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Abstract

The explosion of big data exacerbated the significance of data quality in decision support sys-

tems and data warehouses. Data inconsistency, as a significant data quality problem especially for

heterogeneous databases, is mainly researched in three aspects: data integrity, semantics, and rep-

resentational inconsistencies. The data integrity aspect has been well researched and implemented

into DBMSs and data warehouses. The methods to detect and resolve semantic and represen-

tational inconsistency problems have been developed within a certain context. However, for a

general data quality context, there is a lack of methods available for domain agnostic data incon-

sistency problems. Historically, data representational inconsistency has already been discussed in

the pre-processing of data cleansing frameworks and data quality tools. However, since they deal

with the problems in a certain context or based on a specific domain, users must obtain specific

information about the data such as the master data and the data dependencies in order to address

these data inconsistency issues.

This thesis focuses on domain agnostic data representational inconsistency problems in a gen-

eral data quality context in a relational database. In this thesis, we employ a declarative method

which introduces SQL extensions instead of writing massive amounts of code. To improve data

representational consistency, we propose a user-driven pattern-based framework using the iterative

and interactive approach and string pattern matching technology. There are three main subtasks: a)

design a complete and nearly mutually exclusive pattern library, b) detect all the possible patterns

for each record in the target column, and c) unify the inconsistent data records. Then, we improve

the pattern detection algorithms for inconsistent data records through a modified DFA (Deter-

ministic Finite Automaton) and comprehensive experiments are conducted to verify the accuracy

and efficiency of the proposed approaches. The evaluation results demonstrated that the proposed

methods in this thesis have better performance over the naive solution. Finally, we implement a

toolkit based on the proposed framework and methods.
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Chapter 1

Introduction

Data quality is not a new concept which appears along with the data [44]. “Fit for Use” is a

judgment of the quality of the data [29]. As a significant dimension of data quality, data consistency

problems arise everywhere, whether on a large scale for a company or a country, or a smaller

scale for individuals. Data is generated and represented differently in different cultures, countries,

companies and contexts using different standards and formats. However, when this disparate data

is combined, data inconsistencies become evident such as having different “date” and “name”

formats. These inconsistencies can lead to people misunderstanding the data (e.g.“04/11/2016” and

“11/04/2016” can represent the same date but different formats in American style and Australian

style respectively), and have negative effects in data analysis results which may even result in

losses in companies [10]. These problems are receiving increasing attention from both industry

and academia with data becoming more and more massive in size and heterogeneous [44].

1.1 Background

Data consistency was defined as “format and definitional uniformity within and across all compa-

rable datasets” by Ballou and Pazer [7]. Recently, efforts have been made to improve data con-

sistency. In the industrial and business community, companies such as IBM 1 and SAS 2 provide

1http://www-01.ibm.com/support/docview.wss?uid=swg27008803
2http://support.sas.com/documentation/cdl/en/etlug/66819/HTML/default/

viewer.htm#etlugwhatsnew4.htm

1

http://www-01.ibm.com/support/docview.wss?uid=swg27008803
http://support.sas.com/documentation/cdl/en/etlug/66819/HTML/default/viewer.htm#etlugwhatsnew4.htm
http://support.sas.com/documentation/cdl/en/etlug/66819/HTML/default/viewer.htm#etlugwhatsnew4.htm
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solutions for data inconsistency problems when conducting data integration. Furthermore, some

data quality tools such as address standardization tools 3 focus on data inconsistency problems in

particular fields. In academia, concepts, frameworks, and methods for data consistency have been

discussed. Roger and Paul [13] look at three aspects of data consistency issues: data integrity,

semantics, and representational consistency. Data integrity consistency has been well researched

with a focus on integrity constraints especially in relational models and has been supported by most

DBMSs (Data Base Management Systems) [44]. Approaches such as the rule based method and

CFD (Conditional Functional Dependency) [17, 22, 23] are used to improve the semantics aspect

of data consistency. In addition, data representational consistency appears in the majority of data

cleansing frameworks [37, 43] and becomes a pre-processing task in the process of resolving other

data quality problems such as record linkage, data fusion, and entity resolution.

Data Inconsistency Problems

Schema Level Instance Level

Representation (format/structure) Semantics(value)

FIGURE 1.1: Data inconsistency problems.

According to [40, 41],we divide these inconsistent representation problems in relational databases

into two levels:

1. Schema level: At the schema level, this problem could be conflicting schema across datasets

or different information sources and, in particular, different schema representations of the

same object in different tables. For example, an address could be represented in one field or

decomposed into the fields of street, Suburb and state.

2. Instance level: At the instance level, the problem could be the non-standardized data in one

3https://appexchange.salesforce.com/listingDetail?listingId=

a0N30000001SqRFEA0

https://appexchange.salesforce.com/listingDetail?listingId=a0N30000001SqRFEA0
https://appexchange.salesforce.com/listingDetail?listingId=a0N30000001SqRFEA0
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TABLE 1.1: Example 1.

Name Street Suburb State Sex

John Smith 222 Carmody Rd St Lucia Queensland 1

Smith, Kate Carmody Rd 222 St Lucia QLD 0

TABLE 1.2: Example 2.

LastName FirstName Gender Address

Smith John M 222 Carmody Rd, St Lucia, QLD

Smith Kate F 222 Carmody Rd, St Lucia, Queensland

dataset or from the same information source, such as having different formats for the same

information or using different measurement units.

The two data sets in the example of Table 1.1 and Table 1.2 are both in relational format

but exhibit schema and instance data conflicts. At the schema level, there are structural conflicts

(different representations for names and address) and name value conflicts (e.g. Sex/Gender). At

the instance level, there are different gender representations (“0/1” cf. “F/M”) and different formats

(“John Smith” cf. “Smith, Kate”) in the same column. Table 1.3 shows a detailed analysis of the

data inconsistency problems in Table 1.1 and 1.2.

In this thesis, we mainly focus on data representational consistency at an instance level in

relational databases. Specifically, in Table 1.3, we target the problems of different formats and

structures and aim for instance level representational consistency (e.g. “John Smith” → “Smith,

John”; “Carmody Rd 222”→ ‘222 Carmody Rd”).

1.2 Motivation

With the increasing amount of data used in business and scientific domains, data quality is of great

interest. As one of the fundamental dimensions of data quality, there is no doubt that data consis-

tency is a significant issue not only in business and industry but also in fields of scientific research.

Lee et al. [33] maintain that many companies face a multitude of inconsistencies in data defi-

nitions, data formats and data values, which lead to difficulties in understanding and using data.



4 INTRODUCTION

TABLE 1.3: Data consistency problems in Table 1.1 and Table 1.2.

Classification Problem Dirty Data

Schema-Structure different schema structure emp1 = {Name}; emp2 = {LastName, FirstName}

Schema-Structure different schema structure emp1 = {Street, City, State}; emp2 = {Address}

Schema-Value different schema value emp1 = {Sex}; emp2 = {Gender}

Instance-Value different value emp1 = {Sex: 0/1}; emp2 = {Gender: M/F}

Instance-Structure different formats emp1 = {John Smith}; emp2 = {Smith, Kate}

Instance-Structure different structure emp1 = {222 Carmody Rd}; emp2 = {Carmody Rd 222}

Instance-Value different abbreviations emp1 = {Queensland}; emp2 = {QLD}

These data inconsistencies are mainly caused by data fusion and data integration processes, the

lack of normative data management processes and the need to obtain data from different sources.

Recently, efforts have been made to improve data consistency. In scientific fields, inconsistent data

will affect analysis results of experiments. In addition, improving data consistency is considered to

be a pre-processing task in the process of resolving other data quality issues such as data integra-

tion, and it appears in the majority of data cleaning frameworks. As the quantity of data explodes

and data inconsistency becomes more pervasive, the need to improve data consistency intensifies.

Current research about instance level representational inconsistency problems generally target

a certain domain in a specific context, which we call domain specific. For example, in the health-

care sector there is a need to exchange patient health related data among healthcare professionals

and institutions and research into this area is domain specific. Specifically, Churches et al. [18]

propose utilizing hidden Markov models to format the name and address data for record linkage.

In addition, AddressDoctor could only deal with address inconsistencies using a large dynamic ad-

dress library. There is a lack of available methods for domain agnostic data (non-specific domain

in an uncertain context) representation consistency problems.

Current ETL (Extraction Transformation Loading) tools and data cleaning frameworks could

deal with this domain agnostic problem. Domain agnostic method means these framework and

tool could be used for data whatever the domain is, and, it still require some knowledge to dis-

tinguish the data features of different domains. The process of these approaches includes data



1.2 MOTIVATION 5

analysis, definition of the transformation workflow and mapping rules, verification, transforma-

tion and backflow of cleaned data [42], which targets data quality issues (completeness, accuracy,

consistency). However, it seems to use a big tool to solve a small problem for simple instance

level data representation inconsistency problems. Users would need to read handbooks hundreds

of pages long to learn to use ETL tools. In addition, this process requires a large amount informa-

tion from users including metadata, instance level data characteristics, transformation mappings

and workflow definitions.

This highlights a gap in both research and tools available for domain agnostic data represen-

tation inconsistency problems. This research is by no means trivial since the goal is to provide a

declarative method to address domain agnostic data with less domain knowledge provided. Specif-

ically, compared with current frameworks and ETL tools for domain agnostic data which requires

large amount domain knowledge and complex programs, our approach requires only a set of seed

patterns of the domain data. The set of seed patterns is easy to obtain through a quick scanning

of the dataset by users. Followed by our framework, a complete and nearly mutually exclusive

pattern library will be built up. This could be used for data from any domain.

Furthermore, we employ a declarative SQL extension instead of writing a massive amount of

code. As an example, we look at the inconsistent stop data in Table 1.4. To attempt to repair this

data to a consistent data format pattern, currently three kinds of methods are mostly used: 1) write

several SQL “UPDATE” statements to change the string values one by one; 2) develop a integrity

SQL function to find out the various stop format patterns and replace the substrings; or 3) employ

other programming languages such as Java to alter the stop format pattern. These methods are

inconvenient for most database users and require a certain level of expertise. Furthermore, in order

to employ these methods, the format of these tuples must be known beforehand. For example, to

write these SQL scripts, we would need to know the exact stop format pattern for each inconsistent

tuple. Therefore, it is necessary to develop a declarative method (SQL extensions) to deal with this

problem.
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TABLE 1.4: Example: representations for “BoardingStops”.

BoardingStop Pattern∗ Consistent Data

Wynnum Plaza - Stop 58 [BT006135] D - Stop SN [ID] Wynnum Plaza - Stop 58 [BT006135]

A.& I.I.C.S. - 55/56 [BT005196] D - SN [ID] A.& I.I.C.S. - Stop 55/56 [BT005196]

Alison St - St 32 [BT002904] D - St SN [ID] Alison St - Stop 32 [BT002904]

Trouts/Redwood - 40 [BT002172]
D - SN [ID]

Trouts/Redwood - Stop 40 [BT002172]
SN - D [ID]

Griffith University Stop A [BT010434]
D Stop SN [ID]

Griffith University - Stop A [BT010434]
D SN [ID]

* D, SN, and ID are fields where D represents stop description with regular expression ( |[A−Za− z0−

9/&.])+, SN represents stop number with regular expression [A− Za− z0− 9/]+, and ID represents

stop ID with regular expression BT [0− 9]+. { ,-,Stop,St,[,]} are separators between fields.

1.3 Aims and Objectives

The objective of this thesis is to use SQL extensions and a pattern based framework to detect

and repair instance level data representation inconsistency problems for domain agnostic data.

Since our framework consists of three modules, improving data representational consistency can

be divided into three subtasks, each of which constitutes an aim of this thesis:

1. Pattern design in SQL extensions: Pattern design construct a pattern library for each domain

based on the iterative and interactive approach. We define data format or structure as a

pattern, namely a sequence of fields and separators represented using regular expressions, as

illustrated in Table 1.4 using SQL extensions shown in Chapter 4.

