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Graphical abstract 

A highly sensitive enzyme- and metal-free electrochemical sensor for superoxide anion (O2
•−) 

detection has been developed based on nitrogen doped hollow mesoporous carbon spheres (N-HMCS) 

modified screen-printed carbon electrodes (N-HMCS/SPCE). 

 

 

 

 

Abstract: In this work, a highly sensitive enzyme- and metal-free electrochemical 

method for superoxide anion (O2
•−) detection has been developed by employing screen-

printed carbon electrodes (SPCE) modified by nitrogen doped hollow mesoporous 

carbon spheres (N-HMCS). For comparison, solid carbon spheres (SCS) and hollow 

mesoporous carbon spheres (HMCS) were also synthesized to fabricate the modified 

SPCE. Compared with SCS/SPCE and HMCS/SPCE, N-HMCS/SPCE displayed a 

higher electrochemical performance. When applied for electrochemical detection of 
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O2
•−, N-HMCS/SPCE exhibited a high sensitivity of 1.49 μA cm-2 μM-1, better than 

SCS/SPCE and HMCS/SPCE and many of enzyme- or metal-based superoxide anion 

sensors. N-HMCS is expected to become a new generation of sensing materials for 

electrochemical analysis of O2
•−. 

 

Keywords: Nitrogen doped hollow mesoporous carbon spheres; electrochemical sensor; 

superoxide anion; highly sensitive 

 

1. Introduction 

Superoxide anion (O2
•−), as one kind of important reactive oxygen species (ROS), 

has a close relationship with some diseases such as neurodegeneration, atherosclerosis, 

diabetes and cancer [1-3]. For the detection of O2
•−, the enzyme-based electrochemical 

sensors have been developed as a favorable strategy. Among them, Cu, Zn-superoxide 

dismutase (Cu, Zn-SOD) [4-6] and cytochrome c [7-9] as the main enzymes were 

employed to fabricate O2
•− enzymatic sensors. However, enzyme is vulnerable to the 

external conditions, such as pH, temperature and humidity, which have negative impact 

on the stability and reusability of enzyme-based sensors. In order to avoid these 

weaknesses, developing enzyme-free sensors for determination of O2
•− is an attractive 

approach. At present, a few enzyme-free superoxide sensors have been reported based 

on narigin-copper complex [10], Pt nanoparticles covalently bonded to multi-walled 

carbon nanotubes [11] and copper-zinc alloy nanoparticles [12]. These good results 
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encouraged us to explore alternative non-toxic and low-cost materials as enzyme-free 

sensors for determination of O2
•−.  

Recently, hollow mesoporous carbon spheres (HMCS) with superior structure 

features have gained extensive attention with widespread applications in the fields of 

catalysis [13, 14], adsorption [15-18], drug delivery [19], and energy storage [20, 21] 

due to their chemical inertness, high specific surface area, good electrical conductivity 

and biocompatibility. Moreover, the presence of mesoporous channels on the carbon 

shells of HMCS is beneficial for the mass transport and/or charge transfer between 

sensors and analytes [22]. Mesoporous carbon materials also have a high density of 

edge-plane-like defective sites which can promote the electron transfer to analytes and 

thereby enhance electrochemical activity at the electrodes [23, 24]. Nevertheless, using 

HMCS for electrochemical applications has received little attention [25]. In addition, it 

is well known that incorporation of heteroatoms, such as N, B, P, and S atoms [26-29], 

into the carbon matrix can largely improve their physicochemical properties [30]. 

Among these, N-doped is a promising strategy because the strong electron donor nature 

of N can supply negative charges to delocalized π bond of sp2 hybridized carbon 

skeleton so as to enhance electron transport properties and chemical reactivity [31-33]. 

Until now, a variety of N-containing carbons including graphene-based materials [34], 

carbon nanotubes [35], microporous or mesoporous carbons [36, 37] and carbon 

nanofibers [38] have been successfully utilized in many fields. N-doped hollow 

mesoporous carbon spheres (N-HMCS) also have been synthesized by various methods 

[39-41], but they were mainly employed as an efficient catalysis for oxygen reduction 
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reaction [42-44], and their applications in the field of electrochemical sensors for O2
•− 

detection have been scarcely reported.  

