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HIGHLIGHTS 

 ErbB1/EGFR can be activated by multiple GPCRs through a 

process termed ‘transactivation’. 

 EGFR acts as a nexus for GPCR-mediated protective signalling. 

 EGFR localisation to caveolae microdomains is critical to signal 

transduction. 

 EGFRs appear to be a critical determinant of myocardial tolerance 

to ischaemia-reperfusion. 

 Signalling mediators downstream to EGFR include arrestins, PI3K, 

PKB/Akt, ERK and PKC. 

 EGFR signalling is perturbed in cardiovascular pathologies, 

including ischaemic heart disease, hypertrophy/heart failure, 

diabetic cardiomyopathy and obesity/dyslipidaemia. 

 Despite a predominance of evidence for a protective role for the 

EGFR, EGFR over-activity may be detrimental specifically in the 

context of vascular injury.   



 

 3 

ABSTRACT 

The epidermal growth factor receptor (EGFR) family comprises the ErbB1 (EGFR) 

and ErbB4 receptors as well as the ‘co-receptors’ ErbB2 (which does not bind EGF 

ligands) and ErbB3 (which lack tyrosine kinase activity).  This family of receptors is 

essential for cardiac development, myocardial, renal and vascular function, and 

cardiac responses to physiological and pathological perturbations. The EGFR appears 

critical in protecting cardiac cells from injury, while considerable attention has 

focussed on neuregulin/ErbB4 signalling in potentially ameliorating cardiomyopathy/ 

heart failure. Indeed, the EGFRs provide a signalling nexus, upon which multiple 

cardioprotective stimuli appear to converge, including ischaemic preconditioning and 

various G protein-coupled receptors (opioid, muscarinic, adenosine, adrenergic, 

bradykinin, sphingosine 1-phosphate). These stimuli engage the EGFR axis (in a 

process referred to as transactivation) in differing ways, involving both G protein-

dependent and -independent mechanisms, to promote myocardial cell survival during 

and following ischaemia/infarction. Elucidating the molecular processes that underpin 

EGFR transactivation and mediate cardiac protection will advance our understanding 

of the intrinsic capacity of the heart to withstand pathological insult.  It should also 

reveal new approaches to facilitate cardioprotective therapy to limit damage during 

and following myocardial ischaemia/infarction, which despite intense investigation 

remains an unrealised, yet highly desirable, clinical goal. This review focuses on the 

cardiovascular functions of the EGFR, its role in cardioprotection, and the potential 

influences of common disease states on this signalling.            

 

Key Words: EGFR; ErbB;  cardioprotection;  G protein-coupled 

receptors;  ischaemia-reperfusion;  preconditioning;  transactivation 
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1. The EGFR Family 

 The epidermal growth factor receptor (EGFR) family of RTKs is comprised of 

4 members: EGFR (ErbB1, HER1), EGFR2 (ErbB2, Neu, HER2), EGFR3 (ErbB3, 

HER3) and EGFR4 (ErbB4, HER4) (Jorissen et al., 2003; Roskoski, 2014). All 4 are 

expressed in the heart, with ErbB1, ErB2 and ErbB4 declining with postnatal 

development (Camprecios et al., 2011). Although earlier studies documented 

expression of ErbB1, ErbB2 and ErbB4 only in adult heart (Sundaresan et al., 1998; 

Zhao et al., 1998; Rohrbach et al., 1999), more recent work also confirms adult 

expression of ErbB3 (Lorita et al., 2009; Camprecios et al., 2011). 

 The EGFR is a 175-kDa glycoprotein activated by multiple ligands, including 

epidermal growth factor (EGF), heparin-binding EGF (HB-EGF), and transforming 

growth factor α (TGFα), amphiregulin, betacellulin, epigen and epiregulin. Receptor 

binding induces ErbB homo- or hetero-dimerisation (Figure 1). The ErbB2 protein 

lacks a ligand-binding domain and relies on heterodimerisation for signalling 

functionality (though may independently exert cardiac effects when abnormally 

expressed). ErbB3 lacks the ability to phosphorylate exogenous peptides, 

heterodimerising with ErbB receptors, in particular ErbB2 (Shi et al., 2010; 

Steinkamp et al., 2014) to confer a unique pro-survival properties, especially relating 

to tumor progression (Ma, J. et al., 2014).  

The ErbB1 monomer may be bound by EGF, HB-EGF or TGFwhile HB-

EGF also binds to ErbB3, neuregulin-1 and -2 to ErbB3 and ErbB4, and neuregulin-3 

and -4 to ErbB4 (Fuller et al., 2008; Roskoski, 2014; Schilling and Patel, 2015; 

Forrester et al., 2016). When considering the protective functions of EGFR signalling 

in heart, both ErbB1 and the ErbB2 dimer partner are thus relevant. However, this is 
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complicated somewhat by the important role of ErbB2 in ErbB4 (neuregulin) receptor 

responses.  

 The molecular basis of ErbB dimerisation has been extensively reviewed 

(Jorissen et al., 2003; Lemmon, 2009). Distinct from other receptor kinases, 

phosphorylation of the kinase activation segment of EGFR is not required for 

activation (Gotoh et al., 1992; Tice et al., 1999). Instead, ligand-activated kinase 

domains form an asymmetric dimer: ligand (EGF, TGF, HB-EGF) independently 

binds with low affinity to extracellular domains I and III (LR1, LR2) of ErbB1, 

inducing a conformational change that facilitates high affinity binding to both 

domains (Figure 1). The molecular tether between domains II and IV is also broken, 

and a ‘dimerisation arm’ hidden within domain IV (where it stabilises a conformation 

that inhibits ligand binding/dimerisation) is exposed for binding via interaction with 

domain II, leading to ErbB dimerisation. Within this dimer, one kinase domain acts as 

activator/donor, the other as receiver/acceptor: activated receiver kinase 

phosphorylates activator kinase tyrosine residues which function as docking sites for 

downstream signalling (Figure 1). This results in phospho-regulation of effector 

molecules including Ras, Raf, extracellular signal-regulated kinase 1/2 (ERK1/2), p38 

mitogen activated protein (MAP) kinase, and the phosphatidylinositol 3 kinase 

(PI3K)/protein kinase B (Akt) pathway (Figure 2). The preferred ErbB2 dimer partner 

increases ligand-binding affinity (Karunagaran et al., 1996) and reduces EGF 

dissociation to prolong signal activation. Heterodimers containing ErbB2 are also 

more stable and endocytosed at lower rates than other ErbB dimers (Lenferink et al., 

1998; Wang et al., 1999; Hommelgaard et al., 2004). Thus, signalling via ErbB1/2 

heterodimers may be more powerful and sustained than that arising via ErbB1 

homodimers.  
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The EGFRs play essential roles in cardiac development, regulate myocardial 

function and participate in adaptation/remodelling responses to physiological or 

pathological loads (Iwamoto et al., 2003; Fuller et al., 2008; Forrester et al., 2016). A 

recently identified role includes promotion of myocardial survival and adaptation to 

injurious stress. This stress signalling appears an important determinant of myocardial 

responses to disease/insult (albeit detrimentally influenced by diverse co-morbid 

states), and may represent a novel avenue for therapeutic cardioprotection. Herein we 

specifically review evidence for EGFR/ErbB1 involvement in governing myocardial 

responses to ischaemic and other injurious insult, and transduction of diverse 

cardioprotective stimuli.   

 

1.1. Mechanisms of EGFR Transactivation 

 Additional to direct agonism, the EGFR is transactivated via diverse G 

protein-coupled receptors (GPCRs). In cardiac cells, EGFR transactivation has been 

linked to angiotensin (Rakesh et al., 2010), muscarinic (Krieg et al., 2002; Krieg et al., 

2004; Miao et al., 2015), endothelin (Kodama et al., 2002; Chen et al., 2006), opioid 

(Cao et al., 2005; Cohen et al., 2007; Forster et al., 2007; Zhang et al., 2015), 

bradykinin (Methner et al., 2009), adrenergic (Noma et al., 2007; Grisanti et al., 2014), 

adenosine (Williams-Pritchard et al., 2011), and sphoingosine-1 phosphate (S1P) 

(Hofmann et al., 2009)  GPCRs, with transactivation via angiotensin II (Ang II) 

perhaps the most well studied. Several Gq-linked receptors (Ang II, ET-1, -ARs) 

may promote cardiac hypertrophy/remodelling, whereas transactivation by adenosine, 

opioid, bradykinin or muscarinic receptors may be protective, enhancing cell survival. 

