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Abstract

This thesis is concerned with non-equilibrium phenomena in interacting quantum many-

body systems. Specifically, we investigate the time-evolution and relaxation dynamics of

Bose gases in a highly restricted geometry, which constrains the dynamics to one spatial

dimension. This leads to a description of the system in terms of a simple model Hamiltonian

which permits exact many-body quantum mechanical solutions due to its integrability.

In the first part of this thesis, a computational method is developed to obtain exper-

imentally relevant correlation functions in the framework of the coordinate Bethe ansatz.

We employ this method to compute exact ground-state correlation functions of the Lieb–

Liniger gas for up to seven particles covering the whole regime of repulsive interactions. We

also investigate the dynamics of the system after an instantaneous change of the interaction

strength. This quantum quench deposits large amounts of energy that cannot be dissipated

due to the system being closed, and so the dynamics far from equilibrium are probed. We

prepare the system in two different initial states, and quench to the same final interaction

strength. The latter is determined in such a way that the added energy due to the quench

is the same for both scenarios. Conventional statistical mechanics predicts the same relaxed

state, but due to the integrability of the system all considered correlation functions of the

relaxed states differ from each other and also from the thermal ones.

We then investigate the dynamics and relaxed state for a quench from zero to repulsive

interactions in more detail, focussing on the mechanism of relaxation and the involved

time-scales. We find that local correlation functions relax on time-scales determined by

the interaction strength, in contrast to non-local correlation functions, whose relaxation

time-scale is proportional to the system size.

Next, we employ the same methodology to study the one-dimensional Bose gas with

attractive interactions. In this case many-body bound states are permissible solutions of

the Lieb–Liniger model. We compare exact ground-state correlation functions of up to

seven particles to their corresponding mean-field solution. The latter displays a quantum

phase transition at a critical interaction strength, marking the transition from a uniform-

density state to a localized bright soliton. Our exact results agree remarkably well with the

corresponding mean-field solution past the critical point. We also investigate the dynamics



following an interaction strength quench, starting again from the non-interacting ground

state. Bound states strongly influence correlation functions for all post-quench interaction

strengths, and local correlation functions are largely increased compared to their initial

value.

In the last part of this thesis, we investigate the behavior of the one-dimensional Bose

gas under periodic driving of the interaction strength. To this end, we extend the coordinate

Bethe-ansatz formalism by employing Floquet theory to obtain solutions for the full time-

dependent Hamiltonian. This realizes an extension to non-integrable systems in a way

that allows controlled breaking of integrability. We compare the dynamics of the system

following an interaction quench to a fixed final interaction strength to that of a system

with periodically modulated post-quench interaction strength. For fast driving, the system

evolves according to the time-averaged Hamiltonian and correlation functions are nearly

identical to those of the undriven system. The response of the system qualitatively changes

at resonances of the time-averaged Hamiltonian, where we observe energy absorption and

a marked change in correlation functions. However, the system does not absorb energy

indefinitely.
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k−4 common to all positive interaction strengths [5]. (c) Non-local second-

order coherence g(2)(x). (d) Corresponding static structure factor S(k). . . . 54

3.2 (Color online) Interaction-strength dependence of the local second-, third-

and fourth-order coherence in the Lieb–Liniger ground state, for N = 7

particles. To aid visibility, we plot g(2)(0) scaled by a factor of 101, and

g(4)(0) scaled by a factor of 10−1. Dot-dashed lines indicate asymptotic weak-

(γ � 1) and strong-coupling (γ � 1) expressions for g(2)(0), g(3)(0) and

g(4)(0) in the thermodynamic limit (see text). . . . . . . . . . . . . . . . . . 56

3.3 (Color online) Dependence of first- and second-order correlations in the Lieb–

Liniger ground state on particle number N for γ = 10. (a) First-order corre-

lation function g(1)(x). (b) Corresponding momentum distribution function
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1
Introduction

Equilibrium statistical mechanics is one of the cornerstones of modern physics [11–13]. How-

ever, understanding how systems far from equilibrium evolve towards states where they can

be described within its framework is surprisingly elusive. An important goal is to connect the

evolution of the microscopic equations of motion with the well-established fact that systems

out of equilibrium relax to generic time-independent states. The mathematical formulation

of classical statistical mechanics is performed in phase space, where the generalized coor-

dinates and momenta identify the microstate. The key concept is ergodicity, which arises

because generic classical systems evolve according to non-linear equations of motions, which

lead to the chaotic behavior of trajectories in phase space. This justifies the fundamental

assumption of statistical mechanics, which states that every microstate of a given system

compatible with its macroscopic state is equiprobable. For macroscopic systems, this also
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1. Introduction

justifies the use of the Gibbs ensemble, which assigns a temperature to systems.1

The above situation is quite generic, but it is well known that there are also classical

systems that do not relax. In their seminal numerical experiment, Fermi, Pasta, Ulam and

Tsingou2 studied the dynamics of a chain of weakly non-linear interacting harmonic oscilla-

tors [15]. A system of up to 64 masses was initialized with all energy in the first few Fourier

modes, and the authors expected to observe equipartition of energy amongst all modes after

some time due to the non-linear coupling. However, to their great surprise, they instead

observed a complicated temporal behavior with quasi-recurrences and no equipartition of

energy, and hence no thermalization. It was later found that different initial conditions lead

to thermalization [16]. The theoretical framework to explain this is the famous Kolmogorov–

Arnol’d–Moser (KAM) theorem [16], based on integrable systems and slight perturbations

to these, and the fact that the continuous analog of the Fermi–Pasta–Ulam–Tsingou system

is described by the integrable Korteweg–deVries equation [17]. A classical system is said

to be integrable if it has as many constants of motion as degrees of freedom. This leads

to a foliation of the 2N–dimensional phase space into N–dimensional periodic tori, where

N is the number of constants of motions. As a consequence, ergodicity is violated and the

system will never thermalize. The essence of the KAM theorem is that small non-linear

perturbations to an integrable system lead to a deformation of some of the invariant tori

but keep them periodic, while others are destroyed. This results in a part of phase space

supporting quasi-periodic motion (and the measure of that phase space volume is positive).

For initial conditions in this part, the system will not thermalize due to non-ergodicity,

while for different initial conditions it can.

Quantum thermalization

Our currently accepted fundamental microscopic theory is quantum mechanics, so some

natural questions at hand are [13, 18–21]: Can relaxation towards equilibrium be explained

1 Ergodicity means that time–averaging and ensemble averaging are equivalent. This implies that mea-
surements of macroscopic observables involve time–averaging over the system’s phase–space trajectories.
Some authors reject this assumption, referring to statistical independence instead (which is based on sub-
system considerations, justified by the fact that the measurement of observables usually only concern these).

2 Mary Tsingou Menzel implemented the computer code but wasn’t cited as an author due to the con-
ventions at Los Alamos at the time, see e.g. Ref. [14].
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Figure 1.1: Thermalization mechanism in classical and quantum systems. a: Classical system.
For a generic system prepared in an initial state with energy E, the non-linear equations of motion
lead to chaotic dynamics in phase-space, covering the entire volume compatible with the energy
of the system ergodically, and the system thermalizes. b: Quantum system. The expectation
value of a physical operator in any energy eigenstate equals the microcanonical thermal average.
Initially, the system is in a coherent superposition of eigenstates. During the time evolution these
coherences dephase, and for operators whose expectation value depend smoothly on the energy,
the relaxed value is described by a microcanonical ensemble.
Reprinted by permission from Macmillan Publishers Ltd: Nature 452, 854, copyright 2008 (Ref. [1]).

with quantum mechanics? Is there a quantum analog of integrability, i.e. a separation of

dynamical systems into distinct classes of completely different physical behavior? If so, does

breaking quantum integrability lead to an analog of the classical KAM theorem?

In isolated systems, the time-evolution is unitary, and for non-relativistic systems is

governed by Schrödinger’s equation. The question thus is if interactions between particles

are sufficient to make the system ergodic. Some care has to be taken to define quantum

ergodicity: Since the notion of coordinates in phase space becomes meaningless in quantum

mechanics due to the fundamental canonical commutation relations, the correspondence to

the classical case is not one to one. Additionally, a system prepared in a pure state will

remain pure for all times, making a description of the entire system in terms of a mixed

thermal density matrix impossible. For macroscopic systems under very general conditions,

von Neumann [22] constructed commuting macroscopic observables, coarse-grained over mi-

crocanonical shells, which do satisfy what he called the quantum ergodic theorem. Another

result, referred to as canonical typicality, is that for a macroscopic system initially prepared
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in a typical eigenstate of the Hamiltonian, the density matrix of a small subsystem is de-

scribed by the canonical ensemble [23]. But what happens if the system is not in a typical

eigenstate? Is there a mechanism that leads to thermalization for systems in a superposition

of many energy eigenstates?

One proposed mechanism is the so-called Eigenstate Thermalization Hypothesis [1, 24,

25]. It states that the expectation value of macroscopic observables are smooth functions of

energy in the energy eigenbasis. If this is the case, then thermalization follows for any initial

condition sufficiently narrow in energy (where the expectation value of observables over all

these eigenstates is practically constant and hence the microcanonical postulate is valid).

Initially, coherences between eigenstates mask this thermal state and time evolution reveals

it via the dephasing of energy eigenstates, as depicted in Fig. 1.1. While this hypothesis

was recently examined in numerical experiments [1] and found to be the mechanism of re-

laxation, the question of whether this scenario is universal is still not clear [19–21, 26–31].

One drawback of the Eigenstate Thermalization Hypothesis is that it does not provide

answers to questions with respect to thermalization times, or how equilibrium is established

in a system. The former is important since equilibration on very long time-scales would

mean we can never actually observe it. General bounds on thermalization times, based

on very few generic assumptions, are available [32–37], but they are far off from those

observed in numerical calculations and actual experiments, see Ref. [28] and references

therein. Concerning the approach to equilibrium, it was conjectured that equilibrium is

established locally for short-range interacting models, and then spreads through the system

by means of quasi-particle propagation [38]. This was experimentally verified in Ref. [39].

However, the experiment probed the low-lying energy excitations (in this case phonons with

linear dispersion), and it is not clear what would happen for larger energies, where excitations

are free particles with quadratic dispersion. Ref. [40] formulated the local relaxation picture

on a lattice, based on a Lieb-Robinson bound. A Lieb-Robinson bound is a model-dependent

bound on the speed with which correlations spread in short-range interacting non-relativistic

quantum systems. It was originally introduced in Ref. [41] for a one-dimensional spin

model and “The physical content of the statement is that information can propagate in

the system only with a finite group velocity” [41]. Outside the ‘light cone’ defined by this
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velocity, correlations are exponentially suppressed [42]. The first experimental observation

with ultracold atoms was reported in Ref. [43]. Recently, long-range interacting systems in

certain parameter regimes were found to obey Lieb-Robinson bounds as well [44–49].

Non-thermalizing quantum systems

Thermalization is a very generic property and ubiquitous in nature, however, there are

quantum systems that do not thermalize. Since the ground breaking work of Anderson [50],

it is well known that disorder can lead to localization of particles and prevent thermalization.

The original work was at the single-particle level, but recently, many-body localization of

quantum systems has been an intense area of research, both experimentally [51–53] and

theoretically, see Refs. [28, 29, 54] and references therein. In this thesis, we will not deal

with disorder. But even in this case, there are systems that do no thermalize. In the seminal

experiment of Kinoshita et al. [2], an array of tubes of strongly interacting atomic bosons was

created with an optical lattice. The energy of the atoms was much lower than the trapping

potential so that tunneling between different tubes was negligible and each tube realized

an isolated one-dimensional system. Subjecting the system to two appropriately timed

Bragg laser pulses put the atoms in an initial superposition of two different momentum

states ±2p0, where p0 is the photon momentum. Since the kinetic energy of the atoms

after the pulse was small compared to the next transverse excited state of the trap, the

dynamics remained one-dimensional. Due to an additional weak harmonic trap in this

dynamical direction, the atoms oscillated back and forth, colliding with each other. It was

found that even after thousands of collisions, the momentum distribution of the gas did

not thermalize, see Fig. 1.2(a). Repeating the experiment in three spatial dimensions, the

authors found thermalization after as few as three collisions on average. The suggested

explanation was that the one-dimensional system is very close to the quantum integrable

Lieb–Liniger model [55, 56]. Sutherland [55] in his book defines quantum integrability as

a feature of systems that are solvable by Bethe ansatz, i.e. systems in which the scattering

between particles is non-diffractive.3 This leads to an algebraic set of equations, known as

Yang–Baxter equations [58, 59]. A fundamental question that has attracted a lot of recent

3 Let us remark, however, that this is only a good definition for continuous systems such as the Lieb–
Liniger gas we will be concerned with in this thesis. Care has to be taken for generalizations to lattice
systems, for a discussion see Ref. [57].
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1. Introduction

(a) (b)

Figure 1.2: Experimental realizations of non-equilibrium states in one-dimensional bosonic sys-
tems that do not thermalize. (a) The quantum Newton’s cradle experiment, realized in a tight
optical trap so that the particles are strongly interacting and the dynamics takes place in one
spatial dimension. The image shows the density of the gas after expansion (corresponding to the
momentum distribution) for different evolution times in the trap. (b) Generalized Gibbs Ensemble
on an atom-chip for weakly interacting systems. A one-dimensional Bose gas is split into two
identical copies, and the subsequent time-evolution is monitored by absorption images after trap-
release. The interference fringes are used to calculate the displayed two-point phase correlation
function. Subfigures A and B correspond to different splitting protocols. For the former, a sin-
gle effective temperature describes the relaxed state well. The latter needs at least two different
temperatures, as illustrated in Subfigure C, where a comparison of the experimental data with a
model based on the usual Gibbs ensemble with a single temperature has large χ2 values.
(a) Reprinted by permission from Macmillan Publishers Ltd: Nat. Phys. 440, 900, copyright 2006 (Ref. [2]).

(b) From Science 348, 207 (2015) (Ref. [3]). Reprinted with permission from AAAS.
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interest is: do quantum integrable systems that are initially out of equilibrium relax towards

a steady state? If so, can that steady state be described with statistical mechanics?

Contrary to systems for which the only conserved quantity is the energy, integrable sys-

tems have many constants of motion, and the information of the initial state encoded in

these will survive in the subsequent dynamics for all times. Turning to Jaynes’ maximum

entropy principle [60, 61], a generalization of the conventional Gibbs ensemble (hence the

name generalized Gibbs ensemble (GGE)) can be derived by explicitly fixing all constants

of motion, leading to Lagrange multipliers (effective ‘temperatures’) for the expectation

values of the conserved quantities [62]. Recently, a GGE was observed in the experiment

of Ref. [3]. A system of one-dimensional ultracold bosons was initially prepared on an

atom-chip, before being coherently split into two identical halves. The time-resolved ob-

servation of phase-fluctuations was achieved by taking absorption images of the interfering

(quasi-)condensates after trap release for different in-trap evolution times. From this, the

two-point phase correlation function was extracted, see Fig. 1.2(b). Interestingly, for the

first splitting protocol in the experiment [Fig. 1.2(b)A], the steady state of the two-point

correlation function was well described by a (quasi-)thermal ensemble with a single (effec-

tive) temperature. For a different splitting protocol [Fig. 1.2(b)B], this was not the case

and two different temperatures had to be used. Performing a more detailed analysis, the

authors fitted a model of non-interacting phonons to the data,4 finding that only the first

ten modes contribute significantly. This is in contrast to the number of atoms involved,

which was on the order of 5000.

This raises several questions [18, 19, 28, 63, 64]: Which conserved quantities are impor-

tant, and how can they be classified? Which correlation functions are actually described by

the GGE? Does the GGE work in systems that are not mappable to free (quasi-)particles?5

What happens if the initial state breaks the symmetry of the final Hamiltonian? What role

does locality play?

A lot of progress has been made recently, without answering all questions. For example,

the authors that coined the term GGE studied hard-core bosons [62], which are mappable

4 The experiment was performed in the weakly interacting regime, and can thus be modeled with a
Bogoliubov-method for quasi-condensates.

5 A quadratic Hamiltonian can arise as the effective low-energy description of a system or via some
(possibly non-local) mapping [65], not necessarily implying non-interacting systems.
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1. Introduction

to free fermions via a Jordan–Wigner mapping [66]. The fermionic quasi-momentum dis-

tribution is fixed, and the number of conserved quantities is thus equal to the number of

lattice sites, highlighting the concept of locality. There is a large body of work for systems

mappable to a quadratic Hamiltonian, each showing that the GGE correctly captures the

relaxed state (either in terms of sub-system considerations [67, 68], or in terms of local cor-

relation functions [69–79]). For non-local quantities, on the other hand, this is only true in

general if there are no correlations between the eigenmodes of the post-quench Hamiltonian

in the initial state [67, 80–82].

Recent works have found disagreement for fully interacting theories6 between the relaxed

state in spin-chains and the GGE constructed from all (known) local charges [83, 84]. In

subsequent work, it was suggested that the GGE still applies, but only if one takes into

account charges that are slightly non-local [85, 86]. Refs. [85, 86] showed that this leads

to a correct description of the relaxed state in interacting Heisenberg spin-chains. The

authors also hinted at a truncated construction of the GGE by only keeping the most local

conserved charges along the lines of Ref. [69], and reported rapid convergence. Another

approach concerning the efficient construction of the GGE by stochastically sampling the

relevant Hilbert space with appropriate measure was presented in Ref. [87].

The previous discussion applied to integrable models. But as discussed in connection

with the experiments of Refs. [2, 3], an additional weak potential in the dynamical direction

breaks integrability. Nevertheless, both systems did not thermalize on experimental observ-

able time-scales, so a natural question at hand is if there is some kind of quantum analogue

of the classical KAM theorem. Theoretical studies have found that for sufficiently weak

integrability breaking,7 a state compatible with a GGE (possibly built out of approximate

conserved quantities) survived for intermediate times, while in the long-time limit the sys-

tem tends to true thermal equilibrium [88–93]. The intermediate state is often referred to as

being pre-thermalized, a term coined in Ref. [94] and experimentally observed in Refs. [95–

98]. The time-scales for which this pre-thermalized state survives, as well as how it comes

about, are important open questions. A physically intuitive picture was given in Ref. [38],

6 In the sense of not mappable to a quadratic Hamiltonian.
7 One could think of a Hamiltonian of the form Ĥ = Ĥ0 + εV̂ , where Ĥ0 is integrable and εV is much

smaller than any other energy scale.
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where the authors described the dynamics of a system following a quench8 by means of quasi-

particle excitations above the equilibrium state. The quasi-particles propagate through the

system, determining the time-scale of relaxation, while integrability-breaking interactions

between them lead to thermalization [92].

Non-equilibrium protocols

Due to the unprecedented control over ultracold quantum gases [99], there are many different

ways to bring a quantum system out of equilibrium. Two possible scenarios, considered in

this thesis, are the following. A so-called quench refers to preparing a system in a stationary

state of some Hamiltonian and then suddenly changing a parameter of this Hamiltonian.

Sudden in an experimental context refers to a change on a time-scale much shorter than any

other in the system. This can for example be achieved by employing a Feshbach resonance

to change the strength of interactions, as explained in Chapter 2. The quench puts the sys-

tem into a superposition of highly excited eigenstates. For closed systems, the added energy

can not be dissipated, and the dynamics far from equilibrium are probed. For example, in

Chapters 3, 4, 5 of this thesis we will investigate the influence of instantaneously changing

the interaction strength of a system of one-dimensional bosons, starting from either the

non-interacting ground state, or a correlated ground state with strong interactions. This

sudden interaction quench scenario is conceivably the simplest way of putting a system out

of equilibrium. Another possible way of studying non-equilibrium effects is given by the

periodic driving scenario. In this case, the Hamiltonian is modulated periodically in time,

invalidating a direct description in terms of the powerful methods of time-independent quan-

tum mechanics. But due to the periodicity of the Hamiltonian, it is possible to incorporate

the time-dependence into the basis states leading to a description in terms of time-periodic

Floquet modes and their quasi-energies [100–103]. This is in complete analogy with the

better-known space-periodic case, where Bloch waves and their quasi-momenta give valuable

insight into condensed matter systems [104]. For stroboscopic times, i.e. integer multiples of

the driving period, the time evolution can be described in terms of a hermitian operator, the

so-called Floquet Hamiltonian. This quasi-Hamiltonian depends on the specific system and

driving parameters, making it possible to engineer systems with properties very different to

8 For a definition of ’quench’ see below.
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1. Introduction

those of the instantaneous Hamiltonian. This has lead to the experimental realization of

prototypical condensed-matter Hamiltonians, like the Harper–Hofstadter model [105–107]

and the Haldane model [108], and there exist numerous theoretical proposals [103, 109–124]

and experimental realizations of a wide range of systems [125–147].

Intuitively, generic interacting driven systems absorb energy continuously and heat up to

an infinite-temperature thermal state. This was indeed theoretically found to be the case for

systems that obey an extension of the eigenstate thermalization hypothesis with regards to

the Floquet states [148–152]. However, several recent works found that for certain parameter

regimes, heating can be suppressed on experimental time-scales [148, 152–157], and the

system can reach a non-thermal steady state, in analogy with the prethermalization scenario

discussed earlier [153, 158–160]. For systems for which the instantaneous Hamiltonian is

integrable, observables can synchronize with the driving [161] and in Ref. [162] a periodic

version of the GGE was constructed for a driven hard-core boson system. The effective

Hamiltonian for this system can be mapped to a quadratic Hamiltonian, in analogy to the

non-driven case described earlier [62], and the constants of motions are again given by the

occupation numbers of the non-interacting Jordan–Wigner fermions on each lattice site.

Focusing on the properties of the Floquet (effective) Hamiltonian, Ref. [163] showed that

even if the instantaneous Hamiltonian is integrable, a system might thermalize, depending

on the instantaneous constants of motions. Ref. [164] also came to the conclusion that the

integrability of the instantaneous Hamiltonian does not allow to predict the behavior of the

corresponding driven system. In Chapter 6, we will study a specific global driving scenario

with the instantaneous Hamiltonian given by the Lieb–Liniger model, which allows us to

access a wide range of interparticle interaction strengths in a continuum model.

Outline of thesis

In Chapter 2, we develop the background and introduce the theoretical tools we will be

using throughout this thesis. We show how in our three-dimensional world, certain systems

can have one-dimensional dynamics and how we can describe the interactions between atoms

in dilute, ultracold Bose gases with a simple model potential. We give a short overview of

some theoretical tools for the one-dimensional Bose gas out of equilibrium, before focusing

on the technique used throughout this thesis: the coordinate Bethe ansatz. We also briefly
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introduce the (zero temperature) thermodynamic Bethe ansatz.

Chapter 3 is a reproduction of Ref. [165] and introduces a computational method for

calculating matrix elements in the Lieb–Liniger model via the coordinate Bethe ansatz. We

compute several ground-state correlation functions for system sizes of up to seven particles

and characterize the finite-size scaling of the system, before turning to a non-equilibrium

scenario. We prepare the system in two distinct initial states, one the non-interacting

ground state, the other a correlated ground state at strong interactions. We then perform a

sudden quench to a common final interaction strength, determined in such a way that the

post-quench energy is the same for both initial states. We compute dynamical correlation

functions for five particles and also compare the distinct relaxed states to the predictions of

conventional statistical mechanics.

Chapter 4 deals with the quench to repulsive interaction strengths from the initially non-

interacting ground state in more detail and was published as Ref. [166]. We characterize

several dynamical correlation functions, as well as the instantaneous fidelity for several

representative post-quench interaction strengths. We also investigate the relaxed state of the

system in terms of correlation functions and compare these to their corresponding thermal

counterparts.

In Chapter 5, we take the same non-interacting initial state, but this time quench to

attractive interactions. The behavior of correlation functions is influenced by bound states

in this case, and they contribute to dynamical as well as relaxed correlation functions. We

also calculate ground state correlation functions for up to seven particles and compare these

to mean-field results.

Chapter 6 is concerned with periodically driving the interaction strength of the Lieb–

Liniger gas. Our aim is to compare the post-quench dynamics of the integrable, time-

independent Hamiltonian following a quench (as studied in the previous chapters) to that

of the periodically driven system with the same initial (post-quench) state. The driving

amplitude and frequency are adjustable in our calculations, and we present results for several

parameters and characterize their influence on correlation functions.

We conclude with the final Chapter 7, where we summarize our findings and also outline

some open questions.
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2
Background

In this chapter, we describe the theoretical background of this thesis. We start by considering

the relevant length scales governing the physical properties of ultracold (bosonic) atomic

gases. Next, we derive an effective interatomic potential for particles. At the very low

temperatures realized in experiments, it turns out that the full scattering problem can

be replaced by a simple pseudo-potential, whatever the microscopic details of the exact

interatomic potential are. Equipped with this result, we derive an effective low-energy

Hamiltonian for scattering of particles that are tightly trapped and therefore confined to

one spatial dimension. We then give an overview of different theoretical approaches to non-

equilibrium dynamics in this one-dimensional system, before focussing on the techniques

used in this thesis. We introduce the coordinate Bethe ansatz by solving the two-particle

problem for attractive and repulsive interactions, which already turns out to have a rich

structure. Next, we generalize this approach to N particles, paying special attention to the

emerging Yang–Baxter integrability. We also shortly introduce the thermodynamic Bethe
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2. Background

ansatz at zero temperature and discuss its excitation spectrum.

2.1 Interactions in ultra-cold gases

The first experimental realizations of Bose-Einstein condensates in 1995 where performed

with alkali gases that were cooled to temperatures below 1µK [167–169]. The interatomic

potential between two alkali atoms can be approximated by a Lennard-Jones potential

V (r) =
C12

r12
− C6

r6
, (2.1)

where r = |~r2 − ~r1| is the distance between atom 1 and 2 and the coefficients C12 and C6

are given by the atomic properties [170]. At short interparticle separations, the electronic

orbitals overlap and the Pauli principle leads to strong repulsion. At distances further

away, the interaction is dominated by the induced dipole-dipole interactions between the

electrons, resulting in the attractive r−6 van der Waals potential. The relevant length scales

of physical quantities in the system are the following. The atoms are trapped in magneto-

optical potentials, which usually provides by far the longest length scale of the system. This

means that the system can be treated in the local density approximation.1 At the very low

temperatures we are considering, the deBroglie (or thermal) wavelength λdB = ( 2π~2

mkBT
)1/2 is

large. The interparticle distance ln is determined by the density of the system, and for the

system to be in the quantum degenerate regime, we require the wavelength of the particles

to be on the same order, ln/λdB ≈ 1. The length scale associated with interactions can

be deduced from Eq. (2.1) by equating the kinetic energy with the interaction potential,

yielding lvdW = (mC6

~2 )1/4. For typical values of C6, the van der Waals length is much smaller

than the interparticle distance. Thus, the atoms never resolve physics on shorter ranges,

corresponding to high energies. This already hints at something we will discover in the

next section: the physics of ultracold gases can be described by an effective low-energy

Hamiltonian.

1 The local density approximation states that the trapped system locally behaves like a uniform system.
In a grand-canonical description, the chemical potential of the trapped system can be approximated by the
chemical potential of the uniform system, depending on the density of atoms at a space point, plus the
contribution of the trapping potential at the same point. This leads to an implicit equation for the density
of atoms in the trapped system, the well-known Thomas-Fermi equation [170].
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2.1 Interactions in ultra-cold gases

2.1.1 Scattering theory

For the derivation of the afore-mentioned effective low energy Hamiltonian, we first review

some basic properties of scattering between two atoms in the same internal state without

transitions to other states (elastic scattering) and in vacuum. Later, we will briefly comment

on inelastic properties since they determine the rate of loss of atoms out of traps in experi-

ments. We will generally favor physical intuition over mathematical rigor. The interatomic

potential is taken to be arbitrary, but decaying faster than r−1. The center-of-mass motion

decouples and we are left to solve the relative problem, defined by the Hamiltonian

Ĥ =
~p2

2µ
+ V (~r) , (2.2)

where µ = m/2 is the relative mass and ~p = (~p1 − ~p2)/2 the relative momentum of the

particles. If we can find the stationary states of this Hamiltonian, the time-evolution of an

arbitrary initial state can be constructed in a straight-forward manner.We will refer to the

solutions of Eq. (2.2) with positive energy as scattering states. Note that this equation looks

like that of a single particle scattering from a fixed target, hence the theory we develop here is

quite general. One important difference is that the particle and the target are distinguishable

and therefore the wavefunction does not have to be symmetrized. We neglect this issue for

now and take our two particles to be distinguishable as well, before including symmetrization

effects later on. The (rearranged) time-independent Schrödinger equation in position space

reads

[∆r + k2]Ψ~k(~r) = U(~r)Ψ~k(~r) , (2.3)

where we defined E = ~2k2

2µ
, V (~r) = ~2

2µ
U(~r) and ∆r is the Laplacian of the relative coordi-

nate. This differential equation can be solved by finding the homogeneous solution of the

differential operator ∆r + k2 and one particular solution to the full problem. The latter can

be constructed for arbitrary potentials by the method of Green’s functions, which is defined

by

[∆r + k2]G(~r) = δ(~r). (2.4)
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This particular Green’s function is well known (see e.g. App. A3 of Ref. [171])2

G(~r) = − 1

4π

eikr

r
(2.5)

and so the full solution of Eq. (2.3) reads3

Ψ~k(~r) = ei
~k·~r − 1

4π

∫
d3r′

eik|~r−
~r′|

|~r − ~r′|
U(~r′)Ψ~k(

~r′) . (2.6)

Here, the integration is over the influence-region ~r′ of the potential.4 This type of equation

is known as a Lippmann-Schwinger equation. For our physical situation, we are interested

in the far-field solution, i.e. far away from the scattering event, defined by |~r| � |~r′|. We

can expand the difference |~r − ~r′| to first order, obtaining

G(~r − ~r′) ' − 1

4π

eikr

r
e−ik~er·

~r′ , (2.7)

where ~er is the unit vector in the scattering direction ~r. In the following, we will denote

far-field results with the symbol '. With this, Eq. (2.6) becomes

Ψ~k(~r) ' ei
~k·~x − 1

4π

eikr

r
f~k(

~r′) , (2.8)

where we defined the scattering amplitudes

f~k(
~r′) ' 1

4π

∫
d3r′e−ik~er·

~r′U(~r′)Ψ~k(
~r′) . (2.9)

One could try and solve Eq. (2.9) iteratively in Ψ~k(
~r′), starting with the incoming wave,

which leads to the well known Born series. However, this series doesn’t always converge,

and we take a different (common) approach here. Based on the spherical symmetry of

2 The plus-sign in the exponent is chosen to represent an outgoing scattered wave, i.e. we choose the
retarded Green’s function of the operator in order to satisfy the Sommerfeld radiation condition.

3 We specify the homogeneous solution by a plane wave, but do not take normalization into account. One
could take into account a finite momentum spread of an initial wavepacket, which would lead to normalizable
(and non-stationary) solutions, see e.g. Ref. [171].

4 This implies that the influence region of the potential is restricted, and so the far-field solution discussed
in the following exists. This is evidently the case for finite-ranged potentials, but can be extended to
potentials ∝ r−(1+ε), i.e. faster decaying than the Coulomb potential.
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the interaction potential, we can look for simultaneous eigenfunctions of the Hamiltonian

[Eq. (2.2)] and the angular momentum operators L̂2 and L̂z. This is the so-called method

of partial waves . The solution of the time-independent Schrödinger equation in spherical

coordinates (r, θ, φ) with a spherically symmetric potential can generally be written as

Ψk,l,m(~r) = Rk,l(r)Y
m
l (θ, φ) =

uk,l(r)

r
Y m
l (θ, φ) , (2.10)

where Y m
l (θ, φ) are the spherical harmonics and the radial wavefunction Rk,l(r) depends on

the specific potential (which we do not specify as yet). In the last equality we defined uk,l(r)

such that the resulting radial part of the Schrödinger equation looks like a one-dimensional

Schrödinger equation with an effective potential containing a centrifugal term

[
− d2

dr2
+
l(l + 1)

r2
+ U(r)

]
uk,l(r) = k2uk,l(r) (2.11)

and we require uk,l(r = 0) = 0 as a boundary condition (Rk,l(r) should be regular at r = 0).

This already hints at a result we shall derive more rigorously in the following: For low relative

momenta between the two particles, which is the case in ultracold gases, only the l = 0

partial wave will contribute, because the centrifugal barrier cannot be overcome (provided

that we do not have a large attractive r−2 interaction potential) and so the particles do not

experience the full interaction potential. For spherically symmetric problems, we can choose

the homogenous solution of Eq. (2.3) without restriction to be propagating along the z-axis,

~k · ~r = kr cos θ ≡ kz. This allows us to write

eikz =
∞∑

l=0

l∑

m=−l

il
√

4π(2l + 1)jl(kr)Y
m
l (θ) ≡

∞∑

l=0

il(2l + 1)jl(kr)Pl(cos θ) , (2.12)

where the φ-dependence drops out and therefore only the m = 0 term of the spherical

harmonics contributes. Here, jl(kr) are the spherical Bessel functions and Pl(cos θ) the Leg-

endre polynomials. Let us also formally expand the scattering amplitudes and the stationary

scattering states and make use of φ-independence,

f~k(θ) =
∞∑

l=0

(2l + 1)flPl(cos θ) , (2.13)
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Ψ~k(r, θ) =
∞∑

l=0

il(2l + 1)Rl(r)Pl(cos θ) , (2.14)

where we included factors of (2l + 1) for later convenience and fl are the so-called partial

wave scattering amplitudes (which are unknown expansion coefficients at this point). To

be able to relate Eqs. (2.14) and (2.8), we first inspect the far-field solution of Eq. (2.14)

for each partial wave l, i.e. we require r large enough to be outside the influence of the

potential. If we additionally take r to be large,5 then Eq. (2.11) simplifies to

[
− d2

dr2
+ k2

]
uk,l(r) ' 0 , (2.15)

whose general solution is

uk(r) ' Aeikr +Be−ikr . (2.16)

A and B can’t be independent due to the r = 0 boundary condition. Importantly, the

scattering we consider here is elastic, so |A| = |B| due to probability current conservation,

which leads to

uk(r) ' |A|
(

eikreiφ1 + e−ikreiφ2

)
(2.17)

with relative phases φ1,2. Put differently

uk,l(r) ' C sin(kr − lπ/2 + δl) , (2.18)

where we introduced the phase-shift δl and an arbitrary shift lπ/2.6 The reason for the

latter becomes apparent when comparing this expression with the far-field solution of the

un-scattered wave,7 Eq. (2.12)

jl(kr) '
1

r
sin(kr − lπ/2) . (2.19)

Thus, δl describes the phase shift of each partial wave l due to the influence of the potential

compared to the non-scattered solution. The phase-shifts are completely determined by

5 This condition simplifies the following discussion. We could have kept the centrifugal term in Eq. (2.15)
and used the general solution in terms of spherical Bessel and Neumann functions, but it is not necessary
at this point.

6 Which would have arisen naturally for the general solution mentioned in the previous footnote.
7 Recall that we defined the full radial solution Rk,l(r) = uk,l(r)/r
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2.1 Interactions in ultra-cold gases

matching the far-field solution to the full solution of the radial equation (2.11), i.e. by

continuity of the solution inside and outside of the potential region. However, the latter

depends on the specific form of the involved potential which we still haven’t specified.

Rewriting Eq. (2.18) by introducing a global phase and fixing the normalization constant8

leads to

uk,l(r) '
eiδl

2ik

(
ei(kr−lπ/2+δl) − e−i(kr−lπ/2+δl)

)
. (2.20)

Combining this with Eqs. (2.13), (2.14) we can write the scattering states in the far-field

region

Ψ~k(~r) '
∞∑

l=0

2l + 1

kr
Pl(cos θ)

[ il
2i

(
ei(kr−lπ/2) − e−i(kr−lπ/2)

)
+ kfle

ikr
]
. (2.21)

Comparing this to Eq. (2.8) and using the far-field expansion of Eq. (2.12), we finally obtain

fl =
eiδl sin δl

k
≡ e2iδl − 1

2ik
(2.22)

for the partial scattering amplitudes, which leads to

fk(θ) =
1

k

∞∑

l=0

(2l + 1)eiδl sin δlPl(cos θ) (2.23)

for the scattering amplitudes.

So far, we haven’t really simplified the original problem. In order to obtain the phase

shifts δl, we have to solve the radial equation (2.11) for each l for a specified potential. But

let’s have a look at a general finite range potential, i.e. V (r) = 0 for r > a. For these, only

partial waves with l . ka contribute, where k is the momentum of the relative motion of the

two particles. This is due to the fact that for r > a, only the centrifugal term of the potential

in Eq. (2.11) contributes. For a particle with kinetic energy ∝ k2, the (classical) turning

radius rt is determined by equating the centrifugal barrier with this kinetic energy, leading to

rt =

√
l(l+1)

k
. This means there can only be scattering for rt ≤ a ⇐⇒

√
l(l + 1) ≈ l ≤ ka,

otherwise the centrifugal barrier is too high. For ultracold bosonic gases, this leads to

scattering with only the l = 0 partial wave contributing as we will see in the next section.

8 For a discussion of different normalization conventions, see e.g. Ref. [172].

19



2. Background

It can be shown that the contributions of the partial waves to the total cross section are

additive

σ =
∞∑

l=0

σl =
∞∑

l=0

4π

k2
(2l + 1) sin2 δl . (2.24)

2.1.2 Low-energy scattering

For k → 0, i.e. vanishingly small kinetic energy, the far-field solution u(r) of the radial

equation (2.11) reduces to

u(r) ∝ r − a (2.25)

where a is an integration constant. It can be shown that δl ∝ k2l+1 for low k and sufficiently

short-ranged potentials, see e.g. p.338 in Ref. [171], and therefore δ0 ∝ k (modulo π).

Therefore, Eq. (2.20) becomes

u(r) ' eiδ0

k
sin(kr + δ0)

k→0
= r +

δ0

k
. (2.26)

Comparing to Eq. (2.25) leads us to introduce the s-wave scattering length

a = − lim
k→0

δ0

k
. (2.27)

With this, the partial wave scattering amplitude [Eq. (2.23)] becomes

f0(k) =
eiδ0

k
sin δ0

k→0
=

δ0

k
= −a (2.28)

and the total cross section [Eq. (2.24)] looks like9

σ
k→0
= 4πa2 . (2.29)

This means the scattering length determines the effective size of the scatterer10 and that

the scattering at low energies is spatially isotropic.

So far, we only made assumptions about the long-range decay of the interaction potential

9 Keeping the next order term in the expansion in Eq. (2.28) would lead to the optical theorem being
fulfilled.

10 This result is four times the size of a classical scatterer with diameter a and would increase by another
factor of two if one were to take indistinguishability of particles into account [170].
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Figure 2.1: Scattering length a for square well potential V (r) = V0 Θ(R− r) in the zero-energy
limit. (a) V0 < 0: Attractive interactions lead to a scattering length that sensitively depends on
the value of

√
V0R. Vertical dashed lines mark the appearance of bound states in V (r), which

happen at
√
|V0|R = 2n+1

2 π, where n is an integer. (b) V0 > 0: Repulsive interactions lead to a
positive scattering length a. In the limit of hard-sphere scattering,

√
V0R large, a/R→ 1.

and consequently our discussion was quite general. This also implies that the wavefunction

in the far-field (or in the asymptotic region for two scattering particles) of different po-

tentials can be identical for low-energy scattering. This motivates the introduction of a

pseudo-potential, which replaces the true interatomic potential and simplifies calculations

enormously while still producing exactly the same effective low-energy physics. Measure-

ment of one single parameter, the s-wave scattering length, then allows one to describe

the interactions with a simple microscopic (effective low-energy) Hamiltonian. We will

come back to this point after discussing a specific potential, which will illustrate the gen-

eral behavior of the s-wave scattering length and importantly, how the details of the true

interatomic potential can lead to variations of the scattering length (which is directly re-

lated to the effective interaction strength of the pseudo-potential) over orders of magnitude,

ranging from large negative to large positive values. For this, we investigate the s-wave

scattering of a particle from a spherically symmetric square well , i.e. the potential reads

V (r) = V0 Θ(R − r), with R the extent of the well and V0 its strength. The radial s-wave

Schrödinger equation [Eq. (2.11)] now reads

[ d2

dr2
+ |V0|Θ(R− r)

]
u(r) = 0 . (2.30)
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For the attractive square well, V0 < 0, the solutions to Eq. (2.30) can be written as

u(r) ∝





sin(kr), r ≤ R

(r − a), r > R .

(2.31)

Continuity at the boundary leads to to

a = R− tan(
√
|V0|R)√
|V0|

, (2.32)

which we plot in Fig. 2.1(a). The scattering length diverges at
√
|V0|R = 2n+1

2
π, where n is

an integer. At each of these values, an additional bound state appears for the deeper and

deeper square well potential. In between, the scattering length vanishes.11 In Fig. 2.1(b)

we plot the s-wave scattering length for V0 > 0. The scattering length is always positive,

a = R− tanh(
√
|V0|R)√
|V0|

, and for large V0 the scattering length goes to R (the cross-section looks

like four times the classical hard-sphere radius).

The simple previous example showed that the scattering length sensitively depends on

the exact combination of parameters of the interaction potential. Whenever a bound state

was close to the continuum threshold, the scattering length diverged — a so-called shape

resonance. The relation between a bound state with energy just below the scattering con-

tinuum and a large (positive) scattering length turns out to be general. But in experiments

with ultracold gases it is very difficult to manipulate the true interatomic potential. Instead,

the scattering length is tuned via Feshbach resonances , see e.g. Refs. [4, 170, 172, 174] and

references therein, where the bound state is provided by different atomic configurations of

the two particles. In experiments the atoms are confined by magneto-optical traps and

usually in definite hyperfine levels. Consider an alkali atom: All electrons except one are

in closed shells, so the relevant spin is that of the valence electron. In its ground state, the

angular momentum of the electron is zero, and so the relevant quantum numbers for the

hyperfine levels are the nuclear spin (and its projection) and the electron spin. Applying an

external magnetic field leads to a Zeemann shift of hyperfine levels, and the latter depends

on the total magnetic moment. This means that an external field can shift the energy levels

11 For a figure of the radial wavefunction see Fig. 2, p.99 of Ref. [173].
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Figure 2.2: (a) Zeeman splitting of hyperfine energy levels of lithium 6 in an external magnetic
field B. The alkali atom is in its electronic ground state, and the hyperfine levels f = 1/2 and
f = 3/2, where f is the total angular momentum quantum number. For non-zero external field, the
two levels split up and the projection m of the total angular momentum along the field is a good
quantum number (labelled by fractions on the right), in contrast to f , which is a good quantum
number for zero field only. (b) Two-channel model of a Feshbach resonance. The atoms collide
with energy E, which is close to zero for collisions in the ultracold regime. The closed channel
(solid red line) corresponds to a different atomic configuration than the open channel (solid black
line), and supports a bound state at energy EC . If the bound-state energy is close to zero, a
resonance occurs.
Reprinted with permission from Review of Modern Physics 82, 1225 (2010) (Ref. [4]). Copyright 2010 by the American Physical

Society.

relative to each other. In Fig. 2.2(a), the dependence of the energy levels with external

magnetic field is shown for lithium 6, a common choice of species for ultracold atom ex-

periments.12 For two well-separated atoms, i.e. in the asymptotic region, the total angular

momentum is a good quantum number and different hyperfine levels do not mix. But inside

the interaction region, i.e. when the two atoms are close to each other and thus are not

well-described in terms of single entities, the total angular momentum is not conserved and

the interatomic potential can lead to transitions during scattering events. If a certain atomic

configuration supports a bound state, the energy of which is on resonance with the collision

energy of the two atoms, the scattering length diverges, just as in the simple square-well

scenario discussed earlier. This is shown in Fig. 2.2(b) for two channels.13 The relation

12 Note that this is a fermionic atom, but the energy level shifts in Fig. 2.2(a) are similar for other alkali
atoms.

13 We refer to a channel as an atomic configuration of the two atoms in the asymptotic region.
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between the background scattering length abg (i.e. without coupling to a bound state) and

the effective scattering length can be derived from a two-channel model14 (or determined

phenomenologically experimentally), which yields

a = abg

( ∆B

B −B0

)
, (2.33)

where ∆B is the width and B0 is the position of the resonance. This means that the effective

interaction strength in ultracold atomic gases can be readily tuned over wide ranges. For

diverging scattering lengths, the system doesn’t have a typical length scale for interactions

anymore and the physics becomes universal in this sense, see e.g. Ref. [175] (which also

treats Efimov physics, i.e. three-body universality).