In this work, we focused on employing N-HMCS as an efficient enzyme-free 

sensing material for directly electrochemical detection of superoxide anion. The solid 

carbon spheres (SCS) and HMCS were applied to investigate the impact on the 

determination of O2
•− from the different morphology. Based on the unique features of 

HMCS, such as good conductivity, large pore size/volume and high specific surface area, 

HMCS/SPCE exhibited much better detection performance for O2
•− than SCS/SPCE. 

Further, owing to nitrogen doping, N-HMCS/SPCE showed extremely high sensitivity 

for quantification of O2
•− even superior to many of metal-based or enzyme-based sensors. 

2. Experimental 

2.1. Reagents and apparatus 

Tetrapropyl orthosilicate (TPOS), potassium superoxide, eighteen-crown-6 and 

anhydrous dimethyl sulfoxide (DMSO) were purchased from Aladdin Industrial Inc.. 

Ascorbic acid (AA), dopamine (DA), glucose (Glu), uric acid (UA), 4-acetaminophen 

(AP) and glutathione (GSH) were obtained from Sigma-Aldrich. All other chemicals 

were in analytical grade and used without further purification. 

Nitrogen adsorption-desorption isotherms were measured on an ASAP 2020 

(Micromeritics). A scanning electron microscope (SEM, JSM-6360LV, JEOL) was 

utilized to observe the surface morphology of carbon spheres. The transmission electron 

microscope (TEM, JEM-1400, JEOL) was used to capture the morphology of carbon 

spheres. The surface composition of carbon spheres was recorded by X-ray 
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photoelectron spectrometer (XPS, ESCALAB250Xi, Thermo Fisher). Raman spectra 

were obtained with an InVia Reflex Raman microscope. All electrochemical 

experiments were performed at room temperature on a CHI660D workstation equipped 

with a conventional three-electrode system consisting of a screen-printed working 

electrode, a platinum wire counter electrode, and an Ag/AgCl reference electrode. 

2.2 Preparation of HMCS, N-HMCS and SCS 

The HMCS was synthesized according to a report [45]. Typically, TPOS (3.46 mL, 

12 mmol) was mixed with solution containing ethanol (70 mL), H2O (10 mL) and 

aqueous ammonia (3 mL) under constant stirring for 15 minutes. Then, formaldehyde 

(0.56 mL) and resorcinol (0.4 g) were added and the system was kept stirring for 24 h 

at room temperature. The products were collected by centrifugation, washed with 

deionized water and ethanol for several times, and dried at 50 oC in the vacuum oven. 

HMCS were finally obtained after carbonization at 700 oC (5 oC min-1) for 5 h under the 

N2 atmosphere, followed by an etching process with 2 M NaOH at 80 oC to remove 

silica. Further, a half of prepared HMCS was dispersed in aqueous ammonia (50 mL) 

and then the mixture was reacted for 9 h at 180 oC in the 100 mL Teflon-lined autoclave 

to gain the N-HMCS. 

The synthesis of SCS was a similar process as followed: resorcinol (0.24 g) and 

formaldehyde (0.36 mL) reacted with the mixture containing ethanol (70 mL), ultra-

pure water (10 mL) and aqueous ammonia (3 mL) for 12 h in ambient temperature with 

constant stirring. After the above mixed solution was centrifuged and washed by water 
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and ethanol for several times then dried it, the obtained solid product was carbonized at 

700 oC (5 oC min-1) under N2 for 5 h. 

2.3 Fabrication of the modified electrodes  

The home-made screen-printed carbon electrodes (SPCE) with a working area of 

0.071 cm2 were served as the substrate according to our previous work [46]. 5 mg N-

HMCS was added into 5 mL ultrapure water and sonicated to form a well-dispersed 

mixture. Then, 10 μL of the mixture and 2 μL of 0.05 wt% Nafion were drop-casted 

onto SPCE successively, and the N-HMCS modified electrodes (N-HMCS/SPCE) were 

finally formed after dried. The HMCS modified electrodes (HMCS/SPCE) and SCS 

modified electrodes (SCS/SPCE) were fabricated with a similar method, and the bare 

SPCE was only treated with 2 μL of 0.05 wt% Nafion. 

