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Abstract 16 

 17 
Recent studies report that 35% of women are either overweight or obese at 18 

reproductive age. The placenta continuously releases exosomes across gestation and 19 

their concentration is higher in pregnancy complications. While there is considerable 20 

interest in elucidating the role of exosomes during gestation, important questions 21 

remain to be answered: i) Does maternal BMI affect the exosomal profile across 22 

gestation? and ii) What is the contribution of placenta-derived exosomes to the total 23 

number of exosomes present in maternal plasma across gestation?. Plasma samples 24 

were classified according to the maternal BMI into three groups (n=15 per group): 25 

Lean, overweight, and obese. Total exosomes and specific placenta-derived exosomes 26 

were determined by Nanoparticle Tracking Analysis (NanoSight™) using quantum 27 

dots coupled with CD63 or PLAP antibodies. The effect of exosomes on cytokine (IL-28 

6, IL-8, IL-10 and TNF-α) release from endothelial cells was established by cytokine 29 

array analysis (Bioplex-200). The total number of exosomes present in maternal 30 

circulation was strongly correlated with maternal BMI. Between ~12% and ~25% of 31 

circulating exosomes in maternal blood are of placental origin during gestation, and 32 

the contribution of placental exosomes to the total exosomal population decreases 33 

with higher maternal BMI across gestation. Exosomes increase IL-6, IL-8 and TNF-α 34 

release from endothelial cells, an effect even higher when exosomes were isolated 35 

from obese women compared to lean and overweight. This study established that 36 

maternal BMI is a factor that explains a significant component of the variation in the 37 

exosomes data. Exosomes may contribute to the maternal systemic inflammation 38 

during pregnancy. 39 

 40 
 41 
 42 
  43 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT
 3

Background 44 
 45 
Obesity is one of the largest and most serious health issues we face today [1]. The 46 

Centers for Disease Control and Prevention has reported that in the 2011-2012 period 47 

over 35% of adults 20 years and over were considered obese, and 69% were 48 

considered either obese or overweight. In the USA, about 1 in 3 women of 49 

reproductive age is obese and the numbers are steadily increasing [2]. This poses a 50 

serious problem as studies have shown that obesity is linked to complications for 51 

pregnant women and their babies, including metabolic syndrome [3]. For the women, 52 

obesity may result in induced preterm delivery, gestational diabetes, miscarriages, and 53 

preeclampsia, while for the babies obesity in the mother may result in complications 54 

such as fetal death and birth defects [4-7].  55 

Maternal health and microenvironment have direct and significant impacts on the 56 

fetus during development as well as an impact on subsequent adult health. The 57 

maternal microenvironment is influenced by a number of factors, with the placenta 58 

being a unique contributor. Interestingly, women with gestational diabetes have a 59 

higher probability of having a large placenta, a phenomenon even higher in obese 60 

women [8]. Moreover, placental efficiency (ratio of fetal to placental weight) is lower 61 

in overweight and obese women compared to lean women [9]. These data suggest that 62 

maternal metabolic status affects placental function and may modify the release of 63 

placental factors into maternal circulation. The placenta releases a wide range of 64 

molecules, including hormones, cytokines, and extracellular vesicles (EVs). 65 

 66 

Recently, much attention has focused on the role of placenta-derived EVs during 67 

gestation [10] and specifically, on exosomes [11]. Exosomes are membrane-bound 68 

nanovesicles of around 100 nm diameter that transport molecular signals (consisting 69 
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of proteins, bioactive lipids, and RNAs) between cells; they are released from a wide 70 

range of cells, including the human placenta. Exosomes are of endosomal origin and 71 

formed by the inward budding of multivesicular bodies (MVB) and are released to the 72 

extracellular environment by the fusion of MVB with the plasmatic membrane at the 73 

end of the endocytic-recycling pathway. As such, they are enriched with late 74 

endosomal membrane markers, including, Tsg101 and enriched in members of the 75 

tetraspanin family such as CD63, CD9, and CD81 [12]. 76 

 77 

Exosomal signaling represents an integral pathway mediating intercellular 78 

communication.  During pregnancy, the placenta releases exosomes into the maternal 79 

circulation from as early as 6 weeks of gestation [13] and the concentration of 80 

placenta-derived exosomes during third trimester is positively correlated with 81 

placental weight at delivery under normal gestation [14]. Interestingly, the release of 82 

exosomes from trophoblast cells at early gestation (i.e. ~10 weeks) is regulated by the 83 

microenvironment milieu, including oxygen tension and glucose concentration [15-84 

