝑘) − 𝐼(ℎ𝑘)

𝐼𝐺(ℎ𝑘)
|

2𝐾

𝑘=1

, ∀ℎ𝑘 ∈ ℋ                                        (3.36) 

where 𝐾 is the number of pixels within the entire head area ℋ, 𝐼(ℎ𝑘) is the recovered image intensity 

for the 𝑘th pixel and 𝐼𝐺(ℎ𝑘) is the image intensity of the original image using full-sampled frequency 

steps (M=401). The second metric used to evaluate quality of the reconstruction images is 𝛽, which 

is defined as: 

                                                          𝛽 =
𝑚𝑎𝑥[𝐼(ℎ𝑘)]

𝑚𝑎𝑥[𝐼(ℎ𝑘
′ )]

     ∀ℎ𝑘 ∈ 𝒮

     ∀ℎ𝑘
′ ∈ ℋ 𝑎𝑛𝑑 ℎ𝑘

′ ∉ 𝒮
                                  (3.37) 

where 𝒮 is the set of pixels within the real injury area. 𝛽 can be used to assess the contrast of the 

maximum intensity for the images. 𝛽 < 1 means the position of the brain stroke is not located 

correctly and 𝛽 > 1 means the position of the brain stroke is recovered successfully. 

The aforementioned metrics are calculated from 100 trails using non-CS and CS methods under 

different values of frequency steps (M) and the average value of NER and normalized successful 

image reconstruction (𝛽 > 1) are calculated. The results for NER are shown in Figure 3.13, which 

indicates that the CS-methods can successfully reconstruct the images with much lower value of NER 

than the images recovered using non-CS method for different number of frequency steps. It is notable 

that when M=150, all of the three CS methods achieve almost the same acceptable value of NER, 

while the performance concerning NER starts to deteriorate with different performances of the three 

CS methods when using M smaller than 150.  

The normalized number of successful reconstructions (𝛽 > 1) and the average value of 𝛽 is shown 

in Figure 3.14, which confirms that the number of successful reconstructions using CS methods is 

higher than the traditional  method. It is notable that the number of successful reconstructions 

dramatically decrease when the number of frequency steps becomes less than 150 for all the three 

used CS methods. For the average value of 𝛽, the results also clearly indicate that when the number 
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of frequency steps is more than 150, the average value of 𝛽 is maintained at more than 1, which 

implies successful recovery; however, when the number of frequency steps is less than 150, the 

average value of 𝛽 is smaller than 1 indicating an incorrect localization of the brain stroke. These 

results correspond well to the average NER evaluation. Thus, using CS methods with 150 frequency 

samples always results in stable performance in the investigated system.  

3.4 Discussions and Conclusions 
 

Two compressive sensing based methods have been presented to solve two main problems in current 

microwave brain imaging algorithms. The first method aims to reduce the number of antennas used 

in the antenna array. To achieve this target, compressive sensing (CS) technique was used with the 

traditional confocal imaging algorithm. The reason of using CS technique is based on the fact that the 

reflection coefficients of the imaging area is sparse (only one stroke could develop in the brain thus 

the strong reflection can only happen within a certain area). A CS model combined with confocal 

algorithm was built and the reflection coefficients of the imaging area were reconstructed by solving 

a 𝑙1 norm convex optimization problem. The proposed method was tested by using a simple high 

contrast head model (sparse model) with a bleeding stroke inside. The results indicate that when only 

4 antennas were used to transmit and receive the signals, the generated image is largely distorted by 

using traditional confocal imaging algorithm, however, when the proposed CS-based method was 

applied, the position of the stroke can be clearly detected. To make the proposed method more realistic 

(in low-contrast imaging domain), an approximated total variant (TV) transform was proposed to 

transfer the non-sparse imaging area (low-contrast imaging area) to a sparse domain. This TV 

transform was integrated into the 𝑙1 norm convex optimization problem and the proposed method was 

further assessed using a low-contrast head model. The results indicated that when 4 antennas and the 

original CS method were used in the reconstruction, the generated image will be corrupted and few 

information can be extracted from the reconstructed image. However, when the improved CS method 

was used, the position of the bleeding stroke can be successfully recovered by using four antennas. 

Using small number of antennas in the antenna array can reduce the mutual coupling between the 

adjacent antennas, and it also reduce the size of the entire system.   

The second method aims to reduce the number of stepped frequencies used in the transceiver system. 

CS-based method was used to solve this problem and the reason of using CS technique is based on 

the fact that the time domain correlation (TDC) signals captured in frequency domain are sparse.   

Using data from experiments done on artificial head phantoms, it has been shown that CS methods 

have successfully detected brain strokes using less than half of the frequency steps needed in the 
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conventional non-CS imaging technique. A further investigation was implemented to obtain the 

minimum number of stepped frequencies which can be used to successfully recover the images. Based 

on two defined metrics (reconstruction normalized error rate (NER) and 𝛽 which is used to measure 

the successful rate of the CS algorithm), it was found that when 150 frequency points were used in 

the reconstruction, all the CS-based methods can achieve satisfactory results, whereas when the 

number of frequency points were lower than 150, the recovered image quality will be largely 

degraded. Using small number of frequency steps in microwave imaging enables reducing data 

acquisition time and complexity of the system, which are especially important in the recent efforts to 

build portable, real-time imaging systems using compact stepped frequency transceiver.  
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Chapter 4: Compressive Sensing with 

Tomography -based Imaging Techniques 
 

4.1 Compressive Sensing on Non-Sparse Imaging Domain 
 

 

Fig 4. 1: Diagram of a general imaging problem 

 

To explain the proposed technique, let us assume the general imaging configuration shown in Figure 

4.1. There are 𝑄 uniformly spaced antennas that are positioned at the measurement contour 𝑆. The 

scattering domain 𝑉  is illuminated at a certain frequency by a transverse-magnetic wave where 

𝐸𝑖𝑛𝑐
𝑞 (𝑥, 𝑦) = 𝐸𝑖𝑛𝑐

𝑞 (𝑥, 𝑦)�̃�  (𝑞 = 1,… , 𝑄), with a time-dependent factor of exp (−𝑗2𝜋𝑓𝑡). The domain 

𝑉 is discretised into 𝑁 square cells (𝑉𝑛=1,…,𝑁) with certain dielectric properties. 

Therefore, it is convenient to define the normalized dielectric profile (NDP) of the problem as: 

                                                          𝒳(𝑥, 𝑦) = [휀𝑟(𝑥, 𝑦) +
𝜎(𝑥, 𝑦)

𝑗𝜔
] 휀�̃�⁄                                                   (4.1) 
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Fig 4. 2: Block diagram of the proposed imaging scheme 

 

where 휀�̃� is effective dielectric constant of the surrounding material which is defined as 휀�̃� = 휀𝑠 +

𝑗𝜎𝑠 𝜔⁄ . Based on the explained configuration, the proposed imaging scheme is depicted by the 

flowchart of Figure 4.2. A preliminary guess of the unknown 𝒳, which is assumed here simply as 

 𝒳⃗⃗⃗⃗⃗ = [1,… , 1] , and the measured scattered signal �⃗⃗⃗⃗�𝑞 (𝑞 = 1,… , 𝑄)  are used as initial input 

parameters for the algorithm. The Born iterative model is then built as illustrated in the following 

section. Three initial hyper-parameters [127] are needed to start the BSBL algorithm. A reasonable 

estimation for these three parameters is also explained in the following section. To this end, the BSBL 

framework along with the wavelet transform is used to find the new values for those three parameters 

and the new NDP in the wavelet domain. The BSBL solver is terminated when a certain convergent 
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criterion is satisfied. The details of the BSBL framework will be shown in the following section. An 

inverse wavelet transform is then applied to convert the new estimated of NDP to the original domain. 

The new estimated 𝒳𝑛𝑒𝑤  is judged in the convergent criterion and used to replace the previous 

estimate if the convergent condition is not satisfied, and the whole process is thus repeated again. The 

details of the algorithm are explained hereafter. 

 

4.1.1 Born Iterative Method Framework 
 

Born iterative method (BIM) [75] is the fundamental framework of the proposed technique. The 

inverse scattering problem under the scenario shown in Figure 4.1 can be formulated as [74]: 

𝐸𝑡𝑜𝑡
𝑞 (𝑟) = 𝐸𝑖𝑛𝑐

𝑞 (𝑟) −
𝑗𝑘𝑠

2

4
∬[𝒳(𝑟′) − 1]𝐸𝑡𝑜𝑡

𝑞 (𝑟′)𝐻0
(2)(𝑘𝑠𝜌)𝑑𝑟

′

𝑉

, 𝑟 ∈ 𝑆; 𝑟′ ∈ 𝑉; 𝑞 = 1, … , 𝑄       (4.2) 

where 𝐸𝑡𝑜𝑡
𝑞 (𝑟) is the total electric field due to the 𝑞th known incident wave, 𝐸𝑖𝑛𝑐

𝑞 (𝑟) is the incident 

electric field of the 𝑞th incident source, 𝜌 = ‖𝑟′ − 𝑟‖ and 𝑘𝑠 can be expressed as: 

                                                               𝑘𝑠 = √𝜔2𝜇𝑜휀𝑜휀𝑠 −
𝑗𝜔𝜇𝑜𝜎𝑠
휀𝑜

                                                         (4.3) 

휀𝑜  and 𝜇𝑜  are permittivity and permeability of free space. 𝐻0
(2)(𝑘𝑠𝜌)  is the zero order Hankel 

function. Equation (4.2) can be re-written in an operator form as [128]: 

                      𝐸𝑡𝑜𝑡
𝑞 (𝑟) = 𝐸𝑖𝑛𝑐

𝑞 (𝑟) + 𝐴𝑖(𝒳𝐸𝑡𝑜𝑡
𝑞 ) = (𝐼 − 𝐴𝑖𝒟)

−1𝐸𝑖𝑛𝑐
𝑞 (𝑟), 𝑟 ∈ 𝑆; 𝑞 = 1,… , 𝑄             (4.4) 

where 𝐴𝑖 is the integral operator, 𝐼 is the identity operator and 𝒟 is the diagonal operator. Based on 

the value of ‖𝐴𝑖𝒟‖, the equation (4.4) can be represented in Born series [128]-[129]. When ‖𝐴𝑖𝒟‖ ≪

1, the Born series representation becomes Born approximation which means 𝐸𝑡𝑜𝑡
𝑞 (𝑟) can be directly 

approximated as 𝐸𝑖𝑛𝑐
𝑞 (𝑟) . However, in the realistic situation, ‖𝐴𝑖𝒟‖  is not strictly satisfy Born 

approximation condition (‖𝐴𝑖𝒟‖ ≪ 1), thus solving the above inverse scattering problem (4.2) based 

on this approximation is not accurate. 

Born iterative method (BIM) and distorted Born iterative method (DBIM) are two alternative methods 

which can be used to solve (4.2). The differences of these two methods are, the kernel of the integral 

(zero order Hankel function) in BIM remains the same for each of the iterations, whereas in DBIM 

the kernel is upgraded for each of the iterations. The BIM is adopted here since compared with DBIM, 
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BIM is more robust to noise and consume much less computation time [74]. Since the scattered 

electric field satisfies the relation 𝐸𝑠𝑐𝑎𝑡
𝑞 (𝑟) = 𝐸𝑡𝑜𝑡

𝑞 (𝑟) − 𝐸𝑖𝑛𝑐
𝑞

, thus based on BIM and (4.2), 𝐸𝑠𝑐𝑎𝑡
𝑞 (𝑟) 

can be expressed as: 

�̃�𝑠𝑐𝑎𝑡,𝑞(𝑟) = −
𝑗𝑘𝑠

2

4
∬[𝒳𝑖(𝑟′) − 1]𝐸𝑡𝑜𝑡,𝑞

𝑖−1 (𝑟′)𝐻0
(2)(𝑘𝑠𝜌)𝑑𝑟

′

𝑉

, 𝑟 ∈ 𝑆; 𝑟′ ∈ 𝑉; 𝑞 = 1,… , 𝑄             (4.5) 

where �̃�𝑠𝑐𝑎𝑡,𝑞(𝑟) denotes the measured electric field at the 𝑞 th antenna, 𝑖  is the iteration index, 

𝐸𝑡𝑜𝑡,𝑞
𝑖−1 (𝑟′) is the total electric field calculated in the last iteration step and 𝒳𝑖(𝑟′) is the unknown NDP 

in the current iteration. Based on (4.5) and assume 𝜖𝑞(𝑟𝑚)  ( 𝑟𝑚 ∈ 𝑆,𝑚 = 1,… ,𝑀)  is additive 

Gaussian noise with zero mean and unknown variance for the 𝑚th measurement of the scattered 

electric field under the 𝑞 th incident wave, then rearranging (4.5) in a matrix form, an ill-posed 

equation can be achieved as: 

                                                                       𝓑𝑞
𝑖−1�⃗⃗⃗�𝑖 + 𝜖𝑞 = �⃗⃗⃗⃗�𝑞                                                                (4.6) 

where �⃗⃗⃗⃗�𝑞 = [�̃�𝑞(𝑟1),… , �̃�𝑞(𝑟𝑀)]
𝑇

, 𝜖𝑞 = [𝜖𝑞(𝑟1),… 𝜖𝑞(𝑟𝑀)]
𝑇

, �⃗⃗⃗�𝑖 = [𝒳𝑖(𝑟1),… ,𝒳
𝑖(𝑟𝑁)]; 𝑟𝑛 ∈

𝑉, 𝑛 = 1,… ,𝑁, (𝑀 is the number of antenna points and 𝑁 is the number of cells) and 𝓑𝑞
𝑖−1 is the 

matrix calculated in the last iteration under the 𝑞th incident wave. The elements in 𝓑𝑞
𝑖−1 are: 

                                                         𝑏𝑚𝑛 =
−𝑗𝑘𝑠

2

4
∬𝐸𝑡𝑜𝑡,𝑞

𝑖−1 (𝑟𝑛
′)𝐻0

(2)(𝑘𝑠𝜌)𝑑𝑟
′

𝑉𝑛

                                         (4.7) 

where 𝜌 = ‖𝑟𝑛
′ − 𝑟𝑚‖ . The surface integral in (4.7) can be numerically calculated by using 