2.4 Generation of superoxide anion 

 The superoxide anion was generated from the KO2-DMSO system according to our 

previous work [47]. Briefly, a stock solution of KO2 was prepared by adding KO2 into 

anhydrous DMSO, containing 18-crown-6 that can increase the solubility of KO2. After 

sonicating the solution for 2 min, KO2 was dissociated and produced O2
•−. The 

concentration of O2
•− was determined to be 8 μM μL-1 by UV-Vis spectroscope with the 

molar absorptivity of O2
•− in DMSO (2006 M-1 cm-1 at 271 nm) [48].  

2.5 Electrochemical measurement 

The electrochemical behaviors of modified electrodes were investigated using cyclic 

voltammetric (CV), chronoamperometric, chronocoulometric, and electrochemical 

impedance spectroscopy (EIS) techniques, respectively. CV measurements were 
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performed in stationary electrolyte solution. The chronoamperometric experiments were 

implemented by successively adding the analytes into 5 mL 0.1 M phosphate buffer 

solution (PBS, pH 7.4) under constantly stirring. Chronocoulometric measurements 

were carried out in the 0.1 mM K3[Fe(CN)6] containing 1 M KCl. And EIS was gained 

in the 5 mM K3[Fe(CN)6] (0.1 M KCl) solution and the equivalent circuit of Nyquist 

plots was simulated using the ZSimpWin software. 

For real samples analysis, the recovery of the sensor was assessed using a calibration 

curve method in the Dulbecco's modified Eagle's medium (DMEM) containing 10% 

fetal bovine serum (FBS) and 1% penicillin/streptomycin. The real time monitoring of 

O2
•− by N-HMCS/SPCE in living cells was also evaluated. The proposed electrodes 

were tried to capture O2
•− released from living cells L929 suspension stimulated by 30 

μL Zymosan solution (5 mg/mL) at -0.15 V. 

3. Results and discussion  

3.1 Characterization of carbon spheres 

The morphology of SCS, HMCS and N-HMCS was characterized by SEM and TEM. 

Three prepared carbon materials all exhibited a uniform spherical morphology with a 

mean size of 270 nm (Fig. 1A, C and D). Compared to SCS with a solid structure (the 

inset of Fig. 1A), a characteristic hollow structure was observed for HMCS (inset of Fig. 

1C) with an interior hollow cavity and a porous shell. The morphology of HMCS was 

not changed after hydrothermal treatment at 180 oC by comparing Fig. 1C and Fig. 1B. 

The textural properties of SCS, HMCS, and N-HMCS were measured by nitrogen 

adsorption/desorption isotherms. The typical isotherm of SCS (Fig. 1D) belongs to type 
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I curve, suggesting the existence of microporous; while both HMCS and N-HMCS (Fig. 

1E and F) exhibit the type IV isotherm which is the characteristic feature of mesoporous 

material. As shown in the pore size distribution curves calculated by Barrett-Joyner-

Halenda (BJH) method (the inset of Fig. 1D, E and F), the average pore size is 

approximately 1.9 nm for SCS which may be caused during the process of carbonation, 

while 7.5 nm for HMCS and 7.4 nm for N-HMCS. The Brunauer–Emmett–Teller (BET) 

surface area of SCS, HMCS and N-HMCS were calculated to be 584.5, 1189.4 and 

1181.7 m2/g and the pore volume were measured to be 0.05, 2.05 and 2.06 cm3/g, 

respectively. 

(Please insert Figure 1 here) 

The surface chemical composition of the three carbon spheres was determined by 

XPS. As shown in the XPS survey spectra (Fig. S1), the SCS and HMCS samples 

possessed only two typical peaks for C1s and O1s, while the N-HMCS exhibited an 

addition peak for N1s with a content of 4.4%. The whole nitrogen content of N-HMCS 

was also measured by elementary analysis (6.3%), slightly higher than that measured 

from XPS. The N1s spectrum can be separated into four signal peaks with the binding 

energies of 398.26 eV, 399.49 eV, 400.51 eV and 403.55 eV related to pyridinic N, 

amino or imino N, pyrrolic N, and quaternary N, respectively (Fig. 2A). The presence 

of pyridinic N (28.5%), pyrrolic N (26.7%), and quaternary N (16.9%) species suggests 

that nitrogen was mainly incorporated into the carbon structure, and because the post-

processing method was adopted to introduce the nitrogen, there existed some amino or 

imino N (27.9%), in accordance with literature reports [49, 50]. 
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The graphitic order of the three carbons was detected by Raman spectroscopy (Fig. 

