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Abstract 

 

Dispersal, defined as any movement of an individual over various spatial scales that may 

contribute to gene flow, is an essential component of species ecology. It provides a 

mechanism that allows organisms to track optimal environmental conditions, regulate 

population density and interactions with conspecifics, and colonise new areas. Dispersal 

ability varies widely among individuals, and this variation has been strongly linked to a suite 

of physiological, morphological, and behavioural traits that together constitute a dispersal 

syndrome. The evolution of dispersal-related traits can occur not only by natural selection, 

but also by spatial sorting, where individuals that have traits facilitating their dispersal 

accumulate at range edges and are limited proximally to mating with other dispersive 

individuals. The relationships among traits constituting the dispersal syndrome, their 

dynamics with age, and evolution under spatial selection on dispersal have not been 

comprehensively explored. Furthermore, integrating evolution into the study of dispersal is 

imperative to understand the mechanisms that select or constrain the evolution of dispersal-

related traits. The overall aim of this thesis was to investigate a suite of physiological, 

morphological, and movement behaviour traits associated with the dispersal syndrome using 

a model system: laboratory dispersal apparatuses and Tribolium castaneum (red flour beetle).  

 

The research presented in this thesis focused on the following traits: body size, locomotor 

apparatus size, metabolic rate, spontaneous activity, and movement behaviour in a maze 

(including speed, path length, displacement distance, and behavioural intermittence). The first 

specific aim was to determine how the onset of sexual maturity and age throughout early life 

affects dispersal-related traits (Chapter 2). I found that prior to sexual maturity, T. castaneum 

have low metabolic rate and moved significantly less than mature ones. The low energy 

expenditure was attributable to reduced energy demand and inactivity, which was 

hypothesised to be a protective mechanism while the cuticle is undergoing sclerotisation. 

 

The second specific aim was to determine the relationships among metabolic rate, body size, 

relative leg length and different movement behaviour traits (Chapter 3). A dominant axis of 

movement ability described variation in several movement traits and was positively related to 

relative leg length, but unrelated to body size or metabolic rate. A mechanistic relationship 
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between stride length and movement ability is therefore likely. The data suggested that the 

dispersal syndrome may be more strongly tied to morphology rather than physiology. 

 

The third specific aim was to investigate the dispersal rate of T. castaneum through three-

patch dispersal apparatuses to determine which design would be most effective for artificial 

selection on the basis of dispersal success (Chapter 4). The distance and slope of the tubing 

that connected between patches significantly affected dispersal rate, therefore the apparatus 

design that yielded the most consistent dispersal rate was chosen for subsequent experiments. 

 

The fourth specific aim was to investigate the evolutionary changes of a suite of traits under 

artificial selection for and against dispersal via spatial sorting (Chapter 5). Body size 

responded rapidly to selection; non-dispersers increased in size while dispersers decreased in 

size over seven generations. Once mass differences had been accounted for, limb length and 

movement behaviour did not clearly diverge between dispersers and non-dispersers, but 

metabolic rate was slightly higher in non-dispersers. Interestingly, despite imposing strict 

selection, the dispersal rate of the selected lines did not strongly diverge. The association 

between traits and movement behaviour in a maze was different to that of the association 

between traits and the dispersal apparatus, suggesting that selection for dispersal by climbing 

does not correlate well with movement along a flat surface. Variance in dispersal rate and 

movement was maintained even under intensive selection, indicating that individuals may 

maximise their fitness by producing offspring that exhibit a variety of dispersal behaviours. 

 

The fifth aim was to determine whether a trade-off between dispersal and reproduction occurs 

in T. castaneum by cross-breeding the selected lines (Chapter 6). Dispersal and reproduction 

are both energetically expensive behaviours that may compete for resources. However, the 

selected dispersers, non-dispersers, and crossed lines did not differ in reproductive output, 

which suggests that dispersal and reproduction do not necessarily trade off in this system.  

 

Overall, the findings presented in this thesis demonstrate that many phenotypic traits are 

important for movement behaviour and dispersal, particularly body size, and metabolic and 

locomotor efficiency, providing empirical support for spatial sorting contributing to 

phenotypic evolution. Taken together, these results highlight the importance of experimental 

approaches to gain a more comprehensive understanding of dispersal ecology and evolution. 
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Chapter 1  

General introduction 

 

Overview of dispersal 

Dispersal is defined as the movement of an individual that has the potential to contribute to 

gene flow, typically between their natal and breeding sites (Ronce 2007; Benton & Bowler 

2012a; Matthysen 2012). Dispersal is a fundamental mechanism for gene flow among and 

within populations (Ronce 2007). It allows organisms to track optimal conditions, regulate 

population density, reduce resource competition with conspecifics and kin, and reduce 

inbreeding potential while increasing mating opportunities (Roderick & Caldwell 1992; 

Gandon 1999; Lambin et al. 2001; Leturque & Rousset 2002; Bonte et al. 2012). Organisms 

vary greatly in their propensity and capacity to disperse (Figure 1.1), as well as in their 

dispersal response to the interactions between internal and external cues (Benard & 

McCauley 2008; Starrfelt & Kokko 2012). The variation within, and the interaction among 

internal factors (e.g. age, sex, life stage, competitive ability, body condition, morphology, and 

behaviour) with external factors (e.g. habitat quality, population density, and environmental 

conditions), determines how and when dispersal occurs (Clobert et al. 2009; Matthysen 2012; 

Duputié & Massol 2013). Understanding the mechanistic and evolutionary causes for 

variation in dispersal, and dispersal-related traits, is important for predicting the evolution of 

these traits and the responses of species to environmental and climatic change. 

 

Causes and consequences of movement 

Dispersal has multiple proximate causes that are expressed under particular conditions, 

dependent on the interaction between an organism and its environment (Matthysen 2012). 

Dispersal may reduce the number of potential interactions among kin, which has the clear 

benefits of avoiding both inbreeding and kin competition (Lambin et al. 2001; Rousset 2012). 

In habitats that have high conspecific density or crowding, dispersal is likely to be beneficial 

for the dispersing individual and also for the kin that it leaves behind by reducing resource 

and mate competition, and inbreeding potential (Gandon 1999). Conversely, in habitats with 

low conspecific density, Allee effects, the lack of mate availability, or social structure can 

increase dispersal of some species (Kuussaari et al. 1996; 1998). Therefore, dispersal 
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behaviour may often be density-dependent. Dispersal most often increases with density 

(Matthysen 2005), but can also decrease with density (Baguette et al. 2011), or be both 

positively and negatively density-dependent simultaneously (Kim et al. 2009). Dispersal may 

also be a beneficial response to deteriorating local conditions, for example, if a stressor has 

decreased survival probability or resource availability in the local habitat (Bell & Gonzalez 

2011; Hui et al. 2012). Individuals that disperse throughout their reproductive lifetime may 

receive a fitness benefit, by distributing their offspring in multiple patches and across 

different environmental conditions (Lakovic et al. 2015). This strategy ensures that a large 

proportion of individuals will survive if, for example, predator density is high or conditions 

are favourable in some habitats but not in others. 

 

 

 

Figure 1.1 Schematic of the relationships between internal and external factors on movement capacity and 

dispersal propensity. Partially adapted from Clobert et al. (2009). 

 

While dispersal is ultimately beneficial for individuals and populations via gene flow, it has 

many associated costs that can be categorised as opportunity, time, risk, and energetic costs 

(reviewed in Bonte et al. 2012). These costs vary in impact on the organism, from potentially 

minor loss of time available for other activities, to ultimate fitness costs of failure to 

reproduce or survive (Figure 1.2). Costs of dispersal may also be distinct across the different 

phases of dispersal: emigration (also ‘departure’), transfer (also ‘transience’), and 

immigration (also ‘settlement’), and across life-history (Bowler & Benton 2005; Bonte et al. 

2012; Matthysen 2012). Opportunity costs may be incurred throughout the dispersal process, 
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as losses of local adaptation, familiarity, kin nepotism, or social rank. Time costs refer to the 

time spent dispersing or selecting an optimum habitat, rather than conducting other activities 

that would contribute to fitness. Risk costs refer to the chances of mortality through 

predation, wounding, adverse environmental conditions, and the possibility of not locating an 

appropriate habitat or mates. Energetic costs refer to the metabolic energy invested into 

locomotive structures (e.g. wings and associated muscles) and energy required to initiate and 

maintain dispersal, which diminish investments into reproduction and other activities. In spite 

of these costs, even if the dispersal landscape is heterogeneous with respect to fitness, nearly 

all individuals will disperse at least once in their lifetime. The benefits of dispersing include 

the accrual of spatial knowledge of resources, conspecifics and predators, avoidance of 

inbreeding and kin competition, and potentially access to unexploited resources (Bonte et al. 

2012; Rousset 2012). It is therefore necessary to gain a greater understanding of the relative 

importance of traits, behaviours, and factors that influence dispersal with respect to fitness 

costs and benefits (Stevens et al. 2012; Burgess et al. 2016). 

 

 

 

Figure 1.2 Costs associated with dispersal (italics) across the different phases of dispersal (bold). Partially 

adapted from Bonte et al. (2012). 

 

Traits associated with dispersal 

While conspecific density, availability of mates and resources, and environmental conditions 

are strong influences on dispersal, a significant proportion of the variance in dispersal can be 

ascribed to traits that determine dispersal propensity and movement capacity (Bowler & 

Benton 2005). Dispersal propensity describes the ‘willingness’ of an individual to disperse; it 
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is dependent on life-history, behaviour, internal state, and the external environment (Bowler 

& Benton 2009). Movement capacity describes the physiological ability of an organism to 

move, and therefore disperse; it is strongly dependent on morphology, particularly 

locomotive structures and underlying physiological traits including muscle architecture and 

metabolic rate (Ducatez et al. 2012; Hillman et al. 2014). Both dispersal propensity and 

movement capacity have been used to categorise individuals broadly as either dispersers or 

residents (Cote et al. 2010a). Dispersers (also ‘emigrants’ or ‘immigrants’) are individuals 

that have a high propensity and capacity to disperse. Residents (also ‘non-dispersers’ or 

‘philopatrics’) are individuals that have a strong affinity to stay near their natal site. 

 

An individual’s biological purpose for dispersal is influenced by life-history (Bowler & 

Benton 2005; Stevens et al. 2012). In insects, dispersal often only occurs in the adult stage, as 

there is little reason for larvae to move if resources in their natal site are usually abundant. 

Locomotive structures for dispersal may also only develop or become functional in particular 

life stages, usually an adult, motile stage. Even within the adult stage, age and sex have a 

profound influence on dispersal, as immature (pre-reproductive) males and females may have 

to move to find a suitable mate and reproductive site, and thus have a high dispersal 

propensity (Bowler & Benton 2009). When mature, however, some females are less inclined 

to disperse while they are producing eggs, as both movement and ovulation are energetically 

expensive. Moreover, dispersal may be risky during reproduction, whereas males may 

continue to disperse in order to find mates (Benton & Bowler 2012a). The body condition 

(body mass relative to body size) of an individual can affect their ability to disperse and be 

competitive. Individuals with high body condition may more easily abide the costs of 

dispersal, and thus disperse earlier or farther than lower condition individuals (Bonte 2009; 

Delgado et al. 2010). 

 

Morphology significantly affects dispersal ability. Body size scales positively with locomotor 

apparatus size and energy storage capacity, and is usually associated with high competitive 

ability, therefore larger individuals generally have a great dispersal capacity (e.g. Hill et al. 

1999; Hughes et al. 2007; Brown et al. 2013; Laparie et al. 2013). However, in certain 

contexts, small individuals (which are typically less competitive than large ones) may 

disperse away from a competitive environment (Bowler & Benton 2005), or be more able to 

afford the costs of dispersal than larger individuals (Léna et al. 1998). Relative locomotor 

apparatus size is also strongly associated with dispersal. For example, in comparison to 
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residents, dispersive cane toads (Rhinella marina) had longer legs relative to their body size 

(Phillips et al. 2006) and dispersive field voles (Microtus agrestis) had relatively longer feet 

(Forsman et al. 2010) than their respective resident conspecifics. 

 

Physiological traits also affect dispersal. For example, the metabolic rate (MR) of Glanville 

fritillary butterflies (Melitaea cinxia) during flight was higher in individuals that had a greater 

movement capacity, which is more costly from an energy budget perspective (Niitepõld et al. 

2009). However, the higher energy cost to fuel increased flight may be subsidised by the 

fitness benefits gained by increasing flight mobility (Niitepõld et al. 2009). A similar pattern 

emerges with resting metabolic rate (RMR). Dispersive round gobies (Neogobius 

melanostomus) have a higher RMR than residents (Myles-Gonzalez et al. 2015). RMR 

represents the minimal energy required for an ectotherm to self-maintain (Speakman et al. 

2004), and will be higher when tissues require more energy to be maintained. If dispersing 

individuals have exaggerated locomotor structures and supporting musculature, or have other 

metabolically-demanding tissues, then their RMR will be higher than residents. Furthermore, 

behavioural characteristics such as increased activity, boldness, and exploration, which are 

associated with high dispersal, are also strongly linked to high RMR (Biro & Stamps 2010). 

 

Behavioural and personality traits are frequently associated with movement (Cote et al. 

2010a; Canestrelli et al. 2016). Dispersive individuals are often more aggressive (Aguillon & 

Duckworth 2015), more exploratory (Haughland & Larsen 2004), less social (Cote et al. 

2010b), more inclined to take risks (Cote & Clobert 2010), and more bold (Fraser et al. 2001) 

compared to residents. In particular, boldness correlates strongly with dispersal, and is 

associated with continuous, directed movement behaviour (Dingemanse et al. 2003; Delgado 

& Penteriani 2008). As dispersal is the result of movement behaviours, specific 

characteristics of movement are undoubtedly related to dispersal (Hawkes 2009). Individuals 

vary in their patterns of movement; strong proximate measures of complex movement are 

traits such as activity, speed, intermittency, path straightness, and distance travelled (Kramer 

& McLaughlin 2001; Bartoń et al. 2009; Bazazi et al. 2012). Both dispersal propensity and 

movement capacity, which together define the ability to disperse, can only be described 

proximately by studying the combination of the underlying traits that shape them, within 

contextual bounds. Identifying combinations of underlying traits that explain the variance in 

dispersal propensity and movement capacity among individuals and populations has recently 

become a field of study in its own right, namely that of ‘dispersal syndromes’. 
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Dispersal syndromes 

Dispersal syndromes, also called ‘dispersal phenotypes’, describe suites of covarying 

phenotypic traits that are associated with dispersal (Ronce & Clobert 2012). The accurate 

identification of patterns of covariation among dispersal and other morphological, 

physiological, behavioural, and life-history traits can facilitate understanding of the 

proximate and ultimate causes of dispersal across diverse taxa (Stevens et al. 2014). 

Essentially, dispersal syndromes attempt to attribute intra-specific variance in dispersal to 

multiple traits which might be correlated. Considering the relationships between the 

aforementioned traits and dispersal, a ‘good disperser’ might be expected to have a large 

body size, a high RMR, large locomotor muscles and structures, and follow straight paths 

while moving quickly across long distances. Traits such as these, which are very likely 

correlated due to their underlying physiological mechanisms and evolutionary history, may 

explain significantly more variance in dispersal patterns when taken into consideration 

together (Ronce & Clobert 2012). Thus far, dispersal syndromes have been described in 

numerous taxa, with notable examples found in insects, lizards, toads, and fishes (e.g. Rehage 

& Sih 2004; Hanski et al. 2006; Sinervo et al. 2006; Clobert et al. 2009; Cote et al. 2010b; 

Laparie et al. 2013; Lindström et al. 2013; Stevens et al. 2013; 2014). 

 

Recently, the large white butterfly (Pieris brassicae) has been used to explore the drivers of 

dispersal (Legrand et al. 2015). This species exhibits a dispersal syndrome where dispersers 

and residents differ phenotypically. Flight performance, which was measured as time spent 

flying and maximum flight distance, was correlated with the decision to disperse (Ducatez et 

al. 2012). Further, the size and shape of P. brassicae wings were strongly correlated with 

both time in flight and flight distance (Ducatez et al. 2012). Dispersers that had better flight 

performance and large, broad wings also had a tendency to orient and maintain flight 

direction, i.e. fly more continuously in the same direction (Larranaga et al. 2013). This 

behaviour, which is likely heritable, would thus increase the efficiency of movement between 

patches and reduce the time- and risk-associated costs of dispersal (Bonte et al. 2012; 

Larranaga et al. 2013). Dispersers are therefore not a random fraction of the population, but 

are rather individuals with covarying morphological and behavioural traits that describe 

variation in dispersal in P. brassicae (Legrand et al. 2015). 
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Dispersal syndromes are clearly important when considering the causes of dispersal and 

understanding variation in dispersal. Many phenotypic traits, alone or as part of a syndrome, 

correlate with dispersal and are important to its evolution. Therefore, it is also imperative to 

understand the mechanisms that select for or constrain the evolution of traits that are 

associated with dispersal. 

 

Evolution of dispersal 

The evolution of dispersal traits can most easily be seen at the range edge of an expanding 

population, where dispersing individuals accumulate when moving into new territory (Therry 

et al. 2014a; Chuang & Peterson 2016). Two evolutionary mechanisms have been proposed 

to drive change in dispersal: natural selection and spatial assortative mating. Natural selection 

proposes that organisms with traits better suited to their local environment will have a 

survival or reproductive advantage, and therefore higher fitness (Darwin 1859). Highly 

dispersive individuals may arise in a population by natural selection for dispersal ability, 

provided that dispersing also confers an increase to fitness. Spatial assortative mating (also 

called ‘spatial sorting’) proposes that individuals with traits facilitating dispersal will 

accumulate and persist at range edges through proximity-limited mating between highly 

dispersive individuals, which may be non-adaptive (Travis & Dytham 2002; Shine et al. 

2011). On expanding range edges where population density is lower, fitness advantages may 

be conferred through reduced competition and greater resource availability (Perkins et al. 

2013). Therefore, when spatial sorting interacts with natural selection such that dispersive 

individuals have heritable and adaptive traits, this is termed spatial selection, a recently 

proposed alternative evolutionary mechanism to describe phenotypic evolution (Figure 1.3; 

Shine et al. 2011; Perkins et al. 2013). 

 

A well-documented example of spatial sorting is found in the introduced cane toad (Rhinella 

marina) and its invasion of northern Australia. Since their introduction in 1935, cane toads 

have increased their rate of spread from approximately 10 km/year to at least 55 km/year 

(Phillips et al. 2007). Throughout this range advancement, toads at the invasion front have 

evolved numerous traits that facilitate their dispersal ability. These individuals have longer 

legs relative to their body size, which significantly affects the distance they move (Phillips et 

al. 2006). Dispersers also exhibit different movement behaviour to resident toads from long-

established populations: they move more often, move farther in a given time while following 
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straighter paths, and have greater endurance (Alford et al. 2009; Llewelyn et al. 2010; Brown 

et al. 2014). Further, dispersive toads have increased growth rate and exhibit a shorter time to 

maturity (Phillips 2009). All of these observed traits indicate a dispersal syndrome exists and 

is evolving in this species. These phenotypic traits are heritable, thus the rate of range 

expansion has potential to continue accelerating through time as offspring become better 

dispersers (Phillips et al. 2010a). Distinguishing between natural selection and spatial sorting 

is possible on the grounds of fitness. That is, if spatial sorting were driving phenotypic 

change, reproductive success would not be different between dispersers and residents. On the 

other hand, natural selection may be intertwined with spatial sorting processes if an 

advantage is conferred to the individuals that disperse (Shine et al. 2011). In these toads, 

dispersers appear to be less reproductively fit than residents, therefore the spatial sorting 

hypothesis is currently supported (Hudson et al. 2015). 

 

Phenotypic variation in dispersal-related traits is strongly associated with the range expansion 

of invasive species (Chuang & Peterson 2016), therefore understanding contemporary 

evolution dynamics of morphological, physiological, and behavioural traits is crucial for 

effective distribution modelling (Travis & Dytham 2002; Bocedi & Travis 2016) and invasive 

species management (Lennox et al. 2015). Many invasive species (including amphibians, 

birds, fish, and insects) have been found to exhibit certain traits that assist in their dispersal 

ability, and rapid phenotypic change occurs at expanding range edges (Llewelyn et al. 2010; 

Berthouly-Salazar et al. 2012; Laparie et al. 2013; Myles-Gonzalez et al. 2015; Davenport & 

Lowe 2016). As climate change and anthropogenic disturbance of natural systems continues, 

the importance of understanding biological invasions grows, therefore elucidating the impact 

of evolutionary processes in the spread and ecological impact of invasive species is a vital 

component of this understanding (Colautti & Lau 2015). Crucially, the evolution of dispersal 

syndromes is not easily disentangled from environmental variation and stochastic processes 

that are found at natural range edges; therefore our understanding of selective processes on 

dispersal is constrained. To address this, laboratory experiments that study dispersal 

syndromes and their evolution over multiple generations, while controlling environmental 

factors, are important stepping stones between theoretical predictions and field observations. 
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Figure 1.3 Example of spatial assortative mating. (a) Individuals with traits facilitating dispersal accumulate at 

range edges, then (b) because these highly dispersive individuals are limited to mating with other dispersers by 

proximity, and (c) provided that the dispersal-related traits are heritable, the resulting offspring will maintain the 

dispersal phenotype in the population and range expansion may accelerate. Partially adapted from Chuang and 

Peterson (2016). 

 

Aims of the research presented in this thesis 

A continuum of dispersal strategies and dispersal-related traits is maintained in a population, 

yet our understanding of how these important traits change over time, relate to others, and 

evolve through space and time is limited. Laboratory models provide a mechanism by which 

patterns observed in the field or predicted by theory can be explicitly tested through 

experimental manipulations and under controlled conditions, thus bridging the knowledge 

gap between theory and field. The overall aim of the research presented in this thesis was to 
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gain a better understanding of the evolution of phenotypic traits that are related to dispersal, 

using a laboratory model species that can be artificially selected for differential dispersal 

strategies. 

 

The first specific aim was to determine how age and sex affects physiological, behavioural, 

and movement traits in adult Tribolium castaneum (Chapter 2). At the onset of sexual 

maturity, organisms undergo significant physiological and biochemical change, and 

undertake costly reproductive and dispersal behaviours. Therefore, sexually mature 

individuals were predicted to have higher energy expenditure, and move farther, faster, and 

more continuously than immature individuals that do not undertake these costly behaviours. 

 

The second specific aim was to determine the relationships among metabolic rate, body size, 

relative leg length, and three different movement behaviour traits, which have been identified 

as constituents of the dispersal syndrome, using T. castaneum (Chapter 3). Although the 

correlations among these traits are well-studied, the strength, variance, and even direction of 

these relationships can vary widely, depending on species and context. 

 

The third specific aim was to investigate the dispersal rate of T. castaneum through three-

patch dispersal apparatuses based on previous designs, to determine which of these was most 

effective for artificial selection on the basis of dispersal success (Chapter 4). The distance and 

slope of paths between patches can significantly affect dispersal, but the effects of 

manipulating these apparatus design aspects have not been previously quantified. 

 

The fourth specific aim was to investigate the evolutionary changes of a suite of traits in 

T. castaneum that are thought to comprise the dispersal syndrome, under artificial selection 

for and against dispersal via spatial assortative mating (Chapter 5). Significant trait 

differences have been commonly observed among populations, but to understand the changes 

leading to these differences, a manipulative and multigenerational approach must be taken. 

 

The fifth specific aim was to determine whether a trade-off between dispersal and 

reproduction occurs in T. castaneum, by cross-breeding selected lines (Chapter 6). Dispersal 

and reproduction are energetically expensive behaviours that compete for resources, but 

dispersers are also expected to be colonisers that may have high reproductive output. These 

opposing hypotheses were tested. 
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Study species 

The red flour beetle (Tribolium castaneum, Coleoptera: Tenebrionidae, Herbst 1797) is a 

cosmopolitan pest species that originates from the Indo-Australian region (Smith & Whitman 

1992). Its exact origin is not known, presumably because this prolific invader was rapidly 

distributed across the world through natural colonisation (Ziegler 1976) and anthropogenic 

transport networks such as the trade of processed grain (Hernandez Nopsa et al. 2015). It is a 

generalist pest that feeds on a variety of grain crops, including sorghum, rice, and maize, but 

is most often associated with milled wheat and flour products (Figure 1.4). It is a remarkable 

survivalist that can withstand high temperatures under prolonged desiccating conditions 

(Mahroof et al. 2003), resists starvation for several weeks (Daglish 2006), and has developed 

strong resistance to the fumigant phosphine (Jagadeesan et al. 2012). The strain of 

T. castaneum that was used for all experiments presented in this thesis was the QTC4 strain, 

sourced from the Postharvest Grain Protection Team (Department of Agriculture, Fisheries 

and Forestry; Brisbane, QLD, Australia). The QTC4 strain originated from a storage facility 

in Brisbane (QLD, Australia) in 1965. It has been cultured ever since in the absence of 

selective pressures from insecticides (Jagadeesan et al. 2012). 

 

 

Figure 1.4 Adult red flour beetle (Tribolium castaneum) moving through wheat flour. Photo: Pieter Arnold. 

 

These beetles are typical holometabolous insects. At 30 °C their development cycle is as 

follows: egg (3–4 days), through eight larval instars (16–18 days), to a sedentary pupal stage 

(4–6 days), metamorphosing to the adult stage that is sexually immature for 2–4 days post-



12 

emergence (Sokoloff 1977). They are small (1.5–3.5 mg), but relatively long-lived, with 

reports of some individuals reaching over 300 days of age as adults (Park et al. 1961). Female 

T. castaneum have high reproductive potential; they may mate multiple times and are prolific 

egg producers. At 29 °C, a single female can oviposit up to 15 eggs per day, for more than 

100 days, after which oviposition rate declines but does not cease until closer to 200 days of 

age (Park & Frank 1948; Soliman 1987). 