The transactivation of EGFR signalling is conventionally attributed to a process 

termed the 'triple-membrane-passing-signalling' model (Figure 2), which involves 
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GPCR activation and initial heterotrimeric G protein dissociation, activation of 

ligand-specific intermediates (including non-receptor tyrosine kinase, Ca2+ and 

reactive oxygen species), followed by metalloprotease activation and shedding of 

mature extracellular EGFR ligand.  

 Additional mechanisms may participate in transactivation in an agonist-

specific manner, including G protein-independent activation, EGF-ligand independent 

mechanisms or direct GPCR/ErbB interaction (Figure 2). Transactivation may also 

occur in the absence of detectable ligand, involving protein tyrosine kinase (e.g., Src 

family kinase) phosphorylation of the cytoplasmic EGFR domain to provide docking 

sites for signalling proteins (Figure 1). Generation of ROS is important in both ligand-

dependent and -independent transactivation, with membrane-associated NADPH 

oxidase considered the primary source of GPCR-dependent ROS, donating an 

electron from NADPH to O2 to produce superoxide (Murdoch et al., 2006). Control of 

NADPH oxidase occurs pre- and post-translationally. Agonism of GPCRs (e.g., by 

Ang II) induces NADPH oxidase subunit expression and complex assembly at the cell 

membrane, increasing cardiomyocyte ROS production (Nakagami et al., 2003; 

Hingtgen et al., 2006). Activation of the small GTPase Rac also promotes membrane 

recruitment of NADPH oxidase complex components (Gregg et al., 2003), while the 

p47phox subunit (necessary for oxidase activation) is phospho-regulated by both PKC 

(Fontayne et al., 2002) and the PI3K/Akt pathways (Hoyal et al., 2003). Generation of 

ROS plays a key role in MMP activation (Wetzker and Bohmer, 2003), increases PTK 

activity and EGFR phosphorylation via inhibitory oxidation of tyrosine phosphatases 

targeting Src kinase and EGFR (Salmeen et al., 2003; Chen et al., 2006), and may 

enhance proteolysis of proteins that repress PTK activity (Liebmann, 2011; George et 

al., 2013a). These important functions may, in turn, render EGFR transactivation 
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sensitive to age- and disease-dependent perturbations in myocardial ROS and 

phosphatases.   

In addition to conventional G protein-dependent induction of EGFR ligand 

shedding, MMPs can function as direct G protein effector molecules: Overland and 

Insel (2015) have identified a novel path of EGFR transactivation in which MMP14 

acts as a direct heterotrimeric G protein effector, activated by G (potentially G) to 

trigger HB-EGF release. Other studies identify G protein independent/β-arrestin 

dependent mechanisms of EGFR activation (Tilley, 2011). Noma et al. (2007) report 

β1-adrenoceptor transactivation of cardiomyocyte EGFR independently of G protein 

activation, involving β-arrestin recruitment via G protein-coupled receptor kinase (and 

a subsequent canonical cascade of EGFR transactivation involving Src, a 

metalloprotease, and HB-EGF shedding). Conversely, Zhang et al. (2015) showed 

that the cardioprotective  opioid receptor transactivates the EGFR via PKC 

dependent ligand shedding, with -arrestin2 recruited to the distal EGFR (not the  

opioid receptor). Finally, a recent functional siRNA screen in human epithelial cells 

has identified novel mediators of EGFR transactivation, including TRIO, BMX and 

CHKA (George et al., 2013b). Their knockdown impairs EGFR phosphorylation in 

response to GPCR agonism, but not direct activation with EGF, locating the proteins 

between the GPCR and EGFR.  

 The specific identities of the metalloproteases involved in EGFR 

transactivation remain to be detailed, though ADAMs (a disintegrin and 

metalloprotease) are more commonly implicated. Importantly, shedding of EGFR 

ligands by ADAMs not only yields extracellular ligand but an intracellular carboxyl-

terminal fragment that is functionally relevant, resulting in independent signalling. 

This remnant peptide may translocate to the inner nuclear membrane and regulate 
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gene expression (Higashiyama et al., 2008). The importance of carboxyl-terminal 

fragment signalling to cardioprotection has yet to be examined. 

 

1.2. Cell Membrane Localisation - Membrane Rafts, Caveolae and Caveolins 

 The membrane domain localisation of EGFR (within plasma and endosomal 

membranes) appears critical to signal transduction, yet opposing models of  

microdomain dependence have emerged. Detailed below, earlier studies employing 

detergent-free methods of membrane fractionation and/or less select modes of 

cholesterol disruption provide support for caveolar localisation of EGFR, with 

disruption of this association (experimentally and during internalisation/degradation) 

inhibiting or terminating EGFR signalling (Smart et al., 1995; Mineo et al., 1996; 

Furuchi and Anderson, 1998). In contrast, studies utilising different membrane 

fractionation methodologies or more selective levels of cholesterol sequestration 

support localisation and activation of EGFR signalling within plasma and late-

endosomal membrane rafts (Balbis and Posner, 2010).    

 Many signalling molecules involved in EGFR transactivation appear localised 

to caveolar domains and influenced by associated caveolins, with caveolae and 

caveolin-3 both essential to diverse cardioprotective responses (Schilling et al., 2015). 

Thus, the EGFR, relevant GPCRs (AT1, endothelin, β-adrenergic, muscarinic, opioid, 

adenosine), G proteins (α and βγ), Src family kinases, and ADAM17 have been 

reported to be, at least in part, localised to caveolae in non-cardiac cells (Smart et al., 

1995; Mineo et al., 1996; Ushio-Fukai and Alexander, 2006; Takaguri et al., 2011).  

Not only were initial signal transduction steps, including EGF triggered 

tyrosine kinase activation, and adaptor and kinase recruitment found to occur within 

caveolar fractions (Mineo et al., 1996; Furuchi and Anderson, 1998), activated EGFR 



 

 10 

was shown to subsequently migrate from caveolae in association with attenuation of 

signalling (Mineo et al., 1996). Studies in cancer cells similarly supported 

sequestration of active EGFR within caveolae (Abulrob et al., 2004), while there is 

also evidence for signalling via both caveolar and non-caveolar EGFR (with 

prolonged ERK1/2 activation by extra-caveolar EGFR vs. transient ERK1/2 activation 

by caveolar EGFR) (Rimoldi et al., 2003). Interestingly, the protective A1 adenosine 

receptor, implicated in preconditioning responses and shown to protect via EGFR 

transactivation (Williams-Pritchard et al., 2011), appears to translocate out of 

myocardial caveolae upon activation (Lasley et al., 2000), though there is evidence A1 

activation also translocates other signal elements, including PKC, into caveolae (Yang 

et al., 2009).   

 In contrast to these findings, more recent studies support a role for non-

caveolar raft domains in sequestration of active EGFR and intracellular recruitment/ 

activation of kinases in late endosomes (Balbis and Posner, 2010). Studies employing 

Triton X-100 extraction to isolate low-buoyancy detergent-resistant membranes 

support involvement of membrane rafts in promoting EGFR phosphorylation, adapter 

recruitment and kinase signal activation (Zhuang et al., 2002; Puri et al., 2005; Balbis 

et al., 2007; Wang et al., 2009). Immunoelectron microscopy, and select cholesterol 

and clathrin disruption, reveal no role for caveolae in concentrating the EGFR, or 

influencing EGFR binding and internalisation (Ringerike et al., 2002; Kazazic et al., 

2006), while cholesterol itself may influence binding, dimerisation and 

phosphorylation (Ringerike et al., 2002). Initially viewed as a mechanism of signal 

termination (ie. dissociation of EGFR signal elements from caveolar domains), 

internalisation of raft-localised EGFR may thus be fundamental to signal transduction 

(Balbis and Posner, 2010). Data collectively support activity-dependent EGFR 
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internalisation, with low-level agonism triggering clathrin-dependent/cholesterol-

independent recycling to the cell membrane (Sigismund et al., 2005; Sigismund et al., 

2008), whereas higher level agonism results in clathrin-independent/cholesterol-

dependent EGFR internalisation and trafficking to late endosomes (Lai et al., 1989). 