2. Pattern detection: Pattern detection is about finding inconsistent data representations in

datasets. It belongs to the data profiling part of data cleaning tools, which detects and high-

lights data quality problems. For example, in Table 1.4, inconsistent boarding stop data can

be detected using the pattern library for stop domain.

3. Pattern unification: After the inconsistent data and the patterns for each record is detected,

automatic repair of this data is required. Pattern unification aims to transform data in various

patterns into a target uniform representation in order to improve the data consistency of the
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dataset. For instance, in Table 1.4, the inconsistent data needs to be changed to a consistent

representation.

1.4 Challenges and Contributions

In this thesis, challenges abound in order to handle an inconsistent dataset both accurately and

efficiently. First, the coverage and quality of patterns are critical. An incomplete pattern library will

miss data records, while a badly-designed pattern library might cause conflicts between patterns.

Therefore, an ideal pattern library should be complete and mutual exclusive. However, it requires

extensive human efforts to construct such a pattern library from scratch. Second, pattern conflict

means a data record can match multiple patterns. We observe two types of pattern conflict, namely

field-field conflict where a substring maps to several fields (In Table 1.4, “Trouts/Redwood” in

“Trouts/Redwood - 40 [BT002172]” can be a stop description as well as a stop number based on

the regular expressions of D and SN), and field-separator conflict where a field covers a separator

(In Table 1.4, we can regard “Griffith University” as a stop description and “Stop” as a separator

in “Griffith University Stop A [BT010434]”, but it is also possible to treat “Griffith University

Stop” as a stop description). Hence, it is necessary to recognise such one-to-many mappings

when conducting pattern detection. A straightforward approach is to adopt pairwise checking

between data records and patterns which, however, is obviously very time consuming. Third,

pattern unification is more complicated than string-based functions such as substring replacement.

Consider “Alison St - St 32 [BT002904]” in Table 1.4 as an example. We cannot unify it to

“Alison St - Stop 32 [BT002904]” simply by replacing “St” with “Stop”. Instead, we need the

semantic knowledge that “Alison St” as a whole denotes a stop description while the second “St” is

a separator, and our goal is to unify only the separator “St” as “Stop”. We tackle these challenges

in this thesis, and implement a toolkit to improve data representational consistency with SQL

extensions. More specifically, our contributions are summarized as follows:

• We design a SQL extension for improving data inconsistency, instead of writing massive

SQL statements or complicated code specific to different domains.

• We propose a pattern based framework with a complete and nearly mutual exclusive pattern
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library which is achieved by using an iterative and interactive approach.

• We construct a Finite State Machine (FSM) to recognise all possible patterns for each data

record and meanwhile avoid pairwise checking.

• We introduce a two-level pattern definition to combine both domain knowledge and regular

expressions, and propose a spilt-transform-merge method to facilitate pattern unification.

• We conduct a comprehensive evaluation on real-life datasets to verify the effectiveness and

efficiency of our proposals, and implement a toolkit to improve instance level data represen-

tation inconsistency for domain agnostic data.

1.5 Thesis Organisation

The rest of this thesis is organized as follows. Chapter 2 provides the background and an overview

of work related to data representation consistency and algorithms for string pattern matching. The

research methodology for resolving or improving the data representation inconsistency problems is

introduced in Chapter 3. In this chapter, we propose an user-driven pattern-based framework with

the iterative and interactive approach and string pattern matching technology. The detailed methods

about pattern design and pattern unification are introduced here. Chapter 4 details the design of

the SQL Extensions and the pattern based method developed to improve data representational

consistency with an use case. A modified DFA method for data inconsistency detection and for

multiple string pattern matching is then presented in Chapter 5. This chapter also reports the

evaluation result from the aspect of accuracy and efficiency of the pattern detection method. This

is followed by a description of the implementation of the toolkit with an use case based on the

methods above in Chapter 6. Finally, Chapter 7 concludes the thesis and outlines some directions

for future research.



Chapter 2

Literature Review

This review aims to firstly summarize (a) the existing work related to data consistency; and (b)

the algorithms for finding patterns in strings, and secondly, to find the links between the findings

and my thesis. Also, data consistency is elaborated on from three different perspectives: con-

cepts; framework and tools; and methodology. Finally, typical algorithms for three problems, (a)

Single Keyword Algorithms, (b) Multiple Pattern Matching, and (c) Regular Expressions, will be

expounded.

2.1 Data Inconsistency

Data quality issues have been widely researched from organizational, architectural, and compu-

tational aspects [44]. Data inconsistency is a significant problem in data quality, especially for

enterprises. According to Lee et al. [33], many companies face a multitude of inconsistencies

in data definitions, data formats and data values, which leads to difficulties in understanding and

using data. Recently, many efforts have been made to improve data consistency. Specifically, in

academia, various concepts, frameworks, and methods for data consistency have been discussed.

2.1.1 Background

As one of the fundamental dimensions of data quality [51, 52], data consistency has been studied

from many perspectives. Roger and Paul [13] summarize three re-occurring aspects that appear

9
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throughout these perspectives, namely, the aspects of data integrity, semantics, and representational

consistency. From these views of the dimension and data quality metrics, tools and computational

methods have been developed which could solve the data inconsistency problems.

Data Consistency

Data consistency, as a significant dimension of data quality, can result in a myriad of problems due

to the multiple aspects of it. These different aspects could be illustrated through definitions of data

consistency. Ballou et al. [7] defined data consistency as the state where the “representation of the

data value is the same in all cases”. In 2003, they further defined it as format and definitional uni-

formity within and across all comparable data sets [8]. Gomes et al. [28] refer to Ballou and Pazers

definition, which particularly included that the representation of that data is in a standard format.

They defined inconsistent data as data that “doesn’t convey heterogeneity, neither in contents nor

in form”.

These definitions come from a wide range of perspectives, and data consistency has become

a complex dimension of data quality. In Wang’s framework [52], data consistency was taken as

representation, and was clustered with other dimensions as representational data quality. In 2007,

Stvilia et al. [47] split consistency into intrinsic and extrinsic in their framework. Subsequently,

they divided both intrinsic and extrinsic consistency into semantic consistency (same values for

the same concepts and meanings) and structural consistency (same structure, format, and precision

for similar values). Roger and Paul [13] summarize these perspectives into three aspects of data

consistency: data integrity, semantics, and representational consistency.

Problem Classification

After a thorough survey of definitions and different aspects of data consistency in the literature,

it is obvious that data inconsistency is not a simple problem. One way to classify the problem is

according to the definition and dimensions of data consistency. That is to say, data inconsistency

can be classified according to (a) data integrity inconsistency, (b) data semantic inconsistency, and

(c) data representational inconsistency, for both structured data and unstructured data [13]. Also,

such data classification can be based on when the inconsistency is generated. For example, data
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inconsistency that occurs in the midst of information integration could be classified into intentional

and extensional [37]. From another angle, other studies [40, 42] provide the classifications and

FIGURE 2.1: Data consistency in relational database.

concepts of data quality problems including data inconsistency. In their study, Erhard and Hong

[42] classify the major data quality problems to be solved by data cleaning and data transformation.

With regards to the data cleaning process, they specifically distinguished between (a) problems

between a single source and multiple sources, and (b) problems related to schema and instance.

On the other hand, Oliveira et al. [40] identify and organize data quality problems via a bottom-up

approach. In their paper, Oliveira et al. [40] identify the problem from the aspect of a single relation

and multiple relations which we identify at an instance level and a schema level, respectively, for

data representation inconsistency problems. In a relational model, data inconsistency problems are

shown in Figure 2.1 below. From all these aspects of data inconsistency for different data quality

problems, we summarize a classification for data inconsistency problems in a relational model in

Figure 2.2. From all these aspects of data inconsistencies for different data quality problems, we

summarize a classification for data inconsistent problems in relational model in Figure 2.1.
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Category Problem Description Example  

Single 
Data 
Source 

Single 
Relation 

Single Attribute The value of the attribute 
follow different standards and 
formats. 

There are several formats (‘2014/07/03’, ’13, Jun 2014’) 
of data in the column ‘order_data’. 

S1 

Single Tuple There is an inconsistent rule 
among values of the tuple 
attributes. 

total_price = unit_price * quantity S2 

Several Tuples There are inconsistencies or 
contradictions among attribute 
values of a same entity. 

The tuple Customer(‘Beryl Yi’, ‘Female’,’61 404234567’) 
is inconsistent with the tuple Customer(‘Beryl 
Yi’, ’Female’, ’61 404234566’) 

S3 

Multiple 
Relations 

Referential 
Integrity 

In a tuple attribute which is 
foreign key there is a value that 
does not exist as primary key in 
the related relation. 

The attribute ‘Product_code’ of the ‘Order’ relation 
contains the value ‘23948659’, which does not exists in 
the ‘Product’ relation. 

S4 

Representation 
Inconsistency 

There are different 
representation syntaxes among 
attributes whose type is the 
same. 

In relation ‘Orders’ the format of attribute ‘Order_date’ 
is ‘dd/mm/yyyy’, while in relation ‘Invoices’, the format 
of attribute ‘Invoice_date’ is ‘yyyy-mm-dd’ 

S5 

Inconsistency 
Among Related 
Attribute Values 

There are inconsistencies 
among attribute values from 
relations where a relationship 
exists between them. 

In relation ‘Invoices’ the attribute ‘Invoice_Total’ of a 
tuple contains the value 100, while the sum of 
‘Product_Value’ attribute values, in relation 
‘Invoices_Details’, for each of the products that belong 
to that invoice is only equal to 90. 

S6 

Multiple 
Data 
Sources 

Data Model Inconsistent 
Data Model 

There are inconsistencies in 
data model among data 
sources when database 
designed. 

In source A, the schema of the custom table is Custom 
(id, firstname, lastname, address, city, state, zip), while 
in source B the schema is Custom (id, name, address). 

M1 

Inconsistent 
Schemas  

Attribute names in the schemas 
of different data sources is 
inconsistent. 

In source A, the schema of the custom table is Custom 
(id, firstname, lastname), while in source B the schema 
is Custom (id, given_name, family_name). 

M2 

External 
Standards 

Inconsistent 
Measurement 
System 

Different measurement 
systems or standards are used 
in different data sources. 

In source A, the weight of products is include the 
packaging, while in source B, the weight of products is 
the net weight. 

M3 

Inconsistent 
Natural 
Language 

In different data sources, 
different natural languages are 
used. 

In data source of Chinese local company, the name of 
the customs is in Chinese character, while in data 
source from International company, the name of the 
customs is in English or Pinyin. 

M4 

Inconsistent 
Representation 

Different sets of values, are 
used in related attributes from 
distinct data sources to 
represent the same situations. 

To represent the attribute Gender the values F and M 
are used in data source A, while in data source B are 
used the values 0 and 1 

M5 

Contradictory Entity There are inconsistencies or 
contradictions among one or 
more attribute values of a same 
entity, represented in more 
than one tuple in different data 
sources. 

The tuple Customer(‘Beryl Yi’, ‘Female’,’61 404234567’) 
in data source A  is inconsistent with the tuple 
Customer(‘Beryl Yi’, ’Female’, ’61 404234566’) in data 
source B. 

M6 

 

 

FIGURE 2.2: Data inconsistency problems.

2.1.2 Related Frameworks and Commercial Tools

It is not difficult to conclude, from the previous section, that data inconsistency problems under

different situations have been looked into from various aspects. Data inconsistency, as a signifi-

cant data quality issue, has been mentioned in a great number of data cleansing and data integration

frameworks. In addition, most ETL tools and BI tools include functions to deal with data inconsis-

tencies. In general, these data quality frameworks and tools are either general purpose or special
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purpose. This section will discuss these frameworks and tools with a focus on data consistency.