 

As a laboratory model, T. castaneum has been used since the 1930s (Park 1937; Leslie & 

Park 1949; Willis & Roth 1950). The ease of culturing and maintaining stock populations 

ensured its continued use for studying ecology phenomena throughout the 20
th

 century, and it 

remains a constant presence in the fields of ecology, behaviour, evolution, genetics, 

resistance, development and pest management (Brown et al. 2009; Melbourne & Hastings 

2009; Ridley et al. 2011; Ahmad et al. 2012; Schlipalius et al. 2012; Daglish et al. 2015; 

Drury et al. 2016). Tribolium castaneum also has a long history as a model organism for the 

study of animal dispersal (Naylor 1961; Prus 1963). 

 

As cosmopolitan pests, T. castaneum infrequently have to disperse long distances to find 

resources. They are highly active animals that use different methods of locomotion to move 

around their local environment (Figure 1.5), including walking (Campbell 2012), climbing 

(Cline & Highland 1976), tunnelling (Hagstrum & Smittle 1980), and flying (Ridley et al. 

2011). Although T. castaneum can fly, it is typically a small percentage of individuals that do 

so (Díez & López-Fanjul 1979). The primary modes of locomotion that are used within grain 

storage warehouses are walking and climbing, thus most studies to date have investigated 

dispersal via these modes. Previous studies have investigated the dispersal of T. castaneum 

and a close relative T. confusum, across different ages (Ziegler 1976), and in response to food 

type and quality (Ogden 1970b; Ziegler 1977; Campbell & Runnion 2003), and different 

population densities (Naylor 1961; Zyromska-Rudzka 1966a; Łomnicki 2006). Other studies 

have investigated the heritability of dispersal behaviour (Ogden 1970a; Ritte & Lavie 1977; 

Riddle & Dawson 1983; Korona 1991), fitness consequences of dispersal (Ziegler 1976; 

Lavie & Ritte 1978), and the response of life-history traits to dispersal (Lavie & Ritte 1978; 

Zirkle et al. 1988; Ben-Shlomo et al. 1991; Łomnicki 2006) using artificial selection 

experiments. 
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Figure 1.5 Scheme of different movement types used by T. castaneum. Movement types are categorised as 

localised movement (blue), short-distance dispersal (black), and long-distance dispersal (red). 

  

Owing to their short reproductive cycle, ease of culture, and quantifiable dispersal behaviour, 

T. castaneum represents an ideal species with which to test theories pertaining to dispersal 

syndromes and the spatial sorting hypothesis. Individual T. castaneum vary in their dispersal 

behaviour, and this variation appears to be heritable (Ritte & Lavie 1977; Díez & López-

Fanjul 1979), therefore individuals may naturally fall along a continuous gradient from 

residents to dispersers. Such different dispersal strategies may be indicative of different 

reproductive strategies. For example, Lavie and Ritte (1978) found that dispersing 

T. castaneum had high reproductive potential, but predicted that these individuals have a high 

probability of death during dispersal, and therefore may not fulfil their reproductive potential. 

Residents had low reproductive potential, but were predicted to have a low probability of 

death by dispersing less often or later in life (Lavie & Ritte 1978). Thus, both of these 

dispersal strategies can simultaneously persist within a population. 

 

Given the variation in dispersal behaviour within T. castaneum populations, it is likely that 

phenotypic traits constituting dispersal syndromes in other species (e.g. body size, metabolic 

rate, and movement characteristics) may also be present in this species. Studying the 

dynamics of important phenotypic traits across age, the functional relationships among these 

traits, and the responses of these traits to selection for dispersal strategy, will provide a more 

complete understanding of traits that affect dispersal in this important model species. Further, 

this species provides a strong model with which to test the theory that spatial sorting drives 

change in phenotypic traits that constitute the dispersal syndrome. 
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Structure of thesis 

This thesis comprises five experimental chapters (Chapters 2–6) that report the result of 

laboratory investigations of the dynamics, correlations, and evolution of physiological, 

morphological, and movement behaviour traits that are related to dispersal. Chapter 2 

comprises a published paper, Chapter 3 has been accepted for publication, Chapter 4 is a 

manuscript under review, and Chapters 5 and 6 will be submitted to scientific journals in due 

course. Therefore, each chapter is presented as a complete scientific manuscript with an 

abstract, introduction, methods, results, and discussion. The final chapter of this thesis 

(Chapter 7) presents a synthesis of all the studies, and discusses directions and considerations 

for future research.
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Chapter 2  

Maturity matters for movement and metabolic rate: trait 

dynamics across the early adult life of red flour beetles 

 

Abstract 

Transitioning between life stages involves significant changes to the physiology, structural 

morphology, biochemistry, and behaviour of an organism. Eclosion, metamorphosis, and the 

onset of sexual maturity have consequences for the life-history evolution of an organism by 

initiating reproductive and dispersal-related behaviours that are both energetically costly and 

directly related to fitness. Animal movement, particularly dispersal when sexually mature, is 

critical for mate location, regulating population density, and promoting gene flow. Here I 

examine changes in dispersal-related and physiological traits during a significant transitional 

period in red flour beetles, Tribolium castaneum (Coleoptera: Tenebrionidae). I measured the 

metabolic rate, spontaneous activity, body size, and movement behaviour traits of individuals 

of known age and sex. Traits were compared between immature and sexually mature adults, 

as well as across early adult life where there is a strong tendency to disperse and reproduce. 

Spontaneous activity, movement speed, and metabolic rate were distinctly reduced in 

immature adults prior to the onset of sexual maturity, and immature individuals moved more 

intermittently than mature ones. I found that the mean value of these traits increased with age 

following eclosion, up to a relatively stable mean once sexual maturity was attained. The 

reduced metabolic expenditure found in immature individuals was attributable to a reduced 

energy demand due to relative inactivity, which I hypothesise to be a protective mechanism 

from conspecifics while the cuticle is undergoing sclerotisation. Understanding the precise 

developmental trajectories of behavioural and physiological traits allows us to interpret the 

trait syndromes that underlie dispersal and their evolution. 

 

Introduction 

For organisms with complex life cycles, specific age and life stages are specialised to 

perform differently. In many insects, development involves several larval instars designed for 

intense growth, followed by a distinct metamorphic pupa stage and then finally an adult stage 

specialised for dispersal and reproduction (Wilbur 1980). While the pre-adult stages are 
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significant to the transition and resulting fitness of adults (De Block & Stoks 2005), it is only 

in the adult stage that this fitness potential can be realised through the processes of dispersal 

and reproduction. 

 

Many adult holometabolous insect species demonstrate a short sexually immature and non-

reproductive adult transitional period following emergence and before the onset of sexual 

maturity. This transitional period, here defined as maturation, occurs over variable lengths of 

time between species, from several hours to many days following imaginal eclosion (e.g. 

Norris 1954; Happ 1970; Pitnick et al. 1995; Teal & Gomez-Simuta 2002). Maturation 

induces behaviours associated with reproduction and dispersal, which have potential risks 

including predation, adverse environmental conditions, unsuitable resources or lack of mates, 

and failure to reproduce or survive. During the transition to maturity, selection is expected to 

be strong, because this critical life history transition is when individuals are more active and 

therefore exposed to predation and risks associated with conspecific interaction through 

dispersive and reproductive behaviours (Werner & Anholt 1993; De Block & Stoks 2005). 

 

Locomotor activity is involved in nearly all behavioural activities from basic locomotion to 

complex courtship behaviours (Martin 2003) and is tightly linked with energy expenditure 

and metabolism. The locomotor musculature that an organism uses to conduct its daily 

foraging and activities is a substantial contributor to whole-animal metabolic rate (MR) 

during activity (White & Kearney 2013). Whole-animal MR is a fundamental physiological 

trait that provides an estimate of the essential costs of living for an organism (Kleiber 1961; 

Chown & Gaston 1999). While size, activity, phylogeny, and temperature are all considered 

to be causes of variation in metabolic rate (Konarzewski & Książek 2013; White & Kearney 

2013), the influence of other intrinsic factors such as maturity, age, and sex on MR have not 

been studied over a wide range of insect species. 

 

Metabolic rate, energy dynamics, and the individual’s physiological state strongly influence 

the resources available for animal movement and the nature of the movement path itself, 

which is critical for dispersal, reproduction, and fitness (Bell 1990). Characteristics of 

movement such as speed, step length, path length, and tortuosity are dependent on the 

biological requirements for an individual, which vary with life stage, age, and body size 

(With 1994; Mancinelli 2010; Potenza & Mancinelli 2010). Behavioural intermittence of an 

animal’s movement is the combination of forces acting to intersperse otherwise continuous 
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movement, such as pauses to change orientation or take sharp turning angles, adjustment of 

behaviour to sensory inputs and the dynamics of acceleration (Bartumeus 2009). The 

discontinuous aspects of movement paths taken by animals, particularly turning, can have 

significant costs for that animal’s net energy gain (Wilson et al. 2013) and also alters their 

exposure to potential predation (Anholt & Werner 1995; Cuddington & Yodzis 2002; Yoder 

et al. 2004). Direct measurement of complex behaviours and traits in animals (such as 

dispersal ability, reproductive fitness, or personality) is often difficult, and therefore the use 

of more simplified proximal traits is required (e.g. Heidinger et al. 2010; Sekar 2012; Stevens 

et al. 2013). Integrating multiple movement behaviour traits with physiology and activity 

provides a relevant and useful proxy for more complex behaviours. 

 

Here, I aimed to determine behavioural and physiological trait changes during the transition 

from immature adults to sexually mature adults, which occurs at approximately three days 

post-eclosion (Sokoloff 1974), and across early mature life of adult red flour beetles, 

Tribolium castaneum. Complex behaviours, including movement, dispersal, and reproduction 

are associated with the onset of sexual maturity in Tribolium species (e.g. Ziegler 1976; 

Soliman 1987; Arnaud & Haubruge 1999; Perez-Mendoza et al. 2011). I studied the 

dynamics of traits (movement characteristics, activity, and MR) that fundamentally underlie 

animal movement, dispersal, and reproduction. Specifically, I tested the hypothesis that 

immature beetles would be less active than mature ones, and as sexual maturity is reached, 

movement characteristics would change to reflect the onset of reproductive behaviour and 

increased dispersal tendencies. I also predicted that males would move more actively than 

same-aged females, at least around the onset of maturity, because males tend to disperse and 

attempt to mate earlier than females (Prus 1966; Ogden 1970b; Arnaud & Haubruge 1999). 

Finally, I predicted that MR would be positively correlated with size, activity, and movement 

speed, due to the strong association between energy expenditure and locomotive structures. 

 

Material and methods 

Animals and housing 

A stock population of T. castaneum sourced from the Post-harvest Grain Protection Team 

(Department of Agriculture, Fisheries and Forestry; Brisbane, QLD, Australia) was used to 

establish stocks for a series of experiments. This stock was a wild-type susceptible line 

(QTC4) which was maintained in 1 L cylindrical containers containing 200 g of medium 
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(95% wholemeal stone-ground wheat flour supplemented with 5% torula yeast) under 

laboratory conditions of 29.5 ± 1 °C and 40–60% relative humidity. The original stock was 

bulked up, divided, and maintained as two sub-stocks which were cultured fortnightly. 

 

Beetles were collected as pupae and sexed by examining the external dimorphic genitalia 

(Halstead 1963) under a stereomicroscope (Olympus SZ61; Olympus Australia Pty. Ltd., 

Notting Hill, VIC, Australia). Pupae were separated into groups of five by sex and relative 

day of eclosion in 70 mL containers with approximately 5 g of flour medium. The specific 

age of beetles was controlled to ± 12 h, and the age range used for this study was from 0 to 21 

days post-eclosion. Maturity was defined as the age at which mating was first commonly 

observed and the cuticle was entirely melanised; approximately three days post-eclosion 

under the aforementioned laboratory conditions (Sokoloff 1974). At least 24 h prior to trait 

measurements, beetles were separated and individually placed in containers to fast before 

respirometry, with the exception of age 0 beetles which were not provided with flour before 

measurement. Trait measurement proceeded in the following order: metabolic rate and 

spontaneous activity, movement behaviour, mass, and then morphometrics. Total sample size 

was 220 across 22 ages, such that five males and five females were measured for each age. 

 

Movement behaviour in a complex maze environment 

Movement behaviour of individuals was assessed by placing individual beetles in a complex 

artificial maze environment. The custom maze (Cottage Plastics, Sumner Park, QLD, 

Australia) was constructed from 5 mm thick acrylic, based on a design of 12 square 

passageways radiating from the central point (Figure 2.1). The minimum distance between 

each passageway was approximately equal such that progression through each passageway 

was linear. The base was constructed from white acrylic (390 × 390 × 4 mm), covered by a 

layer of white paper (60 g/m
2
) to allow adult beetles to maintain traction on the surface and 

also right themselves efficiently if required. The walls were white acrylic (6 mm high) 

melded to a clear acrylic cover in a complex symmetrical pattern, and a single 8 mm diameter 

hole was drilled in the centre of the cover to initially introduce beetles into the maze.  
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Figure 2.1 Symmetrical acrylic maze (390 × 390 × 6 mm) used to examine movement behaviour of individual 

T. castaneum beetles. The design is based on 12 evenly spaced square passageways radiating from the centre 

where the minimum distance between each passageway through the maze was equivalent. The maze walls are 

covered by a layer of clear acrylic and beetles are introduced into the maze centre through a small hole. 

 

This maze represents a spatially complex environment with barriers to movement and 

multiple junctions. In an open arena, T. castaneum will actively move towards and remain 

along the arena edge (Arnold PA, pers. obs.), whereas in a maze, movement is typically more 

varied among individuals and multiple movement attributes can be easily measured. Within 

the maze environment T. castaneum exhibit exploration behaviour similar to that observed in 

laboratory stock populations, warehouses, and natural populations (Arnold PA, pers. obs.). 

 

For each trial, a single adult beetle was introduced into the centre of the maze, then released 

and recorded for approximately four minutes using a high definition (1280 × 720 pixels) 

webcam at 10 fps (Microsoft LifeCam Studio; Microsoft Corporation, Redmond, WA, USA). 

Filming conditions were under ambient and non-direct lighting in a controlled temperature 

room at 29.5 ± 1 °C. The resulting video recordings of each beetle’s run were frame cropped 

from the first distinctive movement away from the centre (frame 1) to three minutes after 

introduction (frame 1801). The tracking of beetle movement was conducted in MATLAB 

software (MATLAB R2013A; The Mathworks, Inc., Natick, MA, USA), running a digitizing 

tracking script (DLTdv5; Hedrick 2008). The tracking script utilised an extended Kalman 
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filter to precisely track the approximate path taken by a beetle automatically (frame-by-frame 

to produce x and y Cartesian coordinates) within a user-defined residual threshold. Movement 

characteristics calculated from the tracking analysis were: average speed, minimum speed 

(lower 5
th

 percentile of speed), maximum speed (upper 5
th

 percentile of speed), total path 

length and behavioural intermittence (stopping frequency; which is defined as less than 

0.2 mm of movement between frames at 10 fps). The time for an individual to complete the 

maze was calculated as the number of frames to reach the final maze passageway (maximum 

time: 1800 frames). If an individual did not complete the maze, they were assigned a 

censored value of 1801+ for the Cox proportional hazards model of time to maze completion. 

For linear model analyses that required discrete values, these individuals were assigned the 

whole number value of 2000 frames to represent that they did not complete the maze. 

 

Metabolic rate and spontaneous activity 

The metabolic rate of individual beetles was measured to determine whether maturity status, 

age, and sex affect the routine energy usage in these animals. Flow-through respirometry was 

used to measure the rate of CO2 production of individual adult beetles as a proxy for 

metabolic rate (MR) (Lighton 2008). Air drawn into the system was first chemically scrubbed 

using columns containing soda lime (Ajax Finechem Pty. Ltd., Taren Point, NSW, Australia) 

and Drierite (Sigma-Aldrich Co., St. Louis, MO, USA) to remove CO2 and water vapour, 

respectively. The flow rate of the incurrent air was regulated by mass flow controllers for 

four channels (GFC17; Aalborg Instruments & Controls, Inc., Orangeburg, NY, USA) set to a 

constant flow rate of approximately 25 mL/min (standard temperature and pressure, dry). Air 

was then passed through four custom metabolic chambers housing individual beetles before 

being passed through a pair of two-channel LI-7000 CO2/H2O analysers (Li-COR Inc., 

Lincoln, NE, USA). Li-COR software was used to plot and record the CO2 produced through 

respiration over a 1 h period, with a resolution of 0.1 ppm at a recording frequency of 1 Hz. 

 

Chambers were approximately 2 mL airtight glass cylinders contained in a multi-channel 

locomotion activity detector (LAM10H; TriKinetics Inc., Waltham, MA, USA) which used 

nine infrared LED emitter-detector pairs to detect motion and count each instance that any 

infrared beam was interrupted by movement of the animal. This allowed spontaneous activity 

(as counts/h) to be measured synchronously with MR, so that activity could be included as a 

covariate in the analysis of MR. The respirometry chambers were housed in a controlled 
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temperature incubator at 30 ± 1 °C in darkness to ensure temperature stability and remove 

light stimulus. Adult beetles were fasted for approximately 24 h prior to MR measurement 

and placed in similar conditions prior to measurement to acclimate, then measured 

continuously for 1 h. All basic assumptions of resting metabolic rate (standardised thermal 

and dark environment to reduce activity, and animals were in a post-absorptive and non-

reproductive state) were met by experimental conditions. Activity during MR measurement 

was monitored and included as a covariate of MR in data analyses, however MR measured in 

this study is defined as routine metabolic rate (routine MR) due to the presence of activity 

(Mathot & Dingemanse 2015). 

 

Mass and morphometrics 

Individual beetles were weighed using a precision microbalance (XS3DU; Mettler-Toledo, 

Columbus, OH, USA) to measure fresh body mass (to 0.01 mg), and morphometrics were 

taken as alternate measurements of body size. Morphological measurements were obtained 

using a microscope-mounted camera (PL-B686; PixeLINK, Ottawa, ON, Canada) to capture 

dorsal and ventral images of each beetle. The following metrics were extracted using ImageJ 

software version 1.46r (National Institutes of Health, Bethesda, MD, USA): length of the 

elytron (from apex to base), width of elytron (at the widest point), length and width of the 

pronotum (at the widest point), and the length of the femur on the hind leg. 

 

Statistical analyses 

Data were analysed using the R software environment for statistical and graphical computing 

version 2.15.3 (R Development Core Team 2015) utilising the R packages lme4 (Bates et al. 

2014) and survival (Therneau 2014). The analyses investigated multiple quantitative traits 

over the age range of 0 to 21 days post-eclosion at one day intervals. Principal Components 

Analysis (PCA) was used to derive the measures for movement speed and body size from 

multiple correlated predictor variables. The first principal component (PC1) of movement 

speed accounted for approximately 94.9% of variance among speed traits (the average, lower 

and upper 5
th

 percentiles of movement speed). PC1 of body size accounted for approximately 

85.2% of the variance among the size traits (elytron length, elytron width, protonum length, 

protonum width, femur length, and body mass). Linear mixed effects regression (LMER) 

models where maturity status, age, and sex were the principal predictor variables of interest 

were used to analyse movement speed, behavioural intermittence, spontaneous activity, and 
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routine MR as response variables. Each model tested the effect of principal predictors on a 

response variable, while accounting for all other covariate measurements. A Cox proportional 

hazards model was used to analyse the time taken to complete the maze as the response 

variable. Random effects of respirometry channel and stock were included in all models. Full 

models including interaction terms were fitted initially, with non-significant interaction terms 

removed to simplify models. 

Results 

Speed increases and intermittence decreases during maturation 

Consistent patterns of increasing movement characteristics with age, particularly during 

maturation are observable in the lower 5
th

 percentile of speed (Figure 2.2a), average speed 

(Figure 2.2b) and upper 5
th

 percentile of speed (Figure 2.2c). Age was significant positively 

correlated with movement speed; however maturity status, routine MR, spontaneous activity, 

and body size were not (Table 2.1). The increased spontaneous activity found in males was 

not expressed in their movement behaviour, as sex was not significantly correlated with 

movement speed. Behavioural intermittence and maze completion were also significantly 

related to movement speed, where individuals that moved more frequently were able to move 

further with greater speed to successfully complete the maze (Table 2.1). 

 

 

Table 2.1 LMER model of the response of movement speed (PC1) to maturity status, age, sex, log-routine MR, 

activity, body size, behavioural intermittence, and maze completion of beetles aged from eclosion to 21 days 

post-eclosion. 

Coefficients
 

Estimate ± SE t P 

(Intercept) 25.794 ± 5.305 4.863 <0.001 

Maturity status (mature) 0.602 ± 0.821 0.733 0.463 

Age 0.187 ± 0.035 5.297 <0.001 

Sex (male) -0.168 ± 0.384 -0.437 0.514 

log-routine MR 1.591 ± 2.305 0.690 0.829 

Spontaneous activity 0.0001 ± 0.001 0.112 0.571 

Body size (PC1) 0.431 ± 1.615 0.267 0.789 

Behavioural intermittence -0.023 ± 0.002 -11.338 <0.001 

Maze completion -0.003 ± 0.0004 -6.915 <0.001 
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Figure 2.2 Mean movement speed (cm/s) of individual adult T. castaneum aged from eclosion (age 0) to 21 

days post-eclosion. (a) Lower 5
th

 percentile of movement speed in response to age, (b) average speed in aged 

beetles, and (c) upper 5
th

 percentile of movement speed in response to age. Each age had n = 5 males and n = 5 

females, for a total of n = 220 data points. Data presented are means ± SE. 
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Behavioural intermittence was significantly correlated with age, maturity status, and their 

interaction (Table 2.2), where individuals aged three days post-eclosion and older moved 

significantly more frequently than younger immature individuals of either sex (Figure 2.3). 

Behavioural intermittence was also significantly correlated with movement speed (Table 2.2), 

as expected by the intuitive relationship between the time an individual spends immobile and 

its average speed, which would consequently reduce the distance able to be travelled. 

 

 

Table 2.2 LMER model of the response of behavioural intermittence to maturity status, age, sex, log-routine 

MR, spontaneous activity, body size, movement speed, and maze completion of beetles aged from eclosion to 

21 days post-eclosion. 

Coefficients
 

Estimate ± SE t P 

(Intercept) 935.436 ± 120.191 7.783 <0.001 

Maturity status (mature) -211.116 ± 25.159 -8.391 <0.001 

Age 104.905 ± 14.162 7.408 <0.001 

Maturity × Age 105.89 ± 14.076 7.523 <0.001 

Sex (male) 5.003 ± 8.939 0.56 0.576 

log-routine MR -28.014 ± 50.534 -0.554 0.579 

Spontaneous activity -0.003 ± 0.028 -0.107 0.915 

Body size (PC1) -45.219 ± 37.497 -1.206 0.228 

Speed (PC1) -13.733 ± 1.263 -10.869 <0.001 

Maze completion 0.063 ± 0.011 0.595 0.552 

 

 

The proportion of individuals that completed the maze was significantly greater in mature 

individuals, and these also completed the maze in a shorter time compared to immature 

individuals (Figure 2.4). Both maturity state and age were significantly related to the time 

taken to complete the maze (Table 2.3), such that a lower proportion of immature individuals 

(males: 0.4, females: 0.27) were able to complete the maze within the set time compared to 

mature individuals (males: 0.86, females: 0.87). 
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Figure 2.3 Mean behavioural intermittence count (stopping frequency; the number of frames where the 

individual was not detected moving) during movement of individual adult T. castaneum aged from eclosion 

(age 0) to 21 days post-eclosion. Each age had n = 5 males and n = 5 females, for a total of n = 220 data points. 

Data presented are means ± SE. 

 

 

Table 2.3 Cox proportional hazards model of the response of time to maze completion to maturity status, age, 

sex, log-routine MR, spontaneous activity, and body size of beetles aged from eclosion to 21 days post-eclosion. 

Coefficients Estimate ± SE Hazard Ratio (95% CI) Z P 

Maturity status (mature) 1.403 ± 0.399 4.067 (1.860 – 8.893) 3.515 <0.001 

Age 0.028 ± 0.014 1.028 (1.001 – 1.057) 2.019 0.043 

Sex (male) -0.078 ± 0.163 0.925 (0.672 – 1.274) -0.476 0.634 

log-routine MR 0.218 ± 1.243 1.243 (0.214 – 7.217) 0.243 0.808 

Activity -0.0006 ± 0.999 0.999 (0.998 – 1.000) -1.135 0.256 

Body size (PC1) -0.207 ± 0.813 0.813 (0.208 – 3.181) -0.298 0.766 
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Figure 2.4 Mean proportion and total time taken by individuals to reach the final passageway of the complex 

maze environment (successful movement through the maze). Immature (age 0 to 3 days post-eclosion) and 

mature (age 4 to 21 days post-eclosion) life stages are indicated on the figure, and divided into male and female 

groups. Each age had n = 5 males and n = 5 females, for a total of n = 220 data points. 

 

Spontaneous activity and metabolic rate ramps up when maturity is reached 

Spontaneous activity as a response variable was found to be significantly correlated with both 

sex and maturity status (Table 2.4). Generally, male beetles were more active than females 

during respirometry; however there was substantial variation in activity counts across ages 

and particularly within males (Figure 2.5). Spontaneous activity was considerably reduced in 

immature individuals, thereafter increasing from the onset of sexual maturity (Figure 2.5) in a 

pattern similar to that of routine MR (Figure 2.6). As expected, the reciprocal relationship 

between spontaneous activity and routine MR was positive; however the effect was not 

significant, likely due to the large variability of spontaneous activity (Table 2.4). 