Inelastic processes

We here shortly comment on three-body recombination processes, since they play a promi-

nent role in ultracold gases.15 For potentials with bound states, molecule formation is

possible and requires a third atom to be involved to carry away the binding energy of the

pair. This usually leads to high kinetic energies and the molecule and the particle can

escape the trap. For contact interactions this process is proportional to the probability to

find three atoms at the same place in space. To avoid this undesirable reaction in general

potentials, we need the density of the gas to be much smaller than the characteristic length

scale of the interactions, the so-called diluteness condition |a|n1/3 � 1, where the scattering

length a characterizes collisions at ultracold temperatures as we saw before.

2.1.3 From three spatial dimensions to one

The simplest model interaction potential, referred to as contact potential, reads

U(r) = gδ(~r) , (2.34)

14 For more particles it is important that the three-body recombination rate is low, so there is no relaxation
into deep bound states, which would lead to fast atom loss in the usual experimental set-ups. This is not the
case for three-dimensional Bose Einstein condensates in general, opposed to fermionic systems (see e.g. [99]).
However, the interactions are often small in typical Bose Einstein condensates.

15 As we mentioned earlier, the atoms are usually trapped in a definite hyperfine state, so spin relaxation
processes are possible. Collisions with the background gas of the (imperfect) vacuum lead to losses as well.
For a general discussion of several inelastic processes, see Ref. [170].
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2.1 Interactions in ultra-cold gases

where g is the interaction strength or coupling constant. In one spatial dimension, one

can straight-forwardly substitute this potential into the Lippmann-Schwinger equation and

define a one dimensional scattering length in analogy with the three dimensional case. This

leads to a1D = 2~2

µg
. But the connection to the three dimensional scattering length is not

clear from this and the important link with experimentally accessible quantities has been

lost. To obtain this connection, it is necessary to perform scattering calculations in highly

restricted geometries, such that the dynamics effectively takes place in one dimension. This

was described in Ref. [176] and we shall outline the derivation here. For this purpose,

it is necessary to regularize the pseudopotential [Eq. (2.34)] because its action on certain

wavefunctions does not lead to physical scattering properties when r → 0 in three spatial

dimensions. The regularized potential reads

V (r) = gδ(~r)
∂

∂r
(r·) , (2.35)

where (r·) means that the wavefunction has to be multiplied by r before taking the deriva-

tive. This potential can be used in the reduced Schrödinger equation, meaning it reproduces

the exact values for the energy, see e.g. Refs. [12, 177], provided that

g =
2π~2

µ
a . (2.36)

The need for this regularization operator arises from the fact the the radial part of the

scattered wave behaves like u(r)
r

as we saw earlier. In combination with the δ-function,

the regularization operator simply removes the short distance divergence of the scattered

wave.16 The discussion so far has been for two particles in vacuum, but it can be shown

that the pseudo-potential method can be extended to many-body systems [12].

To get into the one-dimensional regime, consider the following situation [176]: Two atoms

interact via the regularized pseudopotential (2.35) and are additionally confined in the x

and y direction by a harmonic potential with trapping frequencies ω⊥. The center-of-mass

16 See also discussion in footnote on p.125 of Ref. [170].
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motion then decouples, and the z motion is free. The relative Hamiltonian then reads

p̂2
z

2µ
+ gδ(~r)

∂

∂r
(r·) + Ĥ⊥(p̂x, p̂y, x, y) , (2.37)

where ~r = ~r2 − ~r1 is the relative coordinate between the two atoms and the transverse

Hamiltonian

Ĥ⊥(p̂x, p̂y, x, y) =
p̂2
x + p̂2

y

2µ
+
µω2
⊥(x2 + y2)

2
. (2.38)

We assume the energy of the collision (i.e. the relative kinetic energy) is less than ~ω⊥
and the incident wave is in the ground state of the transverse Hamiltonian Ĥ⊥. Following

the same procedure as in Sec. 2.1.1, we compare the asymptotic wavefunction with the

wavefunction at short distances. Here, however, the short-distance form of the wavefunction

has to be derived with care. Expanding the wavefunction onto the eigenstates of Ĥ⊥ with

zero angular momentum, and then using the boundary condition of the pseudopotential

(i.e. regular wavefunction for r → 0), a closed analytic expression for the wavefunction can

be derived [176]. Comparing this to the asymptotic wavefunction then gives the scattering

phase shifts. In the low-energy limit, the scattering can be described by a one dimensional

δ–function potential V (r) = g1Dδ(r), where

g1D = − ~2

µa1D

=
2~2a

µa2
⊥

(
1− C a

a⊥

)−1

. (2.39)

Here we introduced the one-dimensional scattering length a1D, C = 1.46 . . . is a numerical

constant, a is the three-dimensional scattering length, and a⊥ = ( ~
µω⊥

)1/2 is related to the

transverse confinement. The quantities in this expression are now experimentally accessible,

allowing for a parameter free comparison of theoretical calculations with experimental re-

sults. Since a⊥ enters the expression for a1D, the scattering length can be tuned by changing

the trapping frequency of the transverse confinement, a so-called confinement induced reso-

nance. The experimental realization of this has been reported in Ref. [178] and was utilized

in Ref. [179] to abruptly change the effective interactions in a one-dimensional system of

bosons from strongly repulsive to strongly attractive.
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2.2 Theoretical tools for the one-dimensional Bose gas out of equilibrium

2.2 Theoretical tools for the one-dimensional Bose gas

out of equilibrium

There are many different theoretical approaches to calculating properties of the one dimen-

sional Bose gas, each with its advantages and drawbacks. Since we are interested in the

far from equilibrium dynamics of strongly correlated one-dimensional bosonic systems with

short-range interactions, we here shortly summarize some of them without claiming to be

exhaustive and comment on their utilities and limitations.17 For a thorough introduction

and overview of non-equilibrium techniques in the context of quantum gases, we refer the

reader to Ref. [180].

The conceptually simplest numerical method is exact diagonalization of the Hamiltonian

in a suitable basis. For finite sized lattice models, the basis of the Hilbert space is finite and

by obtaining all eigenstates of the Hamiltonian, any quantity of interest can in principle

be computed, see e.g. Refs. [1, 62, 181]. Since the Hilbert space grows exponentially with

particle number, this method is well suited for small systems. For continuous models, the

Hilbert space is infinite dimensional, and a suitable truncation scheme for basis states has

to be developed. For the Lieb–Liniger model with attractive interactions, this was done

in Refs. [182–185] to access the low-energy properties of the system at relatively weak

interactions around the quantum critical point.18 For larger interaction strengths, on the

other hand, this method quickly becomes prohibitive.

Another numerical method relying on the truncation of basis states is the multiconfig-

urational time-dependent Hartree method for bosons [180, 186], which uses an expansion

of the wavefunction with time-dependent single-particle basis states and time-dependent

coefficients, which themselves are variationally optimized. This method is well-suited to de-

scribe the dynamics of few-boson systems [187–189], but introduces an unphysical coupling

of center-of-mass and relative motion that can lead to numerical problems for systems with

attractive interactions [190], as well as a numerically prohibitive number of single particle

17 Results for the ground state of the repulsively interacting Lieb–Liniger model are discussed in Sec. 3.4,
while those for attractive interactions can be found in Sec. 5.4.

18 In the mean-field limit, the one-dimensional Bose gas with attractive interactions exhibits a quantum
phase transition from a uniform density state to a localized bright soliton at a critical interaction strength,
cf. Ch. 5.
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orbitals for strong interactions [188].

A powerful technique to simulate the dynamics of strongly correlated one-dimensional

models are tensor network methods. For these, the Hilbert space is truncated to only contain

the relevant sector in which the physics of interest happens. This is based on the fact that

for gapped local Hamiltonians, the low-energy states obey an area-law for the entanglement

entropy,19 and these states only make up a very small fraction of the full Hilbert space, see

e.g. Refs. [191–193]. Moreover, the time-evolution for these states is restricted to a rela-

tively small part of the Hilbert space, making it possible to also implement non-equilibrium

scenarios. However, since the entanglement entropy grows with time, more and more states

have to be taken into account and the method eventually becomes inaccurate for a fixed

truncation. For applications to dynamics in the Lieb–Liniger model, see e.g. Refs. [194, 195].

Phase-space methods map the density matrix to a quasi-probability distribution con-

taining the full information of a system at hand. One can then map the time-evolution of

a density matrix to the time evolution of a quasi-probability distribution [196, 197]. The

advantage of this lies in the fact that generically, the time evolution of the phase space dis-

tribution, which is described by a generalized Fokker–Planck equation, can be mapped to

stochastic differential equations. The latter can be solved with simple computational meth-

ods. The numerical problem thus shifts from the exponential size of the Hilbert space to

sampling stochastic trajectories. Two common phase space formulations are the truncated

Wigner approximation [180, 198] (and the related classical-field technique [180, 199]) and

the positive P-representation [180, 197]. For general Hamiltonians involving interactions

(i.e. Hamiltonians beyond quadratic), the mapping of the generalized Fokker–Planck to

stochastic differential equations in the truncated Wigner approximation involves neglecting

certain terms in the former. In general this is valid for systems that have a high occupation

compared to the number of modes. The truncation is controlled in the sense that the error

in time can, in principle, be bounded [200]. In the positive P-representation, the mapping

between the Fokker–Planck equation and the stochastic differential equations is exact, how-

ever the method is only stable for short times. In practice, phase-space methods are not

suited to access late-time dynamics or small systems.

Very recently, there has been progress on results of observables in the thermodynamic

19 For ungapped Hamiltonians, there can be corrections.
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limit. The numerical linked cluster expansion [201] gives access to the infinite time limit of

the density matrix in the energy eigenbasis of a system, as well as thermal density matrices,

but does not allow for calculations of finite-time dynamics.

Ref. [202] conjectured that the dynamics and relaxed value of certain local observables

following an interaction strength quench are captured by a representative eigenstate of

the postquench Hamiltonian and excitations around it — the so-called quench action ap-

proach [203]. The method was introduced for integrable models with Bethe ansatz solution,20

where the overlaps of the initial state with the eigenstates of the Hamiltonian governing the

time evolution can be computed in certain situations. These overlaps are the main ingredi-

ent in the quench action method, and are hard to calculate in general. However, if known

they can be used to find the afore-mentioned representative eigenstate by means of a gener-

alized thermodynamic Bethe ansatz equation. The equilibrium values of certain operators

are then given as expectation values in this state, while the time-evolution is governed by

states in the vicinity of it. For an application of the method to the Lieb–Liniger model, see

Refs. [9, 10, 204–206].

In general, integrability-based methods make use of the various existing Bethe ansatz

approaches. This thesis is concerned with the Lieb–Liniger model and its solution via

the coordinate Bethe ansatz and we therefore give a detailed exposition of the subject in

the next section. However, there are more Bethe ansatz based techniques and we briefly

mention a powerful one here, the algebraic Bethe ansatz [207]. It also goes by the name

quantum inverse scattering method, due to the parallels to the classical inverse scattering

method. It is based on an abstract construction of a so-called transfer matrix to generate

all local conserved charges at once. The Yang–Baxter algebra of this transfer matrix is

then utilized to generate the eigenfunctions by applying certain algebraically constructed

operators to a pseudo-vaccum state. The inverse problem consists of finding expressions

for physical observables in terms of these algebraically constructed operators. Its value

for non-equilibrium dynamics comes from a numerically convenient determinant expression

for so-called form-factors [208], which are matrix elements of physical operators. As for

the quench action method, the representation of the initial state in the eigenstates of the

Hamiltonian governing the time-evolution is needed and is only known for some specific

20 Although it is in principle not restricted to those [203].
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examples [209–211].21

2.3 The Lieb–Liniger model and its solution via Bethe

ansatz

Theoretical interest in the one-dimensional Bose gas with binary δ-function interactions

preceded the derivation of its connection to experimental quantities [Sec. 2.1.3] by 35 years.

In 1963, in their seminal paper E. Lieb and W. Liniger constructed the solutions of the

N -particle Hamiltonian

ĤLL = −
N∑

i=1

∂2

∂x2
j

+ 2c
∑

1≤i<j≤N

δ(xj − xi) (2.40)

with the help of the Bethe ansatz, named after H. Bethe who developed the method to

solve the one-dimensional spin-1/2 Heisenberg model [212]. Hamiltonian (2.40) constitutes

the famous Lieb–Liniger model. Here and in the following, we set ~ = 1 and the particle

mass m = 1/2 for convenience (for a discussion of units, see e.g. the end of Sec. 4.3.2). It

is instructive to start with the two-body problem, since it illustrates many aspects of the

many-particle problem.

2.3.1 The two-body problem

For non-interacting systems, the time-independent Schrödinger equation reads

(
− ∂

∂x1

− ∂

∂x2

)
ψ = Eψ, (2.41)

for which the solutions are plane waves. Let us consider the wave function in the fundamental

spatial sector R : x1 ≤ x2. The wave function for x2 > x1 is then determined by Bose

symmetry, ψ(x1, x2) ≡ ψ(x2, x1). Then,

ψ = N ei(k1x1+k2x2), E = k2
1 + k2

2, (2.42)

21 The Slavnov formula for overlaps of Bethe states doesn’t work for states with non-equal interaction
strength.
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2.3 Lieb–Liniger model

where N is a normalization constant to be determined once boundary conditions are intro-

duced. The advantage of restricting the wave function to R lies in the fact that we did not

explicitly have to symmetrize ψ. k1,2 are the single particle momenta.

Introducing interactions , the time-independent Schrödinger equation reads

(
− ∂2

∂x2
1

− ∂2

∂x2
2

+ 2cδ(x2 − x1)
)
ψ = Eψ, (2.43)

where the interactions are repulsive for c > 0, and attractive for c < 0. If x1 6= x2, then

δ(x2−x1) = 0 and the particles do not interact. If x1 = x2, the following boundary condition

on R should be fulfilled:

( ∂

∂x2

− ∂

∂x1

− c
)
ψ|x2=x1+0 = 0. (2.44)

This can be seen by transforming to relative coordinates22

r =
x2 − x1

2
, R =

x1 + x2

2
. (2.45)

The Hamiltonian is then

−1

2

∂2

∂R2
− 1

2

∂2

∂r2
+ cδ(r) (2.46)

and integrating the Schrödinger equation (2.43) around r = 0 leads to the following equation

∫ ε

−ε
dr
[
− 1

2

∂2

∂r2
ψ(r, R) + cδ(r)ψ(r, R)

]
=

∫ ε

−ε
drEψ(r, R). (2.47)

The center-of-mass motion is separable for translationally invariant problems, so the wave-

function is a product of two independent functions ψ(r, R) = ψ(r)χ(R). Taking the limit

ε→ 0, and utilizing Bose symmetry (ψ(r) ≡ ψ(−r)) we arrive at

−1

2

∂

∂r
ψ(r)

∣∣∣
r=0+

r=0−
+ cΨ(0) = 0, (2.48)

22 The reader might wonder about the slightly different choice of relative separation r here as opposed to
the common r′ = x2 − x1. Our choice ensures a symmetric factor in the kinetic part of the Hamiltonian,
see Eq. (2.46) and makes it possible to factor out the total center-of-mass momentum for any number of
particles with potentially different masses, see discussion in Appendix of Ref. [213].
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which, upon resubstituting the original coordinates and utilizing Bose symmetry results in

Eq. (2.44). Let us make the following ansatz for the wave function

ψ = a1ei(λ1x1+λ2x2) + a2ei(λ2x1+λ1x2), (2.49)

which is motivated by the fact that the solution should be a superposition of plane waves for

x2 6= x1, where the system is non-interacting, and that scattering of two identical particles

in one dimension is very restrictive: momentum and energy conservation dictate that the

particles can either exchange momenta, or just pass through each other.23 Plugging this

into Eq. (2.44) we obtain

(iλ2 − iλ1 − c)a1 + (iλ1 − iλ2 − c)a2 = 0 ⇐⇒ a1

a2

=
i(λ2 − λ1) + c

i(λ2 − λ1)− c. (2.50)

The λj here are free parameters of our ansatz, and generally not the single-particle momenta

as in the non-interacting case. Writing Eq. (2.50) as

a1

a2

= eiθ(λ1−λ2), θ(λ1 − λ2) = 2 arctan
λ1 − λ2

c
(2.51)

reveals that the relation between a1 and a2 is a pure phase factor, with θ the phase shift

due to the scattering. Even though the λ are quasi-momenta, they determine the total

momentum and energy of the system

P̂ψ =
(
− i ∂

∂x1

− i ∂
∂x2

)
ψ = (λ1 + λ2)ψ, Ĥψ = (λ2

1 + λ2
2)ψ. (2.52)

Introducing periodic boundary conditions and keeping in mind that our wavefunction is

defined on R, i.e. 0 ≤ x1 ≤ x2 ≤ L, continuity requires

ψ(0, x2) = ψ(x2, L)

∂

∂x1

ψ(x1, x2)
∣∣∣
x1=0

=
∂

∂x1

ψ(x2, x1)
∣∣∣
x1=L

, (2.53)

23 We assume that momentum and energy conservation give two functionally independent conditions, so
our ansatz has two parameters, λ1 and λ2.
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and the same for x2. Using our ansatz for the the wave function, Eq. (2.49), and the

scattering factors obtained from the δ–function boundary condition, Eq. (2.50), we obtain

eiλ1L =
λ1 − λ2 + ic

λ1 − λ2 − ic
, eiλ2L =

λ2 − λ1 + ic

λ2 − λ1 − ic
. (2.54)

Once these two simultaneous equations have been solved, we can plug the values of the

rapidities into the equation for the wave function and the problem is (at least in principle)

solved. The solutions to the so-called Bethe equations (2.54) depend on the sign of the

interaction parameter c, and since the physical situation is very different for the attractive

and repulsive case, we will discuss these two regimes separately.

Repulsive interactions (c > 0)

For repulsive interactions, the solutions of Eq. (2.54) are real numbers. To show this, assume

the rapidities have an imaginary part, and assume =(λ1) > =(λ2). Taking the absolute value

of Eq. (2.54) leads to

|eiλ1L| =
∣∣∣∣
λ1 − λ2 + ic

λ1 − λ2 − ic

∣∣∣∣ ≥ 1 ⇒ =(λ1) ≤ 0 ,

|eiλ2L| =
∣∣∣∣
λ2 − λ1 + ic

λ2 − λ1 − ic

∣∣∣∣ ≤ 1 ⇒ =(λ2) ≥ 0 . (2.55)

This contradicts our initial assumption and therefore the rapidities have to be real. Using

the identities log(reiθ) = log(r) + iθ+ 2πin, where n is an integer, and arctan z = 1
2
i[log(1−

iz)− log(1 + iz)], we can rewrite Eq. (2.54) as

λ1 =
2π

L
m1 −

2

L
arctan

(λ1 − λ2

c

)
, λ2 =

2π

L
m2 −

2

L
arctan

(λ2 − λ1

c

)
, (2.56)

where mj = n+N−1
2

. The mj are in one-to-one correspondence with the rapidities λj [207].24

The wavefunction is antisymmetric in the rapidities, which means that they cannot coincide,

λ1 6= λ2, and therefore the mj are ‘fermionic-like’ quantum numbers. The ground state is

therefore obtained by setting mj = ±1/2. For infinitely strong interactions, c → ∞, the

arctan in Eq. (2.56) goes to zero and the rapidities are equal to the single-particle momenta

24 This is handy for labeling states, because the rapidities λj are a function of c, whereas the mj are fixed.
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Figure 2.3: Relative wavefunction for N = 2 particles and system length L = 2 for several
representative values of the interaction strength c. (a) Ground state wavefunction for repulsive
interactions. (b) Ground state wavefunction for attractive interactions. (c) Wavefunction for the
lowest scattering (super-Tonks) state for attractive interactions.

of free (spin-polarized) fermions. The wavefunction of the bosonic system in this so-called

Tonks–Girardeau limit is identical to the absolute value of the fermionic system [214].25 This

implies that Ψ(r = 0) = 0, where r is the relative coordinate between the two particles.

The behavior of the relative wavefunction at large but finite c is similar, see Fig. 2.3(a)

(c = 100, solid black line). For lower values of the interaction strength, the cusp at r = 0 is

less pronounced (recall Eq. (2.44): The derivative of Ψ(r) at r = 0 has a jump equal to the

value of Ψ(0) times c), e.g. c = 10 (blue dotted line) and c = 1 (red dashed line). For very

small values c = 10−4 (horizontal grey line), the wave function approaches the constant line

of the non-interacting case, Ψ(c = 0, r) = L−N/2.

Attractive interactions (c < 0)

For attractive interactions, the solutions of the Bethe equations (2.54) allow for complex

rapidities since for c < 0, Eqs. (2.55) have the inequalities reversed. We plot the rela-

tive wavefunction of the ground state in Fig. 2.3(b) for several representative interaction

strengths c. For small values c = −10−4 (horizontal grey line), the shape is similar to the

afore-mentioned constant non-interacting case. For c = −1 (red dashed line), the wave

function is slightly increased around the origin. For larger attractive values c = −10 (blue

dotted line), the wavefunction becomes more sharply peaked around r = 0. This trend

continues for even larger interaction strengths c = −100 (solid black line), signalling the

25 As we will see in Sec. 3.4, this also applies to certain (but not all) correlation functions.
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2.3 Lieb–Liniger model

emergence of a tightly bound state. For strong attractive interactions,26 the wavefunction

can approximately be written

Ψ(r) ∝ e−|c| |r|/2 , (2.57)

which is the exact ground state solution on the infinite line, L→∞ [213]. We will come back

to the general structure of bound state solutions in the next section. For now, let us mention

one particular excited state of the attractive Lieb–Liniger model, which for |c|L→∞ is the

so-called super-Tonks state. This eigenstate has purely real rapidities and corresponds to

a highly excited state. We plot the wavefunction for this state in Fig. 2.3(c). For strong

attractive interactions c = −100 (black solid line), the wavefunction looks very much like

that for the strongly repulsive case [solid black line in Fig. 2.3(a)]. This is no coincidence,

as for |c| → ∞, the energies and rapidities of the two states connect continuously [215–218]

and this fact has been used to experimentally prepare the super-Tonks gas: Starting from

strongly repulsive interaction strengths and instantly switching to attractive interactions

utilizing a confinement induced resonance (cf. Sec. 2.1.3) this highly excited, metastable gas

has been observed in Ref. [179]. For lower values of c = −1 (red dashed line) and c = −10−4

(solid grey line), the wave function is very different from the repulsive case.

2.3.2 The coordinate Bethe ansatz for N particles and the Yang–

Baxter equation

The previous discussion for two particles would have held for any short-ranged potential

in the asymptotic region, as discussed in Sec. 2.1.1. Energy and momentum conservation

give two independent conservation laws, and we have two rapidities for two particles. For

three particles, scattering is more complicated and the general solution would contain a

three-body scattering term, where only the total momentum and energy are fixed. For

the special case of the Lieb–Liniger model, i.e. binary δ-potential interactions, it turns out

that there are exactly N rapidities for N particles and the scattering of the system is non-

diffractive [58]. Let us shortly outline this for the three-body case, before generalizing to

N particles. Making the same ansatz as in Eq. (2.49), but with three rapidities and the

26 Technically for large |c|L, but we keep the system length fixed to L = 2 for the two-particle case.
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sum ranging over all 3! = 6 possible reorderings of the rapidities λj, the (unnormalized)

wavefunction reads

ΨN=3 =
∑

σ

a(σ)ei
∑N
j=1 λσ(j)xj , (2.58)

where σ denotes a permutation of {1, 2, 3}. The cusp condition (2.44) now generalizes to

six different cusp-conditions, three for x1 = x2 and three for x2 = x3 (recall that we are

working in the fundamental spatial sector x1 ≤ x2 ≤ x3), and we obtain six equations for

the six a(σ). They read

a(123)

a(213)
= eiθ(λ1−λ2) ,

a(123)

a(132)
= eiθ(λ2−λ3) ,

a(213)

a(231)
= eiθ(λ1−λ3) ,

a(132)

a(312)
= eiθ(λ1−λ3) ,

a(321)

a(231)
= eiθ(λ1−λ2) ,

a(321)

a(312)
= eiθ(λ2−λ3) , (2.59)

where we used the definition of the scattering phase θ (2.51). Since every permutation can

be decomposed into transpositions, there are two ways of connecting, for example, a(123)

and a(321). The first one reads (123)→ (213)→ (231)→ (321), while the second one reads

(123)→ (132)→ (312)→ (321). Importantly, Eqs. (2.59) lead to the same final scattering

phase a(123)
a(321)

= ei[θ(32)+θ(31)+θ(21)]. This is the essence of the famous Yang–Baxter equation [58,

59]: The scattering of three particles can be decomposed into successive two-body events

and the order of these does not matter. We depict this in Fig. 2.4 with the so-called star-

triangle diagram: In Fig. 2.4(a), three particles, labelled with their corresponding Bethe

rapidities λj scatter simultaneously.27 In Fig. 2.4(b), the particle with rapidity λ2 is slightly

deplaced initially, leading to three consecutive two-body scattering events. The situation is

the same in Fig. 2.4(c), with the scattering order interchanged. All three diagrams have the

same amplitude in the asymptotic region.28

The results from the N = 2 and N = 3–particle cases extend to the N -particle sector.

The general expression for the wavefunction on the fundamental spatial sector R : x1 ≤
x2 ≤ · · · ≤ xN reads

Ψ(x1, . . . , xN , λ1, . . . , λN) = N
∑

σ

(−1)[σ]
∏

1≤k<j≤N

[λσ(j) − λσ(k) − ic] ei
∑N
j=1 λσ(j)xj , (2.60)

27 Take for example x1 < x2 < x3 and λ1 > λ2 > λ3 initially.
28 The asymptotic region for a δ-function is everywhere but the origin. Let us remark that there are also

long-range interacting models for which the Bethe ansatz is valid, see e.g. Ref. [55].
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t

x

(a)

λ1 λ2 λ3

λ3 λ2 λ1 (b)

λ1 λ2 λ3

λ3 λ2 λ1 (c)

λ1 λ2 λ3

λ3 λ2 λ1

Figure 2.4: Space-time diagrams of possible scattering paths for N = 3 particles for taking
λ1, λ2, λ3 [denoted by (123)] into λ3, λ2, λ1 [(321)]. (a) (123) → (321). (b) (123) → (213) →
(231) → (321). (c) (123) → (132) → (312) → (321). These paths lead to the same scattering
phase for the Lieb–Liniger model, i.e. they are equivalent, the essence of the Yang–Baxter relation.

where
∑

σ extends over all N ! permutations of {1, 2, . . . , N}, N is a normalization factor

introduced below and (−1)[σ] is the sign of the permutation. Applying periodic boundary

conditions leads to the Bethe equations, a set of N equations for N particles

eiLλj =
∏

l 6=j

(λj − λl) + ic

(λj − λl)− ic
. (2.61)

These equations are transcendental, so they have to be solved numerically in general. For

repulsive interactions, it is convenient to write

λj =
2π

L
mj −

2

L

N∑

k=1

arctan

(
λj − λk

c

)
, (2.62)

where the mj are in one-to-one correspondence with the rapidities λj [207]. The ground

state is obtained by setting

mj = j − N + 1

2
, j ∈ [1, 2, . . . , N ] . (2.63)

All other combinations with mutually distinct mj, where mj are integers (half-integers)

in the case of N odd (even), lead to allowed solutions of the Bethe equations [207, 219]

and constitute excited states. We will come back to the excitation spectrum in the next

section, when we consider the thermodynamic limit of the system. For finite systems, see

e.g. Ref [220]. Importantly, the set of all corresponding eigenfunctions forms a complete
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orthonormal basis for (the Bose-symmetric subspace of) the N -particle Hilbert space [219,

221]. The normalization constant reads [207]

N{λj} =

∏
k>l(λk − λl){

N ! det{M{λj}}
∏

k>l[(λk − λl)2 + c2]
}1/2

, (2.64)

with M{λj} the N ×N matrix with elements

[
M{λj}

]
kl

= δkl

(
L+

N∑

m=1

2c

c2 + (λk − λm)2

)
− 2c

c2 + (λk − λl)2
. (2.65)

In the eigenstate |{λj}〉 ≡ |Ψ(x1, x2, . . . , xN , λ1, λ2, . . . , λN)〉 the total energy and momen-

tum are

E{λj} =
N∑

j=1

λ2
j , P{λj} =

N∑

j=1

λj . (2.66)

The parametrization (2.62) simplifies the discussion for the repulsive gas, but for the

attractive gas it is more convenient to directly deal with Eq. (2.61). As we saw for the N = 2

particle case, complex-valued rapidities are permitted solutions for attractive interactions

and lead to bound states. For N particles, there are many of them and the general structure

of the corresponding rapidities can be inferred from the following considerations. Following

Ref. [222], let us consider the Bethe equation (2.61) for one complex rapidity λα ≡ λ + iη

with λ, η real:

eiλLe−ηL =
∏

α 6=j

λα − λj + ic

λα − λj − ic
. (2.67)

For large L there are two possible scenarios depending on the sign of η:

η < 0 : e−ηL →∞

η > 0 : e−ηL → 0. (2.68)

This means the right-hand side of Eq. (2.67) has to counter this exponentially large (small)

term, and consequently there must be a second rapidity with λβ = λ−iη+ic+O(e−ηL). This

generalizes to more particles and the Bethe rapidities for attractive interactions organize

themselves in strings with respect to the imaginary axis with deviations exponentially small
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in system size. The ground state of the system has purely imaginary rapidities and is an

N–particle bound state, and it is the only N–particle bound state of the system.29 There

are many possible ways to construct lower-order bound states, with unbound particles in

a state having real rapidities. Each bound state in a given eigenstate (there can be many

in one state) organizes in strings with respect to the imaginary part of the participating

rapidities, all with exponentially small deviations in system size.

Neglecting string-deviations, the strings of various lengths behave like particles with

total mass equal to the sum of the constituents, and one can deduce a reduced set of Bethe

equations for the string centers and free particles in a state, the so-called Bethe-Takahashi

equations [222, 223]. The completeness of the corresponding set of eigenfunctions is not

proven and thus the procedure is referred to as the string-hypothesis.

The original finite-size Bethe solutions, however, are known to be complete for attractive

interactions [224, 225]. For finite particle number N , the parameter characterizing the

behavior of the system is cL, and thus for strong attractive interactions and finite L, the

same conclusions of small deviations from the string solutions on the order econst.×cL hold.

As we will see in Chapter 5, this leads to complications in the numerical solution of the

Bethe equations as well as the numerical calculation of correlation functions compared to

the case of repulsive interactions. For small |c|L, the system shows significant deviations

from the string solutions [226, 227].

2.3.3 The thermodynamic Bethe ansatz at zero temperature

The ground state energy of the Lieb–Liniger model with attractive interactions diverges in

the usual thermodynamic limit N,L→∞, n ≡ N/L fixed [213].30 We shall therefore only

consider the case of repulsive interactions, c > 0, where all the Bethe rapidities are purely

29 With center-of-mass momentum zero. In our periodic geometry, adding 2πk/L (k an integer) to every
rapidity in a given set corresponds to a center-of-mass shift which can be factored out in terms of a plane
wave.

30 The ground state energy E0 ∝ N3/L, so one could think of taking the ’ultra-dilute’ limit by keeping
N3/L constant, or by taking the limit L→∞ at finite N , which is non-trivial for attractive interactions [222,
228].
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real.31 Define a density of rapidities

ρ(λ) =
1

L(λj+1 − λj)
, (2.69)

where the difference of neighboring rapidities (λj+1 − λj) in the thermodynamic limit is of

order L−1 [56] and therefore the rapidities become dense on the real axis. The finite-size

Bethe equations (2.62) turn into an integral equation in the thermodynamic limit

ρ(λ) =
1

2π
+

1

2π

∫ kF

−kF
dλ′ρ(λ′)

2c

c2 + (λ− λ′)2
. (2.70)

This is a linear Fredholm integral equation, and can be solved by numerical integration.

Normalization requires ∫ kF

−kF
dλ′ρ(λ′) =

N

L
(2.71)

and for a given density determines the value of the Fermi momentum kF , which is by

definition the highest occupied rapidity in the ground state.32

Extending this formalism beyond the ground state to obtain the excitation spectrum,

Lieb [231] introduced two sets of elementary excitations: Particle-like excitations (so-called

Type I excitations), and hole-like (Type II) excitations. These excitations correspond to

phonons (Type I) [231] and dark solitons (Type II) [211, 232–238]. The former is realized

by adding a particle to the ground state of the Lieb–Liniger model, which has to be placed

outside the Fermi zone, while the latter corresponds to taking away a particle inside the

Fermi zone.33 Adding a particle to the finite system will have an influence on all rapidities,

since they are non-trivially coupled by the Bethe equations (2.62), underlining the concept

of collective phenomena in one spatial dimension independent of the value of the interaction

31 Recently, an integral equation for the ground state of the attractive gas for cLN constant has been
derived [229]. Refs. [218, 230] considered a particular highly excited, meta-stable state of the attractive gas,
the so-called super-Tonks gas. Since all the rapidities are real in this state, its properties can be described
with the formalism of this section.

32 It is customary to call this quantity Fermi momentum. To be precise, it is the Fermi rapidity, since
only in the limit c→∞ the usual definition of kF = πn is recovered.

33 This is different from the coordinate Bethe ansatz discussion before, where we were dealing with a fixed
number of particles. Excitations are then given by moving one or several mj around, but keeping the total
number fixed. In the thermodynamic limit, these excitations are one-particle plus one-hole excitations.
It can be shown that the energy and momentum are additive for these quantities [239], as long as one
introduces a chemical potential for the change of particle number, so it is customary to simply focus on the
two branches mentioned.

40



2.3 Lieb–Liniger model

strength. To parameterize this shift in the thermodynamic limit, Lieb introduced the so-

called shift or backflow function F (λ, λp), where λp is the bare quasi-momentum of the

particle added [231]. In the thermodynamic limit

F (λ|λp) =
1

2π

∫ kF

−kF

2c

c2 + (λ− λ′)F (λ′|λp)dλ′ −
1

π
arctan

(λ− λp
c

)
− 1

2
. (2.72)

The change of momentum of the system is then given by

∆p(λp) = λp +

∫ kF

−kF
F (λ′|λp)dλ′ (2.73)

and the change in energy by

∆ε(λp) = λ2
p +

∫ kF

−kF
2λ′F (λ′|λp)dλ′ , (2.74)

The same considerations can be repeated for Type II (hole) excitations, where the bare

hole quasi-momentum has to be inside the Fermi zone, leading to similar equations with

different signs, cf. Refs. [207, 219, 223, 231]. Introducing a chemical potential to account for

the change of particle number, one can define one-particle and one-hole excitation energies

and momenta that are additive [207, 223, 239]. These quantities are the dressed momentum

and energy of the system, i.e. exact many-body quantities with single-particle behavior

determined by integral equations. Put differently, the integrable Lieb–Liniger model has

stable quasi-particles that can be obtained by solving a set of integral equations. This allows

for comparison to the universal, phenomenological low-energy Luttinger liquid theory [65,

240, 241], which does not specify the nature of its quasi-particles (fermionic or bosonic)

beyond the linearized spectrum, see e.g. Refs. [242–244]. But the non-linearity is crucial

for the correct description of, e.g., response functions, and taking input from the excitation

spectrum of the Lieb–Liniger model has led to the development of nonlinear Luttinger liquid

theory [242, 245, 246].

Recently, the excitations of the Lieb–Liniger model have been probed experimentally by

Bragg spectroscopy [247, 248], and the contributions of the Type II branch to the dynamical

structure factor, which does not have a counterpart in higher dimensions, has been revealed

by comparing to numerical predictions obtained with algebraic Bethe ansatz based methods.
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Since experiments in one-dimensional tubes necessarily break integrability, even if only

weakly, the perfect elementary excitations (i.e. eigenstates of the many-body system) turn

into long-lived quasi-particles (i.e. approximate eigenstates of the many-body system). This

means that integrable models could shed light on physical processes beyond their exact

applicability.

Finally, let us mention that the zero-temperature formalism introduced in this section

can be extended to finite temperatures [207, 219, 223]. The idea in that case is to derive

the entropy from the distribution of Bethe rapidities, which again leads to a set of integral

equations.
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3
A coordinate Bethe ansatz approach to the

calculation of equilibrium and nonequilibrium

correlations of the one-dimensional Bose gas

In Chapter 2, we introduced the Lieb–Liniger model and derived its solution in terms of en-

ergy eigenfunctions via the coordinate Bethe ansatz. In principle, the quantum-mechanical

many-body problem is therefore solved. However, as we saw in Chapter 1, the quantities

that are measured in a typical experiment are correlation functions like the momentum

distribution in the case of the quantum Newton’s cradle experiment [2] and the phase corre-

lation function in the generalized Gibbs ensemble experiment [3]. Correlation functions are

notoriously hard to calculate for strongly correlated systems, as we will outline in the intro-

duction of the following publication. The scope of this chapter is to introduce a numerical

method based on the coordinate Bethe ansatz to calculate matrix elements of operators in

43



3. A coordinate Bethe ansatz approach to the one-dimensional Bose gas

Lieb–Liniger eigenstates exactly. This enables us to calculate correlation functions for equi-

librium systems at zero and finite temperature, as well as dynamically evolving correlation

functions following a preparation of the system in a nonequilibrium initial state on all time

scales.

The following has been published in NJP [165] and is a verbatim reproduction.

3.1 Abstract

We use the coordinate Bethe ansatz to exactly calculate matrix elements between eigen-

states of the Lieb–Liniger model of one-dimensional bosons interacting via a two-body

delta-potential. We investigate the static correlation functions of the zero-temperature

ground state and their dependence on interaction strength, and analyze the effects of sys-

tem size in the crossover from few-body to mesoscopic regimes for up to seven particles.

We also obtain time-dependent nonequilibrium correlation functions for five particles fol-

lowing quenches of the interaction strength from two distinct initial states. One quench is

from the non-interacting ground state and the other from a correlated ground state near

the strongly interacting Tonks-Girardeau regime. The final interaction strength and con-

served energy are chosen to be the same for both quenches. The integrability of the model

highly constrains its dynamics, and we demonstrate that the time-averaged correlation func-

tions following quenches from these two distinct initial conditions are both nonthermal and

moreover distinct from one another.

3.2 Introduction

The Lieb–Liniger model of a one-dimensional Bose gas with repulsive delta-function inter-

actions is a paradigmatic example of an exactly solvable continuous, integrable many-body

quantum system [56, 231]. In particular, it has served as the context for the development

of theoretical tools that have subsequently been widely applied in the study of integrable

systems, such as the so-called “thermodynamic Bethe ansatz” functional representation,

which provides the exact equation of state, excitation spectrum [56, 231], and bulk parame-

ters [219] of the system in the thermodynamic limit. However, the calculation of correlation
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functions from the exact solutions provided by the Bethe ansatz is notoriously difficult.

At zero temperature, exact closed-form solutions for some equilibrium correlation func-

tions are known in the Tonks–Girardeau limit of infinite interaction strength [214, 249–252].

This comparatively tractable limit also allows for some strong-coupling expansion results for

large but finite interactions [252–255]. In the opposite weakly interacting quasi-condensate

regime, a mean-field approach can be used to describe the system [256] and a Bogoliubov

method can be used to determine the low-lying excitation spectrum [257], relying on small

density fluctuations. Fewer results are available for intermediate interaction strengths, away

from the strongly-interacting and weakly-interacting regimes. The development of the Lut-

tinger liquid description of quantum fluids [240] and the related formalism of conformal field

theory [258, 259] have lead to the prediction of power-law scaling for first-order correlations

at large distances, with an exponent given in terms of the equation of state that is known

exactly from the thermodynamic Bethe ansatz [241]. The algebraic Bethe ansatz provides

a determinantal representation of correlations, from which their asymptotic behavior can

be extracted [207]. More recently, exact expressions for local second- and third-order cor-

relations [260–262], together with exact results for the one-body correlation function at

asymptotically short distances [5] in terms of the equation of state have been derived.

Away from the asymptotic short- and long-range regimes, the behavior of correlation

functions is less well known. For intermediate interaction strengths and arbitrary length

scales one must resort to numerics to determine the correlation functions. Results for

the latter have been obtained using numerical methodologies including quantum Monte

Carlo [263, 264], and density matrix renormalization group approaches [265]. A recently

developed, integrability-based approach combines the decomposition of correlation functions

into sums over matrix elements (form factors) of certain simple operators between Bethe

ansatz eigenstates [266, 267]. This approach has generated results, for example, for static

and dynamical equilibrium correlations at zero and finite temperature for systems of up

to N ≈ 100 particles [268]. Other finite temperature results for correlation functions have

been obtained using imaginary time stochastic gauge methods [269, 270], taking the non-

relativistic limit of a relativistic field theory [271], utilizing Fermi–Bose mapping for the

strongly interacting gas [254, 272, 273], employing perturbative expansions in temperature

and interaction strength [274], as well as combining the thermodynamic Bethe ansatz with
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the Hellmann–Feynman theorem [275].

Experiments with ultracold quantum gases are able to realize effectively one-dimensional

systems by tightly confining the gas in two of the three spatial dimensions, either using op-

tical lattice potentials or atom-chip traps [2, 39, 95, 96, 179, 247, 247, 248, 276–284]. These

experiments are now probing the predictions of the Lieb–Liniger model. The configura-

bility of quantum-gas experiments allows for so-called quenches of the system, in which

Hamiltonian parameters of the system are abruptly changed, and thus for the study of the

Lieb-Linger model out of equilibrium, providing even greater challenges for theory.

The dynamically evolving correlations of the Lieb–Liniger gas in nonequilibrium sce-

narios are currently a topic of significant interest, and a number of theoretical approaches

have been applied. Notable examples include exact diagonalization under a low momen-

tum cutoff [182–185, 285], mapping of the hard-core Tonks–Girardeau gas to free spin-

less fermions [62, 73, 286–291], phase-space methods [292], dynamic Bogoliubov-like ap-

proximations [293] and tensor-network methods [194, 195]. References [294–297] employed

nonperturbative approximative functional-integral methods, while in Ref. [77] a dynamical

Luttinger-liquid approach was taken. Other calculations make explicit use of the integra-

bility of the system. These are based on various Bethe ansatz approaches, and include uti-

lizing Fermi-Bose mapping [70, 71] and strong coupling expansions of the coordinate Bethe

ansatz wave function [298–300], combining the algebraic Bethe ansatz with other numerical

methods [209–211], and using the Yudson contour-integral representation for infinite-length

systems [301, 302]. Recently, it was conjectured that the dynamics following an interaction

strength quench are captured by a thermodynamic Bethe ansatz saddle point state and ex-

citations around it — the so-called quench action approach [202, 204–206, 303, 304]. In the

spirit of the methodology of Refs. [266, 305], Gritsev et al. [210] investigated a quench from

γ = 0→∞ by combining algebraic Bethe ansatz expressions for form factors with truncated

sums over states, and employing Monte Carlo summation over the eigenstate components

of the initial state.

In this paper we take a different approach, and calculate correlation functions of the

Lieb-Linger model, both in and out of equilibrium, by calculating matrix elements between

Lieb–Liniger eigenstates directly within the coordinate Bethe ansatz formalism. Given the

known expressions for the coordinate-space forms of Lieb–Liniger eigenstates, we generate
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symbolic expressions for matrix elements of operators between these states in terms of the

Bethe rapidities. The numerically obtained values of the rapidities can then be substituted

to yield essentially numerically exact values for the matrix elements.