17]. Recent studies highlight the putative utility of exosomes for the diagnosis of 85 

disease and the onset of complication of pregnancies. For example, the gestational 86 

profile of exosomes concentration in plasma is different in gestational diabetes 87 

compared to normal pregnancy [18]. Taken together, these results support the 88 

hypothesis that placenta-derived exosomes are regulated by environmental factors, 89 

and may play a role in feto-maternal communication under both normal and 90 

pathological conditions. 91 

Maternal obesity is associated with endothelial cell dysfunction [19]. Endothelial cell 92 

dysfunction can be related to obesity through factors such as hormones, fat-derived 93 

metabolic products, as well as cytokines. These adipocyte-derived products can have 94 
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an impact on vascular function as well as inducing insulin resistance. Free fatty acids 95 

have been associated with impaired vascular reactivity, an indicator of endothelial 96 

dysfunction [20]. TNF-α is another factor that may play a role in endothelial cell 97 

dysfunction; however, the mechanism is still unclear [21]. Many studies focusing on 98 

cytokines IL-1 and IL-6 have related them to endothelial dysfunction as well as 99 

subclinical inflammation [22]. For instance, IL-6 stimulates the production of C-100 

reactive protein (CRP) in the liver, which leads to inflammation and impacts the 101 

vascular wall. Steinberg et al. showed that subjects with Type 2 DM has the same 102 

degree of impairment in vascular reactivity and blood flow as compared with obese 103 

subjects with normal glucose tolerance and insulin resistance [23]. Interestingly, we 104 

have previously described that exosomes present in maternal circulation regulates the 105 

function of endothelial cells including cell migration [14] and secretion of cytokines 106 

[18], however, the impact of maternal BMI on the effect of exosomes on endothelial 107 

cells has not been established. 108 

There is now increasing evidence that maternal BMI alters the placental function [24] 109 

and that pregnancy is associated with maternal systemic inflammation, a state even 110 

higher in obese women [24]. There are no studies, however, that have defined the 111 

relationship between maternal BMI and placenta-derived exosome concentration 112 

during gestation. Thus, the aim of this study was to establish the relationship between 113 

maternal Body Mass Index (BMI) and exosomes present in maternal circulation 114 

during gestation. Moreover, we established the contribution of placental exosomes to 115 

the total exosomes concentration present in maternal circulation during gestation and 116 

the effect of exosomes on cytokines released from endothelial cells. The data of this 117 

study established that maternal BMI is a factor that explains a significant component 118 
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of the variation in the total exosomes and placenta-derived exosomes concentration 119 

present in maternal circulation during gestation. 120 

 121 
 122 
 123 
 124 

Methods 125 

 126 

Study group and samples 127 

A time-series study design was used to establish the relationship between 128 

maternal BMI and exosome concentration during pregnancy.  Women were recruited 129 

between January 2013 and December 2013 with informed written consent, at the 130 

Ochsner Baptist Medical Center (New Orleans, USA). Blood samples (BD 131 

Vacutainer® PLUS Tubes EDTA) were obtained from pregnant women at different 132 

times of gestation (10-38 weeks) and classified according to maternal BMI into lean 133 

(n=15, BMI 18.5-24.9 Kg/m2), overweight (OW, n=15, BMI 25-29.9 Kg/m2), and 134 

obese (n=15, BMI >30 Kg/m2) at the moment of sample collection. Gestational age 135 

was calculated from the first day of the last menstrual period. All pregnant women 136 

included in this study were normotensive and without intrauterine infection or any 137 

other medical or obstetric complications. Plasma samples were obtained in 138 

accordance with the declaration of Helsinki and approved by the Ethics Committee of 139 

The University of Queensland and the Ochsner Medical Center (New Orleans, USA). 140 

Plasma was separated from whole blood by centrifugation (2000g x 10 min at Room 141 

temperature) and stored at -80oC until analyses.  All experimental procedures were 142 

conducted within an ISO17025 accredited (National Association of Testing 143 

Authorities, Australia) research facility.  All data were recorded within a 21 Code of 144 

Federal Regulation (CFR) part 11 compliant electronic laboratory notebook (Lab 145 
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Archives, Carlsbad, CA 92008, USA). The schematic in Figure S1 summarizes the 146 

experimental design used in this study 147 

 148 

 149 

Isolation of exosomes from maternal circulation  150 

Exosomes were isolated from plasma (1 ml) as previously described [13, 14, 18] 151 