 

Routine MR was significantly different between immature and mature adults (Figure 2.6; 

Table 2.5). Routine MR was neither significantly correlated with age nor was it significantly 

different between males and females. Routine MR scaled positively with body size, which 

was a significant covariate (Table 2.5), however spontaneous activity was not significantly 

correlated with routine MR (Table 2.5). 
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Table 2.4 LMER model of the response of spontaneous activity to maturity status, age, sex, body size, log-

routine MR, movement speed, behavioural intermittence, and maze completion of beetles aged from eclosion to 

21 days post-eclosion. 

Coefficients
 

Estimate ± SE t P 

(Intercept) -371.129 ± 314.12 -1.181 0.237 

Maturity status (mature) 127.243 ± 45.527 2.795 0.005 

Age 0.601 ± 2.120 0.283 0.777 

Sex (male) 46.316 ± 21.413 2.163 0.031 

Body size (PC1) 69.222 ± 91.014 0.761 0.447 

log-routine MR 191.483 ± 128.555 1.490 0.136 

Speed (PC1) 0.555 ± 3.849 0.144 0.885 

Behavioural intermittence -0.036 ± 0.148 -0.246 0.806 

Maze completion 0.024 ± 0.026 0.941 0.347 

 

 

 

Figure 2.5 Mean spontaneous locomotor activity (counts/h) during respirometry of individual adult 

T. castaneum aged from eclosion (age 0) to 21 days post-eclosion. Each day of age had n = 5 males and n = 5 

females, for a total of n = 220 data points. Data presented are means ± SE. 
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Figure 2.6 Mean log-transformed routine metabolic rate (routine MR; measured as the rate of CO2 production, 

µL CO2/h) of individual adult T. castaneum measured from eclosion (age 0) to 21 days post-eclosion. Each day 

of age had n = 5 males and n = 5 females, for a total of n = 220 data points. Data presented are means ± SE. 

 

 

Table 2.5 LMER model of the response of log-routine MR to maturity status, age, sex, body size, spontaneous 

activity, movement speed, behavioural intermittence, and maze completion of beetles aged from eclosion to 21 

days post-eclosion. 

Coefficients
 

Estimate ± SE t P 

(Intercept) 0.0510 ± 0.1600 0.310 0.756 

Maturity status (mature) 0.1310 ± 0.0220 5.884 <0.001 

Age -0.0004 ± 0.001 -0.354 0.724 

Sex (male) -0.0100 ± 0.0110 -0.912 0.362 

Body size (PC1) 0.1710 ± 0.045 3.766 <0.001 

Activity 5.9×10
-5

 ± 3.5×10
-5

 1.684 0.092 

Speed (PC1) -0.0007 ± 0.0020
 

0.361 0.718 

Behavioural intermittence -7.8×10
-5

 ± 7.6×10
-5

 -1.027 0.305 

Maze completion 6×10
-6

 ± 1.3×10
-5

 0.147 0.883 
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Discussion 

The results of this study have demonstrated that the process of maturing has a significant 

effect on organisms in terms of their behaviour and physiology. Most aspects of movement 

behaviour, spontaneous activity, and metabolic rate are significantly reduced in younger 

individuals prior to the onset of sexual maturity. Movement speed was predicted to be related 

to spontaneous activity, routine MR, and body size due to the link between locomotive 

structures and energy expenditure; however, surprisingly these traits were not strongly 

correlated with speed. Patterns of increasing movement speed from eclosion through to 

attaining sexual maturity emerged, particularly in average speed and upper 5
th

 percentile of 

speed (Figure 2.2). These results support the non-exclusive hypotheses that T. castaneum that 

are not yet sexually mature either limit their energy expenditure by remaining relatively 

inactive or have a limited physiological ability to move prior to reaching maturity. 

 

By introducing an individual beetle into the maze used to assess their movement 

characteristics they are exposed to a novel unfamiliar environment. The behavioural response 

of an individual in this novel environment may be partially determined by their physiology, 

but also their relative personality trait of exploration or boldness (Biro & Stamps 2008). 

Given that individuals, prior to reaching sexual maturity, do not have a strong drive to seek 

mates, conspecifics or even to find food, it seems logical that their only motivation to move 

around would be to find refuge from a potential threat (Bell 1990). This hypothesis is 

supported by the strong declining response of behavioural intermittence with age, where 

T. castaneum prior to sexual maturity have significantly more bouts of inactivity during 

movement. The elevated behavioural intermittence indicates that these individuals may be 

moving discontinuously to assess their immediate environment and adjust their position 

accordingly by pausing to undertake a sharp turn or gather new sensory input (Bartumeus 

2009). After attaining sexual maturity, the motivation to seek mates, but also to seek food as 

metabolic fuel for increased activity presumably drives the increase in movement and 

successful completion of the maze. 

 

In terms of energetics, the findings demonstrate that routine MR increases from the point of 

eclosion over a period of three days until the onset of sexual maturity (Figure 2.6). Studies by 

Sohal (1982) and Terblanche and colleagues (2004) found that MR increased with age from 

eclosion through to reproductive maturity in two species of Dipterans, and our results support 
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these findings. Major systemic changes occur during metamorphosis from the pupal stage 

through to sexual maturity; such changes include the transformation and rearrangement of 

morphological structures, sclerotisation and melanisation of the cuticle, production and 

development of gametes and the alteration of neural structures to allow new behaviours such 

as dispersing and reproducing (Bishop et al. 2006). 

 

Despite such drastic physiological changes, the relatively low energy expenditure of 

individuals prior to the onset of sexual maturity supports the hypothesis that this is likely to 

be mainly a consequence of inactivity. Spontaneous activity was found to be considerably 

lower (near zero) in individuals prior to the onset of sexual maturity (Figure 2.5), following a 

similar pattern to that of routine MR with age and maturity. Being inactive would markedly 

reduce energy expenditure for these individuals as the energetic cost of transport is high, 

particularly for the relatively inefficient transport modes of walking and running (Tucker 

1975; Reinhold 1999). Immature individuals remain inactive for several days post-eclosion 

firstly as protection from predation and injury during movement while their cuticle continues 

to sclerotise (Thompson et al. 2002), and secondly the energy reserves accumulated from 

larval feeding prior to pupation reduces their energy requirements as a callow (Ziegler 1985). 

 

There was also an effect of sex on spontaneous activity, where males tended to have a higher 

activity level throughout the observed age period. Consistent with our findings, male 

T. castaneum exhibit increased mate-seeking and dispersive behaviour compared to females 

of equivalent age (Prus 1966; Ogden 1970b). The considerable amount of individual variation 

among activity, MR, and movement traits is a key finding. Spontaneous activity is a 

simplified behavioural measurement of the complex decision-making process or motivation 

of that individual (Martin 2003), therefore individual variation is expected to be present. 

Metabolic rate is related to the generation of energy, which in turn is correlated with 

behavioural output (see Biro & Stamps 2010 and references within). I found non-significant 

relationships between routine MR and all measured movement traits, including spontaneous 

activity. Such a result suggests that there is not a strong mechanistic link between energy 

expenditure and movement behaviour, at least within the context of the present study. 

 

Dispersive behaviours have been previously found to occur earlier in males than in females in 

Tribolium species (Prus 1966; Ogden 1970b), therefore I expected that movement behaviour 

would potentially differ between the sexes. Dispersal of both sexes in T. castaneum occurs 
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shortly after sexual maturity is attained (Ziegler 1976). Unmated male T. castaneum are 

generally more emigratory and exploratory than unmated females (Prus 1966; Ogden 1970b), 

but not ubiquitously (Ziegler 1976). In the present study, movement behaviour did not differ 

between sexes, with the exception of higher spontaneous activity in males. The general 

consensus that unmated males (as in the present study) would be more actively exploring to 

seek females is supported by the finding that around 85% of male-female contacts are 

initiated by the male (Arnaud & Haubruge 1999). The higher spontaneous activity in males 

that I observed adheres to this prediction that males would be more active, however 

movement behaviour, which may be a suitable proxy for dispersal behaviour, does not. The 

findings of the present study suggest that both sexes respond relatively equally (with 

substantial individual variation) in terms of exploratory behaviour within the maze once 

mature. This response could be a result of both sexes responding to stimulus from the novel 

environment, either perceiving it as a hostile environment or seeking out food, conspecifics, 

or shelter. To improve our understanding of the exploratory response in T. castaneum, it 

would be useful to compare the movement or dispersal of mated and unmated mature 

individuals kept in mixed or single-sex cohorts prior to measurements. Furthermore, 

providing alternate environments with and without a food source, conspecifics, and suitable 

shelter could improve the ecological relevance of the exploratory behaviour assessment. 

 

The process of maturation has significant effects on many behavioural and physiological 

traits of individuals. The reduced energy expenditure by immature individuals is likely a 

result of the combination of lower energy requirements until the onset of sexual maturity, as 

well as maintaining a relatively inactive state. This inactivity is also likely to provide 

protection from conspecifics during the cuticle sclerotisation and maturation process. 

Certainly, from eclosion to the onset of sexual maturity there are significant biological 

changes occurring within the individual, many of which I have demonstrated through their 

movement behaviour, physiology, and morphology. For behavioural, ecological, 

evolutionary, and dispersal-based studies, taking into account the timing and effect of 

maturity status and age when applying experimental treatments or selection is clearly 

important. The relative stability of the mean and variance of traits after the onset of maturity 

meant that only beetles aged at least 4 days post-eclosion were used in Chapter 3–5. In order 

to understand behavioural syndromes and their underlying physiological mechanisms, it is 

essential to be informed about the trajectories of the traits of interest throughout the portion 

of adult life where dispersal and reproduction occurs. 
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Chapter 3   

Functional traits in red flour beetles: the dispersal phenotype is 

associated with leg length but not body size nor metabolic rate 

 

Abstract 

Individuals vary in their ability to disperse. Much of this variation can be described by 

covarying phenotypic traits that are related to dispersal (constituting the ‘dispersal 

phenotype’ or ‘dispersal syndrome’), but the nature of the associations among these traits are 

not well understood. Unravelling the associations among traits that potentially constitute the 

dispersal phenotype provides a foundation for understanding evolutionary trade-offs due to 

variation in dispersal. Here I tested five predictions pertaining to the relationships among 

physiological, morphological, and movement traits that are associated with dispersal, using a 

species with a long history as a laboratory model for studying ecological phenomena, red 

flour beetles (Tribolium castaneum). I identified a dominant axis of movement ability that 

describes variation in dispersal-related movement traits. Individuals that scored positively on 

this axis moved at higher speed, travelled longer distances, had lower movement 

intermittency, and dispersed quicker to a specified area. Relative leg length, but not body size 

nor routine metabolic rate related positively with movement ability, indicating a likely 

mechanistic relationship between increased stride length and movement ability. These data 

suggest that the dispersal phenotype may be more strongly linked to morphological traits than 

physiological ones. I demonstrate that associations among many functional traits do not 

necessarily conform to a priori expectations, and predict that the substantial intra-specific 

variation in trait values may be important for selection. Movement is a complex behavioural 

trait, but it has a mechanistic basis in locomotor morphology that warrants further 

exploration. 

 

Introduction 

The dispersal phenotype, or dispersal syndrome, is the specific expression of multiple 

phenotypic (physiological, morphological, and behavioural) traits that facilitate efficient 

movement and effective dispersal (Ronce & Clobert 2012). The genetic and demographic 

structure of a population is significantly affected by the patterns of covariation among traits 
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constituting the dispersal phenotype (Ronce & Clobert 2012), and by the variation in 

dispersal phenotypes among individuals (Bowler & Benton 2005, 2009; Shaw & Kokko 

2014). 

 

An animal’s size is often related to a range of physiological and fitness-related traits, 

including metabolic rate (White & Kearney 2013), predation success (Blanckenhorn 2000), 

mate choice (Jennions & Petrie 1997), fecundity (Honĕk 1993), and movement propensity 

(Stevens et al. 2014). Across a range of taxa, body size correlates positively with movement 

and dispersal ability such that larger individuals have a stronger propensity to move, or move 

a greater distance (e.g. Anholt 1990; Benard & McCauley 2008; Sekar 2012; Stevens et al. 

2012; Whitmee & Orme 2013). Explanations for a positive correlation are often directed 

towards the larger size or enhanced development of locomotor appendages that facilitate 

movement (Phillips et al. 2006; Laparie et al. 2013; Stevens et al. 2014). However, there are 

also examples where body size correlates negatively with dispersal (e.g. Hanski et al. 1991), 

or intermediate sized individuals move more (e.g. McDevitt et al. 2013) due to complex 

interactions between the phenotype, population structure, and the environment. In invasive 

cane toads (Rhinella marina), dispersive individuals at the edge of their range that had a 

stronger propensity to move had longer bodies and greater endurance (Llewelyn et al. 2010), 

and relatively longer legs (Phillips et al. 2006). Functional locomotor morphology, such as 

leg length, wing shape, or supporting muscle architecture for limbs tends to relate positively 

with different movement characteristics and also has consequences for energy expenditure 

(Roff & Fairbairn 1991; Choi et al. 2003; Ducatez et al. 2012; Lowe & McPeek 2012). 

 

Rates of energy expenditure under different contexts are a particularly well-studied area of 

animal physiology with considerable attention devoted to the inter- and intra-specific 

variation in metabolic rate (Glazier 2005; Burton et al. 2011; White & Kearney 2013). 

Metabolic rate (MR), basally or at rest, is a proxy for maintenance energy expenditure and is 

strongly associated with temperature (Clarke & Fraser 2004), body size (White 2011), and 

physical activity (Speakman & Selman 2003). While there is certainly an association between 

resting MR and levels of voluntary activity, the mechanism and direction of this association 

is generally not well understood. These relationships can however, be divided into two 

general models: performance and allocation (Careau et al. 2008). The performance model 

suggests that individuals with a higher MR at rest are able to attain and invest greater 

amounts of energy into activity (e.g. salmonids that have a higher standard MR are more 
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aggressive (Cutts et al. 1998)). Alternatively, the allocation model suggests that the total 

energy available for an individual is partitioned between resting MR and activity, such that 

individuals with a lower resting MR have more energy left to allocate to activity (e.g. mice 

forced to run more to receive a food reward reduced their resting MR (Vaanholt et al. 2007)). 

 

If the partitioning of energy into dispersal is a trade-off with energy available for other traits, 

then actively dispersing individuals would be expected to have a different phenotype to those 

that are less exploratory or active (Clobert et al. 2009). Even within a species, the 

morphology of locomotor structures can affect MR. For example, large wing morphs of sand 

field crickets (Gryllus firmus) have a higher MR than smaller wing morphs due to the higher 

cost of maintaining the larger flight muscle tissues (Crnokrak & Roff 2002). MR appears to 

be related with dispersal, such that individuals from invasion front populations generally have 

higher MR than individuals that are less effective at moving (Haag et al. 2005; Niitepõld et 

al. 2009; Myles-Gonzalez et al. 2015). 

 

Behaviours associated with dispersal are diverse and often challenging to measure. Proximate 

measurements that have been found to correlate with dispersal include distance travelled 

(Ducatez et al. 2012), movement speed (Phillips et al. 2006; Delgado et al. 2010), boldness 

and exploratory behaviours (Rehage & Sih 2004; Cote et al. 2010b), and measures of 

locomotor activity (Socha & Zemek 2003). Intuitively, many movement traits will be 

fundamentally linked, and therefore strongly associated (e.g. speed and distance travelled). 

As animal movement and ecology can be altered by behavioural patterns such as travelling 

along straight or tortuous paths (Brown et al. 2014), or moving intermittently (Bazazi et al. 

2012), examining trait associations remains crucial to understanding drivers of movement. 

Simple measures of locomotor activity can, in some species, be broadly representative of 

complex movement behaviours. For example, spontaneous activity; the observable activity of 

an individual when not specifically externally stimulated (Ewing 1963), is used as a proxy for 

exploratory behaviour in Drosophila species (Martin 2003). The application of spontaneous 

activity as a simple movement metric in species other than Drosophila is rare. Hence, 

examining the associations between spontaneous activity and more complex measurements 

would be useful to identify whether a simple measurement may be a suitable alternative to 

more complex movement metrics. 
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In this study, I investigated dispersal phenotypes by examining the associations among body 

size, relative leg length, energy expenditure, and movement behaviour in the red flour beetle, 

Tribolium castaneum (Herbst 1797). This species and its close relative T. confusum have long 

been used as models for laboratory-based microcosm and demographic studies of dispersal 

(e.g. Naylor 1961; Ziegler 1976; Zirkle et al. 1988; Campbell & Hagstrum 2002; Łomnicki 

2006; Melbourne & Hastings 2009), however morphology, physiology, and movement 

behaviour have not been studied concurrently with this study system. I aimed to test the 

following predictions. First, that the morphological and physiological traits (body size, leg 

length, and metabolic rate) are all associated. Second, that body size is positively associated 

with movement, such that larger individuals move farther and faster. Third, that leg length is 

positively associated with movement, such that individuals with longer legs relative to body 

size would have a greater capacity to move quickly and efficiently. Fourth, that routine 

energy expenditure has an association with movement, supporting either the performance or 

the allocation model of energy expenditure. And finally, that spontaneous activity may be an 

appropriate proximal measurement for more complex movement traits. 

 

Material and methods 

Study species and housing 

A laboratory population of Tribolium castaneum (Figure 3.1a) established from a wild-type 

line (QTC4) that was sourced from the Postharvest Grain Protection Team (Department of 

Agriculture, Fisheries and Forestry; Brisbane, QLD, Australia) was used throughout 

experiments. Stocks were maintained on 200 g of flour medium (95% wholemeal 

stoneground wheat flour: 5% torula yeast) in 1 L cylindrical containers under controlled 

conditions of 29.5 ± 1 °C and cultured fortnightly to separate cohorts and refresh the medium. 

Pupae were collected from the stock containers and sexed by examining the external genitalia 

(Halstead 1963) under an Olympus SZ61 stereomicroscope (Olympus Australia Pty. Ltd., 

Notting Hill, VIC, Australia). Groups of five pupae were separated by the date of eclosion 

and by sex, and then placed in 70 mL containers with 5 g of flour that was replaced 

fortnightly. Age in this study ranged from 5–105 days posteclosion, where age was known 

within ± 12 h. At least 24 h prior to taking measurements, beetles were placed in empty 

70 mL containers to fast before respirometry. A total of 290 individuals (n = 145 males 

and n = 145 females) were each measured once only for multiple traits in the following order: 

metabolic rate and spontaneous activity, movement behaviour, mass, and morphometrics. 



36 

 

 

Figure 3.1 (a) Adult red flour beetle Tribolium castaneum (Herbst, 1797) moving through wheat flour. 

Photograph by Pieter Arnold. (b) Complex maze environment based on 12 evenly-spaced square radial 

passageways used to quantify movement. A typical movement path taken by an individual beetle is shown 

where the dotted line represents total path length and dashed line represents linear distance travelled from start 

to end of the trial. Points of no movement during the trial (behavioural intermittence) are shown as solid circles. 
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Trait measurement 

All trait measurements were conducted as described in detail in Chapter 2. Briefly, four 

beetles were measured at once, where each individual was placed into one of four 2 mL 

chambers in-line with a flow-through respirometry system utilising two LI-7000 CO2/H2O 

analysers (Li-COR Inc., Lincoln, NE, USA) to measure CO2 production through respiration 

over a 1 h period. CO2 production was used as a proxy for metabolic rate (Lighton 2008), 

which as measured in this study, was defined as routine metabolic rate (routine MR) due to 

the presence of spontaneous activity during measurement (Mathot & Dingemanse 2015). 

Spontaneous activity was measured synchronously with routine MR by using an infrared 

activity detector (LAM10H; TriKinetics Inc., Waltham, MA, USA). For each discrete 

interruption of the infrared beam a value of 1 was recorded, and the total number of counts 

over the measurement period was converted to counts/h. 

 

Following spontaneous activity measurements, individuals were placed in a maze 

(Figure 3.1b), which represents a spatially complex environment with barriers to movement 

and multiple junctions. In an open arena, T. castaneum will actively move towards and 

remain along the arena edge (Arnold PA, pers. obs.), whereas in a maze, movement is 

typically more varied among individuals and multiple movement attributes can be easily 

measured. Movement through the maze was video recorded (1280 × 720 pixels; 10 fps) for 3 

mins, and then individual movement paths were digitized and tracked in MATLAB software 

(The MathWorks, Inc., Natick, MA, USA) using an extended Kalman filter (Hedrick 2008). 

Minimum and maximum movement speed (calculated as the lower and upper 5
th

 percentiles 

of speed during the trial), behavioural intermittence (as frequency of stops during the trial), 

path length (total length travelled during the trial), linear distance travelled (straight line 

distance between their positions at time 0 and time 180 s), and time to maze edge (reach the 

outer passageway) were calculated. Fresh mass (mg) was measured, and then individuals 

were photographed dorsally and ventrally to measure elytron (modified hardened forewing; 

dorsal) length and width, pronotum (thorax; dorsal) length and width, and hind femur length 

using ImageJ software (v1.46r, National Institutes of Health, Bethesda, MD, USA). 

 

Statistical analyses 

Data were tested for normality, homogeneity of variance, and the presence of interactions. 

Spontaneous activity was centred and scaled around zero according to the Z-distribution for 
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analyses. The morphometric measurements of elytron length and width, pronotum length and 

width, and mass were partially collinear; therefore a Principal Components Analysis (PCA) 

was conducted to distil these body size traits into a single trait (the 1
st
 Principal Component, 

PC1, which explained 89.4% of the variance among the five traits; Table 3.1), hereafter 

called ‘body size’. A second PCA was conducted to condense path length, linear distance, 

minimum speed, maximum speed, behavioural intermittence, and time to maze edge into two 

traits (Table 3.1). PC1 explained 62.3% of the total variance among the movement traits, and 

was loaded most strongly by path length and both measures of speed (positively), and 

behavioural intermittence (negatively), and is therefore called ‘movement ability’ hereafter. 

PC2 explained a further 17.7% of the variance among movement traits, and was loaded most 

strongly by linear distance travelled (positively) and time to maze edge (negatively), and is 

therefore called ‘movement displacement’ hereafter. Leg length and routine MR are both 

presented as body size corrected residuals. Data analyses were conducted in the R software 

environment version 3.2.3 (R Foundation for Statistical Computing, Vienna, Austria), 

utilising the linear mixed-effects model lme4 v1.0.4 package (Bates et al. 2014), the multi-

model interference MuMIn v1.15.6 package (Bartoń 2012). Linear mixed-effects regression 

(LMER) models were fitted, and then models were simplified using conditional model 

averages based on Aikaike weights of > 0.004 to subset the model, then removal of near-zero 

importance models by fitting a cumulative sum of Aikaike weights to ≤ 0.995. No 

interactions were significant after the model simplification process. 

 

Table 3.1 Principal Components Analysis and relative loading of morphological and movement traits onto 

Principal Components that describe body size, movement ability (PC1), and movement displacement (PC2). 

Loadings Body size  Movement 

Body size traits PC1 Movement traits PC1 PC2 

Elytron length 0.302 Path length 0.492 -0.153 

Elytron width 0.154 Linear distance travelled 0.221 0.753 

Pronotum length 0.098 Minimum speed 0.384 -0.409 

Pronotum width 0.153 Maximum speed 0.463 -0.012 

Body mass 0.923 Behavioural intermittence -0.471 0.192 

– – Time to maze edge -0.355 -0.454 

Eigenvalue 0.0644  3.737 1.063 

Proportion variance 89.45%  62.29% 17.72% 
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Results 

Associations among body size, leg length, and MR 

Body size is typically a strong predictor of MR, and here I found that routine MR was 

significantly positively associated with body size (Figure 3.2a; Z = 2.17, P = 0.03), but had 

no relationship with relative leg length (Figure 3.2b; Z = 0.68, P = 0.496). Unsurprisingly, leg 

length was significantly positively associated with body size (Figure 3.2c; Z = 5.81, 

P < 0.001) as larger individuals typically also had longer legs. Given the scaling of routine 

MR and leg length with body size, these traits were corrected for body size in further data 

presentation. Descriptive statistics for all traits are shown in Table 3.2. 

 

Table 3.2 Descriptive statistics (means ± 95% CIs) for all traits that were measured and calculated in this study. 