Richmond’s technique proposed in [77]. To somehow alleviate the ill-posedness in (4.6), one method 

is to increase the number of measurement antennas 𝑀  and apply some regularization scheme to 

minimize the spurious solutions. In [50], 32 antennas are used for the measurement and Tikhonov’s 

regularization scheme [78] is used in the final least square optimization. However, the method in [50] 

request huge computation time for the convergence (~250 min) and this is not acceptable in realistic 

application. Therefore, a probabilistic method based on block sparse Bayesian learning by using less 

number of antennas (𝑀 = 6) is proposed and illustrated in the following sections. 
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4.1.2 Wavelet Transform 
 

The ill-posed equation (4.6) can be solved using compressive-sensing Bayesian-based probabilistic 

methods [117]-[119] which require a sparse �⃗⃗⃗� for a convergent solution. However, the sparsity of �⃗⃗⃗� 

is not possessed in many realistic situations, such as in biomedical imaging. Thus, it is necessary to 

transform the non-sparse �⃗⃗⃗� into a sparse domain where the Bayesian-based probabilistic method can 

be applied. The wavelet transform is a suitable candidate for the sparse transformation due to the 

relative smooth characteristic of the normalized dielectric profile (NDP) with weak scatter (𝒳(𝑥, 𝑦) 

has close values in the cells of the target area). The discrete signal 𝑓[𝑛]  can be approximated as 

[130]: 

                            𝑓[𝑛] =
1

√𝑀
∑𝑊𝜙[𝑗0, 𝑘]

𝑘

𝜙𝑗0,𝑘[𝑛] +
1

√𝑀
∑∑𝑊𝜓[𝑗, 𝑘]𝜓𝑗,𝑘[𝑛]

𝑘

∞

𝑗=𝑗0

                         (4.8) 

where 𝜙𝑗0,𝑘[𝑛] is discrete scaling function defined as: 

                                                                  𝜙(𝑡) = {
1         0 ≤ 𝑡 ≤ 1
0       𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

                                                          (4.9) 

and 𝜓𝑗,𝑘[𝑛] is discrete wavelet function defined as: 

                                                                 𝜓(𝑡) =

{
 
 

 
 1          0 ≤ 𝑡 <

1

2

−1      
1

2
≤ 𝑡 < 1

0        𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

                                                      (4.10) 

Since the scaling functions and wavelet functions are orthogonal to each other, thus the wavelet 

coefficients can be calculated as [130]: 

                                                            𝑊𝜙[𝑗0, 𝑘] =
1

√𝑀
∑𝑓[𝑛]𝜙𝑗0,𝑘[𝑛]

𝑛

                                                (4.11) 

                                                           𝑊𝜓[𝑗, 𝑘] =
1

√𝑀
∑𝑓[𝑛]𝜓𝑗,𝑘[𝑛]

𝑛

, 𝑗 ≥ 𝑗0                                       (4.12) 

In (4.11), 𝑊𝜙[𝑗0, 𝑘] is the approximation coefficient and in (4.10), 𝑊𝜓[𝑗, 𝑘] is the detailed coefficient. 

To verify that the wavelet transformation can transform the low-contrast NDP into a sparse wavelet 

domain, a simple model with low-contrast NDP is firstly built to test the transformation and it is  
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Fig 4. 3: The non-sparse model used to test the wavelet transformation 

 

Fig 4. 4: The Haar wavelet coefficients (one-dimensional representation) for the non-sparse model used to assess the 

proposed imaging shceme 

 

shown in Figure 4.3. The non-sparse model has the dimensions of 80 𝑚𝑚 × 80 𝑚𝑚 (0.4𝜆𝑜 × 0.4𝜆𝑜), 

where 𝜆𝑜 is the wavelength in free space at the central frequency (𝑓 = 1.5 𝐺𝐻𝑧). The investigation  
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Fig 4. 5: The Haar wavelet coefficients (two-dimensional representation) for the non-sparse model used to assess the 

proposed imaging scheme. 

domain is discretized with 𝑁 = 16 × 16 grids; the size of each grid is 5 𝑚𝑚 × 5 𝑚𝑚. A square with 

size of 40 𝑚𝑚 × 40 𝑚𝑚 and contrast of 1.3 is included at the central of the investigation domain. 

This square can be regarded as the background in a realistic imaging application. Another square with 

size of 10 𝑚𝑚 × 10 𝑚𝑚 and contrast of 1.5 is positioned at the right corner of the former one. This 

small square can be considered as the target to be detected. It is worth mentioning that the contrast 

between the target and the background is only 1.15:1, which is a very low value indicating a 

challenging imaging problem.  

The non-sparse model shown in Figure 4.3 is represented using Haar wavelet basis. The one-

dimensional representation of Haar wavelet coefficients obtained through transforming the NDP of 

the non-sparse model in the wavelet domain is shown in Figure 4.4 and the two-dimensional 

representation is shown in Figure 4.5. It is indicated from Figure 4.4 and 4.5 that the number of non-

zero Haar wavelet coefficients is 29. Since the length of the entire Haar basis is 256 in this case, the 

sparsity of the model after the Haar wavelet transformation is (256 − 29) 256⁄ = 89%. This sparsity 

value implies the potential for the original NDP to be reconstructed using the proposed algorithm. 

To further prove that wavelet transformation can transform the non-sparse NDP of human brain into 

a sparse domain, a realistic head model acquired from MRI scans [79] is used to test the 

transformation. The head model consists of 128 × 128 × 128 cubical elements; each has the  
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Fig 4. 6: The realistic head model used to test the wavelet transformation 

 

Fig 4. 7: Normalized dielectric profile (NDP) of the realistic head phantom with a hemorrhagic stroke located at 

different positions. 
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Fig 4. 8: The Haar wavelet coefficients (one-dimensional representation) for the head model with a hemorrhagic stroke 

placed at three different positions. 

 

Fig 4. 9: The Haar wavelet coefficients (two-dimensional representation) for the head model with a hemorrhagic stroke 

placed at three different positions. 
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dimensions (mm) of 1.1 × 1.1 × 1.4. A transverse slice of the model at around 30 mm from the top 

of the head is shown in Figure 4.6. The seven main head tissues are included in the model; skin, skull, 

skeletal muscle, fat, blood, dura, cerebral spinal fluid (CSF), gray and white matter. These tissues 

were assumed to have the realistic dielectric properties as a function of frequency [80]. Figure 4.7 

shows the NDP of the use head model. An elliptical hemorrhagic stroke was placed at different 

positions (A: x=2 cm, y=1.5 cm, B: x=0 cm, y=2.5 cm, C: x= 1.5 cm, y=0 cm) with a major axis of 

5.5 cm and minor axis of 1.6 cm. The selected size of the stroke is chosen based on the available data 

from MRI and CT scans. The wavelet transformation is implemented on the head models A, B and 

C, respectively. The one-dimensional wavelet coefficients for the three head models are shown in 

Figure 4.8 (in log scale) and the two-dimensional representations are shown in Figure 4.9. It can be 

seen from Figure 4.8 and 4.9 that the transformed NDP of the head model exhibits a sparse 

characteristic with respect to the Haar wavelet coefficients. The numbers of the non-zero Haar 

coefficients for the head model with stroke placed at positions A, B and C are 2613, 2615 and 2572, 

respectively. Knowing that the length of the Haar basis is 16384 in these three cases, the Haar basis 

sparsity of these three cases can be found as 84.05%, 84.03% and 84.3%, respectively. These sparsity 

values imply the potential for the original NDP of the head model with stroke to be successfully 

reconstructed using the proposed scheme.  

 

4.1.3 Block-Sparse Bayesian Learning 
 

The ill-posed equation (4.6) can be solved using a probabilistic method based on block sparse 

Bayesian learning (BSBL) [126]-[127] that needs a small number of antennas and short convergent 

time. To use BSBL method, a sparse representation of �⃗⃗⃗� is required for achieving a convergent 

solution. However, the sparsity of �⃗⃗⃗�  is not possessed in many realistic situations, such as in 

biomedical imaging. Thus, it is necessary to transform the non-sparse �⃗⃗⃗� into a sparse domain where 

the Bayesian-based probabilistic method can be applied. The wavelet transformation which was 

introduced in the last section is a suitable candidate for the sparse transformation due to the relative 

smooth characteristic of the normalized dielectric profile (NDP) with weak scatter (�⃗⃗⃗�(𝑥, 𝑦) has close 

values in the cells of the target area). The validity of using wavelet transformation to transform the 

non-sparse NDP of human head into a sparse wavelet domain has been proved in the last section. 

Through using Haar-based wavelet transformation, the equation (4.6) can be re-written as: 

                                                                𝓑𝑞
𝑖−1𝓦−1𝑠𝑖 + 𝜖𝑞 = �⃗⃗⃗⃗�𝑞                                                             (4.13) 
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where 𝓦−1 is the inverse wavelet transform matrix and 𝑠 is the sparse representation of �⃗⃗⃗� in the 

wavelet domain. Equation (4.13) can be re-written as: 

                                                                        𝝓𝑞
𝑖−1𝑠𝑖 + 𝜖𝑞 = �⃗⃗⃗⃗�𝑞                                                              (4.14) 

where 𝝓𝑞
𝑖−1 = 𝓑𝑞

𝑖−1𝓦−1. In (4.14), �⃗⃗⃗⃗� ∈ ℛ𝑀×1 is the known measurement vector, 𝝓 ∈ ℛ𝑀×𝑁 (𝑀 ≪

𝑁) is the dictionary matrix and 𝑠 ∈ ℛ𝑁×1 is the sparse vector to be recovered. 

The block/group structure [131]-[132] can be utilized to solve the ill-posed model given by (4.14). 

To that end, 𝑠 can be considered as consisting of 𝐾 blocks: 

                                                                      𝑠 = [𝑠1
𝑇 , … , 𝑠𝑘

𝑇 , … , 𝑠𝐾
𝑇]𝑇                                                         (4.15) 

If we assume the length of each block 𝑙, then the 𝑘th block of 𝑠 is represented as: 

                                                                    𝑠𝑘
𝑇 = [𝑠(𝑘−1)×𝑙+1, … , 𝑠𝑘×𝑙]                                                      (4.16) 

The block structure of 𝑠 has a sparse characteristic which means only 𝑝 (𝑝 ≪ 𝐾) blocks are nonzero 

but at unknown positions. Based on (4.15) and [126]-[127], each block 𝑠𝑘 ∈ ℛ
𝑙×1 is assumed to have 

a multivariate Gaussian distribution as: 

                                             𝑝(𝑠𝑘;  𝓉𝑘 , 𝓒𝑘) =
1

√(2𝜋)𝑙|𝜮𝒌|
exp (−

1

2
𝑠𝑘
𝑇𝜮𝑘

−1𝑠𝑘)                                   (4.17) 

where |𝜮𝒌| is the determinant of 𝜮𝒌 and 𝜮𝑘 = 𝓉𝑘𝓒𝑘 . 𝓉𝑘  is a nonnegative parameter which can be 

used to control the sparsity of 𝑠𝑘 . 𝓒𝑘 ∈ ℛ
𝑙×𝑙  is a positive-definite matrix which exhibits the 

correlation of the 𝑘 th block. Because the diagonal elements in 𝜮𝒌  represent the variant of each 

member in 𝑠𝑘, 𝑠𝑘 becomes zero when 𝓉𝑘 = 0 (notice that the mean of 𝑠𝑘 is zero based on (4.17)). 

Assuming that the noise vector 𝜖 satisfies the Gaussian distribution with 𝑝(𝜖|𝛿)~𝒩(0, 𝛿𝐼) where 𝛿 

is a positive scalar, the posterior of 𝑠 is given by [133]: 

𝑝(𝑠|�⃗⃗⃗⃗�, 𝛿, {𝓉𝑘, 𝓒𝑘}𝑘=1,…,𝐾) =
1

√(2𝜋)𝑁|𝜮𝒙|
× exp(−

1

2
(𝑠 − �⃗⃗�

𝑥
)
𝑇
𝜮𝒙

−1(𝑠 − �⃗⃗�
𝑥
))      (4.18) 

                                                                             �⃗�𝑥 =
1

𝛿
𝜮𝒙𝝓

𝑻�⃗⃗⃗⃗�                                                               (4.19) 

                                                                            𝜮𝒙 = (𝜮𝑜
−1 +

1

𝛿
𝝓𝑻𝝓)

−1

                                              (4.20) 
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where 

                                                                        𝜮𝑜 = 𝑑𝑖𝑎𝑔{𝓉1𝓒1, … , 𝓉𝐾𝓒𝐾}                                               (4.21) 

Therefore, after the hyper-parameters 𝛿 and {𝓉𝑘 , 𝓒𝑘}𝑘=1,…,𝐾 are determined, the sparse vector 𝑠 (the 

sparse representation of �⃗⃗⃗�) can be decided as the mean of the posterior, which means 𝑠 = �⃗�𝑥. In 

[134], it is indicated that over fitting emerges if different covariance matrices 𝓒𝑘  are assigned to 

different blocks 𝑠𝑘. To avoid this situation, only one positive definite matrix 𝓒 is used to model each 

of the blocks 𝑠𝑘.  