In our previous work we applied this methodology to quenches from the ideal gas ground

state to positive γ for up to N = 5 particles [166]. In Sec. 3.3 we provide the details of

the methodology, and describe how it can be used to calculate the matrix elements of the

Lieb–Liniger eigenstates. These symbolic expressions, and thus the computational cost

of evaluating them, grow combinatorially with particle number, restricting the method to

systems of only a few particles. However for small particle numbers N ≤ 7 we obtain

numerically exact results for ground-state correlations, which are described in Sec. 3.4. Our

results demonstrate that local correlations in the strongly interacting regime are already

close to their thermodynamic-limit values for these few-body to mesoscopic systems.

An additional advantage of our methodology is that it can also calculate overlaps between

Lieb–Liniger eigenstates corresponding to any two interaction strengths, which allows us to

study the dynamics of quenches of the interaction strength between arbitrary values. In

Sec. 3.5 we utilize this property to study the effects of integrability on the relaxation of the

Lieb-Liniger model following such a quench. In particular, we compare two nonequilibrium

quench scenarios with the same final Hamiltonian and state energy, but beginning from

starkly different initial states. Statistical mechanics would predict that the system would

relax to the same thermal state in both cases, but due to the integrability of the Lieb-Linger

model not only are the time-averaged states following the two quenches non-thermal, they

are also distinct. After characterizing and comparing the nonequilibrium dynamics following

both quenches, we conclude in Sec. 3.6.

3.3 Coordinate Bethe-ansatz methodology

3.3.1 Lieb–Liniger model eigenstates

The Lieb–Liniger model [56, 231] describes a system of N indistinguishable bosons subject

to a delta-function interaction potential in a periodic one-dimensional (1D) geometry of

length L. We work in units such that ~ = 1 and the particle mass m = 1/2, and so the
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3. A coordinate Bethe ansatz approach to the one-dimensional Bose gas

Hamiltonian of this system reads

Ĥ = −
N∑

i=1

∂2

∂x2
i

+ 2c
N∑

i<j

δ(xi − xj), (3.1)

where c is the interaction strength. The coordinate Bethe ansatz yields eigenstates |{λj}〉
of Hamiltonian (3.1) with spatial representation [207]

ζ{λj}({xi}) ≡ 〈{xi}|{λj}〉 = A{λj}
∑

σ

exp
[
i

N∑

m=1

xmλσ(m)

]∏

k>l

(
1− ic sgn(xk − xl)

λσ(k) − λσ(l)

)
,

(3.2)

where the rapidities λj (or quasimomenta) are solutions of the Bethe equations

λj =
2π

L
mj −

2

L

N∑

k=1

arctan

(
λj − λk

c

)
. (3.3)

The quantum numbers mj are any N distinct integers (half-integers) in the case that

N is odd (even) [219], and
∑

σ denotes a sum over all N ! permutations σ = {σ(j)} of

{1, 2, . . . , N}. The normalization constant reads [207]

A{λj} =

∏
k>l(λk − λl)[

N ! det{M{λj}}
∏

k>l[(λk − λl)2 + c2]
]1/2 , (3.4)

where M{λj} is the N ×N matrix with elements

[M{λj}]kl = δkl

(
L+

N∑

m=1

2c

c2 + (λk − λm)2

)
− 2c

c2 + (λk − λl)2
. (3.5)

The rapidities determine the total momentum P =
∑N

j=1 λj and energy E =
∑N

j=1 λ
2
j of

the system in each eigenstate. The ground state of the system corresponds to the set of N

rapidities that minimize E and constitute the (pseudo-)Fermi sea of the 1D Bose gas [207].

The Fermi momentum

kF =
2π

L

N − 1

2
(3.6)
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is the magnitude of the largest rapidity occurring in the ground state in the Tonks–Girardeau

limit of strong interactions [214]. The only parameter of the Lieb–Liniger model in the

thermodynamic limit is the dimensionless coupling γ ≡ c/n, where n ≡ N/L is the 1D

density. In finite systems, physical quantities also depend on the particle number N (see,

e.g., Sec. 3.4.3), whereas the length L of our system, and therefore also the density n, are

arbitrary. Consequently, in this article we will specify both N and γ. Unless specified

otherwise, we measure time in units of k−2
F , energy in units of k2

F, and length in units of k−1
F .

3.3.2 Calculation of correlation functions and overlaps

As the eigenstates |{λj}〉 form a complete basis [221] for the state space of the Lieb–Liniger

model, the expectation value 〈Ô〉t = Tr{ρ̂(t)Ô} of an arbitrary operator Ô in a Schrödinger-

picture density matrix ρ̂(t) can be expressed as a sum of matrix elements of Ô between the

states |{λj}〉. In particular, in a pure state |ψ(t)〉 =
∑
{λj}C{λj}(t)|{λj}〉 we have

〈Ô〉t ≡ 〈ψ(t)|Ô|ψ(t)〉 =
∑

{λj}

∑

{λ′j}

C∗{λ′j}(t)C{λj}(t)〈{λ
′
j}|Ô|{λj}〉, (3.7)

whereas in a statistical ensemble with density matrix ρ̂SE =
∑
{λj} ρ

SE
{λj}|{λj}〉〈{λj}|, we find

〈Ô〉 =
∑

{λj}

ρSE
{λj}〈{λj}|Ô|{λj}〉. (3.8)

In this article, we focus in particular on the normalized mth-order equal-time correlation

functions

g(m)(x1, . . . , xm, x
′
1, . . . , x

′
m; t) ≡

〈
Ψ̂†(x1) · · · Ψ̂†(xm)Ψ̂(x′1) · · · Ψ̂(x′m)

〉

[〈n̂(x1)〉 · · · 〈n̂(xm)〉〈n̂(x′1)〉 · · · 〈n̂(x′m)〉]1/2
, (3.9)

where Ψ̂(†)(x) is the annihilation (creation) operator for the Bose field and n̂(x) ≡ Ψ̂†(x)Ψ̂(x).

Here and in the following we drop the time index t of the state vectors.

Since the Hamiltonian we consider in this article is translationally invariant along the

periodic volume of length L, the mean density 〈n̂(x)〉 ≡ n is constant in both time and space,

and g(m)(x1, . . . , xm, x
′
1, . . . , x

′
m; t) = 〈Ψ̂†(x1) · · · Ψ̂†(xm)Ψ̂(x′1) · · · Ψ̂(x′m)〉/nm. The correla-
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3. A coordinate Bethe ansatz approach to the one-dimensional Bose gas

tion functions g(m)(x1, . . . , xm, x
′
1, . . . , x

′
m; t) can therefore be expressed as the expectation

values of the operators ĝ(m)(x1, . . . , xm, x
′
1, . . . , x

′
m) ≡ Ψ̂†(x1) · · · Ψ̂†(xm)Ψ̂(x′1) · · · Ψ̂(x′m)/nm.

We note that for the same reasons as above the matrix elements 〈{λ′j}|ĝ(m)(x1, . . . , xm, x
′
1, . . . , x

′
m)|{λj}〉

are invariant under global coordinate shifts x→ x+ d and thus, without loss of generality,

we can set one of the spatial variables to zero. For the first-order correlation function, the

matrix elements are

〈{λ′j}|ĝ(1)(0, x)|{λj}〉 ≡ 〈{λ′j}|Ψ̂†(0)Ψ̂(x)|{λj}〉

=
N

n

∫
dx1 · · · dxN−1 ζ

∗
{λ′j}

(0, x1, . . . , xN−1) ζ{λj}(x, x1, . . . , xN−1). (3.10)

The evaluation of the integral in Eq. (3.10) is complicated by the sign function in Eq. (3.2)

and the associated nonanalyticities in ζ{λj}({xi}) where any two particle coordinates xk and

xl coincide. However, we can use the Bose symmetry of the wave function ζ{λj}({xi}) to

reexpress this matrix element as a sum of integrals

〈{λ′j}|ĝ(1)(0, x)|{λj}〉

=
N !

n

N−1∑

`=0

∫

RN−1,`(x)

dx1 · · · dxN−1 ζ
∗
{λ′j}

(0, x1, . . . , xN−1) ζ{λj}(x1, . . . , x`, x, x`+1, . . . , xN−1),

(3.11)

over the ordered domains [255]

RM,j(x) : 0 ≤ x1 < · · · < xj < x < xj+1 < · · · < xM ≤ L. (3.12)

Substituting the coordinate-space form [Eq. (3.2)] of the Lieb-Liniger eigenfunctions, we

obtain

〈{λ′j}|ĝ(1)(0, x)|{λj}〉 =
N !

n
A{λj}A

∗
{λ′j}

∑

σ

∑

σ′

∏

j>k

(
1− ic

λσ(j) − λσ(k)

) ∏

j′>k′

(
1 +

ic

λ′σ′(j′) − λ′σ′(k′)

)

×
N−1∑

`=0

exp(iλσ(`+1)x)

∫

RN−1,`(x)

dx1 · · · dxN−1 exp

(
i
N−1∑

m=1

(λσ(`+1)(m) − λ′σ′(m+1))xm

)
,

(3.13)
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where σ(`+1) = (σ(1), . . . , σ(`), σ(`+2), . . . , σ(N)). The matrix elements of the second-order

correlation operator ĝ(2)(0, x) ≡ Ψ̂†(0)Ψ̂†(x)Ψ̂(x)Ψ̂(0)/n2 are similarly given by

〈{λ′j}|ĝ(2)(0, x)|{λj}〉 =
N !

n2
A{λj}A

∗
{λ′j}

∑

σ

∑

σ′

∏

j>k

(
1− ic

λσ(j) − λσ(k)

) ∏

j′>k′

(
1 +

ic

λ′σ′(j′) − λ′σ′(k′)

)

×
N−2∑

`=0

exp
(
i(λσ(`+2) − λ′σ′(`+2))x

) ∫

RN−2,`(x)

dx1 · · · dxN−2 exp

(
i

N−2∑

m=1

(λσ(1,`+2)(m) − λ′σ′(1,`+2)(m))xm

)
,

(3.14)

where σ(1,`+2) = (σ(2), . . . , σ(` + 1), σ(` + 3), . . . , σ(N)) and σ′(1,`+2) is defined analogously

in terms of the elements of σ′. In the limit x → 0 this expression simplifies somewhat,

and in general the matrix elements of the local mth-order correlation operator ĝ(m)(0) ≡
[Ψ̂†(0)]m[Ψ̂(0)]m/nm are given by the expression

〈{λ′j}|ĝ(m)(0)|{λj}〉 =
N !

nm
A{λj}A

∗
{λ′j}

∑

σ

∑

σ′

∏

j>k

(
1− ic

λσ(j) − λσ(k)

) ∏

j′>k′

(
1 +

ic

λ′σ′(j′) − λ′σ′(k′)

)

×
N−m∑

`=0

∫

RN−m
dx1 · · · dxN−m exp

(
i
N−m∑

n=1

(λσ(m+n) − λ′σ′(m+n))xn

)
,

(3.15)

where the domain RM : 0 ≤ x1 < x2 < · · · < xM ≤ L. We note, moreover, that Eqs. (3.13)–

(3.15) include as degenerate cases the diagonal matrix elements (cf. Ref. [255]) appropriate

to the calculation of correlations in the ground state (Sec. 3.4) and in statistical ensembles

(Sec. 3.5).

The calculation of correlation functions from Eqs. (3.13)–(3.15) involves the evaluation

of integrals of the general form

∫

RM,`(x)

dx1 · · · dxM exp

(
i
M∑

m=1

κmxm

)
=

∫ L

x

dxMe
iκMxM

×
∫ xM

x

dxM−1e
iκM−1xM−1 · · ·

∫ x`+2

x

dx`+1e
iκ`+1x`+1

∫ x

0

dx`e
iκ`x`

∫ x`

0

dx`−1e
iκ`−1x`−1 · · ·

∫ x2

0

dx1e
iκ1x1 ,

(3.16)

where (for the repulsive interactions c > 0 considered in this article) the κm are real numbers.

A single closed form for this integral does not exist, as in general one or more κm may vanish,
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3. A coordinate Bethe ansatz approach to the one-dimensional Bose gas

and this must be handled separately from the case of κm 6= 0. However, given knowledge

of the particular sets of rapidities {λj} and {λ′j} (and permutations σ and σ′), and thus

of the locations of zero exponents κm = 0 in Eq. (3.16), each individual integral of this

form can be reduced to an algebraic expression in terms of {κm}. More specifically, each

successive integration
∫
dxm yields a term (involving, in general, xm+1) arising from the

primitive integral [306]

∫
dx xpeikx = −(i/k)p+1Γ(p+ 1,−ikx)

= −p!(i/k)p+1eikx
p∑

s=0

(−ikx)s

s!
, (3.17)

in the case that κm is nonzero, or from
∫
dx xp otherwise. In our calculations, the construc-

tion of algebraic expressions for the integrals occurring in Eqs. (3.13)–(3.15) in terms of the

rapidities λj is efficiently performed by a simple computer algorithm that accounts for and

combines the symbolic terms that arise from these successive reductions. We note that, e.g.,

each matrix element 〈{λ′j}|ĝ(1)(0, x)|{λj}〉 is a sum of N integrals over (N − 1)-dimensional

domains and that the integrand in each case comprises (N !)2 terms [255], illustrating the

dramatically increasing computational cost of evaluating correlation functions with increas-

ing N . Nevertheless, the explicit closed-form expression for the integral produced by our

algorithm can be evaluated to obtain a numerically exact result by substituting in the values

of the rapidities. The latter are obtained by solving Eq. (3.3) numerically using Newton’s

method, starting in the Tonks–Girardeau regime of strong interactions γ � 1 and iteratively

progressing to smaller values of γ using initial guesses given by linear extrapolation of the

solutions at stronger interaction strengths.

We note that this algorithmic approach also provides for the efficient and accurate cal-

culation of the overlaps 〈{λj}|{µj}〉 between eigenstates of Hamiltonian (3.1) corresponding

to different values of γ, which we make use of in our analysis of nonequilibrium dynamics in

Sec. 3.5. In particular, the overlap between an arbitrary eigenstate |{λj}〉 of Ĥ at a finite

interaction strength γ > 0 and the noninteracting ground state |0〉, with constant spatial
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3.4 Ground-State Correlation Functions

representation 〈{xi}|0〉 = L−N/2, is simply given by

〈{λj}|0〉 =
N !

LN/2
A{λj}

∑

σ

∏

j>k

(
1 +

ic

λσ(j) − λσ(k)

)∫

RN
dx1 · · · dxN exp

(
−i

N∑

n=1

λσ(n)xn

)
,

(3.18)

which can easily be evaluated semi-analytically using our algorithm. In practice we find

that the results we obtain for the overlaps from our evaluation of Eq. (3.18) agree with the

recently derived closed-form expressions for these quantities [204, 307–309], which imply in

particular that 〈{λj}|0〉 ∝ 1/λ2
j as any λj →∞.

3.4 Ground-State Correlation Functions

As a first application of our methodology we calculate the correlation functions of the Lieb–

Liniger model in the ground state for up to N = 7 particles. In this case, we need to

evaluate only the diagonal elements of Eqs. (3.13)–(3.15) in the ground-state wave func-

tion, thereby obtaining exact algebraic expressions for correlation functions in terms of the

ground-state rapidities, which are themselves determined to machine precision (Sec. 3.3.2).

The ground-state correlations of the Lieb–Liniger model have been considered extensively

in previous works (see Refs. [310, 311] and references therein), and we compare our exact

mesoscopic results to those obtained with various other methods and approximations, for

finite system sizes as well as in the thermodynamic limit. This allows us to clarify the utility

and limitations of calculations, such as ours here and in Ref. [166], that involve only small

particle numbers.

3.4.1 First-order correlations

We begin by considering the first-order correlation function g(1)(x) ≡ g(1)(0, x) in the ground

state of the Lieb–Liniger model. In Fig. 3.1(a) we plot g(1)(x) for N = 7 particles for a range

of interaction strengths γ, which exhibits the expected decrease in spatial phase coherence

with increasing γ [241]. As is well known, true long-range order, limx→∞ g
(1)(x) = n0 >

0 [312, 313], is prohibited in an interacting homogeneous 1D Bose gas in the thermodynamic
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Figure 3.1: (Color online) One- and two-body correlations in the Lieb–Liniger ground state, for
N = 7 particles. (a) Non-local first-order coherence g(1)(x). The black dot-dashed line indicates the
asymptotic long-range behavior g(1)(x) ∝ |x|−1/2 of a Tonks–Girardeau gas in the thermodynamic
limit. (b) Corresponding zero-temperature momentum distribution ñ(kj). The black dot-dashed
line indicates the universal high-momentum power-law scaling ñ(k) ∝ k−4 common to all positive
interaction strengths [5]. (c) Non-local second-order coherence g(2)(x). (d) Corresponding static
structure factor S(k).

limit, even at zero temperature (see Ref. [311] and references therein). Indeed the Lieb–

Liniger system is quantum critical at zero temperature, and the asymptotic long-range

behavior of g(1)(x) is a power-law decay (so-called quasi -long-range order) [207].

This power-law scaling of g(1)(x) is only expected to be realized at separations x large

compared to the healing length ξ = 1/
√
γ and, in a finite periodic geometry such as we

consider here, is curtailed by the finite extent L of the system (see, e.g., Ref. [241]). Indeed,

for γ = 0.1, the power-law decay is not visible in our finite-sized calculation, although as the

interaction strength γ increases g(1)(x) exhibits behavior consistent with power-law decay

over an increasingly large range of x, see Fig. 3.1(a). In particular, for γ & 10, our results

for g(1)(x) seem to converge toward the asymptotic scaling of the Tonks–Girardeau limit

(black dot-dashed line) with increasing γ.

Due to the translational invariance of our system, the first-order correlations of the
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Lieb–Liniger ground state are encoded in the momentum distribution

ñ(kj) = n

∫ L

0

dx e−ikjxg(1)(x), (3.19)

which, in our finite periodic geometry, is only defined for discrete momenta kj = 2πj/L, with

j an integer. In Fig. 3.1(b) we plot the momentum distributions ñ(kj) corresponding to the

first-order correlation functions g(1)(x) shown in Fig. 3.1(a). The first feature that we note

in Fig. 3.1(b) is that for all interaction strengths, ñ(k) exhibits a power-law decay ñ(k) ∝
k−4 (dot-dashed black line) at high momenta. This is a universal result for delta-function

interactions in one dimension [5, 305, 314] (and indeed also in higher dimensions [315]). The

effects of the finite extent L of the system on the first-order correlations are again evident

in this momentum-space representation. For γ = 0.1, no deviation from the ∝ k−4 scaling

is observed for the smallest (nonzero) momenta kj that can be resolved in the periodic

geometry. For larger values of the interaction strength, ñ(k) departs from the ∝ k−4 scaling

at increasingly large values of k with increasing γ, and develops a hump at momenta near

kF for γ & 10 [305]. We note that although the small-k behavior of ñ(k) tends towards

the ∝ k−1/2 scaling exhibited by the Tonks–Girardeau gas in the thermodynamic limit, the

rounding off of the power-law decay of g(1)(x) as x→ L/2 precludes ñ(k) from reaching the

known asymptotic k → 0 behavior in our finite geometry.

3.4.2 Second-, third-, and fourth-order correlations

In Fig. 3.1(c), we present the nonlocal second-order coherence g(2)(x) ≡ g(2)(0, x, x, 0),

which provides a measure of density-density correlations, for N = 7 particles at a range of

interaction strengths γ. In the limiting case of an ideal gas (γ = 0), the ground state of the

system is a Fock state of N particles in the zero-momentum single-particle mode, and the

second-order coherence g
(2)
γ=0(x) = 1−N−1 (horizontal dashed line) is therefore independent

of x. As the interaction strength γ is increased, the second-order coherence is increasingly

suppressed at zero spatial separation and correspondingly enhanced at separations x & 2k−1
F .

Oscillations in g(2)(x) develop at finite x as the system enters the strongly interacting regime

γ � 1 [207, 254] and, in particular, for γ = 100 (dashed cyan line), our numerical results

are practically indistinguishable from the exact Tonks–Girardeau limit result (solid black
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Figure 3.2: (Color online) Interaction-strength dependence of the local second-, third- and
fourth-order coherence in the Lieb–Liniger ground state, for N = 7 particles. To aid visibility,
we plot g(2)(0) scaled by a factor of 101, and g(4)(0) scaled by a factor of 10−1. Dot-dashed lines
indicate asymptotic weak- (γ � 1) and strong-coupling (γ � 1) expressions for g(2)(0), g(3)(0)
and g(4)(0) in the thermodynamic limit (see text).

line) [214].

An alternative representation of the second-order correlations of the ground state is given

by the static structure factor S(k), which is related to g(2)(x) by [256]

S(kj) = 1 + n

∫ L

0

dx e−ikjx
[
g(2)(x)− 1

]
. (3.20)

In Fig. 3.1(d) we present the structure factors S(k) corresponding to the correlation functions

g(2)(x) shown in Fig. 3.1(c). For all values of γ, S(0) = 0 due to particle-number conservation

and translational invariance. In the ideal-gas limit (red circles) S(kj) = 1 for all nonzero

kj. In the opposite limit of a Tonks–Girardeau gas

Sγ=∞(kj) =





|kj |(1−N−1)

2kF
|kj| ≤ 2kF

1 |kj| > 2kF,
(3.21)

which tends, in the thermodynamic limit, to the well-known result (see, e.g., Ref. [254])

S(k) = |k|/2kF for |k| ≤ 2kF, and S(k) = 1 for |k| > 2kF. Just as for g(2)(x), we ob-

serve that for γ = 100 (cyan plus symbols), our numerical results for S(k) are almost

identical to the known exact expression [Eq. (3.21)] for the Tonks–Girardeau limit (black

crosses). For smaller values of γ our mesoscopic results for S(k) appear consistent with

those of Refs. [263, 266], obtained using quantum Monte Carlo and algebraic-Bethe ansatz

techniques, respectively.
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We now focus in more detail on local correlation functions. We note that the local second-

order coherence has recently been proposed as a measure of quantum criticality in the 1D

boson system [316], while the local third-order correlations have received increasing attention

both in theory [317] and experiment [282, 318–320]. The local fourth-order correlations for

the Lieb–Liniger model have also been investigated [321]. In Fig. 3.2, we plot the local

second-order coherence g(2)(0) (solid red line), together with the local third-order coherence

g(3)(0) = 〈[Ψ̂†(0)]3[Ψ̂(0)]3〉/n3 (dotted green line), and the local fourth-order coherence

g(4)(0) = 〈[Ψ̂†(0)]4[Ψ̂(0)]4〉/n4 (dashed blue line) for N = 7 particles and a broad range of

interaction strengths γ. For comparison, we also plot the asymptotic results obtained in

the Bogoliubov limit of weak interactions (γ → 0) in the thermodynamic limit [257, 260]

(left-hand dot-dashed lines). The numerical results for small γ are broadly comparable

to these thermodynamic-limit results. However, for the small particle numbers considered

here, the suppression of g(2)(0), g(3)(0), and g(4)(0) due to interactions in the limit of small

γ is overshadowed by the suppression due to the finite population of the system [262]. At

larger γ, the effects of interactions dominate, and the numerical results converge closely to

the appropriate strong-coupling expressions [260] (right-hand dot-dashed lines). We note,

therefore, that the local correlations of the Lieb–Liniger ground state, and particularly their

scaling with γ, appear to be quite insensitive to the infrared cutoff imposed by the finite

extent of our system in the strongly interacting regime γ � 1.

3.4.3 System-size dependence

The results we have obtained so far indicate that, as expected, the small size of our system

leads to corrections to correlation functions as compared to their known asymptotic forms

in the thermodynamic limit. However, our results also suggest that the effects of finite

system size are comparatively less important for local correlations, particularly in the limit

of large interaction strengths γ � 1. To further elucidate the potential significance of

finite-size effects in our calculations of nonequilibrium dynamics [166], here we give a brief

characterization of the dependence of correlation functions of the Lieb–Liniger ground state

on the particle number N at a fixed value of the interaction strength γ.

Specifically we consider the case for γ = 10, as this value places the system in the
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Figure 3.3: (Color online) Dependence of first- and second-order correlations in the Lieb–
Liniger ground state on particle number N for γ = 10. (a) First-order correlation function g(1)(x).
(b) Corresponding momentum distribution function ñ(kj). Black dot-dashed lines in (a) and (b)
indicate the asymptotic infrared scaling of g(1)(x) and ñ(k), respectively, with Luttinger parameter
K = 1.40 (see text). (c) Second-order correlation function g(2)(x). (d) Corresponding static
structure factor S(k). The black dot-dashed lines in (c) and (d) represent the phenomenological
expressions of Ref. [6] for g(2)(x) and S(k) in the thermodynamic limit, respectively.

strongly interacting regime γ � 1 (which appears less sensitive to finite-size effects than

the weakly interacting regime γ . 1), while still exhibiting significant deviations from the

Tonks–Girardeau limit (see, e.g., Ref. [254]). Whereas elsewhere in this paper we quote

momenta (lengths) in units of kF (k−1
F ), in comparing results between systems with different

particle numbers N we quote momenta (lengths) in units of πn [(πn)−1], so as to avoid a

potentially misleading dependence of the unit of length on N [cf. Eq. (3.6)].

In Fig. 3.3(a) we plot g(1)(x) for particle numbers N = 3, 4, 5, 6, and 7. For small x, the

curves fall nearly perfectly on one line. The same behavior can be observed for the large-k

tail of the corresponding momentum distribution ñ(k), which we plot in Fig. 3.3(b). Indeed,

at larger momenta k & 2πn, ñ(k) appears to exhibit a rapid collapse to a single curve with

increasing N [5, 322]. However, the differences in ñ(k) are so small that they can not be seen
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in Fig. 3.3(b). For small momenta, our choice of units implies an increasing resolution with

increasing particle number, specifically k1 = 2π/L × (πn)−1 = 2/N . However, this lowest

resolvable momentum seems to fall on one line for increasing particle number, indicating

that the infrared behavior of large systems can be at least partly accessed by our mesoscopic

system sizes.

Luttinger-liquid theory predicts a long-range power-law decay g(1)(x) ∝ |x|−1/2K , where

the Luttinger parameter K can be calculated from the thermodynamic limit of the Bethe

ansatz solution (see, e.g., Refs. [207, 241] and references therein). For our parameters we

have K = 1.40, implying an asymptotic scaling g(1)(x) ∝ |x|−0.357 [black dot-dashed line in

Fig. 3.3(a)]. This corresponds to a power-law behavior ñ(k) ∝ |k|−1+1/2K = |k|−0.643 [241]

[dot-dashed line in Fig. 3.3(b)] for small momenta. We note that this infrared scaling is a

true many-body effect and as such does not show up for N = 2 particles. Indeed, one can

show analytically that, for N = 2, the momentum distribution ñ(k) ∝ (λ2
1− k2)−2 and thus

k−4 is the highest power in the series expansion of ñ(k).

In Fig. 3.3(c) we plot the nonlocal second-order coherence g(2)(x) for γ = 10 and N =

3, 4, 5, 6, and 7. The corresponding static structure factor S(k) is shown in Fig. 3.3(d).

In Fig. 3.3(d) we also plot (black dot-dashed line) the form of S(k) resulting from the

phenomenological expression proposed in Ref. [6] (see also Ref. [323]). This expression

involves the limiting dispersions and edge exponents of the Lieb–Liniger model, which we

obtain by numerically solving the appropriate integral equations [231, 245]. We also plot

the corresponding prediction for g(2)(x) (black dot-dashed line) in Fig. 3.3(c). We note

that the numerical results for our mesoscopic systems are, in general, rather close to the

phenomenological thermodynamic-limit expressions even for the relatively small particle

numbers considered here.

3.5 Application to nonequilibrium dynamics

We now apply our methodology to the nonequilibrium dynamics of the Lieb–Liniger model.

Specifically, we consider the evolution of a system, initially prepared in the ground state of

Hamiltonian (3.1) with interaction strength γ0, following an abrupt change, at time t = 0,

of the interaction strength to a distinct value γ 6= γ0 — a so-called “interaction quench”.
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3. A coordinate Bethe ansatz approach to the one-dimensional Bose gas

The evolution of the system following such a quench is generated by Hamiltonian (3.1) with

interaction strength γ, which we denote by Ĥ(γ) hereafter. The time-evolving state is given

at all times t > 0 by

|ψ(t)〉 =
∑

{λj}

C{λj}e
−iE{λj}t|{λj}〉, (3.22)

where |{λj}〉 are the eigenstates of Ĥ(γ) with energies E{λj}, and C{λj} ≡ 〈{λj}|ψ0〉 are

the overlaps of the |{λj}〉 with the initial state |ψ0〉. The expectation value of an arbitrary

operator Ô in the state |ψ(t)〉 is given by

〈Ô〉t ≡ 〈ψ(t)|Ô|ψ(t)〉 =
∑

{λj}

∑

{λ′j}

C∗{λ′j}C{λj} e
i(E{λ′

j
}−E{λj})t 〈{λ′j}|Ô|{λj}〉. (3.23)

We use the methodology described in Sec. 3.3 to evaluate both the overlaps C{λj} and the

matrix elements 〈{λ′j}|Ô|{λj}〉 that appear in Eq. (3.23).

One of the features of our methodology is that it allows us to describe quenches between

arbitrary interaction strengths. In this paper we consider two interaction-strength quenches,

from different initial interaction strengths γ0, to a common final value of the coupling γ.

Specifically, we consider a quench from the non-interacting limit γ0 = 0 (similar to those

previously studied in Refs. [7, 73, 166, 204, 210, 324–326]) and a quench from the correlated

ground state obtained for a strong interaction strength γ0 = 100. As Ĥ(γ) is time indepen-

dent following the quench, energy is conserved during the dynamics. We choose the final

interaction strength after the two quenches such that the postquench energy is the same in

both cases.

The statistical description of the dynamics of sufficiently ergodic systems is usually based

on the assumption that the energy is the sole integral of motion, such that the equilibrium

system is entirely determined by its energy. If this would be the case for our system, the

two quenches would lead to the same equilibrium state. However, the dynamics accord-

ing to the integrable Lieb–Liniger Hamiltonian are strongly constrained by the conserved

quantities other than the total energy. By performing two different quenches to the same

final Hamiltonian and energy, we investigate the effects of integrability on the postquench

evolution of the Lieb–Liniger system.
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3.5 Application to nonequilibrium dynamics

The conserved energy following the quench is the energy of the system at time t = 0+,

Eγ0→γ ≡ 〈ψ(0+)|Ĥ(γ)|ψ(0+)〉 = EG(γ0) + (γ − γ0)
dEG(γ)

dγ

∣∣∣
γ0

(3.24)

where EG(γ0) is the energy of the ground state |ψ0〉 of the initial Hamiltonian Ĥ(γ0) and

we used the well-known result g
(2)
γ (0) = n−2N−1dEG(γ)/dγ [260], which implies that Eγ0→γ

is given by following the tangent to the curve EG(γ) at γ0 out to γ. Here, g
(2)
γ0 (0) ≡

〈ψ0|ĝ(2)(0)|ψ0〉 is the local second-order coherence in the initial state. In the case of a

quench from the noninteracting ground state (γ0 = 0), Eq. (3.24) reduces to the simple

expression E0→γ = (N − 1)n2γ [166, 194], implying that the energy imparted to the system

during the quench diverges as γ → ∞ [73]. By contrast, in a quench from the Tonks–

Girardeau limit γ0 → ∞ to a finite interaction strength γ the final energy is bounded

from above, E∞→γ ≤ EG(∞), by the ground-state energy of the Tonks–Girardeau gas.

Nevertheless, according to Eq. (3.24), a final interaction strength 0 < γ∗ < 100 such that

E100→γ∗ = E0→γ∗ does exist.

Here, we consider quenches of N = 5 particles, and determine this final interaction

strength to machine precision, inferring a value γ∗ = 3.7660 . . . from numerical solutions

for the energy and local second-order coherence of the ground state at finite γ (Sec. 3.4.2).

We note that although the overlaps C{λj} of the initial state |ψ0〉 with the eigenstates of

Ĥ(γ∗) can be calculated analytically in the case of the quench from γ0 = 0 [307–309], for the

quench from γ0 = 100 no closed-form expressions for these quantities are known, and thus

their numerical values must be determined using the semi-analytical methodology described

in Sec. 3.3.2.

An important summary of the postquench expectation value of an operator [Eq. (3.23)]

is provided by the time-averaged value

O = lim
τ→∞

1

τ

∫ τ

0

dt 〈ψ(t)|Ô|ψ(t)〉. (3.25)

Neglecting degeneracies in the spectrum of Ĥ(γ∗) (see discussion in Appendix 3.7.2), such

averages are given by the expectation values 〈Ô〉DE = Tr{ρ̂DEÔ} of operators Ô in the
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Figure 3.4: (Color online) Time evolution of local second-order correlations for N = 5 particles
following quenches of the interaction strength to a final value γ∗ = 3.7660 . . . from initial values
γ0 = 0 (red dotted line) and γ0 = 100 (blue dashed line). The horizontal solid (dot-dashed) line
indicates the prediction of the diagonal ensemble for g(2)(0) for the quench from γ0 = 100 (γ0 = 0).

density matrix

ρ̂DE =
∑

{λj}

|C{λj}|2|{λj}〉〈{λj}| (3.26)

of the diagonal ensemble [1, 327].

Formally, the sums in Eq. (3.22),(3.23), and (3.26) range over an infinite number of

eigenstates |{λj}〉, and thus the basis over which |ψ(t)〉 is expanded must be truncated

in our numerical calculations. By only including eigenstates with an absolute initial-state

overlap |C{λj}| larger than some threshold, we consistently neglect small contributions to

correlation functions from weakly occupied eigenstates and minimize the truncation error for

a given basis size. We quantify this truncation error by the violations of the normalization

and energy sum rules, as we discuss in Appendix 3.7.1.

3.5.1 Evolution of two-body correlations

In Fig. 3.4 we plot the time evolution of the local second-order coherence g(2)(0, t) for N = 5

particles following quenches of the interaction strength from initial values γ0 = 0 (red dotted

line) and γ0 = 100 (blue dashed line) to the common final value γ∗. For the quench from

the noninteracting initial state (γ0 = 0), as time evolves the local second-order coherence

decays from its initial value g(2)(0, t = 0) = 1−N−1 before settling down to fluctuate about

the diagonal-ensemble expectation value g
(2)
DE(0) (horizontal dot-dashed line). This behavior

is consistent with results obtained for similar quenches of the interaction strength from zero

62



3.5 Application to nonequilibrium dynamics

Figure 3.5: (Color online) Time evolution of the nonlocal second-order coherence function
g(2)(x, t) following quenches of the interaction strength to γ∗ from initial values [(a),(b),(c)] γ0 = 0
and [(d),(e),(f)] γ0 = 100. All data is for N = 5 particles. [(a),(d)] Correlation function g(2)(x, t)
at four representative times t. Black dot-dashed lines indicate the predictions of the diagonal
ensemble for the equilibrium form of this function. [(b),(e)] Evolution of coherence g(2)(x, t) and
[(c),(f)] change in coherence g(2)(x, t) − g(2)(x, t = 0) for short times t ≤ 0.5k−2

F . Black lines in
(c) and (f) indicate power-law fits to the position x(t) of the first extremum of the correlation
wave, which yield x ∝ t0.516±0.012 and x ∝ t0.496±0.005 for quenches from γ0 = 0 and γ0 = 100,
respectively.

to a positive value in Ref. [166]. For the quench from γ0 = 100, the value of g(2)(0) in the

initial “fermionized” state is g(2)(0) ≈ 10−3. In this case g(2)(0, t) rises as time progresses,

and then exhibits somewhat irregular oscillations about g
(2)
DE(0) (horizontal solid line). We

observe that the decay (growth) of g(2)(0, t) to its diagonal-ensemble value and the onset of

irregular oscillations about this value occur on comparable time scales in the two quenches.

We note that the predictions of the diagonal ensemble for the local second-order coher-

ence g
(2)
DE(0) are very similar for the two quenches, despite the significant difference between

the values of g(2)(0) in the two initial states. However, they are clearly distinct — g
(2)
DE(0)

for the quench from the noninteracting state is in fact larger than that for the quench from

the correlated state by an amount ≈ 0.0125, demonstrating that the system retains some
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3. A coordinate Bethe ansatz approach to the one-dimensional Bose gas

memory of its initial state in the long time limit as is expected for an integrable system.

We analyze this difference in more detail in Sec. 3.5.3.

We now turn our attention to the time evolution of the full non-local second-order cor-

relation function g(2)(x, t). In Fig. 3.5(a) we show the dependence of g(2)(x, t) on separation

x for the quench from the noninteracting initial state at four representative times. [Note

that the upper limit x = 2πk−1
F of the x axis in Fig. 3.5(a) corresponds to x = L/2 in

the present case of N = 5 particles.] At t = 0 (horizontal solid line), the second-order

coherence has the constant form of the noninteracting ground state. At short times (e.g.,

t = 0.01 k−2
F , red dashed line) a minimum in g(2)(x) develops at zero separation, together

with the corresponding maximum required by the conservation of
∫ L

0
dx g(2)(x, t) [194]. As

time progresses a wave pattern of maxima and minima develops and propagates away from

the origin (e.g., t = 0.1 k−2
F , green dotted line). By time t = 1 k−2

F (blue dot-dashed line),

the distinct maxima and minima of g(2)(x, t) have broadened in such a way that they are

no longer clearly distinguishable and the correlation function agrees reasonably well with

its diagonal-ensemble form (black dot-dashed line) for small separations x . 0.25× 2πk−1
F .

In Fig. 3.5(b) we show the full space and time dependence of g(2)(x, t) following a quench

from γ0 = 0, which gives a more complete picture of the development of a correlation wave

at short length scales and its propagation to larger values of x as time progresses. The

correlation wave we observe here is consistent with the results of previous investigations

of the dynamics following the sudden introduction of repulsive interactions in an initially

noninteracting gas [73, 194, 210, 292, 328].

In Fig. 3.5(d) we plot the spatial form of g(2)(x, t) for the quench from γ0 = 100 at the

same four representative times considered in Fig. 3.5(a). Despite the obvious distinction

that the initial (t = 0, solid grey line) correlation function is in the fermionized regime

with g(2)(0) � 1, the behavior of g(2)(x, t) for this quench is qualitatively similar to that

observed for the quench from γ0 = 0, in that at early times (e.g., t = 0.01k−2
F , red dashed

line), deviations from g(2)(x, t = 0) occur only at small separations x � 2πk−1
F . Moreover,

as time evolves and g(2)(0, t) increases towards g
(2)
DE(0), larger modulations of g(2)(x, t) about

its initial functional form develop (e.g., t = 0.1k−2
F , green dotted line). At later times

(e.g., t = 1k−2
F , blue dot-dashed line), g(2)(x, t) is close to g

(2)
DE(x) at small separations

x . 0.25× 2πk−1
F , but exhibits large excursions away from it at larger x. In Fig. 3.5(e) we
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plot the full space and time dependence of g(2)(x, t) following the quench from γ0 = 100.

Although the behavior of g(2)(x, t) here obviously differs from that following a quench from

the noninteracting initial state [Fig. 3.5(b)], with the “fermionic” depression around x = 0

lessening rather than growing in magnitude, a similar pattern of propagating correlation

waves in g(2)(x, t) can again be seen.

The correlation-wave pattern common to both quenches is more clearly exhibited by the

change g(2)(x, t)− g(2)(x, 0) in the correlation function following the quench, which we plot

in Figs. 3.5(c) and 3.5(f). This representation of the postquench second-order coherence

of the system reveals a remarkably similar pattern of propagating waves in both cases,

although the maxima and minima of the two wave patterns are inverted relative to one

another. Fitting a power law to the position x(t) of the first propagating extremum of

each of the two correlation waves, we find x ∝ t0.516±0.012 for the quench from γ0 = 0 and

x ∝ t0.496±0.005 for the quench from γ0 = 100, which we indicate by the solid black lines in

Figs. 3.5(c) and 3.5(f). These power-law trajectories are consistent with the “telescoping”

x ∝ t1/2 behavior obtained for a quench γ = 0→∞ in Ref. [73], and for quenches from finite

repulsive interactions to the noninteracting limit in Ref. [329] (see also Ref. [72]). The small

scale features on top of the main propagating extrema differ for the two quenches, with fast

oscillations appearing more pronounced for the quench γ = 0 → γ∗ in Fig. 3.5(c). Even

though hardly visible in Fig. 3.5(f), they are still present for the quench from γ = 100→ γ∗,

but due to the different distribution of overlaps in the final basis compared to the quench

from γ0 = 0 (cf. Sec. 3.5.3), they contain more high-frequency components and therefore

the fine structure differs.

3.5.2 Time-averaged correlations

We now compare the time-averaged second-order correlation functions following the two

quenches with the form of this function that would be obtained if, following the quench,

the system relaxed to thermal equilibrium. As in Ref. [166] we make use of the canonical

ensemble, for which the density matrix is given by

ρ̂CE = Z−1
CE

∑

{λj}

e
−βE{λj} |{λj}〉〈{λj}|, (3.27)
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Figure 3.6: (Color online) Time-averaged second-order correlation functions following quenches
of the interaction strength to γ∗=3.7660 . . . from initial values γ0 = 0 (red solid line) and γ0 = 100
(blue dotted line). Results are for N = 5 particles. (a) The correlation functions g(2)(x) in the
initial states with γ0 = 0 (horizontal solid line) and γ0 = 100 (grey dashed line), as well as for
the ground state at γ = γ∗ (solid black line) are also indicated for comparison. The black dot-
dashed line corresponds to the thermal value of the correlation function following relaxation, as
predicted by the canonical ensemble (see text). (b) Comparison of the time-averaged second order
correlation functions to the various ensembles defined in the text: The standard canonical ensemble
(black dot-dashed line), the canonical ensemble restricted to zero-momentum eigenstates (black
solid line), and the canonical ensemble restricted to parity-invariant states (grey solid line).

where the partition function ZCE =
∑
{λj} exp(−βE{λj}). The inverse temperature β is

determined implicitly by fixing the mean energy in the state ρ̂CE to the common postquench

energy, i.e., Tr{ρ̂CEĤ(γ∗)} = E0→γ∗ . The sum in Eq. (3.27), like that in Eq. (3.26), formally

ranges over an infinite number of eigenstates. We therefore truncate this sum by applying

a cutoff in energy, as described in Appendix 3.7.1.

In Fig. 3.6(a) we plot the second-order correlation function g
(2)
CE(x) = Tr{ρ̂CE ĝ

(2)(0, x)}
in the canonical ensemble (black dot-dashed line), along with the diagonal-ensemble predic-

tions g
(2)
DE(x) for the quenches from γ0 = 0 (red solid line) and from γ0 = 100 (blue dotted

line). For comparison we also plot the correlation functions in the initial states with γ0 = 0
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(horizontal line), γ0 = 100 (grey dashed line), as well as the ground state for γ = γ∗ (solid

black line). For the quench from γ0 = 0, the time-averaged value g
(2)
DE(0) is smaller than the

corresponding thermal value g
(2)
CE(0), consistent with the results of Refs. [7, 166, 204]. In

fact g
(2)
DE(x) is suppressed below g

(2)
CE(x) over a range of separations x . 0.4× 2πk−1

F . Corre-

spondingly, g
(2)
DE(x) > g

(2)
CE(x) at larger separations x due to particle number and momentum

conservation. For the quench γ = 100 → γ∗, the diagonal-ensemble coherence function

g
(2)
DE(x) is similar in shape to that of the quench from γ0 = 0. However, it is somewhat

smaller at x = 0, and correspondingly larger at large x. This indicates some memory of

the initial state preserved by the dynamics of the integrable Lieb–Liniger system [62, 303].

Despite these differences, on the whole both functions g
(2)
DE(x) are comparable to g

(2)
CE(x)

(cf. also Ref. [194]). We note, however, that they are also both reasonably close to the

ground state result for g(2)(x) at interaction strength γ∗ (solid black line), although the

local value g
(2)
DE(0) for both quenches is much closer to the thermal value than the ground

state value.