 Male Female 

Trait Mean (± 95% CI) Mean (± 95% CI) 

Age (days post-eclosion) 35.14 (30.1 – 40.2) 35.14 (30.1 – 40.2) 

Routine MR (µL CO2/h) 5.23 (5.03 – 5.42) 5.49 (5.29 – 5.69) 

Spontaneous activity (counts/h) 182.4 (156.1 – 208.7) 134.1 (114.5 – 153.6) 

Mass (mg) 2.392 (2.354 – 2.430) 2.504 (2.467 – 2.540) 

Elytron length (mm) 2.526 (2.509 – 2.542) 2.590 (2.576 – 2.605) 

Elytron width (mm) 1.290 (1.281 – 1.298) 1.313 (1.301 – 1.320) 

Pronotum length (mm) 0.808 (0.801 – 0.814) 0.824 (0.817 – 0.831) 

Pronotum width (mm) 1.181 (1.173 – 1.188) 1.206 (1.199 – 1.213) 

Femur length (mm) 0.705 (0.695 – 0.714) 0.715 (0.705 – 0.724) 

Path length (mm) 1769 (1701 – 1839) 1814 (1737 – 1891) 

Linear distance travelled (mm) 192.9 (184.7 – 200.0) 197.4 (189.4 – 205.4) 

Average speed (mm/s) 9.83 (9.45 – 10.22) 10.08 (9.65 – 10.50) 

Minimum speed (mm/s) 4.13 (3.91 – 4.35) 4.21 (3.97 – 4.45) 

Maximum speed (mm/s) 16.86 (16.21 – 17.51) 17.27 (16.53 – 18.00) 

Behavioural intermittence (freq.) 310.0 (291.3 – 328.7) 297.3 (282.2 – 312.4) 

Time to maze edge (s) 115.9 (108.0 – 123.9) 112.3 (104.4 – 120.2) 

Body size (PC1) -0.066 (-0.107 – -0.025) 0.066 (0.027 – 0.105) 

Movement ability (PC1) -0.110 (-0.430 – 0.211) 0.110 (-0.199 – 0.419) 

Movement displacement (PC2) -0.020 (-0.172 – 0.132) 0.020 (-0.163 – 0.203) 
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Figure 3.2 Associations among physiological and morphological traits: (a) body size and routine MR, (b) 

residual leg length (adjusted for body size) and routine MR, and (c) body size and leg length. Regression lines 

represent significant associations only. Males (n = 145) are represented by unfilled circles (○) and females 

(n = 145) are represented by filled circles (●). 
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Body size and movement 

Body size was not positively associated with any measurement of movement, contrary to the 

prediction that larger individuals should be able to move farther and faster than smaller 

individuals. Body size was not a significant predictor of movement ability (Z = 1.39, 

P = 0.166; Figure 3.3a), or movement displacement (Z = 0.46, P = 0.643; Figure 3.3d). 

However, there was a significant negative relationship between body size and spontaneous 

activity (Z = 2.04, P = 0.04; Figure 3.3g), where larger individuals were typically less active 

than smaller ones. 

 

 

Figure 3.3 Associations among six dispersal-related traits. Body size, residual leg length (adjusted for body 

size), and residual routine MR (adjusted for body size) were predictor variables for three movement traits: (a–c) 

movement ability (PC1), (d–f) movement displacement (PC2), and (g–i) spontaneous activity. Regression lines 

represent significant associations only. Males (n = 145) are represented by unfilled circles (○) and females 

(n = 145) are represented by filled circles (●). 
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Relative leg length and movement  

Leg length relative to body size was significantly associated with two measurement of 

movement. Residual leg length was positively related to movement ability (Z = 5.97, 

P < 0.001; Figure 3.3b), which is consistent with the prediction that individuals with longer 

legs relative to their body size would move farther and faster. However, residual leg length 

was also significantly negatively associated with movement displacement (Z = 2.42, 

P = 0.015; Figure 3.3e); individuals with relatively longer legs ultimately moved less distance 

away from their starting position. Relative leg length was not significantly related to 

spontaneous activity (Z = 1.13, P = 0.257; Figure 3.3h). 

 

Routine MR and movement 

Routine MR corrected for body size was only significantly associated with one measurement 

of movement. Routine MR was not significantly related to movement ability (Z = 1.18, 

P = 0.236; Figure 3.3c), or to movement displacement (Z = 1.95, P = 0.051; Figure 3.3f), 

however this association was marginally significant and trends negatively. Routine MR was 

significantly positively related to spontaneous activity (Z = 4.02, P < 0.001; Figure 3.3i), 

which is unsurprising given that the two traits were measured concurrently, and that increased 

activity increases MR. 

 

Spontaneous activity as a proxy for movement 

Spontaneous activity has been suggested to be a simple measure for complex movement 

behaviour. But here spontaneous activity did not relate significantly to movement ability 

(Z = 1.55, P = 0.120; Figure 3.4a) or movement displacement (Z = 0.84, P = 0.402; 

Figure 3.4b). Full tables of averaged LMER models with the movement traits as response 

variables, including covariates are presented in the Appendix (Table A3.1 and Table A3.2). 
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Figure 3.4 Associations among three movement traits. Movement ability (PC1) and movement displacement 

(PC2) are intrinsically uncorrelated due to the nature of Principal Components Analysis, therefore not shown. 

Associations between: (a) movement ability and spontaneous activity, and (b) movement displacement and 

spontaneous activity. Neither relationship is significant. Males (n = 145) are represented by unfilled circles (○) 

and females (n = 145) are represented by filled circles (●). 
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Discussion 

The present study demonstrates that while the associations among physiological, 

morphological, and movement traits associated with the dispersal phenotype may seem 

relatively intuitive; the strength, variance, and even the direction of relationships may not be. 

Certainly, the well-established relationships of routine MR and leg length scaling with body 

size were significantly positively related as expected (Kleiber 1947; White & Kearney 2014). 

However, contrary to some predictions, I found that only relative leg length, but not body size 

nor metabolic rate appear to relate positively to movement ability. Given the substantial 

variance found in most traits measured in this study, the possibility of small effects of body 

size and metabolic rate on movement remains possible. 

 

Larger individuals were predicted to have a greater movement ability and displacement; 

however the data presented here do not support this hypothesis. A positive size-dispersal 

relationship has been found in some species (e.g. Anholt 1990; Stevens et al. 2012), but in 

others, small or intermediate sized individuals may be the ones to disperse (Hanski et al. 

1991; McDevitt et al. 2013). The size-dispersal relationship frequently depends on the 

context and environment that triggers dispersal events (Benard & McCauley 2008), and the 

results presented here suggest that short ground-based movement may not strongly relate to 

within-species variation in body size. Large body size has potential to handicap movement in 

some species (Benton & Bowler 2012a), and smaller, less competitive individuals may 

disperse before larger individuals to reach and exploit resources earlier (Bowler & Benton 

2005). Larger individuals were less active in the metabolic chambers during routine MR 

measurement. If the animals can perceive that the metabolic chamber is an energy-limited 

environment, then larger individuals may opt to conserve energy by reducing activity, as the 

absolute cost of movement is greater for larger individuals relative to smaller ones (Halsey 

2016). 

 

Movement ability was the most representative measure of variance among all dispersal-

related traits. Individuals that scored positively along the axis of movement ability had a high 

minimum and maximum speed, a greater path length, less behavioural intermittence, and 

reached the maze edge quickly. Highly dispersive individuals have been suggested to share 

these movement characteristics, and this movement axis may be useful to determine dispersal 

or diffusion rates. Similarly related movement traits have been identified in dispersive cane 
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toads from the edge of their range, which travelled farther and faster for longer periods 

without pausing compared to non-dispersive toads (Phillips et al. 2006; Alford et al. 2009; 

Llewelyn et al. 2010). 

 

I found that individuals with relatively longer legs had greater movement ability. This 

relationship could be explained mechanistically by longer legs allowing an increased stride 

length, in turn allowing the animal to move a greater distance with each step taken, therefore 

also achieving a greater speed (Zollikofer 1994). A long-term study of stream salamanders 

(Gyrinophilus porphyriticus) found that individuals with long forelimbs relative to their 

hindlimbs dispersed greater distance, indicating that locomotor morphology has a major role 

in long-distance dispersal and fitness (Lowe & McPeek 2012). Evolutionary mechanisms can 

select for individuals that have phenotypic traits that allow them to move farther, which may 

indicate the presence of a dispersal phenotype (e.g. Phillips et al. 2006; Laparie et al. 2013). 

Whether selection for greater movement or dispersal increases the length of locomotor 

structures independent of body size can only be directly determined through experimental 

evolution. The finding of a significant negative relationship between relative leg length and 

movement displacement may be a continued searching behaviour. That is, individuals with 

relatively longer legs have a greater path length and reach the maze edge quickly, but upon 

reaching the edge, these individuals may back-track and return towards the maze centre, 

reducing their overall displacement. This suggests that these individuals may have more 

tortuous movement paths and it is plausible that the PC2 of movement may also be analogous 

to path straightness. 

 

I predicted that routine MR would be associated with movement, supporting either the 

performance or allocation hypotheses. Routine MR was not significantly related to either 

movement ability or displacement, but was with spontaneous activity. This relationship is 

intuitive; the more an individual moves during measurement of its energy expenditure, the 

greater its energy expenditure will be (Mathot & Dingemanse 2015), and thus may not be 

representative of movement or dispersal. Under the performance model of energy 

expenditure, individuals with greater performance (movement, in the present case) should 

have a higher MR (Careau et al. 2008). Under the allocation model, individuals with a higher 

resting MR have less energy remaining to allocate to activity (Careau et al. 2008). The 

marginally significant negative relationship between movement displacement and routine MR 

suggests that individuals with a high routine MR potentially travelled less distance overall. 
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The data describing this relationship was highly variable, and the allocation model cannot be 

assessed directly in this study as both maintenance energy and activity are confounded in the 

measure of routine MR. Resting MR has been previously found to be higher in individuals 

with greater movement propensity (Niitepõld et al. 2009; Myles-Gonzalez et al. 2015) and a 

recent study found that genes underlying metabolic processes are upregulated in dispersive 

cane toads (Rollins et al. 2015). Given the potential involvement of genetic and epigenetic 

mechanisms, and potential metabolome differences between dispersive and non-dispersive 

individuals (Rollins et al. 2015; Van Petegem et al. 2015; 2016b), it may be worth exploring 

the association between MR and movement in other systems. 

 

These data presented here do not support either the performance model or the allocation 

model of energy expenditure, and adds to a collection of studies demonstrating that MR does 

not always correlate with components of performance or fitness (e.g. lifespan: Hulbert et al. 

2004; growth and survival: Burton et al. 2011; reproductive performance: Schimpf et al. 

2012; locomotor performance: Le Galliard et al. 2013; aerobic performance: Merritt et al. 

2013; scaling: White & Kearney 2013; behaviour: Royauté et al. 2015). Under different 

environmental contexts, the relationship between MR and other traits, or between MR at rest 

and during activity (i.e. maximum or flight MR) can change and must be cautiously 

interpreted (e.g. Burton et al. 2011; Killen et al. 2012; Killen et al. 2013; Lebeau et al. 2016; 

Metcalfe et al. 2016). Variation in MR is maintained in most natural populations allowing for 

different strategies for growth, behaviours, and reproduction in specific contexts (Burton et 

al. 2011). Additionally, historical findings that established distinct paradigms of trait 

associations, including with MR, tend to be based on small sample sizes and therefore low 

statistical power, which may undermine identification of the true relationship (Button et al. 

2013). 

 

The final prediction considered that spontaneous activity may be a useful approximate 

measure of complex movement traits. Spontaneous locomotor activity is thought to represent 

the activity response of an animal when not specifically stimulated (Ewing 1963) and is the 

basis of many complex behaviours (Martin 2003). In the present study, neither movement 

ability nor displacement had any discernible association with spontaneous activity, and the 

relationship between morphological and physiological traits and movement were not similar 

to those observed with spontaneous activity. Therefore, at least for T. castaneum, 

spontaneous activity was not a useful proximate trait for complex movement traits. 
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The results presented here demonstrate that associations among traits are not always intuitive, 

and do not always conform to expectations from literature paradigms. I found that much of 

the variance among different movement traits can be described along a dominant axis of 

variation; movement ability. I have shown here that movement ability (which potentially 

represents dispersal) is more strongly linked with locomotor morphology than body size or 

MR. These findings support the hypotheses that locomotor morphology could be a 

considerable source of variation in distributing individuals through a landscape by spatial 

sorting or natural selection, thereby accelerating rates of range expansion in invasive species 

(Shine et al. 2011). The movement ability axis and the significant trait associations identified 

here can be used as a foundation for studying variation in movement and dispersal. Tribolium 

castaneum represents an ideal model species to test this hypothesis using experimental 

evolution in a laboratory setting (Chapter 5). 



48 

Chapter 4  

Investigating movement in the laboratory: dispersal apparatus 

designs and the red flour beetle, Tribolium castaneum 

 

Abstract 

The natural dispersal of Tribolium beetles (Coleoptera: Tenebrionidae) has been emulated in 

the laboratory for more than 50 years, using a simple dispersal apparatus. This has typically 

comprised of a starting container (initial resource or patch) connected by tubing, which 

contains thread for the animals to climb into the tube and subsequently to an end container. 

That is, beetles move to a new viable resource or patch from an inter-patch zone or non-

viable habitat. I modified this basic apparatus design to test the effect of tubing length and 

tubing insertion angle on the dispersal rate and proportion of successful dispersers. It was 

expected that the proportion of successful dispersers would be repeatable within each 

apparatus design, and that increasing tubing length and steepness of the insertion angle would 

reduce dispersal rate and success across apparatus designs. I found that dispersal success 

increased linearly through time, at a similar rate for both males and females. The design with 

the most vertical tubing insertion angle had a lower proportion of successful dispersers, 

allowing dispersers and non-dispersers to be clearly distinguished. Tubing length also had a 

negative relationship with dispersal success (as judged by insects reaching the end container), 

but a significant reduction in dispersal success was only apparent between the shortest and 

longest tubing between containers. I suggest that locating and climbing the vertical section of 

string before they can enter the tubing between containers restricts dispersal and that, at 

higher densities, insects have greater inclination to climb. This type of apparatus has further 

potential to study the dispersal of T. castaneum, as well as other small insect species that 

primarily use pedestrian locomotion. 

 

Introduction 

Flour beetles of the genus Tribolium (Coleoptera: Tenebrionidae), particularly T. castaneum 

and T. confusum, are major pests of a wide range of grain species and processed stored 

products globally, and are known to have a high rate of movement among resource patches 

(Campbell & Hagstrum 2002; Ahmad et al. 2012). A diverse array of approaches have been 
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used to study the movement of Tribolium beetles including laboratory apparatuses (e.g. Prus 

1963; Łomnicki 2006), warehouse scale patch exploitation arenas (e.g. Campbell & 

Hagstrum 2002; Campbell & Arbogast 2004), and landscape scale sampling (e.g. Ridley et 

al. 2011). Here I focus on movement in apparatuses. Most apparatus designs consist of 

connected containers that adult beetles can move between, allowing dispersers and non-

dispersers to be separated over time. The main phases of successful dispersal can be observed 

with this design; the inclination to move away from a resource patch (initial container), 

survival through an unsuitable inter-patch zone (tubing between patches, or in intermediate 

containers of various suitabilities), and establishment into a new patch (final container) 

(Bowler & Benton 2009). While this has been the most widely used approach, little 

consensus has emerged on certain apparatus design attributes. 

 

Prus (1963) described an apparatus to study the tendency for beetles to emigrate from a vial 

containing flour (A) to an empty vial (B) by climbing cotton thread into a tube. The tubing 

was inserted through the vial lids (bridging the two vials) and the thread, which dangled onto 

the surface in A but not in B, permitted only one-way movement from A to B. Emigration rate 

of beetles from A to B was repeatable over 10 days and multiple experimental replicates (Prus 

1963). Despite inexplicit design specifications (with the exception of tubing internal 

diameter; 4.5 mm, and initial density: 32 beetles per 8 g of flour), the repeatability of the 

recorded behaviour and design simplicity ensured its longevity in subsequent studies of 

Tribolium dispersal. Modifications to the Prus design such as that of Ogden (1970a, b) 

included flour medium in the second vial, and also defining the length, shape and material of 

tubing (Tygon tubing, U shaped and 150 mm in length), container size (29.5 mL), and 

population density (either 32 or 50 individuals per 8 g of flour). Ziegler (1976) utilised pipe 

cleaner, in place of thread, and glass tubing, but described no other design parameters. 

 

The Prus design was used as a platform for investigating Tribolium emigration in response to 

numerous factors, including population density, age, artificial selection for activity or 

emigration, and also fecundity and life-history responses to selection for emigration (Prus 

1966; Zyromska-Rudzka 1966a, b; Ogden 1970a, b; Ziegler 1976; Ritte & Lavie 1977; 

Ziegler 1977; Lavie & Ritte 1978, 1980; Riddle & Dawson 1983; Zirkle et al. 1988; 

Goodnight 1989; Ben-Shlomo et al. 1991). Ritte and Lavie (1977) induced divergent 

selection on dispersal in just one generation by selecting for beetles that moved from vial 

A to B (via a 30 cm long polyvinyl tube), twice in two opportunities, as high dispersers and 
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those that did not move as low dispersers. Łomnicki (2006) used a one-way dispersal 

apparatus including five beakers of various size (A–E), three of which contained flour 

(A, C, E) and two of which were unsuitable habitats (i.e. empty: B, D), all connected by glass 

tubing containing string. Dispersal through this apparatus was far slower than previous 

designs, suggesting that the extra patches limited the successful dispersal rate. 

 

Despite the differences among designs, many of these studies reached similar conclusions. 

Emigration tendency was low in immature individuals, peaked around sexual maturity, and 

declined later in life. Males emigrated more rapidly than females when the sexes were kept 

separately, and keeping the sexes mixed resulted in an overall emigration rate that was 

intermediate between those of the sexes separately (Prus 1963; Ogden 1970b; Ziegler 1976; 

Riddle & Dawson 1983). Dispersal was dependent on density and age of infestation; this was 

thought to be a response of repulsion to flour that was ‘conditioned’ by chemical secretions 

and frass accumulation over time (Zyromska-Rudzka 1966a; Ogden 1970b). A discernible 

difference across the emigration rates of lines selected for dispersive and non-dispersive 

behaviour was identified after five generations of selection (Ogden 1970a) and dispersal 

behaviour has an underlying genetic component (Ritte & Lavie 1977; Lavie & Ritte 1978; 

Riddle & Dawson 1983). 

 

Studies on Tribolium dispersal in the laboratory have almost ubiquitously used the apparatus 

design of Prus (1963) with modifications to the container size, tubing length and material, 

container arrangement, population density, and time period. However, many studies have not 

provided detailed specifications of apparatus components. The length of tubing between 

containers (which represents the inter-patch dispersal component), the angle at which the 

tubing is inserted into container lids (which may increase dispersal difficulty) are unstated, or 

appear to vary significantly among studies. The importance of these factors to dispersal 

success has not been investigated previously. In the present study, I have implemented and 

tested design aspects derived from apparatus revisions by addressing the following questions: 

1) does increasing tubing length affect the proportion of successful dispersers and the 

dispersal rate; 2) does tubing insertion angle affect the proportion of successful dispersers?; 

and 3) is dispersal rate repeatable within an apparatus design? I predicted that longer tubing 

and more vertical tubing insertion angle would reduce the proportion of successful dispersers. 

I addressed these questions using T. castaneum and five dispersal apparatus designs, while 

manipulating tubing insertion angle and length. 
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Materials and methods 

Animals and housing 

A wild-type population of T. castaneum (QTC4) was sourced from the Postharvest Grain 

Protection Team (Department of Agriculture, Fisheries and Forestry; Brisbane, QLD, 

Australia) and used to establish experimental stocks. The QTC4 strain originated from a 

storage facility in Brisbane (QLD, Australia) in 1965. It has been cultured ever since in the 

absence of selective pressures from the fumigant phosphine, and therefore these insects 

exhibit natural susceptibility to phosphine. Stocks were maintained on 210 g of flour medium 

containing wholemeal stoneground wheat flour (Kialla Purefoods; Greenmount, QLD, 

Australia) and torula yeast (Lotus Foods Pty. Ltd., Cheltenham, VIC, Australia) at a ratio of 

19:1, in 1 L cylindrical containers at 29.5 ± 1 °C and 40–60% relative humidity. Stocks were 

cultured fortnightly to maintain clean housing and separate cohorts. Beetles used in 

experiments were collected from stocks as pupae, and sex was determined by examining the 

external genitalia (Halstead 1963) under an Olympus SZ61 stereomicroscope (Olympus 

Australia Pty. Ltd.; Notting Hill, VIC, Australia). After sorting by sex, pupae were randomly 

added to 70 mL containers that held 15 g of flour medium in groups of 50, such that each 

experimental replicate had five containers (i.e. 250 male and 250 female pupae, and a total of 

3000 individuals over six experimental replicates). They were held for six days to allow the 

resultant adults to reach three days of age post-eclosion before the 70 mL containers were 

attached as container A in the dispersal apparatus, for the dispersal experiments to commence.  

 

Dispersal apparatus designs 

Five designs were chosen to test the dispersal capacity of T. castaneum, based mostly on the 

designs of Prus (1963), Ogden (1970a), and Łomnicki (2006). Variables that I manipulated 

were the length of the tubing and the angle of the tubing as it left and entered containers. 

Each design used three 70 mL containers (57 × 44 mm, labelled A, B, and C, respectively; 

Sarstedt Australia Pty. Ltd., Mawson Lakes, SA, Australia) connected through the lid of each 

container via silicone tubing (4 mm internal diameter), containing a single looped strand of 

cotton twine that permitted only one-way movement from container A to B to C. 

 

As the angle of tubing was negatively associated with the distance between containers, only 

Designs 1 and 2 were compared to determine the effect of tubing insertion angle 
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independently of length. Tubing length in Design 1 was 140 mm, with a distance of 70 mm 

between the tube insertions, yielding a relatively steep insertion angle (55°) for the tubing 

(Figure 4.1a) to represent the extended vertical climbing distance employed in the design of 

Prus (1963). Design 2 used the same tubing length as Design 1 (140 mm) over a greater 

distance between the tube insertions (120 mm), creating a shallower slope (24°) in the tubing 

(Figure 4.1b). Designs 3, 4, and 5 all had relatively shallow tubing insertion angles (4–16°); 

these designs were included to test if increasing tubing length reduced dispersal success. 

Design 3 used 185 mm long tubing over 165 mm (Figure 4.1c), Design 4 used 335 mm long 

tubing over 310 mm (Figure 4.1d), and Design 5 employed 640 mm long tubing over a 

distance of 620 mm between tubing insertions (Figure 4.1e). The distances between insertion 

points in containers in the different dispersal apparatuses were structurally maintained using 

plywood housing to fix the containers a set distance apart, level with each other and aligned 

linearly (Figure 4.2). 

Dispersal assessment 

Each design used two apparatuses, one for males and one for females, to assess dispersal for 

each sex separately but concurrently. Sexes were not mixed for two reasons: 1) to eliminate 

the potential for breeding to occur during the dispersal process, which has been shown to 

slow the rate of dispersal (Ziegler 1976) and 2) to emulate the conditions required for a 

subsequent experiment that controlled breeding after the dispersal assessment (Chapter 5). 

The containers with 50 adult beetles of known sex, labelled container A, were randomly 

assigned to an apparatus design and attached to each apparatus, representing the starting point 

of dispersal (Figure 4.2). Both A and C contained 15 g of flour and container B had a 

covering of paper to provide grip, but was otherwise an unsuitable habitat for the beetles. 

Container B was included to represent a patch that would not be a suitable resource to 

establish in, but that had to be passed through as part of the dispersal process (Łomnicki 

2006). 

 

Dispersal apparatuses were placed in a controlled temperature room with identical conditions 

to the stock populations and apparatus position was randomised at the beginning of each 

experimental replicate. Once container A was connected to each of the apparatuses, dispersal 

assessment commenced and counts were made during 0830–0930 h and 1630–1730 h daily 

for 96 h (nine counts). Counts of beetles in the connecting tubes (A–B and B–C) and in 

containers B and C were recorded. Both sets of tubing and container B could be counted 
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visually without disturbing the apparatus, however container C required detachment. Flour 

was carefully tipped into a container and gently swept with a paintbrush to draw beetles to the 

flour surface for counting. Flour and beetles were then funnelled back into container C and 

reattached to the apparatus. Container A was left undisturbed throughout the experiment to 

facilitate natural dispersal through the apparatuses. The number of beetles in container A was 

calculated at each time point by subtracting the total number of beetles in all other containers 

and tubing from the starting total of 50. Mortality was assessed at the conclusion of each 

experiment, but was negligible (two adults at most in any given replicate). The assessment 

was replicated six times, each with a different cohort of beetles. 

 

 

 

Figure 4.1 Dispersal apparatus designs used to investigate the effects of tubing angle and length on the dispersal 

success of adult T. castaneum. Each design used three containers (A, B, and C) connected by tubing containing 

string for beetles to climb, allowing one-way movement from A–B–C. (a) Design 1; 55° tubing insertion angle 

between containers over 140 mm tubing length, (b) Design 2; 24° tubing insertion angle over 140 mm tubing 

length, (c) Design 3; 185 mm tubing length, (d) Design 4; 335 mm tubing length, and (e) Design 5; 640 mm 

tubing length. Design 5 B–C is identical to A–B but not shown due to its size. Curved dashed arrows show 

tubing length; straight dashed arrows show distance between insertion points, and angles show the approximate 

angle from the point of insertion to the maximum height of the tubing over the distance between insertion 

points. 
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Figure 4.2 Example schematic of Design 3. Front and top views of the plywood housing for maintaining 

structure and consistency of the tubing insertion angle and tubing length for the dispersal apparatuses.  

 

Statistical analyses 

Data were treated as proportional data, where the principle variable of interest was proportion 

of beetles reaching container C (successful dispersers). Fixed factors were apparatus design, 

tubing length, insertion angle of tubing, sex, and time. Replicate (cohort) was treated as a 

random factor in all analyses. A full model was fitted using a generalised linear mixed effects 

regression model with a binomial error structure and logit link function from the lme4 

package (Bates et al. 2014) in R 3.2.3 (R Development Core Team 2015). Models were 

simplified by removing non-significant interaction terms and using ANOVA and Akaike 

information criterion (AIC) to compare the resulting simplified models. Data presented are 

mean proportions of beetles reaching container C ± SE, and α was set at 0.05. 