Equation (4.20) indicates that: 

                                                                      𝜮𝒙 = (𝜮𝑜
−1 +

1

𝛿
𝝓𝑻𝑰𝝓)

−1

                                                  (4.22) 

Using the matrix identity: 

                                            (𝐴 + 𝐶𝐵𝐶𝑇)−1 = 𝐴−1 − 𝐴−1𝐶(𝐵−1 + 𝐶𝑇𝐴−1𝐶)−1𝐶𝐴−1                       (4.23) 

(4.22) can be rearranged as: 

                                                    𝜮𝒙 = 𝜮𝑜 − 𝜮𝑜𝝓
𝑻(𝛿𝑰 + 𝝓𝜮𝑜𝝓

𝑻)−1𝝓𝜮𝑜                                             (4.24) 

Substituting (4.24) in the expression of �⃗�𝑥, one can achieve  

                                            �⃗⃗�
𝑥
= (𝜮𝑜𝝓

𝑻 − 𝜮𝑜𝝓
𝑻(𝛿𝑰 + 𝝓𝜮𝑜𝝓

𝑻)
−1
𝝓𝜮𝑜𝝓

𝑻) �⃗⃗⃗⃗�                                       (4.25) 

Using the matrix identity: 

                                                             (𝐼 + 𝐴𝐵)−1𝐴 = 𝐴(𝐼 + 𝐵𝐴)−1                                                      (4.26) 

                                                        (𝐼 + 𝐴𝐵)−1 = 𝐼 − 𝐴(𝐼 + 𝐵𝐴)−1𝐵                                                    (4.27) 

(4.25) can be re-written as: 

               �⃗⃗�
𝑥
= 𝜮𝑜𝝓

𝑻(𝑰 − 𝝓𝜮𝑜𝝓
𝑻(𝛿𝑰 + 𝝓𝜮𝑜𝝓

𝑻)−1)�⃗⃗⃗⃗� = 𝜮𝑜𝝓
𝑻(𝛿𝑰 + 𝝓𝜮𝑜𝝓

𝑻)−1�⃗⃗⃗⃗�             (4.28) 

                                                                                  �⃗�𝑥 → 𝑠                                                                          (4.29) 



 
66 

 

Assuming the hyper-parameters as 𝐻 = {𝓉1, … , 𝓉𝐾 , 𝓒, 𝛿}, the expectation maximization method (EM) 

[126]-[127] seeks to maximize the 𝒪 function which treats 𝑠 as hidden variables as shown below: 

𝒪(𝐻|𝐻𝑜𝑙𝑑) = 𝐸𝑠|�⃗⃗⃗⃗�;𝐻𝑜𝑙𝑑[log 𝐿(�⃗⃗⃗⃗�, 𝑠;  𝐻)] = 𝐸𝑠|�⃗⃗⃗⃗�;𝐻𝑜𝑙𝑑[log 𝑝(�⃗⃗⃗⃗�|𝑠; 𝛿)] 

                                                 +𝐸𝑠|�⃗⃗⃗⃗�;𝐻𝑜𝑙𝑑[log 𝑝(𝑠; 𝓉1, … , 𝓉𝐾 , 𝓒)]                                                          (4.30) 

where 𝐻𝑜𝑙𝑑  is the value of the hyper-parameters from the last iteration. Aiming to estimate 

𝓽=[𝓉1, … , 𝓉𝐾] and 𝓒 which can maximize (4.30) by using the derivative of 𝒪(𝐻|𝐻𝑜𝑙𝑑), the first 

term in (4.30) can be ignored since it is not related to 𝓽 and 𝓒. Recall that 

                                        𝑝(𝑠;  𝓉1, … , 𝓉𝐾 , 𝓒) =
1

√(2𝜋)𝐾𝑙|𝜮𝑜|
𝑒𝑥𝑝 (−

1

2
𝑠𝑇𝜮𝑜

−1𝑠)                               (4.31) 

where 𝜮𝑜 = 𝓣⨂ 𝓒 and 𝓣 = 𝑑𝑖𝑎𝑔(𝓉1, … , 𝓉𝐾). 𝑨⨂𝑩 represents the Kronecker product of the two 

matrices 𝑨 and 𝑩. Take the logarithm of (4.31) one can obtain 

                                   log 𝑝(𝑠;  𝓽, 𝓒) ∝ −
1

2
log(|𝓣|𝑙|𝓒|𝐾) −

1

2
𝑠𝑇(𝓣−1⨂𝓒−1)𝑠                                (4.32) 

The notation of ∝ indicates that the terms which do not contribute to the next optimization process of 

the parameters are dropped. The derivation of (4.32) used some identities of linear algebra as shown 

below: 

                                                                       (𝑨⨂𝑩)−1 = 𝑨−1⨂𝑩−1                                                       (4.33) 

                                                    𝑑𝑒𝑡(𝑨⨂𝑩) = det(𝑨)𝑟𝑎𝑛𝑘(𝑩)𝑑𝑒𝑡(𝑩)𝑟𝑎𝑛𝑘(𝑨)                                      (4.34) 

Substituting (4.32) into (4.30),  

                   𝒪(𝓽, 𝓒) ∝ −
𝑙

2
log(|𝓣|) −

𝐾

2
log(|𝓒|) −

1

2
𝑇𝑟[(𝓣−1⨂𝓒−1)(𝜮𝑥 + �⃗�𝑥�⃗�𝑥

𝑇
)]                 (4.35) 

where 𝜮𝑥 and �⃗�𝑥 are the covariance matrix and mean value of 𝑠, respectively. They are calculated 

from (4.19)-(4.20) using the old value of 𝐻 (the value from the last iteration). Notice that in (4.35), 

𝑝(𝑠|�⃗⃗⃗⃗�; 𝐻𝑜𝑙𝑑) is dropped since tis value only depends on the old value of 𝐻; thus it is not related to 

the next optimization of 𝐻. To estimate the values of 𝓽 which can maximize (4.32), the derivative of 

(4.35) with regard to 𝓽 is 
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𝜕𝒪

𝜕𝓉𝑘
= −

𝑙

2𝓉𝑘
+

1

2𝓉𝑘
2 𝑇𝑟[𝓒

−1(𝜮𝑥
𝑘 + �⃗�𝑥

𝑘(�⃗�𝑥
𝑘)𝑇)]                                  (4.36) 

By setting (4.36) equal to zero, the estimation of 𝓉𝑘 can be achieved as 

                                                               𝓉𝑘 =
1

𝑙
𝑇𝑟[𝓒−𝟏(𝜮𝑥

𝑘 + �⃗�𝑥
𝑘(�⃗�𝑥

𝑘)𝑇)]                                               (4.37) 

where �⃗�𝑥
𝑘 ∈ ℛ𝑙×1 is the 𝑘th block in �⃗�𝑥 and 𝜮𝑥

𝑘 ∈ ℛ𝑙×𝑙 is the 𝑘th principle diagonal block in 𝜮𝑥. 

To estimate 𝓒, the derivative of (4.35) in regard to 𝓒 can be expressed as 

                                             
𝜕𝒪

𝜕𝓒
= −

𝐾

2
𝓒−1 +

1

2
∑

1

𝓉𝑘

𝐾

𝑘=1

𝓒−1(𝜮𝑥
𝑘 + �⃗�𝑥

𝑘(�⃗�𝑥
𝑘)𝑇)𝓒−1                                (4.38) 

The derivation of (4.38) uses the following identities: 

                                                                      
𝜕𝑙𝑛|𝑑𝑒𝑡(𝑿)|

𝜕𝑿
= (𝑿−1)𝑇                                                         (4.39) 

                                                             
𝜕𝑇𝑟(𝑨𝑿−𝟏𝑩)

𝜕𝑿
= −(𝑿−𝟏𝑩𝑨𝑿−𝟏)𝑇                                               (4.40) 

Since 𝓒 and 𝜮𝑥
𝑘 in (4.38) are symmetric matrices, the transpose is dropped. By setting (4.38) equal to 

zero, the estimate of 𝓒 can be achieved as 

                                                                  𝓒 =
1

𝐾
∑

𝜮𝑥
𝑘 + �⃗�𝑥

𝑘(�⃗�𝑥
𝑘)𝑇

𝓉𝑘

𝐾

𝑘=1

                                                         (4.41) 

𝛿 can be estimated using a similar method and in this case the second term in (4.30) is ignored since 

it is not related to 𝛿. 

Recall that 𝑝(�⃗⃗⃗⃗�|𝑠; 𝛿)~𝒩�⃗⃗⃗⃗�|𝑠(𝝓�⃗⃗�, 𝛿𝑰), which can be expressed as 

                                              𝑝(�⃗⃗⃗⃗�|𝑠; 𝛿) =
1

√(2𝜋)𝑀|𝛿𝑰|
𝑒
(−
1
2
(�⃗⃗⃗⃗�−𝝓�⃗⃗�)𝑇(𝛿𝑰)−1(�⃗⃗⃗⃗�−𝝓�⃗⃗�))

                            (4.42) 

Thus, the 𝒪 function with regard to 𝛿 can be expressed as 

𝒪(𝛿) = 𝐸𝑠|�⃗⃗⃗⃗�;𝐻𝑜𝑙𝑑[log 𝑝(�⃗⃗⃗⃗�|𝑠; 𝛿)] ∝  −
𝑀

2
𝑙𝑜𝑔(𝛿) −

1

2𝛿
𝐸𝑠|�⃗⃗⃗⃗�;𝐻𝑜𝑙𝑑[‖�⃗⃗⃗⃗� − 𝝓�⃗⃗�‖2

2] 
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= −
𝑀

2
𝑙𝑜𝑔(𝛿) −

1

2𝛿
[‖�⃗⃗⃗⃗� − 𝝓�⃗�𝑥‖2

2 + 𝑇𝑟(𝜮𝒙𝝓
𝑻𝝓)] 

= −
𝑀

2
𝑙𝑜𝑔(𝛿) −

1

2𝛿
[‖�⃗⃗⃗⃗� − 𝝓�⃗�𝑥‖2

2 + 𝛿𝑜𝑙𝑑𝑇𝑟 (𝜮𝒙(𝜮𝒙
−𝟏 − 𝜮𝒐

−𝟏)) 

                                = −
𝑀

2
𝑙𝑜𝑔(𝛿) −

1

2𝛿
[‖�⃗⃗⃗⃗� − 𝝓�⃗�𝑥‖2

2 + 𝛿𝑜𝑙𝑑[𝑁 − 𝑇𝑟(𝜮𝒙𝜮𝒐
−𝟏)]                          (4.43) 

By setting (4.43) equal to zero, the estimation of 𝛿 can be achieved as 

                                                   𝛿 =
‖�⃗⃗⃗⃗� − 𝝓�⃗�𝑥‖2

2 + 𝛿𝑜𝑙𝑑[𝑁 − 𝑇𝑟(𝜮𝒙𝜮𝒐
−𝟏)]

𝑀
                                      (4.44) 

where 𝛿𝑜𝑙𝑑 is the value of 𝛿 from the last iteration. Rearranging (4.19)-(4.20) and using some matrix 

identities, the profile �⃗⃗⃗� can be calculated from  

                                                        �⃗⃗⃗� = 𝓦−1𝜮𝑜𝝓
𝑻(𝛿𝑰 + 𝝓𝜮𝑜𝝓

𝑻)−1�⃗⃗⃗⃗�                                               (4.45) 

The parameters 𝛿  and 𝜮𝑜  can be calculated using (4.37), (4.41) and (4.44). Thus, an iterative 

algorithm, which iterates between (4.19)-(4.20) and (4.44) is needed until a certain convergent 

criterion is satisfied. To the end, a reasonable initial guess for the hyper-parameters has to be 

determined. 

As a summary, the procedure of the proposed imaging scheme includes the following steps 

1) Obtain the measurement data �⃗⃗⃗⃗�𝑞 for each observation view (𝑞 = 1,… , 𝑄) and initialize the 

NDP using the initial estimation  𝒳⃗⃗⃗⃗⃗ = [1,… , 1]. 

2) Calculate the elements in 𝓑𝑞
𝑖−1 by using  𝒳⃗⃗⃗⃗⃗ and build the Born iterative model. 

3) Transfer the original NDP  𝒳⃗⃗⃗⃗⃗ into a sparse domain 𝑠 by using the wavelet transform. Initialize 

the hyper-parameters 𝛿  and {𝓉𝑘, 𝓒𝑘}𝑘=1,…,𝐾  and build the BSBL framework. According to 

[126]-[127], reasonable initial values for these parameters are  �̂� = 1 × 10−3, �̂�𝑘 = 1, and 

�̂�=identity matrix. 

4) Use BSBL framework based on expectation-maximization to obtain the new estimated hyper-

parameters and 𝑠 (the sparse representation of  𝒳⃗⃗⃗⃗⃗ in the wavelet domain). 

5) If the convergent criterion for the hyper-parameters is satisfied, go to step 6. If it is not 

satisfied, update the values of the hyper-parameters and go to step 4. 
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Fig 4. 10: Reconstructed normalized dielectric profile (NDP) using proposed technique at (a)-(d) 1 GHz, (e)-

(h) 1.5 GHz, and (i)-(l) 2 GHz with different SNR levels. 

6) Use the inverse wavelet transform to transfer the sparse representation of  𝒳⃗⃗⃗⃗⃗  back to the 

original domain then calculate the new profile (�⃗⃗⃗�𝑛𝑒𝑤).  

7) If the convergent criterion for the profile is satisfied, return �⃗⃗⃗�𝑛𝑒𝑤  and end the entire 

procedure. If it is not satisfied, update �⃗⃗⃗� with �⃗⃗⃗�𝑛𝑒𝑤 and go to step 2. 

4.2 Evaluation on Simple Non-Sparse Model 
 

The proposed algorithm is firstly assessed using a simple non-sparse model as shown in Figure 4.3. 

The details of this model have been elaborated in the above section. Six (𝑄=6) uniformly distributed 

antennas are placed around the investigation domain of Figure 4.3. One antenna is responsible for 

illuminating the investigation domain, whereas the other five antennas collect the scattered fields. 



 
70 

 

The model is reconstructed using the proposed imaging scheme under three different frequencies (1 

GHz, 1.5 GHz and 2 GHz) and different signal-to-noise (SNR) defined as [81] 

                                                                  𝑆𝑁𝑅 = 10 log
‖�⃗⃗⃗⃗�‖2

2𝑄𝑀𝜎2
                                                             (4.46) 

The reconstructed normalized dielectric profiles (NDP) under different incident frequencies and SNR 

levels are shown in Figure 4.10. It indicates that the NDP of the non-sparse model can be accurately 

reconstructed using the proposed method for reasonable values of signal-to-noise ratio (SNR), i.e. 

around 25 dB. For lower values of SNR, the accuracy of reconstructed NDP starts to deteriorate, but 

the target is still detectable till SNR of around 10 dB. As expected, the resolution of the reconstructed 

images improves at higher frequencies.  