Since the system is in its ground state before the quench for both γ0 = 0 and γ0 = 100,

and the total momentum operator P̂ commutes with the Hamiltonian, the postquench states

at γ∗ only have support on eigenstates with total momentum P = 0. Furthermore, the

spatially structureless initial state at γ0 = 0 implies additional parity-invariance ({λj} =

{−λj}) in Bethe rapidity space for the postquench eigenstates [307–309]. Thus an interesting

question to ask is if we constructed a canonical density matrix (3.27) restricted to P = 0

states, or one further restricted to parity-invariant states (which are a subset of the P = 0

states), would these yield better agreement with the diagonal ensemble predictions for the

quenches? We have performed these constructions with the temperature in both cases fixed

via the postquench energy in the same way as for the canonical ensemble, cf. Eq. (3.27) and

the following text.

In Fig. 3.6(b), we plot the resulting second-order correlation function g
(2)
CE(x) = Tr{ρ̂CE ĝ

(2)(0, x)}
for the standard canonical ensemble (black dot-dashed line), as well as in the restricted P = 0

ensemble (solid black line), and the parity-invariant ensemble (solid grey line). We also in-

clude the diagonal-ensemble predictions g
(2)
DE(x) for the quenches from γ0 = 0 (red solid line)

and from γ0 = 100 (blue dotted line). It can be seen that the restricted ensembles give

results for the correlation function that are quite close to the standard canonical ensemble,
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Figure 3.7: (Color online) (a) Populations |C{λj}|2 of eigenstates with energies E{λj} following
quenches to γ∗ = 3.7660 . . . from γ0 = 0 (red crosses) and γ0 = 100 (blue squares). Note that
the y-axis is plotted on a logarithmic scale. For the quench from γ0 = 100, additional non-
parity-invariant states appear in degenerate, parity-conjugate pairs and since their contributions
is identical, the points lie on top of each other. The black dotted line with filled black circles
represents the populations exp(−βE{λj})/ZCE of eigenstates with energies E{λj} for the canonical
ensemble. The grey line with grey filled circles, and the black dashed line with empty black circles
are the corresponding results for the P = 0 restricted ensemble, and the parity-restricted ensemble,
respectively. (b) Low-energy part of (a).

and are no closer to the diagonal ensemble results.

3.5.3 Contributions to relaxed correlation functions

The relaxation of the nonlocal correlations g(2)(x, t) takes place on a similar time scale to

that of the local coherence g(2)(0, t) for both of the quenches considered here. This should

be contrasted with, e.g., the behavior following a quench from the noninteracting limit to

γ = 100 reported in Ref. [166], in which g(2)(0, t) decays rapidly and the development and

propagation of correlation waves occurs over a significantly longer time scale. We identify

the absence of a significant separation of the time scales of local and nonlocal evolution here

as a consequence of the fact that only a small number of eigenstates contribute significantly
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to the postquench dynamics (cf. Ref. [166] and references therein). Indeed, we find that

the purity ΓDE ≡ Tr{(ρ̂DE)2} of the diagonal-ensemble density matrix takes values ≈ 0.52

for the quench γ = 0 → γ∗ and ≈ 0.63 for the quench γ = 100 → γ∗, indicating rather

weak participation of the eigenstates |{λj}〉 in the dynamics. The difference in the purities

can largely be attributed to the somewhat greater occupation of the ground state of Ĥ(γ∗)

following the quench from the γ = 100 initial state.

To further illustrate the difference in the final states, in Fig. 3.7 we plot the occupations of

eigenstates with energy E{λj} for the quenches from γ0 = 0 (red crosses) and γ0 = 100 (blue

squares). For the quench from γ0 = 100, significantly more eigenstates have occupations

above a given threshold than in the case of γ0 = 0, resulting in a much larger basis size in

this case. However, the occupation of the ground state of Ĥ(γ∗) is somewhat larger for the

quench from γ0 = 100 than for γ0 = 0, and the low-lying excited states are comparatively

weakly occupied for γ0 = 100, cf. Fig. 3.7(b). This result is reasonably intuitive, as the

ground state for γ = γ∗ is moderately correlated, and will be more similar to the γ = 100

than the γ = 0 ground state. The distribution of normalization over eigenstates |{λj}〉 is

thus more sharply “localized” on the ground state in this case, resulting in the somewhat

larger value of the purity ΓDE following this quench.

For comparison, we also plot the occupations of the three ensembles introduced in

Sec. 3.5.2 in Fig. 3.7. The restrictions lead to a reduction in available eigenstates for

any given energy-window, and correspondingly the temperature of the canonical ensem-

ble is smaller than that of the P = 0 ensemble, which is in turn smaller than that of the

parity-invariant ensemble. The occupations of eigenstates for the quench from γ0 = 0 (red

crosses) and from γ0 = 100 (blue squares) are suggestive of power-law decay at high ener-

gies. For small energies on the other hand, Fig. 3.7(b) shows that the functional form is not

incompatible with exponential decay.

3.6 Conclusions

We have described a method to calculate matrix elements between eigenstates of the Lieb–

Liniger model of one-dimensional delta-interacting bosons. This method is based on the

coordinate Bethe ansatz, which generates a complete set of energy eigenfunctions for any
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3. A coordinate Bethe ansatz approach to the one-dimensional Bose gas

fixed coupling strength. This allows us to obtain overlaps between eigenstates of different

Hamiltonians, as well as expressions for correlation functions. By introducing periodic

boundary conditions, we obtained expressions amenable to numerical evaluation. We applied

our methodology to the evaluation of first-, second-, third-, and fourth-order correlation

functions in the ground state of the Lieb–Liniger model for various values of the interparticle

interaction strength. Our results indicate that although the correlations of the system are

in general distorted by the small system size, finite-size effects become increasingly less

significant with increasing interaction strength and decreasing spatial separation.

Out of equilibrium, we investigated the dynamics of relaxation after a quantum quench

of the interparticle interaction strength towards a non-thermal steady state. Starting from

two different initial states, we quenched to a common final interaction strength γ∗ chosen

in such a way that both postquench energies were the same. Our calculations reveal a

similar relaxation process for the second-order coherence g(2)(x, t) for both initial states:

the build-up of correlations on short interparticle distances and their propagation through

the system as time progresses. The time-averaged second-order correlation functions in both

cases disagreed with the prediction for thermal equilibrium and were biased, relative to one

another, towards their pre-quench forms — an intuitive result given the integrability of the

system. In the future it would be interesting to study quenches from other initial states

with the same final energy to explore how the memory of the initial state is manifest in

different situations.

Although our method is restricted to small system sizes due to computational complex-

ity and here only applied to five particles out of equilibrium, we were able to obtain the

dynamical evolution as well as time-averaged correlation functions to high precision. Fi-

nally we note that the evaluation of matrix elements of the Lieb–Liniger model with this

method is not restricted to real-valued Bethe rapidities, opening the door to investigat-

ing the nonequilibrium dynamics of attractively interacting systems (where the rapidities

become complex-valued) and that following quenches from more complex initial states.
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3.7 Supplement

3.7.1 Basis-set truncation

The Hilbert space of the Lieb–Liniger model is infinite dimensional, and therefore the sums

in Eqs. (3.22), (3.23), and (3.26) must be truncated for numerical purposes. Here, we provide

details of the truncation scheme for the two different initial states we considered in Sec. 3.5,

and explain how we quantify the error resulting from this truncation.

For the quench from γ0 = 0, the initial state |ψ0〉 only has nonzero overlap with eigen-

states |{λj}〉 of Ĥ(γ∗) that are parity invariant (i.e., eigenstates for which {λj} = {−λj})
and, a fortiori , have zero total momentum P [325]. The strongly-correlated initial state of

the quench from γ0 = 100 similarly has zero overlap with eigenstates |{λj}〉 with nonzero

total momentum, but in this case states contributing to |ψ(t)〉, and thus ρ̂DE, need not

be parity-invariant in general. For γ0 = 0 our results for the overlaps agree with recently

obtained analytical expressions [308, 309], which predict real positive overlaps, given the

phase convention implicit in Eq. (3.2), for quenches to γ > 0. For γ0 = 100, we find that

the overlaps are still real, but are no longer restricted to positive values.

We briefly summarize our procedure to determine the cutoff here — see Appendix A

of Ref. [166] for an extended discussion for the case of parity-invariant states. It can be

shown [219] that the solutions {λj} of the Bethe equations (3.3) are in one-to-one corre-

spondence with the numbers mj that appear in Eq. (3.3). This allows us to uniquely label

states by the set {mj}. Without loss of generality, we order the numbers mj such that

m1 > m2 > · · · > mN−1 > mN , and we only need consider states for which
∑

jmj = 0, cor-

responding to zero total momentum P . We specialize hereafter to the case N = 5, which is

the largest N for which we consider the dynamics in this article. The states can be grouped

into families, labelled by m1. We have found empirically that within each such family, the

eigenstate (m1, 1, 0,−1,−m1) has the largest absolute overlap |〈{λj}|ψ0〉| with the initial

state, for both initial states we consider (γ0 = 0 and γ0 = 100). Furthermore, this overlap is

larger than that of the most significantly contributing eigenstate (m1 + 1, 1, 0,−1,−m1− 1)

of the following family (m1 + 1). We therefore construct the basis by considering in turn

each family m1 and including all states within that family for which the overlap with the

initial state exceeds our chosen threshold value Cmin. Eventually, for some value of m1, even
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the eigenstate (m1, 1, 0,−1,−m1) has overlap with |ψ0〉 smaller than the threshold, at which

point all states that meet the threshold have been accounted for.

We note that the Lieb–Liniger model has an infinite number of conserved charges

[Q̂(m), Ĥ(γ)] = 0; m = 0, 1, 2, . . . , with eigenvalues given by Q̂(m)|{λj}〉 =
∑N

l=1 λ
m
l |{λj}〉.

However, for a quench from γ0 = 0 their expectation values in the diagonal ensemble

〈Q̂(m)〉DE diverge for all even m ≥ 4 [308, 309]. Our numerical results suggest that this

is also the case for quenches from γ0 > 0 (indeed, they diverge for almost all states but

eigenstates [330, 331]). For all odd values m, the expectation values of the corresponding

conserved charges Q̂(m) are identically zero for our initial states and quench protocol. Thus,

the only nontrivial and regular conserved quantities are the particle number (m = 0) and

energy (m = 2). As in Ref. [166], we quantify the saturation of the normalization and

energy sum rules by the sum-rule violations

∆N = 1−
∑

{λj}

|C{λj}|2, (3.28)

∆E = 1− 1

Eγ0→γ

∑

{λj}

|C{λj}|2
N∑

l=1

(λl)
2, (3.29)

respectively, where Eγ0→γ is the exact postquench energy [Eq. (3.24)]. We note that the

calculation of time-dependent observables involves a double sum over {λj}, and is therefore

more numerically demanding than the calculation of expectation values in the DE. Moreover,

the calculation of the local coherence g(2)(0, t) is much less demanding than that of the

full nonlocal g(2)(x, t). We therefore use different thresholds Cmin, resulting in different

basis sizes and sum-rule violations, in the calculation of g(2)(0, t), g(2)(x, t), and g
(2)
DE(x), as

indicated in Table 3.1. We note that the energy sum rule is in general less well satisfied

than the normalization sum rule, due to the ∝λ−4 tail of the diagonal-ensemble distribution

of eigenstates [166]. We find also that both sum rules are less well satisfied for the quench

γ = 100 → γ∗, despite the truncation procedure described above resulting in more than

five times as many basis states being employed in its solution than are used in the quench

γ = 0→ γ∗.

For expectation values in the CE [Eq. (3.27)], we truncate the basis by retaining all states

with energies below some cutoff Ecut. The inverse temperature β is then chosen to minimize
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Table 3.1: Basis-set sizes and sum-rule violations for full non-local, time-evolving second-order
coherence g(2)(x, t), for local, time-evolving second-order coherence g(2)(x = 0, t), and for time-

averaged second-order coherence g
(2)
DE(x) following quenches from γ0 = 0, and γ0 = 100 to γ∗ =

3.7660 . . . .

γ0 Typea Cmin No. states ∆N ∆E/k2
F

0 g(2)(x, t) 5× 10−5 673 7× 10−7 6× 10−3

0 g(2)(0, t) 1× 10−5 1704 7× 10−8 3× 10−3

0 g
(2)
DE(x) 1× 10−6 6282 2× 10−9 8× 10−4

100 g(2)(x, t) 5× 10−5 3704 4× 10−6 4× 10−2

100 g(2)(0, t) 1× 10−5 10473 5× 10−7 3× 10−2

100 g
(2)
DE(x) 1× 10−6 43918 2× 10−8 2× 10−3

a Occupations of the g
(2)
DE(x) basis set are used in the calculation of ΓDE (Sec. 3.5.3).

the energy sum-rule violation ∆E. The normalization sum rule is fulfilled by construction.

Since all states (not only those with zero momentum) contribute to this sum, the number of

eigenstates involved in canonical-ensemble calculations is much larger than that in diagonal-

ensemble calculations. For the canonical-ensemble correlation function plotted in Fig. 3.6

we used an energy cutoff of 3.2× 102 k2
F, which yields a basis of 2.1× 106 eigenstates |{λj}〉.

We checked that this cutoff is sufficiently large to ensure saturation of g
(2)
CE(x) (Fig. 3.6).

For the ensemble restricted to P = 0 eigenstates [Fig. 3.6(b)], we used an energy cut-off of

6.4× 105 k2
F, corresponding to 44530 eigenstates, while for the parity-invariant ensemble we

used an energy cut-off of 8.5× 106 k2
F, corresponding to 64204 eigenstates.

3.7.2 Time-averaged correlation functions and the diagonal en-

semble

The time-averaged expectation value [Eq. (3.25)] of an operator Ô can be expressed as an

expectation O = Tr{ρ̂ Ô} in the time-averaged density matrix

ρ̂ ≡ lim
τ→∞

1

τ

∫ τ

0

dt |ψ(t)〉〈ψ(t)|

=
∑

{λj}

|C{λj}|2|{λj}〉〈{λj}|+
∑

{λj}6={λ′j}

δE{λ
j
},E{λ′

j
}C
∗
{λ′j}

C{λj}|{λj}〉〈{λ′j}| . (3.30)
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Figure 3.8: (Color online) Contributions of degenerate energy eigenstates to the time-averaged
second-order correlation function following a quench from γ0 = 100 to γ∗ = 3.7660 . . . for N = 5
particles. (a) Contributions C{λj}C

∗
{−λj}〈{−λj}|ĝ

(2)(0, x)|{λj}〉 + c.c. of off-diagonal matrix ele-

ments corresponding to the three largest weights C{λj}C
∗
{−λj}. (b) Total contribution of degenerate

energy eigenstates.

The first term in Eq. (3.30) is simply the diagonal-ensemble density matrix ρ̂DE [Eq. (3.26)],

to which ρ̂ reduces in the absence of degeneracies in the spectrum of Ĥ(γ). This is the case

for the quench from γ0 = 0, as the only eigenstates of Ĥ(γ∗) with nonvanishing overlaps

with |ψ0〉 in this case are the parity-invariant states |{λj}〉 with {λj}={−λj}, which are

nondegenerate (see Ref. [166] and references therein). By contrast, in a quench from γ0 > 0,

|ψ(t)〉 has support on non-parity-invariant states |{λj}〉, which are degenerate with their

parity conjugates |{−λj}〉.
In general such degeneracies can have observable consequences for time-averaged expec-

tation values [327]. However, as can be seen from Fig. 3.8, the correction to g
(2)
DE(x) due

to the contributions of degenerate eigenstates in the case of the quench from γ0 = 100

is small. It is straightforward to show that the elements 〈{−λj}|ĝ(2)(0)|{λj}〉 of the local

second-order coherence between parity-conjugate states must vanish due to symmetry con-

siderations. At larger separations x, the matrix elements between these pairs of states are

nonzero, as illustrated in Fig. 3.8(a). However, these contributions are small compared to the

diagonal-ensemble result g
(2)
DE(x), and indeed the total contribution of all parity-conjugate

states in our finite-basis description [Fig. 3.8(b)] would yield a barely visible correction to

the function g
(2)
DE(x) plotted in Fig. 3.6. We note also that the substitution of ρ̂DE for the

time-averaged density matrix ρ̂ introduces negligible error in the calculation of the purity

of this matrix (Sec. 3.5.3).
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4
Relaxation dynamics of the Lieb–Liniger gas

following an interaction quench: A coordinate

Bethe-ansatz analysis

In this chapter, we focus on the interaction quench scenario introduced in Chapter 3 in more

detail. Starting from the ideal gas ground state, we investigate the temporal evolution of the

system for several representative postquench interaction strengths and relate the relaxation

dynamics of certain nonlocal correlation functions to the relaxation of the system via de-

phasing of the many-body energy eigenstates (cf. Fig. 1.1). We also consider the relaxation

time-scales for local and nonlocal quantities, for which a unified theoretical framework has

not been developed yet. In order to see if we can extract predictions for physical quanti-

ties beyond the small system sizes we consider, we perform a finite-size scaling analysis for

relaxed correlation functions.
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This is a verbatim reproduction of a publication, reprinted with permission from Physical

Review A 91, 023611 (2015) [166]. Copyright 2015 by the American Physical Society.

4.1 Abstract

We investigate the relaxation dynamics of the integrable Lieb–Liniger model of contact-

interacting bosons in one dimension following a sudden quench of the collisional interac-

tion strength. The system is initially prepared in its noninteracting ground state and the

interaction strength is then abruptly switched to a positive value, corresponding to repul-

sive interactions between the bosons. We calculate equal-time correlation functions of the

nonequilibrium Bose field for small systems of up to five particles via symbolic evaluation

of coordinate Bethe-ansatz expressions for operator matrix elements between Lieb–Liniger

eigenstates. We characterize the relaxation of the system by comparing the time-evolving

correlation functions following the quench to the equilibrium correlations predicted by the di-

agonal ensemble and relate the behavior of these correlations to that of the quantum fidelity

between the many-body wave function and the initial state of the system. Our results for

the asymptotic scaling of local second-order correlations with increasing interaction strength

agree with the predictions of recent generalized thermodynamic Bethe-ansatz calculations.

By contrast, third-order correlations obtained within our approach exhibit a markedly dif-

ferent power-law dependence on the interaction strength as the Tonks–Girardeau limit of

infinitely strong interactions is approached.

4.2 Introduction

Experiments in ultracold atomic physics offer the opportunity to study many-body quantum

systems that are well isolated from their environment and exhibit dynamical evolution on

observable time scales. Moreover, the excellent control of trapping geometries now attain-

able in experiments allows for the near-direct realization of idealized models of condensed-

matter systems [99]. In particular, experiments on degenerate Bose gases in quasi-one-

dimensional trapping geometries approach the conditions assumed in the Lieb–Liniger (LL)

model [56, 231] of indistinguishable bosons in one dimension (1D) interacting via a point
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interparticle potential [176, 311, 332, 333]. The LL model plays an important role in the

literature as a comparatively transparent, prototypical example of the class of quantum in-

tegrable models [55, 207], which admit formal solutions in terms of the Bethe ansatz [212].

Experimental investigations of nonequilibrium dynamics with ultracold atoms have demon-

strated the breakdown of conventional thermalization in quasi-1D Bose gases [2, 39, 95, 96].

These observations have fueled a rapidly growing program of theoretical research into the

role of conservation laws in constraining the nonequilibrium dynamics of integrable systems

in particular and the mechanisms of relaxation and origins of thermal equilibrium in isolated

quantum systems in general [18, 19, 64].

Theoretical works on the relaxation of integrable quantum systems initially focused on

the class of spin chains and other interacting 1D systems that can be solved by a Jordan-

Wigner transformation [66] to a system of noninteracting fermions [62, 70, 71, 74–76, 80,

286–290, 334–338]. More recently, workers in this area have focused increasingly on the

nonequilibrium dynamics and relaxation of the more general class of integrable quantum

systems (such as the LL model) that can be solved by Bethe ansatz [212] but do not admit

a mapping to noninteracting degrees of freedom [209, 211, 294–302, 339–346]. The quantum

quench consisting of an abrupt change of the interparticle interaction strength of the LL

model has recently emerged as an important test bed for theories of relaxation of such

systems. Such a scenario may be realized experimentally by making use of confinement-

induced resonances [176, 178, 347]. In this article we undertake calculations within the

coordinate Bethe-ansatz formalism to investigate the dynamics following a quench of the

interaction strength in small LL systems of at most five particles.

Results for the relaxation dynamics of the LL model following an interaction-strength

quench have previously been obtained in the limiting cases of quenches to the noninter-

acting limit [72, 329] and to the opposite Tonks–Girardeau (TG) limit of infinitely strong

interactions [73, 205, 210, 348], where the dynamics are governed by free-particle propa-

gation. For quenches to finite interaction strengths, the relaxation dynamics have been

investigated using a range of techniques, including exact diagonalization within a truncated

momentum-mode basis [285], quasiexact numerical simulations of lattice discretizations of

the model [194, 292], and nonperturbative approximations derived using functional-integral
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techniques [294–297]. 1 A finite-size scaling analysis [349] of expectation values in en-

ergy eigenstates of the LL model indicated that the eigenstate thermalization hypothe-

sis [1, 24, 25] holds for this model in the weak sense [350] only, implying the absence of

thermalization following a quench. A recently proposed generalization of the thermody-

namic Bethe ansatz (TBA) [351, 352] was used in Ref. [7] to obtain the predictions of

the nonthermal generalized Gibbs ensemble (GGE) [60–62] for the relaxed state following

an interaction-strength quench. This generalized TBA also forms the basis for the so-

called quench-action variational approach [202, 303], which was used in Ref. [8] to predict

the dynamical evolution of correlation functions following such a quench. We note also

studies of related nonequilibrium scenarios such as a quench to the so-called super-Tonks

regime [179, 216] of strong attractive interactions [195, 218] and a coherent splitting [96] of

the LL gas [327]. In higher dimensionalities, interaction quenches of Bose systems have been

investigated within Bogoliubov-based [293, 328, 353–356] theoretical descriptions, motivated

in part by recent experiments on interaction-strength quenches in 2D [357] and 3D [358]

Bose gases.

In this article we undertake calculations within the coordinate Bethe-ansatz formalism

to characterize the dynamics of the LL model following an interaction-strength quench. Our

methodology is based on the symbolic evaluation of overlaps and matrix elements between

LL eigenstates in terms of the rapidities that label them. The rapidities themselves are

obtained by numerical solution of the appropriate Bethe equations. Computational expense

limits our calculations to small particle numbers N ≤ 5. However, our approach in terms

of the exact eigenstates of the LL Hamiltonian explicitly respects the integrability of the

model, in contrast to works that make use of lattice discretizations [194, 292] of the LL

Hamiltonian or explicit momentum-space cutoffs [285]. Moreover, our approach allows us

to calculate infinite-time averages of observables, i.e., expectation values in the so-called

diagonal ensemble (DE) [1], in contrast to quasiexact numerical schemes that can only

follow the relaxation dynamics for short time periods [194, 292].

We observe clear signs of relaxation of the system to the DE in our results for dynami-

cally evolving correlation functions, even for the small system sizes we consider. In partic-

1 References [294–297] consider a Gaussian correlated initial state characterized by an occupation number
distribution over (single-particle) momentum modes. This corresponds to an incoherent mixture of the
ground and excited energy eigenstates of the ideal Bose gas.
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ular, we calculate the time evolution of the momentum distribution of the Bose gas, which

is not easily accessible within other Bethe-ansatz-based approaches [73], and find results

qualitatively consistent with the results of functional-integral calculations of the relaxation

dynamics [294–297]. 1 Our results for the second-order coherence function reveal the propa-

gation of correlation waves, as previously observed in simulations of quenches within lattice

discretizations of the LL model [194, 292] and quenches to the TG limit [73, 210]. Our nu-

merical approach in terms of the N -particle energy eigenstates of the LL Hamiltonian also

allows us to calculate the quantum fidelity between the time-evolved state of the system

following the quench and the initial state, which decays over time as the eigenstate dephas-

ing that underlies the relaxation dynamics [1] takes place. We find, in particular, that the

behavior of this fidelity is qualitatively similar to that of nonlocal quantities such as the

occupation of the zero-momentum single-particle mode, indicating that these experimen-

tally relevant quantities provide effective probes of the eigenstate dephasing of the N -body

system.

Our results for correlation functions in the DE are complementary both to exact analytic

results for the stationary-state correlations following a quench to the TG limit [73] and to

the predictions of generalized thermodynamic ensembles for the equilibrium correlations

following quenches to finite interaction strengths [7, 8]. For large interaction strengths, our

results for the momentum distribution and static structure factor appear to be approaching

the known TG-limit results [73]. Moreover, our results for second-order correlations in

the DE corroborate the predictions of Refs. [7, 8] for the generalized equilibrium state of

the system. In particular, our DE results for local second-order correlations are consistent

with the power-law scaling with interaction strength predicted by Refs. [7, 8]. By contrast,

however, we find that the power law with which local third-order correlations in the DE

scale with interaction strength is markedly different from that predicted by these previous

works, suggesting that further investigation of these correlations is necessary.

This article is organized as follows. Section 4.3 contains a brief review of the LL model

and the coordinate Bethe-ansatz approach to its solution, and outlines our methodology

for the calculation of correlation functions within this formalism. In Sec. 4.4 we present

results on the time evolution of dynamical correlation functions following a quench of the

interaction strength from the noninteracting limit to a finite repulsive value. Section 4.5
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compares the relaxed-state correlation functions, as described by the DE, to the predictions

of conventional statistical mechanics and other theoretical approaches to the interaction-

strength quench scenario. In Sec. 4.6 we summarize our results and present our conclusions.

4.3 Methodology

4.3.1 Lieb–Liniger model eigenstates

The LL model [56, 231] describes a system of N indistinguishable bosons subject to a delta-

function pairwise interparticle interaction potential in a periodic 1D geometry. In this article

we work in units such that ~ = 1 and the particle mass m = 1/2, and so the first-quantized

Hamiltonian for this system can be written

Ĥ = −
N∑

i=1

∂2

∂x2
i

+ 2c
N∑

i<j

δ(xi − xj), (4.1)

where c is the interaction strength. Hereafter, we restrict our attention to the case of non-

negative interaction strengths c ≥ 0. The solution of Hamiltonian (4.1) by Bethe ansatz

was first described by Lieb and Liniger [56, 231], and a detailed discussion of this approach

can be found in Ref. [207]. For the reader’s convenience, we provide a brief review of the

method here.

Due to the symmetry of the Bose wave function ψ({xi}) under the exchange of particle

labels, it is (irrespective of the boundary conditions of the geometry) completely determined

by its form on the fundamental permutation sector,

R : x1 ≤ x2 ≤ · · · ≤ xN−1 ≤ xN , (4.2)

of the configuration space. Where all coordinates xj are distinct, the interaction term in

Hamiltonian (4.1) vanishes and the corresponding Schrödinger equation is that of a system

of free particles. Where two coordinates xj and xj+1 coincide, the delta-function interaction
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potential can be recast as a boundary condition,

[(
∂

∂xj+1

− ∂

∂xj

)
− c
]

xj+1=xj

ψ({xi}) = 0, (4.3)

on the spatial derivatives of the wave function. The solution then proceeds by the substi-

tution of the unnormalized ansatz (valid on R only)

ψ({xi}) =
∑

σ

a(σ) exp
[
i

N∑

m=1

xmλσ(m)

]
, (4.4)

where
∑

σ denotes a sum over all N ! permutations σ = {σ(j)} of {1, 2, . . . , N}. Demanding

that ψ({xi}) be an eigensolution of the Schrödinger equation corresponding to Hamilto-

nian (4.1) then yields the general expression

a(σ) =
∏

k>l

(
1− ic

λσ(k) − λσ(l)

)
(4.5)

for the phase factors a(σ) that encode the effects of interactions between the particles. The

quantities λj are termed the rapidities, or quasimomenta of the Bethe-ansatz wave function.

Imposing that the system be confined to a spatial domain of length L and subject to periodic

boundary conditions ψ({x1, . . . , xi +L, . . . , xN}) = ψ({x1, . . . , xi, . . . , xN}) yields the set of

N Bethe equations [56, 231]

λj =
2π

L
mj −

2

L

N∑

k=1

arctan

(
λj − λk

c

)
(4.6)

for the rapidities λj, where the “quantum numbers” mj are any N distinct integers (half-

integers) in the case that N is odd (even) [219].

Extending Eq. (4.4) outside of the ordered sector R of the periodic domain using Bose

symmetry, each set {λj} of N distinct rapidities obtained as a particular solution of the

Bethe equations (4.6) defines a normalized eigenstate |{λj}〉 of Hamiltonian (4.1), with
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spatial representation

ζ{λj}({xi}) ≡ 〈{xi}|{λj}〉 = A{λj}
∑

σ

exp
[
i

N∑

m=1

xmλσ(m)

]∏

k>l

(
1− ic sgn(xk − xl)

λσ(k) − λσ(l)

)
, (4.7)

where the normalization constant [207]

A{λj} =

∏
k>l(λk − λl){

N ! det{M{λj}}
∏

k>l[(λk − λl)2 + c2]
}1/2

, (4.8)

with M{λj} the N ×N matrix with elements

[
M{λj}

]
kl

= δkl

(
L+

N∑

m=1

2c

c2 + (λk − λm)2

)
− 2c

c2 + (λk − λl)2
. (4.9)

The set of all such eigenfunctions forms a complete orthonormal basis for (the Bose-symmetric

subspace of) the N -particle Hilbert space on which Hamiltonian (4.1) acts [221]. In the

eigenstate |{λj}〉 the total energy,

E{λj} =
N∑

j=1

λ2
j , (4.10)

and total momentum,

P{λj} =
N∑

j=1

λj, (4.11)

of the system, and indeed an infinite set of quantities Q
(m)
{λj} ≡

∑N
j=1(λj)

m that are conserved

under the action of the Hamiltonian (4.1), are specified completely by the set {λj} of

rapidities that label the state. In particular, the ground state of the system corresponds to

the set of N rapidities that minimize Eq. (4.10) and constitute the (pseudo-)Fermi sea of

the 1D Bose gas [207].

In this work we obtain ground- and excited-state solutions to Eq. (4.6) numerically using

a standard Newton solver. The numerical solution is significantly aided by the fact that

the Jacobian matrix corresponding to Eq. (4.6) takes a simple analytical form [219]. In

practice, we exploit the fact that in the TG limit c→∞ the rapidities {λj} are simply the

single-particle momenta of a system of free spinless fermions [207] to obtain initial guesses
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for the rapidities in the strongly interacting regime c� 1. We then obtain solutions for the

rapidities {λj} at successively smaller values of c, providing the root-finding algorithm in

each case with an initial guess for these quantities obtained from linear extrapolation of the

converged solutions found at stronger interaction strengths.

4.3.2 Calculation of correlation functions

Throughout this article, we present results on the mth-order equal-time correlation functions

G(m)(x1, . . . , xm, x
′
1, . . . , x

′
m; t) ≡

〈
Ψ̂†(x1) · · · Ψ̂†(xm)Ψ̂(x′1) · · · Ψ̂(x′m)

〉
, (4.12)

where 〈· · · 〉 ≡ Tr{ρ̂(t) · · · } denotes an expectation value in a Schrödinger-picture density

matrix ρ̂(t), and Ψ̂(†)(x) is the annihilation (creation) operator for the Bose field. Formally,

the corresponding normalized correlation functions are

g(m)(x1, . . . , xm, x
′
1, . . . , x

′
m; t) ≡ G(m)(x1, . . . , xm, x

′
1, . . . , x

′
m; t)

[〈n̂(x1)〉 · · · 〈n̂(xm)〉〈n̂(x′1)〉 · · · 〈n̂(x′m)〉]1/2
,

where n̂(x) ≡ Ψ̂†(x)Ψ̂(x). We note, however, that in the nonequilibrium scenarios we

consider in this article both the initial state of the system and the Hamiltonian that generates

its time evolution are translationally invariant (modulo the finite extent L of the periodic

geometry). Thus, the mean density 〈n̂(x)〉 ≡ n is constant in both time and space, and

g(m)(x1, . . . , xm, x
′
1, . . . , x

′
m; t) = G(m)(x1, . . . , xm, x

′
1, . . . , x

′
m; t)/nm. In the remainder of this

article we consider the forms of these correlation functions both in a pure (time-dependent)

state |ψ(t)〉, in which case

g(m)(x1, . . . , xm, x
′
1, . . . , x

′
m; t) =

1

nm
〈ψ(t)|Ψ̂†(x1) · · · Ψ̂†(xm)Ψ̂(x′1) · · · Ψ̂(x′m)|ψ(t)〉

= N !

∫ L

0

dxm+1 · · · dxN
nm(N −m)!

ψ∗(x1, . . . , xm, xm+1, . . . , xN , t)ψ(x′1, . . . , x
′
m, xm+1, . . . , xN , t)

(4.13)
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4. Relaxation dynamics of the Lieb–Liniger gas following an interaction quench

and in a statistical ensemble with density matrix ρ̂SE ≡
∑
{λj} ρ

SE
{λj}|{λj}〉〈{λj}|, in which

case

g
(m)
SE (x1, . . . , xm, x

′
1, . . . , x

′
m) =

1

nm
Tr{ρ̂SEΨ̂†(x1) · · · Ψ̂†(xm)Ψ̂(x′1) · · · Ψ̂(x′m)}

=
1

nm

∑

{λj}

ρSE
{λj}〈{λj}|Ψ̂†(x1) · · · Ψ̂†(xm)Ψ̂(x′1) · · · Ψ̂(x′m)|{λj}〉, (4.14)

where the matrix elements of field-operator products are given in first-quantized form by

Eq. (4.13) upon replacing ψ({xi}, t) → ζ{λj}({xi}). The evaluation of such integrals can

then be performed semianalytically, following the approach of Ref. [255]. For this purpose,

we developed a symbolic integration algorithm, which will be presented elsewhere [165].

We note also that translational invariance of the state |ψ(t)〉 (or ρ̂SE) also implies that

the correlation functions g(m)(x1, . . . , xm, x
′
1, . . . , x

′
m) are invariant under global coordinate

shifts x → x + d, and thus g(1)(x, y) ≡ g(1)(0, y − x), etc. We focus, in particular, on

the first-order correlation function g(1)(x) ≡ g(1)(0, x), the second-order correlation function

g(2)(x) ≡ g(2)(0, x, x, 0), and the local third-order coherence g(3)(0) = 〈[Ψ̂†(0)]3[Ψ̂(0)]3〉/n3.

We note that as we work in units ~ = 2m = 1, time (energy) has dimensions of (inverse)

length squared. Although our results depend explicitly on the number of particles N in our

system, the extent L of our periodic geometry, and consequently the density n ≡ N/L of

the Bose gas, is arbitrary. Following Ref. [56] we absorb the density into the dimensionless

interaction-strength parameter γ = c/n. In the thermodynamic limit N, L→∞ at constant

n, the interaction strength γ is the only parameter of the LL theory. However, in our finite

system, the particle number N must also be specified. We hereafter quote the strength of

interactions in our calculations in terms of γ. The Fermi momentum kF = (2π/L)(N−1)/2,

which is the magnitude of the largest rapidity occurring in the ground state in the TG

limit [207], is a convenient unit of inverse length and so we often specify lengths in units of

k−1
F , energies in units of k2

F , and times in units of k−2
F .

4.4 Dynamics following an interaction-strength quench

We now investigate the nonequilibrium dynamics of the LL model following a sudden change

(quench) of the interparticle interaction strength γ. We focus, in particular, on a quench
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4.4 Dynamics following an interaction-strength quench

of a system initially in the ground state |ψ0〉 of Hamiltonian (4.1) in the limit of vanishing

interaction strength [7, 8, 73, 194, 210]. We note that the corresponding spatial wave

function of this initial state is simply a constant,

ψ0({xi}) = 〈{xi}|ψ0〉 = L−N/2, (4.15)

and, e.g., the spatial correlation functions g
(1)
γ=0(x) = 1 and g

(2)
γ=0(x) = 1− 1/N in this state

are also constants. At t = 0, we discontinuously change the interaction strength to a finite

final value γ > 0. The ensuing time evolution of the state is governed by the LL Hamiltonian

Ĥ [Eq. (4.1)] with interaction strength γ. As Ĥ is time-independent following the quench,

energy is conserved during the dynamics. This conserved energy is the energy of the system

at time t = 0+,

E ≡ 〈ψ(0+)|Ĥ|ψ(0+)〉 = (N − 1)n2γ, (4.16)

which is easily derived by noting that the state |ψ(0+)〉 immediately following the quench

is simply the (homogeneous) prequench wave function |ψ0〉, in which the kinetic-energy

component of Hamiltonian (4.1) vanishes and in which the interaction energy is determined

by the local second-order coherence [g
(2)
γ=0(0)] of the state.

Formally, the time-evolving wave function is given at all times t > 0 by

|ψ(t)〉 =
∑

{λj}

C{λj}e
−iE{λj}t|{λj}〉, (4.17)

where the sum is over all eigenstates |{λj}〉 of Ĥ, and the C{λj} ≡ 〈{λj}|ψ0〉 are the overlaps

between the initial state |ψ0〉 and these eigenstates, which we calculate from their coordinate-

space representations ζ{λj}({xi}) [165]. 2 We note, however, that only those states |{λj}〉
that have zero total momentum,

∑
j λj = 0 [cf. Eq. (4.11)], and are parity invariant (for

which the rapidities {λj} can be enumerated such that λj = −λN+1−j; j = 1, 2, . . . , N)

2 We note that the authors of Ref. [218] similarly evaluated overlaps of post-quench eigenstates with the
initial state in their study of a quench from the TG regime to the so-called super-Tonks regime [216] of
strong attractive interactions. However, their investigations focused primarily on the overlap of the initial
state with the super-Tonks eigenstate itself, and did not consider the time-dependent dynamics of the system
explicitly.
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4. Relaxation dynamics of the Lieb–Liniger gas following an interaction quench

have nonzero overlaps with the initial state |ψ0〉, as discussed in Refs. [7, 325].

We primarily characterize the nonequilibrium dynamics of the system by the evolution

of its equal-time correlation functions (Sec. 4.3.2). These are calculated by noting that the

time evolution of the expectation value of an arbitrary operator Ô in the time-dependent

state |ψ(t)〉 is given by

〈Ô(t)〉 ≡ 〈ψ(t)|Ô|ψ(t)〉 =
∑

{λj}

∑

{λ′j}

C∗{λ′j}C{λj}e
i(E{λ′

j
}−E{λj})t〈{λ′j}|Ô|{λj}〉. (4.18)

The matrix elements 〈{λ′j}|Ô|{λj}〉 of observables are calculated in a similar manner to

the overlaps C{λj}, as we will discuss in Ref. [165]. The computational expense incurred

in evaluating these matrix elements increases exponentially with the particle number N ,

placing a strong practical constraint on the system sizes we can describe with our coordinate

Bethe-ansatz approach. In the remainder of this article, unless otherwise specified, we always

consider a quench of N = 5 particles.

Assuming that all energies E{λj} of the contributing eigenstates |{λj}〉 are nondegenerate,

the (infinite-)time average of Eq. (4.18) is

〈Ô〉DE = lim
τ→∞

1

τ

∫ τ

0

dt 〈ψ(t)|Ô|ψ(t)〉 =
∑

{λj}

|C{λj}|2〈{λj}|Ô|{λj}〉, (4.19)

which we identify as the expectation value of Ô in the density matrix,

ρ̂DE =
∑

{λj}

|C{λj}|2|{λj}〉〈{λj}|, (4.20)

of the DE [1]. A finite system such as we consider here does not exhibit true relaxation, in

which the instantaneous density matrix of the system (and therefore all observables) becomes

stationary in the long-time limit t → ∞, but will instead exhibit recurrences [359, 360].

However, the dephasing of the energy eigenstates is expected to lead, quite generically,

to observables fluctuating about reasonably well-defined mean values consistent with the

DE predictions [1]. Numerical results for a number of systems indicate that the relative

magnitude of these fluctuations scales towards zero with increasing system size and thus

that observables relax to the predictions of the DE in the thermodynamic limit (see, e.g.,
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4.4 Dynamics following an interaction-strength quench

Refs. [181, 288, 361]). Establishing whether the LL system relaxes to the DE following an

interaction-strength quench in the thermodynamic limit is beyond the scope of this article.

We therefore simply regard the DE defined by Eq. (4.20) as the ensemble appropriate to

describe the relaxed state of our finite-sized system.

We note that formally the sums in Eqs. (4.17)–(4.20) range over an infinite number of LL

eigenstates. In practice, we include only a finite number of eigenstates in our calculations

and thus truncate the sums in Eqs. (4.17)–(4.20). As we discuss in Appendix 4.7.1, we retain

all eigenstates |{λj}〉 that have (absolute) overlap with |ψ0〉 greater than some threshold

value. The accuracy of our results can then be quantified by considering the saturation

of the sum rules associated with the normalization (cf. Ref. [209]) and energy of the wave

function |ψ(t)〉 (see Appendix 4.7.1).

4.4.1 First-order correlations

We begin our characterization of the nonequilibrium dynamics of the LL system following

the quench by considering the first-order (or one-body) correlations of the system. As the

translational invariance of the initial state |ψ0〉 is preserved under the evolution generated

by Ĥ, the first-order correlations are at all times completely described by the momentum

distribution

ñ(k, t) = n

∫ L

0

dx e−ikxg(1)(x, t). (4.21)

We note that, in our finite periodic geometry, the single-particle momentum k is quantized

and takes discrete values kj = 2πj/L, where j is an integer. In the initial state, all par-

ticles occupy the ground (zero-momentum) single-particle orbital [i.e., ñ(0, t = 0−) ≡ N ],

and at times t > 0 the presence of finite interparticle interactions γ > 0 induces partial

redistribution of this population over single-particle modes with finite momenta |k| > 0.

The ensuing dynamics of the momentum distribution have previously been considered in

the nonequilibrium field-theoretical studies of the dynamics of the LL model presented in

Refs. [294–297], whereas in later works the focus has been set primarily on the second-order

(density-density) correlations [8, 72, 194, 210]. Exceptions can be found in Refs. [7, 73],

which presented results for g(1)(x) in the stationary state following a quench to the TG

limit (in which case the Bose-Fermi mapping and Wick’s theorem can be used to simplify
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4. Relaxation dynamics of the Lieb–Liniger gas following an interaction quench

the calculation significantly) and in Ref. [205], which details the calculation of the dynamical

evolution of g(1)(x, t) in the same TG-limit quench scenario.

In Fig. 4.1(a) we plot the evolution of the occupations of the first ten non-negative mo-

mentum modes, ñ(kj, t) (j = 0, 1, . . . , 9), following a quench to γ = 100. In the limit t→ 0+,

the occupations of all nonzero momentum modes rise at a common k-independent rate, due

to the purely local nature of the delta-function interaction potential, which corresponds to a

momentum-independent coupling [295]. As time progresses, the zero-momentum occupation

ñ(0, t) correspondingly decreases, and the occupation of each nonzero momentum mode kj

levels off and fluctuates about its DE value ñDE(kj) [see Eq. (4.19)], which we indicate in

Fig. 4.1(a) for the first three non-negative momenta kj (j = 0, 1, 2) (horizontal solid lines).

The time evolution of the momentum distribution shown in Fig. 4.1(a) is similar to the

results obtained with functional-integral field-theory methods [294–297]. In particular, the

populations of higher momentum modes stop increasing and settle to their DE values (about

which they fluctuate) more rapidly than those of lower momentum modes, indicating that

nonlocal first-order correlations relax increasingly rapidly on decreasing length scales (cf.,

e.g., Refs. [39, 294–296, 355]). We note, however, that the momentum distribution here,

similarly to that observed for a quench to the strongly interacting regime in Ref. [297], ap-

pears to evolve directly to a stationary state, without exhibiting any intermediary period of

quasistationary relaxation such as that observed for quenches to weak interaction strengths

in Refs. [294–296].