(Figure S2). The 100,000 g pellet was resuspended in 500 µl PBS and stored -80oC 152 

until exosome purification using a discontinuous iodixanol gradient (Supplemental 153 

Material and Methods). We have previously confirmed the stability of exosomes after 154 

a freeze and thaw cycles using fresh and frozen samples [13]. 155 

 156 

 157 

Quantification of total exosomes and placenta-derived exosomes by Nanoparticle 158 

Tracking Analysis (NTA) 159 

The concentration of total and placenta-derived exosomes in maternal plasma was 160 

quantified using CD63 and Placental Alkaline Phosphatase (PLAP) by 161 

immunofluorescent NTA. PLAP is a syncytiotrophoblast-specific marker, therefore, 162 

exosomes derived from placental origin are positive for PLAP [14]. Qdots (Qdot® 163 

nanocrystals or R-PE) were conjugated to anti-CD63, anti-PLAP or IgG1 isotype 164 

control antibody (IgG1 sc-34665, Santa Cruz Biotechnology) with a SiteClick Qdot 165 

605 Antibody Conjugation Kit (Life Technologies) according to the manufacturer’s 166 

instructions as previously described [25]. Exosomes were diluted in PBS and 167 

incubated with FcR blocking reagent (10 µl, 10 min at 40C) (MACS Miltenyi Biotec), 168 

followed by incubation with anti-CD63-Qdot605 or anti-PLAP-Qdot605 or IgG1-169 

Qdot605 (10 µl, 1:100) for 30 min in the dark at room temperature. Samples were 170 

then diluted to 500 µl with PBS and analyzed using the NanoSight NS500 instrument 171 
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and NTA software. Samples were analyzed using fluorescence mode (i.e. camera 172 

level 9, shutter speed 11.25 ms and slider gain 250). Five videos x 60 sec each were 173 

captured for each sample and analyzed. The specificity of the Qdot-PLAP in binding 174 

only exosomes from the placenta was measured using exosomes isolated from first 175 

trimester trophoblast cells (positive control; Supplemental Material and Methods) and 176 

exosomes isolated from plasma obtained from non-pregnant women (negative 177 

control). 178 

 179 

Endothelial cells isolation 180 

Primary human umbilical vein endothelial cells (HUVEC) were isolated by enzymatic 181 

digestion as previously described [17] and used as an in vitro model to determine the 182 

effect of BMI on the internalization of exosomes and cytokine release (Supplemental 183 

Material and Methods). HUVEC were isolated from placenta obtained from term 184 

pregnancies (>37 weeks). To discard the effect of maternal BMI on the response of 185 

HUVEC to exosomes, only HUVEC from placenta obtained from lean women (BMI 186 

18.5-24.9 Kg/m2) were used in this study. 187 

 188 

Effect of BMI on exosome-induced cytokine release from endothelial cells  189 

To determine the effect of BMI on exosome-induced cytokine release, exosomes (100 190 

µg protein/ml which is equivalent to 5 x 108 vesicles per ml) were incubated with 191 

primary human umbilical vein endothelial cells (HUVECs) in medium containing 192 

5mM D-glucose. The experiments were performed at an atmospheric pressure of 8% 193 

O2 to mimic the physiological conditions (oxygen tension in human blood is normally 194 

between 10% to 13%[26]). The association between total number of exosomes and 195 

protein concentration was determined by correlation analysis (Pearson r = 0.99; R2 = 196 
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0.98; ***p value = 0.0010). Cytokine release (defined as the accumulation of 197 

immuno-reactive cytokine in cell conditioned medium) was quantified using protein 198 

solution arrays. Data are expressed as cytokine pg /103 cells/24h and normalized to 199 

the level of cytokines in cell-conditioned media without exosomes (control). 200 

 201 

Internalization of Exosomes  202 

The internalization of exosomes by endothelial cells was assessed as previously 203 

described [27] using fluorescently labeled (PKH67 green, Sigma-Aldrich) exosomes. 204 

A live-cell imaging system (The Incucyte FLR fluorescent) was used for continuous 205 

tracking of exosome internalisation in endothelial cells (Supplemental Material and 206 