To quantify the performance of the imaging algorithm, the reconstruction normalized error rate (NER) 

is used: 

                                                   𝑁𝐸𝑅 = √
1

𝑁
∑ |

𝒳𝐺(𝑥𝑛, 𝑦𝑛) − �⃗⃗⃗�(𝑥𝑛, 𝑦𝑛)

𝒳𝐺(𝑥𝑛, 𝑦𝑛)
|

2𝑁

𝑛=1

                                      (4.47) 

where 𝒳𝐺(𝑥𝑛, 𝑦𝑛) is the NDP of the ground truth, i.e. the real profile. The accuracy of the recovery 

(NER) is calculated using (4.47) and the results are shown in Figure 4.11. It can be seen from Figure 

4.11 that the proposed scheme can achieve satisfactory result with the value of NER smaller than 2 ×

10−4. The algorithm can achieve better result when higher frequency is used (the value of NER is 

better than 1 × 10−4 when 2 GHz incident wave is used). Recall from Figure 4.2 that two iterative 

processes are involved in the proposed imaging scheme; the internal iteration to estimate the hyper-

parameters using expectation-maximization (EM) method and the external iteration to decide if the 

estimated NDP achieves certain convergent criterion. Therefore, it is important to investigate the 

convergence performance of the internal and external iterative process. The 𝒪 function defined by 

(4.30) is used to evaluate the convergence rate of the internal iteration, whereas the NER of the 

estimated NDP is used to evaluate the convergence of the external iterative process. The values of 𝒪 

and NER at each iteration are shown in Figure 4.12 and 4.13, respectively. The two figures indicate 

that the 𝒪 function and NER converge after 30 and 7 iterations, respectively, at the investigated 

incident frequencies for both noiseless case and signal to noise ratio (SNR) of 25 dB. Those results 

indicate that the proposed imaging scheme can achieve a satisfactory convergence rate at both the 

internal and external iterative processes. To compare the performance of the proposed method with  
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Fig 4. 11: NER performance of the proposed technique versus SNR at different frequencies. 

 

Fig 4. 12: The convergence rate of the expectation-maximization (EM) method used in the internal iteration at different 

incident frequencies and noise levels. 
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Fig 4. 13: The convergence rate for NER of the estimated NDP in the external iteration at different incident frequencies 

and noise levels. 

 

 
Fig 4. 14: Reconstructed NDP at 1.5 GHz using (a)-(d) proposed, (e)-(h) BIM-LS [50], (i)-(l) CoSaMP [110], and [m]-

[p] CGLS methods [135]. 
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           (a) 

 

         (b) 

 

            (c) 

Fig 4. 15: Performance of different imaging techniques at (a) 1 GHz, (b) 1.5 GHz, and (c) 2 GHz. 
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other methods, the non-sparse model of Figure 4.3 is reconstructed using three published methods 

(BIM-LS, CoSaMP, and CGLS) [50], [110], [135] as shown in Figure 4.14. For the Born iterative 

formulation solved using least square (LS) method, the NDP cannot be recovered accurately because 

only a small number of antennas (6 in this case) are used in the recovery and thus it suffers from the 

ill-posedness of the inverse problem. If the CS based method (CoSaMP) is applied on solving (4.13), 

the non-sparse profile cannot be recovered as that method needs the sparsity of the profile to be 

initially pre-defined. The common way to pre-define the sparsity of the profile is to take the value of 

the sparsity as large as possible but less than or equal to 1/3 of the measurement number [136]. Since 

one of our main targets is to use small number of antenna, i.e. only six antennas, in the proposed 

model for head imaging, the number of measurements is 36; thus, the maximum sparsity can be pre-

defined as 12. Since this value is smaller than the true sparsity of the model, the recovered image 

using CoSaMP is significantly distorted.  

Table 4. 1: Computation time of different methods 

Frequency 

[GHz] 
Method 

∆𝑡 [s] 

Noiseless SNR=25 dB SNR=5 dB 

1 

This work 

CoSaMP 

BIM-LS 

CGLS 

14.3 

25 

10.1 

9.9 

10.2 

25.8 

10.1 

9.5 

10.6 

25.8 

10.3 

10.3 

1.5 

This work 

CoSaMP 

BIM-LS 

CGLS 

11 

28.4 

11.2 

11.8 

10.7 

27.1 

10.6 

11.5 

11.3 

27.5 

10.3 

11.5 

2 

This work 

CoSaMP 

BIM-LS 

CGLS 

10.6 

25.7 

10.7 

13.6 

10.4 

25.1 

11.4 

13.6 

10.3 

26.2 

10.6 

13.4 

 

The conjugate gradient least square (CGLS) method can generate better results compare with BIM-

LS and CoSaMP methods. However, it still suffers from the ill-posedness of the inverse problem due 

to the small number of used antennas (receivers). Additionally, it can be seen from Fig. 4.14 that 

when the SNR becomes low, such as less than 10 dB, the reconstructed NDP using CGLS method 

deteriorates significantly compared with BIM-LS and the proposed method.   
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Figure 4.15 illustrates the NER performance of different methods versus SNR at different frequencies. 

It can be concluded from Figure 4.15 that the proposed method can achieve much better performance 

than the other three methods at any environment, i.e. any SNR. The computation time is also a vital 

issue for NDP recovery problem since in realistic applications, such as in head stroke detection, the 

time to get imaging results is critical in that emergent scenario. Table 4.1 indicates the computation 

time required for each of the tested methods. It is clear from Table 4.1 that the computational time of  

the proposed method is comparable to those of BIM-LS and CGLS. Taking the accuracy of 

reconstruction and computation time into account, it is possible to conclude from Figure 4.15 and 

Table 4.1 that the proposed method is more efficient than the other three methods in a realistic 

imaging environment.  

 

4.3 Evaluation on Numerical Head Phantom 
 

To further assess the proposed imaging scheme, it is tested on microwave-based head imaging using 

a realistic head model which was elaborated in Figure 4.6, section 4.2.2. Six uniformly distributed 

antennas were used to irradiate the head model at suitable frequencies and capture the scattered 

signals. The proposed imaging technique was then used to detect the position of the haemorrhagic 

stroke in the head model. Figure 4.16-4.18 shows the reconstructed dielectric profiles using the 

proposed imaging technique. The obtained results indicate that the technique can successfully detect 

the position of the assumed strokes when the SNR is around 25 dB, which is a realistic value for this 

imaging environment.  

The convergent rate is another vital issue in microwave head imaging algorithms since it influences 

the computation time, which is a critical factor in head imaging due to the need for a fast detection 

and medication of any brain injury. Figure 4.19 shows NER as a function of the iteration time under 

different noise levels.  It can be seen that the proposed algorithm quickly converges after only 10 

iterations with a total time of around 100 s. The performance of the proposed method was also 

numerically assessed and the results are shown in Figure 4.20 for different SNRs. It can be seen that 

the presented method has almost similar performances when using different frequencies if the SNR 

is more than 25 dB. However, the use of lower frequencies achieves better performance at the noisy 

environment (SNR less than 10 dB). This result can be explained by the fact that the attenuation due 

to signal penetration inside the head is much higher at the high frequencies. Thus, the scattered signals  
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Fig 4. 16: The reconstructed dielectric profiles of a realistic head phantom with a haemorrhagic stroke located at 

different positions using the proposed imaging technique. The performance is evaluated under different SNR levels and 

the incident frequency f=0.6 GHz. 

 

Fig 4. 17: The reconstructed dielectric profiles of a realistic head phantom with a haemorrhagic stroke located at 

different positions using the proposed imaging technique. The performance is evaluated under different SNR levels and 

the incident frequency f=0.8 GHz. 
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Fig 4. 18: The reconstructed dielectric profiles of a realistic head phantom with a haemorrhagic stroke located at 

different position using the proposed imaging technique. The performance is evaluated under different SNR levels and 

the incident frequency f=1 GHz. 

 

Fig 4. 19: NER as the function of iteration time under different noise levels. 
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Fig 4. 20: NER of the proposed techniques when used in head imaging with different SNR 

 

from different tissues inside the head that are needed in the profile reconstruction are much lower. 

Under the noisy environment, those signals can be fully embedded in the noise.    

 

4.4 Discussions and Conclusions 
 

In this chapter, an innovative imaging scheme based on block sparse Bayesian learning (BSBL) and 

wavelet transform has been proposed. The proposed method aims to solve the problem of the inability 

to use large number of antennas   when microwave tomography method is used to reconstruct 

electrical properties of a limited-volume imaged object. Since the contrast-field profile of the imaged 

object is not sparse in many applications, such as head imaging, the wavelet transform was applied 

to convert the non-sparse profile into a sparse domain (the wavelet domain). The contrast-field profile 

of the object was then recovered using BSBL along with the Born iterative method. The proposed 

imaging scheme has been successfully evaluated using a non-sparse model. Compared with other 

techniques, the proposed one can reconstruct the profile of the non-sparse domain using small number 

of antennas (only 17% number of antennas are used when compared with other traditional methods) 

with a fast convergent time. To further assess the proposed techniques on a real-life problem, it was 

used to reconstruct the dielectric profile of a numerical head model, which includes all the main head 

tissues with their realistic dielectric properties. The presented results have indicated the capability of 
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the technique to reconstruct the dielectric profile of the head successfully and to accurately detect a 

haemorrhagic stroke placed at different positions.  
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Chapter 5: Optimization Techniques for 

Radar-based Imaging   
 

5.1 Optimization-based Confocal Algorithm in Microwave Head 

Imaging 
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Fig 5. 1: The imaging domain 

Assume the imaging domain of Figure 5.2. An antenna array of 𝑄 elements uniformly surrounds the 

imaging domain along the contour 𝑆. The positions of the antennas are denoted as 

                                                                    𝑨 = [𝒂𝟏, … 𝒂𝒒, … , 𝒂𝑸]
𝑇
                                                             (5.1) 

where 𝒂𝒒 = [𝑥𝒒
𝒂, 𝑦𝑞

𝑎]
𝑇
 is the coordinate of the 𝑞𝑡ℎ antenna. The imaging area is represented by 𝑉 

and the imaging points within 𝑉 are denoted as  

                                                                        𝑰 = [𝒊𝟏, … 𝒊𝒎, … , 𝒊𝑴]
𝑇                                                            (5.2) 
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where 𝒊𝒎 = [𝑥𝒎
𝒊 , 𝑦𝑚

𝑖 ]
𝑇

 is the coordinate of the 𝑚𝑡ℎ imaging point. The boundary of the imaged 

object is divided into 𝑁 entry points which are represented as  

                                                                      𝑩 = [𝒃𝟏, … , 𝒃𝒏, … , 𝒃𝑵]
𝑇                                                         (5.3) 

where 𝒃𝒏 = [𝑥𝒏
𝒃, 𝑦𝑛

𝑏]
𝑇
 is the coordinate of the 𝑛𝑡ℎ entry point. Each of the entry points is assigned 

the dielectric constants expressed by the vector  

                                                                            𝜺 = [휀1, 휀2, … , 휀𝑁]                                                               (5.4) 

The number of the entry points should be more than the number of antenna elements. Much larger 

number of entry points gives better imaging results but needs longer time to converge. 

Assume using a mono-static approach with the operating frequency range from 𝑓1 to 𝑓𝐾, which is 

sampled as the vector 𝑭 = [𝑓1, … , 𝑓𝑘 , … , 𝑓𝐾]
𝑇 . Thus, the reflection coefficients measured at the 𝑄 

antennas are the data needed for imaging and detection and can be expressed as: 

                                                               𝑺 = [

𝑆(𝒂𝟏, 𝑓1 ) ⋯ 𝑆( 𝒂𝑸, 𝑓1)

⋮ ⋱ ⋮
𝑆(𝒂𝟏, 𝑓𝐾) ⋯ 𝑆( 𝒂𝑸, 𝑓𝐾)

]                                               (5.5) 

where 𝑆(𝒂𝒒, 𝑓𝑘) is the reflection coefficient for the 𝑞𝑡ℎ antenna at the 𝑘𝑡ℎ frequency point and 𝑺 ∈

ℂ𝐾×𝑄  is a complex matrix. The inverse Fourier transform is then implemented to transfer the 

frequency domain data 𝑺 to the time domain 

                                             𝓣 = 𝓕−1𝑺 =

[
 
 
 

𝓉(𝒂𝟏, 0) ⋯ 𝓉(𝒂𝑸, 0)

⋮ ⋱ ⋮

𝓉 (𝒂𝟏,
𝐾 − 1

∆𝑓𝐾
) ⋯ 𝓉 (𝒂𝑸,

𝐾 − 1

∆𝑓𝐾
)
]
 
 
 

                                 (5.6) 

where 𝓣 ∈ ℂ𝐾×𝑄 is the matrix with time domain data and 𝓉 (𝒂𝒒,
𝑘−1

∆𝑓𝐾
) is the time domain data for the 

𝑞𝑡ℎ antenna at the time 
𝑘−1

∆𝑓𝐾
. 𝓕 is the Fourier transform matrix which can be represented as 

                                                       𝓕 =

[
 
 
 
 

1 1 1
1 𝑊𝐾

1 𝑊𝐾
2

1 𝑊𝐾
2 𝑊𝐾

4
⋯

1
𝑊𝐾

𝐾−1

𝑊𝐾
𝐾−2

⋮ ⋱ ⋮
1 𝑊𝐾

𝐾−1 𝑊𝐾
𝐾−2 ⋯ 𝑊𝐾

1 ]
 
 
 
 

                                           (5.7) 

where 𝑊𝐾
𝑘 = exp(−𝑗2𝜋𝑘/𝐾) and 𝓕 ∈ ℂ𝐾×𝐾. 
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In head imaging, the small backreflected signals from tissues, including any stroke, inside the head 

can be dominated by strong reflection (clutter) from the skin-free space interface. To avoid that 

scenario, the clutter is removed by subtracting the time domain data of two adjacent antennas. The 

reason for adopting this approach is the similarity in the clutter received by any pair of neighbouring 

antennas. This process can be represented as: 

                                 

{
 
 

 
 𝓉 (𝒂𝒒,

𝑘 − 1

∆𝑓𝐾
) = 𝓉 (𝒂𝒒,

𝑘 − 1

∆𝑓𝐾
) − 𝓉 (𝒂𝒒−𝟏,

𝑘 − 1

∆𝑓𝐾
) , 𝑞 ≠ 1

𝓉 (𝒂𝒒,
𝑘 − 1

∆𝑓𝐾
) = 𝓉 (𝒂𝑸,

𝑘 − 1

∆𝑓𝐾
) − 𝓉 (𝒂𝒒,

𝑘 − 1

∆𝑓𝐾
) , 𝑞 = 1

                               (5.8) 

The propagation time of the signal from any antenna to a certain point 𝐼𝑚 ∈ 𝑉 within the imaged 

domain is calculated using the dielectric constant 휀𝑛 assigned to the entry points of that signal. Thus, 

the propagation time from the 𝑞𝑡ℎ antenna to the 𝑚𝑡ℎ point inside the head, 𝜏𝑞(𝒊𝒎), is 

                                               𝜏𝑞(𝒊𝒎) = 𝑚𝑖𝑛𝒃𝒏∈𝑩 {
‖𝒂𝒒 − 𝒃𝒏‖

𝑐
+
‖𝒃𝒏 − 𝒊𝒎‖√휀𝑛

𝑐
}                               (5.9) 

It is notable that in traditional confocal algorithms, √휀𝑛 is replaced by a certain effective dielectric 

constant √휀𝑒𝑓𝑓 irrespective of the antenna’s position, entry point of the signal, and its reflection point. 