Qualitatively similar evolution is observed for any value of the final interaction strength

γ, but both the form of the DE momentum distribution ñDE(kj) and the time scales on

which mode occupancies reach their DE values depend strongly on γ. A useful summary

statistic by which to compare the relaxation of first-order correlations between quenches is

the occupation ñ(0, t) of the zero-momentum mode, the dynamical evolution of which we

plot in Fig. 4.1(b) for γ = 1, 10, and 100. We note that in the case γ = 1, ñ(0, t) exhibits

near-monochromatic oscillations over time. For a larger interaction strength γ = 10, the

zero-momentum occupation ñ(0, t) first crosses ñDE(0) earlier (at time t ≈ 0.7 k−2
F ), after

which it exhibits less regular, more intricately structured fluctuations about ñDE(0). In the

quench to the Tonks regime (γ = 100), the DE value is first reached even earlier (at time

t ≈ 0.4 k−2
F ), and we note also that the fluctuations of ñ(0, t) around ñDE(0) are, in general,
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Figure 4.1: (a) Time evolution of the occupations of the first ten non-negative momentum
modes, ñ(kj , t) (j = 0, 1, . . . , 9), for N = 5 particles following a quench of the interaction strength
from zero to γ = 100. Horizontal solid lines indicate the equilibrium values ñDE(kj) predicted
by the DE, for the first three non-negative momentum modes. (b) Time evolution of the zero-
momentum occupation ñ(0, t) following quenches of N = 5 particles to γ = 1, 10, and 100. The
horizontal dot-dashed lines indicate the corresponding DE values ñDE(0).

somewhat smaller than those observed in the quench to γ = 10, although in this case ñ(0, t)

also exhibits near-complete revival peaks, in which it returns close to its initial value.

4.4.2 Second-order correlations

We now extend our characterization of the relaxation dynamics of the LL system to the

second-order (or two-body) correlations of the Bose field. We focus first on the local

second-order coherence g(2)(0, t), the time evolution of which we plot in Fig. 4.2 for γ =

1, 10, and 100. Similarly to ñ(0, t), as time evolves the local second-order coherence decays

from its initial value g(2)(0, t = 0) = 1 − N−1 before settling down to fluctuate about the

prediction g
(2)
DE(0) of the diagonal ensemble. In the case γ = 1, g(2)(0, t) decays over a time

scale similar to that over which the corresponding zero-momentum occupation ñ(0, t) de-

cays and subsequently exhibits similar near-regular oscillations about its DE value g
(2)
DE(0)
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Figure 4.2: Time evolution of the local second-order coherence g(2)(0, t) following quenches of
the interaction strength to γ = 1, 10, and 100 for N = 5 particles. Horizontal dot-dashed lines

indicate the corresponding equilibrium values g
(2)
DE(0) predicted by the DE.

[cf. Fig. 4.1(b)]. As the final interaction strength γ increases, g(2)(0, t) reaches its time-

averaged value g
(2)
DE(0) increasingly rapidly, and this value itself decreases. We note that

although this behavior is qualitatively consistent with that observed for the zero-momentum

occupation in Fig. 4.1(b), at large final interaction strengths g(2)(0, t) decays to its DE value

much more rapidly than the nonlocal quantity ñ(0, t).

In Fig. 4.3 we present the time evolution of the full nonlocal second-order correlation

function g(2)(x, t) for a quench to γ = 100. Figure 4.3(a) shows the dependence of this

function on the separation x at four representative times. At time t = 0, g(2)(x) has the

x-independent form appropriate to the noninteracting ground state (black horizontal line).

By time t = 5 × 10−3 k−2
F (red solid line) the local second-order coherence g(2)(0, t) has

decreased to ≈ 7×10−2, and g(2)(x, t) exhibits a maximum at a finite spatial separation and

a decaying oscillatory structure past this maximum. The appearance of such an increase in

g(2)(x, t) at some finite x is required by conservation of the integrated second-order correla-

tion function
∫ L

0
dx g(2)(x, t) (which itself follows from conservation of particle number and

total momentum during the evolution) [194]. By time t = 5 × 10−2 k−2
F (blue dotted line)

the maximum in g(2)(x, t) and the smaller subsidiary maxima and minima that accompany

it have propagated to larger separations. The oscillations in g(2)(x) appear quite distorted

at time t = 5× 10−1 k−2
F (green dashed line), though the broad envelope of this function is

at this time comparable to the DE prediction for the equilibrium form of g(2)(x) (black dot-

dashed line). The formation and propagation of such a “correlation wave” was previously
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Figure 4.3: Time evolution of the nonlocal second-order coherence g(2)(x, t) following a quench
of N = 5 particles to γ = 100. (a) Correlation function g(2)(x) at four representative times. The
black dot-dashed line indicates the prediction of the DE for the equilibrium form of this function.
(b) Evolution of g(2)(x, t) for short times t ≤ π/5 k−2

F and (c) longer times t ≤ 2π k−2
F . The white

solid lines in (b) and (c) indicate the trajectory x = vst of a particle propagating away from
the origin at the zero-temperature speed of sound vs of the LL system with interaction strength
γ = 100 (see text).
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observed in phase-space [292] and matrix-product-state [194] simulations of quenches from

zero to finite γ within a Bose-Hubbard lattice discretization of the LL model and in Bethe-

ansatz-based simulations of a quench of the continuous gas to the TG limit γ →∞ [210]. 3

Figure 4.3(b) gives a more complete picture of the evolution of g(2)(x, t) following the

quench. We observe that the oscillations in this function initially propagate rapidly, but

then slow and disperse as time progresses. By time t = 0.6 k−2
F the primary maximum of

g(2)(x, t) has dispersed to a width comparable to L/2, though additional modulations, due

to interference between oscillations propagating in opposite directions around the periodic

geometry, have by this time destroyed any meaningful distinction between the (initially well-

resolved) individual maxima and minima of the correlation wave. Nevertheless, the behavior

of g(2)(x, t) at early times t . 0.5 k−2
F is consistent with analytical results for a quench to

the TG limit recently obtained in Ref. [73], which found that the maxima of the correlation

wave propagate with an algebraically decaying velocity v ∝ 1/
√
t. On longer time scales

[Fig. 4.3(c)] g(2)(x, t) exhibits a more complicated structure. In particular, g(2)(x, t) appears

crisscrossed by a number of solitonlike “density” dips. The slowest of these propagates at

approximately 40% of the speed of sound vs = 2π(1− 4/γ)N/L = 2.4 kF [56, 231, 241] 4 of

a zero-temperature system with interaction strength γ = 100 [indicated by white solid lines

in Figs. 4.3(b) and 4.3(c)]. This slowest-moving dip is accompanied by similar depressions

propagating at integer multiples of its velocity—although the more rapidly moving dips are

less well resolved in Fig. 4.3(c). We discuss the significance of this particular set of velocities

further in Sec. 4.4.3.

We now consider an alternative characterization of the time development of second-order

correlations in the system, given by the instantaneous structure factor [256]

S(k, t) = 1 + n

∫ L

0

dx e−ikx
[
g(2)(x, t)− 1

]
. (4.22)

We note that particle-number conservation and translational invariance imply that S(0, t) =

3 We note that Refs. [72, 329] discussed the appearance of similar propagating correlation waves following
quenches of interacting bosons in 1D to zero interaction strength, in which case the evolution of g(2)(x, t) is
determined exactly by the propagation of free bosons from the correlated initial state.

4 We quote the speed of sound here in units of the Fermi wave vector kF of our finite-sized system

(Sec. 4.3.2), which differs from the Fermi wave vector k
(∞)
F = nπ in the thermodynamic limit by an O(1/N)

correction. We note that this finite-size correction is here much larger than the O(1/γ) strong-coupling
correction to the TG-limit speed of sound.
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Figure 4.4: Time evolution of the structure factor for N = 5 particles. (a) Components of the
structure factor at the first ten positive momenta, S(kj , t) (j = 1, 2, . . . , 10), for a quench to γ =
100. Horizontal dot-dashed lines indicate the DE values SDE(kj) for j = 1, 2, and 3 (bottom to top).
(b) First positive-momentum component S(k1, t) of the structure factor, for γ = 1, 10, and 100.
Horizontal dot-dashed lines indicate the DE values SDE(k1) for γ = 1, 10, and 100 (top to bottom).

0 at all times t. In Fig. 4.4(a) we therefore plot the time development of the structure factor,

evaluated at the first ten positive wave vectors kj (j = 1, 2, . . . , 10) in our finite periodic

geometry, for a quench to γ = 100.

We note that the behavior of the individual components S(kj, t) of the structure factor is

opposite to that of the occupations ñ(kj, t) of nonzero momentum modes kj for this quench

[Fig. 4.1(a)], in that the S(kj, t) begin at unity and decay towards their DE values SDE(kj, t)

as time progresses. Moreover, in contrast to the momentum occupations ñ(kj, t) (j > 0),

which initially rise uniformly, the components S(kj, t) of the structure factor at distinct

momenta kj decay at distinct rates even in the limit t → 0+. However, just as observed

for the momentum distribution, components of the structure factor at higher momenta

reach their first turning points and settle (with large fluctuations) around their DE values

more rapidly than those components at lower momenta. In particular, S(k1, t) is the last
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4. Relaxation dynamics of the Lieb–Liniger gas following an interaction quench

component to reach its turning point and, in general, fluctuates more slowly about its time-

averaged value SDE(k1) than higher-momentum components, although its oscillations include

large excursions towards zero and unity. This can be seen more clearly in Fig. 4.4(b), where

we compare the time evolution of S(k1, t) (which we take as a simple summary measure

for the evolution of the structure factor) for quenches to γ = 1, 10, and 100. Similarly

to ñ(0, t), the structure-factor component S(k1, t) exhibits approximately monochromatic

oscillations for the quench to γ = 1. Moreover, S(k1, t) first crosses its DE value sooner,

and exhibits progressively less-regular oscillations, with increasing γ. We observe that for

γ = 100, the component S(k1, t) exhibits a large fluctuation towards zero at time t ≈
6.51 k−2

F . Considering Fig. 4.3(c), we see that this time also corresponds to that at which

the solitonlike correlation dip in g(2)(x, t) that emerges following the quench, propagating at

a velocity ≈ 1.0 kF , reaches x = L/2. A large fluctuation of S(k1, t) to a value close to unity

occurs at time t ≈ 13.1 k−2
F , coinciding with the quasirecurrence of ñ(0, t) in Fig. 4.1(a), and

a second fluctuation of S(k1, t) towards zero (somewhat smaller than the first) occurs at time

t ≈ 19.9 k−2
F , indicating a (quasi-)regular pattern of large fluctuations in the correlations of

the system.

4.4.3 Fidelity

So far our characterizations of the nonequilibrium dynamics of the LL model have considered

only the one- and two-body correlations of the system. We now consider a quantity that

allows us to characterize the relaxation of the system in the N -body state space of the LL

model: the quantum fidelity [362]. The fidelity provides a measure of “closeness” between

two quantum states and, when evaluated between a pure state |χ〉 and an arbitrary (pure or

mixed) density matrix σ̂, takes the form F (|χ〉, σ̂) = 〈χ|σ̂|χ〉. We note first that the fidelity

FDE = 〈ψ(t)|ρ̂DE|ψ(t)〉 =
∑

{λj}

|C{λj}|4 (4.23)

between the time-evolving state |ψ(t)〉 and the DE density matrix is time independent, as

ρ̂DE is (by definition) diagonal in the energy eigenbasis of Ĥ and therefore invariant under

the action of the time-displacement operator Û(t) =
∑
{λj} exp(−iE{λj}t)|{λj}〉〈{λj}|. In
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Figure 4.5: (a) Fidelity F (t) between time-evolving state |ψ(t)〉 and initial state |ψ0〉. Horizontal
dot-dashed lines indicate the corresponding DE values FDE. Inset: Fidelity FDE between DE
density matrix ρ̂DE and initial state |ψ0〉 (i.e., IPR of |ψ0〉 in the eigenstates of Ĥ) as a function
of γ. (b) The same data as (a) on a linear scale.

fact, the fidelity FDE is simply the inverse participation ratio (IPR) [363] of the initial state

|ψ0〉 in the energy eigenbasis of Ĥ.

We characterize the dynamics of the time-evolving state vector |ψ(t)〉 in the N -body

Hilbert space by the fidelity between |ψ(t)〉 and the initial state |ψ0〉 of the system:

F (t) = |〈ψ0|ψ(t)〉|2 =
∑

{λj}

∑

{λ′j}

|C{λj}|2|C{λ′j}|
2e
i(E{λj}−E{λ′j}

)t
. (4.24)

This quantity provides a characterization of the dephasing of energy eigenstates that under-

lies the relaxation of the system to the DE [1]. We note in particular that, in the absence of

degeneracies in the energy spectrum, the time average of the fidelity limτ→∞(1/τ)
∫ τ

0
dt F (t) =

FDE (see, e.g., Ref. [364] and references therein).

In Fig. 4.5(a) we plot the fidelity F (t) as a function of time for N = 5 particles and final

interaction strengths γ = 1, 10, and 100. We observe that for each value of γ, the evolution
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4. Relaxation dynamics of the Lieb–Liniger gas following an interaction quench

of F (t) is qualitatively similar to the corresponding evolution of the zero-momentum occupa-

tion ñ(0, t) [Fig. 4.1(b)]. For the quench to γ = 1, the fidelity exhibits near-monochromatic

oscillations around its DE value. We observe that for this quench, the IPR FDE ≈ 0.83,

implying that few eigenstates contribute significantly to the DE (note that FDE → 1 in the

limit that ρ̂DE is pure). In fact, for the quench to γ = 1, the two most highly occupied

energy eigenstates, with populations n(0) = |C(0)|2 ≈ 0.903 and n(1) = |C(1)|2 ≈ 0.073,

account for the majority of the norm of |ψ(t)〉, with more highly excited states accounting

for the remaining ≈ 2.5%. Thus, the postquench system can be regarded to a good ap-

proximation as a superposition of the ground state and the lowest-lying excited state that

has finite overlap with |ψ0〉, yielding a monochromatic oscillation in F (t) with a period

t1 = 2π/(E(1) − E(0)) ≈ 7.52 k−2
F , which indeed appears consistent with the primary fre-

quency component of F (t) for this quench. This behavior is straightforward to understand,

as the finite extent of the system induces a finite-size gap in the excitation spectrum. As

we discuss in Appendix 4.7.2, this gap strongly suppresses the excitation of the system in

quenches to small values of γ, yielding effectively two-level dynamics.

As the final interaction strength γ increases, the IPR FDE of |ψ0〉 in the eigenstates of

Ĥ decreases significantly [inset to Fig. 4.5(a)]. For γ = 10, we find FDE ≈ 0.31, and in

this case F (t) is a strongly irregular function, composed of many frequency components,

and more clearly exhibits a rapid initial decay [see the linear plot of F (t) in Fig. 4.5(b)],

followed by (large) fluctuations about its temporal mean FDE. We note that this decay of

F (t) towards FDE has a simple physical interpretation. As FDE is the average of the fidelities

between |ψ(t)〉 and the eigenstates |{λj}〉 of Ĥ, weighted by their populations in ρ̂DE, when

F (t) = FDE the state |ψ(t)〉 is equally close to |ψ0〉 as it is to a typical state in the DE,

indicating a loss of “memory” of the initial state.

For γ = 100, the IPR (FDE ≈ 0.15) and the typical magnitude of the fluctuations of

F (t) about it are again smaller than for γ = 10. Moreover, the evolution of F (t) appears

even more irregular in this case. However, although the typical fluctuations of F (t) are

comparatively small, we note that F (t) also exhibits sharp, sudden fluctuations towards

values ≈ 0.8, and indeed closer to unity than the largest fluctuations exhibited by F (t)

for γ = 10. We identify the appearance of these quasirecurrences as resulting from the

proximity of the system to the TG limit γ → ∞ [344]. As γ is increased towards the TG

96



4.4 Dynamics following an interaction-strength quench

limit, the spectrum of Ĥ approaches that of free fermions in the periodic ring geometry,

which yields perfect recurrences of the initial state on comparatively short time scales, due

to the commensurability of eigenstate energies. In particular, in the TG limit the energies

of eigenstates contributing to the DE are all integer multiples of δε = 2k2
1 ≡ 8π2/L2 (where

the factor of 2 is due to the restriction to parity-invariant eigenstates), yielding a recurrence

time t
(TG)
r = 2π/δε = L2/4π. For the quenches we consider here with N = 5, the Fermi

momentum kF = 4π/L, and thus t
(TG)
r = 4π k−2

F . We therefore expect the sharp quasirevival

evident in F (t) at t ≈ 13.1 k−2
F to shift to earlier times and increase in magnitude as γ is

increased, ultimately becoming a perfect recurrence [F (t
(TG)
r ) = 1] in the TG limit. 5 This

insight also helps us to understand the appearance of the solitonic dip in g(2)(x, t) [Fig. 4.3(c)]

traveling at ≈ 40% of the speed of sound vs: Complete recurrence of the system at time

t
(TG)
r would imply a minimum speed vmin = L/t

(TG)
r that any (persistent) disturbance in

the nonlocal correlation functions of the system can travel at, in order that it returns to its

starting position when the recurrence occurs. For N = 5 the minimum velocity vmin = kF ,

whereas the Fermi velocity and speed of sound (in the TG limit) vF = 2.5 kF . 6 We

therefore interpret the slow-moving density depression in Fig. 4.3(c) as a precursor to a

solitonic disturbance propagating at vmin in the TG limit and the more rapidly moving dips

as traveling at integer multiples of this velocity. 7 We note also that as the thermodynamic

limit is approached (i.e., increasing N at fixed density), the recurrence time diverges like

N2 and the minimum velocity vanishes like 1/N ; i.e., the discrete spectrum of permitted

velocities becomes a continuum.

5 To leading order in the strong-coupling expansion, each rapidity in a parity-invariant set λj = (1 −
2/γ)kj , where kj is its value in the TG limit (see, e.g., Ref. [255]). Thus, for large but finite γ, eigenstate
energies are somewhat smaller than their values in the TG limit, and the (quasi-)recurrence time is therefore
somewhat longer than the exact recurrence time of the TG system.

6 We quote the speed of sound here in units of the Fermi wave vector kF of our finite-sized system

(Sec. 4.3.2), which differs from the Fermi wave vector k
(∞)
F = nπ in the thermodynamic limit by an O(1/N)

correction. We note that this finite-size correction is here much larger than the O(1/γ) strong-coupling
correction to the TG-limit speed of sound.

7 We note that the ratio of the minimum velocity vmin to the Fermi velocity vF depends, in general, on
the particle number N . We have found that for N = 4, density dips propagate at velocities consistent with
integer multiples of vmin, which correspond to integer multiples of vF /2.
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4.4.4 Relaxation time scales

Our results for first- and second-order correlations of the LL system following the quench,

together with the fidelity F (t) between the state at time t and the initial state, indicate

that our finite-size calculations exhibit behavior consistent with the notion of relaxation of

a quantum system due to the dephasing of energy eigenstates [1], at least for large final

interaction strengths γ � 1. Here we consider the dependence of the time scales over

which these quantities relax on γ. We note that in our finite-size calculations, quantities

do not, in general, show decay over sufficiently long time scales that particular functional

forms (such as exponential or power-law decay) can be fitted to extract relaxation rates (or

exponents). We therefore simply associate, with each quantity we consider, a relaxation

time defined as the time at which that quantity first reaches its time-averaged (DE) value.

In this manner we extract from the results of our calculations relaxation times trelax for the

zero-momentum occupation ñ(0, t), local second-order coherence g(2)(0, t), structure-factor

component S(k1, t), and fidelity F (t). We plot these relaxation times trelax as functions of

the final interaction strength γ in Fig. 4.6.

It is clear from this figure that (as we have noted in Sec. 4.4.2) the local second-order

coherence g(2)(0, t) relaxes much more quickly than ñ(0, t), aside from the strongly finite-size

limited case γ = 1. Moreover, the relaxation time for the local quantity g(2)(0, t) decreases

steadily with increasing γ (consistent with the results of Ref. [194]), whereas the relaxation

time for the nonlocal quantity ñ(0, t) appears to saturate to a limiting value ∼ 1.5 k−2
F as
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4.5 Comparison of relaxed state to thermal equilibrium

γ →∞. We note also that the relaxation time of the fidelity F (t) is essentially equal to that

of ñ(0, t) at each γ. The relaxation time of S(k1, t) is, for each value of γ, somewhat smaller

than that of F (t) and ñ(0, t), though inspection of Fig. 4.4 suggests that this discrepancy

arises due to the functional form of S(k1, t), which is perhaps not ideally suited to our

particular definition of trelax.

As the decay of the fidelity F (t) quantifies the dephasing of the energy eigenstates |{λj}〉
of the system, we regard its evolution as the fundamental characterization of relaxation in

our unitarily evolving system. Our results here indicate that the relaxation of nonlocal

quantities such as ñ(0, t) and S(k1, t) is directly associated with the relaxation of F (t) and

that these experimentally relevant quantities serve as effective probes of the relaxation of

the N -particle quantum system as a whole. Finally in this section, we note that, on general

principles, the time taken for ñ(0, t) to relax to its DE value should diverge with the time

taken for correlations to traverse the system extent, which is ∝ N at fixed density n. This

should be contrasted with both the ∝ N2 scaling of the (quasi-)recurrence time scale and

the essentially system-size-independent time scale for the relaxation of g(2)(0, t), which is

determined by local physical mechanisms [194].

4.5 Comparison of relaxed state to thermal equilib-

rium

In this section we compare the correlations of the relaxed state of the system described by the

DE with those that would be obtained if, following the quench, the system relaxed to thermal

equilibrium. Construction of the microcanonical ensemble is hampered by the small system

size, combined with the sparse spectrum of the integrable LL Hamiltonian (4.1), which

make it difficult to identify an appropriate microcanonical energy “window” encompassing

many energy eigenstates while remaining narrow compared to the mean (postquench) energy

E [Eq. (4.16)]. We therefore consider the canonical ensemble (CE). The density matrix of

the CE is given by

ρ̂CE = Z−1
CE

∑

{λj}

e
−βE{λj}|{λj}〉〈{λj}|, (4.25)
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4. Relaxation dynamics of the Lieb–Liniger gas following an interaction quench

where the inverse temperature β is defined implicitly by Z−1
CE

∑
{λj} exp(−βE{λj})E{λj} = E

and the partition function ZCE =
∑
{λj} exp(−βE{λj}). It is important to note that the only

constraint (beyond that of fixed particle number) imposed in the CE is the conservation

of the mean energy. Thus, in contrast to the definition of ρ̂DE in Eq. (4.20), the sum

in Eq. (4.25) formally runs over all N -particle eigenstates |{λj}〉, regardless of parity and

including those with nonzero values of the total momentum defined in Eq. (4.11). 8 Similarly

to our calculations of DE expectation values, in practice we construct expectation values in

the CE from a finite set of eigenstates, though we note that for a given level of accuracy their

calculation requires us to include many more eigenstates than are required in the calculation

of expectation values in the DE density matrix ρ̂DE, as we discuss in Appendix 4.7.1.

4.5.1 Momentum distribution

In Fig. 4.7(a) we plot the DE momentum distribution ñDE(k) for quenches of N = 5 particles

to final interaction strengths γ = 1, 10, and 100, along with the corresponding momentum

distributions ñCE(k) predicted by the CE. Figure 4.7(b) shows the same momentum distri-

butions on a logarithmic scale and reveals that for all interaction strengths, both ñDE(k)

and ñCE(k) exhibit a power-law decay ñ(k) ∝ k−4 (black dotted line) at high momenta. 9

This scaling behavior is a universal consequence of short-ranged two-body interactions in

1D [5, 305, 314] and indeed in higher dimensions [315, 365].

In the weakly excited case (Appendix 4.7.2) of a quench to γ = 1, the DE (red solid

line) and CE (red dot-dashed line) momentum distributions appear similar, with the zero-

momentum occupation ñDE(0) being only slightly larger than the corresponding CE value

and the occupations ñ(k±1) of the smallest magnitude nonzero momenta being somewhat

8 Although one could consider more refined definitions of the CE that are restricted so as to involve
only states that have finite overlap with the initial state—e.g., states with zero total momentum or strictly
parity-invariant states—we have found that these refined CE definitions do not yield correlation functions
that agree more closely with the DE results. Therefore, for clarity, we simply take as our “reference” thermal
ensemble the most common definition of CE, in which, at fixed particle number N , all conservation laws
other than conservation of energy are ignored.

9 We note that the accuracy with which we can resolve correlations at high values of k is ultimately
limited by the density of the (Cartesian) position-space grid on which we calculate correlation functions.
We stress that this effective “momentum cutoff” is independent of the size of the basis set used in our
nonequilibrium calculations and does not affect the propagation of the LL solution following the quench,
but merely limits the accuracy with which we can extract correlations from the solutions. In practice, we
always choose the Cartesian grid density to be sufficiently high that the characteristic ∝ k−4 scaling of the
high-momentum tail is observed over a broad range of momenta.

100



4.5 Comparison of relaxed state to thermal equilibrium

0

1

2

3

4

5

0 0.5 1 1.5 2 2.5
k/kF

ñ
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Figure 4.7: (a) Comparison of equilibrium momentum distributions ñDE(k) and ñCE(k) pre-
dicted by the DE and CE, respectively, for an interaction-strength quench of N = 5 particles. (b)
The same momentum distributions on a double-logarithmic scale. The black dotted line indicates
the universal ∝ k−4 power-law scaling [5] observed at high momenta k. For strong interactions, a
power-law decay ∝ k−2 (black dot-dashed line) emerges at intermediate momenta.

smaller in the DE than in the CE. From Fig. 4.7(b) we observe that in this case both the DE

momentum distribution and that of the CE deviate from the ∝ k−4 power-law scaling (black

dotted line) only at the smallest nonzero momenta resolvable in the finite periodic geometry.

In the relaxed (DE) state, our system is too small to observe the nontrivial long-wavelength

behavior of the LL model for comparatively weak interactions γ . 1. In fact, many low-

lying excitations of the LL system that would be excited by a quench to γ = 1 in an infinite

system are not present in our finite-sized system. As a result our system is only weakly

excited above the ground state of Ĥ by the quench and the relaxation dynamics associated

with the dephasing of energy eigenstates are not observed. This results, in particular, in

the near-monochromatic oscillations of ñ(0, t) for this quench, as discussed in Sec. 4.4.3 and

Appendix 4.7.2.

We note from Fig. 4.7(a) that the zero-momentum occupation ñDE(0) in the DE and

the prediction ñCE(0) of the CE for this quantity both decrease significantly with increasing
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4. Relaxation dynamics of the Lieb–Liniger gas following an interaction quench

final interaction strength γ. However, the decrease in ñCE(0) with increasing γ is much

more pronounced than the corresponding decrease in ñDE(0), and ñDE(0) therefore exceeds

ñCE(0) by an increasingly large margin as γ increases. Figure 4.7(a) also reveals conspicuous

differences, at larger values of γ, between the width and the shape of ñDE(k) and those of

ñCE(k). In particular, ñDE(k) remains convex on k ≥ 0 for all considered final interaction

strengths, whereas ñCE(k) develops an increasingly broad concave hump at small k (cf.

Ref. [273]) with increasing γ. For γ = 100 the width (half width at half maximum) of

the CE momentum distribution is much greater than kF , whereas ñDE(k) is comparatively

sharply peaked around k = 0. We observe from Fig. 4.7(b) that a scaling ∝ k−2 (black dot-

dashed line) emerges at intermediate momenta for γ ∼ 100. This same power-law scaling has

been obtained analytically [73] in the singular limit of a quench to the TG limit of infinitely

strong interactions, where it was found to persist in the limit k → ∞. By contrast, the

universal ∝ k−4 scaling of the momentum distribution at large k [5, 314, 315] is always

observed in the quenches to finite final interaction strengths γ that we consider here.

We remark that at comparatively low temperatures, such that the LL system is in the

quantum-degenerate regime, the known asymptotic form of the thermal-equilibrium first-

order correlation function g(1)(x) at large separations x is an exponential decay [241, 311,

366], corresponding to a Lorentzian functional form for ñ(k) at small k. At increasingly

higher temperatures, the effects of both interactions and particle statistics eventually be-

come negligible, and g(1)(x) becomes Gaussian with width given by the thermal de Broglie

wavelength (see, e.g., Ref. [272]), corresponding to a Gaussian momentum distribution ñ(k)

that becomes increasingly broad with increasing temperature. Although Fig. 4.7 indicates

that ñCE(k) is consistent with these known thermal-equilibrium results, the momentum dis-

tributions ñDE(k) we observe here show a qualitatively distinct behavior. In particular,

for γ = 100, the Gaussian form of ñCE(k) demonstrates that the energy imparted to the

system by the quench, if redistributed during relaxation so as to agree with the principles of

conventional statistical mechanics, would heat the system to temperatures far above quan-

tum degeneracy. By contrast, the DE momentum distribution ñDE(k) appears to retain the

Lorentzian-like character expected for the LL model at nonzero but small temperatures,

such that quantum-degeneracy effects remain significant. We note also that the coefficient

limk→∞ k
4ñ(k) of the high-momentum tail (i.e., the Tan contact [5, 314, 315]) in the DE is
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always larger than that in the CE. In the case of γ = 1 this coefficient is larger in the DE

as compared to the CE by a factor of approximately two, and its value in the DE exceeds

that in the CE by an increasingly large factor as γ increases, being more than an order of

magnitude larger in the case of γ = 100.

4.5.2 Second-order correlations

In Fig. 4.8(a) we plot the predictions g
(2)
DE(x) of the DE for the equilibrium second-order

correlations of the postquench system, along with the corresponding predictions g
(2)
CE(x) of

the CE for this quantity. For γ = 1 the nonlocal real-space correlation function g
(2)
DE(x) [small

red circles in Fig. 4.8(a)] is similar to the CE form g
(2)
CE(x) (red dot-dashed line), and both are

comparable to the form of g(2)(x) found for γ . 1 at zero temperature in previous works [6,

263, 264, 274], consistent with the weak excitation of the system observed in the behavior of

the momentum distribution (Sec. 4.5.1) for this final interaction strength. We note that both

the local second-order coherence g
(2)
DE(0) in the DE and that in the CE decrease significantly

as γ is increased. However, the “Friedel” oscillations of wavelength ∼ 1/kF that appear in

g(2)(x) for strong interaction strengths γ � 1 at zero temperature [207, 254, 274] are not seen

in either the DE or the CE predictions for the equilibrium second-order coherence at large

values of γ. Indeed for γ = 10 and 100 the results for g
(2)
DE(x) are qualitatively similar to the

behavior of the second-order coherence in the high-temperature fermionization regime [261,

274, 275], consistent with the results of the lattice-model simulations of Ref. [194] and

studies of quenches to the TG limit [7, 8, 73, 210]. We note, however, that the dip in the

second-order correlation function about x = 0 is significantly wider in the DE than in the

CE for γ = 10 and 100. Moreover, for these large final interaction strengths the function

g
(2)
DE(x) is not completely flat outside the central “fermionic” dip at small x and, in fact, as

the separation x approaches the midpoint L/2 of the periodic geometry, the second-order

coherence exhibits a small secondary dip to a value lower than the roughly constant value

of g
(2)
DE(x) at intermediate separations. We have found that this feature is highly sensitive

to the particle number N , varying between a small dip (as seen here) and a small peak for

odd and even values of N , respectively, and we therefore identify it as a finite-size artifact

that should gradually vanish with increasing system size.
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Figure 4.8: Second-order correlations in the DE for quenches of N = 5 particles to γ =

1, 10, and 100. (a) Second-order correlation function g
(2)
DE(x) and (b) corresponding structure

factor SDE(kj). The legend is the same for both panels and is indicated in (a).

Figure 4.8(b) shows the DE predictions for the equilibrium structure factors SDE(k)

obtained from the correlation functions g
(2)
DE(x) plotted in Fig. 4.8(a) via Eq. (4.22), along

with the corresponding CE structure factors SCE(k). Unsurprisingly, for γ = 1 this rep-

resentation of the second-order correlations in the DE is also similar to the predictions of

the CE, whereas for both of the larger values of γ we consider, the DE prediction SDE(k)

differs markedly from SCE(k) and also from the corresponding zero-temperature form of

the structure factor (see, e.g., Refs. [6, 266]). In particular, the DE predictions for these

structure factors have smaller magnitudes at small momenta k . kF than the corresponding

CE structure factors. We note that our results for the equilibrium static structure factor

following the quench are at least qualitatively similar to those of Refs. [8, 73], aside from

the obvious distinction that the characteristic γ-independent value S(0) = 1/2 obtained

in Ref. [8] is precluded in our calculations by particle-number conservation, which imposes

SDE(0) = 0. 10

10 In fact, our results in Fig. 4.8(b) are not inconsistent with the structure factor exhibiting the limiting
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4.5.3 Local correlations

We now compare the DE values g
(2)
DE(0) and g

(3)
DE(0) of the local second- and third-order

correlation functions, respectively, to the predictions of the CE for these quantities. The

dramatically reduced computational expense involved in calculating local correlation func-

tions, as compared to nonlocal correlation functions such as g(1)(x) and g(2)(x), allows us to

pursue our investigations to much larger values of γ than we have considered so far while

maintaining a comparable level of accuracy (see Appendix 4.7.1). We therefore present in

Fig. 4.9 results for g
(2)
DE(0) and g

(3)
DE(0) for final interaction strengths up to γ = 103.

In Fig. 4.9(a) we plot g
(2)
DE(0) for N = 2, 3, 4, and 5 particles (solid lines, bottom to top),

together with the thermal-equilibrium values g
(2)
CE(0) obtained in the canonical ensemble, for

N = 3 and 4 particles (red triangles and green circles, respectively). We observe that both

ensembles predict g(2)(0) to exhibit behavior consistent with power-law decay ∝ 1/γ at large

values of γ, though for any given value of γ and particle number N , the DE result g
(2)
DE(0) is

somewhat smaller than g
(2)
CE(0). This behavior is consistent with the results of the generalized

TBA calculations of Refs. [7, 8], which both predict an asymptotic form g
(2)
GTBA(0) ∼ 8/(3γ)

(black dot-dashed line) for the local second-order coherence following a quench of the LL-

model interaction strength from zero to γ. As noted in Ref. [7], this prediction for the

equilibrium postquench value of g(2)(0) has the same power-law scaling exponent as the

corresponding prediction g
(2)
GCE(0) ∼ 4/γ of the grand-canonical ensemble [7, 261] 11 (black

dotted line), but a significantly smaller prefactor. We note not only that g
(2)
DE(0) here exhibits

the same ∝ 1/γ scaling as g
(2)
CE(0) and that its prefactor is indeed smaller, but also that our

results for g
(2)
DE(0) and g

(2)
CE(0) appear to be scaling towards the asymptotic predictions of

Ref. [7, 8] for g(2)(0) in the generalized statistical ensembles considered in those works and

the grand-canonical ensemble, respectively, as the particle number N is increased.

We now turn our attention to the local third-order correlation functions g
(3)
DE(0) and

behavior limk→0 SDE(k) = 1/2 in the thermodynamic limit [i.e., SDE(k1) ≡ SDE(2π/L) → 1/2 as L → ∞
at fixed density n], which would agree with the thermodynamic-limit calculation of Ref. [8] aside from the
singular point k = 0.

11 For large γ, the spectrum of the LL Hamiltonian (4.1) approaches that of a system of free spinless
fermions in 1D, for which (at fixed N) the mean energy E ∝ T in the limit of large T . Combining this
with the linear dependence of the postquench system energy [Eq. (4.16)] on the final interaction strength γ
and the analytic predictions g(2)(0) ∝ T/γ2 and g(3)(0) ∝ T 3/γ6 [261] appropriate to the high-temperature

fermionization regime, we find g
(2)
th (0) ∝ γ−1 and g

(3)
th (0) ∝ γ−3.
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Figure 4.9: Comparison of equilibrium values of local correlation functions predicted by the

DE and the CE. (a) Local second-order coherence functions g
(2)
DE(0) and g

(2)
CE(0). (b) Local third-

order coherence functions g
(3)
DE(0) and g

(3)
CE(0). In both panels, black dotted and dot-dashed lines

indicate thermodynamic-limit predictions for the corresponding correlation functions obtained in
the grand-canonical ensemble and the generalized TBA calculations of Refs. [7, 8], respectively
(see text).

g
(3)
CE(0), which we plot in Fig. 4.9(b) for N = 3, 4, and 5 particles (solid lines and sym-

bols, respectively). We observe that for all three particle numbers, the behavior of g
(3)
DE(0)

is consistent with power-law scaling ∝ γ−1 at large γ, in pronounced disagreement with

the prediction g
(3)
GTBA(0) ∼ 32/(15γ2) of Refs. [7, 8] (black dot-dashed line). By contrast,

the results of our CE calculations appear to be scaling towards the grand-canonical predic-

tion11g
(3)
GCE(0) ∼ 72/γ3 (black dotted line) with increasing N .

Although we employ a sufficiently large basis of LL eigenstates in our calculation of DE

expectation values that the values of the local coherences appear reasonably insensitive to

the precise number of states we use, the accuracy of our results for the local coherences

is inevitably limited by this eigenstate “cutoff” (see Appendix 4.7.1). However, we stress

that the local correlation function g(3)(0) is [like g(2)(0)] non-negative in any LL eigenstate

|{λj}〉, and raising the cutoff to include some or all of the weakly occupied eigenstates
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omitted in our numerical calculation of this quantity could therefore only increase its value.

Moreover, the total occupation of neglected eigenstates in our DE calculations increases

with increasing γ (Appendix 4.7.1). Thus, we expect our calculated value of g
(3)
DE(0) to

increasingly underestimate the exact value of this quantity with increasing γ; i.e., the scaling

g
(3)
DE(0) ∝ γ−1 shown in Fig. 4.9(b) should constitute an upper bound to the rate at which

g
(3)
DE(0) scales to zero, whereas the prediction of Refs. [7, 8] vanishes even more rapidly. Of

course, our results here are for strongly finite-sized systems of at most N = 5 particles, and

the reader might expect that the discrepancy between g
(3)
DE(0) and the results of Refs. [7,

73] should disappear in the thermodynamic limit. However, results for local correlation

functions at zero temperature [165, 262] and our results for g
(2)
DE(0) [Fig. 4.9(a)] both suggest

that local correlations, and in particular their scaling with interaction strength, become

increasingly insensitive to finite-size effects as the TG limit is approached. We note that

the power-law behavior g
(3)
GTBA(0) ∝ γ−2 obtained in the calculations of Ref. [7, 8] lies

in between the thermal scaling g
(3)
GCE(0) ∝ γ−3 and the result g

(3)
DE(0) ∝ γ−1 of our DE

calculations. We remark that this may be an indication that the GGE and quench-action

calculations of Refs. [7] and [8], respectively, only partially account for the constraints

to which the integrable LL system is subject. The origin of this discrepancy remains an

important question for future study.

4.6 Summary

We have investigated the dynamics of the Lieb–Liniger model of 1D contact-interacting

bosons following a sudden quench of the interaction strength from zero to a positive value.

We computed the long-time evolution of systems containing up to five particles by expand-

ing the time-evolving pure-state wave function of the postquench system over a truncated

basis consisting of all energy eigenstates with (absolute) overlap with the initial state of

the system larger than a chosen threshold. These overlaps, and the matrix elements of

observables between energy eigenstates, were obtained by symbolic evaluation of the corre-

sponding coordinate-space integrals in terms of the rapidities that label the states, which

were themselves obtained as numerical solutions of the appropriate Bethe equations.

We found that for quenches to comparatively small final interaction strengths (γ . 1),
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observables exhibit near-monochromatic oscillations. We identified this as a consequence

of the gap in the energy spectrum induced by the finite size of the system, which severely

suppresses the excitation of the system for small values of the final interaction strength, re-

sulting in quasi-two-level system dynamics. For stronger interaction strengths, we observed

results for the first- and second-order correlations consistent with the relaxation of the in-

tegrable many-body system due to the dephasing of the N -particle energy eigenstates. We

also observed the propagation of correlation waves in the second-order correlations of the

system, which are related to density modulations. We found that the behavior of the fidelity

between the initial (prequench) state and the state at time t following the quench is quali-

tatively similar to that of nonlocal quantities such as the occupation of the zero-momentum

single-particle mode, indicating that these experimentally relevant quantities provide effec-

tive probes of the eigenstate dephasing of the N -body system. Local correlations, however,

decay much more rapidly and do not necessarily reflect the relaxation of the system as a

whole.

We assessed the character of correlations in the relaxed state by comparing diagonal-

ensemble correlations to those of the canonical ensemble, in which only the conservation

of energy and normalization are taken into account. In particular, we observed that for

quenches to large γ, the relaxed state of the system exhibits a momentum distribution

consistent with the asymptotically Lorentzian form expected for the Lieb–Liniger model at

low-temperature thermal equilibrium. This is in stark contrast to the canonical-ensemble

prediction for the relaxed postquench state, which yields a Gaussian momentum distribution

consistent with temperatures well above quantum degeneracy. Our calculations also indicate

that in the Tonks–Girardeau limit γ → ∞ the local second-order coherence g
(2)
DE(0) scales

towards zero with the same power law as the corresponding correlation function in the

canonical ensemble (i.e., like 1/γ), but with a smaller prefactor, consistent with the results

of Refs. [7, 8]. However, although our results for the local third-order coherence in the

canonical ensemble are consistent with the expected behavior of a thermal system, our

results for g(3)(0) in the nonthermal diagonal ensemble show a scaling ∝ γ−1, slower than

both the ∝ γ−3 scaling expected for a thermal state and the ∝ γ−2 scaling predicted by

the generalized thermodynamic Bethe-ansatz calculations of Refs. [7, 8]. Whether this

discrepancy is merely a consequence of the finite size of our system or is indicative of
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subtleties not captured in the methodologies of Refs. [7, 8] is an important question for

further study.
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4.7 Supplement

4.7.1 Basis-set truncation

Expression (4.17) for |ψ(t)〉 [and, consequently, Eqs. (4.18)–(4.20) derived from it] involves a

sum
∑
{λj} over all zero-momentum, parity-invariant states |{λj}〉. In principle, there are an

infinite number of such states that contribute to the sum. However, in practical numerical

calculations, we must truncate the sum to a finite number of terms in some manner. The

accuracy of our calculations based on this truncated sum can then be quantified by the

sum rules satisfied by the conserved quantities of the system. We focus primarily on the

normalization sum rule
∑
{λj} |C{λj}|2 = 1 (cf. Ref. [209]).

In our calculations we include all states |{λj}〉 for which the absolute overlap |〈{λj}|ψ0〉|
with the initial state [Eq. (4.15)] is larger than some threshold value. Our approach exploits

the fact that the solutions {λj} of the Bethe equations (4.6) are in one-to-one correspon-

dence [219] with the (half-)integers {mj} that appear in Eq. (4.6). As the states |{λj}〉
are parity invariant, we can choose to label the rapidities such that λj = −λN+1−j, where

λ1 > λ2 > · · · > λN . Then we can label the states simply by (m1,m2, . . . ,mb(N+1)/2c),

where bxc denotes the integer part of x. We specialize hereafter to the case N = 5, which

is the largest N for which we consider the dynamics in this article. Our approach reduces

in a natural way to the cases of N ≤ 4. The states can be grouped into families labeled

by m1 = 2, 3, . . . , where within each family the second quantum number can assume values

1 ≤ m2 < m1 (and m3 = 0). We have found from our explicit evaluation of the overlaps [165]

that |〈{λj}|ψ0〉| decreases monotonically with increasing m2 within each family m1 and,

moreover, that the first member (m1, 1, 0) of each family m1 has a larger (absolute) overlap

with |ψ0〉 than the first member (m1 + 1, 1, 0) of the next family [8, 165, 307–309]. 12 We

therefore construct the basis by considering in turn each family m1 and including all states

within that family for which the overlap with the initial state exceeds our chosen threshold

value. Eventually, for some value of m1, even the first state (m1, 1, 0) of the family has

overlap with |ψ0〉 smaller than the threshold, at which point all states that meet the overlap

threshold have been exhausted. The basis so constructed therefore comprises the N states

12 In practice, we find that the results we obtain for the overlaps from our method [165] agree with the
recently derived analytical expressions for these quantities [8, 307–309], which imply, in particular, that
〈{λj}|ψ0〉 ∼ 1/λ2j as any λj →∞.
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Table 4.1: Basis-set sizes and sum-rule violations for time-evolving correlations and statistical-
ensemble expectation values. Energy cutoff Ecut applies only for CE calculations, and the CE
density matrix defined in Eq. (4.25) automatically satisfies the normalization sum rule.

