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Abstract 
 

The Great Barrier Reef (GBR) is a natural, social and economic asset synonymous with Australia; 

however, there are concerns regarding both the frequency and extent of modern reef decline, 

especially in regions within close proximity to the coastline. With the future of coral reefs 

uncertain, elucidating the controls on reef growth and decline in the recent geological past prior to 

anthropogenic impacts is imperative to future management strategies. Numerous reef cores have 

revealed a substantial hiatus period or reef “turn-off” event during the mid-Holocene (~4600 years 

before present; yBP 1950) clearly prior to anthropogenic influence. Previously published research 

has suggested that changes in sea level, climate, and/or environmental conditions caused this reef 

“turn-off”, but the exact cause is still tentative.  

Whether sea level varied significantly during the Holocene has been debated for over half a century, 

with oscillations generally dismissed as dating artefacts due to large age errors or to the 

misinterpretation or inaccuracies of the sea level indicator. Coral microatolls, one of the most 

reliable sea level indicators, were used to test whether relative (RSL) oscillations could be detected 

during the Holocene. Elevation surveys of sub-fossil coral microatolls (n=32) and non-microatoll 

reef flat corals (n=10) were conducted on three separate sites in the Keppel Islands, southern GBR 

and dated using high precision uranium thorium (U-Th) techniques. The resultant palaeo-sea-level 

reconstruction revealed a rapid lowering of RSL of at least 0.4 m from 5500 to 5300 yBP following 

a RSL highstand of ~0.75 m above present from ~6500 to 5500 yBP. RSL then returned to higher 

levels before a 2000-yr hiatus in reef flat corals after 4600 yBP.  

To determine if this was a local scale response, or part of a broader regional signal, the same 

methodology was applied to another 8 sites from a wide latitudinal range along the GBR (11˚S to 

20˚S). The 94 U-Th dates of sub-fossil microatolls from this research adds support to the RSL 

lowering event at 5500 yBP, with microatolls close to present sea level found at ~5100 yBP. A 

second oscillation of ~ -0.3m at 4600 yBP was also detected in the northern GBR, with microatolls 

at three sites close to modern SL between 4600 – 4000 yBP. The RSL oscillations at 5500 yBP and 

4600 yBP coincide with both substantial reduction in reef accretion and wide spread reef “turn-off”, 

respectively, thereby suggesting that oscillating sea level was the primary driver of reef shut down 

on the GBR. 

Understanding the coeval palaeo-climate and -environmental conditions may reveal both the cause 

of these sea level oscillations and further modes of stress placed on coral reefs prior to the mid-

Holocene hiatus. In the first instance one of the simplest and most efficient methods of extracting 

information from the annual bands of massive Porites sp. coral cores is by using the growth 

characteristics (i.e. linear extension) and ultra violet (UV) luminescent intensity which are linked to 
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sea surface temperate and river discharge, respectively. As the El Niño Southern Oscillation 

(ENSO) is recognised as one of the main modulators of rainfall on the GBR, continuous wavelet 

transforms (CWT) of previously published modern coral luminescence index record was compared 

to sea surface temperature (SST) anomalies  in the Niño 3 and Niño 3.4 regions (an indicator of 

ENSO). The transformed coral luminescence record matched well with the ENSO signal, so is 

therefore considered a viable tool for reconstructing ENSO in the Holocene. Continuous wavelet 

transforms were then applied to luminescence index data of three Porites corals U-Th dated to 5200 

yBP, 4900 yBP and 4300 yBP. Results suggest less intense ENSO events during the mid-Holocene 

with a reduction in ENSO frequency in the 2-7 year band after 5200 y BP. Limited linear extension 

rates in the fossil corals (<10mmyr-1) compared to modern values (~15mmyr-1) also suggest SSTs 

were cooler than present between 5200 - 4300 yBP. 

Although luminescent signals in corals can provide information on palaeoclimatic states, 

quantification of environmental conditions (e.g. sediment/turbidity levels) from geochemical signals 

in corals has proven to be more difficult. The ratio between barium and calcium (Ba/Ca) is one of 

the most commonly used proxies for river discharge reconstructions, yet as Ba is biologically 

mediated peaks in Ba/Ca decoupled from river discharge events are ubiquitous. The rare earth 

elements (REEs) and Yttrium (Y) offer potential as a proxy for terrestrial run-off as ~90% of 

coastal oceanic REE’s are derived from fluvial sources, but few studies have evaluated this proxy at 

sub annual scales.  

Four modern corals collected across a known water quality gradient were used to assess high 

resolution (monthly) REE and Y concentrations compared to rainfall and river discharge events, and 

with overall water quality conditions. Total REE (ΣREE) concentrations were found to be up to 

seven times higher at inshore locations (50-126 ppb) compared to the mid-shelf (17 ppb), with 

spatial interpolation of the data reflecting the known water quality gradient, suggesting utility in 

future palaeo-environmental reconstructions. Time series of monthly resolved ΣREE concentrations 

matched well with river discharge in some but not all of the corals, with resuspension of sediments 

interfering with the run-off signal. Time series of ΣREE however demonstrated an overall 

coherency with rainfall, indicating that early season (smaller) discharge peaks are associated more 

efficient removal of top soils following dry periods.  