Caveolin independent rafts in these late endosomes may constitute a functional 

platform for the activation of local MAPK signalling (Teis et al., 2002; Balbis et al., 

2007; Taub et al., 2007; Nada et al., 2009). 

 Questions of caveolar vs. non-caveolar localisation notwithstanding, caveolins 

themselves appear to regulate EGFR signalling. Caveolins influence myocardial 

signalling and stress-tolerance via both canonical (e.g., caveolar localisation) and non-

canonical mechanisms (Schilling and Patel, 2015). While studies identify caveolin 

influences on EGFR signalling, most focus on caveolin-1 with relatively little 

information regarding control of myocardial EGFR by the principle caveolin in 

striated muscle cells - caveolin-3.   

 Caveolin-1, the major structural protein in non-cardiac caveolae, suppresses 

EGFR function in other cell types. Infection of vascular smooth muscle with 

adenovirus encoding caveolin-1 inhibits Ang II-induced HB-EGF shedding, EGFR 

transactivation, ERK activation, hypertrophy and migration (Takaguri et al., 2011). 

Other studies support inhibitory effects of caveolin-1 on EGFR (Couet et al., 1997; 

Mineo et al., 1999; Wang et al., 2007). Nonetheless, caveolin-1 also appears essential 

in EGFR transactivation: silencing caveolin-1 expression inhibits Ang II-induced 

EGFR transactivation in vascular tissue (Takayanagi et al., 2014); caveolin-1 deletion 

inhibits EGFR transactivation by TGF- in hepatocytes, in association with failed 

TACE/ADAM17 activation (Moreno-Caceres et al., 2014); and caveolin-1 deletion or 

caveolar disruption abolishes stretch-dependent EGFR transactivation and Akt 
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signalling in mesangial cells (Zhang et al., 2007). Caveolin-1 may thus act to limit 

EGFR activity in the basal state whilst promoting EGFR transactivation. This 

differential control may be relevant to stress-dependent EGFR signalling in cardiac 

fibroblasts, with fibroblast caveolin-1 depressed following infarction (Gao et al., 

2014) and evidence such shifts influence other growth factor signalling (Miyasato et 

al., 2011).   

 Regarding the cardiomyocyte, there is some evidence ErbB1/ErbB2 associate 

with cardiac caveolae and caveolin-3 (Zhao et al., 1999; Liu et al., 2003; Ueda et al., 

2005), potentially within T tubules (Ueda et al., 2005). Relevant GPCRs and effector 

molecules also associate with cardiac caveolae/caveolin-3 (Head et al., 2005). 

Receptor stimulation may differentially impact ErbB/caveolin-3 association, with 

ErbB4 but not ErbB2 dissociating from caveolin-3 upon neuregulin stimulation (Zhao 

et al., 1999). As for caveolin-1, caveolin-3 expression appears to suppress EGFR 

signalling (Brauers et al., 2010), consistent with early reports of EGFR inhibition by 

caveolin-3 (Couet et al., 1997). Dissociation from caveolin-3 upon receptor activation, 

as observed for ErbB4 (Zhao et al., 1999), could be important in initiating EGFR 

signalling (caveolin-3 suppressing basal activity, dissociation facilitating signalling 

activation). Further work is warranted in unravelling the roles of caveolae and 

caveolin-3 in control of cardiomyocyte EGFR signalling. Importantly, significant 

reductions in myocardial caveolin-3 expression/localisation with ageing (Kawabe et 

al., 2001; Ratajczak et al., 2003; Peart et al., 2007), infarction (Ratajczak et al., 2003), 

and disease (Piech et al., 2003; Penumathsa et al., 2008; Crossman et al., 2011; 

Sharma et al., 2011; Lei et al., 2013) have the potential to dysregulate myocardial 

EGFR signalling.  
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2. Myocardial and Coronary Control via the EGFR 

 The ErbB system (receptors and ligands) is essential for heart development 

and maintenance of structural integrity (Fuller et al., 2008). In adult heart, the most 

abundant ErbB receptors are ErbB2 and ErbB4 (Zhao et al., 1998), with HB-EGF and 

NRG-1 being important endogenous ErbB ligands. The influence of ErbB receptors 

on myocardial physiology was poignantly revealed in the cardiomyopathy observed in 

breast cancer patients receiving antibody inhibitors of ErbB2 (Ewer et al., 1999; De 

Keulenaer et al., 2010). Cardiac toxicity was noted in ~5% of these patients, 

increasing to >25% when co-administered with anthracyclines (Ewer et al., 1999; 

McKeage and Perry, 2002). It is now clear neuregulin-1β (NRG-1β) and its receptors 

(ErbB4 and the dimer ErbB2) are essential for cardiac development, and maintenance 

of adult cardiac function. 

However, the heart also expresses ErbB1, and its endogenous ligands EGF and 

HB-EGF induce varied cardiac effects that include modulation of stretch-dependent 

ion channels (Browe and Baumgarten, 2006), Na+ currents (Liu et al., 2007), 

prostacyclin formation (Braconi Quintaje et al., 1998), and cAMP accumulation (Yu 

et al., 1992). Rabkin et al. (Rabkin et al., 1987) observed novel positive chronotropy 

in response to EGF in chick embryo cardiomyocytes, with subsequent studies 

identifying positive inotropic and chronotropic effects of EGF in the heart (Nair et al., 

1993; Lorita et al., 2002). These stimulatory effects appear to involve Gs 

phosphorylation, adenylyl cyclase activation and cAMP accumulation (Nair et al., 

1989; Nair et al., 1990; Yu et al., 1992; Nair et al., 1993).  

Chronic EGFR/ErbB1 inhibition in vivo leads to myocardial dysfunction in 

mice (Barrick et al., 2008), as does cardiomyocyte expression of a dominant negative 

ErbB1 mutant (Rajagopalan et al., 2008). Other studies confirm cardiac dysfunction 
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following chronic inhibition of EGFR tyrosine kinase activity, with evidence for 

involvement of Mg2+ loss and substance P dependent inflammation (Weglicki et al., 

2012; Mak et al., 2015). Conditional deletion of HB-EGF, which binds both ErbB1 

and ErbB4, also leads to contractile dysfunction (Iwamoto et al., 2003). These 

findings contrast studies of acute EGFR inhibition, which generally reveal no 

significant changes in baseline myocardial or coronary function. However, Villa-

Abrille et al. have shown that the cardiac Anrep effect (delayed inotropic response to 

stretch), and stretch-dependent phosphorylation of ERK1/2 and the Na+/H+ exchanger, 

are dependent upon acute EGFR signalling (Villa-Abrille et al., 2010). Other studies 

report involvement of EGFR in myocardial strain-dependent signalling (Anderson et 

al., 2004; Duquesnes et al., 2009), while hypertrophic effects of Ang II appear to 

involve EGFR activation (Kagiyama et al., 2002).   

The EGFR also influences coronary vascular function: Muramatsu et al. 

(1985) identified cyclooxygenase dependent vasoconstrictor effects of EGF in 

different arteries, with subsequent studies revealing EGF-dependent constriction of 

coronary and other vessels via both prostaglandin dependent and independent 

mechanisms (Gan and Hollenberg, 1990; Hollenberg, 1994), a response potentially 

perturbed in and contributing to hypertension (Swaminathan and Sambhi, 1996; 

Florian and Watts, 1999). Hong et al. (2014) have also identified an essential role for 

EGFR activity in O2-induced contraction of the ductus arteriosus, involving EGFR 

transactivation via mitochondrial ROS, and downstream p38 MAPK and JNK 

signalling.   