 

Results 

Dispersal rates and success 

The proportion of beetles that reached container C at any given time was relatively consistent 

across all designs and between sexes, where males are presented separately to females 
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(Figure 4.3). The proportion of successful dispersers increased significantly with time and 

was consistent across cohorts, following a near-linear trajectory to about 60–80% successful 

dispersal after 96 h (Figure 4.3). Time was positively correlated with the proportion of 

successful dispersers and was highly significant for all apparatus designs, but no difference 

between male and female beetles was detected (Table 4.1). Design 2 was chosen as the 

reference apparatus against which the other designs were compared as it had the shortest 

tubing with a shallow insertion angle (Table 4.1). This design was predicted to, and did, yield 

the fastest dispersal rates in both sexes. Only Design 5 had a significantly lower proportion of 

successful dispersers than Design 2, whereas all other designs were not significantly different 

from this design or from each other (Table 4.1).  

 

 

 

 

Figure 4.3 Mean proportion of male and female T. castaneum adults reaching the final container C over time 

across the five apparatus designs. Data are presented as means ± SE from six independent replicate cohorts. 



56 

Table 4.1 Generalised linear mixed effects regression model (GLMER) of the effect of time, design, and sex on 

the proportion of beetles successfully dispersing from A to C. Designs are all compared to reference Design 2 

(short tubing length and shallow insertion angle). 

Coefficient Estimate ± SE Z P 

Intercept
 

-3.788 ± 0.187 -20.3 <0.001 

Time (hours) 0.555 ± 0.001 72.11 <0.001 

Design 1 -0.412 ± 0.233 -1.76 0.078 

Design 3 -0.321 ± 0.233 -1.38 0.168 

Design 4 -0.42 ± 0.233 -1.8 0.072 

Design 5 -0.565 ± 0.234 -2.42 0.016 

Sex 0.206 ± 0.148 1.39 0.164 

 

Tube length 

Increasing tubing length between containers had a negative relationship with the proportion 

of successful dispersers (i.e. as tubing length increased from 140 mm in Design 1 to 640 mm 

in Design 5, the regression slope decreased; Table 4.1). The proportion of successful 

dispersers was lowest in Design 5, where tubing length was greatest between containers, and 

this was significantly different to Design 2 (Table 4.1). Effectively, the greater the distance 

between containers, the longer it takes the beetles to move between them. Therefore the 

overall proportion of beetles in container C at the end of the experiment was lower than the 

designs with shorter tubing between containers (Figure 4.3). 

 

Tubing insertion angle 

The angle that tubing projected from the lids of each apparatus container was predicted to 

have a significant effect on the proportion of successful dispersers, by increasing the 

difficulty of dispersal thereby reducing the attainable dispersal rate. Designs 1 and 2 were 

directly comparable with respect to determining the effect of insertion angle independent to 

tubing length, therefore these were the only designs included in the model (Table 4.2). Time 

had a significant positive effect on the proportion of successful dispersers and males and 

females were not significantly different from one another, consistent with the previous model. 

There was a significant negative effect of tubing angle on the proportion of successful 
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dispersers suggesting that the more vertical tubing angle in Design 1 reduced dispersal 

success compared to Design 2, which had more horizontal tubing (Table 4.2). 

 

Table 4.2 Generalised linear mixed effects regression model (GLMER) of the effect of time, sex, and tubing 

insertion angle on the proportion of successful dispersers from container A to C between Designs 1 and 2. 

Coefficient Estimate ± SE Z P 

Intercept
 

-3.339 ± 0.388 -8.61 <0.001 

Time (hours) 0.559 ± 0.012 46.72 <0.001 

Sex 0.338 ± 0.223 1.52 0.129 

Tubing angle -0.642 ± 0.299 -2.15 0.032 

 

Discussion 

Apparatuses to simulate long-distance dispersal in the laboratory using Tribolium beetles 

have been used for more than 50 years, however many of these studies have not specified 

apparatus design attributes. In particular, the slope and length of tubing between containers 

were expected to be critical to the movement of the individual beetles, as even shallow 

increases in the slope of a gradient can affect the distribution and orientation of Tribolium 

beetles (Graham & Waterhouse 1964). This is consistent with our finding that increasing the 

steepness of the tubing angle between containers reduces dispersal success. The energy 

required for insects to climb vertically is much greater than that required to move laterally 

(Full & Tullis 1990), and as distance and time spent moving along a steep incline increases, 

the frequency of potential climbing errors increases. The slope of the tubing limited dispersal 

across designs with identical tubing length, but between designs with different tubing lengths, 

the difference in number of successful dispersers was small (e.g. Designs 1 and 4). While the 

effect of tubing insertion angle is significant, if tubing length is increased (i.e. to about 30 cm 

as in Ritte and Lavie (1977)), the effect of the steep climb may be offset. 

  

The significant effect of tubing angle suggests that the near-vertical section of string that 

must be climbed prior to reaching the tubing also reduces dispersal rate. The string climbing 

ability of T. castaneum has not been explicitly tested, but this species can climb paper 

materials (Cline & Highland 1976), readily climbs up string within an apparatus (Ogden 

1970b), attempts to climb the walls of housing (Ghent 1963; Surtees 1963), and is frequently 

seen climbing bag stacks and walls in storages (GH Walter, pers. obs.). Across all of the 
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designs tested in the present study, a near-vertical portion of string (about 30 mm long) came 

immediately before the section of tubing where the angle could then be engaged by the 

climbing beetle. This section requires an ability to climb successfully upwards into the 

tubing, which plateaus, and then descends towards the next container. It seems likely that the 

near-vertical climb prior to the tubing would also constrain dispersal rate, and this may 

partially explain the exceptionally slow dispersal rate of T. confusum in the study by 

Łomnicki (2006), as the beakers used there had a vertical string section greater than 40 mm 

between the flour surface and the tubing. Therefore, the care needs to be taken to ensure that 

the near-vertical section of string is consistent in length, as it has a similar or perhaps stronger 

effect on dispersal rate than the tubing insertion angle. As Tribolium beetles are highly 

mobile animals, this design component is essential to constrain movement to sort dispersers 

from non-dispersers over a practical period of time. 

 

While we found an overall significant decrease in the proportion of successful dispersers with 

increased tubing length, this effect was only statistically significant when comparing the 

shortest (140 mm) and the longest (640 mm) tubing lengths between containers. The long 

tubing used in Design 5 reduced the proportion of successful dispersers but was only 

significantly lower than Design 2. Additionally, the extreme length between containers of 

Design 5 made it impractical due to size. For the remaining tubing lengths between the 

containers (140–335 mm) dispersal rates were similar, which indicates that at least within a 

practical range, time spent within the apparatus tubing does not strongly limit dispersal. 

 

In Tribolium beetles, dispersal is dependent on habitat deterioration, where increasing 

population density or reducing flour volume increases dispersal rate due to conditioning of 

the flour by frass accumulation, nutrient depletion and release of quinones by adults 

(Zyromska-Rudzka 1966a; Ogden 1969). Adult T. castaneum are strongly repelled by the 

smell of same-sex conspecifics, and this repulsion is enhanced when flour becomes 

‘conditioned’ (Naylor 1961; Ghent 1963; Ogden 1970b). Thus, unmated individuals in a 

container with conspecifics will readily disperse as the flour becomes increasingly 

conditioned, and as finding mates becomes a priority. Therefore, the essentially linear 

increase in successful dispersers over time may reflect the decreasing population density as 

individuals emigrate and the continuous but ever-decreasing rate of flour conditioning as 

population density decreases. 
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We did not identify a significant difference in dispersal success between the sexes overall, 

but a greater proportion of males dispersed successfully in Design 2. Males were predicted to 

disperse faster than females, as previous studies have found males are more active or 

exploratory in dispersal apparatuses (Prus 1966; Ogden 1970b). However, Ziegler (1976) 

found that dispersal rates were similar across males and females, as in the present study. We 

suggest that the absence of potential mates, and repulsion by the scent of same-sex 

individuals and conditioned flour drove dispersal at a similar rate in both sexes. 

 

The present study demonstrates that tubing length and tubing insertion angle, which have 

been inconsistent among previous studies, can alter dispersal success for this species but not 

to the extent that dispersers cannot be effectively sorted from non-dispersers. This general 

apparatus appears to have relatively flexible design tolerances, and can achieve consistent, 

controlled dispersal over replicate experiments. For the logistics of assessing dispersal ability 

of T. castaneum, which is highly active, restricting dispersal rate is important. We suggest 

that in addition to tubing length and insertion angle, the process of locating and climbing the 

vertical string section, and the inclusion of an intermediate container, reduces dispersal to a 

practical rate. In the present study, the time taken for more than 50% of individuals to 

successfully disperse across apparatus designs (about 70–85 h) would be feasible to 

experimentally separate dispersers from non-dispersers. Design 3 was chosen for use in the 

experiments presented in Chapter 5. Apparatus designs with a manageable tubing length and 

more horizontal tubing angle (i.e. Design 2 or 3) could be used to assess dispersal of other 

small insects that use pedestrian locomotion, including potential and current pest species. 

More than 50 years after its conception, the laboratory dispersal apparatus remains useful for 

assessing dispersal and addressing questions in microcosm-based species ecology. 
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Chapter 5  

Experimental evolution of phenotypic traits associated with 

dispersal through artificial spatial sorting: divergence in body 

size, but not behaviour 

 

Abstract 

Dispersal ability varies significantly among individuals. Dispersal syndromes are suites of 

covarying morphological, physiological, behavioural, and life-history traits that describe 

much of the observed variation in dispersal ability. While dispersal syndromes have been 

well studied within and among populations, our understanding of the evolutionary trajectories 

of traits associated with dispersal under selection is limited. Here, I used the red flour beetle 

(Tribolium castaneum) in a laboratory dispersal system to assess how selection via spatial 

assortative mating for and against dispersal, affected dispersal syndrome traits. Body size 

rapidly diverged over seven generations; non-dispersers increased in size while dispersers 

decreased in size. Once mass differences had been accounted for, limb length and movement 

behaviour were not different between dispersers and non-dispersers, but metabolic rate was 

lower in dispersers. Small individuals were more energetically and biomechanically efficient 

at climbing, and were therefore the ones that dispersed more. Dispersal rate and movement 

did not differ among dispersers and non-dispersers; the variance in dispersal rate and 

movement was maintained even under intensive selection, indicating that individuals may 

maximise their fitness by producing offspring that exhibit a variety of dispersal behaviours. 

Investigating dispersal syndromes in species that exhibit multiple modes of locomotion will 

improve our understanding of the evolution of complex movement strategies as a whole. 

 

Introduction 

Dispersal is any movement of an individual that has the potential to contribute to gene flow 

(Ronce 2007). Dispersal encompasses multiple complex biological processes at various 

spatial and temporal scales: from individual decision-making to population dynamics (Benton 

& Bowler 2012a; Matthysen 2012). The traits associated with dispersal vary greatly among 

individuals and populations and can have significant consequences for fitness (Benard & 

McCauley 2008; Bonte et al. 2012). The morphological, physiological, and behavioural traits 
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that inherently underlie movement capacity and decisions, and therefore dispersal, are 

identified as a dispersal syndrome (a suite of correlated traits, also known as the ‘dispersal 

phenotype’) (Ronce & Clobert 2012). 

 

Understanding the mechanisms, costs, trade-offs, and stability of dispersal syndromes, rather 

than traits individually, is paramount to a more complete understanding of dispersal ecology 

and evolution (Ronce & Clobert 2012). Dispersal phenotypes can be as extreme as complete 

polymorphisms within a population (Roff 1984, 1986; Zera & Denno 1997), or result from 

continuous variation in a suite of correlated traits resulting in a continuum of movement 

ability from residents (non-dispersers) to dispersers (Ducatez et al. 2012; Ronce & Clobert 

2012). Morphological, physiological, behavioural, personality, or life-history traits generally 

display covariation in a dispersal context due to mechanistic links among traits or pleiotropic 

effects of underlying genes. For example, body size scales with locomotor apparatus size and 

thus individuals that are larger are typically expected to have a greater dispersal capacity 

(Stevens et al. 2014; Chapter 3).  

 

In Glanville fritillary butterflies (Melitaea cinxia), flight metabolic rate and dispersal ability 

are positively correlated and both mechanistically and genetically linked to the pgi gene that 

encodes phosphoglucose isomerase, a glycolic enzyme involved in central metabolism (Haag 

et al. 2005; Hanski et al. 2006; Niitepõld et al. 2009). Another example of correlated traits 

contributing to a dispersal syndrome is the cane toad (Rhinella marina) invasion in Australia. 

Invasion-front individuals that are highly dispersive have larger locomotor structures relative 

to body size (Phillips et al. 2006), a faster growth rate (Phillips 2009), higher endurance 

capacity (Llewelyn et al. 2010), and move greater distances per movement event and over 

time, while following straighter paths (Alford et al. 2009; Lindström et al. 2013) than more 

resident individuals from older, established populations. The characteristics identified in 

highly dispersive R. marina are postulated to have arisen as an outcome of spatial assortative 

mating (‘spatial sorting’) interacting with natural selection to lead to spatial selection (Shine 

et al. 2011; Perkins et al. 2013). 

 

The variance in dispersal ability among individuals provides an opportunity for selective 

processes to shape dispersal-related traits, particularly if the traits comprise an underlying 

dispersal syndrome. Spatial assortative mating relies on dispersal ability variation, such that 

individuals with traits that facilitate dispersal will accumulate at range edges and persist 



62 

through proximity-limited mating between highly dispersive individuals (Travis & Dytham 

2002; Phillips et al. 2008; Phillips et al. 2010b; Shine et al. 2011). Alternatively, individuals 

with increased dispersal ability may arise by natural selection for dispersal, but only if this 

change confers a fitness advantage (Shine et al. 2011). Both spatial sorting and natural 

selection may increase the rate of range expansion or dispersal acceleration, and 

consequently, the associated phenotypic, genetic, or behavioural traits may be augmented at 

range edges or invasion fronts. Evidence for the evolution of dispersal ability and dispersal-

associated traits at range edges has been demonstrated across diverse taxa (Chuang & 

Peterson 2016). Broadly, traits that may characterise dispersive individuals are a larger body 

size (Hill et al. 1999; Gutowsky & Fox 2012; Kelehear et al. 2012; Brown et al. 2013; 

Laparie et al. 2013), larger locomotor appendages relative to body size (Phillips et al. 2006; 

Forsman et al. 2010; Therry et al. 2014b), a better body condition (Carol et al. 2009; Lopez 

et al. 2012; Rebrina et al. 2015), boldness, aggressiveness, or low sociality (Fraser et al. 

2001; Duckworth 2006; Myles-Gonzalez et al. 2015) compared with residents. Individuals 

that disperse have also been found to grow or mature faster (Bøhn et al. 2004; Carol et al. 

2009; Phillips 2009), and exhibit a generally higher metabolic rate (MR) at rest (Myles-

Gonzalez et al. 2015) and during locomotion (Haag et al. 2005; Niitepõld et al. 2009). 

 

Despite the many studies that have investigated traits associated with dispersal between core 

and range edge populations, and dispersal syndromes within a population, manipulative 

experiments that investigate trait evolution under selection for dispersal are relatively 

uncommon (Yano & Takafuji 2002; Friedenberg 2003; Łomnicki 2006; Bitume et al. 2011; 

Fronhofer & Altermatt 2015; Van Petegem et al. 2015). These types of studies are imperative 

to bridge the divide between studies within and among populations, by allowing evolutionary 

processes to be observed in real time, and under controlled conditions (Kawecki et al. 2012). 

Studies that have conducted experimental evolution by selecting for dispersal have 

investigated the responses of dispersal rate (e.g. Van Petegem et al. 2015) or life-history traits 

(e.g. Bitume et al. 2011), but typically not morphology (but see Łomnicki 2006), physiology, 

or behaviour. These functional, phenotypic traits are hypothesised to be crucial components 

of dispersal syndromes, and undoubtedly contribute to movement ability. Yet, experimental 

evolution has been underutilised as a tool to study the evolutionary dynamics of dispersal 

syndromes. 
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Laboratory microcosm experiments are appropriate systems to manipulate components of 

dispersal while controlling others, thereby focussing on specific aspects of dispersal (Bowler 

& Benton 2009; Bonte et al. 2014) and allowing the longitudinal study of functional traits 

under artificial selection. Tribolium castaneum (the red flour beetle) is an ideal model species 

with which to study the evolutionary dynamics of traits under selection for dispersal, as their 

dispersal in laboratory microcosms has been studied for more than 50 years (Naylor 1961; 

Prus 1963) and artificial selection for dispersal success has resulted in divergence in dispersal 

rate and life-history traits (Ogden 1970a; Ritte & Lavie 1977). 

 

In the present study I address two questions: 1) can artificial selection for and against 

dispersal success by spatial assortative mating produce different dispersal phenotypes?; and 

2) how do covarying traits evolve in response to selection based on dispersal? I aimed to 

determine, by spatial assortative mating, the evolutionary dynamics of traits that are predicted 

to constitute a dispersal syndrome, using T. castaneum over seven generations of artificial 

selection for and against dispersal success. The literature concerning dispersal syndromes 

describes general characteristics associated with disperser and resident traits (Ronce & 

Clobert 2012; Stevens et al. 2014; Chuang & Peterson 2016), particularly body size, 

locomotion apparatus size, and MR. In Chapter 3, I found significant positive associations 

among movement traits within a maze and relative leg length, but not body size or MR. 

Although the dispersal apparatus used here to select on dispersal relies on different mobility 

mechanisms than the maze tested in Chapter 3, it is conceivable that dispersal syndrome traits 

are tightly linked with general movement. Therefore, I predicted that selection at dispersal 

extremes would induce divergent trait evolution, such that dispersers would have longer legs 

relative to their body size and would be more active, moving farther and faster than residents. 

 

Material and Methods 

Animals and experimental conditions 

The animals used were drawn from a laboratory population of T. castaneum (QTC4; 

Postharvest Grain Protection Team; Department of Agriculture, Fisheries and Forestry; 

Brisbane, QLD, Australia). Stocks were maintained on 210 g of flour medium (95% 

wholemeal stoneground wheat flour, 5% torula yeast) in 1 L cylindrical containers. This flour 

medium was also used in the 70 mL dispersal apparatus containers. All animals were housed 

in a controlled temperature room at 29.5 ± 1 °C and 40–60% relative humidity. 
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Founding animals 

The founding 400 beetles (200 male and 200 female) were collected and sexed as pupae 

(following Halstead 1963) from a single stock that has not been experimentally evolved 

previously, and then divided into eight single-sex starting groups of 50. Pupae that were 

newly pupated (soft and translucent) or close to eclosion (partially melanised and responsive) 

were not used, to regulate age consistency within and among experimental cohorts. Groups of 

50 individuals represented replicate lines that had a corresponding line pair of the opposite 

sex (Figure 5.1). Each group was housed in a 70 mL container with 15 g of flour for six days 

after collection as pupae. Lines were maintained as single-sex groups throughout dispersal 

assessment to prevent breeding, which has been demonstrated to reduce dispersal rate (Ogden 

1970b) and the efficacy of artificial selection. 

 

Dispersal apparatus and population dispersal rate 

The dispersal apparatus consisted of three containers (A, B, C) connected in sequence by 

tubing inserted through the lids, containing cotton twine allowing one-way movement by 

climbing. Containers were 70 mL polypropylene (57 × 44 mm, Sarstedt Australia Pty. Ltd., 

Mawson Lakes, SA, Australia) and tubing was flexible silicone 185 mm in length (4 mm 

internal diameter), arched over a 165 mm distance between insertions that contained a single 

looped strand of cotton twine. Containers A and C held 15 g of flour, and B had a layer of 

paper to facilitate grip, but no flour. In container A, twine rested on the flour surface allowing 

beetles to climb up and into the tubing; the twine terminated 15–25 mm above the paper in B 

so that beetles could not return to A, and similarly, from B to C. Dispersal of T. castaneum 

through this apparatus design was found to be consistent and repeatable for both males and 

females (Chapter 4). Containers housing each group of 50 adults were connected to their 

respective apparatus (as container A) when beetles were 2–5 days post-eclosion. The position 

of each apparatus within the room was randomised at each generation. Once container A was 

connected to each apparatus, beetles were allowed to disperse for up to four days. Counts of 

beetles within the dispersal apparatuses were conducted at around 0900hrs and 1700hrs daily 

(up to 8 counts over the dispersal period). This consisted of counting individuals in the tubing 

between A–B and B–C, and in containers B and C. Container C was detached, tipped into a 

glass container and beetles were brought to the flour surface using a fine paintbrush, counted, 

and then were funnelled back into container C for reattachment. The number of beetles in 

container A was estimated as the starting number of individuals (50) minus the sum of beetles 
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in all other containers and tubing. Dispersal rate was calculated as the mean number of 

individuals that successfully dispersed through the apparatus into container C each day of the 

measurement (n in C/day). This was therefore an estimate of population dispersal rate, rather 

than individual, which was used to compare among treatment lines. Mortality in the apparatus 

across all lines and throughout the experiment was < 1%. 

 

Selection criteria and breeding design 

In the first generation, the eight starting lines were run through the dispersal apparatus and 

used to establish 24 replicate lines in three categories of selection: (i) control; (ii) residents; 

and (iii) dispersers. Selection of individuals in the first generation was different to all 

subsequent generations (Figure 5.1). Dispersal within the first generation was monitored and 

ceased when approximately 15 individuals remained in container A and had reached C, 

respectively. The purpose of this was to ensure that 15 individuals could be classified as 

residents and dispersers, with the remaining 15 or more individuals in the apparatus (a 

subsample of the original population) randomly sampled from to establish control lines 

(Figure 5.1). Five of these individuals were then paired with five individuals from their 

matching replicate line, where breeding could occur in another 70 mL container containing 5 

g of flour over five days. After breeding, the 10 individuals were placed on 3 g of fresh flour 

and allowed an additional five days to oviposit, after which time the adults were removed to 

allow the offspring to develop over a period of 23 days before collection as pupae. From this 

pool of pupae, 50 of each sex were chosen at random to establish the next generation of each 

line, and this was repeated until the seventh generation of offspring (Figure 5.1). 

 

The remaining 10 offspring from each single-sex selected line were used for phenotyping. In 

generations 2–7, beetles were allowed to disperse until the following criteria were met for 

each of the selected lines. 1) Residents: dispersal was stopped when 15–25 individuals had 

not yet emigrated from container A. After six counts, if the number of beetles remaining in 

container A exceeded 25, these were randomly sampled from as residents. 2) Dispersers: 

dispersal was stopped when 15–25 individuals successfully emigrated to container C. After 

six counts, if the number of beetles that had emigrated to container C was less than 15, these 

were randomly sampled from as dispersers. 3) Controls: dispersal was stopped after 72 h 

(five counts). Individuals were then removed from apparatus containers, mixed, and 

randomly sampled from as controls. 
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Figure 5.1 Experimental design of a single replicate (four replicates total were used) of artificial selection on 

dispersal. Beetles from the source population were separated into males (♂) and females (♀), then n = 50 were 

introduced into single-sex dispersal apparatuses. In generation 1, beetles dispersed until residents (red), 

dispersers (blue), and controls (black) had n ≈15 individuals that fitted each criterion (see text), then n = 5 males 

and n = 5 females from paired replicate lines were taken from the n ≈15 (solid arrows) and allowed to breed. 

The remaining n =10 individuals from each single-sex line were used for phenotyping. The progeny from the 

generation 1 breeders were collected and separated by sex, then n = 50 were used to establish the next dispersal 

populations (dashed arrows) as generation 2. Dispersal was allowed until each selected lines criterion was met 

(see text for details), then n = 5 of each sex from paired lines were taken from the n ≈15 to breed. The * symbols 

mark where the selection cycle repeats for generations 2–7. 
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Metabolic rate and activity 

Rate of CO2 production (µL CO2/h) was measured as a proxy for metabolic rate (Lighton 

2008) over 1 h and under resting conditions (29.5 ± 1 °C, dark, and fasted for 24 h). 

However, the beetles were highly active and resting metabolic rate (RMR) could not be 

established across all individuals, therefore routine metabolic rate (routine MR), which 

allows for some spontaneous activity, was used (Mathot & Dingemanse 2015). Individual 

beetles were placed in 2 mL glass chambers in-line with a flow-through respirometry system. 

Air drawn into the system first passed through two chemical scrubber columns (soda lime to 

remove CO2 and Drierite to remove water vapour), then dry, CO2-free air was regulated by 

four mass flow controllers (Aarborg Instruments and Controls, Inc.) at 25 mL/min before 

entering the four metabolic chambers that housed the animals. Excurrent air was passed 

through two LI-7000 CO2/H2O analysers (Li-COR Inc.) to measure CO2 concentration with a 

resolution of 0.1 ppm, which was recorded at a frequency of 1 Hz using Li-Cor software. 

Metabolic chambers were interfaced with a LAM10H locomotion activity monitor 

(Trikinetics, Inc.) that used nine infrared emitter-detector beams to detect animal motion by 

registering each beam interruption as a value of 1. The sum of beam counts over the 

measurement period of 1 h was then used as a measure of spontaneous activity (counts/h) 

synchronous with the recording of routine MR, which was included as a covariate for all 

models. 

 

Morphometrics 

Individuals were weighed on a precision microbalance to attain fresh mass to 0.01 mg 

(XS3DU microbalance; Mettler-Toledo). Morphological measurements were taken by 

capturing dorsal and ventral images using a microscope-mounted camera (PL-B686; 

PixeLINK). Length and width of the elytron and the pronotum, and length of the hind femur 

were extracted using ImageJ version 1.46r software (National Institutes of Health). 