General Purpose Frameworks

Data cleansing frameworks deal with data quality problems in general, rather than a tailored frame-

work specifically for the problem of data inconsistency, thus treating data inconsistency as merely

one of many data quality problems. Specifically, Potters Wheel [43] adopts a small set of trans-

formation processes, such as “Format”, “Split” and “Merge” to analyse and clean the dirty data

(e.g. schema or formats inconsistency and adherence to constraints in multiple data sources), with

interactive methods applied. Although this method is not used to specifically address data incon-

sistency problems, it could deal with the problems (S5, M1, M2) listed in Figure 2.2. However,

users have to program it using the complex transformation interfaces in Potters Wheel.

In terms of data integration, data inconsistency is a significant problem. As far as we know,

many of the research studies that looked into issues of data inconsistency during data integra-

tion, focused mainly on data inconsistency among diverse information sources, especially, multi-

database sources [36, 37]. For instance, FusionPlex [37], a system for integrating multiple hetero-

geneous information sources, has enhanced and extended the resolution of data inconsistencies of

heterogeneous information sources with simple SQL extensions. This system includes two pro-

cesses, namely, inconsistency detection and inconsistency resolution, using utility functions. It

mainly focus on the problems resulting from multiple data sources (M1, M2, M5) as shown in

Figure 2.2.

The problems (S3, M6) stated in Figure 2.2 have been researched in association with record

linkage and duplication detection. Telcordias tool [15] places an emphasis on the importance

of duplicate-record detection in performing record linkage. This tool is parametric according to

distance and uses customized matching functions. However, it is not without its drawbacks as it

focuses only on the error detection and data quality analysis, without editing inconsistent data.

From the list of frameworks in Figure 2.3, Telcordias tool and Ajax have been engineered into

commercial products. The rest of the frameworks remain as academic prototypes.
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FIGURE 2.3: Frameworks related with data inconsistency.

General Purpose Commercial Tools

Organizations and companies today require a high level of data quality, so that their data anal-

ysis applications, e.g. decision support systems and customer relationship management (CRM)

systems, can run efficiently. Meanwhile, enterprise cooperation and internationalization require a

quality data integration process. There are plenty of commercial products 1 designed to address

data quality problems, especially for data warehousing. These products provide data cleansing and

data integration services including addressing business data inconsistencies. These products also

support the transformation of data to be loaded into a data warehouse (ETL processing) via some

data cleansing library functions. Barateiro and Galhardas [9] provide a survey of data quality tools

used in both commercial and academic research fields. Having said that, we concentrate on the

functionality and products related to data inconsistency. In general, these commercial products

are applied: (a) for inconsistency detection and (b) for resolutions that address part of the data

inconsistency problems. When they come across issues of data representation inconsistency, these

1IBM InfoSphere Information Server: http://www-01.ibm.com/support/docview.wss?uid=

swg27008803; SAS(R) Data Integration Studio http://support.sas.com/documentation/cdl/

en/etlug/66819/HTML/default/viewer.htm\#etlugwhatsnew4.htm; Informatica Data Integration

http://www.informatica.com/us/products/data-integration/#fbid=LPthCBGKAaN; Tril-

lium Software System http://www.trilliumsoftware.com/home/products/data-quality.aspx

http://www-01.ibm.com/support/docview.wss?uid=swg27008803
http://www-01.ibm.com/support/docview.wss?uid=swg27008803
http://support.sas.com/documentation/cdl/en/etlug/66819/HTML/default/viewer.htm\ #etlugwhatsnew4.htm
http://support.sas.com/documentation/cdl/en/etlug/66819/HTML/default/viewer.htm\ #etlugwhatsnew4.htm
http://www.informatica.com/us/products/data-integration/#fbid=LPthCBGKAaN
http://www.trilliumsoftware.com/home/products/data-quality.aspx
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tools are capable of standardizing address and customer names. To achieve the aim of a consistent

dataset, users have no choice but to specify information for new domains in great details. Some

famous commercial tools are summarized in Figure 2.4.

FIGURE 2.4: Tools related with data inconsistency.

Special Purpose Tools

In addition to the above-mentioned general purpose frameworks and tools, there are a multitude

of tools and methods available for standardization, which apply to specific data domains, e.g.

addresses and personal name matching. These tools exist because data standardization is deemed

as a prerequisite to achieving semantic consistency. Data standardization is necessary in order to

address data representation inconsistency problems (S1, S5, M5). Standardization tools deal with

these problems in basic and relatively straightforward ways. They usually rely on two components:

(a) a set of data format rules, and (b) a transformation function library. The differences among

these vendor tools include the level of complexity of the rules and the transformations allowed. In
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terms of methodology, knowledge based methods and methods customized for specific domains are

employed in the tools. Standardization tools (e.g. AddressDoctor 2) are designed to support more

functions in the specific data domain (e.g. addresses). These tools are equipped with (a) domain-

specific knowledge base methods and (b) string matching methods to address inconsistencies.

There are huge numbers of tools and frameworks available to address data consistency from

different perspectives. We shortlisted some typical frameworks and popular commercial tools and

summarized the data inconsistency problems addressed by these tools in Figure 2.3 and Figure 2.4.

According to these figures, these commercial tools and frameworks mainly focused on: (a) data

standardization, (b) data deduplication, and (c) data integration. Standardization deals with partial

representation inconsistencies (S1, S5, M5) of address and custom data. Deduplication and object

identification address semantic inconsistency problems (S3, M6).

2.1.3 Methodology for Different Data Inconsistency Problems

In order to improve the data quality, the traditionally methodology is through procedural solutions

especially for specific problems and domains. That means they analyse the data to identify the root

causes of data quality problems. Strategies that are driven by both data and process were introduced

by Batini and Scannapieco [11] as methodologies to classify data quality. In recent years, there

has been more research into generic solutions, and declarative and rule based specifications of

data cleaning processes. Taking into consideration the large quantity of literature and methods

related to data consistency (e.g. record linkage and data integration), in this section we review the

approaches that address different aspects of data inconsistency problems.

Classic Data Consistency and Integrity Constraints

Issues of data integrity inconsistency in relational databases have been researched for many years.

An integrity inconsistency means that within the database there exists data for which data integrity

constraints cannot be satisfied. The problems could be due to several reasons related to integrity

constraints in a DBMS [44]. For example, poorly designed or implemented applications which

fail to maintain the consistency of the database, or integrity constraints that are enforced for better

2https://www.informatica.com/addressdoctor.html#fbid=6yEsoGD6SYX

https://www.informatica.com/addressdoctor.html#fbid=6yEsoGD6SYX
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performance of application programs or DBMSs, or integrity constraints that are just assumed to

be satisfied based on knowledge about the application domain and the kind of updates performed

on the database. In the area of data integration, data integrity consistency is much more difficult to

achieve [12, 34]. The source data could be from different autonomous databases that are separately

consistent with respect to their own local integrity constraints but when the data is integrated, new

data integrity consistency issues may arise.

Integrity constraints have been studied in general and have wide applications in data manage-

ment There are a few ways to achieve data consistency. One of them consists of declaring the

integrity constraints together with the schema, and the DBMS will take care of the database main-

tenance, which is done by rejecting transactions that violate the constrains. This method could be

automatically supported by most commercial DBMSs; however, the classes of integrity constraints

supported are usually quite restricted [49].

Another way to maintain data consistency is based on the use of triggers that are stored in

the database [16]. The reaction to a potential violation is programmed as the action of a trigger.

Consistency could also be enforced through the application programs that interact with the DBMS.

However, in no way can a DBMS guarantee the correctness of triggers or application programs

and ensure database consistency. There has also been recent work done on constraint repair, which

specifies the consistency of data in terms of constraints, and detects inconsistencies in the data as

violations. These are mostly based on traditional dependencies, which are developed mainly for

schema design.

Methods for Semantic Inconsistency Problems

We have considered the classic integrity constraints (functional dependencies and referential con-

straints) as methods to ensure data consistency. However, these constraints are not always expres-

sive enough to represent the relationships among values for different attributes in a table, and are

insufficient to capture the semantics of the data. Therefore, conditional functional dependency

(CFD) is introduced to capture and repair data inconsistencies in relational databases. Fan et al.

[22] proposed the conditional functional dependency and looked into its applications in data in-

consistency. They argued that CFDs aim to capture the consistency of data by enforcing bindings

of semantically related values, based on their previous work on CFDs. Later, Chen and Fan [17]
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extend the CFDs by considering cardinality and synonym rules. Since then, CFDs have been fur-

ther extended to consider ranges of values, and pattern tables have also been employed to show the

portions of the data that satisfy a constraint [27]. These papers are mainly focused on the detection

of semantic inconsistencies using CFDs, without providing methods to fix the inconsistencies. In

2010, editing rules [23] based on conditional functional dependencies, were introduced for the pro-

cess of data monitoring to repair data and guarantee that the repairs are correct. However, editing

rules require users to have an in-depth knowledge of the data including feature details and also

schema details to examine tuples to verify repairs and, importantly, to ensure new errors are not

introduced, which can be costly. Fixing rules are introduced to prevent users from triggering repair

operations by activating both evidence patterns and negative patterns [50].

Methods for Data Representational Inconsistency

Data representation consistency refers to data of the same values having uniformity of format [52].

The methods for solving data representation inconsistencies have been discussed in different data

quality contexts such as data cleaning frameworks [43] and data fusion [[37]. These methods

specifically pay attention to schema inconsistencies where schema conflicts exist across datasets

or different information sources, and in particular, different schema representations of the same

object in different tables. This method demands extensive prerequisite knowledge of the schema

from the target datasets. Another set of methods is applied to address issues of data representation

inconsistency for certain domain data within a specific context. For example, the healthcare sector

can be a specific domain, where data is required to be exchanged among professionals and institu-

tions. Churches et al. [18] propose using hidden Markov models to format name and address data

for record linkage. Lexicon-based tokenization is used to split the strings. Hidden Markov models

are trained to standardize typical Australian name and address data drawn from a range of health

data collections. In contrast to methods applied to specific domain data, there is gap in available

methods to solve data representation inconsistencies in domain agnostic data.

In this section we introduce the methodologies from a computational perspective, which can

be further divided into three types of functionality. The first of these monitors and restricts in-

consistent data by using classic integrity constraints. This method has been well researched in the
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area of data integrity in the relational model. Another popular methodology applied for incon-

sistency detection and repair uses conditional functional dependency. This method looks at the

data inconsistency issue from, specifically, a semantics aspect. From a data representation aspect,

there are some methods available that focus on certain domains, e.g. addresses, or phone numbers.

Nevertheless, methods for domain agnostic data are understudied.

2.2 Algorithms for Finding Patterns of Strings

2.2.1 Problem Background

The problem of finding patterns of strings can be considered as an extended problem of string

pattern matching. The difference between the two types of problems lies in the likelihood of having

multiple patterns that can match with one single string. String pattern matching is one of the key

problems in many fields of science and information processing [4]. Although data is memorized in

various ways, text is still the main form of data used to exchange information. This is particularly

true on websites, where a large amount of information is stored as textual data. With a large amount

of data stored in a sequenced text file, string matching problems happen not only in computer

science but also arise when analysing molecular phylogeny and molecular biology. In addition,

string matching algorithms are basic components used in the implementation of software especially

in text searching modules. Various algorithms exist for string pattern matching problems, e.g. the

KnuthMorrisPratt (KMP) algorithm [30] and the BoyerMoore (BM) algorithm [14], most of which

are devoted to improving the efficiency of the matching process.

The basic string matching problem is to locate all the occurrences of a given pattern P =

{p1, p2, ..., pm} (m represents the length of the pattern) in a text T = {t1, t2, ..., tn} (n represents

the length of the text), where both T and P are sequences of characters from a finite character set

Σ. Given strings x, y, z, we say that x is a prefix of xy, a suffix of yx, and a factor of yxz [39].

Many algorithms deals with the above-mentioned problem and many studies have been undertaken

for faster and simpler algorithms since 1977 [39]. To describe those algorithms clearly, we classify

the string pattern matching algorithms in line with the number of patterns used. In this section,

we classify the algorithms into three groups: (a) Single Keyword Algorithms, (b) Multiple Pattern
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Matching Algorithms, which focus on a finite set of patterns, and (c) Regular Expressions, which

look into an infinite number of patterns.