 The clinical importance of the myocardial EGFR is evidenced by association 

between EGFR polymorphisms and both acute coronary syndrome (Gao et al., 2008) 

and cardiomyopathy (Zhou et al., 2009). Shifts in EGFR functionality may contribute 
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to pathogenesis of ischaemic heart disease and cardiomyopathies. This is consistent 

with the cardiotoxicity of anti-cancer therapies targeting EGFR tyrosine kinase (Yeh 

and Bickford, 2009), and cardiac dysfunction with EGFR (ErbB1) mutation 

(Rajagopalan et al., 2008) or inhibition (Barrick et al., 2008). 

 

3. The EGFR in Myocardial Stress Responses  

 Accumulating evidence indicates the EGFR is an important determinant of 

myocardial tolerance to ischaemia-reperfusion (I-R) injury, contributes to adaptive 

responses to ischaemic/hypoxic stress (exemplified in ischaemic preconditioning), 

and mediates protection via multiple GPCRs. Indeed, EGFR may serve as a signalling 

nexus in cardioprotection, raising the possibility of adverse impacts of ErbB-targeted 

anti-cancer therapies on myocardial responses to ischaemia/infarction and 

cardioprotective interventions. The advent of cell-type specific modulation of receptor 

activity opens a new avenue for potential therapeutic intervention, however a more 

nuanced understanding of EGFR activity in cardiac cell subtypes is required.  

3.1. Role of ErbB1 (and ErbB2) in Intrinsic Stress-Tolerance 

 Several studies support roles for EGFR ligands and ErbB1/ErbB2 in governing 

cardiomyocyte stress-tolerance. However, in many of these studies the specific 

importance of EGFR vs. other ErbB2 partners remains to be established. The 

cardioprotective or ‘anti-ischaemic’ effects of EGFR detailed below are mirrored in 

other tissues. For example, Zhou et al. (Zhou et al., 2015) report EGFR 

phosphorylation and transactivation during cerebral ischaemia-reperfusion, with 

PI3K/Akt activation reduced by either EGFR or MMP inhibitors (AG1478, GM6001).   

 Inhibition of endogenous ErbB2 causes dysfunction and exaggerates apoptosis 

in rat cardiomyocytes (Grazette et al., 2004; Gordon et al., 2009), These effects 
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appear to occur via a pathway involving Akt and PKC-(Gordon et al., 2009), and 

involve increased ROS production and expression of pro-apoptotic Bcl-sL (vs. 

decreased anti-apoptotic Bcl-xL), promoting apoptosis (Grazette et al., 2004). 

Mitochondria are a key target, with cyclosporine A and diazoxide (regulating pro- and 

anti-apoptotic mitochondrial channels, respectively) countering these deleterious 

impacts of ErbB2 blockade (Gordon et al., 2009). Moreover, mouse embryonic 

fibroblasts lacking Bax and Bak (mediators of the mitochondrial cell death pathway) 

are resistant to the detrimental effects of ErbB2 antibody. An insufficiency of HB-

EGF similarly promotes apoptosis in normoxic and hypoxic H9c2 myoblasts, 

enhancing ROS formation, caspase-3 and JNK activities (Uetani et al., 2009). Chronic 

treatment with inhibitors of EGFR or ErbB2 significantly worsens myocardial 

ischaemic tolerance in hearts from healthy rats, and also diabetic rats exhibiting 

reduced expression and phosphorylation of EGFR and ErbB2 (Akhtar et al., 2012). 

Increased Gq expression also promotes EGFR-dependent Akt phosphorylation in 

cardiomyocytes and limits apoptosis during metabolic stress (Howes et al., 2006).  

 These studies collectively support important roles for ErbB1 and/or the dimer 

partner ErbB2 in promoting myocyte survival under baseline and stressful conditions.  

However, the extent to which effects on stress-resistance involve shifts in intrinsic 

EGFR vs. ErbB4/NRG signalling remains to be detailed. Importantly, alterations in 

this signalling with disease and during stress may both impair intrinsic stress-

resistance and render cells refractory to protective stimuli.  

3.2. Role of the EGFR in GPCR-Triggered Cardioprotection 

 Transactivation of the EGFR has been implicated in cardiac protection via 

muscarinic, opioid, bradykinin, adrenergic, S1P, and adenosine receptors. Krieg et al. 

(2002) initially found that acetylcholine triggered myocardial EGFR and Akt 
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phosphorylation in an AG1478 sensitive manner, although cardiac protection 

appeared insensitive to the inhibitor. However, their subsequent work showed anti-

infarct effects of acetylcholine and the-opioid agonist DADLE were associated with 

EGFR phosphorylation, and blocked by metalloproteinase inhibition (Krieg et al., 

2004). The authors also reported acetylcholine-dependent ROS formation in 

cardiomyocytes was sensitive to metalloproteinase and HB-EGF inhibitors, and was 

similar to the effects of EGF and HB-EGF. More recent work supports an important 

role for EGFR transactivation in cardioprotection via muscarinic receptor agonism, 

activating PI3K/Akt signalling and inhibiting TNF-α mediated ER stress and 

apoptosis in H9c2 myoblasts (Miao et al., 2015) 

  Cao et al. (2005) confirmed EGFR involvement in opioid  (met-enkephalin) 

mediated protection of cardiomyocytes, in association with activation of downstream 

PI3K/Akt signalling. Similarly, Forster et al. (2007) showed that DADLE activates 

myocardial Akt and ERK1/2 and protects against I-R injury in an AG1478 and MMP 

inhibitor dependent manner. Subsequent work by Cohen et al. (2007) indicated that 

while the -opioid agonist DADLE and bradykinin both increase myocyte ROS 

production and protect against infarction, only the effects of DADLE were sensitive 

to MMP and HB-EGF inhibitors. Effects of DADLE on ROS formation and infarction 

were also blocked by a Src kinase inhibitor, with phosphorylation of ventricular Akt 

and ERK1/2 blocked by AG1478. In contrast to these findings, Methner and 

colleagues (2009) report that cardiac and mitochondrial protection via bradykinin is 

blocked by AG1478 or GM6001. The basis of these differing responses to bradykinin 

is unclear. 

 The β1-adrenoceptor has also been shown to induce EGFR transactivation/ 

internalisation and ERK1/2 activation in cardiomyocytes via a G protein independent 
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process of β-arrestin recruitment by G protein-coupled receptor kinases 5 and 6 

(Noma et al., 2007). Inhibition of this signalling path promoted myocyte apoptosis. A 

G protein-independent process of EGFR transactivation may also occur with some β-

blockers (e.g., alprenolol, carvedilol) in non-cardiac models (Kim et al., 2008), with 

these agents also known to protect against acute or long-term effects of myocardial I-

R. Grisanti et al. (2014) more recently identified EGFR involvement in 

compartment-specific signalling responses to the -agonist isoproterenol. 

Phosphorylation of ventricular ERK1/2 was EGFR-sensitive in all sub-cellular 

fractions studied, whereas Akt phosphorylation was EGFR-sensitive only within 

plasma membrane and nuclear fractions (results confirmed in neonatal 

cardiomyocytes). This  adrenoceptor mediated EGFR transactivation was shown to 

be protective, reducing apoptosis in serum-depleted myocytes. 

 Other cardioprotective GPCRs engage cardiac EGFR signalling.  For example, 

the sphingolipid S1P triggers GPCR-dependent protection, is implicated in ischaemic 

conditioning responses, and transactivates EGFR in heart (Hofmann et al., 2009) and 

vascular myocytes (Tanimoto et al., 2004). This transactivation appears essential to 

cardioprotection triggered by S1P receptor agonists. Cardiac protection and survival 

kinase activation in response to adenosine receptor agonism (and ischaemic 

preconditioning) is also associated with EGFR phosphorylation and blocked by EGFR, 

MMP or HB-EGF inhibitors (Williams-Pritchard et al., 2011). Finally, mechanical 

stress has been shown to trigger β-arrestin-dependent AT1 receptor activation, leading 

to EGFR transactivation and protection of cardiac myocytes from apoptosis (Rakesh 

et al., 2010).   