2B). The G band at ~1598 cm-1 stands for an E2g mode of graphite related to the vibration 

of sp2-hybridized carbon atoms of C-C. The peak at ~1354 cm-1 (D band) is connected 

to the vibration of carbon atoms with dangling bands in the plane termination of 

disordered graphite [51]. In addition, the intensity ratio of D band and G band (ID/IG) 

reflects the order degree of carbon. The values of ID/IG of SCS, HMCS and N-HMCS 

were calculated to be 1.13, 1.12 and 1.25, respectively, suggesting that the SCS and 

HMCS have similar defect degrees and the defect sites of carbon spheres were increased 

with the introduction of nitrogen [52, 53] which may provide many active sites for 

electron transfer. 

(Please insert Figure 2 here) 

The above characterizations demonstrate that the prepared HMCS and SCS possess 

similar particle size and surface composition. The structural difference between HMCS 

and SCS provides the opportunity to investigate the influence of hollow mesoporous 

structure on the electrochemical performance for O2
•− detection. At the preparation 

process of N-HMCS, through the hydrothermal treatment with aqueous ammonia, 

structural features of HMCS still remained, while the defect sites on the surface have 

been increased as nitrogen incorporated, which will provide more electroactive sites for 

O2
•−, and may have an improvement in the sensitivity. 

3.2 Electrochemical characterization 

The electrochemical properties of the three carbon modified electrodes were 

investigated by CV and EIS. The typical CV of Fe(CN)6
3-/4- is a valid tool for evaluating 
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the kinetic barrier of the interface [54]. As shown in the Fig. 3A, the potential between 

the anodic and cathodic peaks (∆Ep) was 0.45 V for bare SPCE, 0.33 V for SCS/SPCE, 

0.22 V for HMCS/SPCE and 0.20 V for N-HMCS/SPCE, respectively. It was also 

observed that the redox peak currents increased with the decrease of ∆Ep. The smaller 

value of ∆Ep and the higher redox peak currents indicate the better electron transfer 

ability [25, 55]. The order in terms of electron transfer rate for various electrodes follows 

the following sequence: N-HMCS/SPCE > HMCS/SPCE > SCS/SPCE > bare SPCE.  

EIS is an effective technique to determine the electron-transfer resistance at the 

electrode -electrolyte interface. From the Nyquist plot (Fig. 3B), the charge-transfer 

resistances (Rct) of N-HMCS/SPCE, HMCS/SPCE, SCS/SPCE and bare SPCE are 

calculated to be 55.6 Ω, 155.9 Ω, 4579 Ω and 4671 Ω, respectively, which is consistent 

with the above result of CV characterizations. The pretty low Rct of HMCS/SPCE can 

be attributed to the merits of the unique mesoporous and hollow structures of HMCS, 

compared with the Rct of SCS/SPCE. Moreover, with the help of strong electron donor 

nature of N atom, the N-HMCS/SPCE show lower Rct than that of HMCS/SPCE.  

The electrochemically active surface area (A), which is closely related to the 

electrocatalytic ability of the sensors [56], can be assessed by using the 

chronocoulometric technique based on the following Anson equation [57]: 

  2/1
/2 DtnFACQQQ adsdl  , 

where Qdl is the double layer charge; Qads is the Faradaic charge; n is the number of 

transferred electrons; F is the Faraday constant; C is the concentration of electrolytes; 

and D is the diffusion coefficient, taking a value of 7.6×10−6 cm2/s (25 oC) in 0.1 mM 



12 

 

K3[Fe(CN)6] containing 1 M KCl. The Q-t and Q-t1/2 pots of bare SPCE, SCS/SPCE, 

HMCS/SPCE and N-HMCS/SPCE are shown in Fig 3C. According to the Q-t1/2 plots, 

A is calculated to be 12.2726 cm2 for HMCS/SPCE, which is much larger than that of 

SCS/SPCE (0.2593 cm2) and bare SPCE (0.1732 cm2). This distinctly high A value of 

HMCS/SPCE is related to the large specific surface of hollow mesoporous structure. 