2.2.2 Single Keyword Algorithms

Single keyword matching means to locate all occurrences of a given pattern in the input text string

[5]. The naive algorithm is called brute-force(BF), which is the simplest technique for single

keyword matching. This algorithm scans the text from left to right and checks the characters of

the keyword pattern character by character. However, the worst-case time required for determining

that the pattern does not occur in the text is O(mn) (m represents the length of the pattern, and

n represents the length of the text) which is not very efficient. In order to improve the efficiency

over the BF technique, plenty of methods have been proposed. The oldest and most famous are the

Knuth-Morris-Pratt(KMP) and the Boyer-Moore(BM).

Knuth-Morris-Pratt(KMP) Algorithm

KMP algorithm (Knuth-Morris-Pratt), as the best known for linear time for exact string matching,

was first proposed by Donald Knuth and Vaughan Patt and independently by James H.Morris in

1977 [30]. This algorithm is O(n) in the worst and average case for the searching phase, and

the preprocessing complexity is O(m) [39]. The KMP algorithm introduce a shift table next[]

compared with the BF algorithm in order to shift more characters(shift i+1−next[i+1] characters,

i represents the position in the pattern.) . Consider the following example in Figure 2.6. The

keyword pattern is “abcabcacab” and the shift table next[] shown in Figure 2.5. As shown in

Figure 2.6, after 5 shifts, the pattern ”abcabcacab” is matched to the target text. Taking step 3 as

an example, at that point in time the current position for the text is j = 6 where the pattern starts

matching from the fist character. When j = 13 and i = 7, we find current positions for the text is

a, while for the pattern it is ‘c’, where matching becomes unsuccessful. We could see in Figure 2.6

that next[8] = 5. Hence, the pattern should shift 8 − next[8] = 3 characters. In step 4 in Figure

2.6, the fifth character in pattern is matched with the text when j = 13. Through this example, it is

not difficult to realize that the key to this algorithm is how to generate the next table. Many variants

exist based on the KMP algorithm that try to optimize the next table [30]. The most important one
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FIGURE 2.5: Next table.

FIGURE 2.6: Example of KMP.

is the Simon algorithm [45], which shows that the automaton of KMP can be completed and stored

in an efficient way.

Boyer-Moore(BM) Algorithm

The BM Algorithm is the fastest pattern matching algorithm for a single keyword in both theory

and practice [14]. Using the KMP algorithm, the pattern is scanned from left to right, but the

BM algorithm compares characters in the pattern from right to left. If mismatch occurs, then the

algorithm computes the amount by which the pattern is moved to the right before a new matching.

We refer again to the example in Figure 2.6 to explain the difference between the KMP and

BM algorithms. In step 3, if we use the KMP algorithm, we will move to the fifth character in the

pattern matching with the text when j = 13. In this position in the text, the character is ‘a’. If the

character turns out to be ‘d’, the characters in the pattern cannot be matched successfully because

there is no character ‘d’ in pattern ”abcabcacab”. Therefore, in the BM algorithm, when ‘d’ is not

found in the pattern, the position of the text could move directly to j = 14, and then match with

the first character in the pattern. This means a bigger shift when matching. That is why the BM

algorithm produces faster matching. The main reason for this is that it includes a two shift table.

The worst case complexity of the matching process is O(mn). As for the KMP algorithm,

there are also many variants of the BM algorithm. Baeza-Yates formalized the concept of a BM

automaton and presented an efficient algorithm in 1994 [6].
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2.2.3 Multiple Pattern Matching

The single string matching problem may be extended in a natual way to search for a set of strings

P = {p1, p2, ..., pr}, where each pi is a string pi = pi1p
i
2...p

i
m over a finite character set Σ [39].

The sum of the lengths of the strings in P could be represented as |P | =
∑r

i=1mi. As above, the

search is done in a text T . For example, if we search for the pattern set {ABABA,BABA} in a

text, each time we find an occurrence of ABABA we also find an occurrence of the second string

BABA. Therefore, the total number of occurrences can be r ∗ n.

The simplest method is to repeat r searches with one of the algorithms of single keyword pat-

tern matching. This leads to a total worst case complexity of O(r ∗n) for the matching processing.

Since multiple pattern matching is an extension of single keyword pattern matching, the algorithms

adopted are also extensions of the KMP and BM algorithms. An extension of the KMP algorithm

produced the AhoCorasick algorithm, while the Commentz-Walter algorithm is based on the BM

algorithm.

Aho-Corasick string matching algorithm

The Aho-corasick(AC) algorithm employs a special automaton, called Aho-corasick automaton,

which is built on P [2]. This algorithm is processed as that the text string is scanned from the left

to right in a single pass. The automaton comprises a finite set of states together with the rules how

it moves from state to state.

The classical AC algorithm includes three functions: goto function, failure function and output

function. The goto function maps a state character pair into a state or message of fail. The

failure function is a state to state mapping, which is consulted whenever the goto function reports

a failure. The output function formalizes this concept by associating a subset of keywords with

every state. We use an example devised by Aho and Corasick [2] to explain how this works (refer

to Figure 2.7. In this example, the pattern set is P = {he, she, his, hers}. The suffix of pattern she

is the pattern he, while the pattern he is also the prefix of pattern hers. Therefore, if pattern she

could be matched in the position of j, j+ 1, j+ 2, it means the position of j+ 1, j+ 2 could match

pattern he and the first two characters of pattern hers. Therefore, we just need to align at the third

character of pattern he and hers without back tracking to the current position j. Theoretically, the
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automaton may be constructed from the set of keyword strings in O(m) time, and used to search

the text string in O(n) time.

FIGURE 2.7: Example of AC.

Commentz-Walter algorithm

The Commentz-Walter algorithm, as the first expected sub linear multi-string matching algorithm,

also uses the automaton technique and is a generalisation of the BM approach to string matching.

Historically, it was implemented in the second version of the Unix application Grep. However,

currently, there are no real cases of applications using this algorithm, and we just introduce the

idea it is based on. In the Commentz-Walter algorithm, an automaton for the set of the reversed

keywords is constructed [20]. Although this method has been shown to be faster in practice than

the AC algorithm for small numbers of pattern strings, in the worst case it does run in quadratic

time [46].

2.2.4 Regular Expression

After presenting an overview of finite string patterns, we will discuss the widely used infinite string

pattern matching method. Regular expressions are often used to represent search patterns that are

more complex than strings such as an infinite string set. The following section will introduce the

basic regular expression approaches and the literature on multiple regular expression rules.
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FIGURE 2.8: Regular expression matching in a text.

Basic Regular Expression Approaches

The classical approaches is summarized in Figure 2.8. The regular expression is first pared into an

expression tree, then a nondeterministic finite automaton (NFA) is constructed. In order to improve

the searching efficiency, some regular expression engines transform an NFA into a deterministic

finite automaton (DFA). Finally, the NFA or DFA is used to perform pattern matching.

1. NFA Construction Algorithms: There are various algorithms to build an NFA from a reg-

ular expression [39]. It is not uncommon to find the Thompson construction [48] and the

Glushkov construction [26] been regularly applied in practice. The Thompson construction

[48] points to an NFA which is linear in its number of states (at most 2m) and of transitions

(at most 4m). The Glushkov construction [26], on the other hand, points to an NFA with

precisely m+ 1 states but numerous transitions that is O(m2) in the worst case.

2. Regular Expression Searching Approaches: : As shown in Figure 2.8, there are two branches:

NFA and DFA. On the basis of the direct simulation of his NFA, Thompson proposed the

search algorithm NFAThompson [39]. In this algorithm, the set of active states are activated

by the current text character and represented in a suitable way such as a bit vector, stored

explicitly. The DFA technique comes with two parts: the regular expression being translated

into a DFA and the DFA employed for text searching [39]. Compared with an NFA, when

we traverse the text, a DFA has exactly one active state at a time. Instead of a pure NFA or

DFA, a hybrid approach, which is an intermediate between a DFA and an NFA, is proposed

[38]. This approach is based Thompsons construction and consists of splitting the NFA into

modules, making each of them deterministic, and keeping it an NFA as a whole.
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Multiple Regular Expression Rules

Multiple regular expression rule matching could be considered as an extension of multiple pattern

matching for regular expression patterns. Instead of moderate sized pattern sets (e.g. in q-Grams

based BoyerMooreHorspool algorithms [32] and Backward algorithms which combine the BM

heuristic idea and the AC automation idea [19]), the literature indicates that multiple regular ex-

pression rule matching deals efficiently with larger pattern sets [55]. Multiple regular expression

rules have been studied a lot in the context of URL filtering and Network Intrusion Detection (NID)

systems. Specifically, an algorithm called TFD is proposed, which employs a two-phase hash, a

FSM and double-array storage to exclude the performance bottleneck of backlist filters, to achieve

large-scale and high-speed URL filtering [54]. Literature on NID has specifically focused on the

optimization of the DFA, to speed up the matching and to reduce memory requirements. For ex-

ample, Yu et al. [53] proposes a regular expression rule rewrite method and grouping solutions to

improve multiple regular expression rules from both speed and memory usage aspects. Later in

2015, the Templates Finite Automata Grouping Algorithm (TFA) was introduced to segregate rule

sets into different groups in order to reduce the number of rules [35].

Discussion of Solution Space using DFA and NFA

In summary, finite automata are usually used to represent regular expressions. There are two

main categories of finite automata: Deterministic Finite Automaton (DFA) and Nondeterministic

Finite Automaton (NFA). Here, we discuss the solution space using DFA and NFA for theoretical

matching according to the analysis in the studies by Navarro and Raffinot [39] and Yu et al. [53].

To handle m regular expressions and find all the possible matched regular expressions, two

options are possible: processing them individually in m automata, or compiling them into a single

automaton. Recent works have proposed the latter approach, so that the single composite NFA can

support shared matching of common prefixes of those expressions. Although it has demonstrated

performance gains over using m separate NFAs, this approach generates a large number of active

states. The resulting case complexity from this approach is as bad as for the sum of m separate

NFAs. Therefore, this approach can be slow in our context, because given any input character, each

active state must be serially examined to obtain new states. In a DFA-based engine, compiling m
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regular expressions into a composite DFA results in definite performance benefits over running m

individual DFA. Specifically, when it comes to a situation where only one possible regular pattern

is matched, a composite DFA reduces the processing cost fromO(m) toO(1)) (i.e. a single lookup

to obtain the next state for any given character). However, the number of states in the composite

automaton grows to O(Σmn) in the theoretical worst case. In our context, there may be at most m

regular expressions found. Therefore, the worst case could still cost O(m) for m possible regular

patterns. Figure 2.9 shows the worst case comparisons of DFA and NFA approaches. In order to

ensure the processing speed of regular expression matching, we choose a DFA to deal with the

inconsistency detection problem.

FIGURE 2.9: Worst case comparisons of DFA and NFA.

2.3 Summary

2.3.1 Data Inconsistency

Based on the data quality problems summarized in Figure 2.2 and the studies of frameworks and

tools (refer to Figure 2.3 and Figure 2.4), we conclude that there is a lack of literature on represen-

tation inconsistency problems at an instance level for domain agnostic data. In contrast, academic

studies on integrity data consistency have been well dealt with and findings have been applied to

commercial DBMSs, e.g. IBM and SAP. The research on semantic data consistency has, so far,
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attracted most of the attention from researchers. One of the prominent methods used to resolve

semantic data inconsistency problems is CFD; this is useful when looking at records that have a

dependency relationship.

Currently, the data representation inconsistency issue is being looked into from both academic

and industrial perspectives. Firstly, academic research on data representation inconsistency prob-

lems at an instance level, to certain degree, is confined within a certain domain in a specific context,

which we refers to as domain specific. A typical example is the health-care sector, within which a

great deal of patient heath data is exchanged among different parties, e.g. healthcare professionals

and institutions. Churches et al. [18] proposed to specifically format the name and address data for

record linkage by utilizing a hidden Markov model. In addition, tools like AddressDoctor cannot

deal with the problem of address inconsistencies without access to a large dynamic address library.