Methods).  207 

 208 

Statistical analysis  209 

The relationship between maternal BMI and exosome concentration present in plasma 210 

was assessed using 2-way ANOVA, with the variance partitioned between gestational 211 

age and maternal BMI, thus, maternal BMI was treated as an independent factor. In 212 

this study, we did not find a statistically significant association between gestational 213 

age and maternal BMI (p>0.05; Supplemental material Figure S3), therefore, multiple 214 

regression analyses of 3 continuous variables (i.e. dependent variable: Exosomes; 215 

independent variables: gestational age and maternal BMI) was also used. Statistical 216 

significance was defined as at least p <0.05.  Statistical analyses were performed 217 

using commercially available packages (Stata 11, StatCorp, College Station, Texas 218 

 USA and Prism 6, GraphPad Inc, La Jolla, CA 92037 USA).  219 

 220 

Results  221 

 222 
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Exosome isolation and characterization.  223 

The characteristics of exosomes isolated and purified using a well-established and 224 

validated method are presented in Supplemental Figure S2.  Nanoparticle tracking 225 

analysis identified particles with sizes of ~100 nm (Figure 1A) without significant 226 

differences between Lean, OW, and obese women.  Morphological analysis identified 227 

circulate shape characteristics of exosomes (Figure 1B) and enrichment of the CD63 228 

protein abundance (Figure 1C). The total number of particles was quantified under 229 

light scatter mode and the vesicles positive for CD63 (enriched marker associated 230 

with exosomes) and for PLAP (placental origin) were quantified under fluorescence 231 

mode using nanocrystals (Qdot) coupled with CD63 or PLAP, respectively. No effect 232 

on the size distribution of exosomes present in maternal circulation was identified in 233 

light scattering mode or fluorescence mode (i.e. CD63+ or PLAP+), showing that the 234 

exosome-Qdot binding did not affect the vesicles characteristics. A similar number of 235 

particles were identified in light scatter in the absence and in the presence of Qdot-236 

IgG (~90% i.e. nonspecific binding of ~10%). The percent of vesicles positive for 237 

CD63 in the total vesicle population (defined as total vesicles in light scatter mode) 238 

was 88 ± 8.9 % (Figure 1 D), indicating that the majority of the isolated vesicles are 239 

positive for CD63. The specificity of Qdot-PLAP in binding only vesicles PLAP 240 

positive was evaluated using exosomes isolated from syncytiotrophoblast (ST) cells 241 

and exosomes isolated from non-pregnant women (Figure 1E and F). No significant 242 

differences were obtained between the quantification exosomes from ST in light 243 

scatter and fluorescence mode (Qdot-PLAP), indicating that the binding was over 244 

90%. On the other hand, particles positive for PLAP were not found in exosomes 245 

isolated from plasma obtained from non-pregnant women (<5% = unspecific 246 

binding).    247 
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 248 

Relationship between maternal BMI and exosomes. 249 

This study sample consisted of 45 pregnant women. These women were categorized 250 

according to their BMI into lean (reference group), OW, and obese. Clinical 251 

characteristics of the patients are present in Table 1. 252 

Pooled exosome-containing fractions (i.e. fractions 5 to 8; Supplemental material 253 

Figure S2) were further characterized by determining the total number of exosomes 254 

and PLAP exosomes present in maternal circulation across gestation (Figure 2).  The 255 

relationship between maternal BMI and gestational age variation in plasma exosome 256 

number and placental exosomes were analyzed by two-way ANOVA with the 257 

variance partitioned between gestational age and BMI.  Significant effects of 258 

gestational age and maternal BMI were identified (p<0.005) (Figure 2). Linear 259 

regression analysis showed that both total exosomes and placental exosomes 260 

increased progressively across gestation from 10 to 38 weeks, and this was 261 

independent of the maternal BMI. (Figure 2A and B).  The slopes of the regression 262 

lines (± SD) for exosome concentration per gestational age data for lean and OW 263 

women were 4.7 x 107 ± 3.3 x 106 and 4.2 x 107 ± 9.2 x 106, respectively; and 264 

significantly different (p <0.001) from the slope for obese women  (6.3 x 107 ± 1.4 x 265 

107). The slopes of the regression lines (± SD) for placental exosomes concentration x 266 

gestational age data for lean, OW women were 9.2 x 106 ± 5.7 x 105 and 7.2 x 106 ± 267 

1.5 x 106, respectively; and significantly different (p <0.001) than the slope for obese 268 

women (1.3 x 107 ± 2.9 x 106). The relationship between maternal BMI and exosomes 269 

present in maternal circulation is presented in Figure 3. Interestingly, the total number 270 

of exosomes present in maternal circulation was strongly correlated with maternal 271 