Overall it is demonstrated in this thesis that RSL oscillations centred at 5500 and 4600 yBP were 

the most likely cause of reduced reef accretion and reef hiatus in the mid-Holocene on the GBR 

respectively. Coral luminescence and linear extension signals suggest cooler SSTs, and less variable 

river discharge likely linked to reduced strength of ENSO after 5200 yBP. Furthermore it has been 

demonstrated that REE geochemical data from coral cores have the potential to reconstruct palaeo-

water quality gradients. 
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Chapter 1 

Introduction 

Background 

The recent decline of coral reefs globally is of great concern, and is often labelled as 

unprecedented or more significant than in the past due to both increasing anthropogenic 

impacts and climate change (Pandolfi et al., 2003, Carpenter et al., 2008, Miller et al., 2009). 

The Great Barrier Reef (GBR) is no exception, with recent scrutiny by the United Nations 

Educational, Scientific and Cultural Organization (UNESCO) putting the health and 

management strategies of the GBR in the spotlight for all the wrong reasons (Brodie and 

Waterhouse, 2012, Hughes et al., 2015).  

The largest contiguous reef system in the world, the GBR is a natural, social and economic 

asset synonymous with Australia (Fig. 1). Spanning two thirds of the Queensland coast, it 

contains over 3000 separate reefs covering an area of 345 000 km2, with ~600 of these reefs 

being located in inshore environments (defined as inner-shelf, <20m bathymetry under the 

influence of terrigenous deposits; Larcombe et al., 2001, Lawrence, 2010). Increased 

anthropogenic pressures such as catchment clearing (Fabricius, 2005, Wooldridge, 2009, Risk 

and Edinger, 2011), overfishing (Bellwood et al., 2004) and agricultural nutrient input 

(Fabricius, 2005, De'ath and Fabricius, 2010, Kroon et al., 2012, Uthicke et al., 2012) are all 

contributing to the decline of reefs, especially in regions within close proximity to the 

coastline. Estimates suggest a ~50% reduction in coral cover since the 1960’s (Bellwood et 

al., 2004, Bruno and Selig, 2007, Hughes et al., 2011) with hard coral cover declining from 

27% to ~14% for the period 1985 – 2012 (De'ath et al., 2012). However, it is likely that the 

true magnitude of decline may be underestimated due to the “shifting baseline” (sensu Pauly, 

1995) against which modern coral assemblages are assessed (Greenstein et al., 1998, Pandolfi 

et al., 2003, Knowlton and Jackson, 2008, Hughes et al., 2011, Roff et al., 2013). To enable   

improved management strategies on the GBR, an evaluation of natural versus anthropogenic 

drivers of change at relevant temporal resolutions is required, in conjunction with longer term 

archives of coral decline (or recovery) beyond historical scientific monitoring records 

(Pandolfi, 2015).  
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Figure 1: Queensland Coast and Great Barrier Reef, Australia. Labelled Islands and coral reefs are the main study sites 
within this Thesis.  
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Holocene reef growth on the Great Barrier Reef 

Coral reef growth is constrained by a number of climatic and environmental factors such as 

light, sea surface temperature (SST), turbidity, salinity and sea level (Buddemeier and 

Hopley, 1988, Montaggioni, 2005, Montaggioni and Braithwaite, 2009). These factors have 

also determined the geographic location of reefs throughout the Holocene, and beyond into 

the deep geological past allowing for comparisons and analogues beyond the “shifting 

baseline” of anthropogenic reef decline (Knowlton and Jackson, 2008, Hughes et al., 2011, 

Pandolfi, 2011, Pandolfi, 2015).  

The GBR as recognised today is a relatively young feature in geological terms. The oldest 

date obtained from a Holocene coral is ~9500 years before present (yBP- where present is 

defined as 1950; Hopley et al., 1978), with the most prolific accretion phase centred around 

~7500 yBP (Smithers et al., 2006). Inshore reefs on the GBR demonstrate similarities in  

patterns of reef growth history, initiating soon after inundation of the shallow Pleistocene 

shelf during the post glacial marine transgression, and accreting rapidly in a either a “catch 

up” or “keep up” mode of growth  to ~5500 yBP (McLean et al., 1978, Stoddart et al., 1978, 

Neumann and Macintyre, 1985, Kleypas and Hopley, 1992, Dullo, 2005, Montaggioni, 2005, 

Hopley, 2006, Smithers et al., 2006, Perry and Smithers, 2011). Yet, after 5500 yBP the 

growth history of the GBR becomes somewhat more complicated with a significant reef 

“turn-off” and  hiatus period of up to ~2000 years identified on many inshore reefs(Smithers 

et al., 2006, Perry and Smithers, 2011).   