γ Type a No. states ∆N ∆E Ecut/k
2
F

1 〈Ô(t)〉 1221 5× 10−8 2× 10−3 N/A
1 DE 6770 4× 10−10 5× 10−4 N/A
1 CE 3.7× 106 N/A 2× 10−7 4.0× 102

10 〈Ô(t)〉 1221 7× 10−6 2× 10−2 N/A
10 DE 6770 8× 10−8 5× 10−3 N/A
10 CE 3.7× 106 N/A 8× 10−6 4.0× 102

100 〈Ô(t)〉 1221 10−3 2× 10−1 N/A
100 DE 6770 3× 10−5 5× 10−2 N/A
100 CE 3.7× 106 N/A 8× 10−6 4.0× 102

a Fidelities F (t) are calculated from the DE basis sets.

with the largest overlap with |ψ0〉 and thus minimizes the violation ∆N = 1−∑{λj} |C{λj}|2

of the normalization sum rule for this basis size.

For an integrable system such as we consider here, the normalization is just one of an

infinite number of sum rules defined by the conserved quantities Q(m) =
∑

j(λj)
m of the

LL Hamiltonian (4.1). However, all the odd charges Q(2n+1), with n an integer, are zero

by the constraint to parity-invariant states. Moreover, even charges Q(2n) with 2n ≥ 4

are formally singular [7], diverging as any rapidity λk ∈ {λj} is increased toward infinity.

Thus, the only nontrivial and regular conserved quantity other than the normalization is

the energy 〈Ĥ〉 =
∑
{λj} |C{λj}|2

∑
k(λk)

2 [cf. Eq. (4.10)]. We note that this quantity

converges as 1/λj, which is much slower than the ∝ 1/λ3
j convergence of the normalization.

We characterize the saturation of this sum rule by the energy sum-rule violation ∆E =

(E−∑{λj} |C{λj}|2
∑

k(λk)
2)/E, where E is the exact postquench energy [Eq. (4.16)]. As a

consequence of the slow convergence of the energy with increasing basis-set size, the energy

sum rule is, in general, less well satisfied in our calculations than the normalization sum

rule.

We note also that the evaluation of time-dependent observables [Eq. (4.18)] involves a

double summation over {λj} and is thus more numerically demanding than the calculation

of correlations in the DE [Eq. (4.19)], for which only a single sum occurs (i.e., only diagonal

elements contribute). An exception is the time-evolving fidelity F (t), which can be written
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Table 4.2: Basis-set sizes and sum-rule violations for the local correlation functions plotted in
Fig. 4.9.

N Type No. states ∆N a ∆E a Ecut/k
2
F

3 DE 104 10−8 2× 10−2 N/A
3 CE 3.9× 105 N/A 10−6 4.8× 103

4 DE 9.5× 104 3× 10−6 5× 10−3 N/A
4 CE 3.2× 106 N/A 10−6 1.6× 103

5 DE 1.9× 105 5× 10−6 5× 10−2 N/A
5 CE 5.9× 106 N/A 5× 10−7 4.8× 102 b

a Sum-rule discrepancies quoted are those for γ = 103 (γ = 5× 102 for ∆E in the N = 5
CE).
b For quenches to γ < 50, cutoff energy Ecut = 4.0× 102 k2

F .

as the modulus square of a single sum over eigenstates [cf. Eq. (4.24)]. We list the sizes of

the basis sets employed in our calculations, together with the resulting violations ∆N and

∆E of the norm and energy sum rules, respectively, in Table 4.1. For expectation values

in the CE [Eq. (4.25)], the truncation of the basis set is most appropriately performed by

retaining all states with energy E below some cutoff energy Ecut. The inverse temperature

β is then chosen as that which, within a prescribed tolerance level, minimizes the energy

sum-rule violation ∆E. In this case, the sum is not restricted to parity-invariant, or even

zero-momentum, states. However, the weights of states in the ensemble decrease exponen-

tially with energy, and we have found that the energy cutoffs used in our CE calculations,

which we also list in Table 4.1, are sufficiently large to ensure saturation of the momentum

distributions plotted in Fig. 4.7.

The results for the local second- and third-order correlation functions presented in

Fig. 4.9 constitute a more demanding test of numerical accuracy, due to the large val-

ues of γ considered. We list the sizes of the basis sets used in these calculations and the

resulting sum-rule violations in Table 4.2.

4.7.2 Post-quench energy and finite-size gap

In Fig. 4.10 we plot the postquench energy E [Eq. (4.16)] as a function of the final interaction

strength γ (blue dotted line). For comparison, we also plot the energy E(0)(γ) of the (N -

particle) ground state of the LL Hamiltonian (4.1) with interaction strength γ (red solid
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Figure 4.10: Energy of a system of N = 5 particles following a quench of the interaction strength
from zero to γ > 0. For comparison, the energy E(0) of the ground state of Ĥ and the energy
E(1) of the lowest-lying excited state of Ĥ that has finite overlap with the initial state |ψ0〉 are
also shown. Inset: Heat Q added to the system by the quench and the energy gap δE between the
ground state and the lowest-lying state that has finite overlap with the initial state (see text).

line). The difference between these two energies, Q ≡ E − E(0)(γ), can be identified as the

heat added to the system by the quench [367], which we plot in the inset to Fig. 4.10 (cyan

solid line).

We note that although the excitation spectrum of the LL system is gapless in the thermo-

dynamic limit, in a finite-sized system a gap of order 1/L [207] (and thus ∼ 1/N at fixed den-

sity) between the energies of the ground state and the lowest-lying excited state(s) appears.

In Fig. 4.10 we plot (green dashed line) the energy E(1) of the lowest-lying state that has

finite overlap with the initial state (see Sec. 4.4). We observe that the gap δE = E(1)−E(0)

between this energy and that of the ground state is ∼ 2k2
F for the system sizes we consider

(magenta dashed line in inset to Fig. 4.10). We note that for large γ � 1, the heat Q

added to the system is much larger than the finite-size gap δE, whereas for γ . 10 the

two energies are comparable, and for γ ∼ 1, the gap is, in fact, larger than the added heat

Q. It is clear, therefore, that in this regime the system can only be weakly excited above

the ground state of Ĥ by the quench, due to the presence of the finite-size gap. Thus, in

quenches to γ = 1, we observe almost purely monochromatic oscillations of observables,

as many low-lying excitations of the formally gapless system are not present in the finite

geometry and the dynamics of the system are dominated by the two most highly occupied

eigenstates of Ĥ. By contrast, for large values of γ & 10, the finite-size gap is relatively

small compared to the energy imparted to the system during the quench, and as a result

many energy eigenstates contribute significantly to the postquench dynamics. Thus, for

113



4. Relaxation dynamics of the Lieb–Liniger gas following an interaction quench

quenches to large values of γ many states are available to realize the eigenstate-dephasing

picture of relaxation dynamics, consistent with the results of our calculations. 13

13 We note that this implies that the crossover from regular to irregular dynamics observed in the calcula-
tion of Berman et al. [285] and interpreted by those authors as accompanying the onset of beyond-mean-field
correlations is also a finite-size artifact.
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5
Correlations and quench dynamics of the

one-dimensional Bose gas with attractive

interactions via the coordinate Bethe ansatz

So far, our focus has been on the dynamics and relaxation of the Lieb–Liniger model with

repulsive interactions. In this chapter, we apply the methodology developed in Chapter 3 to

the attractively interacting gas. There has been renewed interest in the properties of the sys-

tem with attractive interactions from two different communities: First, it was suggested that

a black hole can be described as a system of gravitons trapped at a quantum critical point,

which maps onto the one-dimensional Bose gas with attractive interactions [368, 369]. The

latter has a quantum critical point at a certain interaction strength, marking the emergence

of a bright soliton. Second, the solution to the Kardar-Parisi-Zhang equation for the noisy

growth of a one-dimensional interface can be mapped onto a random-directed polymer prob-
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lem [370], whose generating function can be mapped onto the Lieb–Liniger model with at-

tractive interactions [371]. For certain initial conditions, the overlaps of the ideal gas ground

state with the interacting system following an interaction quench are needed [325, 372].

In the context of ultracold gases, the Bethe ansatz solution can provide insight into

the properties of quantum bright solitons [373, 374]. However, few studies of correlation

functions beyond the mean-field level exist in the literature, partly due to the additional

complexities compared to the repulsively interacting system due to the nature of Bethe

ansatz eigenstates.

The following is a draft of a manuscript about to be uploaded to the arxiv preprint

server.

5.1 Abstract

We study the Lieb–Liniger model of a one-dimensional gas of bosons interacting via an

attractive delta-function potential using the coordinate Bethe ansatz. We consider the

case of a finite-size ring, which in the mean-field limit exhibits a quantum phase transition

between a uniform density ground state and a bright soliton as the interactions become

increasingly attractive. Firstly, we calculate the zero-temperature correlation functions

for seven particles in the vicinity of the critical point, and compare our results with the

predictions of mean-field theory. Secondly, we consider the dynamics of a system of four

particles undergoing a quench from the ideal-gas ground state to increasingly attractive

interactions. We characterize the time-evolution of correlation functions and their infinite-

time limit, and contrast these quantities to the corresponding ones obtained for quenches

to repulsive interactions of the same magnitude. The difference in these quantities is traced

back to bound states of the attractively interacting gas.

5.2 Introduction

The near perfect isolation and exquisite experimental control possible for many system pa-

rameters in ultra-cold atomic gases has enabled the experimental study of nonequilibrium

dynamics of closed many-body quantum systems [99]. A number of different trapping geome-
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tries have lead to the realization of one-dimensional systems [2, 39, 95, 96, 179, 247, 248, 276–

284], which are well described by the paradigmatic exactly solvable Lieb–Liniger model of

point-like interacting bosons [56, 176, 231]. The integrability of the model means that

the powerful methods of the Bethe ansatz in its various forms become available for its

study [56, 207, 219, 223, 231].

One of the simplest methods of taking the system out of equilibrium is to perform an

instantaneous change of a parameter in the Hamiltonian – a so-called quench. Several

authors have considered the dynamics of repulsively interacting systems, where one particu-

larly well-studied scenario is an interaction quench starting from the zero-temperature ideal

gas [7, 73, 165, 166, 204, 210, 324–326]. There have been fewer studies of the one-dimensional

Bose gas with attractive interactions.

The ground state wave function for the attractive 1D Bose gas on the infinite line was

constructed by McGuire [213] and consists of a single bound state of all the particles. For

systems with finite spatial extent, the coordinate Bethe ansatz provides solutions in terms

of quasi-momenta (or rapidities), which for attractive interactions are generally complex-

valued. Correlation functions of the ground state in a hard-wall trap for up to four particles

were studied in Ref. [375]. Since the energy of the ground state is proportional to −N3,

where N is the particle number, a proper thermodynamic limit with N,L → ∞ and fixed

density n = N/L does not exist [56, 223, 376]. However, the zero-density limit L → ∞,

N = const is well defined and non-trivial for attractive interactions. In this limit, some

correlation functions are accessible with algebraic Bethe-ansatz methods [222, 228]. An

alternative large-system limit is given by N → ∞ in a finite ring of circumference L. In

fact, in the Bogoliubov limit g → 0, N → ∞, gN = const, a mean-field Gross–Pitaevskii

description of the finite circumference system is valid, and predicts the appearance of a

localized bright-soliton state beyond some threshold interaction strength [182, 377]. This

has been interpreted as evidence for spontaneous breaking of translational symmetry in

the infinite-N , finite-L limit [182, 184]. However, Bogoliubov theory predicts a diverging

depletion in the vicinity of the crossover, invalidating the mean-field description in this

regime [182]. A many-body analysis for finite N reveals a smooth crossover between the

uniform condensate state and a correlated state with solitonic correlations, as expected in

a finite system [182–185, 378]. Such an analysis also indicates that the gap at the crossover
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point vanishes like N−1/3 [182]. The Bogoliubov-theory prediction of a vanishing gap at

the crossover point in the semiclassical N → ∞ limit is thus regained. The crossover to

the correlated state has therefore been interpreted [182] as a kind of effective quantum

phase transition in the finite-L system, though it should be stressed that this crossover

cannot be considered a finite-system precursor of a true quantum phase transition, as no

true thermodynamic limit exists.

In a full many-body quantum-mechanical treatment, eigenstates respect the symmetry of

their Hamiltonian, but contain solitonic structure in (pair) correlations. Therefore, localized

bright solitons can be constructed from superpositions of certain exact many-body wave

functions [373, 374, 379], which are given by the Bethe ansatz [56, 213, 231]. Recently,

an integral equation for the density of Bethe rapidities of the ground state for particle

number N → ∞, valid across the phase transition point, has been derived and signatures

of the phase transition were observed in the density of rapidities [229]. Bright-soliton-like

structures have also been observed experimentally in elongated quantum gases [380–386].

A particular non-equilibrium scenario for the attractive 1D Bose gas was proposed in

Refs. [215, 216] and subsequently realized experimentally in the group of Nägerl [179]. The

experiment began by preparing the ground state at strong repulsive interactions, before

suddenly switching the interactions to be strongly attractive using a confinement-induced

resonance [176]. In doing so a metastable state was created, the so-called super-Tonks

gas [215–218, 387]. The metastability of the system is due to the fact that the super-Tonks

state is a highly excited eigenstate of the Lieb–Liniger model with “fermonized” charac-

ter [217], and the preparation of this state is very efficient because the overlap between

the Tonks–Girardeau state and the super-Tonks state is very large for large attractive in-

teractions [218, 387]. This comparatively tractable case also allows for a Luttinger liquid

description [388], as well as numerical studies with algebraic Bethe-ansatz [388] and tensor-

network methods [195]. Local correlation functions can be determined by combining the

equation of state of the super-Tonks gas with the Hellmann–Feynman theorem [218], and

also in the non-relativistic limit of a relativistic field theory (sinh–Gordon model) [230].

There are fewer results available for more general interaction quench scenarios of the one-

dimensional Bose gas with attractive interactions. References [301, 302] introduced a Bethe-

ansatz method for calculations of dynamical correlation functions for a few particles and in
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the infinite-volume limit, which is based on the Yudson contour-integral representation and

puts the system in the strongly interacting regime away from the phase transition [229].

Recently, the local second-order correlation function in the relaxed state following a quench

from the ideal-gas ground state to attractive interactions was calculated. This was done

for the entire range of attractive interactions in the thermodynamic limit1 [9, 10] using the

quench-action method [202, 203]. Within this approach, the relaxed value of certain observ-

ables can be calculated in a single representative eigenstate of the system. This eigenstate

was found in Refs. [9, 10] by means of a generalized thermodynamic Bethe Ansatz. Invoking

the Hellmann–Feynman theorem, the authors found an expression for the stationary local

second-order coherence in terms of an infinite number of coupled integral equations, which

they solved numerically by truncation.

In the present work we make use of the coordinate Bethe-ansatz based approach of

Refs. [165, 166], which enables us to calculate the stationary and dynamical values of several

correlation functions for system sizes up to seven particles. We provide a brief summary of

the Lieb-Liniger model in Sec. 5.3 and provide definitions of the correlation functions we

evaluate. We also discuss the numerical complications for the attractively interacting gas

due to complex Bethe rapidities, and explain how we solve them, as well as the limitations

they impose. In Sec. 5.4, we calculate the ground state correlation functions for up to

seven particles for values of the interaction strength in the vicinity of the quantum phase

transition. We also consider the strongly interacting regime for four particles. In Sec. 5.5,

we compute several nonequilibrium correlation functions following an interaction quench

from zero to attractive values, for up to four particles, covering the weakly interacting

regime below and above the mean-field transition point, as well as the strongly interacting

regime. We also compare the dynamics to that of a system following an interaction quench

to repulsive interactions of the same magnitude. In Sec. 5.6 we present results on correlation

functions within the diagonal ensemble, before concluding in Sec. 5.7.

1 The quench deposits a finite amount of energy in the system and therefore the thermodynamic limit is
well-defined in this case.
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5. Correlations of the attractive one-dimensional Bose gas

5.3 Methodology

5.3.1 Lieb–Liniger model

The Lieb–Liniger model [56, 231] describes a system of N indistinguishable bosons subject

to a delta-function interaction potential in a one-dimensional geometry. The Hamiltonian

is

Ĥ = −
N∑

i=1

∂2

∂x2
i

+ 2c
N∑

i<j

δ(xi − xj), (5.1)

where c is the interaction strength, and we have set ~ = 1 and the particle mass m =

1/2. The interactions are attractive for c < 0, and repulsive for c > 0. The solutions of

Hamiltonian (5.1) in the ordered spatial permutation sector Rp (x1 ≤ x2 ≤ · · · ≤ xN) are

given by the coordinate Bethe ansatz in the form [207]

ζ{λj}({xi}) ≡ 〈{xi}|{λj}〉 = A{λj}
∑

σ

(−1)[σ] a(σ) exp
[
i

N∑

m=1

xmλσ(m)

]
(5.2)

where the sum runs over all permutations σ = {σ(1), σ(2), · · · , σ(N)} of {1, 2, · · · , N},
(−1)[σ] denotes the sign of the permutation and the scattering factors

a(σ) =
∏

k>l

(
λσ(k) − λσ(l) − ic

)
. (5.3)

The sets {λj} are the so-called Bethe rapidities. The normalization constant A{λj} is given

by [207]

A{λj} =
[
N ! det{M{λj}}

∏

k>l

[(λk − λl)2 + c2]
]−1/2

, (5.4)

where M{λj} is the N ×N matrix with elements

[M{λj}]kl = δkl

(
L+

N∑

m=1

2c

c2 + (λk − λm)2

)
− 2c

c2 + (λk − λl)2
. (5.5)

Applying periodic boundary conditions leads to a set of N equations for N particles, the

so-called Bethe equations

eiLλj =
∏

l 6=j

(λj − λl) + ic

(λj − λl)− ic
, (5.6)
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5.3 Methodology

where L is the length of the system. The rapidities determine the total momentum P =
∑N

j=1 λj and energy E =
∑N

j=1 λ
2
j of the system in each eigenstate. The ground state of

the system for attractive interactions is an N–body bound state (the finite-system ana-

logue of the McGuire cluster state [213]) and has purely imaginary rapidities [226, 227].

All eigenstates corresponding to bound states have some Bethe rapidities with imaginary

component. This is in contrast to the repulsively interacting system (c > 0), for which the

solutions to the Bethe equations (5.6) are characterized by purely real rapidities {λj}. The

latter are usually parameterized by a set of quantum numbers {mj}, which for c → +∞
are proportional to {λj}, see e.g. Ref. [207]. For the attractively interacting gas, it is more

convenient to enumerate the solutions of the Bethe equations (5.6) with their corresponding

N ideal-gas (i.e. c = 0) quantum numbers {nj}, where kj = 2πnj/L are the free single-

particle momenta [226].2 By convention we order the {nj} of an eigenstate from largest to

smallest.3 In this paper, where we consider ground state correlations and quenches from

the ideal-gas ground state, we only need to consider eigenstates that are parity invariant,

i.e. where nj = −nN+1−j for j ∈ [1, N ]. Thus, we can label all eigenstates by bN/2c quan-

tum numbers, where b. . . c is the floor function, which by convention we choose to be the

non-negative values (for odd N , n(N+1)/2 = 0).

Interactions in the Lieb–Liniger model are characterized by the dimensionless coupling

γ ≡ c/n, where n = N/L is the 1D density, which in the thermodynamic limit for repulsive

interactions is the only parameter at zero temperature. In finite systems, physical quanti-

ties also depend on the particle number N , whereas the length L of our system is arbitrary.

Therefore, we use the finite-system definition of the Fermi momentum kF = (2π/L)(N−1)/2,

which is the largest rapidity in the ground state for c→ +∞, and measure time in units of

k−2
F , energy in units of k2

F , and length in units of k−1
F .

2 The energy of an eigenstate with {nj} for c → 0− connects to the energy of the eigenstate with

{m(0)
j + nj} for c→ 0+. Here, {m(0)

j } are the ground state quantum numbers for c > 0.
3 In slight abuse of notation, we keep using curly brackets as delimiters, even though {nj} is technically

a tupel.
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5. Correlations of the attractive one-dimensional Bose gas

5.3.2 Correlation functions

The static and dynamic behavior of the Lieb-Linger gas can be characterized by the nor-

malized mth-order correlation functions

g(m)(x1, . . . , xm, x
′
1, . . . , x

′
m; t) ≡

〈
Ψ̂†(x1) · · · Ψ̂†(xm)Ψ̂(x′1) · · · Ψ̂(x′m)

〉

[〈n̂(x1)〉 · · · 〈n̂(xm)〉〈n̂(x′1)〉 · · · 〈n̂(x′m)〉]1/2
, (5.7)

where Ψ̂(†)(x) is the annihilation (creation) operator for the Bose field, the density operator

n̂(x) ≡ Ψ̂†(x)Ψ̂(x), and 〈· · · 〉 ≡ Tr{ρ̂(t) · · · } denotes an expectation value with respect to a

Schrödinger-picture density matrix ρ̂(t). Due to the translational invariance of the system

the density is constant (i.e. 〈n̂(x)〉 ≡ n), and the correlation functions are invariant under

global coordinate shifts x → x + d. Without loss of generality, we therefore set one of

the spatial coordinates to zero and focus on the first-order correlation function g(1)(x) ≡
g(1)(0, x), the second-order correlation function g(2)(x) ≡ g(2)(0, x, x, 0), and the local third-

order coherence g(3)(0) = 〈[Ψ̂†(0)]3[Ψ̂(0)]3〉/n3. We also consider the momentum distribution

ñ(k) = n

∫ L

0

dx e−ikxg(1)(x). (5.8)

The periodic boundary conditions lead to quantized single-particle momenta kj = 2πj/L,

where j is an integer.

For a system in a pure state |ψ(t)〉, Eq. (5.7) reads

g(m)(x1, . . . , xm, x
′
1, . . . , x

′
m; t) =

1

nm
〈ψ(t)|Ψ̂†(x1) · · · Ψ̂†(xm)Ψ̂(x′1) · · · Ψ̂(x′m)|ψ(t)〉

= N !

∫ L

0

dxm+1 · · · dxN
nm(N −m)!

ψ∗(x1, . . . , xm, xm+1, . . . , xN , t)ψ(x′1, . . . , x
′
m, xm+1, . . . , xN , t) .

(5.9)

By expressing the wave function ψ({xj}, t) in terms of Lieb–Liniger eigenstates ζ{λj}({xi}) (5.2),

we can calculate the integrals in Eq. (5.9) semi-analytically with the methodology of Ref. [165].

This also allows for calculation of the norm (5.4) and the evaluation of the overlaps of the

initial state with Lieb–Liniger eigenstates necessary for our nonequilibrium calculations in

Sec. 5.5. In Sec. 5.6, we consider the relaxed system in terms of the diagonal ensemble [1]
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5.3 Methodology

density matrix ρ̂DE ≡
∑
{λj} ρ

DE
{λj}|{λj}〉〈{λj}|, in which case Eq. (5.7) reads

g
(m)
DE (x1, . . . , xm, x

′
1, . . . , x

′
m) =

1

nm
Tr{ρ̂DEΨ̂†(x1) · · · Ψ̂†(xm)Ψ̂(x′1) · · · Ψ̂(x′m)}

=
1

nm

∑

{λj}

ρDE
{λj}〈{λj}|Ψ̂†(x1) · · · Ψ̂†(xm)Ψ̂(x′1) · · · Ψ̂(x′m)|{λj}〉

= N !
∑

{λj}

ρDE
{λj}

∫ L

0

dxm+1 · · · dxN
nm(N −m)!

ζ∗{λj}(x1, . . . , xm, xm+1, . . . , xN , t)

× ζ{λj}(x′1, . . . , x′m, xm+1, . . . , xN , t) . (5.10)

5.3.3 Numerical considerations

For repulsive interactions, the solutions to the Bethe equations (5.6) are characterized by

purely real rapidities λj, and finding these numerically is relatively straightforward, see

e.g. Ref. [166]. However, for attractive interactions solutions with complex rapidities are pos-

sible, and the associated Yang-Yang action of the problem is nonconvex (see e.g. Ref. [222]),

which complicates the root-finding procedure. We start our root-finding routine close to

γ = 0, where the rapidities {λj} are close to the corresponding free-particle momenta cor-

responding to {nj}. Advancing in small steps to more negative values of γ using linear

extrapolation leads to good convergence of the rapidities to machine precision with a New-

ton method with adaptive step size and trust region.

Eigenstates with complex rapidities arrange themselves in so-called string patterns in the

complex plane for large values of |c|L, with deviations from these strings exponentially small

in system length L [223, 226]. For these, some of the scattering phases a(σ) in Eq. (5.3)

become smaller and smaller for increasing |γ|, canceling the huge exponential factor to

give a finite result. Naive evaluation of the wave function would therefore lead to numerical

inaccuracies due to catastrophic cancellations as soon as the string deviations are of the order

of machine precision. This problem can be overcome by using the Bethe equations (5.6) to

rewrite the problematic factors in a(σ) in terms of exponentials, therefore optimizing the

expressions for floating-point calculations, cf. Appendix 5.8.2. For N = 4 and L = 4, this

enables us to calculate correlation functions for attractive interaction strength values up to

|γ| ≈ 40. For larger values of |γ|, the bound states become increasingly localized, leading

to factors in Eq. (5.2) that are too large to be represented with standard double-precision
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5. Correlations of the attractive one-dimensional Bose gas

floating point arithmetic. We could in principle use high-precision arithmetic to overcome

this problem.4 However, to address the physics of interest in this work, double precision

arithmetic is sufficient and allows us to investigate the system from the weakly interacting

regime all the way up to the strongly interacting regime.

5.4 Ground state correlation functions

The ground state correlation functions of the one-dimensional Bose gas with attractive in-

teractions have so far been investigated in the mean-field regime [182, 377, 389] and with

quantum-mechanical methods [182–185, 378, 390]. A lattice approximation was considered

in Ref. [391]. For system length L → ∞, studies include [177, 376, 379, 392], while in

Ref. [375] correlation functions for up to N = 4 particles under hard-wall boundary con-

ditions were calculated within the coordinate Bethe ansatz. Refs. [222, 228] calculated the

dynamic structure factor to first order in the string deviations based on the algebraic Bethe

ansatz. Here, we investigate the correlation functions for finite system length L and peri-

odic boundary conditions exactly. We compare these with the mean-field solution for N = 7

particles in the vicinity of the quantum phase transition −0.7 ≤ γ ≤ 0, before considering

the more strongly attractive system up to γ = −40 for N = 4 particles.

5.4.1 Correlations near the critical point

In Fig. 5.1, we plot the first- and second-order coherence functions for the ground state

for N = 7 particles for a range of γ. Fig. 5.1(a) shows the first-order coherence g(1)(x) in

the spatial domain. For translationally invariant and particle-number conserving systems,

g(1)(x = 0) ≡ 1 for all γ. For γ = −0.1 (red dashed line), the proximity to the non-

interacting gas results in a nearly constant g(1)(x). For more attractive values of γ, g(1)(x)

begins to decay towards zero at larger distances. For γ = −0.7 (pink dot-dashed line),

g(1)(x) comes close to zero for x = 3πk−1
F , which corresponds to x = L/2 in our units.

[Due to the periodic nature of our geometry, g(1)(x) is symmetric around x = L/2, and we

4 In fact, for N = 4 the eigenstate with {nj} = {1, 0} has two rapidities which are nearly identical and
we need to utilize high-precision arithmetic for calculations involving this specific set, see Appendix 5.8.2
for details.
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Figure 5.1: Ground state correlation functions for N = 7 particles and interaction strengths of
γ = −0.1, −0.21, −0.3, −0.5, and −0.7. For comparison, we also plot the mean-field correlation
functions for γ = −0.21 (green crosses), γ = −0.3 (blue diamonds), and γ = −0.7 (pink diamonds).
The mean-field critical value is γcr ' 0.2. (a) First-order coherence g(1)(x) in the spatial domain.
(b) Second-order coherence g(2)(x). The horizontal line indicates the result for the non-interacting
gas with γ = 0. (c) Momentum distribution ñ(k). Black dot-dashed line indicates ∝ k−4 scaling.
(d) Momentum distribution ñ(k) for small momenta on linear scale.

therefore only show g(1)(x) up to this point.]

As discussed in the introduction, mean-field theory predicts a quantum phase transition5

from a flat mean-field wave function to a localized bright-soliton state at γcr = −π2/N2 '
−0.201 [182, 184, 229, 377]. For our exact quantum-mechanical treatment of the translation-

ally invariant (and particle number conserving) system, the density is necessarily constant.

However, the signature of the bright soliton-like state can be found in the first-order corre-

lation function. Due to the finite size of the system the transition is smeared out, but there

is clearly a significant change in g(1)(x) between γ = −0.1 [red dashed line in Fig. 5.1(a)]

and γ = −0.3 (blue dot-dashed line). In the mean-field approximation, the many-body

wave function is approximated by a symmetrized (Hartree–Fock) product of single particle

wavefunctions, which amounts to neglecting two-body (and higher) correlations between

5 For a discussion of spontaneous symmetry breaking in finite volumes, see the Appendix of Ref. [184].
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5. Correlations of the attractive one-dimensional Bose gas

particles [177, 393]. In this approximation, which becomes exact in the infinite N limit,

correlation functions for the small system sizes we consider here are easy to compute nu-

merically, see Appendix 5.8.1 for details.

At the critical point, the mean-field wave function is nearly perfectly uniform, leading to

a nearly constant g(1)(x). We therefore compare our exact results to the mean-field solution

at γ = −0.21 (green crosses) and find that close to the critical point, the exact solution

(green dotted line) is slightly more localized. For γ = −0.3, i.e. further from the critical

point, the mean-field solution (blue diamonds) is more localized than the exact solution

(blue dot-dashed line). Even further from the critical point at γ = −0.7, the mean-field

solution (pink diamonds) and the exact g(1)(x) (pink dot-dot-dashed line) agree quite closely.

In Fig. 5.1(c), we plot the momentum distribution ñ(k) corresponding to the first-order

correlations shown in Fig. 5.1(a). [For translationally invariant systems ñ(kj, t) ≡ ñ(−kj, t)
and hence we only plot positive momenta in the following.] For γ = −0.1 (red empty

circles), the finite extent of our small system leads to ñ(k) ∝ k−4 for all momenta kj ≥ 1kF .

For all other values of γ, the k−4-scaling is still present for high momenta. This is the

universal large-momentum behavior for systems with short-range interactions [5, 314, 315].

For increasingly attractive interactions, γ = −0.21 (green triangles), the lowest non-zero

momentum modes start to deviate from the ∝ k−4 scaling. For larger values of −γ, the

deviations extend further in momentum, and a broad hump develops. This can be more

clearly seen in Fig. 5.1(d), where we plot the momentum distribution for low momenta

k ≤ 1kF on a linear scale. For γ = −0.1 (red empty circles), the zero-momentum mode is

close to its ideal-gas value of ñ(k = 0) = N . For larger attractive values of γ, the zero-

momentum mode occupation decreases and the first couple of non-zero momentum modes

increase visibly, leading to a broad distribution for γ = −0.7 (pink empty squares).

The ground-state mean-field momentum distributions in Fig. 5.1(c) do not show the k−4-

scaling for large k. Close to the critical point at γ = −0.21, the exact ñ(k) (green dotted

line) and the mean-field solution (green crosses) are clearly different away from k = 0. For

larger attractive values of γ, however, the momentum distributions start to agree better

for the lowest three modes, e.g. at γ = −0.3 (blue diamonds for mean-field solution, blue

dot-dashed line for exact solution). This is even more pronounced for γ = −0.7, where

the lowest six modes of the exact solution (pink dot-dot-dashed line) agree well with the
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5.4 Ground state correlation functions

mean-field solution (pink diamonds), before the k−4 tail of the exact momentum distribution

takes over.

In Fig. 5.1(b), we plot the second-order coherence g(2)(x) for the same range of γ as

before. For γ = −0.1 (red dashed line), g(2)(x) is close to the ideal-gas value g
(2)
γ=0(x) =

1 − 1/N (horizontal grey line). For γ = −0.21 (green dotted line), g(2)(x) is increased

over the ideal-gas value at distances x . 1.3πk−1
F and correspondingly decreased at larger

distances. This behavior is even more pronounced for γ = −0.3 (blue dot-dashed line), and

the trend continues for larger attractive values of γ, where there is significant bunching of

particles.

Comparing the exact results to the mean-field solutions, we again observe a clear dif-

ference near the critical point at γ = −0.21, where the exact solution (green dotted line)

is more localized than the mean-field solution (green crosses). For γ = −0.3, the exact

solution (blue dot-dashed line) has a slightly increased value at zero separation compared to

the mean-field solution (blue diamonds), but away from the origin the latter is marginally

broader. For γ = −0.7, the local value g(2)(0) of the exact solution (pink dot-dot-dashed

line) is again slightly larger than the mean-field value (pink diamonds). Away from the

origin, x & π/4 k−1
F , the mean-field and exact distribution show very good agreement.

5.4.2 Correlations for strongly interacting systems

In Fig. 5.2, we plot the first-, second- and third-order correlation functions of the ground

state for N = 4 particles and for a larger range of values of the interaction strength −2 ≥
γ ≥ −40. For N = 4, the mean-field critical interaction strength is γcr ' −0.617. Fig. 5.2(a)

shows the first-order coherence g(1)(x). For increasing attractive interactions, g(1)(x) shows

that the soliton-like state is increasingly localized. This can also be observed in momentum

space, Fig. 5.2(c), where the corresponding momentum distributions ñ(k) become broader,

much more so than in the repulsive regime (cf., e.g., Ref. [165]). For comparison, we also plot

the mean-field correlation functions for γ = −40 in Figs. 5.2(a),(c) (grey diamonds). The

spatial first-order coherences agree well, with the mean-field solution being slightly more

localized than the exact solution. This leads to a slightly broader mean-field momentum

distribution for low values of k. Nevertheless, the two momentum distributions agree very
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Figure 5.2: Ground state correlation functions for N = 4 particles and interaction strengths
γ = −2, −4, −10 and −40. (a) First order coherence g(1)(x). (b) Second order coherence g(2)(x)
up to x = π/4 k−1

F . The local value for γ = −40, g(2)(x) = 100, exceeds the shown range. (c)
Momentum distribution ñ(kj). Grey diamonds correspond to mean-field solution for γ = −40.
(d) Local second and third order coherence g(2)(0) and g(3)(0), respectively, for a wide range of γ.
Black dot-dashed lines indicate power-law scaling, proportional to −γ (lower line) and γ2.

well over a wide range of momenta up to k ' 30kF , where the universal k−4-scaling of the

exact momentum distribution takes over.

Fig. 5.2(b) shows the second order coherence g(2)(x) for distances up to x = π/4 k−1
F

(which corresponds to x = L/12). We again observe that the system is more tightly bound

for increasingly attractive interactions. The local value for γ = −40 (solid black line) is

g(2)(x = 0) = 100 and not shown in our plots to keep larger distance features visible. The

mean-field solution for γ = −40 (grey diamonds) again shows good agreement with the

exact solution away from the origin (the local value is again slightly suppressed).

Fig. 5.2(d) shows the local second- and third-order coherence for a wide range of in-

teraction strengths. For small values of γ, the values are close to the ideal-gas limit,

g(2)(0) = 1 − 1/N = 0.75 and g(3)(0) = n3N(N − 1)(N − 2)N−3 = 0.375 [262]. In the

vicinity of the mean-field quantum phase transition point (indicated by vertical grey line),

both g(2)(0) and g(3)(0) start to increase significantly. For larger attractive values of γ, we
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observe a linear scaling of the second-order coherence g(2)(0) ∝ −γ and a quadratic scaling

of the third-order coherence g(3)(0) ∝ γ2, which we indicate by the black dot-dashed lines in

Fig. 5.2(d). The scaling of g(2)(0) ∝ −γ can be understood by noting that the McGuire clus-

ter energy scales as EG ∝ −n2γ2 [213], and g
(2)
γ (0) = n−2N−1dEG(γ)/dγ [260]. The increase

of the local second- and third-order correlation functions for large attractive interactions is

in stark contrast to the behavior of these quantities for strongly repulsive interactions, for

which g
(2)
γ>0(0) ∝ γ−2 and g

(3)
γ>0(0) ∝ γ−6 [165, 260].

To summarize, the exact finite-system correlation functions we considered show crossover

behavior around the mean-field critical value, with characteristic changes happening at

slightly smaller values of γ. At stronger interactions, the mean-field correlation functions

agree surprisingly well with our small-system results. This does not apply to quantities being

dictated by two-body correlations, i.e. the large momentum behavior of the momentum

distribution and the local pair correlations [5, 314, 315].

5.5 Dynamics following an interaction quench

In this section we investigate the dynamical evolution of the interacting Lieb–Liniger gas

following an interaction quench for N = 4 particles at time t = 0. The system is initially

taken to be in the ideal-gas ground state, for which the wave function is constant in space,

ψ0({xi}) = 〈{xi}|ψ0〉 = L−N/2. Formally, the state of the system at time t > 0 is given by

|ψ(t)〉 =
∑

{λj}

C{λj} e
−iE{λj}t|{λj}〉 , (5.11)

where C{λj} ≡ 〈{λj}|ψ0〉 are the overlaps of the initial state with the Lieb–Liniger eigenstates

|{λj}〉 at the post-quench interaction strength γ, and E{λj} are the corresponding energies.

The evolution of equal-time correlation functions (Sec. 5.3.2) is calculated by noting that

the time evolution of the expectation value of an arbitrary operator Ô in the time-dependent

state |ψ(t)〉 is given by

〈Ô(t)〉 ≡ 〈ψ(t)|Ô|ψ(t)〉 =
∑

{λj}

∑

{λ′j}

C∗{λ′j}C{λj}e
i(E{λ′

j
}−E{λj})t〈{λ′j}|Ô|{λj}〉. (5.12)
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The matrix elements 〈{λ′j}|Ô|{λj}〉 and overlaps C{λj} are calculated with the method

described in Ref. [165].

Numerically it is necessary to truncate the infinite sum in Eq. (5.12), and our procedure

is analogous to that described in Appendix A of Ref. [166]. We include all eigenstates for

which the populations |C{λj}|2 are larger than some threshold value, thereby minimizing the

normalization sum-rule violation ∆N = 1−∑{λj} |C{λj}|2 for any given value of the cut-off.

The smallest cut-off we use in this work is |C{λj}|2 ≥ 10−8 for calculations of ñ(kj, t) and

g(2)(x, t) for interaction strength quenches to γ = −40, leading to a sum-rule violation of

∆N = 9×10−6. All other correlation functions are calculated with a cut-off |C{λj}|2 ≥ 10−10,

and the sum-rule violations are correspondingly smaller. We have checked that increasing

the cut-off does not visibly alter any of our results.

5.5.1 Influence of bound states following a quench

Before considering the dynamics following a quench to attractive interactions, we first look

at the populations of the Lieb-Linger eigenstates for the post-quench Hamiltonian. Com-

paring these distributions to those for quenches to repulsive interactions helps provide an

understanding of the contribution of bound states to the dynamics.

In Fig. 5.3 we plot the populations |C{λj}|2 of several representative eigenstates following

a quench of the interaction strength from zero to γ for a wide range of interactions. [Recall

that for N = 4 there are two independent nj to be specified, which we quote for each

eigenstate.] For attractive interactions, Fig. 5.3(a), several bound states have significant

populations for small values of −γ . 5. The ground state {nj} = {0, 0} (red solid line),

which is a four-particle bound state, and the three particle bound state {nj} = {1, 0} (green

dotted line) are most important for quenches to −γ . 4. However their populations decrease

rapidly for increasingly attractive values of γ.

At intermediate −γ ≈ 5, two-body bound states start to dominate the populations

[e.g. the states with {nj} = {2, 0} (blue dot-dashed line) and {nj} = {1, 1} (pink dot-

dot-dashed line)]. For increasing attractive values of γ, gas-like states with no bound state

component start to become more important [e.g. {nj} = {3, 1} (black solid line) and {nj} =

{4, 1} (pink dotted line)]. Indeed, at γ ≈ −24, the population of the super-Tonks state
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Figure 5.3: Populations |C{λj}|2 of the lowest energy eigenstates for quenches of the interaction
strength from zero to γ and N = 4 particles. (a) Populations for attractive post-quench interaction
strengths. All states except those with {nj} = {3, 1}, {4, 1} and {5, 1} contain bound states. (b)
Populations for repulsive post-quench interactions strengths for comparison with (a).

{nj} = {3, 1}— the lowest-energy gas-like state at strong interactions — begins to dominate

(black solid line). However, the two-body bound state with {nj} = {2, 0} (blue dot-dashed

line) still has a significant population in the strongly interacting regime.6 Consequently, we

expect bound states to influence the dynamical evolution of correlation functions following a

quench from the ideal gas for all attractive interaction strengths. Comparing the populations

of eigenstates for attractive post-quench interactions to those for repulsive interactions,

Fig. 5.3(b), we can see that there is significantly less structure due to the absence of bound

states.

Further understanding of quenches to attractive interactions is provided by Fig. 5.4,

where we make a more detailed comparison of the eigenstate populations |C{λj}|2 for quenches

from the ideal-gas ground state to attractive and repulsive interactions with γ = ±40 for

N = 4 particles. We see that there are additional families of populations for the attractive

6 We note that this state has an energy of E/n2 = −798.6, which is very close to the energy of the
two-particle McGuire cluster state, E/n2 = −γ2/2 = −800 [213].
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Figure 5.4: Comparison of populations of eigenstates in the post-quench basis for quenches
from the ideal gas ground state to γ = −40 (blue crosses) and γ = +40 (red circles) for N = 4
particles. To display negative energies on a logarithmic scale, we mirror the energy axis around
E{λj}/n

2 = 10, plotting the populations of eigenstates with negative energy on the left and those
with positive energy on the right. Four exemplary bound states with negative energy are labelled
with their (ideal gas) quantum numbers, and are described further in the main text.

gas (blue crosses that extend to negative energies) that are not present for the repulsive gas

(red circles). These are due to the four different types of bound states as we describe below.

The first two types are the ground state {nj} = {0, 0} at E/n2 ≈ −8000, |C0|2 ≈ 10−5

which is a four-body bound state, and the the first parity-invariant excited state {nj} =

{1, 0} at E/n2 ≈ −3200, |C1|2 ≈ 3.7 × 10−3 which is a three-body bound state. We note

that the parity invariance of eigenstates for quenches from the initial ideal gas restricts the

appearance of bound states with more than two bound particles to only these states.

The third type is the eigenstate with {nj} = {2, 0}, which has two bound particles and

two free particles, and is the first in a family of similar states whose populations decrease

gradually for higher excitations {2 + l, 0} (l positive integer).

The fourth type is represented by the eigenstate with {nj} = {1, 1} contains two two-

particle bound states, and again is the first in a whole family with decreasing populations

for higher excitations {1 + l, 1 + l} and {1 + l, l} (l positive integer), which contribute

alternatingly. For larger l, the two two-body bound states have higher “center-of-mass”-

momenta with opposite sign (recall that only eigenstates with total momentum P = 0

contribute), and at some point the corresponding energy dominates over the binding energy

of the bound states.
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5.5 Dynamics following an interaction quench

We can see from Fig. 5.4 that the distribution of populations over eigenstates with purely

real rapidities are very similar for quenches to γ = ±40, aside from a shift in energy and a

small decrease in populations for the attractive gas to accommodate the additional bound

states that arise. For comparison, the number of eigenstates with populations |C{λj}|2 ≥
10−10 is 7815 (7462) for the attractive (repulsive) gas. The shift in energy can be explained

by noting that for γ = ±40, the system is in the strongly interacting regime and the Bethe

rapidities of scattering states (i.e. states with no bound particles) can be obtained by a

strong-coupling expansion around the Tonks–Girardeau limit of infinitely strong interactions

(see e.g. Ref. [255]). This yields λj ≈ (1− 2
γ
)kj, where kj are the Tonks–Girardeau values.