BMI (Figure 3A). Placenta-derived exosomes were positively correlated with 272 

maternal BMI, but without a statistical significant difference (p=0.135) (Figure 3B).   273 
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  274 

Contribution of placental-derived exosomes to total exosomes present in 275 

maternal plasma across gestation. 276 

Linear regression analysis showed that the percentage of placental exosomes present 277 

in maternal circulation negatively correlated with maternal BMI (Figure 4A). We then 278 

determined the variation in the contribution of placenta-derived exosomes in maternal 279 

circulation during gestation (Figure 4B). The contribution of placenta-derived 280 

exosomes increases with gestational age (p<0.05), however, we did not find a 281 

correlation between placenta-derived exosomes in maternal circulation with 282 

gestational age in OW and obese women. No significant relationship between 283 

exosomes (total or placenta-derived) and fetal sex has been found. 284 

 285 

Effect of exosomes on cytokine release from endothelial cells 286 

Exosomes increase IL-6, IL-8, and TNF-α release from endothelial cells in all the 287 

conditions studied and were significantly higher when exosomes were isolated from 288 

obese women (Figure 5). Interestingly, a positive correlation (p<0.05) was found 289 

between cytokine release and gestational age (at the moment of sample collection) for 290 

IL-6 (lean and obese) and TNF-α (lean and obese). Interestingly, a negative 291 

correlation was found between IL-6 and gestational age using exosomes from obese 292 

pregnant women (Figure 5A, C, E). No effect of exosomes (lean, OW or obese) on 293 

IL-10 release was identified (Figure 5G and H).  The effect of exosomes (average 294 

combined gestational age) on IL-6 release was 2.0 ± 0.4, 1.6 ± 0.7, and 3.3 ± 1.3 fold 295 

higher compared to the control (without exosomes) for lean, OW, and obese, 296 

respectively (Figure 5B), on TNF-α release was 2.3 ± 0.5, 3.8 ± 0.9, and 4.4 ± 1.0 fold 297 

higher compared to the control (without exosomes) for lean, OW, and obese, 298 

respectively (Figure 5D) and on IL-8 release, was 1.3 ± 0.3, 1.8 ± 0.3, and 2.8 ± 0.3 299 
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fold higher when compared to the control (without exosomes) for lean, OW, and 300 

obese, respectively (Figure 5F). 301 

 302 

Finally, the internalization of exosomes labeled with PKH67 (green) in endothelial 303 

cells was visualized and quantified using fluorescence microscopy and real time cell 304 

imaging (The IncuCyte,), respectively (Figure S4). Exosome uptake by endothelial 305 

cells was observed in a time-dependent manner with the maximum at 24 h. The rate 306 

of exosome uptake was compared using the half-maximal stimulatory time (ST50). We 307 

did not find differences in the ST50 for the exosomes internalization between 308 

exosomes isolated from lean, OW, and obese women. 309 

 310 

 311 

 312 

 313 

Discussion 314 

 315 

The field of exosomes-mediated cell-to-cell communication is a burgeoning field and 316 

may provide unique insights into the aetiology of disease, early detection, and 317 

treatment monitoring. Excessive weight and obesity are recognized as important 318 

public health issues worldwide; recent findings show that 35% of women aged 25-35 319 

years of age (reproductive age) are overweight or obese [28]. In fact, excess weight 320 

and obesity are the most powerful drivers for the onset and development of 321 

complication in pregnancies with both short and long term consequences for both the 322 

mother and child [29]. In the presented study, we investigated the effect of maternal 323 

BMI on the exosomal profile during gestation. The concentration of total exosomes 324 

and placental exosomes present in maternal circulation were different in obese women 325 
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compared to lean or OW women. Interestingly, obese women present a higher 326 

concentration of total exosomes and placental exosomes in maternal circulation across 327 

gestation. Moreover, in this study we have partially answered the question about the 328 

contribution of placental exosomes to the total exosomal population in maternal 329 

circulation during pregnancy. This study established that the contribution of placental 330 

exosomes (expressed as percentage of exosomes positive for PLAP compared to total 331 

exosomes) did not change significantly across gestation. Placental-derived exosomes 332 

present in maternal circulation were ~12% at early gestation (i.e. ~10-12 weeks) and 333 

increased during pregnancy until ~20% at third trimester (i.e. >32 weeks). Finally, 334 

exosomes present in maternal circulation during gestation may contribute to the 335 

maternal systemic inflammation during pregnancy, an event of significantly higher 336 