 

Movement characteristics 

Movement behaviour of individuals was characterised by assessing movement in a complex 

maze environment, described in detail in Chapter 2. The acrylic maze (390 × 390 × 4 mm) 

had 12 square passageways radiating from the central point, such that the minimum distance 

between each passageway was approximately equal and progression through the maze was 

linear. A layer of paper allowed beetles to grip the maze surface, and the transparent maze lid 
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with the maze walls attached was placed and clamped down on the surface. Beetles were 

introduced into the maze through a small hole drilled in the centre of the maze lid. Each maze 

trial was recorded for 4 min using a webcam (1280 × 720 pixels) at 10 fps, then the video 

was frame-cropped from the first clear movement away from the maze centre, to 3 min (1800 

frames) after. MATLAB software running a digitising tracking script (DLTdv5; Hedrick 

2008) with an extended Kalman filter was used to track individual movements in the maze. 

Movement characteristics extracted from each track were total path length, linear distance 

travelled (displacement from start to end point), minimum and maximum sustained speed (5
th

 

and 95
th

 percentiles of speed), and behavioural intermittence (the number of frames in which 

the animal was not detected moving). 

 

Statistical analyses 

Data were analysed using the R software environment for graphical and statistical computing 

version 3.2.3 (R Development Core Team 2015) using the package lme4 (Bates et al. 2014). I 

used linear mixed effects regression (LMER) to compare the trajectories of phenotypic traits 

across seven generations of selection for and against dispersal. The phenotypic traits were 

assessed for multicollinearity, and then highly correlated variables were included in Principal 

Components Analyses (PCA) to simplify collinear traits. The suite of movement traits (path 

length, linear distance travelled, minimum speed, maximum speed and behavioural 

intermittence) were reduced to two traits (Table 5.1): the first two Principal Components 

explained 81.3% of the variance among the traits (PC1: 60.7% and PC2: 20.6%). PC1 of 

movement was loaded equally by path length, minimum speed, maximum speed, and 

behavioural intermittence, and is hereafter referred to as ‘movement ability’, and PC2 of 

movement was loaded almost entirely by linear distance travelled, and is hereafter referred to 

as ‘movement displacement’. Similarly, the suite of morphometric traits (elytron length and 

width, pronotum length and width, and ∛mass) were collapsed into PC1 which explained 

80.0% of the variance among the traits (Table 5.1) and is hereafter referred to as ‘body size’. 

Routine MR was log10 transformed and spontaneous activity was centred and scaled 

according to the Z-distribution for analyses. LMER models were fitted as the response trait of 

interest against selection, generation, sex and their interactions, while including the other 

phenotypic traits as covariate predictors, and respirometry channel and replicate line as 

random effects. Models were assessed for Gaussian residuals and error heteroscedasticity, 

and then ANCOVAs with type III sums of squares were calculated for each model. Due to 
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the size of the LMER models, the full ANCOVA tables are included in the Appendix 

(Tables A5.1–A5.6). For data presentation, routine MR was presented as residuals that adjust 

for the effects of body size, spontaneous activity and age, and leg length was presented as 

residuals adjusting for the effect of body size. Data are presented separately for males and 

females, and the means ± SE of six response variables of interest under the three selection 

types were plotted across generations. 

 

Table 5.1 Principal Components Analysis and relative loading of morphological and movement traits onto 

Principal Components that describe ‘body size’, ‘movement ability’ (PC1), and ‘movement displacement’ 

(PC2). 

Loadings Body size  Movement 

Body size traits PC1 Movement traits PC1 PC2 

Elytron length 0.422 Path length 0.551 -0.010 

Elytron width 0.473 Linear distance travelled 0.065 -0.950 

Pronotum length 0.395 Minimum speed 0.455 0.249 

Pronotum width 0.472 Maximum speed 0.469 -0.176 

∛Body mass 0.468 Behavioural intermittence -0.514 -0.069 

Eigenvalue 4.00  3.034 1.030 

Proportion variance 80.0%  60.7% 20.6% 

 

 

Results 

A note about control lines 

Control lines were included to determine whether any trait changes in the resident and 

disperser lines were different to those that might occur by random processes. The control 

lines were allowed to disperse through the apparatus for 72 h, and then were mixed and 

randomly sampled. However, across most replicate lines, the number of control individuals 

that reached container C exceeded the number that remained in A before they were mixed and 

sampled randomly. Therefore, although the trait trajectories in the control lines were 

generally more similar to the dispersers than to the residents, the control lines still represent 

the effect of randomly selecting individuals that do or do not disperse. That variance was 

apparent across all traits (Figure 5.2a–l). 
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Figure 5.2 Trajectories of phenotypic traits over seven generations of artificial selection on dispersal. Males and 

females are presented side-by-side for visual clarity: (a, b) dispersal rate, (c, d) movement ability in the maze 

(PC1), (e, f) movement displacement in the maze (PC2), (g, h) residual routine MR, (i, j) PC1 score of body 

size, and (k, l) residual leg length. Each point is the mean of n ≈ 40 measurements of replicate lines ± SE. 
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Dispersal rate through the apparatus 

The mean dispersal rate through the apparatus changed significantly throughout the 

experiment (full ANCOVA: Table A5.1). Dispersal rate significantly changed across 

generations (F6,109 = 13.41, P < 0.001), and this was especially apparent between generations 

1 and 2 (Figure 5.2a, b). There was a marginally non-significant difference between males 

and females (sex; F1,30 = 3.75, P = 0.062), although males typically dispersed at a faster rate 

(Figure 5.2a, b). Despite imposing artificial selection on dispersal success, there was no 

difference in dispersal rate among selected lines across generations (selection × generation; 

F12,105 = 0.21, P = 0.998), however dispersers consistently dispersed faster than residents in 

generations 3–7 (Figure 5.2a, b). Residents took a significantly longer time for least 15 

individuals to arrive in container C (ANOVA: F1,107 = 17.52, P < 0.001; Table 5.2) and 

between males and females (ANOVA: F1,107 = 7.02, P < 0.01; Table 5.2). No covariates were 

significantly associated with dispersal rate (Table A5.1). 

 

Table 5.2 Summary of approximate mean time taken for ≥ 15 individuals to reach container C (h ± SE). 

 Time (h ± SE) 

Generation 
Residents 

(male) 

Dispersers 

(male) 

Residents 

(female) 

Dispersers 

(female) 

1 80 ± 0.0 72 ± 5.7 80 ± 0.0 78 ± 2.0 

2 21 ± 0.0 24 ± 0.0 44 ± 4.0 38 ± 8.2 

3 32 ± 9.8 24 ± 0.0 50 ± 8.3 24 ± 0.0 

4 34 ± 5.0 26 ± 2.0 54 ± 6.0 32 ± 5.7 

5 40 ± 7.3 26 ± 2.0 54 ± 11.5 40 ± 13.5 

6 54 ± 10.0 30 ± 6.0 64 ± 4.6 40 ± 9.2 

7 78 ± 2.0 38 ± 6.0 72 ± 5.7 58 ± 5.0 

Grand mean 50.0 ± 4.3 34.3 ± 3.4 59.7 ± 3.2 44.3 ± 4.1 

 

 

Movement through a complex environment 

The ability of individuals to move through a complex maze environment (PC1) was not 

clearly altered by selection for and against dispersal success (full ANCOVA: Table A5.2). 

Movement ability was marginally non-significantly different among selected lines across 

generations (selection × generation; F12,1585 = 1.63, P = 0.078), but across generations 



72 

movement ability varied significantly (generation; F6,1586 = 26.40, P < 0.001; Figure 5.2c, d). 

There was no clear difference among selected lines; dispersers and residents did not have 

consistently different movement ability from each other or the control (Figure 5.2c, d). 

Females, which were larger on average than males, had significantly greater movement 

ability (sex; F1,21 = 7.90, P = 0.010; Figure 5.2c, d), and movement ability was significantly 

positively correlated with body size (F1,1559 = 13.01, P < 0.001; Figure A5.1a), and with 

spontaneous activity (F1,1581 = 11.61, P < 0.001; Figure A5.1b). Movement displacement 

through the maze (PC2) was not clearly significantly affected by selection on dispersal (full 

ANCOVA: Table A5.3). Movement displacement did not differ among selected lines 

(selection × generation; F12,1587 = 0.80, P = 0.654), however it fluctuated significantly across 

generations (generation; F6,1589 = 2.78, P = 0.011; Figure 5.2e, f). Movement displacement 

was significantly negatively correlated with age (F1,1601 = 8.49, P = 0.004;  Figure A5.1c) and 

with spontaneous activity (F1,1574 = 4.52, P = 0.034; Figure A5.1d). 

 

Routine MR 

Routine MR responded to artificial selection for and against dispersal success, and was 

associated with three covariates (full ANCOVA: Table A5.4). Routine MR significantly 

decreased in all selected lines over generations of selection (generation; F6,1583 = 67.89, 

P < 0.001), particularly between generations 2 and 3 where there was a considerable decrease 

in routine MR (mean decrease of 22% across all selected groups). Females had a higher 

routine MR than males (sex; F1,19 = 4.70, P = 0.043). Dispersers had a marginally lower 

routine MR than residents across generations (selection × generation; F12,1583 = 1.77, 

P = 0.049) which was more apparent in males (Figure 5.2g, h). Routine MR was highly 

correlated with three covariates (Figure A5.2a–c): positively with body size (F1,1593 = 177.2, 

P < 0.001), activity (F1,1602 = 23.18, P < 0.001), and negatively with age (F1,1590 = 71.34, 

P < 0.001), hence was presented as residuals corrected for the influence of these covariates 

(Figure 5.2g, h). 

 

Body size 

Body size responded rapidly to selection on dispersal, and diverged far more than any other 

trait measured (full ANCOVA: Table A5.5). Divergence among the selected lines occurred 

across generations (selection × generation; F12,1583 = 3.14, P < 0.001), such that dispersers 

and residents were distinctly different after only a single generation (Figure 5.2i, j). The 
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divergence among selected lines continued to increase to about generation 3–4 and this 

difference was maintained thereafter (Figure 5.2i, j). By generation 4, dispersers had 

decreased in size (males by 10.4%, females by 12.6%), and residents had increased in size 

(males by 10.3%, females by 7.7%) such that there was a large relative size difference 

between dispersers and residents (20.7% in males, 22.6% in females). Females were larger 

than males (sex; F1,18 = 27.48, P < 0.001; Figure 5.2i, j) and body size was also significantly 

associated with five covariates (Table A5.5): positively with movement ability 

(F1,1583 = 11.94, P < 0.001; Figure A5.1a), routine MR (F1,1577 = 173.58, P < 0.001; 

Figure A5.2a), and leg length (F1,1601 = 567.85, P < 0.001; Figure A5.3a), age 

(F1,1591 = 16.04, P < 0.001; Figure A5.3b), and negatively with spontaneous activity 

(F1,1597 = 5.21, P = 0.023; Figure A5.3c). 

 

Leg length 

Leg length did not change under artificial selection for and against dispersal (full ANCOVA: 

Table A5.6), such that residents and dispersers did not have disproportionate leg lengths 

relative to their body size over generations (selection × generation; F12,1601 = 1.16, P = 0.31; 

Figure 5.2k, l). However, leg length varied significantly over the course of the experiment 

(generation; F6,1601 = 14.67, P < 0.001; Figure 5.2k, l). Leg length was strongly positively 

associated with body size (F1,1593 = 590.46, P < 0.001; Figure A5.3a), but no other covariates 

(Table A5.6). 

 

Discussion 

Much of the variation in dispersal can typically be attributed to variation in the life-history, 

morphological, physiological, and behavioural traits that underlie dispersal ability and 

constitute a dispersal syndrome (Ronce & Clobert 2012; Stevens et al. 2014). Spatial 

assortative mating has been postulated as a mechanism that leads to significant shifts in 

dispersal ability and to the phenotypic traits that affect dispersal at range edges (Phillips et al. 

2006; Shine et al. 2011; Chuang & Peterson 2016).  In the present study, I show that spatial 

assortative mating via artificial selection for dispersing and non-dispersing individuals can 

affect rapid change in some phenotypic traits. Our results demonstrate that selection for 

dispersal by climbing decreased both body size and activity-, age-, and size-independent 
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routine MR, but did not significantly affect relative locomotor apparatus size, movement, 

activity, or even dispersal rate. 

 

Despite the imposition of directional artificial selection for and against dispersal success, this 

trait did not respond strongly. While previous studies have successfully selected on dispersal 

success in T. castaneum and T. confusum, such responses to artificial selection vary greatly 

(e.g. five generations (Ogden 1970a), one generation (Ritte & Lavie 1977), and fluctuations 

over seven generations (Łomnicki 2006)). Highly variable rates of spread have also been 

demonstrated in replicate populations over 13 generations (Melbourne & Hastings 2009), and 

our results support the stochasticity of this system. 

 

There are two main explanations that provide support for our findings. First, small 

individuals are biomechanically and energetically better suited to climbing dispersal than 

large individuals. Second, that spatial assortment has imposed selection on developmental 

rate or some aspect of energy allocation during development rather than on dispersal success 

per se. Despite dispersal rate being relatively unaffected by selection, the dispersers rapidly 

became smaller than residents, which contrasts with several previous insect studies that found 

dispersers to be larger than residents (Lawrence 1987; Anholt 1990; Łomnicki 2006; Laparie 

et al. 2013). Large body size has generally been thought to promote dispersal and invasion 

success, but when smaller individuals (assumed to be competitively inferior) are in a high 

competition environment, they may exhibit a high propensity to disperse (Bowler & Benton 

2005; McCauley & Rowe 2010).  

 

It has been argued that as larger individuals can acquire and store more energy, and if an 

energy reserve threshold is required for dispersal, larger individuals can disperse sooner or 

more frequently than smaller individuals (Bowler & Benton 2005; Benard & McCauley 2008; 

Laparie et al. 2013). The mechanisms behind this theory are that body size scales 

isometrically with energy stores and musculature (Lease & Wolf 2011) but allometrically 

with metabolic rate (White 2011), such that larger individuals have a lower resting and 

moving energy cost relative to their size and energy stores (Reinhold 1999). However, the 

absolute cost of transport is considerably lower for smaller animals (Halsey 2016), and this 

difference is augmented when moving up an incline. The work required to move a unit of 

body mass against gravity is the same irrespective of body size (Lipp et al. 2005), therefore 

climbing is ultimately less costly for individuals with less mass to move. Relatively smaller 
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individuals will therefore have a lower cost of transport than larger ones while climbing the 

inclines in the dispersal apparatus. When climbing steep inclines, animals adjust their 

locomotor mechanics to reduce stride length and assume a more crouched posture (Birn-

Jeffery & Higham 2014). Smaller individuals are able to hold their centre of mass closer to 

the climbing surface, and have an intrinsically shorter stride length than large individuals due 

to scaling with limb length (Birn-Jeffery & Higham 2014). Smaller individuals may therefore 

be biomechanically more effective climbers. This size-stride length relationship supports the 

present finding that there was no selection for disproportionately sized legs, as this may be 

unnecessary for small individuals to be efficient climbers. Hence, artificial selection for 

dispersal success favoured those individuals that were relatively small, and therefore more 

energetically and biomechanically efficient at climbing through the apparatus.  

After two generations, dispersers also had a significantly lower routine MR than residents, 

particularly in males. Although few studies on dispersal have investigated MR, these have 

demonstrated that dispersers generally have a higher MR at rest (Myles-Gonzalez et al. 2015) 

and during flight (Haag et al. 2005; Niitepõld et al. 2009), but not always (Tracy et al. 2011). 

Glanville fritillary butterflies (M. cinxia) that had a high flight ability also had a high flight 

MR; the fitness benefits of high flight ability (predator escape, foraging, egg laying, and 

dispersal all require flight) are proposed to be greater than the energetic costs incurred to 

undertake the activities (Niitepõld et al. 2009). Under the allocation model (that the energy 

available to an animal is partitioned among resting costs and other activities; Careau et al. 

2008), expending less of the total energy budget on routine MR is expected to allow more 

energy to be available for dispersal. As selection continues over generations, those 

individuals that disperse have a slightly lower routine MR; therefore, I cautiously infer that 

selection favoured individuals with efficient metabolism, allowing energy to be expended on 

dispersing, although the effect is small. 

While the mechanism for dispersal in the present study was climbing string, movement 

(walking) was assessed on a horizontal plane in a maze. The two are likely mechanistically 

distinct; small animals are efficient at climbing but not necessarily at walking (Pontzer 2016). 

Although I previously found that T. castaneum with longer legs relative to their body size are 

able to travel farther and faster in a complex environment (Chapter 3), the same does not 

apply for climbing, where limbs that are proportionate to body size may be favoured. The 
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finding in the present study, that relative leg length did not differ among selected lines, 

supports this notion.  

The second plausible explanation is that spatial assortment has imposed selection on 

developmental rate or some aspect of energy allocation during development rather than on 

dispersal success, which is based on the rapid divergence in body size. In dispersers, the 

reduction in body size may be an indication that those individuals that dispersed fastest (those 

that were selected) had a faster developmental rate. Body size prior to pupation is indicative 

of adult size in holometabolous insects; hence those individuals that develop faster are also 

typically smaller (Davidowitz & Nijhout 2004). While the experimental design minimised 

variance in the stage of pupal development at time of collection, the emergence time was not 

directly constrained. Those individuals that emerged and matured earlier would likely be the 

ones to disperse fastest, as physiological and movement behavior responses also increase 

with increasing age and maturity status (Chapter 2). By the same logic, those individuals that 

that allocated more time and energy into growth would have emerged and matured later, and 

would therefore not disperse quickly (the residents). Although this explanation supports the 

patterns of directional selection on body size, there is little empirical data available to directly 

support this hypothesis. It would therefore be useful for future work to measure traits in the 

larval and pupal stages of development, as this may be imperative to understanding spatial 

mechanisms driving dispersal. The spatial assortment of phenotypes is likely to be dependent 

on the rate of biological processes, which should be further explored. 

At the population level, maintenance of dispersal irrespective of selection may indicate 

prevalence of a bet-hedging strategy. This may occur as a survival mechanism such that if a 

local extinction event were to occur, some offspring have already dispersed among different 

sites and thus their genes are maintained in the metapopulation (Benton & Bowler 2012b; 

Kubisch et al. 2014). Similarly for the disperser lines, producing offspring that ubiquitously 

disperse may be overly risky, as there are significant potential fitness costs of dispersing 

(Bonte et al. 2012). A bet-hedging strategy that minimises the potential of fitness failure by 

producing offspring with a spectrum of dispersal propensities allows individuals to maximise 

their fitness and gene flow across multiple sites (Auld & de Casas 2013). 

The present study does not provide direct support for several previously observed trait 

changes (e.g. increase in relative locomotor apparatus size) via spatial assortative mating in 

range-edge populations. However, I demonstrate that selection on dispersal success can result 
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in shifts in body size and metabolic rate within few generations. The presence of a distinctive 

dispersal syndrome in T. castaneum is not well supported; despite artificial selection over 

seven generations, the movement ability, displacement, and to some extent, the dispersal rate 

could not be significantly distinguished among selected lines. The evolution of body size 

under selection on dispersal by climbing in the Tribolium dispersal apparatus may be 

explained mechanistically or with respect to growth and development, but empirical data to 

directly support either hypothesis is unavailable. Nevertheless, the artificial selection 

experiment presented here provides direct experimental evidence that morphological and 

physiological traits can rapidly evolve under spatial assortment, but the action of selection 

may not be on dispersal directly. Further investigations into the evolution of traits through 

spatial assortment mechanisms would benefit from exploring the allocation of energy and 

rates of growth and development during larval and pupal stages.
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Chapter 6  

No evidence for trade-offs between dispersal and reproduction 

after artificial selection on dispersal ability  

 

Abstract 

Reproduction and dispersal are two of the most fundamental behaviours that affect gene flow. 

These behaviours share significant costs; both are energetically expensive, risky, and directly 

affect life-history and fitness. Often, dispersal and reproduction trade off because of these 

shared costs, particularly regarding energy. There is also evidence that some dispersing 

animals can increase their fecundity by exploiting habitats that they disperse to, or by 

maintaining traits that counteract the trade-off, which facilitates colonisation. Here, I 

employed a cross-breeding experiment on a powerful model system of artificially selected 

lines of dispersing (disperser) and non-dispersing (resident) red flour beetles (Tribolium 

castaneum) to examine realised fecundity and sex ratio. I tested two alternative hypotheses: 

1) that dispersal trades off with fecundity, such that dispersers were less fecund than 

residents, and 2) that dispersers were more fecund than residents, to facilitate their 

colonisation success. After seven generations of artificial selection, both residents and 

dispersers had reduced fecundity consistent with inbreeding depression, but importantly there 

was no difference in fecundity between dispersers and residents, which does not support 

either hypothesis. I propose that the lack of trade-off between dispersal and reproduction 

could be due to the relatively low energy cost of dispersal in this system, and that oviposition 

rate could be the main limitation for fecundity in residents and dispersers. The sex ratio 

among lines did not differ. I conclude that there was no evidence that trade-offs occur 

between dispersal and reproduction after artificial selection for dispersal success, and 

advocate that further studies on dispersal-reproduction trade-offs that investigate lifetime 

reproductive traits are warranted. 

 

Introduction 

Dispersal, defined as any temporal and spatial movement of an individual that has potential to 

contribute to gene flow (Ronce 2007), varies considerably among individuals and 

populations. Much of the inter-individual variation in dispersal ability can be attributed to 
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variance in suites of covarying morphological, physiological, behavioural, and life-history 

traits that constitute a dispersal syndrome (Ronce & Clobert 2012; Chapters 3 and 5). 

 

Variability in dispersal capacity through space and time leads to spatial sorting; individuals 

with dispersal-facilitating traits are distributed towards the edges of their geographic or home 

range and are proximity-limited to mating only with other highly dispersive individuals 

(Shine et al. 2011). Spatial sorting processes can lead to rapid phenotypic shifts between 

resident and disperser individuals especially in dispersal-related traits, including leg length 

(Phillips et al. 2006), body size (Laparie et al. 2013; Chapter 5), and locomotor performance 

(Llewelyn et al. 2010). In addition, life-history and fitness-related traits including growth 

rate, fecundity, and survival are also predicted to differ between residents and dispersers, and 

therefore potentially trade off with dispersal ability (Bélichon et al. 1996; Pärn et al. 2009; 

Phillips et al. 2010b). Individuals are expected to maximise their dispersal and reproductive 

output to distribute offspring among different habitats, thereby facilitating colonisation 

success and maximising the probability of their genes persisting in the metapopulation (Auld 

& de Casas 2013). However, dispersal and reproduction share an underlying physiological 

basis of assimilated energy resources (Mole & Zera 1993). Given that the two traits might 

unequally contribute to fitness, one behaviour may be more beneficial than the other under 

different circumstances (Burton et al. 2010; Phillips et al. 2010b). For example, in the event 

of deteriorating local conditions, individuals will likely be more fit if they invest energy in 

dispersing to a new habitat rather than reproducing in a declining habitat (Bell & Gonzalez 

2011). Furthermore, the relationships among traits that underlie both dispersal and 

reproduction are complex, therefore it is difficult to predict whether increased dispersal 

would necessarily directly compete with reproduction (Phillips et al. 2010b). 

 

Dispersal and reproduction are both energetically expensive processes that may share the 

same underlying energy resources and control mechanisms. A trade-off between dispersal 

and reproduction is supported by the results of several previous studies on insects. The 

energy allocated to locomotor muscles and reproductive structures and oogenesis, is derived 

primarily from the fat body (Lorenz & Gäde 2009) and is under hormonal control (Zera & 

Bottsford 2001). Consequently, dispersive individuals that invest heavily in locomotion have 

fewer resources to allocate elsewhere. Investment of energy into growth and somatic 

maintenance may further limit the capacity to maximise dispersal and reproduction 

concurrently (Glazier 1999; Jervis et al. 2005). Indeed, many studies have found that there is 
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a reproductive cost associated with having larger flight muscles or structures and being 

highly dispersive (Roff 1977; Mole & Zera 1993; Zera & Denno 1997; Gu et al. 2006; 

Karlsson & Johansson 2008; Nespolo et al. 2008; Saglam et al. 2008; Khuhro et al. 2014; 

David et al. 2015). However, despite their being a physiological basis of energy partitioning 

between dispersal and reproduction, some insects are highly dispersive while still having 

equivalent or increased lifetime egg production, number of clutches, lower age at first 

reproduction, and mating advantages compared to residents (Lavie & Ritte 1978; Langellotto 

et al. 2000; Min et al. 2004; Hanski et al. 2006; Saastamoinen 2007). Highly dispersive 

individuals that are also highly fecund, may compensate for the potential energy deficit 

incurred by exploiting resources that are available in the habitat that they disperse to (Hanski 

et al. 2006; Burton et al. 2010). The quantity of resources an individual can acquire and 

allocate to life-history traits varies, and thus different reproductive strategies and dispersal 

traits may be selected to maximise the reproductive value (the expected ultimate genetic 

contribution) of their offspring (van Noordwijk & de Jong 1986; Rousset 2012). 

 

With dispersal under both spatial sorting and natural selection, I expect that various 

reproductive strategies may arise in residents and dispersers (Bélichon et al. 1996). Two 

general ideas that have empirical support are that: 1) dispersal trades off with reproduction 

directly; and 2) dispersal does not trade off with reproduction (coloniser strategy). Dispersal 

trade-offs occur when dispersers have a low reproductive value because of either the 

energetic cost of dispersal itself, or the delay of reproduction due to the time cost of dispersal 

(Ziegler 1976; Hughes et al. 2003; Gibbs & Van Dyck 2010; Rousset 2012). In residents, the 

absence of dispersal costs should increase resources that are available for reproductive 

investment; therefore, residents have a higher reproductive value (Riddle & Dawson 1983; 

Gu et al. 2006; Pärn et al. 2009). A coloniser strategy occurs when dispersers develop 

rapidly, reproduce early, and have high fecundity relative to residents while also being 

dispersive (Lavie & Ritte 1978; Saastamoinen 2007; Bonte & de la Peña 2009; Burton et al. 