Secondly, industrial players applied Extraction Transformation Loading (ETL) tools to solve

the problem and data cleaning frameworks are able to deal with this domain agnostic problem.

The approaches have processes that include (a) data analysis, (b) definition of the transformation

workflow, (c) mapping rules, (d) verification, (e) transformation, and (f) backflow of cleaned data.

Instead of solving only consistency, a number of other problems, such as accuracy and redundancy,

can also be solved with the above-mentioned process in place. Nonetheless, it turned out to be a

complicated tool for a small area of instance level data representation inconsistency problems. To

use these complex ETL tools, users must read and learn from handbooks that are hundreds of pages

long. On top of that, in order to use this process, a great deal of information is required from the

user end, e.g. metadata, instance level data characteristics, transformation mappings and workflow

definitions.

Thus, a gap has been identified in both academic research and industrial tools that address the

domain agnostic data representation inconsistency problem. This research, therefore, is of great

importance as it is dedicated to provide a declarative method to address domain agnostic data in a

convenient way. That is to say, by implementing a smart tool, less input and expertise is required

from the user, in contrast to the available ETL tools. Moreover, we employ a declarative SQL

extension, rather than writing a large volume of code.
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2.3.2 Algorithm for Finding Patterns of Strings

There are plenty of algorithms that can be applied to string pattern matching problems. We have

introduced some typical algorithms and provided details about them. The main approaches for

algorithm improvement fall into two categories: (a) skip more characters when matching and (b)

reduce the traversal times. For tasks such as multiple pattern matching and regular expression

matching, most algorithms scan the target string in a single pass with automaton technology. Par-

ticularly, with s to regular expression matching, efforts have been made to optimize algorithms by

reducing the number of states. However, for strings which are matched with more than one pattern,

the information about the patterns tends to be missed when algorithms attempt to reduce the num-

ber of states. Therefore, when the string was eventually matched, these algorithms emphasized the

location where string matched, instead of identifying which patterns in the string were matched.

Some other algorithms have paid attention to the issue of patterns through group states instead of

optimizing the algorithms. In my thesis, we use a modified subset construction algorithm with a

break function added on. This modified algorithm is meant to avoid the issues of having pattern

information disappear during the optimizing of the DFA.



Chapter 3

Research Methodology

In this chapter, we introduce a user-driven pattern-based framework which is based on a)iterative

and interactive approach, and b)string pattern matching technology. The iterative and interactive

method aims to achieve a complete and nearly mutual exclusive pattern library. String pattern

matching technology is used to generate pattern detection and data profiling results. In the follow-

ing section, we will a)show the preliminaries and problem statement of this thesis, b)propose the

pattern based framework, and c)describe the approaches used in the pattern based framework.

3.1 Preliminaries and Problem Statements

In order to recognise representational inconsistency in data, we propose a two-level pattern defi-

nition in this thesis to reflect the format or structure of data. Specifically, a pattern is defined in

both semantic level and lexical level. At semantic level, a pattern can be regarded as a sequence of

fields and separators. While at lexical level, a pattern is a sequence of regular expressions.

Definition 3.1 (Pattern). A pattern p is represented as a sequence of fields and separators, namely

p = (f1, s1, f2, s2, f3, ..., ft−1, st−1, ft) where each fi and si denote a field and a separator respec-

tively, both of which are expressed as regular expressions.

We denote the set of fields and the set of separators as F = {f1, f2, ..., fm} and S = {s1, s2, ..., sn}

respectively. Consider the example in Table 1.4. The field set is F ={D,SN,ID}, and the separator

29
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set is S ={t,-,Stop,St,[,]}. From the field set and the separator set, we can construct several pat-

terns such as “D - Stop SN [ID]”, “D - SN [ID]”, “D SN [ID]”, etc. We denote the pattern library

as P = {p1, p2, ..., pk}.

For each data record d from a dataset D, we denote the set of patterns it maps to as Pd =

{pi|pi ∈ P ∧ d→ pi} where d→ pi means that data record d can match pattern pi. Hence, the set

of patterns that dataset D contains can be denoted as PD =
⋃

d∈D Pd.

Definition 3.2 (Data Representational Inconsistency). A dataset D is representation inconsistent

when it contains multiple patterns, namely |PD| > 1 where |PD| represents the size of (or number

of patterns contained in) PD.

SQL Extension  Parser

Pattern Detection

Pattern Unification

User Interaction

Pattern Library

support

Consistent datasets

Inconsistent datasets

Input Update

Input

Target Pattern Input

Consistency 
Profiling Result

FIGURE 3.1: An overview of framework.

3.2 Pattern Based Framework

The goal of improving data representational inconsistency is to unify an inconsistent dataset to a

single pattern. Figure 3.1 demonstrates the framework proposed in this work, which consists of

three modules: pattern design, pattern detection, and pattern unification.

The pattern design module constructs a pattern library for each data domain. We adopt an

iterative and interactive approach for pattern design. We will discuss the details of pattern design

in Section 3.3. Given a dataset D and the pattern library P, the pattern detection module recognises

possible patterns Pd for each data record d ∈ D. We will discuss technology of pattern detection
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in Section 3.4. The details and evaluations will be illustrated in Chapter 5. If the dataset D is

representational inconsistent (i.e., |PD| > 1), the pattern unification module will be triggered. It

receives a target pattern p∗ from the user, and transforms all data records into this pattern to make

the dataset D consistent. We will discuss the details of pattern unification in Section 3.5. Note that

when a data record d maps to multiple patterns, we need to pick a pattern pi from the pattern set

Pd and conduct unification based on the specific pattern pi. This can be done randomly. However,

if a semantically incorrect pattern is chosen as the unification pattern, it will cause the resulting

data record to be semantically incorrect. Take “Trouts/Redwood - 40 [BT002172]” in Table 1.4

as an example. Assume “D - Stop SN [ID]” is the target pattern and we select “SN - D [ID]”

as the pattern for this data record, then the unification result will be “40 - Stop Trouts/Redwood

[BT002172]” which is obviously wrong. Hence, a better solution is to ask users to select the best

pattern when multiple patterns are detected. But in order to reduce the amount of user interactions,

it also requires the pattern library to be less conflicting.

3.3 Pattern Design

3.3.1 The virtuous cycle of iterative and interactive approach

As discussed in Chapter 1, most ETL tools require a great deal of information from the user,

including metadata, instance level data characteristics, transformation mappings and workflow

definitions. However, in practice, the user may not have sufficient knowledge about the target

dataset. The virtuous cycle of iterative and interactive approach is designed for that situation. It

means users need only provide the structure information of the possible string patterns, which are

represented by regular expressions, without requiring knowledge of transformation mappings and

workflow definitions. In addition, this cycle can guide users to build the pattern library complete

and nearly mutually exclusive. After the data profiling module is processed, the results (conflict

patterns and unmatched patterns) returned could guide the user to discover additional different

patterns, complete the regular expressions, and assure the correctness of pattern matching results.

This continuous user interaction and data profiling leads to an overall improvement in the accuracy

of the profiling results, and avoids introducing errors in the unification module.
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1. The user defines 
the features of a 
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processes the data 
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FIGURE 3.2: The virtuous cycle of iterative and interactive approach.

Figure 3.2 describes the virtuous cycle with modules (data profiling and data unification) in

the pattern based framework. This virtuous cycle incorporates five stages, which are ultimately

implemented using a pattern based framework. The five stages are processed as follows. First,

the user defines the features of patterns for the domain, and then the toolkit processes the data

profiling in order to submit the conflict patterns and unmatched records to the user. The user will

check the submitted results and modify the patterns to make the patterns closer to complete and

mutually exclusive of each other. After that, the user may choose to do unification according to

the submitted results. Or the user could continue to modify and define the pattern features in

the toolkit to create the most appropriate pattern library for the particular domain. The different

profiling results guide users in the virtuous cycle as follows:

• Unmatched records: Records appeared in this list means that the current pattern library

could not cover these records. There are three situations. 1)The current pattern library is not

complete, and we need to insert more patterns according to the unmatched records. 2).There

are some characters which should includes in the current regular expressions. We need edit

the regular expressions of current patterns. 3)There are some typos in the records which

include an error character. It could be marked as an error of the records and should be edited
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by users.

• Conflict Records: Records appeared in this list matched with more than one patterns. A more

restrict regular expression should be provided for the conflict patterns such as shrinking the

scope of character.

3.3.2 Rules of pattern design

Pattern design constructs a pattern library P for each data domain. As discussed in Chapter 1, an

ideal pattern library should be complete and mutual exclusive, in order to cover the entire dataset

and eliminate pattern conflict. This incurs extensive efforts if we manually build the pattern library

from scratch. We adopt an iterative and interactive approach to reduce human efforts.

Starting with a seed set of patterns based on the techniques for writing regular expressions in

[24], we conduct pattern detection on a given dataset with the seed set, and obtain the consistency

profiling result which contains information about unrecognised data records and conflicting pat-

terns. Based on the consistency profiling result, we design and add more patterns into the seed set

and meanwhile revise conflicting patterns, and then repeat the above process. We propose some

heuristic rules for designing and revising patterns:

• Rule for fields: At each iteration, we revise the regular expression with the smallest coverage

of records for each field. Consider the example in Table 1.4. We first apply the regular

expression ( |[A−Za−z0−9])+ to the stop description field and then examine the unmatched

records. We find there are still some other characters, such as ‘.’,‘&’, and ‘/’, occurring in

the stop description field. Hence, we add these characters into ( |[A − Za − z0 − 9])+ and

obtain a new regular expression ( |[A− Za− z0− 9/&.])+ for stop descriptions.

• Rule for separators: Based on the unmatched records, we discover new separators and add

more patterns using different sequences of fields and separators. For example in Table 1.4,

after finding new separators of “St”, ‘-’ and blank space, we include patterns such as “D - St

SN [ID]”, “D St SN [ID]”,“St SN D [ID]”, etc.

• General rule: We assign higher priority to restricting the regular patterns rather than enlarg-

ing the coverage of regular expressions or reducing conflicting records. The balance between
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complete and conflict is a challenge in our framework design. The profiling results in virtu-

ous cycle can generate a list of conflict data to users as a guide for further edit to patterns to

detect and reduce the conflict. Also, the report of unmatched data could also guide user to

find out more patterns in this domain. However, there may be a problem when one pattern

is contained by another. If a pattern pa could cover another pattern pb, and only the pa in the

pattern library, the profling result will not show the records belongs to pb. This will lead to

mistakes in the next process. More patterns can reveal the mistake of one pattern covering

another. In the example of Table 1.4, although the pattern “D SN [ID]” can match all the

records mapped to the pattern “D Stop SN [ID]”, we still include the pattern “D Stop SN

[ID]” into the pattern library to guarantee we can recognise records matched to it.

3.4 Pattern Detection

String pattern matching has been researched for many years in different research fields such as in-

formation retrieval [56] and deep packet inspection [31]. As explained in Chapter 2, pattern detec-

tion in this framework could be considered as multiple regular expression pattern rules matching.

However, in our context, the matching results will not be type boolean, while regular expression

rules that each string could matched with is required. In addition, in relational database, regular

expression rules matched with a set of strings instead of a long text string.

To handle m regular expression rules and find out all the possible matched regular expressions,

two choices are possible: The naive solution is processing each strings individually in m automa-

ton, or compiling different regular expression rules into a single automaton. Theoretically, the

processing complexity of the naive solution is O(nm) if each automaton is a DFA. On the other

hand, when combining different regular expression rules into a single automaton, the complexity

in worst case is also O(nm) (the worst case refers to each string could be matched with every

regular expression rules). Efforts were made by grouping states in DFA which could reduce the

time complexity [53][55], however, these methods in literature could only deal with the string that

could be matched with one regular expression, which is not our objective.

Regular expressions represent infinite set of patterns. We use the idea of FSM in our method.