Finally, we note that the scattering eigenstates that are physically identical as γ → ±∞
do not have the same ideal-gas quantum numbers, due to the appearance of the bound

states on the attractive side [195]. For example, for N = 4 particles, the ground state for

repulsive interactions, {nj} = {0, 0}, maps to the super-Tonks state with {nj} = {3, 1} on

the attractive side.

5.5.2 Dynamics of local correlations

We now consider the dynamics following the quench. In Fig. 5.5(a) we plot the local

second-order coherence g(2)(x = 0, t) for N = 4 particles following a quench from γ = 0

to four representative interaction strengths. Initially, g(2)(0, t = 0) = 1 − 1/N = 0.75

(see e.g. Ref. [166]). For a quench to γ = −0.5 (pink dot-dashed line), g(2)(0, t) shows

nearly monochromatic oscillatory behavior. This is similar to the behavior of quenches

to small repulsive interactions analyzed in Ref. [166]: Because the post-quench energy

E ≡ 〈ψ(0+)|Ĥ|ψ(0+)〉 = (N − 1)n2γ [166, 195] is small compared to the energy spac-

ing for the small system size, the dynamics is dominated by the ground state and first

(parity-invariant) excited state. The value of g(2)(0) in the former is close to the ideal-gas

value for γ = −0.5, cf. Sec. 5.4. For a quench to γ = −2 (blue dashed line), g(2)(0, t) rises

from its initial value before settling in to fluctuate about a much larger average value. The

main shape is dominated by two frequencies, originating from the energy difference of the

strongly occupied three-body bound state with the ground state, and the energy difference

of the former state with the two-body bound state with {nj} = {1, 1}, cf. Fig. 5.3.
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Figure 5.5: Time evolution of local correlation functions following a quench of the interaction
strength from zero to γ = −0.5, −2, −10 and −40 for N = 4 particles. (a) Local second-order
coherence g(2)(x = 0, t). (b) Local third-order coherence g(3)(x = 0, t).

For quenches to γ = −10 (green dotted line), g(2)(0, t) again rises from its initial value

before settling to fluctuate somewhat irregularly about a greatly increased average value.

For γ = −40 (solid red line), the system is dominated by the super-Tonks and first two-

body bound state, cf. Fig. 5.3, and the dominant frequency in the oscillations at early times

matches the energy difference of these two eigenstates. At later times, the shape of g(2)(0, t)

is more irregular, but the large oscillations due to the two dominant eigenstates persist.

In Fig. 5.5(b) we plot the local third-order coherence g(3)(x = 0, t) for N = 4 particles

following a quench from γ = 0 to the same four representative interaction strengths as

before. Initially, g(3)(0, t = 0) = n3N(N−1)(N−2)N−3 = 0.375 [262]. For low post-quench

interaction strengths, γ = −0.5 (pink dot-dashed line) and γ = −2 (blue dashed line), the

evolution is similar to that of g(2)(x = 0, t) for the same interaction strengths. For larger

attractive values of the post-quench interaction strength, on the other hand, the shape of

g(3)(0, t) is more regular compared to g(2)(x = 0, t). For γ = −10 (green dotted line) and
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Figure 5.6: Populations |C{λj}|2 of the super-Tonks state ({nj} = {3, 1}) and the dominant
two-body bound state ({nj} = {2, 0}, see text) for quenches from the interacting ground state at
γ0 > 0 to γ = −40 for N = 4 particles. The black arrows indicate the populations for the quench
from the ideal gas ground state.

γ = −40 (solid red line), g(3)(0, t) is dominated by a single frequency, given by the energy

difference between the two-body bound state with {nj} = {2, 0} and the three-body bound

state. The initial rise of both g(2)(0, t) and g(3)(0, t) occurs on increasing shorter time-scales

for larger attractive post-quench interaction strengths. This time scale is proportional to

γ2, and is due to bound states. The large increase of both g(2)(0, t) and g(3)(0, t) is in stark

contrast to the decay of the same quantities following quenches to repulsive interactions [166]

due to the “fermionization” of the system.

The metastability of the super-Tonks state in the experiment of Ref. [179] is due to

the “fermonized” nature of this state. Additionally, the overlap of the repulsive ground

state with the super-Tonks state is very large for large interaction strengths. Therefore,

the experimental preparation via a quick interaction strength ramp from large repulsive

interactions to large attractive values puts the system predominantly in the super-Tonks

gas and bound states are hardly excited at all [179, 195, 218, 387]. This is in contrast to

our results for quenches from the ideal-gas initial state, where bound states lead to largely

increased values of both g(2)(0) and g(3)(0), which in turn would lead to strong particle losses

in experiments [179, 319, 394].

To investigate how the populations of the two most dominant eigenstates (cf. Fig. 5.3)

are influenced by the initial state, we find the (correlated) ground state |ψ0〉 of the system

at γ0 > 0 and then compute the populations of the eigenstates for a quench to γ = −40. In

Fig. 5.6, we plot the populations |〈{2, 0}|ψ0〉|2 and |〈{3, 1}|ψ0〉|2 of the aforementioned two-
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5. Correlations of the attractive one-dimensional Bose gas

body bound state and the super-Tonks state, respectively, for a wide range of initial values

γ0 and N = 4 particles. Starting in the strongly interacting regime γ = 103, the overlap

between the initial (Tonks–Girardeau) state and the super-Tonks state is very close to one.

As γ0 is decreased, the population of the super-Tonks gas decreases, and the population

of the bound state increases correspondingly. At γ0 ≈ 1, the values are already near their

corresponding ideal-gas initial-state values (indicated by black arrows on the left-hand side).

Consequently, we expect the values of g(2)(0, t) and g(3)(0, t) to be much smaller for quenches

from initial values of γ0 & 10 compared to the non-interacting initial state.

5.5.3 Dynamics of the momentum distribution

We now turn our attention to the dynamics of nonlocal correlations. In Fig. 5.7 we plot

the time evolution of the momentum mode occupations ñ(kj, t) [cf. Eq. (5.8)] for the first

six non-negative momentum modes kj (j = 0, 1, . . . , 5) following a quench from the ideal

gas ground state and for N = 4 particles. Initially, all particles occupy the zero-momentum

single-particle orbital ñ(kj, t = 0) = Nδj0 appropriate to the ideal-gas ground state. At

times t > 0, the quenched interaction leads to a redistribution of this population over

single-particle modes with nonzero momenta. At very early times, all nonzero modes rise

with the same rate, independent of k. This is due to the local nature of the interaction

potential, which corresponds to a momentum-independent interaction [295]. This applies

to all post-quench interaction strengths γ, but the time scale at which deviations from this

behavior first appear is dependent on γ.

For quenches to γ = −2, Fig. 5.7(a), the nonzero modes start to level off and fluctuate

around a constant average value. This happens earlier for modes corresponding to larger

momenta, indicating that non-local correlations settle earlier on shorter length scales [39].

The main shape of ñ(k0, t) is dictated by two frequency components, corresponding to the

energy difference of the same states as for local correlation functions.

In Fig. 5.7(b), we plot the same quantity, i.e. ñ(kj, t) for the first six modes and N = 4

particles, but for quenches of the interaction strength from zero to γ = −10. The initial

rise of all non-zero modes happens on shorter time-scales than for γ = −2. For later

times, ñ(k = 0, t) oscillates around an average value with a frequency given by the energy
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Figure 5.7: Time evolution of the momentum occupations ñ(kj , t) of the first six (non-negative)
momentum modes kj (j = 0, 1, . . . , 5) for N = 4 particles and for a quench of the interaction
strength from zero to (a) γ = −2, (b) γ = −10 and (c) γ = −40. Note the different time-scale of
(a) compared to (b), (c).
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of the same magnitude. (a) Post-quench interaction strengths of γ = −10 (red solid line) and
γ = +10 (blue dashed line). (b) Post-quench interaction strengths of γ = −40 (red solid line) and
γ = +40 (blue dashed line).

difference of the super-Tonks state with {nj} = {3, 1} and the two-body bound state with

{nj} = {2, 0}. For a quench to γ = −40, Fig. 5.7(c), all modes exhibit fast oscillations at a

single frequency given by the energy difference of the super-Tonks and the same two-body

bound state as previously, imposed on top of an overall irregular shape.

We note that the dynamics of the envelope of ñ(kj, t) exhibits similar behavior as for the

quenches to strong repulsive interactions described in Ref. [166]. This can be more clearly

seen in Fig. 5.8, where we compare ñ(k = 0, t) for quenches from the ideal gas to repulsive

and attractive interaction strengths of the same magnitude. In Fig. 5.8(a), we plot the

time-evolution of the zero-momentum mode occupation ñ(0, t) for a quench from γ = 0 to

γ = −10 (solid red line) and γ = 10 (blue dashed line). This also applies for quenches to

γ = ±40, Fig. 5.8(b), but the oscillations for quenches to γ = −40 (solid red line) are faster

than for quenches to γ = −10. The reason for this behavior is that the properties of the

many-body wave functions following a quench to large positive or negative γ are very similar,
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aside from the additional presence of two-body bound states for attractive interactions, as

demonstrated in Fig. 5.4. The oscillations seen in the momentum-mode occupations are

due to the interference between the dominant super-Tonks state with {nj} = {3, 1} and the

two-body bound state with {nj} = {2, 0}.

Additionally we observe a partial revival in ñ(0, t) for quenches to γ = ±40. This revival

is due to the system at γ = 40 being close to the Tonks–Girardeau limit of infinitely strong

interactions, where the spectrum of the repulsive Lieb–Liniger model is identical to that

of free fermions [214]. This also applies to the scattering states of the attractive system.

For γ = ∞, this would lead to recurrences at integer multiples of trev = 3.5k−2
F [166] due

to the commensurability of eigenstate energies [344]. The slight shift between attractive

and repulsive behavior is due to γ−1 corrections to the Bethe rapidities, cf. Sec. 5.5.1.

Consequently, the revival time gets shifted to later times for repulsive interactions [166],

and to shorter times for attractive interactions, and this is indeed what we observe in

Fig. 5.7(b), where trev ≈ 3.2k−2
F for the attractive gas compared to trev ≈ 3.9k−2

F for the

repulsive gas.

5.5.4 Dynamics of non-local correlations

We now consider the evolution of the full non-local second-order coherence g(2)(x, t). In

Fig. 5.9 we plot the behavior of this quantity for an interaction quench from zero to γ = −40

for N = 4 particles.

Figure 5.9(a) shows g(2)(x) for four representative times. Initially, g(2)(x) = 1 − 1/N

(horizontal line). At t = 0.01k−2
F (red dashed line), the local value is already very much

enhanced, g(2)(0, t = 0.01k−2
F ) ≈ 3.5, cf. Fig. 5.5(a). [Due to the large difference of g(2)(x)

for x . 0.02 × (2πk−1
F ), we do not show the short-range behavior in order to keep the fine

structure at larger distances visible.] At separations x ≈ 0.1× (2πk−1
F ), a maximum builds

up due to particle-number and momentum conservation, while at larger distances g(2)(x)

exhibits a decaying oscillatory structure. As time progresses, this maximum propagates

further away from the origin and broadens, e.g. t = 0.1k−2
F (green dotted line) and t =

0.25k−2
F (blue dot-dashed line), and the overall distribution gets more distorted.

The initial build-up of correlations and their propagation through the system can be more
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5. Correlations of the attractive one-dimensional Bose gas

Figure 5.9: Time-evolution of the nonlocal second-order coherence function g(2)(x, t) following a
quench from the ideal gas ground state to γ = −40 for N = 4 particles. (a) Correlation function
g(2)(x) at four representative times. (b) Evolution of g(2)(x, t) for short times t ≤ 0.25 k−2

F and (c)
longer times t ≤ 4 k−2

F . Note that g(2)(x, t) for x . 0.02 × (2πk−1
F ) is not resolved on the chosen

color scale in order to preserve the visibility of the long-range features. The local value oscillates
between g(2)(0, t) ≈ 2 and 4, cf. Sec. 5.5.2.
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5.6 Time-averaged correlations

clearly seen in Fig. 5.9(b), where we plot the time-evolution of g(2)(x, t). The propagation

of the first maximum is given by x(t) ∝ t0.5, which was also observed for quenches from

the same initial state to strongly repulsive interactions [73, 166]. [Note that g(2)(x = 0, t) is

again not resolved on the density scale in order that the longer range behavior is visible.]

Fig. 5.9(c) shows g(2)(x, t) for longer times up to t = 4k−2
F . The overall structure is more

complicated, with several soliton-like correlation dips propagating through the system [166]

and a revival of g(2)(x, t = 0) at t ≈ 3.2k−2
F . Besides the largely increased value at small

distances, the shape of g(2)(x, t) is strikingly similar to our results in Ref. [166] for quenches

from the same non-interacting ground state to repulsive interaction strengths.

In summary, for quenches from the ideal gas ground state to attractive values of γ,

bound states significantly influence the dynamics of correlation functions for all post-quench

interaction strengths. For large attractive values of γ, these bound states are highly localized

and therefore only influence correlation functions sensitive to local features.

5.6 Time-averaged correlations

A closed quantum mechanical system prepared in a pure state will remain in a pure state

for all time. However, for a non-degenerate post-quench energy spectrum, as is the case here

(cf. Refs. [165, 166]), the time-averaged expectation value of any operator Ô is characterized

by the matrix elements of dephased eigenstates

〈Ô〉DE = lim
τ→∞

1

τ

∫ τ

0

dt 〈ψ(t)|Ô|ψ(t)〉 =
∑

{λj}

|C{λj}|2〈{λj}|Ô|{λj}〉, (5.13)

which can be viewed as the expectation value of Ô in the diagonal-ensemble density ma-

trix [1]

ρ̂DE =
∑

{λj}

|C{λj}|2|{λj}〉〈{λj}| . (5.14)

If correlation functions relax at all, it has to be to the corresponding diagonal ensemble

value [19]. Although we expect rather large fluctuations around these stationary values for

system sizes as small as those considered here, we expect these fluctuations to decrease with
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Figure 5.10: Diagonal ensemble value of local correlation functions following quenches of the
interaction strength from zero to γ for different particle numbers. (a) Local second-order coherence

normalized by the corresponding ideal gas values, g
(2)
DE(0)/g

(2)
γ=0(0), for quenches to γ for particle

numbers N = 2, 3, 4. The solid grey line is the quench-action strong-coupling thermodynamic-limit

prediction for g
(2)
DE(0) [9, 10]. (b) Local third-order coherence normalized by the corresponding ideal

gas values, g
(3)
DE(0)/g

(3)
γ=0(0), for quenches to γ and particle numbers N = 3, 4.

increasing system size. However, establishing this behavior is beyond the scope of the current

work and we will simply consider the diagonal ensemble as the appropriate description of

stationary observables. In the following we consider the time-averaged properties of the

quenched system.

5.6.1 Local correlations

In Fig. 5.10(a), we plot the diagonal-ensemble value of the local second coherence g
(2)
DE(0),

normalized to its non-interacting initial value, following an interaction quench from zero to γ

for particle numbers N = 2, 3, and 4. For very small values γ ≈ 0, g
(2)
DE(0) is very close to its

ideal-gas initial value. Away from γ = 0, g
(2)
DE(0) quickly increases for all particle numbers.

For values between−γ ≈ 1 and 8, the local second-order coherence g
(2)
DE(0) displays a “hump”
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5.6 Time-averaged correlations

that occurs at smaller attractive values of γ for larger particle numberN . ForN = 4 particles

(solid blue line), the location of the hump coincides with the point at which eigenstates other

than the ground state start to contribute significantly, cf. Fig. 5.3. Specifically, the value

at −γ = 1, where g
(2)
DE(0) displays a local maximum, agrees with the crossing of the three-

particle bound state with {nj} = {1, 0} and the ground state according to Fig. 5.3. The

local minimum of g
(2)
DE(0) at −γ = 1.5 coincides with the maximum population of this three-

particle bound state, and as soon as the population of this state starts to decrease, g
(2)
DE(0)

begins to increase monotonically with increasing |γ|.

For large attractive values of γ, the local second-order coherence tends to a constant value

g
(2)
DE(0)/g

(2)
γ=0(0) ≈ 4, which is much larger than the ideal gas and super-Tonks values [230]

(the latter being larger than the Tonks values, but still strongly suppressed). The scaling of

g
(2)
DE(0) with particle number seems to be consistent with the thermodynamic-limit strong-

coupling value obtained to third order in 1/γ in Ref. [9, 10], indicated by the solid grey

line.

Using the quench-action approach [202] in the thermodynamic limit, Ref. [9, 10] found

that g
(2)
DE(0) = 2 for γ → 0−. Our methodology does not recover this result for small

attractive values of γ, as our small system sizes lead to a finite-size gap for excitations and

therefore the energy added by the quench is small in this case. Additionally, eigenstates

with more than four bound particles are absent in our calculations and for low post-quench

values of γ they contribute significantly [9, 10], see also Fig. 5.3. For larger attractive values

of γ, however, bound states with more than two particles are strongly suppressed and we

expect our results to be less influenced by finite-size effects [165].

In Fig. 5.10(b), we plot the diagonal ensemble value of the local third coherence g
(3)
DE(0),

normalized to its non-interacting initial value, following an interaction quench from zero

to γ for particle numbers N = 3 and 4. The qualitative behavior is similar to that of

g
(2)
DE(0), with a hump at low −γ moving to lower attractive interactions for higher particle

number. For strong interactions, g
(3)
DE(0) also tends to a constant value that is much larger

than the initial value. If this result persists in the thermodynamic limit is an important

open question, since a large value of g
(3)
DE(0) entails strong atom losses in experiments with

ultracold gases [319, 394].
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Figure 5.11: Diagonal-ensemble correlation functions for quenches from γ = 0 to γ =
−0.5, −2, −10, and −40 for N = 4 particles. (a) Momentum distribution ñDE(k). Black dashed

lines indicate scaling of k−1.7 (upper line) and k−4. (b) Second-order coherence g
(2)
DE(x). The grey

horizontal line marks the initial value g
(2)
DE(x, t = 0).

5.6.2 Non-local correlations

In Fig. 5.11(a) we plot the momentum distribution ñDE(k) in the diagonal ensemble for

N = 4 particles and for several post-quench interaction strengths γ. At high momenta and

for all interaction strengths γ, ñDE(k) exhibits a scaling of ñDE(k) ∝ k−4. This behavior

is due to the universal character of short-range two-body interactions [5, 314, 315]. For

γ = −0.5 (pink squares), the functional form of ñDE(k) is nearly perfectly given by this

k−4 scaling, and only the three lowest resolvable modes in our finite periodic system deviate

slightly.

For a quench to γ = −2 (blue filled circles), the low-momentum part of ñDE(k) starts

to deviate more strongly from the k−4 scaling, and the distribution seems to get wider

at low momenta. This low-k “hump” broadens with increasing post-quench interaction

strength. This is qualitatively similar to the results for quenches to repulsive values of
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γ [166]. However, for γ = −40 (red circles), a scaling of ñDE(k) ∝ k−1.7 emerges for momenta

between k ≈ 1×((2π)−1kF ) and 5×((2π)−1kF ). This scaling is different from the behavior of

ñDE(k) for quenches to the Tonks–Girardeau limit of an infinitely strong repulsive interaction

strength, where analytical calculations yield ñDE(k) ∝ k−2 [73]. Similarly as here, for finite

but strong repulsive interactions, the scaling of ñDE(k) ∝ k−2 becomes more and more

pronounced over larger ranges of intermediate k [166].

In Fig. 5.11(b), we plot the second-order coherence g
(2)
DE(x) in the diagonal ensemble

for several post-quench interaction strengths γ. For comparison, we also plot the constant

form g(2)(x, t = 0) = 1 − 1/N appropriate to the ideal gas (horizontal line). The first

feature we notice is that for all values of the post-quench interaction strength, g
(2)
DE(x) is

increased at short distances compared to its initial value. For the quench to γ = −0.5 (pink

dot-dashed line), g
(2)
DE(x) decreases monotonically for larger distances. For γ = −2 (blue

dashed line), g
(2)
DE(x) exhibits a local minimum at finite distance x ≈ 0.3 × (2πk−1

F ), before

increasing again at larger distances. This behavior can also be observed for γ = −10 (green

dotted line), where the minimum in g
(2)
DE(x) moves to smaller distances x ≈ 0.1 × (2πk−1

F )

and becomes more pronounced. This trend continues for quenches to larger attractive

values of the interactions strength. For γ = −40 (solid red line), the minimum is located

at x ≈ 0.03 × (2πk−1
F ) and its magnitude is again decreased compared to the quench to

γ = −10. The large increased value of g
(2)
DE(0) and the minimum at larger distances is a

signature of bound states, which become more strongly bound at larger attractive values

of the post-quench interaction strength. The behavior past this minimum is consequently

dominated by scattering states for strong attractive interactions, and indeed the shape of

g
(2)
DE(x) for distances x & 0.03 × (2πk−1

F ) is nearly identical for quenches to γ = −40 and

γ = +40 (black dot-dashed line). The increase of g
(2)
DE(x) for x & 0.6×(2πk−1

F ) is a finite-size

effect [166].

5.7 Conclusions

We have investigated the static and nonequilibrium correlation functions of the one-dimensional

Bose gas with attractive interactions within the Lieb–Liniger model. Our computational

method is based on the coordinate Bethe ansatz and was found to be more demanding
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for attractive interactions compared to repulsive interactions for large values of the inter-

action strength due to ever-smaller string deviations of the rapidities. Nevertheless, we

were able to calculate first-, second-, and third-order correlation functions of the ground

state for up to seven particles and a wide range of attractive interactions. We observed the

emergence of bright soliton-like behavior for increasing attractive interaction strengths in

relative-coordinate correlation functions, with the shape of the latter agreeing closely with

the corresponding mean-field bright soliton solutions.

We also calculated the dynamics of the correlation functions following a quench of the

interaction strength, starting from the non-interacting gas ground state to several repre-

sentative values γ for up to four particles. For small post-quench interaction strengths of

γ ≈ −0.5, the energy deposited in the system by the quench was found to be on the or-

der of the energy gap of the system, and consequently excitations are strongly suppressed.

This resulted in correlation functions exhibiting quasi two-level dynamics. For quenches to

more attractive values of the interaction strength, local correlation functions were found

to increase on short time scales, while for longer times the correlations functions settled to

fluctuate around a constant value, substantially increased compared to the initial value. For

quenches to large attractive interaction strengths, single-frequency oscillations on top of an

overall irregular behavior were observed, with the oscillations persisting at late times. The

oscillatory behavior also arose in the momentum distribution for large post-quench interac-

tions strengths. The reason for these was linked to the contribution of bound states in the

many-body wave function.

For quantities not influenced by short-distance features, such as the second-order coher-

ence away from the origin, the relaxation dynamics for quenches to strong interactions is

remarkably similar to that of a system following a quench to repulsive interactions of the

same magnitude, where the system relaxes due to dephasing of the (many-body) energy

eigenstates. The same behavior was observed for the relaxed correlation functions in the

infinite time limit. The relaxed values of local correlation functions, on the other hand,

were very much increased compared to their repulsively interacting counterparts. The scal-

ing of both the relaxed local second- and third-order coherence with post-quench interaction

strength were consistent with a constant value much larger than the initial value in the limit

of infinitely strong attractive interactions. For the local second-order coherence, the scaling
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with particle number was consistent with a recently obtained value at strong interactions.
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5.8 Supplement

5.8.1 Mean-field correlation functions

In this appendix we describe how we obtained the mean-field results for comparison with

the Lieb-Liniger results plotted in Figs. 5.1, 5.2. The solution of the 1D Gross–Pitaevskii

equation is (see e.g. Refs. [182, 389])

ΨGP(θ, θ0) =





√
1

2π
, |γ(r)| ≤ |γ(r)

cr |√
K(m)

2πE(m)
dn
(
K(m)
π

(θ −θ0)
∣∣∣m
)
, else

(5.15)

where θ ∈ [0, 2π) is the angular variable on the ring (the radius is incorporated in the

interaction strength), θ0 is the center of the soliton and we assumed periodic boundary

conditions ΨGP(0) = ΨGP(2π). The functions K(m) and E(m) are the complete elliptic

integrals of the first and second kind, respectively, and dn(x|m) is one of the Jacobian

elliptic functions. The parameter m ∈ [0, 1] is fixed by the solution to

K(m)E(m) =
π2γ(r)

2
, (5.16)

where γ(r) = cNL
2π2 in our units and the phase transition occurs at γ

(r)
cr = −0.5.

The approximation leading to the Gross–Pitaevski equation is that the many-body wave

function is a product over single-particle wave functions Ψ(θ1, . . . , θN) =
∏N

j=1 ΨGP(θj, θ0,j),

which depend on the center of mass variable θ0,j (5.15). Following Ref. [393], we restore the

translational symmetry of the wave function via a symmetrized Hartree-Fock ansatz

Ψ(θ1, . . . , θN) =
1√
2π

∫ 2π

0

dΘ
N∏

j=1

ΨGP(θj,Θ). (5.17)

The normalized correlation functions are then given by

g(1)(θ, θ′) =
G(1)(θ, θ′)√

G(1)(θ, θ)G(1)(θ′, θ′)
, g(2)(θ, θ′) =

G(2)(θ, θ′)

G(1)(θ, θ)G(1)(θ′, θ′)
, (5.18)
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where

G(1)(θ, θ′) =
N

2π

∫ 2π

0

dΘ Ψ∗GP(θ,Θ)ΨGP(θ′,Θ), (5.19)

and similarly

G(2)(θ, θ′) =
N(N − 1)

2π

∫ 2π

0

dΘ Ψ∗GP(θ,Θ)ΨGP(θ,Θ)Ψ∗GP(θ′,Θ)ΨGP(θ′,Θ). (5.20)

5.8.2 Details of numerical algorithm involving bound states

Eigenstates with complex rapidities arrange themselves in so-called string patterns in the

complex plane for large values of |c|L, with deviations from these strings being exponentially

small in the system size [223, 226]. This results in numerical problems for the methodology

of Ref. [165], as illustrated for the N = 2 particle ground state in the following. The Bethe

rapidities for intermediate and large |c|L in this case read

λj = ±i c
2

+ iδj , (5.21)

where the minus (plus) sign applies to λ1 (λ2) by convention (recall that c < 0). The string

deviations δj ∝ econst×L. The (unnormalized) two-particle wave-function reads

ζ(x1, x2) = (λ2 − λ1 − ic)ei(λ1x1+λ2x2) − (λ1 − λ2 − ic)ei(λ2x1+λ1x2)

≡ −i
(

(2λ+ c)eλr + (2λ− c)e−λr
)
, (5.22)

where in the last step we defined the relative coordinate r = x2−x1 and λ = λ1/i = −λ2/i.

In light of Eq. (5.21), the first term in the last line is a product of a very small number

(2λ + c) and a very large one (eλr) away from r = 0. The former is a difference of two

numbers that are nearly equal, leading to catastrophic cancellations in double-precision

floating-point arithmetic. But since 2λ + c ≡ 2δ1, and we can express δ1 with the help of

Eq. (5.6), we can replace this critical factor in Eq. (5.22) with

δ1 ≡ 2λ+ c = e−λL(2λ− c). (5.23)
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The last term is now amenable to numerical evaluation. This procedure can be extended to

N > 2, as described below for parity invariant states for N = 3 and 4 particles.

N = 3 particles

There are two parity-invariant eigenstates with complex rapidities for N = 3, and the

following factors have to be replaced:

• The ground state is a three-body bound state with imaginary rapidities and λ2 = 0.

For small string deviations, the factor λ2 − λ1 − ic ≡ −λ1 − ic needs to be replaced.

The Bethe equation for λ1 is

eiλ1L =
λ1 + ic

λ1 − ic
2λ1 + ic

2λ1 − ic
, (5.24)

which can be written as

− (λ1 + ic) = −eiλ1L(λ1 − ic)
2λ1 − ic
2λ1 + ic

. (5.25)

• First excited parity invariant state. Here, the rapidities λ1, λ3 are real up to the

“phase crossover” point [226], after which they are imaginary. The critical factor to

be replaced is −2λ1 − ic. Using Eq. (5.25) leads to

− (2λ1 + ic) = −eiλ1L(2λ1 − ic)
λ1 − ic
λ1 + ic

. (5.26)

N = 4 particles

For N = 4 particles, an infinite number of parity-invariant bound states contribute to the

post-quench dynamics, and they can be grouped into the following categories, cf. Sec. 5.5.1.

• The ground state with {nj} = {0, 0}. Define λj := =(λj), since the rapidities are

purely imaginary. Plugging this into Eq. (5.6) leads to the following two equations.

e−λ1L =
λ1 − λ2 + c

λ1 − λ2 − c
λ1 + λ2 + c

λ1 + λ2 − c
2λ1 + c

2λ1 − c
, (5.27)
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e−λ2L =
λ2 − λ1 + c

λ2 − λ1 − c
λ2 + λ1 + c

λ2 + λ1 − c
2λ2 + c

2λ2 − c
. (5.28)

There are two critical factors: |λ1| − |λ2| − |c| and 2|λ2| − |c|. Define λ1, λ2 > 0.

Rewriting Eq. (5.27) leads to

λ1 − λ2 + c = e−|λ1|L(|λ1| − |λ2|+ |c|)
|λ1|+ |λ2|+ |c|
|λ1|+ |λ2| − |c|

2|λ1|+ |c|
2|λ1| − |c|

=: α . (5.29)

Equation (5.28) can be expressed as

2λ2 + c = e−|λ2|L(−α)
|λ2|+ |λ1|+ |c|
|λ2|+ |λ1| − |c|

2|λ2|+ |c|
|λ2| − |λ1| − |c|

, (5.30)

where α is the first critical factor defined in Eq. (5.29).

• The three-body bound state with {nj} = {1, 0}. This is the first parity invariant

excited state and has real rapidities λ1 and λ4 that tend to zero for large attractive

values of cL. Following Ref. [325], Appendix B, we can reparameterize the rapidities

in this case via their deviations δ = e−|c|L/2 from the string solution

λ1 = δα ,

λ2 = −ic+ iδ2β . (5.31)

Plugging this into the Bethe equations (5.6), Ref. [325] obtained

α =
√

12 |c| ,

β = 6Lc2 . (5.32)

We found it necessary to utilize high-precision arithmetic for numerical calculations

involving this eigenstate. To obtain correspondingly precise Bethe rapidities for large

attractive values of γ, we use Eqs. (5.32) as the starting point for our root-finding

algorithm.

• Eigenstates with {nj} = {n, 0} for all integers n ≥ 2. λ1 is real, λ2 imaginary, and the
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critical factor is 2|λ2| − |c|. Rewrite the Bethe equation for λ2 and define λ = −iλ2:

e−λL =
λ1 − i(λ+ c)

λ1 − i(λ− c)
λ1 + i(λ+ c)

λ1 + i(λ− c)
2λ+ c

2λ− c . (5.33)

Define λ, λ1 > 0, rewrite

2λ+ c = e−|λ|L(2|λ|+ |c|) |λ1| − i(|λ|+ |c|)
|λ1| − i(|λ| − |c|)

|λ1|+ i(|λ|+ |c|)
|λ1|+ i(|λ| − |c|) . (5.34)

• Eigenstates with {nj} = {n, n} for all integers n ≥ 1. The Bethe rapidities are

complex and satisfy λ1 = λ∗2. Rewrite the first Bethe equation using the following

definitions: <(λ1) ≡ <(λ2) =: δ and =(λ1) ≡ −=(λ2) =: λ.

eiδLeλL =
2λ+ c

2λ− c
2δ + ic

2δ − ic
2δ + i(2λ+ c)

2δ + i(2λ− c) , (5.35)

The critical factor is 2|λ| − |c|. Define δ, λ > 0, c < 0, so we need to replace 2λ+ c in

Eq. (5.35). Straightforward manpulation of Eq. (5.35) leads to

2δ(2λ+ c) + i(2λ+ c)2 = eiδLe−λL
(2λ− c)(2δ + i(2λ− c))(2δ + ic)

2δ − ic . (5.36)

For two complex numbers to be equal, both the real and imaginary part have to be

equal, so we can focus on the real part here, which leads to

(2λ+ c) =
2|λ|+ |c|

2|δ| e−|λ|L<
[
(2|δ|+ i(2|λ|+ |c|))2|δ|+ i|c|

2|δ| − i|c|e
i|δ|L
]
. (5.37)

• Eigenstates with {nj} = {n, n − 1} for all integers n ≥ 2. For |c| < |ccrit|, the Bethe

rapidities are real. Here, ccrit is a n-dependent “phase crossover” point [226]. Past

that point, they turn into complex numbers and are complex conjugates of each other,

λ1 = λ∗2, and this case is equivalent to the preceding one.

Extending this procedure to N > 4 particles is possible, but the number of factors that

have to be considered increases rapidly.
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Periodic driving of the interaction strength in

the Lieb–Liniger model

The interaction quench scenario utilized in the previous chapters is conceptually the simplest

protocol to take a system out of equilibrium. Due to the integrability of the Lieb–Liniger

model, we found that the system following a quench does not thermalize, but still relaxes to

a steady state. In this chapter, we ask the question if periodically changing the interaction

strength of the post-quench Hamiltonian changes this behavior, and if so in what way.

Specifically, we quench from the non-interacting ground state to some final repulsive value

of the interaction strength, and then periodically modulate the interaction strength around

that value. Due to the driving, the energy of the system is not conserved, and integrability

is broken. The time-averaged interaction strength over one period is equal to the constant

value of the quench scenario of Chapters 3, 4, allowing us to compare the dynamics of the

driven and undriven system.
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One question at hand is if we see a crossover from relaxation to a generalized Gibbs

ensemble to a true thermal state. If so, does this happen instantly, i.e. for arbitrarily

weak perturbations, or is there some kind of remembrance of (quasi-) conserved constants

of motions? In classical systems, the famous KAM theorem gives a mathematical answer

to these questions, as discussed in the introduction to this thesis. However, until now

no quantum analogue has been identified [91, 395]. Generic (ergodic) quantum systems

subject to periodic driving are believed to continuously absorb energy from the driving and

thermalize at infinite temperature [26, 150, 151, 163]. However, recent numerical studies

have found parameter regimes for certain models for which the heating is very slow [148,

156, 396, 397]. The change from one regime to the other happens at a finite threshold

of the driving frequency [148, 156, 396]. For integrable models mappable to a quadratic

Hamiltonian, Refs. [161, 162] found that the system synchronizes with the driving and that

the steady state can be described by a periodic generalized Gibbs ensemble. A periodicaly-

driven-system analogue of prethermalization [93] was observed in Refs. [153, 156, 160]. Most

of these studies are performed for locally bounded Hilbert spaces, but two recent studies for

continuous systems found threshold behavior [396], as well as absence of infinite heating for

all parameters [397]. For locally unbounded Hilbert spaces the infinite-temperature state is

trivial, and should be readily identifiable in our work.

We proceed by summarizing Floquet theory in Sec. 6.1, which is the standard tool to

study time-periodic systems. Combining this with the coordinate Bethe ansatz approach

developed in Chapter 3 enables us to calculate nonequilibrium and time-averaged correla-

tion functions by expressing the time evolution operator in Lieb–Liniger basis states and

diagonalizing it numerically, as detailed in Sec. 6.2. In Sec. 6.3 we present results on the

nonequilibrium dynamics and time-averaged second-order coherence, energy and fidelity for

two and three particles. We also analyze the Floquet energy spectrum. In Sec. 6.4, we

discuss the numerical difficulties that arise when approximating the infinite-dimensional

Floquet basis by a finite subset. Finally, we conclude in Sec. 6.5.
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6.1 Floquet theory for time-periodic systems

For quantum-mechanical systems described by a Hamiltoninan with generic time-dependence,

the powerful tools of time-independent quantum mechanics are not available due to the fact

that the Hamiltonian at two different times does not commute. However, for a time-periodic

Hamiltonian Ĥ(t) ≡ Ĥ(t+T ), Floquet theory states that a complete set of solutions to the

time-dependent Schrödinger equation

i
∂

∂t
|Ψ(t)〉 = Ĥ(t)|Ψ(t)〉 (6.1)

is given by the so-called Floquet states [100–103]

|Fj(t)〉 = e−iεjt|Φj(t)〉 , (6.2)

where the real numbers εj are the so-called Floquet quasi-energies and |Φj(t)〉 are the Floquet

modes which obey the system’s time periodicity

|Φj(t+ T )〉 = |Φj(t)〉 . (6.3)

This is in complete analogy with the space-periodic case, where the solution of the Schrödinger

equation is given by Bloch’s theorem [104]. The ambiguity of the quasimomentum of the

space-periodic case carries over to the quasienergy of the time-periodic case, and we will

always work in the first Brioullin zone such that εj ∈ [−π/T, π/T ]. In further analogy, one

can show that extending the Hilbert space to include time, and then simultaneously diago-

nalizing the Hamiltonian and the time translation operator, gives the Floquet states, which

therefore form a common basis of Ĥ and the time-translation operator. In doing so, the

time-dependent problem is turned into an effective time-independent one in the extended

Hilbert space, and the powerful methods of standard time-independent quantum mechanics

can be applied. However, computationally it is more convenient for us to obtain the Floquet

modes by diagonalizing the time-evolution operator Û(t+ T, t) over one period, defined by

Û(t+ T, t)|Ψ(t)〉 = |Ψ(t+ T )〉. This can be seen as follows. Acting with Û(t+ T, t) on the
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Floquet states yields

Û(t+ T, t)|Fj(t)〉 = |Fj(t+ T )〉 , (6.4)

which, using Eq. (6.2) and the time-periodicity of the Floquet modes, yields

Û(t+ T, t)|Φj(t)〉 = e−iεjT |Φj(t)〉 . (6.5)

This is an eigenvalue equation and can be utilized to find the Floquet modes at a given

time t. If we are only interested in stroboscobic times t = nT , where n is an integer, the

time-evolution operator is given by

Û(nT, 0) ≡ [Û(T, 0)]n . (6.6)

This means that given an appropriate basis, diagonalizing Û(T, 0) leads to the system at

stroboscopic times being described by the n-th power of a diagonal matrix, which is trivial

to compute. Eq. (6.6) holds because we can expand Û(t, 0) in the basis of Floquet states

|Fj(t)〉 and use their definition [Eq. (6.2)] to obtain

Û(t, 0) =
∑

j

e−iεjt|Φj(t)〉〈Φj(0)| , (6.7)

which for one period T becomes

Û(T, 0) =
∑

j

e−iεjT |Φj(0)〉〈Φj(0)| (6.8)

due to the periodicity of Floquet modes. For t = nT , using the resolution of identity (at

t = 0) n times proves Eq. (6.6). With the knowledge of εj and |Φj(0)〉, any state |Ψ(T )〉 at

time T can be expanded as

|Ψ(T )〉 =
∑

j

〈Fj(T )|Ψ(T )〉 |Fj(T )〉 =
∑

j

〈Φj(T )|Ψ(T )〉 |Φj(T )〉

=
∑

j

〈Φj(0)|Û(T, 0)|Ψ(0)〉 |Φj(0)〉 . (6.9)
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Using the spectral resolution for Û [Eq. (6.8)] yields

|Ψ(T )〉 =
∑

j

e−iεjT 〈Φj(0)|Ψ(0)〉 |Φj(0)〉 . (6.10)

Furthermore, utilizing Eq. (6.6) leads to

|Ψ(nT )〉 =
∑

j

e−iεjnT 〈Φj(0)|Ψ(0)〉 |Φj(0)〉 . (6.11)

For arbitrary times t, we can write t = δt+ nT with 0 < δt < T to obtain [103]

Û(t, 0) = Û(δt, 0)Û(nT, 0) ≡ Û(δt, 0)[Û(T, 0)]n . (6.12)

For a generic state, this leads to

|Ψ(nT + δt)〉 =
∑

j

e−iεjnT 〈Φj(0)|Ψ(0)〉 e−iεjδt|Φj(δt)〉 . (6.13)

Importantly, the coefficients of any initial state in the Floquet basis are time-independent,

the time-dependence being incorporated in the basis states. In numerical calculations, time

is restricted to discrete points. In order to find |Φj(δt)〉, one can either make use of the

eigenvalue equation (6.5) for every point δt, or use Û(δt, 0) to propagate |Φj(0)〉 up to the

desired time point.

6.2 Setup

The setup we will consider in the remainder of this chapter is depicted in Fig. 6.1. The

system is initially prepared in the noninteracting ground state with structureless spatial

representation 〈{xj}|Ψ(0)〉 = L−N/2. At time t = 0, the interaction strength is instanta-

neously changed from zero to γ1 and the system is governed by the Lieb–Liniger Hamilto-

nian Ĥ1 = −∑j ∂
2
xj

+ 2c1

∑
l>j δ(xl − xj) at interaction strength c1 = γ1n1D, with density

n1D = N/L.1 The system is left to evolve under the influence of Hamiltonian Ĥ1 up until

t1, at which point we change the Hamiltonian instantaneously to Ĥ2, where the interaction

1 As done throughout this thesis, we set ~ = 1 and the particle mass m = 1/2.
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Figure 6.1: Time-periodic Hamiltonian (solid black line for first driving period, after that black
dashed line) with period T and amplitude ∆ = γ2− γ1 after an initial interaction quench from the
non-interacting ground state at time t = 0. The time-averaged Hamiltonian of the driven system
is given by the time-independent post-quench Hamiltonian at interaction strength γ (horizontal
grey line).

strength is γ2 = γ1 + ∆. For times t1 < t < T the systems is governed by Hamiltonian Ĥ2.

This first period is marked by the solid black line in Fig. 6.1. If we now choose to repeat

this protocol in time (marked by the black dashed line for the second and third period), the

full time-dependent Hamiltonian (after the initial quench) reads

Ĥ =





Ĥ1 for nT ≤ t < (2n+ 1)t1

Ĥ2 for (2n+ 1)t1 ≤ t < (n+ 1)T ,
(6.14)

where n is a non-negative integer. The system is time-periodic with period T , Ĥ(t) =

Ĥ(t + T ), and we can therefore employ Floquet theory to solve for the time-evolution in

terms of Lieb–Liniger eigenstates. For comparison, we also plot the time-averaged interac-

tion strength (horizontal grey line), which corresponds to the interaction quench scenario

considered in Chapters 3, 4. As indicated in Fig. 6.1, we only consider the case t1 = T/2 in

this work. However, the theory we develop does not rely on that, opening up the possibility

of studying the effect of breaking time-reversal symmetry in the future. The time evolution

operator over a single period is given by Û(T, 0) = e−iH2(T−t1)e−iH1t1 and we proceed by

explicitly writing down Û(T, 0) in the basis of Lieb–Liniger eigenstates.
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6.2.1 Time-evolution over one period: finding Û(T, 0)

Independent of the initial state,2 our protocol can be described by two interaction quenches

between Lieb–Liniger Hamiltonians Ĥ1 and Ĥ2 within each period T , and consists of the

following steps:

(I) Evolution of basis states at interaction strength γ1 from time t0 ≡ 0 to t1.

(II) Interaction strength quench from γ1 to γ2 at time t1.

(III) Evolution of basis states at interaction strength γ2 from time t1 up to t2 = T .

(IV) Interaction strength quench from γ2 back to γ1 at time T .

Denote the Lieb–Liniger eigenstates at γ1 by lowercase Greek letters |{λj}〉 and their eigen-

values by Eλ, and the eigenstates corresponding to γ2 by uppercase Greek letters |{Λj}〉 and

their eigenvalues by EΛ. Taking as initial state one eigenstate |{λ(l)
j }〉 at γ1,3 and setting

l = 0 for concreteness, evolution with Ĥ1 leads to

|Ψ(t1)〉 ≡ e−iĤ1t1|{λ(0)
j }〉 = e−iE

(0)
λ t1|{λ(0)

j }〉 (6.15)

for step (I), where we denote the state of the system at time t by |Ψ(t)〉. At t = t1,

the system’s Hamiltonian changes to Ĥ2, which corresponds to an instantaneous quench

γ1 → γ2. Expressing |Ψ(t1)〉 in this basis leads to

|Ψ(t1)〉 = e−iE
(0)
λ t1

∑

n

〈{Λ(n)
j }|{λ(0)

j }〉|{Λ(n)
j }〉 ≡ e−iE

(0)
λ t1

∑

n

C
(n)
(II)|{Λ

(n)
j }〉 (6.16)

for step (II). The time evolution for step (III) is now simply given by

|Ψ(t2)〉 = e−iE
(0)
λ t1

∑

n

C
(n)
(II)e

−iE(n)
Λ (T−t1)|{Λ(n)

j }〉 (6.17)

2 We will deal with the representation of the initial state in the new basis later on, for now we just develop
the general theory.