incidence in obese women. 337 

 338 

Exosomes are well thought of as a “fingerprint” of their cell origin and their 339 

metabolic status. In other words, isolation and characterisation of placental exosomes 340 

present in maternal circulation can be considered as a non-invasive biopsy of 341 

placental cells. Several studies have demonstrated that maternal BMI affects 342 

pregnancy outcomes with long-term consequences for the offspring [30-32]. To our 343 

knowledge, this is the first study to identify maternal BMI-associated changes in the 344 

exosomes concentration across gestation.  345 

 346 

In this study, we used a well-established and validated method to obtain an enriched 347 

exosome fraction using buoyant density centrifugation to minimize the contribution 348 

from other extracellular vesicles. Total exosomes and placental exosomes increase 349 

progressively with the pregnancy progression (Figure 2), an effect higher in obese 350 
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pregnancies. Interestingly, we have previously described an association between 351 

placental weight and exosomal PLAP (an indirect measurement of placental 352 

exosomes) at third trimester of pregnancy [14]. In this study, we did not record the 353 

placental weight, therefore, the relationship between maternal BMI, placental weight 354 

or placental efficiency and exosomes concentration requires future studies. However, 355 

no interaction between maternal BMI and placental weight has been previously 356 

described [9].  357 

Supporting our results, we have previously showed that the concentration of placental 358 

exosomes in maternal circulation increases across gestation [14]. We quantified the 359 

total number of exosomes and placenta-derived exosomes using the method described 360 

by Dragovic et al., using fluorescence nanoparticle tracking analysis [25], that gave us 361 

the opportunity to measure individual vesicles and determine the contribution of 362 

exosomes from placental origin to the total exosome population.  363 

Higher levels of total and placental exosomes were reported in this study in obese 364 

women compared to lean and overweight women, which may be due to obesity being 365 

associated with pro-inflammatory state causing a higher secretion of exosomes.  366 

Interestingly, the capacity of exosomes present in maternal circulation across 367 

gestation to regulate the pro-inflammatory cytokine secretion from endothelial cells 368 

was significantly higher using exosomes from obese and OW women when compared 369 

to lean women. These outcomes are consistent with previous studies in which levels 370 

of IL-6 and TNF-α increase across gestation [33]. IL-6 is a pro-inflammatory cytokine 371 

secreted pre-dominantly by adipocytes, macrophages, skeletal muscle, endothelial 372 

cells and fibroblasts. IL-6 has been associated with obesity and affecting glucose 373 

metabolism [34, 35]. During gestation, IL-6 regulates embryo implantation and 374 

placental development; enhances the secretion of human chorionic gonadotropin 375 
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(HCG) from trophoblast cells HCG and mediating inflammation and induces insulin 376 

resistance [36-41]. High levels of TNF-α are associated with maternal systemic 377 

inflammation and obesity [42]. During gestation, higher levels of TNF-α in maternal 378 

plasma lead to complications of pregnancies including gestational diabetes [43]. 379 

Interestingly, our data established that the effect of exosomes on the secretion of 380 

TNF-α was higher at late gestation (Figure 5C). TNF-α has been shown to impact 381 

parturition [44], however, the effect of exosomes on signal of parturition has not been 382 

established yet. While the mechanisms controlling the concentration of cytokines in 383 

maternal circulation during gestation remain unclear, we suggest that exosomes may 384 

have a role regulating the concentration of cytokines (e.g. IL-6 and TNF-α) during 385 

gestation.  386 

 387 

Maternal BMI is a risk factor for the development of gestational diabetes mellitus 388 

(GDM) [45], a phenomenon associated with maternal systemic inflammation [24]. 389 

Interestingly, we have recently reported that the concentration of placental exosomes 390 

in GDM pregnancies is higher when compared to normal pregnancies [18]. Moreover, 391 

exosomes isolated from GDM pregnancies increase the pro-inflammatory cytokines 392 

release (e.g TNF-α) from endothelial cells compared to exosomes isolated from 393 

normal pregnancy [18]. Recently, Aye et al., reported elevated levels of pro-394 

inflammatory cytokines in maternal circulation and activation of placental p38-395 