2010; Bonte & Saastamoinen 2012). This strategy may be particularly effective when 

dispersers also have a low probability of surviving the dispersal process (Bélichon et al. 

1996; Bonte et al. 2012). In addition to varied reproductive strategies, strong selection on 

traits can change population demographics, including offspring sex ratio. Equal sex ratios are 

theorised to be maintained by natural selection because each sex contributes equally to the 

gene pool (Fisher 1930), and this theory holds under experimental evolution (Carvalho et al. 

1998). However, dispersal inherently changes the local density and resource competition 
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within a population, where can alter the relative fitness of either sex, thereby the sex ratio 

may shift to compensate for the lower relative fitness of the less fit sex (Bulmer & Taylor 

1980; Bulmer 1986; Taylor & Crespi 1994). 

 

The present study aimed to test these ideas by specifically addressing the following 

questions: 1) does selection for dispersal lead to trade-offs with realised fecundity? 2) if such 

a trade-off exists, how does crossing the selected lines affect realised fecundity? 3) does 

selection for dispersal result in different demographic strategies (i.e. sex ratio)? I examined 

the fecundity and sex ratio of artificially selected and then cross-bred lines of resident and 

disperser red flour beetles (Tribolium castaneum). Previously, using a seven generation 

artificial selection experiment I have demonstrated that selecting for dispersers and residents 

resulted in significant divergence of body size such that residents became larger and 

dispersers became smaller, and that dispersers had lower metabolic rates, but that other 

phenotypic traits did not respond strongly to selection (Chapter 5). Given this finding, and 

considering that fecundity scales positively with body size in insects (Honĕk 1993), I 

expected that residents would have greater fecundity than dispersers, supporting the dispersal 

trade-off hypothesis. 

 

Material and Methods 

Animals and experimental conditions 

Tribolium castaneum that were originally sourced from a laboratory population established in 

1965 (QTC4; Postharvest Grain Protection Team; Department of Agriculture, Fisheries and 

Forestry; Brisbane, QLD, Australia) were used to establish a stock population for artificially 

selected lines. The 400 founding beetles for these selected lines were collected from a stock 

population, which was maintained on 210 g of flour medium (95% wholemeal stoneground 

wheat flour: 5% torula yeast) in 1 L containers. Breeding and ovipositing containers were 

70 mL with 5 g of medium. All animals were maintained at 29.5 ± 1 °C. 

 

Artificial selection on dispersal 

An earlier dispersal apparatus experiment used artificial selection to select for and against 

dispersal success (Chapter 5). Briefly, dispersal apparatuses consisted of three 70 mL 

containers (A, B, C) connected by tubing through the lids (Figure 6.1a). The tubing contained 
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string that rested on the surface of the previous container, which beetles could climb up to 

move one-way through the apparatus from A–B and B–C. Fifty beetles were introduced into A 

in single-sex replicate lines, such that there were four replicate lines for each sex and each 

selection regime (total of 24 lines). Artificial selection was imposed by selecting the 

individuals that did not disperse through the apparatus (residents; R), those that successfully 

dispersed (dispersers; D), and by randomly sampling after 72 h in the apparatus (controls; C). 

After the dispersal trial, 10 individuals (five males and five females) from matching replicate 

lines were placed in a 70 mL breeding container with 5 g of flour, in which group mating 

could occur over five days (Figure 6.1b). Following the group mating period, the 10 

individuals were moved to a 70 mL ovipositing container with 3 g of flour so that the females 

could oviposit for five days (Figure 6.1c). After 23 days of development, the offspring from 

the selected line pairs were sorted by sex as pupae and used to establish the male (n = 50) and 

female (n = 50) lines of the pair. This selection regime was maintained for seven generations. 

 

 

Figure 6.1 (a) Dispersal apparatus used to select for and against dispersal success. For details on the selection 

experiment, see text. (b) Five males and five females of each selected line pair were added to a breeding 

container for group mating over five days. Adults were then removed from the breeding container and the 

offspring produced during breeding were kept, allowed to mature for 32 days, and then counted to estimate the 

realised fecundity of that line pair. (c) The 10 adults that were removed from the breeding container were placed 

in the ovipositing container and allowed a further five days to oviposit. The resulting offspring were used as 

founders for the selection trials across subsequent generations. 
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Cross-breeding among selected lines 

After completing the artificial selection experiment, the offspring of the seventh generation 

were used to found a large cross-breeding experiment (Figure A6.1). To determine whether 

reproductive output was altered by selection acting on dispersal, the selected lines were 

crossed. Control crosses were of the same line pair breeding used throughout the artificial 

selection experiment (e.g. 1C male × 1C female). Line crosses were crosses among selected 

lines within replicates (e.g. 1C male × 1R female). Outcrosses were crosses within the 

selected line type but between replicates (e.g. 1C male × 3C female). Due to the large number 

of possible replicate line pairs, a complete cross experiment was not logistically feasible, 

however, the partial cross-breeding design allowed 48 line crosses to be made, each with 10 

replicate pairs of parents. 

 

Artificial selection realised fecundity  

At every generation of the artificial selection experiment, an estimate of realised fecundity for 

each line pair was taken by counting the number of offspring that successfully emerged as 

adults and reached maturity (complete sclerotisation) from the breeding containers. The 

offspring from the breeding containers were counted rather than those from the ovipositing 

containers so that the founding beetles for the following generation were not handled prior to 

assessing dispersal. Realised fecundity was counted 32 days following the removal of adults 

from the breeding container (Figure 6.1b). 

 

Cross-breeding realised fecundity 

From each line replicate pair, 10 male and 10 female pupae were randomly sampled, then 

randomly allocated into 10 breeding pairs. These pairs were placed in 70 mL containers with 

3 g of flour medium. Emergence was checked five days later and pairs were allowed to 

copulate and oviposit for 10 days. Thereafter, parents were removed and the offspring were 

allowed to develop for 36 days until all had matured, and then the number of mature adults in 

each container was counted. The mean number of mature adult offspring produced across the 

10 pairs was used to estimate the realised fecundity of the line crosses. 
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Sex ratio estimates 

Following the realised fecundity estimates of the cross-breeding, the sex ratio of each line 

cross was determined. From each of the 48 crosses in the cross-breeding experiment, a 

subsample of 100 individuals per cross was taken to determine the sex ratio. This subsample 

was determined by first subsetting the containers of offspring to those that had 40–90 healthy 

offspring, and then randomly sampling three of these. The three subset containers were mixed 

into one container and animals were euthanized by exposure to -18 °C for 24 h. After 

thawing, 100 mature adults from each container were sexed under a stereomicroscope (Z45E; 

Cambridge Instruments, London, UK) by examining the underside of the femur on the first 

pair of legs for the presence of setiferous sex patches in males and their absence in females 

(Faustini et al. 1981). 

 

Statistical analyses 

All data were analysed using the R software environment for graphical and statistical 

computing version 3.2.3 (R Development Core Team 2015). The estimates of realised 

fecundity and sex ratio were normally distributed, therefore analysed using Linear Mixed 

Effects Regression (LMER) models using the R package lme4 (Bates et al. 2014). The model 

for the artificial selection realised fecundity had number of offspring (response) and selection 

type and generation number (predictors) as fixed effects, including line replicate as a random 

effect. Similarly, the LMER model for cross-breeding realised fecundity had number of 

offspring (response) and cross type (predictor) as fixed effects, including cross-breeding pair 

number nested within cross replicate as random effects. Cohen’s d was calculated for 

pairwise comparisons among crossed lines, where 0.2 < d <0.5, 0.5 < d < 0.8 and d > 0.8 

were considered to be small, medium, and large effect size, respectively (Cohen 1988). The 

LMER for sex ratio included the ratio of male to female offspring (response) and cross type 

(predictor) as fixed effects, including cross replicate as a random effect. 

 

Results 

Artificial selection on dispersal: realised fecundity 

Realised fecundity declined throughout the selection experiment (F1,69 = 180.7, P < 0.001; 

Figure 6.2). Between the first and seventh generations, realised fecundity decreased by 63.4% 

in controls, 36.3% in dispersers, and 49.2% in residents. Realised fecundity was not 
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significantly different among selected lines over generations (F2,69 = 1.39, P = 0.256; 

Figure 6.2) and the number of offspring were not different among selected lines overall 

(F2,53 = 0.68, P = 0.512). That is, all selected lines declined in their reproductive fitness at 

similar rate and to a similar extent across replicates. 

 

 

 

Figure 6.2 Realised fecundity (number of viable offspring produced) of selected lines for three selection 

regimes (controls, dispersers, and residents) over seven generations of artificial selection. Data shown are means 

of eight replicate lines ± SE. 

 

Cross-breeding: realised fecundity 

The number of offspring produced in each of the cross-bred lines were significantly different 

overall (F11,431 = 2.01, P = 0.026; Figure 6.3). However, comparisons among any cross-bred 

lines within the LMER model were marginally significant (0.05 > P < 0.1; Table A6.1). 

Therefore, I made pairwise comparisons to determine effect sizes between control crosses, 

among selected line crosses, and within selected line type crosses using Cohen’s d 

(Table 6.1). Medium effect sizes were found between the resident control cross (R:R–) and: 

the resident-control line cross (–R:C; d = 0.649), control-resident line cross (–C:R; 
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d = 0.643), disperser-resident line cross (–D:R; d = 0.7), and resident outcross (–R:RO; 

d = 0.732). The reciprocal resident-disperser and disperser-resident line crosses also had a 

medium effect size (R:D–D:R; d = 0.536). Comparing reciprocal crosses (e.g. R:D–D:R), I 

found that among all crosses, the maternal line was a stronger determinant of the number of 

offspring (F11,398 = 2.2, P = 0.014) than the paternal line (F11,398 = 1.17, P = 0.303). 

 

 

 

 

Figure 6.3 Realised fecundity (number of viable offspring produced) of various crossed line pairs among 

different artificially selected line crosses. C = control, D = disperser, R = resident, and O = outgroup of the same 

selection regime. Data shown are means of 10 replicate parent pairs ± SE. 
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Table 6.1 Cohen’s d (effect size) for pairwise comparisons of cross-bred selected lines. Significant differences 

were considered small where 0.2 < d <0.5, medium where 0.5 < d < 0.8, and large when d > 0.8. Medium and 

large effect sizes are in bold. 

Within selected line replicate 

pairs (control cross) 

Within selected line types 

between replicates (outcross) 

Among selected line types  

(line cross) 

Line pair 

(M:F) 
Cohen’s d 

Line pair 

(M:F) 
Cohen’s d 

Line pair 

(M:F) 
Cohen’s d 

C:C–D:D 0.014 C:CO–D:DO 0.251 C:R–R:C 0.134 

C:C–R:R 0.183 C:CO–R:RO 0.178 C:D–D:C 0.165 

R:R–D:D 0.250 R:RO–D:DO 0.056 R:D–D:R 0.536 

C:C–C:D 0.251 C:CO–C:C 0.149 C:R–D:R 0.061 

C:C–C:R 0.332 R:RO–R:R 0.732 C:D–R:D 0.216 

C:C–D:C 0.256 D:DO–D:D 0.435 R:C–D:C 0.112 

C:C–R:C 0.340   R:D–R:C 0.246 

D:D–D:C 0.294   D:C–D:R 0.091 

D:D–D:R 0.440   C:R–C:D 0.192 

D:D–C:D 0.296     

D:D–R:D 0.033     

R:R–R:C 0.649     

R:R–R:D 0.306     

R:R–C:R 0.643     

R:R–D:R 0.700     

 

 

Cross-breeding: sex ratio 

The sex ratio of offspring was not significantly different among the cross-bred lines overall 

(F11,36 = 0.51, P = 0.884; Figure 6.4), or in any pairwise comparison (Table A6.2). R:R had a 

slightly higher male to female ratio in both the control cross and outcross groups than D:D or 

C:C, but significant differences were not detected (Figure 6.4). The mean sex ratio of all lines 

was biased towards males (1.11 ± 0.12; t11 = 3.89, P < 0.001). 
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Figure 6.4 Sex ratio (M:F) of various crossed line pairs among different artificially selected line crosses. C = 

control, D = disperser, R = resident, and O = outgroup of the same selection regime. Dashed line represents an 

equal ratio of males to females (1:1). Data shown are means of four replicates ± SE and ratios were taken from a 

random sample of 100 individuals. 

 

Discussion 

Dispersal and reproduction share similar resources and biological constraints, however the 

nature of trade-offs between the two behaviours is complex. In some species, there is a clear 

trade-off where dispersing individuals are less reproductively fit, but in other species, 

dispersers are at least as fit as residents are. Here, I demonstrate that red flour beetles, 

Tribolium castaneum, that have been selected for dispersing do not have reduced fecundity 

compared to those selected for residency, therefore supporting the hypothesis that dispersal 

and reproduction do not always trade-off due to shared energy resources. 

 

Over the seven generations of selection, for and against dispersal, the fecundity of dispersers 

did not differ from that of residents. However, there was a significant reduction of fecundity 

across all lines. This finding, coupled with the lower fecundity of control crosses compared to 

any other pairs in the cross-breeding experiment, is convincing evidence of an inbreeding 

depression (Keller & Waller 2002). Selection experiments that have relatively small 
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population sizes inevitably restrict gene flow and potentially bottleneck populations, 

particularly when the selection regime further reduces the effective population size (Santiago 

& Caballero 1998; Kawecki et al. 2012). There is a strong correlation between the predicted 

decline in genetic variance and the population rate of increase in T. castaneum (McCauley & 

Wade 1981), and realised fecundity decreases as the level of inbreeding increases (Sharp & 

Agrawal 2016). Inbreeding affects life-history traits much more than morphological traits 

(DeRose & Roff 1999), therefore the finding that body size diverges with bidirectional 

selection on dispersal from our previous experiment (Chapter 5) is unlikely to be 

compromised by inbreeding. During dispersal and colonisation events, or in naturally 

transient populations, individuals that leave populations consequently reduce the size of their 

original population and are likely to move to habitats that, at least initially, have a small 

population size (Roff & Derose 2001). Therefore, some level of intermediate inbreeding may 

be common during dispersal events and may be associated with the phenotypic traits that 

describe variance in movement ability and dispersal propensity (Ronce & Clobert 2012; Auld 

& de Casas 2013). 

 

Crossing selected lines can counteract the effect of inbreeding on realised fecundity (Kawecki 

et al. 2012). In our study, although the mean realised fecundity among crossed lines only 

differed marginally, the control crosses all had lower realised fecundity compared to the line 

crosses and outcrosses. I suggest that this is evidence that crossing the selected lines restored 

lost genetic heterozygosity and reduced the effects of inbreeding depression. The realised 

fecundity of the crossed lines (with one exception) did not differ, which demonstrates that 

none of selected lines had a reproductive advantage during early life due to their dispersal 

behaviour. This does not support the hypothesis that dispersal may trade-off with 

reproduction due to the energy cost of dispersal, as energy invested into dispersal cannot 

simultaneously contribute to reproduction or reproduction is delayed due to dispersal timing. 

The one exception was the cross between resident males and disperser females, which had 

similar realised fecundity to the control crosses. A recent artificial selection experiment on 

aerial dispersal propensity of spider mites (Tetranychus urticae) using cross-breeding 

residents and dispersers found that offspring phenotype was driven by maternal influence 

(Van Petegem et al. 2015). Maternal effects are any maternal influences on offspring 

phenotype that cannot be attributed to either solely offspring genotype or environment 

(Mousseau & Fox 1998). Given our finding that the maternal line has a stronger influence on 

fecundity than the paternal line, and that maternal effects can significantly affect offspring 
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fitness, one might predict that female disperser lines may be less fit. However, under this 

hypothesis, I would also expect the progeny of the cross between control males and disperser 

females to be less fecund, but they were not. Therefore, I can only suggest that the 

combination of alleles between resident males and dispersers females may be less adaptive 

than combinations among other lines, but equivalent to that of the inbred selected lines. 

 

I also found that the sex ratios between crossed lines did not differ, regardless of selection for 

or against dispersal, or crosses among lines. It is likely that natural selection acts to maintain 

the sex ratio at approximately 1:1, otherwise a fitness advantage would be conferred to the 

rarer sex by increased mating opportunity, and also by increased mate competition among the 

common sex, which is ultimately unsustainable (Fisher 1930; Carvalho et al. 1998). Artificial 

selection on dispersal does not appear to influence sex ratio. This finding suggests that 

overall, there may be a slight male-bias in T. castaneum sex ratio (1.11 ± 0.12), but the 

precision of this estimate is not high enough to rule out sampling error (see Ewen et al. 

2004). Parents can adjust the sex ratio of their offspring in response to environmental 

conditions to maximise their own fitness (West & Sheldon 2002). While this finding is not 

dramatic, it may indicate that having more male offspring under the confined, low-density 

environments in which breeding occurred is advantageous, and is worth exploring further. 

 

Overall, these results do not directly support the coloniser hypothesis either, which proposes 

that dispersers have a reproductive advantage over residents to facilitate colonisation. Two 

studies have previously investigated bidirectional selection on dispersal in T. castaneum: one 

study found that dispersers had a reproductive advantage over residents, supporting the 

hypothesis (Lavie & Ritte 1978). However, Zirkle et al. (1988) found that the reproductive 

output of dispersers and residents did not differ, which does not directly support the coloniser 

hypothesis, but still supports the lack of trade-off. Here I found that dispersers do not 

compromise reproduction, but also that residents do not have a reproductive advantage over 

dispersers, as in Zirkle et al. (1988). Tribolium castaneum is a coloniser species and has 

evolved to maximise both dispersal and reproduction, but the timing of dispersal and 

reproduction may vary among individuals (Ziegler 1976). Hence, reproductive differences 

between dispersers and residents may be less apparent over a relatively short window of time. 

Most studies that report differences in reproduction between dispersers and residents have 

investigated species that use flight to disperse (e.g. Min et al. 2004; Hanski et al. 2006), but 

insects that walk or climb to disperse may not incur as large an energy cost during 
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locomotion. I have previously found that disperser beetles were smaller and more energy-

efficient climbers, thus making it likely that their cost of dispersing would be lower still 

(Chapter 5). 

 

Throughout this artificial selection experiment, dispersers became significantly smaller and 

residents became significantly larger (Chapter 5). Body size frequently scales with fecundity 

in insects (Honĕk 1993) and for holometabolous insects to become larger, larvae must 

increase their consumption and growth rate, either investing resources into somatic growth or 

reproductive structures (Jervis et al. 2005). From these findings, I hypothesised that the larger 

residents would have a reproductive advantage over dispersers, but our results do not support 

this hypothesis. Instead, I found that residents, which were larger on average than dispersers, 

were equally as fecund as dispersers over the 10 day laying period. However, larger size may 

still confer greater lifetime reproductive success (LRS), through increased lifespan, extended 

reproductive period, or greater egg production (Karlsson & Wickman 1990; McCabe & 

Partridge 1997; Taylor et al. 1998), which would not be apparent if oviposition rate were 

similar between dispersers and residents. This is a hypothesis worth testing in future, but 

from the present study, it is clear that dispersers do not incur a significant reproductive cost 

during the important early phase of their adult life. 

 

In summary, our findings did not support a trade-off between dispersal and reproduction in 

T. castaneum having different dispersal tendencies. I propose that this may be because 

dispersal by climbing is not energetically expensive for the small, energy-efficient dispersers, 

and therefore equivalent resources remain available for allocation to reproduction. I do not 

have substantial evidence to state that there is a coloniser syndrome in this species, but 

dispersers have equivalent reproductive ability to residents. It is surprising that the larger size 

of residents does not translate into a difference in reproductive success or strategy. As a 

possible explanation, I propose that a limit to oviposition rate could obscure differences 

between disperser and resident reproduction, and that residents may have greater LRS than 

dispersers. Exploring these hypotheses in the future would be valuable. Considering 

additional life-history traits such as oviposition rate, mating frequency, LRS, and lifespan 

when researching dispersal-reproduction trade-offs, would improve our understanding of 

what drives these relationships.
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Chapter 7  

General discussion 

 

Overview 

Variability in dispersal has significant implications for the ecology and evolution of 

organisms, but a thorough understanding of the complex causes and consequences of this 

variation is still being developed. Trait-based approaches are useful for studying the 

intraspecific variation in dispersal ability. In particular, investigating suites of traits, which 

contribute to dispersal syndromes has received much attention recently (Stevens et al. 2014). 

Many different life-history, morphological, physiological, and behavioural traits are strongly 

linked to dispersal, and can covary, interact, and trade-off with other traits. These traits are 

shaped by and contribute to the continuous evolution of dispersal. Consequently, an 

evolutionary perspective on dispersal-related traits contributes to a more complete 

understanding of the proximate and ultimate causes of dispersal (Ronce & Clobert 2012). 

Thus, the overall aim of the research presented in this thesis was to gain a better 

understanding of the relationships and evolution of traits that may constitute the dispersal 

syndrome, using a series of laboratory experiments using a model insect species, Tribolium 

castaneum. I investigated the dynamics of body size, metabolic rate, activity, and movement 

behaviour traits with life-history, the associations among these traits, the evolution of traits 

under selection for and against dispersal, and trade-offs between dispersal and reproduction.  

 

Trait dynamics and associations 

The age and sex of an organism can be a strong determinant of its dispersal (Bowler & 

Benton 2009). In Chapter 2, I provided fine-scale time-series data of the dynamics of several 

fundamental phenotypic traits that are thought to constitute the dispersal syndrome. First, I 

found that the onset of sexual maturity dramatically affected several traits that describe 

movement capacity, as well as spontaneous activity and routine MR in both males and 

females. Prior to the onset of sexual maturity, immature and unsclerotised individuals were 

mostly inactive, which is a protective mechanism from damage by conspecifics and the 

environment while the cuticle is still hardening. Immature individuals also had a low routine 

MR, which resulted from the low energy requirements prior to maturity and energy savings 



93 

associated with inactivity. Second, after reaching sexual maturity, the mean values of these 

traits stabilised and remained relatively consistent throughout early adult life. These findings 

provide strong support for the hypothesis that dispersal, which is an energetically expensive 

activity reliant on movement capacity and strongly tied to reproduction, is likely to occur 

only after reaching sexual maturity. Importantly, the relative stability of the mean and 

variance of traits after the onset of maturity meant that an age range could be determined for 

studying trait associations and evolution in subsequent experiments (Chapters 3–5). 

 

Although the correlations between many phenotypic traits are often thought to be robust, 

especially within a closed long-established laboratory population, I found the converse: trait 

relationships were not overly robust and showed substantial variation (Chapter 3). This result 

is an important finding that suggests that trait relationships do not necessarily conform to 

expectations derived from earlier studies that may be based on small sample sizes. Therefore, 

the relationships among traits should not be assumed to be stable through time and among 

populations. Rather, the substantial variance around trait means and trait correlations should 

be considered biologically meaningful, and classic assumptions or models may need to be 

revisited to include intra-specific variation (Bolnick et al. 2011). 

 

Fundamental size relationships, i.e. the positive correlation between body size and leg length, 

show less variation than the relationships between morphology or routine MR and movement 

behaviours. Under different contexts, MR can have different biological meanings ranging 

from energy cost, capacity, performance, or fitness (Burton et al. 2011). Several-fold 

differences in maintenance metabolism have been observed in many species, even after 

accounting for body size, temperature, phylogeny, and environmental factors (Burton et al. 

2011). Routine MR (which incorporates activity) is likely to be more variable than basal, 

resting, or standard MR, and therefore may be highly context-dependent. The lack of strong 

associations among phenotypic traits reported in Chapter 3 does not indicate that they are 

necessarily unrelated, as they may only be related under certain contexts, or have stronger 

underlying genetic correlations that may respond to selection (Wone et al. 2009). A logical 

progression from this research would be to determine the genetic underpinnings of 

phenotypic traits that are relevant to dispersal syndromes. 

 

Dispersal syndromes are frequently discussed in conjunction with large body size and large 

locomotor apparatus relative to body size (Phillips et al. 2006; Forsman et al. 2010; Laparie 
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et al. 2013). Assuming that the measures of movement ability and displacement could be 

reasonable proximate measures for dispersal (Hawkes 2009; Ducatez et al. 2012), then these 

measures should correlate well with body size and relative locomotor apparatus size. Only 

relative locomotor apparatus size was positively associated with movement ability and this 

mechanistic relationship still showed considerable intraspecific variation (Chapter 3). 

Variation is necessary for selective processes to affect trait change, and from this 

relationship, I hypothesised that relative leg length would be exaggerated when under 

directional selection for dispersal success. However, the experiment in Chapter 5 revealed 

that body size and routine MR were altered by selection on dispersal, but that relative leg 

length was not. 

 

Before discussing these trait responses to artificial selection, it is important to first consider 

the relationship between the dispersal apparatus that was used for measuring dispersal and the 

maze environment that was used for measuring movement behaviour. The dispersal apparatus 

used in this body of work (Chapters 4 and 5) was based on the designs described in several 

previous studies that studied dispersal in Tribolium species (e.g. Prus 1963; Ogden 1970a; 

Ritte & Lavie 1977; Łomnicki 2006). The mechanism by which individual beetles could 

move through the apparatus was by climbing a string; initially vertically upwards, then 

horizontally, and then shortly downwards within a narrow, unidirectional tube. Climbing in 

this context is equivalent to short dispersal movements that occur within their natural and 

cosmopolitan habitats, especially in grain storage facilities (Semeao et al. 2013). Movement 

through the maze was on a level surface where the effects of geotaxis, slopes, and 

confinement are not present. Walking and climbing have not been distinguished in any 

previous study on Tribolium dispersal; most refer to movement through a dispersal apparatus 

as ‘walking’. However, the slope of tubing in the dispersal apparatus affected dispersal rate 

(Chapter 4) and movement in the maze was not different between selected dispersers and 

residents (Chapter 5). 