With the nitrogen doped, the surface active sites are further significantly increased, so 

that A value of N-HMCS/SPCE is also improved to 15.9535 cm2. This larger active 

surface of N-HMCS/SPCE may benefit to enhancing the sensitivity of sensors. 

The electrochemistry behavior of N-HMCS/SPCE in 5 mM K3[Fe(CN)6] at different 

scan rates from 10 to 100 mV s-1 was further investigated. As shown in Fig. 3D, ∆Ep 

increased along with the increase of scan rates and ∆Ip was found to be linearly 

proportional to v1/2 (the inset of Fig. 3D), which suggests a diffusion-controlled process 

on the surface of N-HMCS/SPCE.  

(Please insert Figure 3 here) 

3.3 Electrochemical performance of SCS/SPCE, HMCS/SPCE and N-HMCS/SPCE 

towards superoxide anion detection 

The electrochemical properties of modified electrodes towards the detection of O2
•− 

were evaluated by the CV measurements. Fig. 4A and Fig. 4B display the CV curves of 

the HMCS/SPCE and N-HMCS/SPCE in 0.1 M deoxygenated PBS (pH 7.4) with the 

absence and presence of 400 μM O2
•−, respectively. When the potential was varied from 

-0.6 V to 0.6 V, the HMCS/SPCE showed a wide reduction peak from -0.10 V to -0.45 

V, while a significant sharp reduction peak occurred from 0 V to -0.2 V for N-



13 

 

HMCS/SPCE with higher current density. This phenomenon indicates that N-

HMCS/SPCE exhibits better ability to promote the reduction process of O2
•− than that 

of HMCS/SPCE.  

The reduction peak of the above CV curves after adding of O2
•− should be produced 

from the electrochemical reduction of O2
•− on the modified electrodes surface, 

illustrated as the equation: O2
•− + 2 H+ + e- = H2O2. This mechanism can be explained 

from the following aspects: firstly, we eliminated the possibility that the reduction signal 

originated from the electrochemical reduction of H2O2 by comparing the current 

responses on N-HMCS/SPCE with adding 80 μM O2
•− and 40 μM H2O2 at -0.15 V. The 

O2
•− can undergo disproportionation into H2O2 and O2 in the aqueous solution [11]. 

According to the disproportionation reaction equation (2H+ + 2O2
•− = H2O2+O2), if the 

reduction signal was produced by the H2O2 generated from the O2
•−, the current response 

intensity of 80 μM O2
•− and 40 μM H2O2 would be equal. Actually, it is obvious that the 

current response of H2O2 is much smaller than that of O2
•− (shown in Fig. S2). Then, we 

conducted another experiment and the result is shown in Fig. S3. When O2
•− was added, 

current response can be observed increased. And further injection of superoxide 

dismutase (SOD) resulted in the current responses back to the base level. This decay of 

current response is caused by the fact that the high catalytic activity of specific enzyme 

SOD accelerates the scanvenger of O2
•− [58]. In addition, several works have 

demonstrated that some carbonaceous materials including hydrophilic carbon clusters 

(HCCs) [59, 60], fullerene (C60) [61] and fullerene derivatives [62] show SOD mimetic 

properties, which ensure that O2
•− can be efficiently reduced on the surface of 

file:///C:/Users/ll-zk/AppData/Local/youdao/Dict/Application/6.3.69.8341/resultui/frame/javascript:void(0);
file:///C:/Users/ll-zk/AppData/Local/youdao/Dict/Application/6.3.69.8341/resultui/frame/javascript:void(0);
file:///C:/Users/ll-zk/AppData/Local/youdao/Dict/Application/6.3.69.8341/resultui/frame/javascript:void(0);
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mesoporous carbon modified electrodes at reduction potential. From the above, we can 

draw the conclusion that the origin of reduction signal is from the dismutation of O2
•− 

on the electrode surface.   

Before amperometric detecting of O2
•−, the detection potential and the presence of 

oxygen have been optimized. The amperometric responses of HMCS/SPCE in the 

deoxygenated solution and air saturated solution were recorded as shown in Fig. S4. 