MAPK and STAT3 pathways with increasing maternal BMI [24]. These findings 396 

suggest that increased maternal BMI is associated with maternal pro-inflammatory 397 

state affecting both maternal tissues and placenta, which may be due to elevated 398 

exosomes (total and placental) in maternal circulation.  399 

 400 
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In this study, we demonstrated that maternal BMI is a factor that explains for >20% of 401 

the observed variation in plasma exosomes concentration (Figure 3). These 402 

observations give rise to the question: how does maternal BMI increase the exosome 403 

concentration in maternal circulation? Exosomes are a subtype of EVs with specific 404 

biogenesis and secretion mechanisms that are not fully understood. Exosomes are a 405 

product of endosomal trafficking in which intraluminal vesicles (ILVs) are 406 

incorporated into multivesicular bodies (MVB) and then released via exocytosis as 407 

exosomes to the microenvironment milieu by the transport and fusion of MVB with 408 

the plasmatic membrane. Recent studies have shown that the endosomal-sorting 409 

complex required for transport (ESCRT) and TSG101 protein are required for the 410 

exosome secretion from HeLa cells [46]. The expression of these proteins in placental 411 

cells obtained from women with different metabolic status (e.g. obese and 412 

overweight) has not been established yet. Interestingly, the RAB family of small 413 

GTPase proteins have been implicated in the intracellular vesicular tracking [47]. 414 

RAB proteins are expressed in the human placenta [48], however, the expression of 415 

these proteins in placentas obtained from obese or overweight women has not been 416 

studied. Interestingly, RAB protein has been implicated in lipid storage and insulin-417 

regulated GLUT-4 trafficking in adipose tissue. Hypoxia and high glucose are other 418 

factors that increase the exosome release from placental cells [15-17]. Recently, 419 

Wang et al., demonstrated that hypoxia increases the expression of RAB22A involved 420 

the activation of hypoxia-inducible factors (HIFs), which results in an increase in the 421 

secretion of microvesicles from breast cancer cells [49]. Thus, RAB proteins are 422 

involved in the secretion of exosomes from placental cells to maternal circulation in 423 

response to increasing maternal BMI requires further investigation. 424 

 425 
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In this study, the levels of circulating exosomes in maternal plasma were significantly 426 

higher in obese women compared to normal or overweight women.  We suggest that 427 

maternal BMI modulates the exosome secretion from placental cells and maternal 428 

sources, however, we cannot ignore that maternal BMI modifies the clearance or half-429 

life of circulating exosomes. Recently, it has been proposed that macrophages play a 430 

crucial role in the clearance of exosomes from the body [50]. Imai et al., 431 

demonstrated that the clearance of exosomes is significantly lower in macrophage-432 

depleted mice compared to mice control.  The placenta-derived exosomes clearance 433 

has not been established, however, the levels of placental miRNA, which are secreted 434 

from placental cells into exosomes, decrease dramatically after delivery [51].  435 

 436 

Conclusions 437 

In this study we have established that i) maternal BMI modulated the exosome 438 

concentration in maternal circulation across gestation; ii) 12% to 25% of the 439 

circulating exosomes in maternal plasma during gestation are from placental origin; 440 

and iii) exosomes isolated from maternal circulation increase the pro-inflammatory 441 

cytokines releases from endothelial cells, and strongly positively correlated with 442 

maternal BMI. Take all together, we suggest that exosomes may have a role in the 443 

chronic metabolic inflammatory state associated with obesity.  444 

  445 
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Table 1.  Clinical characteristics of patients and newborns 635 
 636 
Maternal Variables 
 Lean 

(n=15) 
OW 

(n=15) 
Obese 
(n=15) 

ANOVA 

Maternal age (years) 29 ± 3.9 
(23-36) 

30 ± 5.3 
(20-37) 

29 ± 6.4 
(20-41) 

0.1251 

Height (cm) 163  ± 0.6 
(155-172) 

161  ± 0.7† 
(154-175) 

165  ± 0.7* 
(152-175) 

<0.001 

Weight (Kg) 60  ± 6.3  
(50-73) 

71  ± 9.3†  
(64-90) 

92  ± 10* 
(72-110) 

<0.001 

BMI (Kg/m2) 22  ± 1.6 
(19-24) 

28  ± 1.3† 
(25-29) 

34  ± 3.8* 
(30-42) 

<0.001 

Gestational age (weeks) 22  ± 3.5 
(11-36) 

23  ± 2.6 
(12-38) 

24  ± 2.8 
(10-38) 

0.2524 

Gestational age at 
delivery (weeks) 

39  ± 1.2 
(37-41) 

38 ± 0.9 
(38-40) 

39  ± 1.1 
(38-40) 

0.0656 

Type of delivery (% 
caesarean/ %vaginal) 

4/11 5/10 7/8 (-) 