3 The index j in the set stands for the individual Bethe rapidities, of which there are as many as there

are particles N , cf. Chapter 2. For consistency, we denote the l–th basis set as |{λ(l)j }〉.
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Step (IV) consists of quenching back to Hamiltonian Ĥ1:

|Ψ(T )〉 = e−iE
(0)
λ t1

∑

n,m

C
(n)
(II)e

−iE(n)
Λ (T−t1)〈{λ(m)

j }|{Λ(n)
j }〉 |{λ(m)

j }〉

≡ e−iE
(0)
λ t1

∑

n,m

C
(n)
(II)C

(m)
(I) e−iE

(n)
Λ (T−t1)|{λ(m)

j }〉. (6.18)

This represents the first column of Û(T, 0) in the basis of Lieb–Liniger eigenstates at inter-

action strength γ1, i.e.

〈{λ(0)
j }|Û(T, 0)|{λ(m)

j }〉 ≡ U (0,m)(T, 0). (6.19)

Doing this for every basis state |{λ(n)
j }〉 leads to the full U (n,m)(T, 0).

6.2.2 Computing the Floquet modes and energies — Exact diag-

onalization

Having explicitly written down Û(T, 0) in the basis of Lieb–Liniger eigenstates, the Floquet

modes can be obtained by solving the eigenvalue equation (6.5), which amounts to diago-

nalizing U (n,m) ≡ U (6.19). The term ‘diagonalizing a matrix’ refers to the procedure of

finding a transformation matrix P such that P−1UP = E, where E = diag(κ0, κ1, κ2, . . . ).

The diagonal elements of E are the eigenvalues of U , and the columns of P are the

corresponding eigenstates in the chosen basis.4 Furthermore, because matrix multiplica-

tion is associative, the n-th power of U is given by Un = (PEP−1)n = PEnP−1, where

En = diag(κn
0, κ

n
1, κ

n
2, . . . ). The eigenvalues κl of U are related to the Floquet quasi-energies

εl via κl = e−iεlT . Defining

εl = − 1

T
arg(κ−1

l ) , (6.20)

the quasi-energies fall inside the first Brioullin zone.

Since U is unitary, we first transform it into an associated Hermitian matrix A and then

diagonalize it.5 This is done via a (generalized) Cayley transform. The Cayley transform T

4 In our numerical implementation, we make use of the Eigen library, which diagonalizes complex matrices
by means of a Schur decomposition (implemented via QR-reduction).

5 Numerical implementations for hermitian matrices are faster and more exact.
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of a unitary operator U is defined as [398]

A = i(Id + U)(Id− U)−1 , (6.21)

where Id is the identity operator and A is Hermitian. This transform has the handy property

that the eigenstates of both U and A are the same, and the eigenvalues are related by a

simple relation: If κ is an eigenvalue of A with eigenvector |x〉, then

U(κ) =
κ− i
κ+ i

(6.22)

is an eigenvalue of U for the same eigenvector |x〉.

For the quench scenario in previous chapters, we approximated the infinite-dimensional

basis of Lieb–Liniger eigenstates by a finite subset of these exact eigenstates. Here, we have

to truncate the number of Lieb–Liniger eigenstates to represent U in a finite basis, which

entails a truncation of the formally infinite number of Floquet states. In other words, we

have to truncate an infinite number of Floquet states, each of which is in turn approximated

by a finite number of Lieb–Liniger eigenstates. Additionally, due to the Floquet energies

being defined in the first Brioullin zone, there is no natural ordering of Floquet states and

an infinite number of quasi-energies are folded into a finite interval. This leads to numerical

issues and we devote Sec. 6.4 to discuss these in more detail.

6.2.3 Calculation of correlation functions at stroboscopic times

In order to be able to apply our methodology of Chapter 3, we need to express the state of the

system at time t in terms of Lieb–Liniger eigenstates. We first do this for stroboscopic times

nT , where n is an integer, since the expressions simplify in this case, and then generalize

the procedure to arbitrary times. Recall Eq. (6.11):

|Ψ(nT )〉 =
∑

j

e−iεjnT 〈Φj(0)|Ψ(0)〉 |Φj(0)〉 .
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The expectation value of an arbitrary operator Ô in the state |Ψ(nT )〉 is then given by

〈Ô〉nT ≡ 〈Ψ(nT )|Ô|Ψ(nT )〉 =
∑

l,k

C∗kCl e
i(εk−εl)nT 〈Φk(0)|Ô|Φl(0)〉, (6.23)

where Cl = 〈Φl(0)|Ψ(0)〉 is the overlap of the initial state with the Floquet mode |Φl(0)〉.
The diagonalization of U can be viewed as a basis change. Denote U in the basis of Floquet

modes as U (F ), and U (LL) in the basis of Lieb–Liniger eigenstates. Then, U (F ) = P−1U (LL)P

and

|Φ(k)(0)〉 =
∑

l

Pkl|{λ(l)
j }〉 (6.24)

describes the Floquet modes in the Lieb–Liniger basis.6 This leads to

C∗k = 〈Φk(0)|Ψ(0)〉∗ = 〈Ψ(0)|Φk(0)〉 =
∑

l

Pkl〈Ψ(0)|{λ(l)
j }〉 (6.25)

and

〈Φk(0)|Ô|Φl(0)〉 =
∑

m,n

P−1
mkPln〈{λ

(m)
j }|Ô|{λ(n)

j }〉 =
∑

m,n

P ∗kmPln〈{λ(m)
j }|Ô|{λ(n)

j }〉 , (6.26)

where in the last step we used the fact that P is unitary, which follows from the unitarity

of U . The matrix elements and overlaps in Eq. (6.23) are time-independent, which allows

us to calculate these quantities once and then propagate the individual terms in time with

their corresponding quasi-energy phases before summing up.

6.2.4 Calculation of correlation functions at arbitrary times

To extend the calculation of correlation functions to arbitrary times t, we note that (6.13)

|Ψ(t)〉 ≡ |Ψ(nT + δt)〉 =
∑

j

e−iεjnT 〈Φj(0)|Ψ(0)〉 e−iεjδt|Φj(δt)〉 ,

6 The columns of the transformation matrix are the eigenvectors of U in our original basis, as expected
by construction.
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with 0 < δt < T . The expectation value of an arbitrary operator Ô in the state |Ψ(t)〉 is

then given by

〈Ô〉t ≡ 〈Ψ(t)|Ô|Ψ(t)〉 =
∑

l

∑

k

C∗kCl e
i(εk−εl)nT ei(εk−εl)δt 〈Φk(δt)|Ô|Φl(δt)〉, (6.27)

where Cl = 〈Φl(0)|Ψ(0)〉 is again the time-independent overlap of the initial state with the

Floquet mode |Φl(0)〉. To find |Φk(δt)〉, one could solve the eigenvalue equation (6.5) for

fixed times δt similar to the procedure for finding |Φk(0)〉. But since our protocol implies a

constant Hamiltonian in time for each of the two half-periods, we instead choose to find the

Floquet modes for the two time points t = 0 and t = t1 and propagate the Floquet modes

in between as explained in the following. For 0 ≤ δt < t1, the system’s time evolution is

governed by Ĥ1, and the Floquet modes are

|Φk(δt)〉 = U(δt, 0)|Φk(0)〉 = U(δt, 0)
∑

l

Pkl|{λ(l)
j }〉 =

∑

l

Pkle
−iE(l)

λ δt|{λ(l)
j }〉 , (6.28)

which leads to

〈Φk(δt)|Ô|Φl(δt)〉 =
∑

m

∑

n

P ∗kmPlnei(E
(m)
λ −E(n)

λ )δt〈{λ(m)
j }|Ô|{λ(n)

j }〉 . (6.29)

For t1 ≤ δt < T , the Hamiltonian governing the time evolution is Ĥ2 and we need to

express |Φj(δt)〉 in terms of |{Λ(l)
j }〉. By solving the eigenvalue equation (6.5) at time t = t1,

i.e. diagonalizing U(t1 + T, t1), we obtain the Floquet modes |Φj(t1)〉 and then propagate

these in time. The procedure is identical to that for the first period, with Pkl, |{λj(m)}〉
and E

(m)
λ replaced by their counterparts for the second period. The overlaps and Floquet

energies, on the other hand, are time-independent and need only be evaluated once.7

The instantaneous energy E(t) ≡ 〈Ĥ〉t in the state |Ψ(t)〉 is given by

E(t) ≡ 〈Ψ(t)|Ĥ|Ψ(t)〉 =
∑

l

∑

k

C∗kCl e
i(εk−εl)nT ei(εk−εl)δt 〈Φk(δt)|Ĥ|Φl(δt)〉, (6.30)

7 We still evaluate the quasi-energies and compare them to those obtained for the previous half-period to
ensure consistency.
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where the matrix elements for δt < t1 are

〈Φk(δt)|Ĥ|Φl(δt)〉 =
∑

m

∑

n

P ∗kmPlnei(E
(m)
λ −E(n)

λ )δt〈{λ(m)
j }|Ĥ|{λ(n)

j }〉

=
∑

m

∑

n

P ∗kmPlnei(E
(m)
λ −E(n)

λ )δtE
(n)
λ δmn

=
∑

n

P ∗knPlnE
(n)
λ . (6.31)

For t1 ≤ δt < T , we replace Pkl, |{λj(m)}〉 and E
(m)
λ by their corresponding expressions at

γ2.

6.2.5 Floquet diagonal ensemble

Assuming that the energy phases randomize after some time, i.e. the coherences in the

Floquet basis are scrambled at sone time, the system is expected to relax to the Floquet

diagonal ensemble with density matrix ρ̂DE(δt) =
∑

j ρj|Φj(δt)〉〈Φj(δt)|, which leads to

expectation values of observables

〈Ô(δt)〉DE = Tr{ρ̂DE(δt)Ô} =
∑

j

|Cj|2〈Φj(δt)|Ô|Φj(δt)〉 . (6.32)

This expression is formally the same as for the energy eigenstates in Chapters 3, 4 and the

discussion and results from there carry over to here, except for one important difference.

The expectation values of operators in the Floquet diagonal ensemble is time-periodic with

T due to the periodicity of the Floquet modes [161]. In the following we will drop the term

“Floquet” when referring to the Floquet diagonal ensemble. Diagonal-ensemble expectation

values for the undriven system are of course calculated in the corresponding Lieb–Liniger

basis instead of the Floquet modes.

6.3 Results

In this section, we present results for the periodically driven Lieb–Liniger system. We

set t1 = T/2 throughout and focus on a time-averaged post-quench interaction strength of

γ = 10. This puts the system in a superposition of several eigenstates since the added energy
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due to the initial quench is larger than the energy gap in our finite system, as discussed in

Chapter 4. It is also sufficiently far away from the strongly interacting Tonks–Girardeau

regime, where the system maps to free fermions.

We analyze the influence of the driving for various parameters, varying both the ampli-

tude and the period, and present results for two and three particles. Our calculations can

be extended to more particles as in previous chapters, where we calculated the overlaps with

the initial state for N = 4 and N = 5 particles and therefore have all the ingredients. How-

ever, a careful analysis of numerical convergence has to be performed first, as will become

clear in the following.

To investigate the effect of the driving on observables, we first focus on the fidelity

and quasi-energy spectrum. We then present results on the second-order coherence, before

turning our attention to the energy of the system.

6.3.1 Fidelity and quasi-energy spectrum

We introduced the fidelity F (t) = |〈Ψ(t = 0)|Ψ(t)〉|2 of the initial state with the time-

evolved state in Chapter 4, and the interpretation carries over to the Floquet case. In

particular, the fidelity FDE in the diagonal ensemble is the inverse participation ratio and

roughly characterizes the spread of the initial state in the Floquet basis. We note that FDE

is constant over one period T .

In Fig. 6.2(a) we plot the fidelity F (t) for N = 2 particles, amplitude ∆ = 0.02 and

γ = 10 for a wide range of periods T . For most driving periods, the fidelity stays close to

the initial value of F (t = 0) = 1. We observe a change of temporal pattern at T ≈ 0.1,

T ≈ 0.29, T ≈ 0.48, T ≈ 0.67, T ≈ 0.87, and T ≈ 0.91. These marked lines also appear

for larger amplitudes of ∆ = 0.2 [Fig. 6.2(c)] and ∆ = 2 [Fig. 6.2(e)], and they do so at

the same values of the period T . The entire pattern is very similar for all three amplitudes,

with notable changes happening for ∆ = 2 at several periods T , where the fidelity decays

to very small values.

Fig. 6.2(b) shows the fidelity FDE in the diagonal ensemble for ∆ = 0.02. For almost

all driving periods T , FDE ≈ 0.83, which is equal to the diagonal ensemble fidelity of the

undriven system, indicated by the black arrow on the right. At periods T ≈ 0.216 and
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Figure 6.2: Fidelity F in the diagonal ensemble [(b),(d),(f)] and nonequilibrium evolution
[(a),(c),(e)] for N = 2 particles and γ = 10 and a wide range of periods. (a),(b): amplitude
of ∆ = 0.02. (c),(d): amplitude of ∆ = 0.2. (e),(g): amplitude of ∆ = 2.
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Figure 6.3: (a) First two quasi-energies, normalized to driving period, for ∆ = 0.2 and a wide
range of driving periods. Right: avoided crossing at driving period corresponding to first resonance
of the time-averaged system. Circles (red and blue) for ∆ = 0.2, squares (black and grey) for ∆ = 2.

T ≈ 0.648, we observe clear dips in FDE, with the first one being more pronounced. These

dips also show up for ∆ = 0.2 in Fig. 6.2(d), and they start to widen slightly. Additionally,

several more peaks show up. For ∆ = 2, Fig. 6.2(f), the previously sharp dips are widened

considerably, and many new ones are present. The narrow dips for small amplitudes ∆

and the widening with increasing ∆ are due to driving being resonant with the underlying

time-averaged Lieb–Liniger system at γ = 10. The first resonance for N = 2 and γ = 10

corresponds to a driving period of T = 0.216, which explains the marked response of FDE

at this position.

In Fig. 6.3(a), we plot the first two quasi-energies (multiplied by T/(2π) to account for

the changing width of the first Brioullin zone with T ) with driving period T for ∆ = 0.2.8

We identify the change of temporal pattern in Figs. 6.2(a),(c),(d) as the values where the

quasi-energies wrap around the first Brioullin zone. The first crossing of the quasi-energies

at T = 0.216 marks the first resonance of the undriven system at γ = 10. Fig. 6.3(b)

reveals that this is actually an avoided crossing. For larger amplitudes, the avoided crossing

widens and the dip in the fidelity does so, too. Additionally, higher photon resonances

become available (either corresponding to higher one-photon resonances in the Lieb–Liniger

spectrum at γ = 10 or to multiple photon resonances) and this is indeed what we observe

in Fig. 6.2(f). Small avoided crossings can be problematic numerically, because truncated

finite-basis size calculations might not be converged sufficiently [103, 399, 400]. Due to the

Brioullin zone structure, there will be many of these, and we discuss this issue in more detail

8 We will explain the ordering of Floquet energies in Sec. 6.4. Let us remark for now that at T = 0, the
first two quasi-energies connect to the first two energies of the undriven system.
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Figure 6.4: Local second-order coherence following a quench from γ = 0 to γ = 10 and for
the same (post-quench) state with additional periodic driving with amplitude ∆ = 0.02 and two
different periods. (a) Time evolution for times t ≤ 0.5n1D, which corresponds to 500 driving cycles
for T = 0.001 (red line), compared to 4 + ε for T = 0.216 (blue dashed line). (b) Stroboscopic
evolution of g(2)(0, nT ) with number of cycles n ≡ t/T .

in Sec. 6.4

We expect to see different behavior for the driven system when the driving becomes

resonant with energy transitions of the time-averaged system. We therefore include the

period corresponding to the first resonance in our calculations in the following. For γ = 10

and N = 3 (N = 2) particles, the energy difference of the ground and first excited state

corresponds to T10 = 0.33 (T10 = 0.216). Additionally, we will investigate both smaller and

larger periods, as well as a higher-order one-photon resonance of T32 = 0.13 for N = 3.

6.3.2 Second-order coherence

In Fig. 6.4(a) we compare the time evolution of the local second-order coherence g(2)(0, t) of

the undriven system at γ = 10 (black diamonds) to that of the driven system with amplitude
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∆ = 0.02 and two different periods for N = 2 particles. For a small period9 of T = 0.001 (red

solid line), the local second order coherence follows that of the time-averaged system. For a

much larger period of T = 0.216 (blue dotted line), g(2)(0, t) agrees with the time-averaged

system up to t = T/2 = 0.108, when the first driving quench is performed. At this point,

the two correlation functions start to differ up to t = T = 0.216, when the second quench

is performed. After this, g(2)(0, t) quickly starts to agree with the time-averaged system.

The same behavior can be observed at t = 3T/2, where the correlation functions start to

differ again, and at t = 2T , where they quickly start to agree again. To see if this behavior

persists, we turn our attention to longer times in Fig. 6.4(b). There, we plot the local

second order coherence g(2)(0, nT ) for the same driving parameters, i.e. periods T = 0.001

and T = 0.216 and amplitude ∆ = 0.02, but here for stroboscopic times t = nT for many

driving cycles up to t/T = 104. For T = 0.001 (red solid line), the system fluctuates in time

in agreement with the undriven post-quench system (not shown in plot). For T = 0.216,

on the other hand, we observe a superimposed mono-chromatic oscillation with very small

frequency, corresponding to long time scales, and large amplitude. The frequency of this

oscillation is given by the quasi-energy difference of the avoided crossing, cf. Fig. 6.3(b). On

top of this oscillation, g(2)(0, t) fluctuates strongly with the same order of magnitude as for

T = 0.001.

Time-averaged second-order coherence

The dynamical evolution of g(2)(0, t) in the last section showed markedly different behav-

ior for different parameters. In this section, we analyze the diagonal ensemble values

(cf. Sec. 6.2.5) of the local and non-local second-order coherence. All results in the fol-

lowing are for N = 3 particles and γ = 10.

In Fig. 6.5, we plot the diagonal-ensemble values g
(2)
DE(x = 0, δt), 0 ≤ δt < T , of the local

second-order coherence within one period for N = 3 particles. As discussed in Sec. 6.2.5,

observables in the diagonal ensemble are time-periodic with period T . However, the shape

within a single period is not specified by this and the system does not necessarily follow the

shape of the driving. For the undriven system, g
(2)
DE(x = 0) = 0.12 is constant and indicated

by the horizontal grey line. For driving parameters of ∆ = 0.02 and ∆ = 0.2, and periods

9 Small compared to the time-scale of significant change in g(2)(0, t) of the undriven system.
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Figure 6.5: Local second order coherence g
(2)
DE(x = 0, δt) in the diagonal ensemble for γ = 10

and N = 3 particles. Parameters that lead to a visible deviation from the constant undriven

g
(2)
DE(x = 0, γ) (grey horizontal line) are labelled in the plot. The four unlabelled cases correspond

to ∆ = 0.02 and ∆ = 0.2, and periods of T = 0.001 and T = 0.1 and agree closely with the
undriven case.

of T = 0.001 and T = 0.1, g
(2)
DE(x = 0, δt) agrees closely with the undriven system. [The

points lie on top of each other in Fig. 6.5 and are not labelled to keep the plot legible.] For

∆ = 2 and T = 0.001 (blue circles), g
(2)
DE(x = 0, δt) agrees closely with the undriven case

up to δt = T/2, but is slightly smaller for the second half-period. The shape resembles the

square-wave form of the driving. This is not the case for T = 0.13 and ∆ = 2 (pink squares),

where g
(2)
DE(x = 0, δt) is slightly increased for δt < T/2 and slightly decreased for δ ≥ T/2,

but with oscillations on top of the square-wave shape. The same behavior can be observed

for parameters of ∆ = 2 and T = 0.33 (cyan crosses), but now the oscillation on top of the

square-wave has a much higher frequency and the value of g
(2)
DE(x = 0, δt) is nearly twice as

large as for the undriven system. For ∆ = 2 and T = 0.1 (large red circles), g
(2)
DE(x = 0, δt)

is largely increased compared to all other cases, with large oscillations comprised of two

dominant frequencies.

We now turn our attention to the full spatial second-order coherence. Because the micro-

motion (i.e. the influence of the time evolution within one period) influences the diagonal

ensemble values, in the following we average the second-order coherence over one period T

of the drive,
〈
g

(2)
DE(x)

〉
T

= T−1
∫ T

0
g

(2)
DE(x, t)dt. In Fig. 6.6 we plot

〈
g

(2)
DE(x)

〉
T

for the same

parameters as in Fig. 6.5. As for the local value, we observe very good agreement of the

undriven system (grey line) with the driven system for parameters ∆ = 0.02 and ∆ = 0.2,

and T = 0.001 and T = 0.1. This also applies to parameters of ∆ = 2 and T = 0.13 (pink
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Figure 6.6: Second order coherence
〈
g

(2)
DE(x)

〉
T

in the diagonal ensemble, averaged over one

driving period for N = 3 particles. For comparison, we also plot g
(2)
DE(x) following a quench from

γ = 0 to γ = 10 without subsequent driving (grey line) and g
(2)
CE(x) in the canonical ensemble

(black line) with energy set by the initial state. We only label
〈
g

(2)
DE(x)

〉
T

for parameters that lead
to visible deviations from the undriven system.

squares). For ∆ = 2 and T = 0.33 (dashed cyan line),
〈
g

(2)
DE(x)

〉
T

is increased for x ≤ 1n−1
1D

and correspondingly decreased for larger values of x. For ∆ = 2 and T = 0.1,
〈
g

(2)
DE(x)

〉
T

is

increased over the undriven system up to x ≈ 0.5n−1
1D and oscillates markedly around it at

larger separations.

Neither of the parameters we inspected here leads to
〈
g

(2)
DE(x)

〉
T

agreeing closely with

the thermal g
(2)
CE(x) of the undriven post-quench system (black line)10, nor with the constant

infinite temperature case. At the first resonance of the undriven system, corresponding

to T = 0.33, the shape of
〈
g

(2)
DE(x)

〉
T

is smooth, and for x . 0.7n1D closer to the g
(2)
CE(x)

than to the corresponding undriven values. In future work it would be interesting to define

some measure for the deviation of
〈
g

(2)
DE(x)

〉
T

from the thermal value and the undriven

correlation function, and calculate this quantity for a wide range of driving periods T . This

could potentially detect the crossover where the driven system markedly differs from the

undriven system and therefore identify the regime where a high-frequency approximation

breaks down.

10 As in Chapters 3, 4, we calculate the canonical ensemble value g
(2)
CE(x) by matching the energy with the

post-quench energy of the undriven system at γ = 10.
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Figure 6.7: Absorbed energy per particle e(t) for several representative parameters of the driving
around γ = 10 and for N = 3 particles.

6.3.3 Energy absorption

Let us define the instantaneous absorbed energy per particle

e(t) =
〈Ĥ〉t − 〈Ĥ〉t=0+

Nn2
1D

, (6.33)

where 〈Ĥ〉t=0+ is the post-quench energy just after the quench. For the undriven system

〈Ĥγ〉t=0+ = n−2
1Dγ(N − 1), see Sec. 3.5.

In Fig. 6.7, we plot the absorbed energy per particle e(t) for N = 3 particles and three

different amplitudes. The left panel shows the evolution up to t/T = 100, while the right

panel shows the long-time evolution up to t/T = 10000.
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For a small amplitude of T = 0.001 (red solid line), e(t) stays close to its initial value for

all times. For larger amplitude, the energy gain is slightly larger. For T = 0.1 (green dotted

line), the same behavior can be observed for ∆ = 0.02 and 0.2, but for ∆ = 2 the absorbed

energy keeps increasing for all shown times. For T = 0.13 (blue dot-dashed line), e(t) oscil-

lates regularly with small amplitude and with frequency increasing for increasing amplitude.

There is no considerable energy absorption at any time. At the period corresponding to the

first resonance of the time-averaged system, T = 0.33 (pink dot-dashed line), the early-time

behavior of e(t) seems to be compatible with linear increase. However, for longer times, we

observe regular oscillations for all ∆. For ∆ = 0.2 the regular oscillations are comprised of

two frequencies. While this is also true for ∆ = 2, the frequencies of the two components

are increased. The second frequency component with smaller amplitude corresponds to the

energy difference of the third and second level of the time-averaged system. For T = 1 (cyan

dashed line), e(t) increases quickly on early time scales, but settles to fluctuate around a

small average value for ∆ = 0.02 and ∆ = 0.2. For ∆ = 2, e(t) also oscillates regularly, but

on top of that increases considerably up to times t/T ' 8000.

Overall, we observe regular oscillations for all amplitudes and T = 0.33 and T = 1.

For T = 0.001, the system hardly absorbs any energy and simply follows the shape of the

driving. For T = 0.1, there seems to be threshold behavior, since we did not observe energy

absorption for ∆ = 0.02 and ∆ = 0.2, but a large increase for ∆ = 2 at late times. To see

if the system keeps absorbing energy or if e(t) oscillates on longer time scales, we now turn

our attention to the diagonal ensemble values of e(t).

Diagonal Ensemble values

According to Eq. (6.31), the matrix elements of the energy are independent of the micro-

motion within a period, and therefore the diagonal-ensemble value of the absorbed energy

eDE always synchronizes with the driving. In Fig. 6.8 we plot the absorbed energy in the

diagonal ensemble eDE for the same parameters as in Fig. 6.7. For all parameters, the values

of eDE(δt) are very close to each other for both halves of the driving period and eDE(δt) for

the second half is slightly increased. In Fig. 6.8(a), we plot eDE(δt) for ∆ = 0.02. We see

that for T = 0.001 (red solid line) and T = 1 (cyan dashed line), the system hardly gains

energy in agreement with the evolution in Fig. 6.7(b). This also applies to T = 0.13 (green
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Figure 6.8: Absorbed energy per particle eDE(δt) in the diagonal ensemble for N = 3 particles
and γ = 10. (a) ∆ = 0.02. (b) ∆ = 0.2. (c) ∆ = 2.

dotted line) and T = 0.1 (blue dot-dashed line). For T = 0.33, eDE(δt) ≈ 4, much larger

than for all other periods.

For ∆ = 0.2, Fig. 6.8(b), eDE(δt) for T = 0.001 (red solid line) and T = 1 (cyan dashed

line) are an order of magnitude larger compared to ∆ = 0.02. This increase can also be

observed for T = 0.13 (blue dot-dashed line) and T = 0.1 (green dotted line). For T = 0.33,

eDE ≈ 4.5 is very close to that of ∆ = 0.02.

Turning to ∆ = 2 in Fig. 6.8(c), we observe that all values are largely increased compared

to both previous amplitudes. Specifically, for T = 1 (cyan dashed line), eDE(δt) ≈ 60 in

marked contrast to its value for ∆ = 0.02 and 0.2, where eDE(δt) < 1. For T = 0.1 (green

dotted line), eDE(δt) ≈ 130, also very much increased compared to the values for smaller

amplitudes.

Overall, the behavior of eDE is consistent with the corresponding time-evolving e(t) in the

previous section. We do not observe infinite energy growth for any parameters. However,

for parameters corresponding to resonances, e(t) shows persistent fluctuations due to the

small number of contributing Floquet modes, cf. 6.3.1. In the next section, we will have a

174



6.4 Numerical considerations

closer look at the populations of Floquet modes.

6.4 Numerical considerations

Approximating an infinite basis by a finite subset has to be done carefully in the case of

Floquet theory because the Brioullin-zone structure of the quasi-energies means that there

are infinitely many points in a finite interval [103, 399, 401]. As we saw in Sec. 6.3.1, the

driving leads to avoided crossings of quasi-energies, which in turn have a strong influence

on observables like the second-order coherence in Sec. 6.3.2 and the energy in Sec. 6.3.3.

Additionally, we have to approximate the Lieb–Liniger basis by a finite subset of exact

eigenstates, so there are two levels of approximation involved in our calculations. We first

deal with the representation of the two Lieb–Liniger bases at interactions strengths γ1 and

γ2 and then investigate the consequences of truncating the Floquet basis at hand.

6.4.1 Constructing U(T + t, t)

Due to translational invariance of our system and the initial state having zero total mo-

mentum, we can restrict the discussion to zero-momentum eigenstates of the Lieb–Liniger

systems at γ1 and γ2 here.11 We utilize our algorithm described in Sec. 3.7.1 to find all

overlaps of the ground state at γ1 with states at γ2 to given precision. This provides us with

a list of states at γ2 with given quantum numbers {mj}. We then calculate the overlaps of

the eigenstates at γ1 with the same sets of {mj} with the basis at γ2.

For N = 3 particles and amplitude ∆ = 2, this approach leads to an inclusion of 5618

eigenstates for each basis and a normalization sum-rule violation of 1−∑j |Cj|2 ≤ 3× 10−5

for the eigenstate with the worst representation in the other basis. Generally, low-lying

eigenstates are much better approximated by our algorithm. for each eigenstate in the

other basis.
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Figure 6.9: Populations of initial state in Floquet basis for N = 3 particles, γ = 10, ∆ = 2 and
various driving frequencies. (a) Populations for all included eigenstates in calculations with these
parameters in this chapter. (b) First six populations on linear scale.

6.4.2 Overlaps of initial state with Floquet modes

According to Eq. (6.13), the overlaps of any initial state with the basis of Floquet states

are time-independent and the populations are given by |Cl|2 = |〈Φl(0)|Ψ(0)〉|2. This allows

us to identify the most dominantly contributing Floquet states and their corresponding

quasi-energies.12

As observed in Sec. 6.3, the driven system is close to the time-averaged system for small

amplitudes and for periods away from resonances. Additionally, only a few low-lying ex-

citations of the time-averaged system were detected by the fidelity, and the corresponding

resonances were very narrow. Consequently, the absorbed energy stayed small. For ∆ = 2,

on the other hand, we saw a broadening and deepening of resonances for the fidelity in

Fig. 6.2. Therefore, we focus on the numerically hardest case ∆ = 2 in the following. In

Fig. 6.9, we plot the populations of the initial state in the Floquet basis, ordered by mag-

nitude, for several representative driving periods T . For larger values of T the distribution

is considerably wider than for small T . For T = 0.33 (pink squares), corresponding to the

first resonance of the time-averaged system, we observe a discontinuous jump at the 14th

Floquet mode. Generally, convergence of Floquet modes for finite-basis approximations is

hard to establish [399]. We need to do this numerically here and a more detailed study is

in order and left for future work. We illustrate the potential pitfalls of our approximation

11 Ordering the Lieb–Liniger basis states according to their total momentum leads to Û being composed
of blocks, and the diagonalization of a block matrix can be performed independently for each block. The
eigenvectors and eigenvalues of the full matrix are then simply given by the ones of each block.

12 Recall that the quasi-energies are obtained from the eigenvalues of a unitary operator and are therefore
distributed on the complex unit circle, defying a description in terms of the usual ordering of real numbers.
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Figure 6.10: (a) Contributions to energy in diagonal ensemble for N = 3 particles, γ = 10
and ∆ = 2 and various driving frequencies. (b) Summed-up contributions for the first thirty
contributions.

in the next section.

6.4.3 Energy saturation

In Fig. 6.10(a) we plot the contributions |Cl|2×〈Φl(0)|Ĥ|Φl(0)〉 to the energy in the diagonal

ensemble at δt = 0 for ∆ = 2 and N = 3 particles. For T = 0.001 (red empty circles), the

contributions are decaying smoothly with increasing Floquet modes for the lowest eigen-

states. This can also be observed in Fig. 6.10(b), where we plot the sum of contributions

to the energy over Floquet modes up to that mode. For T = 0.1 (green triangles), the

contributions are more irregularly distributed up to l ≈ 100. This hardly influences the

convergence of EDE in Fig. 6.10(b) because EDE is dominated by the first two contributions.

For T = 0.13 (blue circles), the contributions are also irregularly distributed, but the con-

vergence of EDE in Fig. 6.10(b) is relatively smooth. This is not the case for T = 0.33 (pink

squares), where we observe small jumps in Fig. 6.10(b), corresponding to large contributions

in Fig. 6.10(a). This also applies to T = 1, where several large contributions at values of

l up to approximately 100 can be observed. For all parameters, contributions from higher

eigenstates past l ≈ 300 decrease quickly.

As an example of parameters for which we observe unexpected behavior, we plot the

absorbed energy per particle, normalized to the amplitude ∆, for T = 0.01 in Fig. 6.11. For

all considered amplitudes, ∆ = 0.02, 0.2 and 2, e(t)/∆ increases rapidly over the first two

cycles as can be seen in Fig. 6.11(a). It then follows the driving closely. In Fig. 6.11(b), we

plot e(t)/∆ for the same parameters up to t/T = 10000. We observe a similar behavior for
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Figure 6.11: Absorbed energy e(t) per particle for γ = 10 and period T = 0.01 and N = 3
particles for (a) short times and (b) longer times.

all amplitudes, where e(t) stays close to the value it attained after the first two cycles, but

suddenly starts to increase after many cycles and goes to very large values. This increase

happens slightly earlier for larger amplitudes. This behavior is in contrast to that of the

absorbed energy in Fig. 6.7, where curves that settled to a constant average value over

several driving amplitudes stayed at that value. A closer inspection of the quasi-energies

and contributions reveals that a very small avoided crossing of the state that connects to

the ground state of the undriven system with a higher excited state leads to this behavior.

However, the convergence of the quasi-energies for a finite basis is not guaranteed, nor

necessarily well-behaved [399, 401] and since the levels are strongly correlated a small error

can lead to the appearance of avoided crossings where non should be present. We clearly

need to ensure that our results are not artificially influenced by these. The fidelity in

Fig. 6.2(f) also displayed resonances at unexpected positions compared to the resonances

of the underlying undriven system, which we expect to be unphysical and due to the same

problem of non-converged quasi-energies. It is important to discard numerically induced

avoided crossings in finite-basis calculations and we need to implement this efficiently in

the future. However, small avoided crossings manifest themselves at late times (and in the

diagonal ensemble) and therefore they should be irrelevant for the nonequilibrium evolution

of correlation functions on short time scales.

6.5 Conclusions

The truncation of Floquet states and representation with an approximate Lieb–Liniger basis

leads to a considerable increase of numerical complexity compared to the quench scenario
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in Chapters 3, 4, 5. We identified the influence of very small avoided crossings, due to

finite-basis truncation errors, that lead to unphysical results and clearly need to improve

the identification of these in the future. Nevertheless, we were able to observe the response

of the system to a periodic switching of the interaction strength for two and three particles

and identify fast driving regimes, corresponding to small periods, where the second-order

coherence and the energy of the driven system did not appreciably differ from the time-

averaged system. At resonances of the time-averaged system, the driven system absorbed

energy quickly and for later times, the energy oscillated regularly around an average value.

This was traced back to the populations of Floquet states, which were peaked on very few

states.

For fast driving, the second-order coherence in the diagonal ensemble agreed with that

of the undriven system. This did not apply to driving periods corresponding to low-lying

resonances of the time-averaged system, were we observed a marked difference of the second

order coherence to that of the undriven case. However, the second order coherence did not

agree with the thermal value determined by the energy of the initial state, or at infinite

temperature. Therefore there should be an extensive number of local conserved charges,

leading to a relaxation to a generalized (periodic) Gibbs ensemble like for the undriven

system.

We focussed on the second-order coherence, but other correlation functions, like the

momentum distribution and the one-body entanglement entropy, are accessible as well with

our methodology. Finally, let us note that our calculations can be extended to four or five

particles, as in previous chapters. However, a careful analysis of numerical convergence has

to be performed first.
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7
Conclusions

In this thesis we studied the nonequilibrium behavior of one-dimensional bosons with binary

contact interactions, which constitutes the famous Lieb–Liniger model. To this end, we de-

veloped a computational approach for small systems based on the coordinate Bethe ansatz.

In contrast to higher dimensions, one dimensional systems are generally characterized by

collective phenomena and strong correlations and importantly, our method is nonperturba-

tive in nature. This enables us to study the entire regime of interactions of the strongly

correlated system, in and out of equilibrium, at zero and finite temperature. The procedure

to calculate correlation functions at a chosen interaction strength consists of the following

steps in general:

• Solve the Bethe equations (2.61) numerically at the desired interaction strength.

• Construct the overlaps of a given initial state in terms of the basis of Bethe rapidities

obtained in the previous step with the method introduced in Chapter 3.
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• Calculate the matrix elements of a given operator in the basis of Bethe rapidities with

the same method.

• Sum up the contributions.

The procedure is numerically exact for ground state correlation functions since for these

only one set of rapidities contributes as we saw in Section 2.3.2. For dynamical quantities,

however, we have to approximate an infinite basis by a finite subset of its (exact) eigenstates.

Since this is a standard mathematical procedure, we can quantify the error in correlation

functions in a straight-forward manner. We also have additional knowledge with respect

to the contributions of the initial state in the basis, and we can control and quantify the

precision of computed quantities.

In Chapter 3, we introduced the correlation functions considered throughout this thesis

in terms of Bethe ansatz eigenstates and detailed the algorithmic approach employed to

numerically evaluate the resulting expressions. As a first application, we obtained first-,

second-, third- and fourth-order correlation functions of the ground state with repulsive

interactions for up to seven particles. We compared these to known exact and approximate

thermodynamic limit results where applicable and characterized the finite-size scaling. The

results showed that local correlation functions at strong interaction strengths converged

closely to their infinite-system counterparts. We also considered the relaxation dynamics of

a system of five particles following an interaction strength quench starting from two different

initial states, one the noninteracting ground state, the other a correlated ground state at

strong repulsive interactions. The common final interaction strength was chosen in such a

way that the post quench energy was the same for both initial conditions. We observed a

strikingly similar process of relaxation for the full nonlocal second-order correlation function,

where a correlation wave built up at short distances for early times, and then propagated

through the system with the same velocity for both initial states. The relaxed correlation

functions, however, were shown to be distinct from one another, as well as non-thermal.

The contributions of the initial states in the post-quench basis seemed to be compatible

with exponential decay for low energies. For conclusive statements about the emergence of

a prethermalized state, however, a more detailed analysis would be necessary.

In Chapter 4, we investigated the relaxation dynamics of the initially noninteracting
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ground state following a quench to various representative repulsive values of the interaction

strength. For relatively small post-quench interaction strengths, the energy deposited by

the quench was on the order of the finite-size induced energy gap of the system, and the dy-

namics of correlation functions was characterized by nearly perfect two-level dynamics. For

intermediate and large interaction strengths, this was not the case and the system showed

behavior consistent with the picture of dephasing many-body energy eigenstates. The relax-

ation time-scales of nonlocal correlation functions were characterized by those of the instan-

taneous fidelity of the system, while local quantities relaxed on much shorter time scales.

The relaxed momentum distribution for strong post-quench interaction strengths showed

an intermediate quadratic decay, in accordance with analytical calculations in the Tonks–

Girardeau limit. The scaling of thermal (canonical ensemble) local correlation functions

with post-quench interaction strength was found to be in agreement with grand-canonical

expectations. The relaxed local second-order coherence was found to decay linearly with

post-quench interaction strength, a result also obtained with the quench-action method.

This did not apply for the third-order coherence, which showed a linear decay with interac-

tion strength, in marked contrast to the quadratic decay obtained with the quench-action

method. The discrepancy of the results remains an open question.

Turning to attractive interactions in Chapter 5, we calculated several ground state cor-

relation functions around the quantum critical point for seven particles and found good

agreement with the mean-field bright soliton solution, despite our relatively small system

sizes. However, this did not apply to quantities that are characterized by two-body correla-

tions. For strong attractive interactions, we obtained ground-state correlation functions for

four particles and saw the characteristics of the bound state become more pronounced. The

local second- and third-order coherence were found to increase linearly and quadratically

with interaction strength, respectively. The studies of nonequilibrium properties was based

on the same initial state and protocol as in the previous chapter. Starting from the ideal gas

ground state, we quenched the interaction strength to several representative values. For rel-

atively low post-quench interaction strengths below the critical point, the system exhibited

the same two-level dynamics as the repulsively interacting system due to the finite-size in-

duced gap of excitations. For quenches to large attractive values of the interaction strength,

we observed the emergence of tightly bound two-body bound states, which led to vastly
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increased values of the local second- and third-order coherence function. Since these would

lead to strong particle losses in experiments, we investigated the influence of the initial state

on contributions of two-body bound states and the lowest metastable scattering state of the

system at strong attractive post-quench interaction strengths. We found a strong decrease

of the the influence of the bound state for initial ground states of the repulsively interacting

system beyond γ ≈ 10. Away from the origin, the relaxation dynamics of the second-order

correlation function following a quench from the noninteracting ground state was very sim-

ilar to that following a quench to repulsive interactions with the same magnitude, which is

characterized by propagation of correlation waves through the system. The relaxed local

second- and third-order coherence seemed to converge to finite values for large attractive

post-quench interaction strengths. The value of the former was shown to be consistent with

a recently obtained value in the thermodynamic limit for the local second-order correlation

function.

In Chapter 6, we compared the evolution of the post-quench system of previous chapters

to that of a system with time-periodically varying interaction strength, prepared in the same

(post-quench) initial state. This allowed us to compare the nonequilibrium dynamics of an

integrable system (with constant interaction strength) to that of a non-integrable driven

system. The time-averaged interaction strength of the latter was equal to the undriven

post-quench system. For fast driving frequencies, the nonequilibrium evolution of correlation

functions and their relaxed values agreed with the undriven system. This was not the case for

frequencies corresponding to resonances of the undriven system, where we observed energy

absorption and a markedly different relaxed second-order coherence. However, the energy

remained bounded for all considered parameters. Our results for the Lieb–Liniger model

with periodically driven interaction strength showed that the techniques developed in this

thesis are promising candidates for different nonequilibrium scenarios besides interaction

strength quenches as well.
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[138] J. Struck, C. Ölschläger, R. Le Targat, P. Soltan-Panahi, A. Eckardt, M. Lewenstein,

P. Windpassinger, and K. Sengstock, Science 333, 996 (2011).
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[145] M. Weinberg, C. Ölschläger, C. Sträter, S. Prelle, A. Eckardt, K. Sengstock, and

J. Simonet, Phys. Rev. A 92, 043621 (2015).

193

http://dx.doi.org/10.1103/PhysRevA.81.053627
http://dx.doi.org/10.1103/PhysRevLett.104.200403
http://dx.doi.org/10.1103/PhysRevLett.107.255301
http://dx.doi.org/10.1103/PhysRevLett.107.210405
http://dx.doi.org/10.1103/PhysRevLett.107.095301
http://dx.doi.org/10.1126/science.1207239
http://dx.doi.org/10.1103/PhysRevLett.108.225304
http://dx.doi.org/10.1103/PhysRevLett.108.225303
http://dx.doi.org/10.1038/nphys2750
http://dx.doi.org/10.1038/nphys2789
http://dx.doi.org/10.1038/nphys2998
http://dx.doi.org/10.1103/PhysRevLett.114.125301
http://dx.doi.org/10.1103/PhysRevA.92.043621


References

[146] C. J. Kennedy, W. C. Burton, W. C. Chung, and W. Ketterle, Nat. Phys. 11, 859

(2015).

[147] L.-C. Ha, L. W. Clark, C. V. Parker, B. M. Anderson, and C. Chin, Phys. Rev. Lett.

114, 055301 (2015).

[148] L. D’Alessio and A. Polkovnikov, Ann. Phys. 333, 19 (2013).

[149] H. Kim, T. N. Ikeda, and D. A. Huse, Phys. Rev. E 90, 052105 (2014).

[150] L. D’Alessio and M. Rigol, Phys. Rev. X 4, 041048 (2014).

[151] A. Lazarides, A. Das, and R. Moessner, Phys. Rev. E 90, 012110 (2014).
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[191] U. Schollwöck, Rev. Mod. Phys. 77, 259 (2005).
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