 

Both walking and climbing in T. castaneum use the same locomotor appendages that share 

underlying musculature, however movement gait, energetic cost, and triggering conditions, 

are likely to differ somewhat. If selection were imposed on movement by walking rather than 

climbing, it is likely that the responses of other dispersal-related traits may have been 

different also, given the various conditions under which different dispersal mechanisms are 

used (Figure 1.5). The selection pressures that are imposed by routine movements are 
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different to those driving dispersal. For example, population-level processes such as 

competition, density, and sex ratios are likely to drive dispersal, whereas individual-level 

processes such foraging and mate-searching are likely to drive routine movements (Van Dyck 

& Baguette 2005; Benton & Bowler 2012b). This fundamental difference in selection 

pressures is supported in the lack of change in movement in the maze despite selection on 

dispersal through the apparatus (Chapter 5). Another limitation to consider when interpreting 

the artificial selection results is the logistical constraint of standardising local conditions for 

the experiment. The specific population density, food availability, temperature, patch size, 

and absence of predators resulted in a specific phenotypic response, however altering these 

conditions would likely yield different responses. Understanding the relative dependence of 

the phenotype to the suite of individual- and population-level processes that influence 

dispersal decisions is an immense challenge in biology, but is ultimately necessary to 

understand dispersal ecology and evolution (Bowler & Benton 2005; Benton & Bowler 

2012b; Clobert et al. 2012). Nevertheless, some of the measured phenotypic traits responded 

to artificial selection on climbing dispersal (locomotion that T. castaneum naturally use to 

disperse), and understanding the mechanistic basis for these phenotypic responses to spatial 

assortment provides insight into this evolutionary theory. 

 

Spatial sorting and the evolution of dispersal-related traits  

Spatial sorting proposes that the evolution of traits can be driven by proximity-limited mating 

between individuals that have similar dispersal-related traits (Shine et al. 2011). Evidence for 

this evolutionary process has been observed at species range edges and particularly in 

invasive species (Chuang & Peterson 2016). Natural selection is the conventional mechanism 

for evolutionary change, whereby individuals that have traits better suited to their local 

environment will have a fitness advantage (Darwin 1859). Both of these evolutionary 

mechanisms are prevalent in shaping traits that are associated with accelerating range 

expansion in invasive species, including birds (Berthouly-Salazar et al. 2012), toads (Shine et 

al. 2011; Lindström et al. 2013), fishes (Rehage & Sih 2004; Myles-Gonzalez et al. 2015), 

salamanders (Lowe & McPeek 2012; Davenport & Lowe 2016), mites (Van Petegem et al. 

2015; 2016a), and insects (Piiroinen et al. 2011; Laparie et al. 2013). Understanding trait 

evolution is a pre-condition for elucidating factors that contribute to shifts in the distributions 

of invasive species; such shifts have potentially dire consequences for the ecology of native 

species and the conservation of natural environments (Colautti & Lau 2015). 
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As anthropogenic disturbance of natural environments, climate change, and global 

homogenisation of biota continue pervasively into the future, biological invasions are likely 

to become more frequent, and even more important and challenging to manage effectively 

(Dukes & Mooney 1999; Kokko & López-Sepulcre 2006; Ricciardi 2007; Chown et al. 2015; 

Hulme 2016). The research presented in this thesis provides a basis for understanding trait 

evolution that may occur during biological invasions, by investigating traits associated with 

dispersal syndromes and the evolution of traits through artificial spatial sorting. This 

knowledge could be used to inform evolutionary and invasion biology hypotheses, 

incorporated in spatial distribution and evolution modelling, and further tested in laboratory 

and field experiments. In this thesis, I have demonstrated empirically that proximity-limited 

mating among individuals that are categorised as dispersers or residents can result in rapid 

phenotypic change (Chapter 5). Additionally, I have found no evidence to suggest that 

dispersers and residents differ in terms of fitness (Chapter 6). A difference in fitness would be 

expected under natural selection; therefore the spatial sorting hypothesis is supported. 

 

Previous studies on spatial sorting have used modelling (e.g. Travis & Dytham 2002), field 

observations (e.g. Laparie et al. 2013), or common garden experiments (e.g. Brown et al. 

2014), but only one other study has conducted artificial selection in a spatial sorting context 

(Van Petegem et al. 2015). The present body of work is the first example of an experimental 

evolution approach to understanding the response of multiple phenotypic traits to spatial 

sorting processes. This work is also among few studies that have investigated the evolution of 

multiple traits simultaneously, and provides significant insight for future studies on dispersal 

syndromes, and trait evolution. The findings of this thesis do not support a number of 

observations from previous studies that investigated phenotypic differences between 

dispersers and residents. Clearly, relative locomotor apparatus size can have significant 

effects on movement ability (Chapter 3), but selection for dispersal success did not affect this 

trait (Chapter 5). Similarly, body size did not affect movement characteristics (Chapter 3), but 

was the trait most responsive to selection (Chapter 5). 

 

Relative leg length was likely unaffected by selection on dispersal because of the mode of 

dispersal. That is, having relative longer legs does not facilitate climbing, but does facilitate 

walking. However, smaller body size is beneficial for climbing, which is probably due to the 

lower cost of transport while moving up a slope; therefore selection by climbing in the 

dispersal apparatus rapidly reduced the mean body size of dispersers. Selection against 
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dispersal resulted in an increase in body size, which is potentially a consequence of redirected 

energy partitioning towards increase investment in larval growth. 

 

In Chapter 5, I hypothesised that the significant increase in body size of residents could 

indicate that the energy acquired as larvae was invested into biosynthesis for reproduction; 

therefore residents would have a reproductive advantage over dispersers. However, in 

Chapter 6 I showed that there was no difference between dispersers and residents in terms of 

reproductive success. One reason for this could be that the short laying period (10 days) may 

not be representative of lifetime reproductive success (LRS), if oviposition rate did not differ 

between dispersers and residents. Another plausible reason could be that size increase reflects 

competitiveness. That is, larger individuals are usually more competitive (Bowler & Benton 

2005), and residents are in a more intense competitive environment that has higher population 

density and declining resource quality as a result of higher density. Previous studies have 

found that smaller, less competitive individuals are the ones to disperse earlier (Lawrence 

1987; Hanski et al. 1991; Léna et al. 1998), which also fits the patterns that I recorded in 

Chapter 5. Finally, the variation in dispersal rate and lack of difference in reproduction 

between dispersers and residents could indicate a bet-hedging strategy to produce both 

dispersing and non-dispersing offspring. This would be beneficial if, for example, a local 

extinction event occurs in a habitat with resident parents, because a proportion of their 

offspring would have already dispersed, and thus their genes would be maintained in the 

metapopulation (Kubisch et al. 2014). Further disentangling the relative mechanisms that 

determine differences between residents and dispersers is one of many possible future 

directions suggested by the results and implications of my work. 

  

Future directions 

In this body of work, residents and dispersers were distinguished by their ability to disperse 

by climbing. Although walking and climbing have not been distinguished in any previous 

study on Tribolium dispersal, it is clear from my research that the mechanistic differences 

between these locomotor modes affects their evolutionary responses to selection for dispersal. 

If individual dispersal through the apparatus had been able to be quantified, rather than 

measuring routine movement in the maze, it may have been possible to gain a greater 

understanding of individual motivation to disperse. The relative costs of different modes of 

locomotion and dispersal will differ dependent on conditions acting at the level of the 
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individual rather than the population (Bonte et al. 2009; Bonte et al. 2012). Another dispersal 

mechanism that T. castaneum uses is flight, which is far more energetically expensive, but 

could be more effective than walking or climbing for dispersal. Artificial selection 

experiments that select for walking or flight dispersal could be valuable to compare with the 

phenotypic response of selection for climbing dispersal. Recently, large-scale experimental 

patch-based landscapes have been implemented to study flight dispersal in butterflies and 

other species, to provide a measure of dispersal more directly comparable with that of natural 

systems (Legrand et al. 2012; Bestion et al. 2015; Legrand et al. 2015). This type of 

experimental landscape could be useful to study the natural movement of species that use 

multiple modes of locomotion to disperse. 

 

Selection on different modes of locomotion may also yield different trade-offs, therefore the 

relationship between flight and reproduction would be worth revisiting. It may also be 

valuable to substantiate the finding that there is no trade-off between dispersal and 

reproduction. Three approaches could be taken to achieve this aim: 1) determine if realised 

fecundity as measured in Chapter 6 is a useful proximate measure for LRS, and if not 2) 

measuring the LRS of dispersers, residents, and crossed lines, and 3) measuring lifespans and 

oviposition rates over the lifespan. Tribolium castaneum are long-lived insects, and such an 

experiment would take up to one year to be conducted. 

  

Another interesting research avenue that has been raised by this body of work is how 

dispersers and residents differ during ontogeny, prior to the adult life stage. Body size 

strongly diverges with selection for residents and dispersers, and as T. castaneum are 

holometabolous insects (complete metamorphosis through four distinct life stages), body size 

is determined during the larval (growth) phase. Therefore, ontogenetic changes to growth and 

developmental rates, resource acquisition, and metabolic processing must occur in larval 

residents and dispersers. A critical experiment to home in on the mechanisms of body size 

divergence would be to quantify the food intake, growth rate, timing and size at different 

larval instars, and measure the MR of larvae across ontogeny. If differences in these traits are 

apparent between resident and disperser larvae (which seems highly probable), then it would 

be insightful to examine the expression of genes involved in metabolic processes and their 

regulation. Recent studies have found that the genetics, epigenetics, and metabolomics can 

differ between resident and disperser toads (Rollins et al. 2015) and spider mites (Van 

Petegem et al. 2016b). 
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The genome of T. castaneum has been sequenced (Tribolium Genome Sequencing 

Consortium 2008), therefore determining whether target genes are differentially expressed in 

residents and dispersers, and discerning their function, would be a worthwhile and attainable 

objective. This thesis has provided a foundational understanding of dynamics, correlations, 

and evolution of phenotypic traits related to dispersal, therefore a logical progression would 

be to investigate the genetic determinants of these phenotypic traits. A large full-sibling and 

half-sibling breeding design with phenotypic measurements of both parents and offspring 

could be used to estimate the additive genetic, phenotypic, and residual variances, and 

therefore the narrow-sense heritability of traits using quantitative genetic analyses. Following 

this experiment, top-down approaches such as quantitative trait locus (QTL) mapping, gene 

expression patterns, microarrays, and genomic associations can be used to work from the 

phenotype to the genotype to further our functional understanding of the observed phenotypes 

(Wheat 2012). 

  

Candidate genes involved with metabolism and locomotor performance have been found in 

other dispersal studies. For examples, Glanville fritillary butterflies (M. cinxia) that show 

allelic variation in expression of the phosphoglucose isomerase (pgi) gene have different 

flight MR and flight performance (Haag et al. 2005; Niitepõld et al. 2009). Another candidate 

gene, foraging (for), which is associated with distance travelled while feeding and the 

probability of leaving a food patch has been identified in Drosophila melanogaster 

(Sokolowski 2001). Individuals with the dominant for allele express more of a cyclic 

guanosine monophosphate activated protein kinase enzyme (PKG) and exhibit different gene 

expression patterns in metabolic pathways compared to those with the recessive for allele 

(Kent et al. 2009). Subsequent studies have found numerous species that express different 

levels of PKG vary in locomotion behaviour and performance, suggesting it is conserved 

across diverse taxa (Wheat 2012). A recent genetic study on invasive cane toads has found 

differential expression of genes involved in metabolism and immune function between 

individuals from range edge and range core populations (Rollins et al. 2015). Those at the 

range edge display substantial upregulation genes involved with metabolism and activity 

(Rollins et al. 2015), which contrasts with findings from metabolomics of invasive spider 

mites (Tetranychus urticae) that have undergone a range expansion (Van Petegem et al. 

2016b). Individuals from the expanding range edge potentially downregulate metabolic 

pathways associated with protein synthesis and also show differential use of amino acids to 

those individuals from the range core (Van Petegem et al. 2016b). These recent findings 
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demonstrate the complexity of evolutionary processes at range edges that remains to be 

understood, and highlights the importance of integrating advances in metabolomics and 

epigenetic technologies. Given that many genes associated with locomotion, behaviour, and 

metabolism are likely to be conserved, investigating candidate genes that are differentially 

expressed in resident and disperser T. castaneum could prove to be valuable, and enhance the 

impact of this species as a genomic animal model. 

 

Conclusions 

Dispersal is a vital, yet immensely complex, biological process. Dispersal varies substantially 

among individuals, populations, and species across various contexts, therefore understanding 

the fundamental underlying phenotypic traits that contribute to dispersal is important. The 

aim of the research presented in this thesis was to gain a better understanding of the evolution 

of phenotypic traits that are related to dispersal, using a laboratory model species and 

artificial selection for different dispersal strategies. This research contributes to an extensive 

literature on dispersal that has broad implications, providing an insightful link among 

dispersal syndromes, spatial sorting, experimental evolution, and invasion biology. The major 

findings of this work are that the associations among morphological, physiological, and 

movement behaviour traits are more variable than suggested by many previous reports, and 

that these traits can evolve under artificial selection by spatial sorting. Relative leg length is 

associated with greater movement ability, but this trait does not evolve under selection for 

dispersal by climbing. Rather, body size and metabolic rate are important traits for dispersal 

by climbing, which highlights the importance of investigating the relevant traits associated 

with different modes of dispersal. The significant, maintained variance in dispersal rate of 

selected offspring also highlights the value to the insect of maintaining intra-specific 

variation in offspring dispersal strategy, both to optimise fitness in ephemeral habitats and to 

ameliorate the effects of environmental change. Overall, the findings presented in this thesis 

demonstrate that many phenotypic traits are important for movement behaviour and dispersal, 

particularly body size, and metabolic and locomotor efficiency, which provides empirical 

support for spatial sorting contributing to the evolution of phenotypes. These findings, taken 

collectively, have suggested a number of potential interesting and important research 

directions that could lead to a more comprehensive understanding of dispersal syndromes and 

variation in phenotypic traits.
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Appendix   

 

Table A3.1 Full output of model-averaged LMER where movement ability was the response variable for a suite 

of potentially associated traits. 

Response:  

Movement ability 

Estimate 95% CI  Z P Importance 

(Intercept) -6.848 -9.496 – -4.201 5.070 <0.001  

Age -0.022 -0.028 – -0.016 6.798 <0.001 1.00 

Leg length 10.790 7.245 – 14.334 5.966 <0.001 1.00 

Body size -0.578 -1.395 – 0.239 1.387 0.166 0.48 

Spontaneous activity -0.159 -0.359 – 0.042 1.553 0.120 0.23 

Sex -0.115 -0.515 – 0.285 0.562 0.574 0.16 

Routine MR -0.106 -0.281 – 0.069 1.184 0.236 0.12 

 

 

Table A3.2 Full output of model-averaged LMER where movement displacement was the response variable for 

a suite of potentially associated traits. 

Response:  

Movement displacement 

Estimate 95% CI  Z P Importance 

(Intercept) 1.875 0.142 – 3.608 2.121 0.034  

Leg length -2.598 -4.699 – -0.496 2.423 0.015 0.95 

Routine MR -0.097 -0.195 – 0.001 1.949 0.051 0.23 

Body size -0.115 -0.618 – 0.387 0.451 0.652 0.20 

Sex -0.075 -0.317 – 0.166 0.613 0.540 0.11 

Spontaneous activity -0.051 -0.171 – 0.069 0.839 0.402 0.07 
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Table A5.1 ANCOVA results from LMER of dispersal rate through the apparatus as a response to selection for 

and against dispersal with various covariates. 

Fixed effects SS MS d.f. F P 

Selection 2.25 1.12 2, 21 0.10 0.910 

Sex 44.27 44.27 1, 30 3.75 0.062 

Generation 949.63 158.27 6, 109 13.41 <0.001 

Movement ability 11.33 11.33 1, 119 0.96 0.329 

Movement displacement 0.18 0.18 1, 119 0.02 0.901 

Body size 23.60 23.60 1, 120 2.00 0.160 

Spontaneous activity 2.62 2.62 1, 114 0.22 0.638 

Routine MR 10.94 10.94 1, 119 0.93 0.338 

Leg length 7.83 7.83 1, 119 0.66 0.417 

Selection × sex 12.31 6.16 2, 17 0.52 0.603 

Selection × generation 29.35 2.45 12, 105 0.21 0.998 

Sex × generation 73.26 12.21 6, 104 1.03 0.407 

Selection × sex × generation 171.28 14.27 12, 104 1.21 0.287 

 

Table A5.2 ANCOVA results from LMER of movement ability in the maze (PC1) as a response to selection for 

and against dispersal with various covariates. 

Fixed effects SS MS d.f. F P 

Selection 2.63 1.31 2, 20 0.51 0.608 

Sex 20.34 20.34 1, 21 7.90 0.010 

Generation 408.04 68.01 6, 1586 26.40 <0.001 

Body size 33.51 33.51 1, 1559 13.01 <0.001 

Routine MR 6.72 6.72 1, 1579 2.61 0.107 

Spontaneous activity 29.89 29.89 1, 1581 11.61 <0.001 

Leg length 1.92 1.92 1, 1601 0.74 0.389 

Age 0.51 0.51 1, 1599 0.20 0.657 

Selection × sex 3.38 1.69 2, 18 0.66 0.531 

Selection × generation 50.29 4.19 12, 1585 1.63 0.078 

Sex × generation 22.26 3.71 6, 1585 1.44 0.195 

Selection × sex × generation 16.23 1.35 12, 1584 0.53 0.900 
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Table A5.3 ANCOVA results from LMER of movement displacement in the maze (PC2) as a response to 

selection for and against dispersal with various covariates. 

Fixed effects SS MS d.f F P 

Selection 0.021 0.010 2, 19 0.01 0.990 

Sex 2.707 2.707 1, 21 2.68 0.116 

Generation 16.839 2.806 6, 1589 2.78 0.011 

Body size 0.500 0.500 1, 1545 0.50 0.482 

Routine MR  0.810 0.810 1, 1583 0.80 0.370 

Spontaneous activity 4.556 4.556 1, 1574 4.52 0.034 

Leg length 1.439 1.439 1, 1604 1.43 0.233 

Age 8.560 8.560 1, 1601 8.49 0.004 

Selection × sex 1.993 0.996 2, 18 0.99 0.392 

Selection × generation 9.649 0.804 12, 1587 0.80 0.654 

Sex × generation 5.916 0.986 6, 1587 0.98 0.439 

Selection × sex × generation 20.944 1.745 12, 1587 1.73 0.055 

 

Table A5.4 ANCOVA results from LMER of routine MR as a response to selection for and against dispersal 

with various covariates. 

Fixed effects SS MS d.f. F P 

Selection 0.023 0.011 2, 18 1.58 0.232 

Sex 0.034 0.034 1, 19 4.70 0.043 

Generation 2.909 0.485 6, 1583 67.89 <0.001 

Body size 1.265 1.265 1, 1593 177.20 <0.001 

Spontaneous activity 0.166 0.166 1, 1602 23.18 <0.001 

Movement ability 0.016 0.016 1, 1597 2.30 0.129 

Movement displacement 0.004 0.004 1, 1594 0.59 0.441 

Leg length 0.003 0.003 1, 1593 0.36 0.550 

Age 0.509 0.509 1, 1590 71.34 <0.001 

Selection × sex 0.007 0.004 2, 18 0.51 0.612 

Selection × generation 0.151 0.013 12, 1583 1.77 0.049 

Sex × generation 0.101 0.017 6, 1583 2.35 0.029 

Selection × sex × generation 0.112 0.009 12, 1582 1.31 0.207 
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Table A5.5 ANCOVA results from LMER of body size as a response to selection for and against dispersal with 

various covariates. 

Fixed effects SS MS d.f. F P 

Selection 49.45 24.73 2, 18 13.14 <0.001 

Sex 51.69 51.69 1, 18 27.48 <0.001 

Generation 397.75 49.62 6, 1584 26.38 <0.001 

Movement ability 22.47 22.47 1, 1583 11.94 <0.001 

Movement displacement 1.53 1.53 1, 1593 0.82 0.367 

Routine MR 326.51 326.51 1, 1577 173.58 <0.001 

Leg length 1068.16 1068.16 1, 1601 567.85 <0.001 

Spontaneous activity 9.80 9.80 1, 1597 5.21 0.023 

Age 30.18 30.18 1, 1591 16.04 <0.001 

Selection × sex 0.09 0.04 2, 18 0.02 0.977 

Selection × generation 70.80 5.90 12, 1583 3.14 <0.001 

Sex × generation 10.16 1.69 6, 1583 0.90 0.494 

Selection × sex × generation 37.43 3.12 12, 1583 1.66 0.070 

 

Table A5.6 ANCOVA results from LMER of leg length as a response to selection for and against dispersal with 

various covariates. 

Fixed effects SS MS d.f. F P 

Selection 0.0005 0.0002 2, 1601 0.21 0.810 

Sex 0.0004 0.0004 1, 1600 0.33 0.563 

Generation 0.0940 0.0157 6, 1601 14.67 <0.001 

Movement ability 0.0008 0.0008 1, 1532 0.73 0.395 

Movement displacement 0.0013 0.0013 1, 1601 1.17 0.279 

Body size 0.6306 0.6306 1, 1593 590.46 <0.001 

Routine MR 0.0001 0.0001 1, 1438 0.07 0.789 

Spontaneous activity 0.0013 0.0013 1, 1559 1.19 0.276 

Age 0.0001 0.0001 1, 1603 0.09 0.759 

Selection × sex 0.0016 0.0008 2, 1601 0.73 0.481 

Selection × generation 0.0148 0.0012 12, 1601 1.16 0.310 

Sex × generation 0.0048 0.0008 6, 1602 0.75 0.611 

Selection × sex × generation 0.0035 0.0003 12, 1601 0.28 0.993 
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Figure A5.1 Associations among significant covariates with movement characteristics: (a) positive relationship 

between body size and movement ability, (b) positive relationship between spontaneous activity and movement 

ability, (c) negative relationship between age and movement displacement, and (d) negative relationship 

between spontaneous activity and movement displacement. All data are shown, both sexes and all seven 

generations of selection are combined, and selected lines are grouped by colour (n = 1651). 
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Figure A5.2 Associations among significant covariates with routine MR: (a) positive relationship between body 

size and routine MR, (b) positive relationship between spontaneous activity and routine MR, and (c) negative 

relationship between age and routine MR. All data are shown, both sexes and all seven generations of selection 

are combined, and selected lines are grouped by colour (n = 1651). 
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Figure A5.3 Associations among significant covariates with body size: (a) positive relationship between leg 

length and body size, (b) overall positive relationship between age and body size, and (c) overall negative 

relationship between spontaneous activity and body size. All data are shown, both sexes and all seven 

generations of selection are combined, and selected lines are grouped by colour (n = 1651). 
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Figure A6.1 Experimental design for the cross-breeding experiment. A total of 48 crosses between lines were 

made, each with 10 parental pairs. D = dispersers (red), R = residents (blue), and C = controls (black). 
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Table A6.1 LMER model output comparing the realised fecundity of cross-bred selected lines. D = dispersers, 

R = residents, C = controls, and O = outcross, where the cross is represented as male line:female line. 

Fixed effects Estimate ± SE d.f. t P 

C:C (intercept) 61.15 ± 4.89 12 12.51 <0.001 

C:C–D:D 0.51 ± 5.10 431 0.10 0.920 

C:C–R:R -6.85 ± 5.06 431 -1.35 0.177 

C:C–C:CO 3.86 ± 5.06 431 0.76 0.446 

C:C–D:DO 8.71 ± 5.00 431 1.74 0.082 

C:C–R:RO 7.54 ± 5.06 431 1.49 0.137 

C:C–C:D 5.31 ± 5.00 431 1.06 0.288 

C:C–C:R 8.65 ± 5.00 431 1.73 0.084 

C:C–D:C 6.71 ± 4.97 431 1.35 0.177 

C:C–D:R 9.02 ± 4.96 431 1.82 0.070 

C:C–R:C 7.97 ± 5.03 431 1.59 0.114 

C:C–R:D -1.04 ± 5.00 431 -0.21 0.835 

 

 

Table A6.2 LMER model output comparing the sex ratio of the cross-bred selected lines offspring. D = 

dispersers, R = residents, C = controls, and O = outcross, where the cross is represented as male line:female line. 

Fixed effects Estimate ± SE d.f. t P 

(Intercept) 1.111 ± 0.132 36 8.39 <0.001 

C:C–C:CO -0.143 ± 0.187 36 -0.76 0.452 

C:C–C:D 0.058 ± 0.187 36 0.31 0.759 

C:C–C:R 0.114 ± 0.187 36 0.61 0.547 

C:C–D:C 0.026 ± 0.187 36 0.14 0.890 

C:C–D:D -0.009 ± 0.187 36 -0.05 0.962 

C:C–D:DO -0.122 ± 0.187 36 -0.65 0.519 

C:C–D:R -0.094 ± 0.187 36 -0.50 0.618 

C:C–R:C 0.077 ± 0.187 36 0.41 0.685 

C:C–R:D 0.144 ± 0.187 36 -0.56 0.579 

C:C–R:R -0.003 ± 0.187 36 0.77 0.448 

C:C–R:RO -1.04 ± 0.187 36 -0.02 0.986 

 