Reef “turn-on” and “turn-off” events were initially defined by Buddemeier and Hopley 

(1988) to explain periods of optimal coral growth and non-accretion/net erosion, respectively,  

at significant spatial and temporal scales. On the GBR, Smithers et al. (2006) examined data 

from 21 inshore and fringing reefs and discovered that Holocene reef flat progradation 

reduced abruptly and significantly between 5500 and 4800 yBP. They attributed this slow 

down to a scarcity of suitable substrate for further reef expansion and reduced 

accommodation space due to a (smoothly) falling sea level following the mid-Holocene 

highstand. A subsequent study by Perry and Smithers (2011) examined 76 chronologically 

controlled reef cores from new and previously published data from 22 reefs along the GBR, 

and identified a distinct “turn off” or hiatus event occurring predominantly at inshore reefs, 

and specifically in the northern and southern GBR regions, between ~5500 to 2600 yBP, with 

no significant reef accretion after 4500 yBP  (Fig. 2; Perry and Smithers, 2011). Clearly this 
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hiatus event precedes modern human development of the Queensland coast, and is therefore 

driven by natural perturbations however, the mechanism driving the collapse of coral reefs in 

the mid-Holocene remains uncertain. Perry and Smithers (2011) concluded that the hiatus on 

the GBR was likely the result of the synergistic effects of multiple factors including; a 

reduction in accommodation space due to a lowering of sea level, proximity of the reefs to 

the terrigenous sediment wedge (Larcombe and Woolfe, 1999) resulting in increased 

turbidity, and/or limited calcification due to decreasing sea surface temperatures (SST) and 

increased extremes in rainfall affecting sediment delivery to the GBR lagoon. Though, in 

addition to the homogeneity of reef decline on the GBR in the mid-Holocene, broadly 

synchronous decreases in accretion, and/or coral reef hiatus have been noted in the wider 

Indo-Pacific.  

 

 

Figure 2:  Plot showing reef initiation-accretion-demise for inner-shelf Great Barrier Reef sites from Perry and Smithers 
(2011) based on available chronostratigraphic (core) data. Perry and Smithers (2011) identified two distinct reef 
‘initiation windows’ (grey boxed areas), separated by a ‘hiatus’.  
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Varying scale mechanisms have been invoked as the likely cause of these hiatus including; 

eustatic sea level (ESL) oscillations (Hamanaka et al., 2012), regional  relative sea level 

(RSL) changes (Smithers et al., 2006, Engels et al., 2008), shifting local wave regimes 

(Hongo and Kayanne, 2009), strengthening of the El Niño Southern Oscillation (ENSO; 

Rooney et al., 2004, Toth et al., 2012) and an increase in intense storm activity and 

subsequent sedimentation (Twiggs and Collins, 2010). Yet, the relative synchronicity of reef 

decline across the Indo-Pacific in the mid-Holocene is suggestive of a possible broad scale 

climatic and/or environmental shift. However high-resolution Holocene SL and climate data, 

especially for the southern hemisphere and GBR, are still poorly constrained. Therefore, to 

disentangle factors that have caused coral reef decline in the geological past, it is first 

necessary to establish centennial to sub-centennial scale environmental and climatic 

conditions that potentially led to the mid-Holocene coral hiatus.  

Holocene sea level 

Development of substantial three dimensional reef structures, such as those seen on the GBR, 

are governed by accommodation space which is regulated by both the stage of reef 

development and  sea level  (Veron, 1995, Dullo, 2005, Smithers et al., 2006, Perry and 

Smithers, 2011, Murray-Wallace and Woodroffe, 2014). Changes to total global mean sea 

level (i.e. eustatic sea level; ESL) is controlled by both changes in volume as a result of the 

transfer of water storage to or from  land, and the mass of the ocean due to 

temperature/density changes (Lambeck et al., 2014).  Following the last glacial maximum 

(LGM) large scale northern hemisphere ice melt and Antarctic contributions saw ESL rise by  

~ 120m between 18,000 y BP and 6000 y BP (Clark and Lingle, 1979, Fairbanks, 1989). 

However water redistribution and glacio- hydroisostatic processes mean that relative sea level 

histories (RSL; the level of the ocean to land) are regionally specific (Clark et al., 1978, 

Milne and Mitrovica, 2008, Lambeck et al., 2014, Rovere et al., 2016). Generally,  in the near 

field (i.e. near to former  icesheets)  ice removal from continents (glacio-hydro-isostasy) is 

the dominant control on the RSL signal, whereas in the far field (i.e. far from former glacial 

centres) the redistribution of water  (e.g. ocean syphoning) and hydroisostatic response of 

continental shelves and ocean basins to increased water loads dominate (Clark et al., 1978, 

Nakada and Lambeck, 1989, Lambeck and Nakada, 1990, Mitrovica and Peltier, 1991, 

Pirazzoli and Pluet, 1991, Fleming et al., 1998, Lambeck, 2002, Mitrovica and Milne, 2002, 