The difficulty is how to find all the matched patterns because of many-to-many mapping. The
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process of our pattern detection method is shown in Figure 3.3. In our method, we first construct

a NFA(Nondeterministic Finite Automaton) for each pattern using Thompson’s construction algo-

rithm [48]. Since a pattern consists of fields(represented by regular expressions) and separators,

we use series and parallel connections to construct our FSM. The FSM is a kind of NFA. Due to

different principles of operations between DFA and NFA [1], using DFA for pattern detection is

more efficient when doing matching process. However, since we need to detect all the possible

patterns, we introduce a branch state for backtracking with pattern information to the standard

DFA. This breaks the equivalence of NFA and DFA under our objective. In our approach, the FSM

is optimized using subset construction algorithm [1] to achieve the DFA with backtracking. We

introduce a break-point operation to the original subset construction algorithm. After the optimiza-

tion of FSM, we could parse strings using the FSM. The details of the algorithms and evaluations

of the method will be described in Chapter 5.

FIGURE 3.3: The process of pattern detection.

3.5 Pattern Unification

Given a dataset D from a specific domain along with the detected pattern for each data record

pd ∈ Pd, pattern unification transforms all data records into a target pattern p∗. As discussed in
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Chapter 1, pattern unification is more complicated than traditional string-based functions since it

requires additional knowledge. In the example of “Alison St - St 32 [BT002904]” in Table 1.4,

we need the semantic knowledge that the former “St” is part of the stop description filed while the

latter “St” is a separator, in order to unify this data record to “Alison St - Stop 32 [BT002904]”.

Consider “2003/03/17” in Figure 3.4 as another example. Both the semantic knowledge that the

second “03” belongs to the month field and the domain knowledge that “03” as a month can be

represented as “Mar” are necessary to transform “2003/03/17” to “2003-Mar-17”. To this end,

we adopt a two-level pattern definition, namely a pattern is a sequence of fields and separators

(semantic level) expressed as regular expressions (lexical level), and propose a split-transform-

merge approach for pattern unification. Figure 3.4 illustrates an example of pattern unification.
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2015-Nov-24

Split Transform Merge

FIGURE 3.4: An example of pattern unification.

Split. As discussed in Section 3.4, our approach to pattern detection can not only determine

matching patterns but also recognise boundaries between fields and separators. Hence, we split

each data record from a specific domain into a set of field values and separator values, based on the

pattern detection result. In Figure 3.4, each date (e.g., “2003/03/17”) is divided into three fields

namely year (e.g., “2003”), month (e.g., “03”), and day (e.g., “17”). For ease of representation, we

ignore the separators in Figure 3.4.

Transform. Given the set of field values and separator values, we conduct transformation

according to the target pattern p∗. We introduce transformation functions for this task, many of

which cannot be easily supported by traditional string-based functions. Table 3.1 presents some

examples of our proposed transformation functions which can be roughly classified into two cat-

egories: structure change and value change. Structure change functions reorganise the order of
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fields and separators, while value change functions modify the actual values of fields and separa-

tors. We associate domain knowledge with some value change functions such as fielding mapping,

abbreviation, etc. In Figure 3.4, the month field value “03” is modified to “Mar”.

Merge. After transformation, we merge the revised values of fields and separators together

using string concatenation function to obtain the unified data record. In Figure 3.4, the pattern

unification result for data record “2003/03/17” is “2003-Mar-17”.

TABLE 3.1: Examples of transformation functions.
Category Functions Examples

Structure Change field order change “John Stevens”→ “Stevens John”

Value Change

separator change “2014/03/13”→ “2014-03-13”

field mapping “03”→ “Mar”

measurement change “10cm”→ “0.1m”

abbreviation “Stevens John”→ “Stevens J”

string reverse “abc”→ “cba”

3.6 Summary

In this chapter, we propose an user-driven pattern-based framework including pattern design, pat-

tern detection, and pattern unification modules. For pattern design in SQL extension, we propose

a virtuous cycle of iterative and interactive approach and rules of pattern design. We introduce a

modification to classic string pattern matching technology especially DFA technology to ensure

the efficiency and accuracy of the pattern detection module. The details about the modified DFA

and the evaluation of the method will be presented in Chapter 5. For pattern unification module,

we employ split-transform-merge method to unify the inconsistent records.
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Chapter 4

Design of SQL Extensions

4.1 Introduction and Motivation

As noted in Chapter 1, classic integrity constraints have been used in most DBMSs to improve

data quality. In general, each constraint is defined in a declarative way, which costs less than

enforcing rules by using a large number of standard SQL statements [49]. Use of declarative SQL

extensions is a popular way to address database problems which cannot be resolved using standard

SQL (SQL:2011). SQL extensions are also employed in the data quality field. Helena et al. [25]

propose an AJAX data cleansing framework using a declarative language based on five logical data

transformation operators (mapping, matching, clustering, merging and view). These operators are

represented using a detailed syntax which is in the spirit of SQL. Many other research works

focus on applying SQL extensions to data quality problems, such as duplication detection [21].

For data inconsistency issues, [37] presents an SQL extension to deal with data inconsistency in

heterogeneous information sources. Both integrity constraints and these SQL extensions focus on

the relationships between tables, rows and columns, and seldom focus on records at the instance

level including the format or structure of the data items. Therefore, we designed SQL extensions

according to our pattern based framework to describe the features inside the tuples. In this chapter,

we will introduce the grammar of the SQL extensions we designed and provide an example to

show how these SQL extensions are used.

39
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4.2 SQL Extensions

The most recent SQL standard SQL:2011 supports declarative integrity constraints. Our SQL

extensions specifically focus on data representation consistency at an instance level based on

SQL:2011. Our pattern-based framework that was introduced in chapter 3, comprises three parts:

definition, detection, and unification. The SQL extensions we designed cover a) the declarative

definition of the patterns, and b) the operations to improve data representation consistency. The

latter operators include detection, and unification.

4.2.1 Declarative definition of patterns

According to the two-level pattern definition in Chapter 3, we design the definition of patterns in

SQL extension based on the lexical level and semantic level.

• Lexical level - using “Create field” statements to define the structure features of each field in

patterns. The structure features are represented by regular expressions.

• Semantic level - using “Create format pattern” statements to define the sequence of fields

and separators. The separators are represented by regular expressions.

Hence, five new clauses and three keywords, namely FIELD, REG, FORMAT PATTERN and

MAPPING, should be added to the syntax of the SQL standard. There are four main extended

clauses:

1. Create field:

CREATE FIELD [< domain >] < field name > REG regular expression >

[MAPPING < mapping list > < values or query spec >];

Note:The field name should be unique. If there is a mapping in the field, the mapping list

should be complete, that is, all the values in that field should have their mapping values. Fur-

thermore, there should be a one-to-one correspondence between mapping name and value.

2. Create format pattern:

CREATE < entity classes > FORMAT PATTERN < pattern representaion list >;

Note: All the fields appearing in the pattern representation list should be defined before
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they appear in this list. Each pattern representation should follow the rules for the design of

patterns in Chapter 3. This means that each pattern consists of the defined field name and

separators which are represented by regular expressions.

3. Delete domain:

DELETE FIELD < field name > ;

Note: When a field is deleted, the related mappings and patterns will be deleted automati-

cally.

4. Delete format pattern:

DELETE FORMAT PATTERN < pattern representation list > ;

The BNF syntax of the four new clauses are as follows:

< field name > ::= NAME;

< mapping list > ::= < mapping name >

| < mapping list > < mapping name >

< mapping name > ::= NAME < opt type >;

Note: The default type of mapping value is string.

< entity classes > ::= NAME;

< pattern representation list > ::=

< pattern representation >

| < pattern representation list > < pattern representation >

< pattern representation > ::= STRIING < opt seperators >

< opt seperators > ::=

| STRING;

4.2.2 Detection Operation:

A simple SQL extension is designed to detect the patterns of the records. One new clause and a

keyword, namely PROFILE, should be added referring to the syntax of the SQL standard. There

are four main extended clauses:
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PROFILE < domain > < column name >

FROM < table ref list >

The BNF syntax of new clause is as following:

< profile clause > ::=

PROFILE< domian > < column name > FROM < table ref list >

4.2.3 Unification Operation:

In order to unify the different formats, one new optional clause < reformat clause > , a new <

search condition > for formats and a key word FORMAT PATTERN are added to the standard

SQL. The statement of the new “unify” clause is based on the “update” statement.

UPDATE < table ref list >

SET col name1 < reformat clause > [,col name2 = expr1,...]

[WHERE < search condition >] [ORDER BY...][LIMIT row count]

The BNF syntax of the new clause is as followings:

< reformat clause > ::=

FORMAT PATTERN = < format identifying >

< format identifying > ::= INTEGER |NAME

Note: < format identifying > should be the format id or the name which appeared in the

format dataset.

< search condition > ::=

< format condition list >

| < search condition > OR < search condition >

| < search condition > AND < search condition >

| NOT < search condition >

| < predicate >

| ...

< format condition list > ::=
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< format condition >

| < format condition list > < format condition >

< format condition > ::=

< column ref > FORMAT PATTERN = < format identifying >

4.3 Usages and Examples

The representation of attribute “BoardingStop” in gocard dataset is inconsistent due to the system

version and some typing errors. The example in Figure 4.1 shows seven different stop formats

in attribute “BoardingStop”. We use this example to explain the usage of our SQL extensions to

address this inconsistency problem in “BoardingStop”.

FIGURE 4.1: Example of “BoardingStop” in goCard data.

1. Setting As we can see, bus stop is not a commonly used field. We need to set the possible

format and create a pattern libary for bus stop which could be used not only for “Board-

ingStop” but “AlightingStop”. In this example, we set the field features which is represented

by regular expressions, and then set the pattern features which consist of field names and

separators. The SQL script is shown in Figure 4.2.

2. Detection After setting the pattern library for bus stops, we could detect the format for

each “BoardingStop” data. This operator helps users understand the inconsistency problems

in the target dataset. The result of this operation is the possible formats for each tuple in

“BoardingStop”. The SQL statement is as follows:

PROFILE bus stop BoardingStop FROM gocard records;
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FIGURE 4.2: Example: Setting operation

3. Unification This opearation will update the data to satisfy data representational consistency.

In this stage, we need to set a target format, and the result is the consistent BordingStop data

shown in Figure 4.1 which follows the format of ’(StopDescription, StopNum, StopId)(, - ,

[,])’. The SQL statement as follows:

UPDATE gocardrecords SET BoardingStop

FORMAT PATTERN = ’(StopDescription, StopNum, StopId)(, - , [,])’;

4.4 Summary

In conclusion, we designed SQL extensions for data representation consistency, and employ an

example to show how these extensions can be used to achieve data representation consistency.

Compared with integrity constrains in SQL:2011, which need detailed constraint information, and

without running a large number of update operations, our SQL extensions reduce the knowledge

and skill requirements from the user end, update inconsistent records to achieve consistent data

and provide the capability to search inconsistent data. Integrity constraints are specified within a

create table or alter table statement and take affect when new records are inserted or updates are

performed, whereas the SQL extensions in this thesis target the existing dataset which needs to be

repaired.



Chapter 5

A Modified DFA Method for Data

Inconsistency Pattern Detection

5.1 Introduction and Motivation

Data inconsistency detection and profiling is a crucial task in checking and ensuring the quality of

data. Historically, the methods to detect and resolve data inconsistency problems were developed

with respect to a certain context, and rule-based methods are employed to deal with a general

context. Recently, CFDs (Conditional functional dependencies) were introduced to capture data

inconsistencies by enforcing bindings of semantically related values, and rule-based methods for

data inconsistency problems, such as editing rules and fixing rules, are based on CFDs. However,

these rule-based methods employ the dependencies between columns for every tuple to monitor

and repair semantic data inconsistencies. There is a lack of domain agnostic methods for data

representation inconsistency detection that will cover each cell for each cell in a dataset.