In the proposed imaging algorithm, the propagation time from the 𝑞𝑡ℎ antenna to the 𝑚𝑡ℎ imaging 

point is a function of the dielectric constant assigned to each entry point 𝒃𝒏 and thus it can be further 

denoted as  𝜏𝑞(𝒊𝒎, 𝜺 ). After 𝜏𝑞(𝒊𝒎, 𝜺 ) is calculated, the image intensity of 𝐼𝑚 is calculated as: 

                                                        𝒵(𝒊𝒎, 𝜺 ) =∑ |𝓉(𝒂𝒒, 2𝜏𝑞(𝒊𝒎, 𝜺 ) )|
𝑄

𝑞=1
                                        (5.10) 

It is apparent from (5.5)-(5.10) that the image intensity 𝐼𝑚 and thus quality of the generated image 

depends on the dielectric constant vector 𝜺. In head imaging, if there is a stroke, the image intensity 

should be focused at the position of the stroke assuming that the strong clutter due to the skin-free 

space interface is removed in the pre-processing step. That focusing can always converge to the 

position of the stroke if the dielectric constant vector 𝜺 is chosen appropriately. This concept indicates 

that a better image quality can be achieved through optimizing 𝜺. To optimize 𝜺, an optimization 

objective has to be defined firstly. To that end, an image intensity related metric 𝒪 is defined as the  
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Fig 5. 2: Expansion and sub-gridding of the imaged area 𝑽 

optimization objective. To calculate 𝒪, the imaging area 𝑉 is firstly expanded to form a rectangular 

area and then sub-gridded as shown in Figure 5.3.  

Sub-gridding is used to enable to optimization objective to find the optimum value of 𝜺 that focuses 

the image at a certain region not a cell. The normal size of one imaging cell 𝒊𝒎 is too small (1 ×

1𝑚𝑚2). Thus, if the algorithm is based on the intensity at one cell, it might converge at one imaging 

cell resulting in a focused imaging area that is too small and might be even considered as noise source. 

The small size of the imaging cell also increases the possibility of divergent solution. It is notable 

that the sub-gridded imaging cell is only used for the optimization process to achieve the optimum 𝜺 

but the final image will still use the original imaging cell (size of 1 × 1𝑚𝑚2). For early stage 

detection, the size of the stroke can be considered around 2 × 2𝑐𝑚2. Thus, the size of each sub-

gridding cell 𝒈𝒋 is assumed as 2 × 2𝑐𝑚2, which means each sub-gridded cell includes 400 original 

imaging cells. For simplicity, the utilized sub-gridding expands the imaging area to a general 

rectangular shape.  

It can be seen from Figure 5.3 that the imaging cells are divided into two parts; cells inside and outside 

the imaged domain 𝑉. The intensity in cells outside 𝑉 is set to 0. Therefore, the image intensity for 

the entire imaging area is calculated as 
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{
 

 
𝒵(𝒊𝒎, 𝜺 ) = ∑|𝓉(𝒂𝒒, 2𝜏𝑞(𝒊𝒎, 𝜺 ) )|,

𝑄

𝑞=1

 𝒊𝒎 ∈ 𝑉

𝒵(𝒊𝒎, 𝜺 ) = 0,                                           𝒊𝒎 ∉ 𝑉

                               (5.11) 

Assume the original imaging cells 𝒊𝒎 within one sub-gridding cell 𝒈𝒋 is denoted as the set  𝛺𝑗, then 

the image intensity for 𝒈𝒋 is calculated as 

                                                           𝒵𝒈𝒋
𝑠𝑢𝑏(𝒊𝒎, 𝜺) =

∑ 𝒵(𝒊𝒎, 𝜺 )𝒊𝒎

∑ 𝜒𝑉(𝒊𝒎)𝒊𝒎

, 𝒊𝒎 ∈ 𝛺𝑗                                          (5.12) 

where 𝜒𝑉(∙) is the indicator function for the set 𝑉. It can be seen from (5.12) that the image intensity 

𝒈𝒋 is the average intensity of one sub-gridded cell after excluding the original imaging cells outside 

the imaging domain 𝑉. This exclusion aims to avoid effect of boundary head cells. The imaging 

intensity for all the sub-gridded cells is calculated using (5.12) and denoted as the vector 

                                                                  𝑮 = [𝒵𝒈𝟏
𝑠𝑢𝑏 , … , 𝒵𝒈𝒋

𝑠𝑢𝑏 , … , 𝒵𝒈𝑱
𝑠𝑢𝑏]                                               (5.13) 

where 𝐽 is the number of sub-gridding.   

The objective of the optimization is defined using the metric 𝒪, which is calculated as  

                                                                   𝒪(𝜺) =
max(𝑮)

‖𝑮‖𝟏 −max(𝑮)
                                                        (5.14) 

Thus, the optimum estimate of the dielectric constant vector 𝜺𝑜𝑝𝑡  can be achieved through 

maximizing 𝒪 

                                                                       𝜺𝑜𝑝𝑡 = argmax
𝜺

{𝒪(𝜺)}                                                         (5.15) 

The process of searching the optimum 𝜺𝑜𝑝𝑡 to maximize 𝒪(𝜺) is implemented using particle swarm 

optimization (PSO) and the details of PSO method will be explained in the following section. The 

proposed algorithm is depicted by the flowchart shown in Figure 5.4 and summarized for head 

imaging by following steps: 

1) Collect the frequency domain data 𝑺 (the reflection coefficients) from the antenna array. 

2) Transfer the frequency domain 𝑺 to time domain data 𝓣 using (5.5)-(5.7) then remove the skin 

reflections using (5.8) to obtain 𝜏. 

3) Initialize the dielectric constant vector 𝜺. 
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Fig 5. 3: Flowchart of the proposed algorithm 

 

4) Calculate the image intensity 𝒵 for each of the imaging cells using 𝜺 and (5.9)-(5.10). 

5) Expand and sub-grid the original imaging area as the new area 𝑉 and calculate the image 

intensity 𝒵𝑠𝑢𝑏 for each of the sub-gridded cells in 𝑉 using (5.11)-(5.12). 
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6) Calculate the metric 𝒪 using (5.14) then use PSO to find 𝜺𝑛𝑒𝑤 as the new estimation for 𝜺 to 

maximize 𝒪. 

7) Continue the optimization by updating 𝜺 and going to step (4) until 𝒪  is converged (the 

increase in 𝒪 between two consecutive iterations is smaller than 1 × 10−5), which is the usual 

case if there is a stroke, or the entire procedure arrives the maximum iteration time, which is 

the usual case when there is no stroke.  

5.2 Particle Swarm Optimization 
 

Particle swarm optimization (PSO) is based on a stochastic process [142]. Different from evolutionary 

algorithms, PSO does not resample the populations in the mutation procedure but “Tweaked” the 

populations based on the newly discovered space. PSO method is inspired by the behaviour of 

swarms, in which the candidate solutions are not referred as a population of individuals but as a swarm 

of particles [142]. A particle is composed with two parts: 

1. The location of a particle in the searching space which is defined as �⃗� = (𝑥1, 𝑥2, … ). 

2. The velocity of a particle which is defined as �⃗� = (𝑣1, 𝑣2, … ). Assume at times 𝑡 − 1 and 𝑡, 

the locations of a particle is �⃗�𝑡−1 and �⃗�𝑡, respectively, then the velocity of the particle at time 

𝑡 is calculated as �⃗� = �⃗�𝑡 − �⃗�𝑡−1. 

Each particle is initialized with a random location and a random velocity vector. Three factors are 

defined in the optimization process [142]: 

1. The best location �⃗�∗ that the particle �⃗� has found so far. 

2. The best location �⃗�+  that any of the informants of the particle �⃗�  have found so far. The 

informants of the particle �⃗� consist of a small set of particles which are randomly selected 

during each iteration. The particle �⃗� belongs to its own informants.  

3. The best location �⃗�! that all the particles have found so far. 

During each iteration, the following operations are implemented [142]: 

1. Calculate the quality of each particle and update the best locations if the current ones are 

better than the previous ones. 

2. Each particle �⃗� is updated by its velocity vector �⃗�. The velocity vector is calculated by adding 

in a vector towards �⃗�+ (�⃗�+), a vector towards �⃗�! (�⃗�!), and a vector towards �⃗�∗ (�⃗�∗). This 

summation is affected by a random noise.  

3. Each particle is moved based on its velocity vector. 



 
87 

 

The pseudocode of the PSO method is shown below [142]: 

Particle Swarm Optimization (PSO) 

Initialization: 

Swarmsize ← the number of particles 

𝛼 ← proportion of the velocity �⃗� to be reserved 

𝛽 ← proportion of the velocity �⃗�∗ to be reserved 

𝛾 ← proportion of the velocity �⃗�+ to be reserved 

𝛿 ← proportion of the velocity �⃗� ! To be reserved 

휀 ← the size of a jump for a particle 

𝑃 ← {} 

𝐵𝑒𝑠𝑡⃗⃗⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ← {} 

for swarmsize times do 

 𝑃 ← 𝑃 ∪ {new particle �⃗� with random velocity �⃗�} 

repeat 

 for each particle �⃗� ∈ 𝑃 with velocity �⃗� do 

  AssessFitness(�⃗�) 

  if 𝐵𝑒𝑠𝑡⃗⃗⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ = {} or Fitness(�⃗�)>Fitness(𝐵𝑒𝑠𝑡⃗⃗⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ) then 

   𝐵𝑒𝑠𝑡⃗⃗⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ← �⃗� 

 for each particle �⃗� ∈ 𝑃 with velocity �⃗� do 

  �⃗�∗ ← previous best location of the particle �⃗� 

  �⃗�+ ← previous best location from the informants of the particle �⃗� 

  �⃗�! ← previous best location from any of the particles 

   for  each dimension 𝑖 do 

   𝑏 ← random number between 0 and 𝛽 

   𝑐 ← random number between 0 and 𝛾 

   𝑑 ← random number between 0 and 𝛿 

   𝑣𝑖 ← 𝛼𝑣𝑖 + 𝑏(𝑥𝑖
∗ − 𝑥𝑖) + 𝑐(𝑥𝑖

+ − 𝑥𝑖) + 𝑑(𝑥𝑖
! − 𝑥𝑖) 

 for each particle �⃗� ∈ 𝑃 with velocity �⃗� do 

  �⃗� ← �⃗� + 휀�⃗� 

until 𝐵𝑒𝑠𝑡⃗⃗⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  is the most optimum solution or it achieves the maximum iteration time 

return 𝐵𝑒𝑠𝑡⃗⃗⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  

         

 

The five parameters 𝛼, 𝛽, 𝛾, 𝛿, and 휀 are explained as follows [142]: 
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 𝛼: the proportion of the original velocity to be reserved. 

 𝛽: the proportion of the personal best to be reserved. If 𝛽 is large, the particle prefer to move 

towards its own best position rather than the global best position. 

 𝛾: the proportion of the informants’ best to be reserved. The influence of 𝛾 is between 𝛼 and 

𝛽. If the number of informants is large, the informants’ best is more close to the global best, 

and small number of informants make the informants’ best close the local best. 

 𝛿: the proportion of the global best to be reserved. If 𝛿 is large, the particles prefer to move 

towards the best position where they have already discovered. Since this parameter might 

make the optimization procedure highly exploitative, it is usually set to 0. 

 휀: how fast the particle moves. If 휀 is big, the particles make a big step towards the better 

district. A big value of 휀 allows the optimization process converge faster, however, it also 

increase the possibility that global optimum might be missed. This value is usually set to 1. 

  

5.3 Evaluation in Full-Wave Simulation Environment 
 

The proposed optimization-based imaging algorithm is firstly evaluated using the electromagnetic 

simulator (CST Microwave Studio). An accurate realistic head phantom [139] surrounded by an 

antenna array of 16 elements is used. The utilized antennas have three dimensional structure that is 

fed using a coplanar waveguide [143]. The antennas have an operating band from 0.8 to 2.2 GHz with 

stable unidirectional radiation patterns of about 9 dB front-to-back ratio. The distance between the 

antenna array and the boundary of the head is 1 cm. During the simulations, three different scenarios 

are taken into account (Figure 5.5); unhealthy brain with shallow and deep strokes, and healthy brain. 

For the unhealthy cases, a haemorrhagic (bleeding) stroke is assumed with size of 2 × 2𝑐𝑚2.  

To verify the robustness of the proposed algorithm for different initial values of 𝜺, the initial effective 

values 𝜺𝟏
𝒊𝒏𝒊𝒕 = 30 × 𝐼, 𝜺𝟐

𝒊𝒏𝒊𝒕 = 40 × 𝐼, and 𝜺𝟑
𝒊𝒏𝒊𝒕 = 50 × 𝐼 (𝐼 ∈ ℝ𝑁×1 is the identity vector) are used 

and the value range of 𝜺 during optimization is set from 25 to 65 (a reasonable range due to the high 

dielectric constants for the main head tissues as depicted in Figure 5.1). The size of one imaging cell 

is 1 × 1𝑚𝑚2 and the size of one sub-grid is 2 × 2 𝑐𝑚2. The number of the entry points is taken as 

100 (larger than the number of antennas) and the maximum iteration time is set at 50 (larger value 

gives further assurance of optimization but needs longer time). The obtained results are shown in 

Figures 5.6, 5.7, and 5.8 for shallow stroke, deep stroke, and healthy head, respectively. It can be seen 

from Figure 5.6 and 5.7 that the images obtained using the proposed algorithm always converge to  
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Fig 5. 4: Two-dimensional section of the numerical head model used in simulations. (a) Shallow, (b) deep stroke, and 

(c) healthy brain. 

 

Fig 5. 5: Simulation results using the traditional and proposed methods for head with shallow stroke indicated by the 

black square. 
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Fig 5. 6: Simulation results using traditional and proposed method for head with deep stroke 

 

Fig 5. 7: Simulation results using traditional and proposed methods for healthy head. 
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the correct focused one irrespective of the assumed initial dielectric constants. If the head is healthy, 

the proposed algorithm does not create a false positive target as depicted in Figure 5.8. For the images 

obtained using the traditional method, they are highly affected by the assumed effective dielectric 

constant. The detected location of the stroke and quality of the images are dependent on the assumed 

dielectric constant.  