Milne and Mitrovica, 2008, Lambeck et al., 2014).  
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Geophysical models of regional scale RSL response to ESL change place the Australian east 

coast (AEC) within a zone characterised by a mid-Holocene highstand (Fig. 3; Clark et al., 

1978) followed by a RSL fall due to water redistribution and hydroisostasy on the continental 

shelf (Mitrovica and Milne, 2002). Reconstructions of RSL on the AEC using geomorphic 

features (e.g. Gagan et al., 1994, Switzer et al., 2010), fixed biological indicators (e.g. Hopley 

and Gill, 1972, Lewis et al., 2008), and fossil coral reefs and microatolls (Chappell, 1983b, 

Chappell, 1983a, McLean and Woodroffe, 1990, Woodroffe et al., 2000) generally support a 

mid-Holocene RSL highstand, although the exact magnitude and timing varies considerably 

with estimates ranging between +0.7m to +3.0m between ~7500 and 5500 yBP (Chappell, 

1983b, Chappell, 1983a, Fleming et al., 1998, Sloss et al., 2007, Lewis et al., 2008, Yu and 

Zhao, 2010). Yet the most contentious issue is whether RSL regressed smoothly or oscillated 

to present levels since the mid-Holocene highstand (Chappell, 1983a, Baker and Haworth, 

2000, Horton et al., 2005, Lewis et al., 2008, Lewis et al., 2013).  

 

   

Figure 3: Geophysical model of relative sea level response (sea level zones) to post glacial melt where no eustatic change 
in ocean volume (i.e. eustatic change) has occurred since 5000 y BP from (from Clark et al., 1978, Woodroffe and Horton, 
2005). 
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Using coral microatolls from a wide latitudinal range on the northern GBR, Chappell (1983a) 

concluded that a linear, or smooth, regression was most likely. However, evidence derived 

from fixed biological indicators (Baker and Haworth, 2000, Baker et al., 2005, Lewis et al., 

2008, Lewis et al., 2015) and coral microatolls (Harris et al., 2015) suggests rapid and 

significant oscillations were a possibility. A comprehensive review by Lewis et al. (2008)  

recalibrated previously published 14C dates of various sea level indicators from the AEC and 

proposed two negative RSL oscillations centred at ~4600 and 2800 yBP, however the 

persistence of the large age errors in this study limited sub-centennial interpretation (Fig. 4).  

 

 

 

Figure 4: Recalibrated 14C sea level data from Lewis et al. (2008; and references therein) with superimposed past sea-
level interpretations of Chappell et al. (1983), Larcombe et al. (1995) and Baker et al. (2005) for eastern Australia. The 
red bars represent growth hiatuses in oyster bed and tubeworm colonies identified by Lewis et al (2008).  

Holocene climate 

To enable a better understanding of coral reef response to predicted climate change and 

increasing anthropogenic pressure it is also important to investigate climate conditions during 

periods of reef “turn-off” throughout the Holocene. Until relatively recently the climate of  

the Holocene, particularly in the Southern Hemisphere, was considered to be relatively stable 

compared with prior geological epochs (Dansgaard et al., 1993, Petit et al., 1999). However, 

as the number and quality of palaeoclimate data improve it is becoming evident that 
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significant and sometimes rapid climatic changes have occurred the since the end of the last 

glacial maximum (Bond et al., 1997, Steig, 1999, Maslin et al., 2001, Mayewski et al., 2004, 

Sang-Ik et al., 2006, Donders et al., 2008, Harrison and Bartlein, 2012).  In a comprehensive 

overview of global palaeoclimate records from both  marine and terrestrial sources, 

Mayewski et al. (2004) detected at least six rapid climate change events (over centennial 

scales) during the Holocene at 9000–8000, 6000–5000, 4200–3800, 3500–2500, 1200–1000, 

and 600–150 y BP. It is notable that most high resolution palaeoclimate data is currently 

biased towards Northern Hemisphere records, and that complex ocean-atmospheric 

teleconnections that drive global climate means that the response to these events will vary at 

hemispherical to regional scales. For example, variations in the average position of the Inter-

Tropical Convergence Zone (ITCZ; e.g. Haug et al., 2001, Fleitmann et al., 2007), historical 

expansion and contraction of the Indo-Pacific Warm Pool (IPWP; e.g. Abram et al., 2009, Xu 

et al., 2010) and changes in the frequency and/or strength of ENSO events (e.g. Woodroffe et 

al., 2003, McGregor and Gagan, 2004, Conroy et al., 2008, Cobb et al., 2013, McGregor et 

al., 2013, Lough et al., 2014, Zhang et al., 2014) will differentially effect coral reefs across 

the Indo-Pacific. 