 These studies collectively reveal an important role for EGFR transactivation in 

cardioprotection via opioid, adenosine and S1P GPCRs, and also support protective 
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effects of AT1 and adrenergic receptor dependent EGFR transactivation. 

Involvement of EGFR in cardiac protection via acetylcholine and bradykinin remains 

to be more clearly established. This relatively broad-spectrum engagement of EGFR 

in different responses highlights a critical point of signalling convergence in 

cardioprotection – EGFR appears to be a key determinant of myocardial stress-

responses, and a potentially potent target for therapeutic cardioprotection.  

3.3. Role in Adaptive Protection - Ischaemic Preconditioning 

 Evidence of EGFR involvement in responses to putative GPCR triggers of 

ischaemic preconditioning, including adenosine (Williams-Pritchard et al., 2011), 

opioid (Krieg et al., 2004; Cohen et al., 2007; Forster et al., 2007), bradykinin (Cohen 

et al., 2007; Methner et al., 2009), S1P (Hofmann et al., 2009) and -adrenergic 

receptors (Noma et al., 2007; Grisanti et al., 2014), indirectly supports EGFR 

involvement in this protective response.  More specific analyses confirms an essential 

role for EGFR in preconditioning: chronic inhibition of EGFR with AG1478 

attenuates ischaemic preconditioning by 50% or more (Benter et al., 2005a); and acute 

inhibition of EGFR, MMP or HB-EGF negates protection via preconditioning, though 

no effects were observed on intrinsic I-R tolerance (Williams-Pritchard et al., 2011). 

Sensitivity to both GM6001 and CRM197 supports involvement of MMP-dependent 

HB-EGF shedding. On the other hand, Ichikawa et al. (Ichikawa et al., 2004) report a 

role for ADAM activity in tyrosine kinase dependent and PKC independent protection 

via ischaemic preconditioning, although AG1478 did not inhibit cardiac protection.  

 

 

 



 

 20 

3.4. Cardioprotection via Exogenous EGF 

  Effects of exogenous EGFR ligands confirm the cardioprotective functions of 

this receptor tyrosine kinase. Studies to date support protection via EGF, while TGF 

fails to protect against acute myocardial I-R injury (Manukyan et al., 2011), and 

exogenous HB-EGF has yet to be assessed. Injecting EGF (0.25 mg/kg) 20 min before 

exposing mice to the stress of restraint-and-cold exposure also reduces myocardial 

injury markers (Pareja et al., 2003), an effect abolished by AG1478. In isolated mouse 

hearts exogenous EGF protects against detrimental functional effects of continuous 

epinephrine stimulation (Lorita et al., 2002), with subsequent work showing EGF 

induces Tyr-phosphorylation of ErbB1 but not ErbB2, and protects against combined 

epinephrine/I-R injury (Lorita et al., 2009). These investigators also showed that EGF 

5 min before and throughout myocardial ischaemia improves contractile function and 

prevented post-ischaemic elevations in anaerobic metabolism and leakage of 

intracellular LDH (Lorita et al., 2010). More recently, Akhtar et al. (2012) found that 

EGF treatment improved the functional recovery of both healthy and diabetic rat 

hearts from I-R, with effects more pronounced in diabetic hearts exhibiting 

suppressed EGFR and ErbB2 expression/phosphorylation. Thus, activation of ErbB1, 

with either endogenous or exogenous ligand, protects against multiple forms of 

injurious cardiac insult. 

 Whether direct activation of the EGFR vs. GPCR-dependent transactivation 

generate similar or distinct myocardial outcomes is unclear. Studies to date have 

focussed on contractile outcomes and release of cytosolic enzymes as indicators of 

injury (and protection), with less attention to specific pathways of cell death. 

Qualitatively, the protective effects of EGF vary, including augmented post-ischaemic 

pressure development without change in diastolic dysfunction (Akhtar et al., 2012), or 
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improved  early but not late recovery of pressure development coupled with 

elimination of cell death, based on LDH release or myocyte viability (Lorita et al., 

2010). 

 

3.5. Influences of the ErbB2 Dimer Partner  

 Since ErbB2 is the preferred dimer partner for ErbB1, it is relevant to consider 

the potential protective actions of this protein together with those of ErbB1. However, 

this is complicated by the role of ErbB2 in neuregulin/ErbB4 signalling - altered 

expression or inhibition of ErbB2 is predicted to influence both EGFR and neuregulin 

responses.   

 Inhibition of cardiac ErbB2 activity (or endothelial NRG-1 expression) 

impairs functional recovery from cardiac ischaemia (Pentassuglia et al., 2009; Hedhli 

et al., 2011). Moreover, NRG-1 treatment is directly cardioprotective (Fang et al., 

2010), and also neuroprotective (Xu et al., 2005). There is also evidence NRG-1/ErbB 

signalling is necessary for myocardial adaptation to the physiological stress of 

pregnancy (Lemmens et al., 2011). Pentassuglia et al. (2009) report that neither 

ErbB1 or ErbB2 inhibitors induce myocyte death, however ErbB2 (but not ErbB1) 

inhibition causes myofibrillar structural damage (additive to that induced with 

doxorubicin), in association with impaired excitation-contraction coupling and 

decreased ERK1/2 phosphorylation). 

 Sun et al. (2014) show that knockout of Gab1, which is essential to ErbB 

signal transduction, worsens myocyte tolerance to I-R and oxidative stress 

(exaggerating caspase-3 activation and apoptosis, impairing Akt and MAPK 

activation), and that ErbB (or Src) kinase inhibition reduces Gab1 phosphorylation, 

Akt/MAPK activation and cell survival during oxidative stress. The ErbB isoforms 
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involved in these survival effects remain to be determined. Sysa-Shah and colleagues 

(2012) have shown that ErbB2 overexpression induces concentric cardiac hypertrophy 

(without heart failure) and increases susceptibility to adrenergic receptor induced 

arrhythmias. An anti-apoptotic shift in the ratio of Bcl-xS vs. Bcl-xL was also evident, 

together with activation of translational machinery (involving S6, 4E-BP1 and eIF4E). 

Whether this shift in apoptotic signalling would benefit during I-R is untested, though 

others link similar ErbB-dependent shifts in Bcl proteins to improved survival in 

hypoxia/I-R (Grazette et al., 2004).  

 

4. Molecular Basis of Cardioprotection Via EGFR Transactivation 

 Molecular mechanisms underlying cardiac protection distal to EGFR 

transactivation are not resolved. Studies of cardioprotective GPCR and 

preconditioning responses support transduction of protective signals via kinase 

(PI3K/Akt, ERK1/2, p70s6K, mTOR, PKC, PKG, PKA GSK3ß), NOS and ROS 

signalling, and modulation of distal effectors that include mitochondrial channels 

(mKATP, MPTP), gap junction, apoptotic and autophagic proteins (Hausenloy and 

Yellon, 2006; Heusch, 2015) (Figure 3). The JAK-STAT signalling path is also 

implicated. Studies focussed specifically on cardioprotective EGFR transactivation 

implicate Src tyrosine kinase (Cohen et al., 2007; Noma et al., 2007)  PKC (Zhang et 

al., 2015),  MMP and HB-EGF (Krieg et al., 2004; Cohen et al., 2007; Forster et al., 

2007; Noma et al., 2007; Methner et al., 2009; Williams-Pritchard et al., 2011) 

upstream of the EGFR, together with downstream contributions from PI3K/Akt (Cao 

et al., 2005; Forster et al., 2007; Methner et al., 2009; Akhtar et al., 2012; Grisanti et 

al., 2014), MAPK/ERK1/2 (Cao et al., 2005; Forster et al., 2007; Akhtar et al., 2012; 

Grisanti et al., 2014; Zhang et al., 2015), PKC (Cao et al., 2005), and CaMK II-
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dependent Ca2+ homeostasis (Benter et al., 2004). Studies examining the injurious 

effects of ErbB1 or ErbB2 inhibition/deletion also support involvement of ROS 

generation, mitochondrial channels and PKC (Gordon et al., 2009), and modulation of 

caspase-3 and pro- and anti-apoptotic Bcl proteins and JNK activity (Grazette et al., 

2004; Uetani et al., 2009; Grisanti et al., 2014). The precise roles of these mediators in 

cardiac protection awaits further analysis. For example, while Akt and ERK1/2 are 

both phospho-activated upon GPCR transactivation of the EGFR, studies confirm 

negative effects of PI3K yet not ERK1/2 inhibition on cardioprotective outcomes.  