The convergence index is important for optimization-based algorithms as it defines the required time 

to produce accurate image and this is critical especially in head imaging. Assume the convergence 

index is defined as 𝜇  which is the increase in the quality metric 𝒪  between two iteration times 

expressed as 𝜇 = 𝒪𝑖+1 − 𝒪𝑖. Figure 5.9 shows variation of the convergence index with number of 

iterations for the three investigated cases. Based on the random characteristic of PSO, the required 

iteration number for convergence is case dependent. However, it can be seen from Figure 5.9 that for 

all these cases, the algorithm converges after 50 iterations regardless of the choice of the initial 

estimation of 𝜺𝑖𝑛𝑖𝑡. It is interesting to see from the results in Figure 5.9 that using an initial value of 

dielectric constant close to 30 guarantee convergence after only 22 iterations knowing that the 

required time for each of the iteration using a general purpose PC is around 8 seconds. For other 

initial values, the algorithm also converges in less than 22 iterations except for the case of a shallow 

target, which requires around 50 iterations. The reason behind that is the huge effect of strong skin 

interface reflections that are close in the time domain to shallow target reflection. The use of our pre-

processing approach enables reducing the effect of those strong skin interface reflections, but cannot 

of course remove them completely. 

To evaluate the quality of the images generated using the traditional and proposed method, two 

metrics are used. The metric 𝛾 is used to compare ratio of the average intensity of the stroke area ℒ 

to the rest of the head area ℋ. 

                                                            𝛾 =
𝒵(𝐼𝒎)̅̅ ̅̅ ̅̅ ̅̅

𝒵(𝐼𝒎′ )̅̅ ̅̅ ̅̅ ̅̅
 

 ∀𝐼𝑚 ∈ ℒ

      ∀𝐼𝑚′ ∈ ℋ & 𝐼𝑚′ ∉ ℒ
                                             (5.16) 

Another metric 𝜎 is used to evaluate the distance between the real center of the stroke area and the 

detected position. 

                                                        
𝜎 = ‖𝒊𝑚

∗ − 𝒞‖

𝒊𝑚∗ = 𝑎𝑟𝑔𝑚𝑎𝑥{𝒵(𝒊𝑚)}      ∀𝒊𝑚 ∈ ℋ
                                              (5.17) 
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               (a) 

 

                (b) 

 

(c) 

Fig 5. 8: Variation of the convergence index 𝝁 with number of iterations for (a) shallow stroke, (b) deep stroke, and (c) 

healthy head 
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(a) 
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(b) 

 

(c) 

Fig 5. 9: The value of (a) 𝜸 and (b) 𝜎 from using the traditional and proposed method on two cases (shallow and deep 

stroke) and different initial values of dielectric constants, and (c) 𝜸 for a healthy case. 

 

where 𝒞 is the position of the real stroke center. It can be seen from (5.16)-(5.17) that an ideal image 

quality requires 𝛾 to be high positive number and 𝜎 to be close to 0.  

Figure 5.10 shows the value of the metrics for the images produced using the traditional and proposed 

methods for the three cases (shallow stroke, deep stroke and healthy head) with different initial 

estimations of the dielectric constant. It can be seen from Figure 5.10 (a) that the value of metric 𝛾 in 

the proposed method is almost twice its value when using the traditional method. The results also 

indicate that the choice of the initial estimation of 𝜺 does not affect the performance of the proposed 

method. Figure 5.10 (b) shows that the proposed method can localize the stroke accurately with 𝜎 

less than 1 cm for the two cases, while the traditional method predicts an incorrect stroke position for  

the two cases. The traditional method is very sensitive to the initial value of the dielectric constant as 

depicted in Figure 5.10, whereas the proposed method is not sensitive in any way to that value and 

this is of great importance when imaging human subjects. To inspect effect of using the proposed 

approach on a healthy case, the metric 𝛾 is calculated from the obtained images of that case and the 

result is presented in Figure 5.10 (c). It is clear that the proposed method reduces the probability of 

false positive alarm as 𝛾 is reduced compared with using the traditional method.  
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5.4 Evaluation on Realistic Measurement Data 
 

To further verify the proposed algorithm, two sets of experiments are conducted using the imaging 

systems shown in Figure 5.11, [40], [141]. The utilized system of Figure 5.11 (a) uses the portable 

microwave transceiver Agilent (N7081A) to send and receive microwave signals with a maximum 

dynamic range of 80 dB. An adjustable platform is used to collect the scattered signals from the 

imaging object. One antenna, which uses a combination of slotted dipole element and a folded 

parasitic structure to cover the band 1.1-3.4 GHz, is used in the system. The system depicted in Figure 

5.11 (b) uses R&S ZVA24 vector network analyser for signal generation and data acquisition. It uses 

a single three-dimensional antenna that covers the band from 1.2 to 2.75 GHz. To emulate data from 

using 32 antennas, several sets of measurements with the mechanical rotation of the platform carrying 

the head phantoms under test is performed when doing the experiments. The experiments are 

conducted on two realistic head phantoms, which includes the main tissues of the head, such as skin, 

fat, muscular, skull, Dura, cerebrospinal fluid, gray matter, white matter, cerebellum, and spinal cord 

[40], [144]. The two phantoms are built using MRI-derived models. A mixture of materials, such as 

water, corn flour, gelatin, agar, sodium azide, and propylene glycol, are used to assemble different 

tissues of the head. The dielectric properties of those artificial tissues are verified using the dielectric 

probe HP85070 to make sure of their match to the real tissues. To emulate a haemorrhagic stroke in 

the experiments, a small volume of blood-imitating chemical material with the size of 2 × 2 × 1𝑐𝑚3 

and 1.5 × 1.5 × 0.5𝑐𝑚3 is positioned inside the head phantoms of the systems depicted in Figure 

5.11 (a) and (b), respectively.  

The obtained images from using the proposed and traditional algorithms to process the collected data 

from the experiments on the two systems are shown in Figures 5.12 and 5.13. It can be seen from 

those images that the position of the stroke can be approximately localized using the traditional 

method but with low focused images. However, the targets in the images generated using the proposed 

method can be accurately detected and localized from the highly focused images. The results also 

indicate that the proposed method always converges regardless of the initial choice of the assumed 

dielectric constant. Figure 5.14 shows the convergence rate of the proposed method in the two 

experiments. It can be seen from Figure 5.14 that the proposed algorithm converges in less than 50 

iterations (actually around 20 iterations) regardless of the initial choice of the dielectric constant 𝜺. 
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(a) 

 

(b) 

Fig 5. 10: The experimental system used to test the proposed algorithm. (a) System described in [40], and (b) system 

described in [141]. 

Head phantom 
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Fig 5. 11: Experimental results using the system in [141]. 

 

Fig 5. 12: Experimental results using the system in [40]. 
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                   (a) 

 

(b) 

Fig 5. 13: The convergence index 𝝁 with iteration time for (a) 1st experiment and (b) 2nd experiment. 
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(a) 

 

(b) 

Fig 5. 14: Quality metrics (a) 𝜸 and (b) 𝜎 of images produced using the traditional and proposed method in two 

experiments. 
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To quantify the obtained images in Figure 5.12 and 5.13, the two metrics 𝛾 and 𝜎 are calculated and 

shown in Figure 5.15. The value of metric 𝛾 is significantly improved when using the proposed 

method compared with the traditional method irrespective of the initial value of 𝜺. Figure 5.15 (b) 

shows that the proposed method can localize the stroke accurately with 𝜎 less than 0.5 cm in the two 

experiments, while the traditional method leads to an inaccurate localization of the stroke with more 

than 1.5 cm error. The value of 𝜎 is also stable at a very low value (ideally zero) irrespective of the 

initial value of the dielectric constant when using the proposed algorithm. The experimental results 

validate the simulations in that the proposed algorithm is not sensitive to the initial values in constrast 

to the traditional method.  

 

5.5 Discussions and Conclusions 
 

An optimization-based confocal algorithm for medical imaging has been presented in this chapter. 

The proposed algorithm optimizes position-dependent dielectric constants based on a certain 

objective equation to obtain a highly focused image that accurately maps scatterers within the imaged 

object. This is in clear contrast to the traditional confocal algorithm, which uses one pre-assumed 

effective dielectric constant and is thus highly dependent on that assumed value. The proposed 

method has been tested successfully in head imaging for stroke detection using simulations and 

experiments. The simulations are based on accurate numerical head model, whereas the experiments 

are implemented using realistic artificial head phantoms. Compared with the results using traditional 

method, the proposed algorithm significantly improves the quality of the images for both healthy and 

unhealthy cases with correct detection and localization of the targets (brain stroke) and reduced 

probability pf positive false alarms. The sensitivity and specificity of the proposed algorithm will be 

investigated during the preclinical tests of the imaging system, which is aimed to be part of ambulance 

equipment for onsite stroke diagnosis.  
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Chapter 6: Brain Stroke Classification in 

Microwave Imaging 
 
 

6.1 Classification Using Machine Learning Techniques 
 

6.1.1 K-Means Clustering 
 

To construct an SVM classifier, the dielectric properties of the brain with suspicious stroke need to 

be firstly estimated. This is implemented using the Born iterative method (BIM) which was 

introduced in section 4.2.1, chapter 4. Assume the normalized dielectric profile (NDP) 𝒳(𝑥, 𝑦) is 

defined as (4.1), then 𝒳(𝑥, 𝑦) can be reconstructed by solving the ill-posed inverse problem (4.6). 

The recovered NDP from BIM is usually inaccurate due to the ill-posed nature of the inverse problem. 

Therefore, it is difficult to classify the type of the stroke based on the BIM generated NDP. Figure 

6.1 and 6.2 indicate the BIM-generated NDP (the frequency used is 0.85 GHz, which is proved to be 

an appropriate frequency for microwave head imaging tomography [50]) using two MRI scanned 

phantom [79], [158] (Phantom A, which is an MRI-derived and constructed with 256× 256 × 128 

cubical elements with dimensions of 1.1 𝑚𝑚 × 1.1 𝑚𝑚 × 1.4 𝑚𝑚 [79] and Phantom B, which is 

also MRI-derived and constructed with 256× 256 elements and the size of each element is 2𝑚𝑚 

[158]) with two inserted types of stroke (ICH and IS stroke).  

It can be seen from Figure 6.1-6.2 that the position and type of the stroke are difficult to be localized 

and classified merely from the real and imaginary part of the calculated NDP 𝒳(𝑥, 𝑦) especially for 

phantom A. One way to emphasize the position of the stroke is by taking the amplitude of NDP 

(termed as 𝒞𝒳): 

                                                                 𝒞𝒳 = √ℛℯ2(𝒳) + ℐ𝓂2(𝒳)                                                       (6.1) 

where ℛℯ(𝒳) is the real part of 𝒳 and ℐ𝓂(𝒳) is the imaginary part of 𝒳. Figure 6.3 shows the 

calculated 𝒞𝒳 for the reconstructed NDP for the images in Fig. 6.1 and 6.2. It can be seen from Figure 

6.3 that the position of the stroke (both for ICH and IS in phantoms A and B) can be localized from 

the 𝒞𝒳  profile. However, the strokes are still difficult to classify based on the profile since the 

reconstructed values of the other tissues might be very close to that of the stroke (the calculated value 

for ICH stroke is close the gray matter and CSF) due to the error from the BIM. Therefore, it is 

desirable to reduce the influence of the other tissues when the 𝒞𝒳 profile is used as the input for a 
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classifier. Hence, the k-means clustering method is used to cluster the 𝒞𝒳 profile into three clusters 

that enable the differentiation of the various tissue types.  

                   Real part                           Imaginary part                             Real part                            Imaginary part 

 
            (a) ICH stroke                        (b) ICH stroke                           (c) IS stroke                           (d) IS stroke 

 
                     (e)                                           (f)                                            (g)                                           (h) 

Fig 6. 1: (a)-(b) The phantom A with ICH stroke and (c)-(d) phantom A with IS stroke, (e)-(h) the calculated NDP using 

BIM corresponding to each of the cases shown in (a)-(d). 

                 Real part                            Imaginary part                             Real part                            Imaginary part 

 
            (a) ICH stroke                        (b) ICH stroke                           (c) IS stroke                           (d) IS stroke 

 

 

                     (e)                                           (f)                                            (g)                                           (h) 

Fig 6. 2: (a)-(b) The phantom B with ICH stroke and (c)-(d) the phantom B with IS stroke, (e)-(h) the calculated NDP 

using BIM corresponding to each of the cases shown in (a)-(d). 
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                 (a)                                            (b)                                            (c)                                             (d) 

Fig 6. 3: The calculated 𝓒𝓧 for (a) phantom A with ICH; (b) phantom A with IS; (c) phantom B with ICH and (d) 

phantom B with IS. 

K-means clustering divides N data points in I dimensional space into K clusters. Each of the clusters 

is featured by its mean value 𝜇(𝑘). One of the simplest algorithms used to solve this problem is 

Lloyd’s algorithm [159]. With this algorithm, the distance between two data points is defined as: 

 

 

                             (a) The 1st cluster                          (b) The 2nd cluster                       (c) The 3rd cluster    

Fig 6. 4: The clustered 𝓒𝓧 profile for phantom A using k-means method when two types of stroke (ICH and IS) are 

placed inside the brain. 
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                             (a) The 1st cluster                          (b) The 2nd cluster                       (c) The 3rd cluster    

Fig 6. 5: The clustered 𝓒𝓧 profile for phantom B using k-means method when two types of strokes (ICH and IS) are 

placed inside the brain. 

 

                                                                   𝑑(𝑥, 𝑦) =
1

2
∑(𝑥𝑖 − 𝑦𝑖)

2

𝐼

𝑖

                                                         (6.2) 

Lloyd’s algorithm indicates that the optimal placement of a cluster center is at the centroid (the mean 

value of each cluster, 𝜇(𝑘)) of the associated cluster. Let us assume 𝒰 a set of centers with each center 

 𝜇(𝑘) ∈ 𝒰, and define 𝒯𝑘  as the neighbourhood points of 𝜇(𝑘)  (the set of data points with nearest 

distance to 𝜇(𝑘)). At each stage of Lloyd’s algorithm, every center point 𝜇(𝑘) is moved to the centroid 

of 𝒯𝑘 (the mean value of 𝒯𝑘) and updated by recalculating the distance from each point to its nearest 

center. These two steps are repeated until a convergence condition is satisfied [160]. This procedure 

is written as: 
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Initialization: Set 𝐾 centers 𝜇(𝑘)with random values. 