The El Niño Southern Oscillation (ENSO) is known to be a major driver of Australian 

climate, with the position and timing of positive SST anomalies in the equatorial Pacific 

controlling precipitation, storm events and general atmospheric circulation at inter-annual 

time scales (Lough, 1991, Cane, 2004, Cai and Cowan, 2009, Karumuri et al., 2009, 

Redondo-Rodriguez et al., 2012). The two phases of ENSO, El Niño and La Niña, produce 

significant changes in effective precipitation  (EP) and storm/cyclone occurrence on the AEC, 

with La Niña years being wetter with higher than average SSTs and enhanced cyclone 

activity, and El Niño years associated with drier and calmer conditions during the Austral 

summer (Verdon et al., 2004, Meinke et al., 2005, Redondo-Rodriguez et al., 2012, 

Klingaman et al., 2013, King et al., 2014). Additionally, ENSO strength and periodicity is 

modulated by the Pacific Decadal Oscillation (PDO) and the Inter-decadal Pacific Oscillation 

(IPO) at longer timescales (Power et al., 1999, Power et al., 2006, Verdon and Franks, 2006, 

Klingaman et al., 2013, King et al., 2014, Rodriguez-Ramirez et al., 2014).  

A number of reconstructions of ENSO periodicity throughout the Holocene have been 

developed for the wider Pacific region from both marine [e.g. coral luminescence, Sr/Ca, 

δ18O, foraminiferal Mg/Ca analyses] (Hendy et al., 2003, Woodroffe et al., 2003, McGregor 

and Gagan, 2004, Cobb et al., 2013, McGregor et al., 2013, Lough et al., 2014) and terrestrial 
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proxy records (e.g. lacustrine sedimentary properties, charcoal and palynology) (Shulmeister 

and Lees, 1995, Moy et al., 2002, Donders et al., 2007, Conroy et al., 2008) . It has been 

suggested by several authors that ENSO amplitude was subdued during the early to mid-

Holocene [~ 9500-5000 cal. yr. BP; (Tudhope et al., 2001, McGregor and Gagan, 2004, 

Brown et al., 2006, Brown et al., 2008, Wanner et al., 2008, Chiang et al., 2009, Lough et al., 

2014)] likely due to insolation characteristics (Clement et al., 2000), however spatial 

inconsistencies regarding warm/cool-wet/dry phases in the Southern Hemisphere, including 

the GBR region, are still unresolved (Wanner et al., 2008, Wanner et al., 2011) and may 

reflect internal rather than external mechanisms [e.g. overarching phases of Pacific Decadal 

Oscillations] (Debret et al., 2009, Cobb et al., 2013, Rodriguez-Ramirez et al., 2014, Emile-

geay et al., 2016).   

Where palynological and sedimentary records allow for interpretation of long continuous 

records of climate trends, they are limited in constraining chronologies to datable features 

found within the sediment cores (Kershaw, 1983). Subsequently, although an invaluable 

source of palaeoclimate data, these methods are restricted when trying to detect rapid and/or 

subtle sub-decadal to centennial changes in climate (Cobb et al., 2013). High resolution 

chronologically controlled coral cores address this issue, however proxy reconstructions from 

Holocene coral cores on the GBR are limited to a few studies (Gagan et al., 1998, Lough et 

al., 2014, Roche et al., 2014) which has resulted in a fragmented and sparse time series with 

spatial inconsistencies. Consequently, more records derived from fossil corals are needed to 

allow for better interpretation of high resolution environmental and climate conditions during 

the Holocene, with a focus on periods for which reef hiatus have been documented. 

Objectives and Thesis Outline 

The primary objective of this study is to investigate climatic and environmental conditions 

from the mid-Holocene to present on the Great Barrier Reef that controlled reef development 

and demise. Using high precision Uranium-Thorium (U-Th) dating techniques of sub-fossil 

coral microatolls (sea level) and  novel treatment of coral luminescence index data from sub-

fossil Porites sp. coral cores (climate/ENSO) this study aims to describe the possible 

mechanisms responsible for the previously documented reef “turn-off” event on the GBR in 

the mid-Holocene. 
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Refining sub-centennial relative sea level on the Great Barrier Reef 

Refining the RSL history of the GBR is paramount to understanding Holocene reef growth 

histories and patterns of aggradation and progradation through time. Coral microatolls are 

discoid shaped corals that have living polyps around the perimeter but for which the upper 

dead flat surface has been constrained by the air-sea interface (Fig. 5a, Fig. 6 a, b) , generally 

within ± 10cm of MLWS on the GBR for Porites sp. (Chappell, 1983b).  

  

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 Figure 5: a) Modern microatoll emerged at lowest astronomical tide. The outer perimeter 
of the microatoll is living whilst the upper surface has died off as a result of exposure to 
the air-sea interface at ~mean low water spring tide level (MLWS). b)  A field of fossil 
microatolls surveyed above present MLWS tide level at Alexandra Reef, Australia.  

a 

b 
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Individual coral microatoll morphologies can also provide information of the RSL history 

throughout the living history of the colony (Meltzner and Woodroffe, 2015) with a planar 

upper surface indicating RSL stability (Fig. 6b), a “hat” morphology indicating a fall in RSL 

(Fig. 6c) and a “cup” morphology (Fig. 6d)  representing a rise in RSL (Scoffin et al., 1978, 

Hopley, 1982, Zachariasen et al., 1999) 

 

 

 

 

 

 

 

 

 

 

 

Numerous emergent fossil coral reefs are evident on both inshore continental islands and 

mainland fringing reefs on the GBR, many of which retain in situ coral microatolls on former 

reef flats (e.g. Fig 5b). These fossil microatolls can be surveyed and referenced against 

modern MLWS tide levels to ascertain the height of the fossil communities relative to their 

modern counterparts (Chappell, 1983a).  