4.1 G Proteins and Arrestins  

As noted above, multiple G protein dependent and independent modes of 

EGFR transactivation have been identified (see 1.1). However, the precise roles of 

these distinct processes in protecting myocardial cells are yet to be defined. 

Expression of G proteins influences EGFR activation, with Howes et al. (2006) 

demonstrating that Gq expression results in Src kinase and EGFR-dependent Akt 

phosphorylation in cardiomyocytes, limiting apoptosis during metabolic stress. 

Metalloproteases shedding mature EGFR ligands may also be a direct target of G 

proteins, as revealed in the recent study of Overland & Insel (2015).  

Specific ligand-dependent conformational changes in GPCRs may promote 

signalling via arrestins independently of G proteins. Several studies highlight G 

protein independent/arrestin dependent signalling in cardioprotective EGFR 

transactivation (Noma et al., 2007). Mechanical stretch has also been shown to trigger 

an AT1 receptor-mediated conformational change in -arrestin to selectively 

stimulate receptor signalling in the absence of G protein activation (Rakesh et al., 

2010). In contrast, protective -opioid receptor activation of kinase signalling appears 

to involve PKCdependent control of ligand shedding, and -arrestin2 recruitment 
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downstream of the EGFR (Zhang et al., 2015). Thus, -arrestins can function both at 

the level of the triggering GPCR and downstream of the activated EGFR in 

transduction of cardioprotection. 

4.2 ROS Signalling  

Signalling via ROS is implicated in cardioprotective transactivation responses 

(Krieg et al., 2004; Cohen et al., 2007), and appears to be downstream of Src, MMP, 

HB-EGF, and PI3K/Akt (Cohen et al., 2007). In terms of cardiac protection via GPCR 

agonism/ischaemic preconditioning, ROS generation (via NADPH oxidase activity, 

mitochondrial electron transport chain) has been localised both up- and downstream 

of mitochondrial KATP channels and PKC (Hausenloy and Yellon, 2006; Murphy and 

Steenbergen, 2008; Heusch, 2015). However, ROS are also important in MMP 

activation and EGFR ligand shedding (Wetzker and Bohmer, 2003). In cardiac 

fibroblasts, for example, ROS are localised upstream of MMP-dependent HB-EGF 

shedding (in transactivation via endothelin-1), facilitating HB-EGF activation of 

EGFR via inhibitory oxidation of Src homology 2-containing tyrosine phosphatase 

(Chen et al., 2006). This is consistent with evidence of ROS-dependent control of 

protein tyrosine phosphatase 1B activity (Salmeen et al., 2003; van Montfort et al., 

2003), known to dephosphorylate EGFR (together with insulin receptor kinase, JAK2 

and TYK2 kinases). Thus, ROS are involved at multiple levels, modifying MMP 

activity and EGFR phosphorylation status whilst also transducing downstream 

cardioprotective signalling. 

4.3 PI3K 

The heart expresses three major Class 1 PI3K isoforms - PI3K, PI3K and 

PI3K (Crackower et al., 2002). Class IA and IB PI3Ks regulate metabolism, survival, 

and growth/differentiation in cells including cardiomyocytes (Cantley, 2002; 
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Engelman et al., 2006). These isoforms differ functionally and structurally: class IA 

catalytic subunits (p110) complex with regulatory p85 and are activated by 

tyrosine kinase signals; class IB catalytic subunits (p110) lack a C-terminus binding 

domain for p85, instead associating with p101, and are activated by GPCRs. In terms 

of cardiac protection, canonical activators of both PI3K IA (EGF, insulin, IGF) and IB 

(adenosine, opioid, bradykinin) can induce tissue protection, though specific roles in 

different modes of cardioprotection remain to be fully elucidated.  

 Interestingly, cardioprotective responses involving EGFR transactivation are 

negated with deletion of GPCR-sensitive PI3Kγ. Knockout of PI3Kγ worsens 

myocardial infarction and impairs Akt activation (Haubner et al., 2010), confirming 

its importance to I-R tolerance (albeit apparently independent of catalytic kinase 

activity). Moreover, knockout negates ischaemic and adenosinergic preconditioning 

(Ban et al., 2008), responses shown to require EGFR transactivation (Benter et al., 

2004; Williams-Pritchard et al., 2011). On the other hand, PI3K appears key to 

protection via epoxyeicosatrienoic acid (Batchu et al., 2012) and ouabain (Duan et al., 

2015). Unexpectedly, expression of dominant negative PI3K improves cardiac 

functional tolerance to I-R (Ban et al., 2008), though this potentially reflects 

augmented signalling via PI3K, enhancing Akt and GSK3 phosphorylation. 

However, longer term outcomes from myocardial infarction (Lin et al., 2010) and 

pressure-overload (McMullen et al., 2003) are worsened. Collectively, data to date 

reveal different dependencies of cardioprotection on PI3K vs. PI3K, and a 

paradoxical dependence of adenosine and ischaemic preconditioning responses on 

both EGFR transactivation and GPCR-sensitive PI3Kγ.  

These data may reflect cross-talk between class IA and class IB isoforms 

during RTK transactivation via intracellular Src tyrosine kinase, MMP activation and 
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extracellular ligand release (Oudit et al., 2004). However, elimination of ischaemic 

preconditioning and adenosine protection via both PI3K knockout (Ban et al., 2008) 

and EGFR inhibition (Williams-Pritchard et al., 2011) suggests a critical role for 

RTK-dependent p110 rather than GPCR-coupled p110 (and/or compensatory 

changes in p110 on p110deletion in these protective responses (Ban et al., 2008)  

4.4 Protein Kinase B/Akt 

Activation of PI3K leads to Akt phosphorylation. Both Akt1 and Akt2 

isoforms are highly expressed in heart (Muslin and DeBosch, 2006), with Akt1 

essential to normal cardiac growth (Cho et al., 2001b) and physiological hypertrophy 

(DeBosch et al., 2006b), and Akt2 involved in insulin-regulated glucose homeostasis 

and cardiomyocyte survival (Cho et al., 2001a; Garofalo et al., 2003; Etzion et al., 

2010). Knockout of Akt2 results in severe hyperglycaemia (Cho et al., 2001a) and 

evidence of diabetic cardiomyopathy (Etzion et al., 2010). There is evidence 

cardioprotection involves specific Akt1 activation, with ischaemic preconditioning 

negated with Akt1 but not Akt2 deletion (Kunuthur et al., 2012). Other evidence 

supports Akt1-dependent inhibition of acute myocardial damage during I-R vs. a 

worsening of subsequent fibrosis and mortality (Ma, L. et al., 2014). Nonetheless, 

Akt2 has also been linked to apoptosis resistance in cardiomyocytes (DeBosch et al., 

2006a).  

There is little information regarding the Akt isoform specificity of cardiac 

EGFR (and PI3K vs. ) signalling. Certainly, the EGFR selectively engages distinct 

Akt isoforms in other cell types, and at different stages of the cell cycle. Studies in 

cancer cells reveal cell-specific effects of EGF on different Akt isoforms  (Okano et 

al., 2000; Grabinski et al., 2011; Khabele et al., 2014). Analysis of cell-cycle 
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dependent EGFR signalling reveals select activation of Akt2 and not Akt1 during 

mitosis (vs. both Akt1 and 2 activation in the interphase) (Wee et al., 2015). 