Assignment step: 

𝒯𝑘 = {𝑥𝑛: ‖𝑥𝑛 − 𝜇
(𝑘)‖

2
≤ ‖𝑥𝑛 − 𝜇

(𝑗)‖
2
 ∀𝑗, 1 ≤ 𝑗 ≤ 𝐾} 

Update step: 𝜇(𝑘) =
1

|𝒯𝑘|
∑ 𝑥𝑖𝑥𝑖∈𝒯𝑘

 

Repeat assignment and update steps until converged 

 

 

 

 
                      (a) SNR=40 dB                                   (b) SNR=25 dB                                    (c) SNR=10 dB 

Fig 6. 6: The third clusters of the ICH cases for phantom A and B indicate that the inner part of the head boundary is not 

a null space. 

The calculated 𝒞𝒳 profile shown in Figure 6.3 is clustere using the described k-means method and 

the results are shown in Figure 6.4-6.5. It can be seen from Figure 6.4-6.5 that the 𝒞𝒳 profile can be 

clustered into three categories. The first contains the gray matter and CSF, the second contains the 

white matter, while the third contains the bone and skin of the brain (the boundary of the head). Due 

to the different characteristics of the dielectric properties for ICH and IS strokes, they are clustered 

into different categories. Figure 6.4 and 6.5 indicate that the ICH stroke is clustered with the gray 

matter and CSF (the first category) due to their almost identical dielectric properties, whereas the IS 

stroke is clustered with the bone and skin of the brain (the boundary) also due to their close dielectric 

properties. Therefore, it is possible to implement the classification task based on the clustered  
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                          (a) 40 dB SNR for phantom A                                                 (b) 25 dB SNR for phantom A 

 

                          (c) 10 dB SNR for phantom A                                                  (d) 40 dB SNR for phantom B 

 

                           (e) 25 dB SNR for phantom B                                                  (f) 10 dB SNR for phantom B 

Fig 6. 7: The number of non-zero pixels within the inner part of the third cluster for both ICH and IS cases when the 

SNRs are 40, 25, and 10 dB for (a)-(c) phantom A and (d)-(f) phantom B. 

categories since the ICH and IS strokes are clustered into different categories. In the proposed method, 

the third cluster (the cluster containing the bone and skin) is used to implement the classification. The 

reason of taking the third cluster for the classification task is because it also defined the boundary of 
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the brain. The ICH and IS cases have the most significant difference when the inner part of the third 

cluster (the area inside the brain boundary) is individually taken. For the ICH case, the inner part of 

the third cluster is a null space (the number of non-zero pixels with respect to the intensity is zero). 

However, it is not always guaranteed that the inner part of the third cluster is a null space for the ICH 

case due to the deviation and error from the BIM process and k-means clustering. Figure 6.6 indicates 

that, in some cases, the inner part of the third cluster for the ICH case is not a null space. It can be 

seen from Figure 6.6 that under different SNR levels, the inner part of the head boundary in the third 

cluster contains some connected pixels which may possibly be IS cases. This situation is worse in the 

noisy environment (SNR≤10 dB). 

To further illustrate the uncertainty of using the inner part of the head boundary in the third cluster to 

implement the classification, a sample database is constructed under three SNR levels (SNR=40, 25, 

and 10 dB). In total, 200 samples are created at each SNR level (100 samples for ICH case and 100 

samples for IS case) and the sample database is constructed for both phantom A and B. The detailed 

information for constructing this database was described in the following section. Figure 6.7 shows 

the number of non-zero pixels within the inner part of the third cluster for both IS and ICH cases from 

all the three SNR levels. It can be seen from Figure 6.7 that even when the SNR level is 40 dB (low 

noise environment), the number of non-zero pixels within the inner part of the third cluster may still 

be significant for some samples (the number of non-zero pixels is greater than 30 for some samples 

from phantom A and greater than 50 for some samples from phantom B). This undesirable situation 

becomes worse when the SNR level is 10 dB (noisy environment). Based on this reasoning, the SVM 

classifier is used to minimize this adverse effect and build a linear model for a decision curve needed 

for classification.  

 

6.1.2 Support Vector Machine 
 

Assuming that the subject under test had been diagnosed with stroke, the focus of the proposed 

method is on the stroke localization and classification. Thus, the stroke classification can be treated 

as a two-class pattern classification problem. Let 𝔁 ∈ ℂ𝑁 denote the image of the third cluster after 

vectorization, and let the scalar 𝓎 represents the class labels (𝓎 = +1 denotes the ICH case and 𝓎 =

−1 denotes the IS case). Additionally, assume {(𝔁𝑖, 𝓎𝑖), 𝑖 = 1,… , 𝑙} is a set of training samples. The 

problem is now how to construct a decision function which can correctly classify an input pattern by 

using the training samples. In stroke classification scenario, the training samples are usually not 

linearly separable in the original data space. Hence, to separate the data but still use a linear classifier 
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model, the original data is mapped into a higher dimensional space, this is implemented using a 

mapping function 𝜙(∙). To that end, a linear function with the following form is selected  

                                                                     𝑓(𝔁) = 𝔀𝑇𝜙(𝔁) + 𝑏                                                               (6.3) 

 

 

Fig 6. 8: SVM classifier: the decision boundary 𝒇(𝔁) = 𝔀𝑻𝔁 + 𝒃 (the thick line) which is defined by a normal vector 

of the hyperplane and an offset. The margin is the minimal distance of any training points in the two classes (blank 

circle represents the IS case and solid circle represents the ICH case) to the hyperplane. The support vectors are the 

training samples lying on the boundary hyperplanes of the two classes. 

such that 𝑓(𝔁𝒊) ≥ 0 for 𝓎𝑖 = 1 and 𝑓(𝔁𝒊) ≤ 0 for 𝓎𝑖 = −1. 𝜙(𝔁) is a nonlinear function which 

maps the input feature vector into a higher dimensional space. Assume the training samples are 

separated by several hyperplanes in the space ℱ . The SVM classifier seeks the hyperplane that 

maximizes the separating margin between the two classes (as shown in Figure 6.8). For non-separable 

data, this hyperplane can be found by solving the following convex optimization problem [161]-

[162]: 

min
𝔀,𝑏,𝜉

{
1

2
‖𝔀‖2} + 𝐶∑𝜉𝑖

𝑙

𝑖=1

 

Support
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ICH sample
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                                                  𝑠. 𝑏. 𝑗: {
𝓎𝑖[𝔀

𝑇𝜙(𝓍𝑖) + 𝑏] ≥ 1 − 𝜉𝑖 
𝜉𝑖 ≥ 0                                      

, 𝑖 = 1,… , 𝑙                                  (6.4) 

where 𝜉𝑖 , 𝑖 = 1,… , 𝑙 are slack-variables, which are introduced to relax the hard margin constraint 

[150], [163] and avoid overfitting [161] (the hard margin constraint is 𝓎𝑖[𝔀
𝑇𝜙(𝓍𝑖) + 𝑏] ≥ 1 which 

is suitable for separable data), 𝐶 > 0 is a regularization constant. A larger value of 𝐶 implies a higher 

penalty to the errors. The convex optimization problem (6.4) was solved using its corresponding 

primal Lagrangian and an algorithm named successive minimal optimization [164]-[165] from a 

library for support vector machine [166]. Using Lagrange multipliers 𝛼𝑖, 𝛾𝑖 ≥ 0, 𝑖 = 1,… , 𝑙 for each 

of constraints in (6.4) (𝛼𝑖 is the Lagrange multiplier for constraint 𝓎𝑖[𝔀
𝑇𝜙(𝔁) + 𝑏] ≥ 1 − 𝜉𝑖 and 𝛾𝑖 

is the Lagrange multiplier for 𝜉𝑖 ≥ 0), the corresponding primal Lagrange is: 

                     𝐿𝑃 =
1

2
‖𝔀‖2 + 𝐶∑𝜉𝑖

𝑙

𝑖=1

−∑𝛾𝑖

𝑙

𝑖=1

𝜉𝑖 −∑𝛼𝑖{𝓎𝑖[𝔀
𝑇𝜙(𝓍𝑖) + 𝑏] − 1 + 𝜉𝑖 }

𝑙

𝑖=1

              (6.5) 

By applying Karush-Kuhn-Tucker (KKT) conditions on the primal problem (6.5), the following 

constraints can be achieved: 

                                                                
𝜕𝐿𝑃
𝜕𝔀

= 𝔀−∑𝛼𝑖𝓎𝑖𝜙(𝓍𝑖)

𝑙

𝑖=1

= 0                                                 (6.6) 

                                                                         
𝜕𝐿𝑃
𝜕𝑏

= −∑𝛼𝑖𝓎𝑖

𝑙

𝑖=1

= 0                                                          (6.7) 

                                                                       
𝜕𝐿𝑃
𝜕𝜉𝑖

= 𝐶 − 𝛼𝑖 − 𝛾𝑖 = 0                                                          (6.8) 

                                                            𝓎𝑖[𝔀
𝑇𝜙(𝓍𝑖) + 𝑏] − 1 + 𝜉𝑖 ≥ 0                                                     (6.9) 

                                                                      𝛼𝑖 ≥ 0, 𝛾𝑖 ≥ 0, 𝜉𝑖 ≥ 0                                                            (6.10) 

                                                      𝛼𝑖{𝓎𝑖[𝔀
𝑇𝜙(𝓍𝑖) + 𝑏] − 1 + 𝜉𝑖 } = 0                                                (6.11) 

                                                                                𝛾𝑖𝜉𝑖 = 0                                                                          (6.12) 

The constraint (6.8) implies that 𝛼𝑖 ≤ 𝐶 due to the condition 𝐶 > 0 and (6.10). Substituting (6.6)-

(6.7) into (6.5), the dual problem can be achieved: 
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max
𝜶
∑𝛼𝑖

𝑙

𝑖=1

−
1

2
∑∑𝛼𝑖𝛼𝑗𝓎𝑖𝓎𝑗𝒦(𝓍𝑖, 𝓍𝑗)

𝑙

𝑗=1

𝑙

𝑖=1

 

                                                    𝑠. 𝑏. 𝑗: {

0 ≤  𝛼𝑖 ≤ 𝐶,    𝑖 = 1,… , 𝑙

∑𝛼𝑖

𝑙

𝑖=1

𝓎𝑖 = 0                      
                                                      (6.13) 

 

 

 

Fig 6. 9: Flowchart of the proposed algorithm framework 

This convex optimization problem (6.13) can be numerically solved using quadratic programming. 

After solving (6.13), the SVM classifier model can be determined using the KKT conditions from 

(6.6)-(6.12). It is notable that three conditions can be deduced from the KKT conditions (6.6)-(6.12) 
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1.                                     𝛼𝑖 = 0 → 𝓎𝑖[𝔀
𝑇𝜙(𝓍𝑖) + 𝑏] ≥ 1 𝑎𝑛𝑑 𝜉𝑖 = 0                                     (6.14) 

2.                                     𝛼𝑖 = 𝐶 → 𝓎𝑖[𝔀
𝑇𝜙(𝓍𝑖) + 𝑏] ≤ 1 𝑎𝑛𝑑 𝜉𝑖 ≥ 0                                    (6.15) 

3.                             0 < 𝛼𝑖 < 𝐶 → 𝓎𝑖[𝔀
𝑇𝜙(𝓍𝑖) + 𝑏] = 1 𝑎𝑛𝑑 𝜉𝑖 = 0                                    (6.16) 

For the training set in which the data can be well classified, (6.14) indicates that the SVM solution is 

sparse (most of the training points are outside the margin area) and (6.16) implies that the SVM 

classifier is actually decided by the support vectors (the training points lying on the boundary of the 

margin). Therefore, denote 𝑠𝑖, 𝛼𝑖
∗, 𝑖 = 1,… , 𝑙𝑠  as the support vectors and the corresponding 

coefficients, the SVM decision function can be expressed as: 

                                                                 𝑓(𝔁) =∑𝛼𝑖
∗

𝑙𝑠

𝑖

𝓎𝑖𝒦(𝑠𝑖, 𝔁) + 𝑏                                                 (6.17) 

where 𝛼𝑖
∗ satisfy 0 < 𝛼𝑖

∗  < 𝐶 is the Lagrange multiplier, 𝒦(∙) is the kernel function defined as: 

                                                                     𝒦(𝑥, 𝑦) = 𝜙𝑇(𝑥)𝜙(𝑦)                                                          (6.18) 

The Gaussian RBF function which satisfies the Mercer condition [167] is selected as the kernel 

function in this paper: 

                                                                      𝒦(𝑥, 𝑦) = 𝑒
(−
‖𝑥−𝑦‖2

2𝜎2
)
                                                           (6.19) 

The entire procedure of constructing and testing the SVM classifier is shown in a flowchart of Figure 

6.9 and summarized in the following steps: 

1) Reconstruct the NDP of the training phantoms (phantom A) and test phantoms (phantom B) 

using BIM. 

2) Transfer the reconstructed NDP to 𝒞𝒳 profile using (6.1). 

3) Implement k-means clustering on the 𝒞𝒳 profile to construct three different clusters. 

4) Select the cluster containing the bone of the brain and select the inner parts of this cluster that 

are inside the boundary of the head (the boundary is defined by the bone of the brain). 

5) Vectorize the image of the cluster containing the head boundary as the feature vectors. 

6) For training set, use the feature vectors to construct the SVM classifier. For testing set, use 

the feature vectors to evaluate the SVM classifier.  
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6.2 Classifier Training Procedure 
 

To use support vector machine (SVM), the training database and testing database need to be 

constructed. In the proposed framework, these two datasets are constructed under three different SNR 

levels (SNR=40 dB, 25 dB, and 10 dB). For each SNR level, 100 images for ICH case and 100 images 

for IS case are generated. Two sets of 600 Born iterative method (BIM) generated images are used 

for the training and testing databases respectively. The dataset structure is indicated in Figure 6.10.  