Initial investigations of fossil microatolls relied on radiocarbon dating (14C) to determine the 

age of these samples however, these were sometimes either uncalibrated, or inappropriately 

corrected for 14C marine reservoir effects, or calibrated with the IntCal04 dataset using the 

Marine04 “global” marine calibration database (Hughen et al., 2004) that does not take into 

consideration the temporal variability of local/regional ΔR values which may fluctuate by 

>700 years on centennial to millennial scales in the Western Pacific region (McGregor et al., 

  

a b 

c d 

Figure 6: Schematic representation of coral microatoll formation and morphologies in response to relative 
sea level (RSL) changes. a) a massive coral growing below the air-sea interface forms a hemispherical growth 
form; b) when the coral reaches the constraining sea level (SL) the upper surface ceases to grow, but the 
coral edge retains living polyps; c) a RSL fall will result in a “hat” morphology where the outer living surface 
elevation is lowered; and d) a rise in RSL will result in a “cup” morphology where by the living outer polyps 
will grow up to the new SL height. Adapted from (Scoffin et al., 1978, Zachariasen et al., 1999)  
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2008, Yu et al., 2010).  More recently uranium-thorium (or U-series) dating has been adopted 

as a method for determining coral ages, with age errors significantly reduced compared to 

earlier 14C techniques (Clark et al., 2014). U-Th dating relies on the radioactive decay chain 

of 238U to 206Pb via intermediate daughter products 234U and 230Th (Cheng et al., 2000, 

McCulloch and Mortimer, 2008). Where uranium is soluble in seawater and taken up by 

corals during skeletogenesis (between 2 - 4ppm), thorium is non-soluble and therefore 

generally negligible in coral aragonite at the time of formation. By measuring the ratio 

of 238U to 230Th in corals the absolute age can be calculated using the isotopic half- life 

values, with corrections made for detrital contamination calculated from 232Th values 

measured simultaneously (Cheng et al., 2000, Cobb et al., 2003, Shen et al., 2008).   

Using microatolls dated with high-precision U-Th dating techniques this thesis aims to refine 

the RSL history of the GBR throughout the Holocene. Results pertaining to this part of the 

thesis are presented in Chapters 2 and 3;   

Theme 1: Holocene sea level 

Hypothesis 1: Temporal variations of relative sea level have controlled reef development 

and demise in the Keppel Islands, GBR, throughout the Holocene. 

• Local scale relative sea level, Keppel Islands – Evidence is still equivocal as to 

whether RSL regressed smoothly or oscillated following the mid-Holocene highstand.  

Previous sea level studies have been restricted from detecting small and possibly rapid 

changes in RSL due to uncertainties and errors associated with earlier dating 

techniques, and interpretation of a limited number of samples per site (generally < 10). 

To evaluate relative sea level (RSL), and the pattern of sea level regression, high 

precision U-Th age determinations and elevation surveys of numerous coral 

microatolls were conducted on three inshore continental island fringing fossil reefs in 

the Keppel Islands, southern GBR. Microatolls are precise indicators of reef phase 

shifts from a vertically accreting reef matrix (“catch up”) to one that has reached RSL 

and is then constrained vertically to that point (Scoffin et al., 1978, Stoddart et al., 

1978, Stoddart and Scoffin, 1979).  This data provided the first evidence of a local 

scale oscillatory mode of SL regression using microatolls from multiple sites within 

the same region.  The results of this study are presented in Chapter 2:  
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“Holocene sea level instability in the southern Great Barrier Reef, Australia: high-

precision U-Th dating of fossil microatolls”  

Leonard, N.D., Zhao, J-x., Welsh, K.J., Feng, Y-x., Smithers, S.G., Pandolfi, J.M., Clark, T.R 

 Coral Reefs (2016) 

 

• Regional scale sea level, Great Barrier Reef  - Previous studies and syntheses of SL 

on the GBR have included not only a variety of SL indicators with disparate elevation 

ranges (fixed biological indicators [FBI’s], foraminiferal transfer functions, reef 

cores/microatolls and geomorphological evidence), but also data combined from wide 

latitudinal ranges (Hopley, 1975, Chappell, 1983a, Baker and Haworth, 2000, Baker, 

2001, Sloss et al., 2007, Lewis et al., 2008, Lewis et al., 2013).  This study presents 98 

new microatoll U-Th age elevation points from 14 reefs presented separately across a 

wide latitudinal range on the GBR (11˚S - 23˚S) based on; a) proximity to each other; 

b) width of the continental shelf and; c) post-matching of SL trends.  Data from this 

study and from Chapter 2 are combined to further constrain Holocene RSL history on 

the GBR. The results are presented in Chapter 3: 

“Holocene sea level oscillations on the Great Barrier Reef and links to climate”  

Leonard, N.D., Zhao, J-x, Welsh, K.J., Feng, Y-x, Clark, T.R, Pandolfi, J.M.  