4.5 ERK1/2 

 While activation of EGFR consistently enhances phosphorylation of cardiac 

ERK1/2 (Gotoh et al., 1992; Duquesnes et al., 2009; Tilley et al., 2009; Villa-Abrille 

et al., 2010; Akhtar et al., 2012), the importance of this MAPK to associated 

cardioprotection remains unclear. A number of studies provide support for ERK1/2 

involvement in cardioprotection, whereas others report no role for the kinase in 

preconditioning and adenosine responses (Hausenloy and Yellon, 2006), both 

identified as EGFR-dependent stimuli. Few studies have tested the effects of ERK1/2 

(or upstream MEK) inhibition on EGFR-dependent protection. In studying the EGFR 

dependence of protection with met(5)-enkephalin, Cao et al. (2004) confirmed 

inhibition of both protection and ERK1/2 activation with EGFR, MAPK and MEK1/2 

(together with PI3K) inhibitors, whereas Grisanti et al. (2014) found the anti-

apoptotic effects of ß1-adrenergic receptor mediated EGFR transactivation are 

inhibited by a MEK or PI3K inhibitor, supporting ERK1/2 and PI3K involvement. 

Further analysis of ERK1/2 involvement in EGFR mediated cardioprotection is 

needed.  

4.6 PKC 

 Protein kinase C appears to be located both upstream of EGFR activation, 

modulating MMP cleavage of EGFR ligands and receptor activation (Zhang et al., 

2015), and downstream of the receptor in mediating cardiac protection (Cao et al., 

2005). The enzyme is widely implicated in protective responses to preconditioning 

and GPCR stimuli (including PKC- - , and ), though some controversy 

remains regarding the involvement and protective functions of PKC (Hausenloy and 
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Yellon, 2006). Within conventional protective signalling, PKC has been localised 

downstream of PI3K/Akt and NO/PKG and potentially both up- and downstream of 

mitochondrial KATP channels, with activation involving ROS generation (Hausenloy 

and Yellon, 2006; Murphy and Steenbergen, 2008; Heusch, 2015).  Studies of 

preconditioning also localise PKC upstream of RTK activity (Baines et al., 1998), 

consistent with a role in regulating EGFR function and binding.  

 In non-cardiac cell models, the phorbol ester PMA stimulates PKC-dependent 

phosphorylation of EGFR at threonine 654, and blocks EGF induced high-affinity 

internalisation of the receptor (Lund et al., 1990). Kodama et al (2002) report that 

both ET-1 and PKC activation induce EGFR and ERK1/2 phosphorylation in 

cardiomyocytes: down-regulating PKC inhibits EGFR phosphorylation, and AG1478 

partially inhibits PMA-dependent ERK1/2 phosphorylation while strongly inhibiting 

ET-1 dependent ERK1/2 phosphorylation. More recent work supports specific 

involvement of PKC- translocation in regulating metalloprotease activity (Zhang et 

al., 2015), and there is also evidence PKC and PKC act in parallel to regulate 

ADAM activity and cell surface HB-EGF levels, respectively (Kveiborg et al., 2011).  

Studies of ErbB1 or ErbB2 inhibition/deletion in cardiac tissue also support PKC 

involvement in protective signalling (Gordon et al., 2009). Additionlly, interaction of 

ouabain with cardiomyocyte Na+/K+ ATPase triggers EGFR transactivation and 

Ras/ERK1/2 activation (Haas et al., 2000), with PKC essential to this signalling 

(Mohammadi et al., 2001), though whether up- and/or downstream of EGFR is 

untested.  

 In contrast to these findings, several studies assessing EGF activation of 

myocyte signalling report no role for PKC in the EGFR response (despite ability of 

PKC activators to induce similar outcomes). Quintaje et al. (1998) showed both PMA 
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and EGF activate cardiomyocyte ERK1/2, however PKC effects were insensitive to 

RTK inhibitors and the EGF response appeared PKC-independent. Clerk et al. 2006 

found that EGF increases cardiomyocyte Ras.GTP and activates c-Raf and ERK1/2 

phosphorylation independently of PKC. Similarly, there is evidence that EGF 

activation of ERK1/2 in non-cardiac muscle is PKC-independent and Ras-dependent 

(Robin et al., 2004). These findings suggest that direct ligation of the EGFR removes 

the PKC dependence of signalling, implicating upstream functions of the kinase in 

regulating ligand levels and EGFR phosphorylation.  

 

5. Impacts of Cardiac Disease/Co-Morbid States 

Relatively little is known regarding impacts of disease states on cardiac ErbB1 

expression and function, with studies to date focussed on ErbB2 and ErB4. While we 

briefly review effects of individual disease states on cardiac EGFR signalling, it is 

important to note that many of these may co-exist, for example within the so-called 

metabolic syndrome. The interactions between these conditions, and whether 

potentially synergistic impacts on EGFR signalling might arise, are unclear.   

5.1. Ischaemia and Ischaemic Heart Disease 

 Ischaemic or hypoxic insult may impair myocardial ErbB expression and 

signalling. Proteosomal degradation of the dimer partner ErbB2 is limited by the 

ATP-sensitive chaperone function of Hsp90 (Xu et al., 2001), thus reductions in 

cellular ATP result in ErbB2 dissociation and degradation (Peng et al., 2005). 

Myocyte ErbB2 levels have been shown to decline with metabolic stress (glycolytic 

or mitochondrial inhibition) associated with ATP depletion (Peng et al., 2005) and 

hypoxia (Viswanath et al., 2011). Such findings support negative impacts of 

ischaemic/hypoxic stress on ErbB2 expression and thereby EGFR functionality. 
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Indeed, levels of ErbB2 are decreased in an animal model of ischaemic heart disease 

as well as in human ischaemic cardiomyopathy (Gordon et al., 2009). The latter 

investigators went on to demonstrate increased ROS generation and death in 

myocytes subjected to ErbB2 inhibition. Bodiga et al. (2015) report that ErbB1 and 

ErbB2 are the predominant EGFR members expressed in H9c2 myoblasts, as in intact 

heart (Zhao et al., 1998), and are differentially influenced by hypoxia-reoxygenation: 

ErbB1 mRNA was up-regulated and ErbB2 mRNA down-regulated with increasing 

hypoxic exposure. These shifts in ErbB expression are in line with changes observed 

in hypoxic myocardium of patients admitted for coronary artery bypass graft (Munk et 

al., 2012).  

5.2. Hypertrophy/Heart Failure 

Cardiac ErbB2 and ErbB4 mRNA and protein levels increase with ventricular 

pressure overload during compensatory cardiac hypertrophy in mouse models, yet 

decline on transition to heart failure (Rohrbach et al., 1999). Subsequent work from 

these investigators showed reduced ErbB2 and ErbB4 expression and activity in 

patients with advanced heart failure (Rohrbach et al., 2005). Interestingly, Uray et al 

(2002) found that ErbB2 mRNA was up-regulated following ventricular unloading in 

heart failure patients. Such changes may be relevant to myocardial outcomes and 

impaired stress-tolerance and cardioprotection in models of hypertension, hypertrophy 

and heart failure (Ferdinandy et al., 2014). 
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5.3. Diabetes 

 Limited and conflicting information exists regarding impacts of diabetes on 

myocardial EGFR signalling. Increased EGFR activity is reported in mice with 

streptozotocin induced type I diabetes, concomitant with ER stress, cardiac fibrosis 

and collagen deposition (Galan et al., 2012; Liang et al., 2015). Systemic inhibition of 

EGFR mitigated these effects of diabetes, though the high dose of AG1478 (10 

mg/kg/day) also reduced the extent of hyperglycemia, complicating interpretation. In 

contrast, ErbB expression and EGFR phosphorylation is reportedly depressed in 

streptozotocin-dependent diabetic rats, in association with worsened myocardial I-R 

tolerance (Akhtar et al., 2012). In this study, systemic EGFR antagonism with 

AG1478 further aggravated I-R injury while EGFR agonism enhanced ischaemic 

tolerance. Others report reduced expression of ErbB2 and ErbB4 in rats with diabetic 

cardiomyopathy (Gui et al., 2012).  