The signal intensity of the latter is only two-thirds of the former. This is related to the 

disproportionation of O2
•− on the surface of carbon materials that can generate O2, thus 

the dissolved O2 in the PBS will suppress the disproportionation reaction, and then 

influence the process of electrochemical reduction of O2
•−. Therefore, the detection 

conditions should be deoxygenated. As the Fig. S5 shown, the optimum potential for 

O2
•− detection was at -0.25 V for HMCS/SPCE (also for SCS/SPCE) and -0.15 V for N-

HMCS/SPCE. It indicates that O2
•− reduction on the N-HMCS/SPCE occurs with a 

small overpotential than that on the HMCS/SPCE. 

A comparison of the current responses on different carbon spheres modified 

electrodes upon successive additions of 40 μM O2
•− was obtained as depicted in Fig. 4C. 

HMCS/SPCE and N-HMCS/SPCE display obvious stepwise increases of the current 

responses upon addition of the analyte, but the response of SCS/SPCE is so small that 

can be neglected. N-HMCS/SPCE shows the best sensitivity for O2
•− detection, which 

is 99.84 and 1.29 fold higher than those of SCS/SPCE and HMCS/SPCE, respectively. 

The results are mainly attributed to the following reasons: (1) the large surface area and 

mesoporous hollow structure of N-HMCS provides abundant electrochemical active 
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sites. (2) The high electrical conductivity of N-HMCS leads to fast electron transfer 

during the process of electrochemical reduction of O2
•−. 

(Please insert Figure 4 here) 

The typical whole chronoamperometric responses of the N-HMCS/SPCE for O2
•− at -

0.15 V were recorded. As depicted in Fig. 4D, the changes in the current on the addition 

of O2
•− until 480 μM is proportional to the concentration of O2

•−, and the sensitivity is 

calculated to be 1493.2 μA cm-2 mM-1 based on the working area 0.071 cm2 of the 

electrodes. Beyond this concentration, the slope is decreased, suggesting the saturation 

limit the N-doped active surface. The limit of detection (LOD) is further calculated to 

be 2.2 μM based on the signal-to-noise ratio of three protocol (S/N=3). In addition, the 

analytical performance of N-HMCS/SPCE in this work is also compared with other O2
•− 

sensors as listed in Table 1. It suggests that N-HMCS based sensors without any enzyme 

or metallic nanomaterials still show superior sensitivity to other sensors. 

(Please insert Table 1 here) 

In addition, the selectivity, repeatability and stability of the N-HMCS/SPCE were 

estimated respectively. The experimental results indicate the substances, including 

glucose, glutathione (GSH), ascorbic acid (AA), uric acid (UA), acetaminophen (AP) 

and dopamine (DA) have little effect on the amperometric detection of O2
•−, 

demonstrating that the N-HMCS/SPCE have good selectivity towards O2
•− (shown in 

Fig. S6). The N-HMCS/SPCE also shows an excellent repeatability with a RSD (relative 

standard deviation) of 1.5% (n=6) and a good long-term stability with the sensitivity 

remained 91.4% of its initial sensitivity after 25 days.  
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3.4 Real sample analysis 

DMEM containing 10% FBS and 1% penicillin/streptomycin was used to mimic the 

environment of cell culture. Through a calibration curve method, the recovery in that 

solution was determined to be 92.37%, 93.13% and 90.63% with added 80, 160 and 240 

μM O2
•−(Table S1). The results indicate that the N-HMCS/SPCE can be applied to 

detect O2
•− in a relatively complicated system. Furthermore, in order to investigate the 

possibility of N-HMCS/SPCE applied to real time monitoring of O2
•− in living cells, the 

electrodes were tested to capture O2
•− released from living cells L929 which is cultured 

by our own laboratory and dispersed in the PBS (0.1M, pH 7.4). When 30 μL zymosan 

solution (5 mg/mL) was added to the cell suspension, zymosan will stimulate the 

inflammatory response of cells, and release a large number of O2
•− instantaneously. The 

result is shown as the Fig. S7, and it can be seen that the current responses of the N-

HMCS/SPCE increased rapidly with zymosan added in the L929 cells suspension, 

suggesting the generation of O2
•−. Subsequently, the O2

•− signal intensity reduced slowly, 

and ultimately returned to baseline position. For comparison, when the same 

concentration of zymosan was added into 0.1 M PBS, there was no significant current 

response signal produced, which can be illustrated that the N-HMCS/SPCE can 

successfully capture the electrical signals of O2
•− generated by living cells. Though this 

method is only suitable for qualitative analysis in living cells, the above results can still 

reveal the promising potential of the N-HMCS based sensor in the detection of O2
•− for 

real sample analysis. 