In this chapter, we introduce a DFA (Deterministic Finite Automaton) based method to detect

all possible patterns for each record and generate the profiling result for the target data. Since

the traditional DFA methods are not available in our context, we introduce a modification to the

traditional DFA method. Regular expression matching using deterministic finite automata (DFA)

is a well-studied problem in both theoretical and practical settings. However, as noted in Chapter

1, the classic method will not fit our context. In this thesis, we provide a modified DFA with

45
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labels and a back-tracking process to achieve that additional requirement and to evaluate both the

efficiency and accuracy of the matching engine. In this chapter, the technical details about our

modified DFA approach will be presented. Then, our evaluation of this approach will verify both

the efficiency and accuracy of the method using real world datasets.

5.2 Approach

With the pattern library P at hand, pattern detection needs to recognise the possible patterns Pd

for each data record d ∈ D from a specific domain. A straightforward approach is to check

every record-pattern pair one by one to see whether the record conforms to the pattern. The time

complexity of such a task is obviouslyO(|D|×|P|), where |D| and |P| denote the size of the dataset

and the pattern library, respectively. In this work, we improve the efficiency by conducting pattern

detection in a batch process.

As defined in Section 3.1, a pattern is a sequence of fields and separators which are represented

by regular expressions. Therefore, a pattern can also be regarded as a concatenation of all the

regular expressions. In order to determine whether a data record (i.e. a string) satisfies a pattern, it

is suffice to check whether this record can be recognised by the concatenated regular expression.

This is typically accomplished using a Finite State Machine (FSM) such as a Nondeterministic

Finite Automaton (NFA) and a Deterministic Finite Automaton (DFA). Figure 5.2 illustrates the

process of constructing an NFA to represent a pattern based on Thompson’s construction algorithm

[48]. According to [48], there are five basic rules during NFA construction as shown in Figure 5.1

( N(s) and N(t) is the NFA of the subexpression s and t, respectively).

We first build NFAs for each field and separator based on their regular expressions using the

five rules in Figure 5.1, and then combine these NFAs using a series connection. In order to

detect patterns via a batch process, we compile the entire pattern library into one NFA such that all

possible patterns for a data record can be detected by scanning the record only once. Specifically,

we employ parallel connection to combine the NFAs for each pattern into a large NFA.

In the following we consider a simple pattern library as a running example. The field set and

the separator set are F = {f1 = [ab1]+, f2 = [a1]+} and S = {s1 = 11, s2 = a1}, respectively,

and the pattern library is {p1 = f1s1f2 = [ab1]+11[a1]+, p2 = f1s2f2 = [ab1]+a1[a1]+}. Figure
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Start [End]ε Start [End]a Start

N(s)

[End]

N(t)

ε

ε

ε

ε

1. Empty-expression: ε

Start N(s) [End]N(t)ε ε ε Start N(s) [End]ε ε

ε

ε

2. Symbol: a

3. Union expression: s|t

4. Concatenation expression: st 5. Kleene star expression: s*

FIGURE 5.1: Five rules in Thompson’s algorithm.

5.3 illustrates an NFA for this pattern library. In order to split each data record (e.g. “aba11a”)

into a collection of field values (e.g. “aba” and “a”) and separator values (e.g. “11”), which is a

prerequisite for pattern unification and as discussed in Section 3.5, pattern detection should be able

to determine both the matching patterns and the boundaries between fields and separators. Hence,

we assign each final state in the NFA with a special label which is used for notification of the

pattern that is detected upon reaching the final state. We also assign each state corresponding to a

separator with a special label (i.e. yellow states in Figure 5.3) to differentiate fields and separators.

The NFA for a pattern library is usually huge, containing thousands of states with multiple

choices of transitions. To reduce computational cost when processing the NFA, we need to ensure

the constructed NFA has as few states as possible. A classic approach is to transform the original

NFA into a DFA using a subset construction algorithm and then minimise the DFA [3]. Figure 5.4

shows the minimised DFA of the original NFA in Figure 5.3. There are three obvious drawbacks of

the classic DFA: 1) it has no back-tracking and hence cannot recognise multiple patterns for a data

record (e.g. “aba11a”→ {p1, p2},“abba1a”→ {p2}); 2) it cannot determine which pattern the data

record maps to when reaching the final state; and 3) it cannot detect boundaries between fields and

separators. The key problem is that classic subset construction and DFA minimisation algorithms

combine and reduce states without considering their specific meanings, namely whether the states

are fields or separators and to which pattern the states correspond. Hence, we introduce several
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Field & Separator: Regular Expression

Pattern

Pattern Library

Field Separator

Pattern

…

series connection

parallel connection

Start EndNFA

Start [End]NFA [Start] [End]NFA

Start End
Pattern

Field

[Start] EndNFA

Start [End]NFA [Start] [End]NFA [Start] [End]NFA

Start [End]NFA [Start] [End]NFA [Start] [End]NFA

FIGURE 5.2: Construction of an NFA to encode the pattern library.
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FIGURE 5.3: NFA for {[ab1]+11[a1]+, [ab1]+a1[a1]+}.

modifications to the subset construction and DFA minimisation algorithms (as shown in Algorithm

1). Specifically, in the subset construction algorithm we not only introduce state labels but also in-

troduce a “break” operation (as shown in Figure 5.5) compared with the classic subset construction

algorithm. This operation separates the states by different patterns to avoid a misleading pattern

matching result.

One requirement of the modified DFA is to recognise multiple patterns by scanning the data

record only once. In other words, after recognising one pattern, the modified DFA should enable

back-tracking to check other patterns. Back-tracking can be easily supported by NFA since NFA

allows for multiple next states given a specific input symbol. However, this is not the case for
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FIGURE 5.4: Classic DFA for {[ab1]+11[a1]+, [ab1]+a1[a1]+}.

FIGURE 5.5: Operations of the modified subset construction algorithm.

DFA. Therefore, we introduce a special state-branch state-into the modified DFA which can sup-

port multiple transitions on a single input symbol. Furthermore, in order to distinguish patterns,

the information that different states lead to different patterns should be retained in the modified

DFA. To this end, we first check which patterns the states lead to when merging states in subset

construction. If the states represent multiple patterns, we then combine them into a single branch

state and add a transition for each pattern. Branch states will not be merged with other states in

DFA minimisation. The automatons in Figure 5.6 show modified DFAs of the NFA in Figure 5.3.

The green states are branch states which transit to two next states corresponding to patterns p1 and

p2, respectively.

Another requirement for the modified DFA is to determine patterns and pattern boundaries.

As mentioned above, we assign states in the NFA with two special labels, i.e. a pattern label and

a separator label, to notify of matching patterns and boundaries between fields and separators,

respectively. This information should be retained in the minimised DFA. In particular, one con-

straint is that separator states as well as final states corresponding to different patterns cannot be

merged with each other or with other normal states when conducting subset construction and DFA

minimisation. Figure 5.6(a) and Figure 5.6(b) demonstrate the modified subset construction and

minimisation of the NFA in Figure 5.3, whereby the separator states and final states are retained.
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Algorithm 1: Subset construction algorithm of optimizing FSM
Require:

A FSM N with pattern marks in each states;

Ensure:

An optimized FSM F could match the same pattern set as N ;

1: initially, ε− closure(s0) is the only state in Fstates, and it is unmarked;

2: while there is an unmarked state T in Fstates do

3: mark T ;

4: for each input symbol a do

5: subset of F states U := ε− closure(move(T, a));

6: if ui /∈ Fstates then

7: add a transition Ftran(T, a) := U in N ;

8: if the states in U comes from different patterns then

9: mark U as a branch state;

10: Dividing U = u1, u2, .., uk according to different patterns;

11: for Each ui ∈ U do

12: if ui /∈ Fstates then

13: add ui as an unmarked state to Fstates in N ;

14: return N ;

Given the modified DFA for a pattern library, we can recognise matching patterns for a data

record accurately and efficiently. Consider the modified DFA in Figure 5.6(b) and the data record

“aba11a” as an example. At branch state 1, the automaton can go through states 1 → 1 → 1 →

2→ 4→ 6 to arrive at pattern p1 (with “aba” and “a” as the field values, and “11” as the separator

value), but it can also back-track and go through states 1 → 1 → 3 → 5 → 7 → 7 to arrive

at pattern p2 (with “ab” and “1a” as the field values, and “a1” as the separator value). The back-

tracking ends when there is no next state for the branch state or the last character of the data record

can not reach a final state.
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FIGURE 5.6: Modified DFA for {[ab1]+11[a1]+, [ab1]+a1[a1]+}.

5.2.1 Method Evaluation

We conducted extensive experiments to evaluate the accuracy and efficiency of our framework for

addressing data representational inconsistencies. All the algorithms were implemented in C#, and

all the experiments were conducted on a server with 2.90 GHz Intel Xeon E5-2690 CPU and 192

GB memory.

Our evaluation was based on real-life datasets from various domains including public trans-

portation data1, and DBLP data2. Specifically, we downloaded a one-month (i.e. March 2013)

snapshot of Translink gocard data in Brisbane, which consists of 4,329,128 records of gocard

touch-on and touch-off information. We chose the noisy boarding stop domain to conduct our

experiments. We also downloaded a DBLP snapshot on May 16, 2016, which contains 10,195,320

records of computer science bibliography information. For this dataset, we chose the inconsistent

author name domain for our experiments.

5.2.2 Accuracy

Using the iterative and interactive approach to pattern designing, we constructed a pattern library

of 18 patterns (Table 5.1) for the boarding stop domain, and 17 patterns (Table 5.2) for the author

name domain.

1https://mobile.translink.com.au/about-translink/open-data
2http://dblp.uni-trier.de/xml/

https://mobile.translink.com.au/about-translink/open-data
http://dblp.uni-trier.de/xml/
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TABLE 5.1: Pattern library for “BoardingStops” in the gocard data.

Pattern∗

D - SN [ID] D (Stop SN) [ID] D - Platform SN [ID] D - Zone SN [ID] D (St SN) [ID]

D - Stop SN [ID] D-SN [ID] D Platform SN [ID] D Zone SN [ID] D (stop SN) [ID]

D Stop SN [ID] D (SN) [ID] D, platform SN [ID] D -SN [ID] D stop SN [ID]

D ‘SN’ [ID] Stop SN D [ID] D - Platform ‘SN’ [ID]

* Stop description: D= ( |[A−Za−z0−9/!, ;′@#$%&∗()−.”])+; Stop number: SN=[A−Za−z0−9/]+;

Stop ID: ID=BT [0− 9A− Za− z ]+.

TABLE 5.2: Pattern library for authors in the DBLP data.

Pattern∗

G F G prefix F G F suffix G abbr1 F G abbr1 prefix F

G abbr1 F suffix G abbr2 F G abbr2 prefix F G abbr2 F suffix F G abbr1

G (O) F G (O) prefix F G (O) F suffix G abbr1 (O) F G abbr1 (O) prefix F

G “O” F G abbr2 (O) F

* Given name: G=( |[a − zA − Z ′−])+, G abbr1=( |[A − Za − z.′−])+., G abbr2=(

|[A − Za − z.′−])+.(( |−)[a − zA − Z]+)+; Family name: F=[a − zA − Z ′−]+; Other

name: O=( |[a− zA− Z−])+;

prefix=bin|Di|Del|del|Della|Dalle|De|D|Da|da|Dal|Dall|Dalla|Dalle|di|del|de|da|Es|Du|el|es|de

los| de las|de la|des|du|Von|Van|Van den|Van der|von|von der|Al|Au|al|am;

suffix=(Jr.|Sr.|I|II|III|IV|V)+.

To obtain more insight into the performance and contribution of each pattern, we rank the

patterns according to their coverage (i.e. number of matched records) in descending order, add

them into the pattern library one by one, and then check the coverage and conflicts of the resulting

pattern library. Figure 5.7(a) illustrates the change of in the number of unmatched records, single

matched records and multiple matched records in log-scale when adding patterns into the library.