 There is also evidence from studies of experimental diabetes that up-regulation 

of EGFR signalling (involving transcriptional induction and increased RTK activity) 

contributes to vascular dysfunction, which may be reversed with systemic receptor 

antagonism (Benter et al., 2005b; Benter et al., 2005c). Phosphorylation of vascular 

EGFR is increased in the murine db/db model of type II diabetes, in association with 

reduced eNOS expression and coronary vascular dysfunction  (Belmadani et al., 

2008), effects countered by inhibition of EGFR signalling. Inhibition of EGFR also 

counters abnormal vasoconstrictor/dilator responses in streptozotocin-dependent type 

I diabetic rats (Benter et al., 2005b; Yousif et al., 2005). Abnormal myogenic tone in 

diabetes may also involve EGFR (Matrougui, 2010), and vascular transcriptomic 

changes in type I diabetic rats are suppressed by EGFR inhibition (Benter et al., 2009).  
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5.4. Obesity/Dyslipidemia 

 There is limited evidence EGFR is perturbed and may be a useful target in 

obesity-related cardiovascular disease. Li et al. (2016) found that EGFR inhibitors 

reduce myocardial inflammation, fibrosis, apoptosis and dysfunction in two murine 

obesity models, together with inhibiting palmitate-dependent inflammation and 

apoptosis in H9c2 cells. This is consistent with saturated fatty acid inhibition of NRG-

1b activation of myocyte PI3K/Akt signalling, an effect countered by a mono-

unsaturated fatty acid (oleate) (Miller et al., 2009). Moreover, the endogenous mono-

unsaturated fatty acid oleylethanolamide has been shown to activate ErbB2 and RAS-

ERK1/2 signalling and improve cardiac function in doxorubicin-induced heart failure 

(Su et al., 2006). Thus, shifts in myocardial saturated vs. unsaturated fatty acids, as 

may occur with metabolic syndrome/hyperlipidaemia, may perturb normal myocardial 

EGFR signalling, though further work is warranted in terms of impacts on 

ErbB1/ErbB2 expression and function. 

 

6. Understanding complexities in EGFR modulation 

 Despite a weight of evidence supporting cardioprotective outcomes with 

EGFR activity, there is also evidence for potentially detrimental impacts of this 

receptor in myocardial I-R. Feng et al. (2012) reported that the EGFR kinase inhibitor 

AG556, and EGFR siRNA significantly suppresses post-ischaemic arrhythmias. 

Inhibition of EGFR with cetuximab protects against cardiac rupture and improves 

survival post-infarction (Hammoud et al., 2011). Though in a model of endotoxemia, 

EGFR exerts injurious cardiac effects, promoting myocardial TNF production and 

contractile dysfunction (Sun et al., 2015). Since TNF worsens outcomes from 

myocardial I-R, such effects of EGFR might prove detrimental in the setting of 

myocardial I-R.  
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Reports of benefit via EGFR inhibition may reflect the importance of maintaining 

a normal range of receptor activity. Over-activity of EGFR in diabetes/metabolic 

disorders, for example, may exaggerate inflammation and oxidative stress in cardiac 

(Liang et al., 2015; Li et al., 2016) and other tissues (Fang et al., 2016). Inhibitors of 

EGFR have also been shown to reduce insulin-resistance (Prada et al., 2009), 

atherosclerosis (Gao et al., 2013) and vascular dysfunction in (Choi et al., 2012) in 

models of obesity, dyslipidemia and diabetes. Thus, dysregulated or excess EGFR 

signaling may promote some of the cardiac consequences of metabolic disorders. 

Indeed, excessive EGFR signaling may contribute to cardiac hypertrophy in chronic 

kidney disease and other scenarios, whereas under-activity may impair tissue stress-

resistance. Distinct cardiac and vascular effects of this receptor system may also be 

relevant – cardiac hypertrophic outcomes may well reflect effects of EGFR on 

vascular control and blood pressure (Schreier et al., 2013; Schreier et al., 2016). 

 

7. Summary and Conclusions 

 

Despite the ongoing focus on ErbB signalling in cardiac development and 

hypertrophy, increasing evidence points to a key role for EGFR signalling in 

governing intrinsic myocardial stress-resistance and cardioprotective responses to 

diverse protective stimuli. Multiple GPCRs and ischaemic preconditioning stimuli 

appear to involve essential EGFR transactivation. The mechanistic details of this key 

signalling axis await further delineation. Questions include the identity of 

metalloproteases involved and the basis of their control, the roles of G protein vs. -

arrestin dependent mechanisms in cardioprotective EGFR signalling, the relative roles 

of PI3K and Akt isoforms in transducing protective signalling, the relative protective 

functionalities of ErbB1/1 vs. ErbB1/2 dimers, and the potential roles of altered 

neuregulin/ErbB4 vs. ErbB1 signalling in the detrimental impacts of ErbB2 inhibition. 
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Furthermore, how age, disease and infarction impact protective EGFR signalling 

requires specific study - shifts with age and disease may negatively impact myocardial 

stress-tolerance and impair our capacity to protect the diseased heart via conventional 

conditioning stimuli. 
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Figure 1:  ErbB1 structure and dimerisation. ErbB1 consist of: an extracellular domain containing 

2 leucine-rich (LR) ligand binding domains (I and III)  and 2 cysteine-rich (CR) regulatory 

domains (II and IV). ErbB2 lacks functional ligand binding domains. A transmembrane region 

connects to the intracellular domain, containing a short juxtamembrane sequence, dual protein 

tyrosine kinase sub-domains (smaller amino-terminal lobe – N; larger carboxyl-terminal lobe - C), 

and a non-catalytic C-terminal region containing regulatory Tyr-residues (Y) phosphorylated upon 

receptor activation. Ligands bind with low affinity to domains I and III on an ErbB1 monomer, 

inducing a conformational change that allows high affinity ligand binding to both sub-domains. 

The molecular tether between domain II and IV is broken, exposing a ‘dimerisation arm’ that can 

interact with another receptor arm to induce dimerisation. 
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Figure 2: GPCR transactivation of EGFR signalling via G protein dependent and independent 

mechanisms. Differing G protein dependent and independent processes may trigger EGFR ligand 

shedding and EGFR activation. G protein dependent transactivation involves conventional (e.g., 

Ca2+, PKC, ROS) and unconventional mediators (TRIO, BMX, CHKA) that modulate the activity 

of metalloproteases (and the EGFR). Activation of the EGFR results in PI3K/Akt and ERK1/2 

phospho-activation.    
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Figure 3:  Cardioprotective signalling implicated in EGFR-dependent cardioprotective responses. 

A generalised scheme of kinase signalling and cardioprotective effectors implicated in GPCR and 

ischaemic preconditioning responses is shown. Red highlighted text refers to mediators directly 

implicated in studies of EGFR responses. Activation of PI3K/AKT, eNOS, PKG and PKC impacts 

on mitochondrial ATP-sensitive K+ channel (mitoKATP) and mitochondrial permeability transition 

pore (mPTP) function, modifying mitochondrial ROS generation. ROS in turn influence a range of 

kinases mediating varied protective effects, including modulation of mPTP and mitoKATP function, 

gap junctional proteins (CX43) and function, oxidant stress, Ca2+ overload and apoptotic 

signalling. Evidence also implicates GPCR coupled PKA activity, and JAK-STAT signalling in 

conditioning/cardioprotective responses. Delayed protection may involve transcriptional induction 

of COX, iNOS and other mediators. Not shown are autophagy and mitochondrial fission/fusion 

paths, also implicated in cardioprotection.  

 