4. Conclusions 
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In summary, we have successfully fabricated enzyme- and metal-free O2
•− 

electrochemical sensors. Compared with SCS and HMCS, it is demonstrated that N-

HMCS provide more abundant electrochemical active sites and a higher electrical 

conductivity, leading to faster electron transfer during the process of electrochemical 

reduction of O2
•−. Therefore, N-HMCS/SPCE exhibit an outstanding performance for 

O2
•− detection with a sensitivity of 1.49 μA cm-2 μM-1, which is higher than that of many 

of enzyme- and metal- based O2
•− sensors. In addition, the N-HMCS/SPCE 

electrochemical sensor can be applied in the detection of O2
•− released from living cells. 

It is expected that the N-HMCS can be developed into a promising sensing material for 

O2
•− determination, potentially for on-line O2

•− analysis in the future.  
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Figure caption 

Fig. 1. SEM and TEM (inset) images of SCS (A), HMCS (B) and N-HMCS (C). The nitrogen 

adsorption-desorption isotherms and pore size distribution curves (inset) of SCS (D), HMCS (E) and 

N-HMCS (F). 
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Fig. 2. (A) N1s spectrum of N-HMCS. (B) Raman spectra of SCS, HMCS and N-HMCS. 
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Fig. 3. (A) CV curves of SPCE, SCS/SPCE, HMCS/SPCE and N-HMCS/SPCE in 5 mM K3[Fe(CN)6] 

at a scan rate of 20 mV s-1. (B) Nyquist plots of SPCE, SCS/SPCE HMCS/SPCE and N-HMCS/SPCE 

in 5 mM K3Fe(CN)6 and 0.1 M KCl solution and inset is the equivalent circuit. (C) Chronocoulometric 

plots of the SPCE, SCS/SPCE, HMCS/SPCE and N-HMCS/SPCE in 0.1 mM K3[Fe(CN)6] and 1 M 

KCl with the potential range from -0.1 to 0.3 V, and the sample interval as 1×10-5 s; the inset shows 

relationship between Q and t1/2. (D) CV curves of N-HMCS/SPCE in 0.1 M PBS (pH 7.4, containing 

5 mM K3[Fe(CN)6] and 0.1 M KCl) at different scan rates. The inset of (D) is the redox peak current 

as a function of the square root of scan rate. 
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Fig. 4. CV curves of HMCS/SPCE (A) and N-HMCS/SPCE (B) in 0.1 M deoxidized PBS (pH 7.4) 

with the absence and presence of 400 μM O2
•− at a scan rate of 50 mVs-1. (C) Comparison of current-

time response of SCS/SPCE, HMCS/SPCE and N-HMCS/SPCE for O2
•− at -0.25, -0.25 and -0.15 V, 

respectively. (D) Current-time response of N-HMCS/SPCE with successive injection of O2
•− into 0.1 

M deoxidized PBS (pH 7.4) at -0.15 V. 
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Table 1. Comparison of the analytical performance of various electrodes for O2
•− 

detection 

Electrode 

Application 

potential 

(V) 

Sensitivity (μA 

cm-2 mM-1) 

Linear 

range  

(μM) 

Limit of 

detection 

(μM) 

Ref.  

N-HMCS/SPCE -0.15 1493.2 20~480 2.2 
This 

work 

GNPs/Cu-Cys 0.25 18 3.1~326 2.8 [63] 

PDDA/MWCNTs–

Pt/GCE 
-0.5 863.41 0.7-3000 0.1 [11] 

(SOD/AuNRs)/Cys/Au -0.15 22.11 0.2~200 0.1 [64] 

PB-NGS/SPCE -0.05 318 0~1456 1.2 [65] 

PMMA/PANI-

nanoAu/SOD-ESCFM 
0.3 42.5 0.5~2.4 0.3 [66] 

SOD/PtPd/MWCNTs/S

PGE 
-0.1 601 40~1550 0.71 [47] 

 

 