(In prep) – Target Journal – Nature, Nature Geoscience 

 

Theme 2: Holocene climate and novel techniques for palaeoclimate reconstructions 

High resolution mid-Holocene climate records in the southern hemisphere are currently 

lacking. The second theme of this thesis is therefore concentrated on developing novel 

techniques for reconstructing past climatic and environmental conditions on the GBR using 

massive Porites sp. corals.   
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Annual resolution climate using coral luminescence 

Fluorescent bands (or coral luminescence) revealed under ultraviolet (UV) light in annually 

banded massive corals were first described by Isdale (1984), with initial investigations 

suggesting that the distinct bands resulted from fluvially derived humic/fulvic acids (Boto 

and Isdale, 1985, Susic et al., 1991). However, a subsequent study by Barnes and Taylor 

(2005) suggests that luminescent lines are likely the result of skeletal architecture, where low 

density portions of skeleton are associated with reduced salinity. This was suggested as corals 

far removed from terrestrial influence were also sometimes found to exhibit luminescent lines 

that could not be explained by direct humic acid contribution. Regardless, at inshore locations 

luminescence bands represent river discharge events by either mechanism, and have been 

used extensively to reconstruct river discharge/rainfall on the GBR (Lough, 1991, Isdale et 

al., 1998, Lough et al., 2002, Fallon et al., 2003, Hendy et al., 2003, Lough, 2007, Lough, 

2011b, Lough, 2011a, Lough et al., 2014, Rodriguez-Ramirez et al., 2014, Lough et al., 

2015). As precipitation on the Queensland coast is strongly modulated by wider climatic 

mechanisms, luminescent lines in corals have also been used to reconstruct rainfall frequency 

with links to ENSO and the Pacific Decadal Oscillation, to extend the record beyond modern 

instrumentation to the past ~300 to 400 years (PDO; Isdale et al., 1998, Lough et al., 2002, 

Lough, 2007, Lough, 2011b, Lough et al., 2014, Rodriguez-Ramirez et al., 2014).  

Fossil coral reconstructions of ENSO variability on the GBR are currently limited (Roche et 

al., 2014). Lough et al. (2014) used both modern and fossil (~6000 yBP) luminescence lines 

in massive Porites to reconstruct Burdekin River discharge events, and concluded that ENSO 

frequency and strength was reduced in the mid-Holocene compared to present. Roche et al. 

(2014) used geochemical analysis and spectral luminescence data from a modern and fossil 

microatoll from King Reef and suggested higher salinity variations, increased green/blue 

spectral ratios (i.e. increased terrestrial input) and reduced Sr/Ca seasonal SST range all  

represent a wetter and warmer phase on the GBR at~4600 yBP, reminiscent of modern La 

Niña like conditions. Clearly more Holocene ‘windows’ derived from both coral 

luminescence and geochemical proxy reconstructions are needed before a complete picture of 

ENSO variability can be assessed on the GBR throughout the Holocene, however data from 

elsewhere in Australia and in the wider Pacific generally supports reduced ENSO variability 

and strength during the mid-Holocene (Shulmeister and Lees, 1995, Moy et al., 2002, Rodo 
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and Rodriguez-Arias, 2004, Wanner et al., 2008, Chiang et al., 2009, Carré et al., 2012, Cobb 

et al., 2013, McGregor et al., 2013, Zhang et al., 2014, Emile-geay et al., 2016).  

Continuous wavelet transform  
 

Continuous wavelet transforms (CWTs) are increasingly being used for identifying 

frequencies or periodicities of non-stationary climate data through time. The Morlet wavelet 

is a cosine wavelet modulated with a Gaussian envelope which allows for detection of peaks 

and troughs within time series data (Morlet et al., 1982a, Nakken, 1999). Compared to 

Fourier transforms where the “window” of transformation is of a fixed size, thus limiting 

either the time or frequency resolution of climatic data, CWT allows for extension of the 

wavelet in the time band to reflect low frequency (dilation) of the climate signal (i.e. low 

resolution periodicities) and high frequency (contraction) of the wavelet for shorter time 

fields (Morlet et al., 1982b, Torrence and Compo, 1998, Cazelles et al., 2007). This allows 

for visualisation of one dimensional time series data in two dimensional time-frequency space 

(Morlet et al., 1982b, Lau and Weng, 1995) displayed as power spectrum for which 

significance of the signal can be ascertained (Torrence and Compo, 1998).  