We can see that the first pattern (i.e. D - SN [ID]) captures more than 25% of the boarding stops and

the author names in the gocard data and DBLP data, respectively. With more patterns inserted into

the pattern library, its coverage increases gradually, at the cost of more conflicts among patterns.
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FIGURE 5.7: Accuracy evaluation.

5.2.3 Efficiency

Given a pattern library and an inconsistent dataset, the naive solution for pattern detection is pair-

wise checking. In order to improve efficiency, we propose to examine patterns via a batch process.

Specifically, we combine all patterns into an NFA and then utilise modified subset construction

and DFA minimisation algorithms to reduce the original NFA into a modified DFA. In this section,

we compare the pattern detection time of the naive solution with that of the modified DFA. We

change the size of the pattern library and the size of the dataset, and report the evolving pattern de-

tection time for the gocard data in Figure 5.7(b) and Figure 5.7(c), and for the DBLP data in Figure

5.7(e) and Figure 5.7(f), respectively. As we can see, the pattern detection time for both methods

increases linearly with the growth in size of the dataset. But when more patterns are included in

the pattern library, the detection time of naive solution still rises linearly while our modified DFA

remains stable.

Although DFA construction can be accomplished offline, it can still be quite time consuming

especially when the pattern library is huge. Therefore, we also evaluate the DFA construction time

when varying the size of the pattern library. From Figure 5.8(d) and Figure 5.8(a), we can see
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FIGURE 5.8: Efficiency Evaluation.

that the DFA construction cost grows when the number of patterns increases. To obtain a more

insightful understanding of the increase in construction time, we present the number of states and

transitions in the DFA in gocard data respectively in Figure 5.8(e) (Figure 5.8(b) in DBLP data) and

Figure 5.8(f) (Figure 5.8(c) in DBLP data). It is obvious that when the size of the pattern library

increases, the resulting DFA becomes larger, and consequently the construction time increases.

5.3 Summary

In this chapter, we propose the modified DFA method for pattern detection and design experiments

to evaluate both the accuracy and efficiency of the approach using gocard data and DBLP data.

We introduce modifications to the classic subset construction and DFA algorithms to satisfy our

requirements as discussed in Chapter 1. The modified DFA does not only report all possible

patterns for each record, but detects each field in the record. In addition, the evaluation results

using both the gocard data and the DBLP data illustrate the accuracy and efficiency improvement

compared to the naive approach.



Chapter 6

Implementation of Toolkit

The toolkit for improving data representational consistency with SQL extensions was implemented

during my Mphil candidate period. This toolkit includes three main modules based on the frame-

work proposed in Chapter 3, namely, a) the SQL extension parser, b) the inconsistency profiler,

and c) the inconsistent data unifier. In this chapter an overview of the system architecture is pre-

sented, followed by the subsystem design for each module and the limitations of regular expression

patterns. Finally a use case is used to describe the usage of this toolkit.

6.1 System Architecture

All the algorithms introduced in Chapter 3 were implemented in C++ with MFC (Microsoft Foun-

dation Classes) for the user interface, and compiled using Visual Studio 2012 connected to a

MySQL database. The system overview is shown in Figure 6.1 and it has three tiers, namely,

the view tier, the control tier, and the model tier.

• View tier – directly related to the functional requirements and user interface. The MFC

framework is employed to interact with the users.

• Control tier – includes actions and processing components for each requirement.

• Model tier – represents the data connections with the MySQL database.
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 Pattern 
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FIGURE 6.1: System architecture.

6.2 Subsystem Design

As shown in Figure 6.1, the system architecture is divided into three modules: SQL parser, incon-

sistency profiling, and inconsistency unification.

6.2.1 SQL Parser

The SQL Parser is implemented in C and the database is MYSQL. As is shown in Figure 6.2, Flex

and Bison is employed to generate a C parser which could be compiled by the C compiler. Using

these generated C codes, we implement the part of syntax check based on the MYSQL database

and generate the grammar tree of the SQL extension query.

6.2.2 Inconsistency Profiling

This module aims to detect all possible patterns for each record and to provide a profiling result

for users. Figure 6.3 shows the IPO (InputProcessOutput) diagram for this module. A modified

DFA is used to execute the pattern detection process. There are three sub-modules according to

the algorithms in Chapter 5: the construction of the FSM and the modified DFA, minimisation of

the modified DFA, and the pattern detection process.
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FIGURE 6.2: SQL parser.

• Construction of FSM and the modified DFA – the FSM is constructed using parallel and

serial connections and it is transformed to a modified DFA using the modified subset con-

struction algorithm as noted in Chapter 5.

• Minimisation of the modified DFA – the modified DFA is minimised without combining the

separator states and states of different patterns.

• The pattern detection process – the DFA is processed with backtracking in the branch state

to detect all possible patterns, and the pattern state label is used to split fields for each record.

Column name and 
domain

Input

1. Get all the patterns in the pattern library.
2. Construct an NFA for all the patterns belongs to
the domain in the pattern library.
3. Transform the NFA to the modified DFA
4. Minimise the DFA
5. Execute the DFA to match with all the records in
the column

Process

Provide the profiling result; 
Mark all possible patterns 
and split fields for each 
record

Output

FIGURE 6.3: The IPO of inconsistency profiling module.

6.2.3 Inconsistency Unification

The inconsistency unification module transfers the target data records with different format patterns

to a target format pattern. The IPO of the format transformation is shown in Figure 6.4. As

mentioned above, the fields for each record are marked and split in the pattern detection process.
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Based on the profiling results, the split substrings are later merged based on the structure of the

target pattern.

Marked all possible 
patterns and split fields 
for each record; 
Target format pattern

Input

1. Analyse the structure of target pattern.
2. Determine the suitable transformation operation
and execute.
3. Merge fields and separators followed based on
the structure of the target pattern.

4. Execute “Update”statement  though MySQL
API.

Process

Display all the records

Output

FIGURE 6.4: The IPO of the inconsistency unification module.

6.3 Limitations of regular expression patterns

According to Chapter 3, the format patterns were finally represented by regular expressions. Figure

6.5 lists the features of the regular expression patterns used in our inconsistency detection engine.

The toolkit will not execute correctly when the regular expressions in the SQL extensions exceed

the scope.

6.4 Use Case

In this section, we snapshot records in the gocard dataset and deal with the “Boardingstop” domain

to show the interface and the usage of the toolkit. We use five steps with a snapshot of the toolkit

to illustrate the usage.

• Step 1: Connect to a target database (Figure 6.6).

• Step 2: Find out the target column (In “BoardingStop” column in Figure 6.7, there are

different format patterns such as “SD - Platform SN [ID]” and “SD (St SN) [ID]) and set

the pattern library (Figure 6.8) for the domain of the column. If the target domain exists, the

user could skip this step.

• Step 3: Profile the data with the pattern library. As shown in Figure 6.9, the profiling result

includes a summary of the matched patterns, unmatched patterns and conflict patterns. The
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Syntax  Meaning  Example 

+  Matches the preceding character or sub 
expression one or more time. 

“zo+” matches “zoo”, but not “z” 

*  Matches the preceding character or sub 
expression zero or more time. 

“zo*” matches “z” and “zoo” 

?  Matches the preceding character or sub 
expression zero or one time. 

“do(es)?” matches  “do” and 
“does” 

\  Marks the next character as a special 
character. The special characters as 
follows: \(, \), \n, \r, \t, \[, \], \*, \+, \? 

'n' matches the character "n". '\n' 
matches a newline character. The 
sequence '\\' matches "\" and "\(" 
matches "(" 

_  Matches any single character.  “a_b” matches “axb”, but not “ab” 

$  Matches the position at the end of the 
input string. 

“oo$” matches “zoo”, but not “do” 

^  Matches the position at the beginning of 
the input string. 

“fo^” matches “food”, but not 
“zoo” 

X|Y  Matches either X or Y.  'z|food' matches "z" or "food". 
'(z|f)ood' matches "zood" or 
"food". 

[xyz]  A character set. Matches any one of the 
enclosed characters. 

'[abc]' matches the 'a' in "plain" 

[^xyz]  A negative character set. Matches any 
character not enclosed. 

'[^abc]' matches the 'p' in "plain" 

[a‐z]  A range of characters. Matches any 
character in the specified range. 

'[a‐z]' matches any lowercase 
alphabetic character in the range 
'a' through 'z' 

FIGURE 6.5: Features of regular expressions in consistency detection engine.

user could also check the details about the uncertain data to be guided to modify the pattern

library. If the user needs to edit the pattern library based on the profiling result, it will back

to trigger step 2.

• Step 4: Unify the inconsistent data. After the user verifies the profiling result, this step could

be executed. The unification result is shown in Figure 6.10. Compared with the original

records in Figure 6.7, all the records are represented by pattern “SD - SN [ID]”.
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FIGURE 6.6: Connection to a target database.

FIGURE 6.7: Snapshot of “BoardingStop” in the gocard data.
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FIGURE 6.8: The pattern library setting.

FIGURE 6.9: Profiling result.
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FIGURE 6.10: Unification result.



Chapter 7

Conclusions and Future work

7.1 Summary of Contributions

In this thesis, we develop a user-driven pattern-based framework (see in Chapter 3) for domain

agnostic data representational inconsistency problems and implement a toolkit (see in Chapter 6)

to improve string data format consistency of data in a database. To complete this framework, we

first design an SQL extension to describe the operator and rules based on the pattern features in

Chapter 4. Then, before performing pattern unification in the datasets, we need to detect all possi-

ble patterns for each record in the target column of the dataset. Chapter 5 presents a modified DFA

to deal with the pattern detection problem and experiments are designed to verify the accuracy and

efficiency of the method. In Chapter 6, we introduce the technology applied in the implementation

of our toolkit system via a use case.

More specifically, the contribution of this thesis are summarized as follows:

• We design an SQL extension based on the pattern features in Chapter 3 for the proposed

framework, instead of writing complicated code specific to different format problems. The

extensions were described in relation to each module of the pattern based framework, that is

pattern design, inconsistency detection, and pattern unification (see in Chapter 4).

• We propose a pattern based framework with a complete and nearly mutually exclusive pat-

tern library in the virtuous cycle of iterative and interactive approach in Chapter 3. Through

this approach users are guided to complete the pattern library based on the profiling result.
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A more complete pattern library leads to a better profiling result. This virtuous cycle reduces

the amount of pre-knowledge users need to obtain.

• We study the problem of multiple regular expression rules matching avoid pairwise checking,

which is in the module of pattern detection in the framework (see in 5). As discussed in 1, it

is not a normal string matching problem. Therefore, we use regular expressions to represent

the field features and separators to represent the structure and order. Since the final feature is

represented by regular expressions with features, we develop a modified DFA with additional

feature information. This method has proven to be more accurate and efficient compared

with the naive method in the real world experiment.

• We propose a two-level pattern definition to combine both domain knowledge and regular

expressions, and propose a split-transform-merge method to facilitate pattern unification (see

in Chapter 3)

• We illustrate the technology employed in our toolkit in Chapter 6, and utilise a use case to

show how the toolkit is used.

7.2 Directions for Future Work

In this section, we propose two promising future directions for our work.

7.2.1 Generate the Regular Patterns Automatically

In Chapter 5, we present an iterative and interactive method to collect the features of patterns from

the users. Assuming that some users may not have extensive knowledge of regular expressions or

the dataset, we expect one area of further research would be to generate the regular patterns auto-

matically. It would also be of interest to investigate a method to summarize the different patterns

in a string set and ensure completeness and accuracy. In addition, we also expect more studies of

the expression of regular patterns. Theoretically, the patterns should be mutually exclusive. In real

applications, this could never be achieved, however, we could reduce the coverage ratio between

each pattern.
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7.2.2 Improve the Method of Pattern Unification

In Chapter 3, we present a basic method (splittransformmerge method) to transform string data

from one pattern to another. However, it still shows a weakness in relation to processing speed.

We expect to employ the modified DFA to generate a path to convert strings. If we could modify

each character in the string at the same time as performing the matching, the unification should be

more efficient.
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