 

Fig 6. 10: Database structure used in the SVM training and testing 

Among all of the images, the positions and shapes of the stroke are different. The shape of the stroke 

is elliptical with the major and minor axis following the Gaussian distribution (maximum of the major 

axis=19 mm, minimum of the minor axis=11 mm) and position of the stroke is randomly selected 

inside the brain. To avoid biasing results, two head phantoms (phantom A [79] for constructing the 

training dataset and phantom B [158] for constructing the testing dataset) are used in the classification 

process as shown in Figure 6.9. A transverse slice of the phantom at approximate 50 mm from the 

crown of the head is extracted from the 3D phantom. The phantom contains the major tissues inside 

the human brain (skin, skull, skeletal muscle, fat, blood, dura, CSF, gray and white matter). A 

transceiver slice at about 60 mm from the crown of the head of phantom B that includes the main 
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brain tissues (skin, skull, muscle, fat, blood, CSF, gray and white matter) is extracted. The data 

volume was rescaled and interpolated to produce cubical voxels with the size of 2 mm [158]. 

After the training dataset is constructed, the SVM decision function (6.17) is found by solving the 

convex problem (6.4). However, before implementing any quadratic programing algorithm to solve 

(6.4), two parameters need to be determined: the regularization constant 𝐶 and the parameter 𝜎 in the 

Gaussian RBF kernel function. These two parameters are determined using 𝓋-fold cross-validation 

[161]. In 𝓋-fold cross-validation, the training set is firstly divided into 𝓋 subsets with equal size. For 

each pair of parameters (𝐶, 𝜎), the SVM classifier is trained 𝓋 times. For each time of training, one 

of the subset is chosen as the validation set and the remaining 𝓋 − 1 subsets are used to train the 

SVM model. Therefore, a total of 𝓋 classification accuracy values are recorded and the average value 

is taken as the cross-validation accuracy for this SVM model. Among all the evaluated pairs of (𝐶, 𝜎) 

values (𝐶  and 𝜎  are selected as exponentially growing sequences), the one with the best cross-

validation accuracy is finally used in the SVM model.  

 

6.3 Classification Results 
 

The performance of the constructed SVM classifier is quantitatively evaluated under four scenarios. 

The first situation only considers the samples from SNR=40 dB dataset. Following the procedure 

mentioned in section 6.2-6.3, 200 feature vectors are extracted for each of the training and testing  

Table 6. 1: Support vector machine (SVM) classification accuracy under four scenarios 

 40 dB dataset 25 dB dataset 10 dB dataset 
Combined 

dataset 

Accurate number 187/200 171/200 162/200 528/600 

Accuracy rate 92% 85.5% 81% 88% 

 

sets. Among 200 feature vectors, 100 of them are from ICH cases and another 100 samples are from 

IS cases as shown in Figure 6.10. The second and third scenarios used the same procedure, but the 

samples are taken from SNR=25 dB and 10 dB dataset. The last scenario combines the SNR=40 dB, 

25 dB and 10 dB dataset together to form 600 feature vectors for the training and testing sets (300 

samples for each of the stroke type). The classification accuracy achieved by using the trained SVM 

classifier on the testing set under these four scenarios are listed in Table 6.1 (the threshold for 

achieving Table 6.1 is set as 0). It can be seen from Table 6.1 that for the low-noise environment (40  
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                                                      (a)                                                                                           (b) 

 

                                                      (c)                                                                                            (d)        

Fig 6. 11: The ROC curves for (a) SNR=40 dB, (b) SNR=25 dB, (c) SNR=10 dB, (d) all the three SNR cases combined. 

The AUC value is indicated in the legend of each graph 

 

dB case), a 93.5% (187/200) classification accuracy can be achieved and for the noisy environment 

(10 dB case), the classification accuracy can be maintained above 81% (162/200). When the three 

SNR level cases (40 dB, 25 dB and 10 dB) are combined together, 88% (528/600) classification 

accuracy can be achieved using the proposed framework. The receiver operator characteristic (ROC) 

curve which indicates both the sensitivity and specificity of the classifier [168] is created and 

parameterized by a decision threshold. The area under the ROC curve (AUC) [169] is a metric that 

measures the classifier’s quality, which is the probability of correctly ranking an ICH case with a 

higher score than an IS case. The case AUC=1 is the situation where the classifier can perfectly 

separate the two classes, while AUC=0.5 indicates that the classifier randomly assigns the labels to 

the classes. The ROC curves from all the four scenarios mentioned above are shown in Figure 6.11. 

It can be seen that in the low-noise environment (SNR=40 dB), the AUC of the classifier is 0.96, and 

when the SNR level is low (noisy environment), the classifier can still achieve desirable AUC of 0.86.  
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                                                    (a)                                                                                        (b) 

 

                                                   (c)                                                                                          (d) 

Fig 6. 12: Variation of the sensitivity and specificity with the threshold values in SVM for (a) SNR=40 dB, (b) SNR=25 

dB, (c) SNR=10 dB, (d) all the three SNR cases combined. 

 

When all the three SNR levels are taken into account, the classifier can achieve an AUC of 0.91. It is 

notable that when all the three SNR levels are considered, 91% sensitivity to detect IS stroke can be 

achieved when approximately 87% (i.e., specificity) of the ICH strokes are safely classified.  

Figure 6.12 illustrates how different threshold values in SVM influence the sensitivity and specificity 

of the four investigated scenarios. It can be seen in Figure 6.12 that for all the four different scenarios, 

identical sensitivity and specificity can be achieved, when the threshold value in SVM is set at zero. 

Therefore, to achieve balanced classification results with regard to the sensitivity and specificity, a 

threshold equal to zero is taken in the SVM model and also used to tabulate the results shown in Table 

6.1. 
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6.4 Discussions and Conclusions 
 

A framework for stroke localization and classification has been presented in this chapter. It is based 

on microwave tomography, k-means clustering and a support vector machine method. The 

normalized dielectric profile (NDP) of the brain with suspicious stroke was firstly calculated using 

Born iterative method (BIM) and the amplitude of the calculated NDP was used to facilitate the k-

means clustering. The clusters containing the brain bone (the boundary of the head) were selected as 

the feature vectors to train and test the SVM classifier. A database generated from two phantoms (one 

to train the SVM model and another to test the model) under three different noise levels for the two 

stroke types was built to construct the SVM classifier. The ROC curves was used to evaluate the 

performance of the constructed SVM classifier. The obtained results indicate that the proposed 

framework can successfully localize the stroke and achieve 91% sensitivity and 87% specificity.  
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Chapter 7: Conclusions and Future Work 
 

7.1 Conclusions 
 

During the past few years, microwave imaging has been drawing increasing interests especially on 

bio-medical applications due to its huge potential to be developed as a portable and low-cost 

diagnostic instrument. Among numerous bio-medical applications, brain stroke detection is one of 

the promising and valuable application for microwave imaging system. A complete microwave brain 

imaging system includes hardware (antennas, microwave transceivers, and switching network) and 

software (signal processing and imaging algorithms). The processing and imaging techniques, which 

are the topic of this thesis, use the collected microwave signals via the antenna array to generate the 

final microwave image of the brain. Numerous microwave imaging techniques applied on bio-

medical applications have been researched during the past few years. Those proposed techniques 

exhibited the great potential of microwave systems on medical diagnosis, however, several serious 

drawbacks still exist in those algorithms and need to be solved. In this thesis, four novel microwave 

imaging techniques which were explicitly elaborated in Chapter 3, 4, 5, and 6 were proposed to solve 

the challenges of microwave head imaging systems. The proposed algorithms increase the efficiency 

and accuracy of the system, and resolved the main defects in the current imaging algorithms.  

In Chapter 3, two methods based on compressive sensing (CS) were applied on radar-based imaging 

technique. The proposed methods aim to solve two problems existed in current microwave imaging 

algorithms:  

1. Reduce the number of antennas used in the array system. 

2. Reduce the number of stepped frequencies used in the transceiver system. 

The theoretical explanations of the proposed methods were illustrated and the algorithms were 

verified through using simple numerical head model and realistic microwave imaging system. Based 

on the imaging results, it can be concluded that by using the proposed algorithms, the number of 

antennas and stepped frequencies can be largely reduced while the quality of the images can be 

retained completely. Through implementing a quantitative analysis, it was found that the minimum 

number of stepped frequencies can be used to recover high quality image is 150 cover the band from 

1 to 4 GHz (the original number of stepped frequencies used in the system is 401). This result can be 

utilized to design efficient portable microwave transceiver system. 
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In Chapter 4, a compressive sensing (CS) based algorithm was proposed for decreasing the number 

of antennas used in microwave tomography technique. The core concept in the proposed algorithm 

was to use wavelet transform to map the non-sparse imaging domain into a sparse wavelet space. 

After implementing the wavelet transform, a CS-based algorithm named block sparse Bayesian 

learning (BSBL) was used to recover the electrical properties of the imaging domain. The sparsity of 

the dielectric profile in the wavelet domain was investigated in this chapter and the theoretical 

analysis was also illustrated. The proposed algorithm was firstly evaluated on a simple non-sparse 

model and the recovered results with respect to the dielectric profile were compared with other 

traditional methods. The comparison results indicated that when less number of antennas were used 

to transmit and receive the signals, the images generated by using traditional methods were largely 

distorted whereas the proposed method can recover the images perfectly. To further verify the 

superior performance of the proposed algorithm, a numerical head phantom was used to test the 

algorithm. The results indicated that both the position and electrical properties (permittivity and 

conductivity) of the brain stroke can be recovered by using the proposed method when only four 

antennas were used in the system whereas the traditional microwave tomography methods use more 

than 30 antennas.  

In Chapter 5, an optimization-based confocal imaging algorithm was proposed to solve the third 

problem in current radar-based imaging algorithms, which is the estimation of the effective dielectric 

constant. In the traditional radar-based imaging algorithms, an effective dielectric constant of the 

imaging area has to be pre-defined. However, the value of effective dielectric constant is difficult to 

be estimated since little information with regard to the imaging area can be extracted before the 

images are generated. Inaccurate estimation of effective dielectric constant leads to distorted images. 

In the proposed algorithm, a set of effective dielectric constants depends on the signal’s entry points 

was firstly defined rather than using a single value in the traditional methods. This set of effective 

dielectric constants was optimized based on a metric which was used to measure the quality of the 

image. The purpose of the optimization was to seek the optimum values of the effective dielectric 

constants which can be used to achieve the best images. The proposed algorithm was assessed by 

using simulations in CST and two realistic microwave head imaging systems. The results indicated 

that when the traditional method was used to generate the head image, the image quality was largely 

varied with the estimated dielectric constant. A small deviation on the estimated dielectric constant 

lead to large distortion in the final image generated using the traditional approach. However, the 

proposed algorithm is insensitive to the initial choice of the set of dielectric constants. When different 

sets of dielectric constants were used to initialize the optimization process, a focused and accurate 
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image can always be generated by using the proposed algorithm. This performance was verified in 

both simulation and realistic measurement environment.  

In Chapter 6, a machine learning based framework was proposed to solve another important problem 

in current microwave head imaging systems, which is the classification of the brain stroke (classify 

the brain stroke between haemorrhagic and ischaemic stroke). The Born iterative method (BIM) was 

used to reconstruct the electrical properties of the brain. The K-means clustering method and support 

vector machine (SVM) technique were further used to construct the classifier. Aim to build the 

classifier and evaluate the performance of the proposed algorithm, a database was constructed by 

using two different numerical head phantoms. The first phantom was used to build the classifier and 

the second phantom was used to test the performance of the classifier. The receiver operator 

characteristic (ROC) curve was used to measure the accuracy of the classification. The results 

indicated that under the ideal environment (low-noise environment), 92% accuracy rate can be 

achieved by using the proposed algorithm. When noisy environment was imposed on the evaluation, 

81% accuracy rate can still be achieved. When all the three noise levels (low-noise, medium-noise, 

and high noise) were considered together, 91% sensitivity to detect ischaemic stroke can be achieved 

when approximately 87% (i.e. specificity) of the haemorrhagic strokes were safely classified. These 

results exhibited the potential to use microwave system to accurately classify the types of brain stroke.  

 

7.2 Future Work 
 

In this thesis, four novel algorithms were proposed to solve the four main problems in current 

microwave imaging algorithms. Although the results are   promising, several remaining issues can 

still be addressed in the future research plan: 

1. All of the four algorithms proposed in this thesis are two-dimensional imaging algorithms. 

This drawback affects the practical values of the proposed algorithms. In clinical brain stroke 

application, both the xy-coordinate and the z-coordinate are required to localize the position 

of the stroke. Therefore, it is important to extent the proposed algorithms to three-dimensional. 

2. In Chapter 4 and 6, the proposed algorithms were tested using numerical head phantom from 

MRI scan. The reason of not having experimental verification is that the tomography-based 

microwave head imaging system is still under development thus the experiment data is not 

available at this stage. It is clear that using numerical head phantom to test the proposed 

algorithms is different from testing the algorithms in clinical trials. Therefore, it is important 
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to build tomography-based head imaging system which can be applied in clinical trials. 

However, the construction of microwave head imaging system based on tomography 

technique faces a number of major challenges such as the coupling between the antennas and 

the objects under imaging and the calibration of the received data. These technical issues are 

critical for tomography-based system and need to be solved in the future.    

3. In Chapter 3, 4, and 5, the proposed algorithms were successfully applied on haemorrhagic 

stroke detection. However, the feasibility on ischaemic stroke detection has not been 

investigated. Due to the fact the more than 85% of the brain stroke are   ischaemic, it is vital 

to evaluate the performance of the proposed algorithms when ischaemic stroke is placed in 

the brain. 

4. In Chapter 5 and 6, single frequency tomography method was used to recover the electrical 

properties of the imaging area. However, during recent years, multi-frequency tomography 

method is attracting more attentions due to its potential to generate higher resolution images. 

Since detailed electrical properties profile is required for inspection and final decision by 

specialists in the hospital, the single frequency tomography method used in Chapter 5 and 6 

can be replaced by novel multi-frequency method   in order to achieve more detailed electrical 

properties of the brain.  

5. The brain stroke classification algorithm proposed in Chapter 6 was only evaluated under the 

simulation environment. With the aim to test the proposed algorithm into clinical trials, 

realistic head phantoms with two types of strokes (haemorrhagic and ischaemic) at different 

locations will be used to assess the algorithm. The final goal is to collect the measurement 

data from brain stroke patients who suffers from haemorrhagic or ischaemic stroke and use 

the proposed algorithm to classify the types of the stroke.      
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