Newborn variables 
Fetal weight (g) 3307  ± 424 

(2892-4167) 
3261  ± 408 
(2756-3714) 

3517  ± 524 
(2972-4217) 

0.3463 

Fetal sex (male/female) 9/6 10/5 10/5 (-) 
 637 
 638 
Data are presented as mean ± SD (range). Groups were classified according to the maternal 639 

BMI in lean, overweight (OW), and obese. Maternal age, height, weight, BMI and gestational 640 

age are presented at the time of sample collection. This study was designed to include only 641 

normal pregnancies. Maternal BMI was calculated as weight (kg) divided by height (m2) at 642 

the time of sample collection. *p < 0.05 versus OW or lean; †p < 0.05 versus lean. (-) Not 643 

applicable. 644 
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Figures legends 646 
 647 
  648 
Figure 1.  Characterisation of exosomes present in maternal circulation.  Plasma 649 
samples were obtained from women with different metabolic states and classified into 650 
lean, overweight (OW), and obese. Exosomes were isolated from plasma as was 651 
indicated in Methods and characterised using nanoparticle tracking analysis, electron 652 
microscopy, and western blot. (A) Representative size distribution of exosomes in 653 
light scatter mode. (B) Representative electron micrograph of exosomes. (C) 654 
Representative Western blot for exosome enriched marker CD63. (D) NTA 655 
Comparison between light scatter mode and fluorescence mode (Qdot-CD63) in 656 
exosomes isolated from maternal plasma. (E) NTA Comparison between light scatter 657 
mode and fluorescence mode (Qdot-PLAP) in exosomes isolated from 658 
Syncytiotrophoblast cells and (F) from non-pregnant women (see supplemental 659 
material). In B, Scale bar 100 nm and arrows indicate the exosomes. 660 
 661 
 662 

Figure 2. Relationship between maternal BMI and exosome concentration across 663 
gestation. Enriched exosome populations were quantified using nanoparticle tracking 664 
analysis in fluorescence mode in peripheral plasma of lean, overweight (OW), and 665 
obese women across gestation. (A) Linear regression analysis between total exosomes 666 
number presented as total vesicles CD63+ per l ml of plasma across gestation. (B) 667 
Linear regression analysis between placenta-derived exosomes number presented as 668 
total vesicles PLAP+ per l de plasma across gestation.  669 
 670 
Figure 3. Relationship between number of exosomes and maternal BMI. We used 671 
multivariate linear regression analysis to evaluate the relationship between exosomes 672 
and maternal BMI. (A) Relationship between total exosomes (total vesicles CD63+) 673 
and maternal BMI. (B) Relationship between placenta-derived exosomes (vesicles 674 
PLAP+) and maternal BMI. In A and B, Lineal correlation (-) and 95% confidence 675 
interval (--). 676 
 677 

Figure 4. Contribution of placental-derived exosomes into maternal circulation 678 
across gestation. The ratio of placental exosomes and total exosomes present in 679 
maternal circulation across gestation was quantified using nanoparticle tracking 680 
analysis in fluorescence mode and presented as percentage (%) of exosomes PLAP+ 681 
to total exosomes CD63+. (A) linear regression analysis between percentage of 682 
placenta-derived exosomes and maternal BMI. (B) Contribution of placenta-derived 683 
exosomes across gestation.  684 
 685 
Figure 5. Induction of cytokine release from endothelial cells by exosomes. Effect 686 
of exosomes  (100 µg/ml) isolated from plasma obtained from lean, overweight (OW), 687 
and obese women across gestation on the release of IL-6 (A and B), TNF-α (C and 688 
D), IL-8 (E and F), and IL-10 (G and H) from endothelial cells. In A, C, E, and G the 689 
data is presented as XY graph where each point is defined as the fold change on 690 
cytokine release in the presence of exosomes compared to control (without exosomes) 691 
and the gestational age at the moment to collect the sample in which the exosomes 692 
were isolated. Red line represents no difference between exosomes and the control. 693 
Lines represents liner correlation for lean, OW (-), and obese (--) exosomes. In B, D, 694 
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F, and H data is present as the fold change in average on the effect of exosomes on 695 
cytokines release across gestation. 696 
 697 
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Highlights 

� An association between maternal BMI and exosomes has been established. 

 

� Total and placental exosomes increase with higher maternal BMI. 

 

� ~20% of circulating exosomes in the mother are from placental origin. 

 

� Exosomes from obese pregnant women induce cytokine release. 
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