 

Figure 7: Schematic showing the difference between Morlet continuous wavelet transform and Fourier transform.  (a) 
Wavelets and their time–frequency boxes representing the corresponding variance (energy) distribution (Where τ = 
time; a = scale of the wavelet and ω = frequency). When the scale a changes the time resolution and frequency 
resolution both change. (b) In Fourier decomposition of a signal the boxes of the transform are obtained by a time- or 
frequency shift, which yields the same variance spreads over the entire time–frequency reconstruction. (from Cazelles et 
al., 2007) 
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Hypothesis 2: Wavelet analysis of visually assessed ultraviolet (UV) luminescent lines in 

corals enables reconstruction of past ENSO variability on the GBR.  

 
Numerous studies are now taking advantage of continuous wavelet transforms (CWT) 

of time-series environmental data (Gu and Philander, 1995, Torrence and Compo, 

1998, Grinsted et al., 2004, Debret et al., 2009, Grove et al., 2013, Walther et al., 

2013, Soon et al., 2014, Lough et al., 2015) which allows for interpretation in two 

dimensional time-frequency space (Torrence and Compo, 1998). This study used a 

previously published record of visually assessed luminescence data from a modern 

Porites sp. coral from Great Palm Island (GPI), central GBR, and Niño 3 region SST 

data to assess the utility of CWTs (Morlet) in reconstructing ENSO frequency and 

variability. The same method was then applied to three fossil Porites sp. cores from 

GPI U-Th dated to ~5200, 4900 and 4300 yBP. The results of this research are 

presented in Chapter 4:  

 

“Evidence of reduced mid‐Holocene ENSO variance on the Great Barrier Reef, 
Australia” 

Leonard, N.D., Welsh, K.J., Lough J.M., Pandolfi, J.M., Clark, T.R., Zhao, J-x. 

 Paleoceanography (2016) 

 

Coral geochemistry 

It is undeniable that fluvial terrigenous outputs have been altered since European settlement 

on the east coast of Australia. The region has seen a fourfold increase in agriculture and 

farming practise within the 38 fluvial catchments entering the GBR over the last 150 years 

(Neil et al., 2002, Lawrence, 2010). Further, rapid population increases and a burgeoning 

mining industry along the length of the Queensland coast has led to increased land clearing 

for infrastructure (e.g. urban growth, port expansions, road development), yet limited 

continuous data are available for total sediment load onto inshore reefs. Modelling studies 

have reported that sediment loads to the GBR have increased 4 to 10 times since the 1850’s 

(e.g. Neil et al., 2002, Kroon et al., 2012) however these models incorporate a number of 

assumptions about fluvial and climatic patterns pre-disturbance for which data is limited due 
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to lack of instrumental monitoring beyond a few decades. Consequently, a number of 

methods have been developed to obtain riverine sedimentary histories beyond instrumental 

records either directly (e.g. sediment cores;  Cavanagh et al., 1999), or by proxy (e.g. coral 

geochemistry such as Barium/Calcium [Ba/Ca] and luminescence banding; Lough and 

Barnes, 1997, McCulloch et al., 2003, Lewis et al., 2007).  

Massive long-lived corals offer a unique opportunity to both extend the modern instrumental 

record, and to reconstruct environmental conditions throughout the Holocene. When sliced 

and X-radiographed, drilled cores of corals can be chronologically constrained by uranium-

thorium (U-Th) dating techniques and band counting, where one couplet of high density 

(dark) and low density (light) banding in the aragonite skeleton is equal to one year of growth 

(Knutson et al., 1972).  Early evaluation of the geochemical composition of the aragonite of 

corals recognised that trace elements and stable isotopes within the skeletal architecture 

recorded numerous environmental parameters. For example, incorporation of Barium (Ba), 

rare earth elements (REEs) and Yttrium (Y)have been shown to reflect the ambient chemistry 

of the sea water in which the coral grew (Sholkovitz and Shen, 1995, Sinclair et al., 1998, 

McCulloch et al., 2003, Dubinin, 2004). This is significant in that oceanic surface waters are 

normally depleted in Ba, REEs and Y (REY), with the major source (>90%) of REYs in 

coastal water is derived from suspended and dissolved riverine input (Dubinin, 2004). 

Therefore, measuring the geochemically incorporated Ba and REYs in the skeletons of long-

lived massive corals can be used as a proxy to evaluate terrigenous riverine input (Shen and 

Sanford, 1990).  

Although numerous attempts have been made to reconcile Ba/Ca records with instrumental 

data of rainfall/flood events (Alibert et al., 2003, McCulloch et al., 2003, Jupiter et al., 2008) 

or known land use changes (Lewis et al., 2007), anomalous peaks and background variability 

of Ba/Ca that is decoupled from flood flow data or known land use changes restricts the 

interpretation of this proxy beyond the instrumental record. A number of hypothesis have 

been suggested to explain possible causes of observed Ba/Ca anomalies including, tidal 

mangrove sediment release of stored Ba under hyper-saline conditions during dry seasons 

(Alibert et al., 2003), the significance of Ba in biological systems such as phytoplankton 

blooms/scavenging processes (Lewis et al., 2007) and upwelling (McCulloch et al., 2003), 

however more critical research is needed to fully understand the sources and sinks of Ba at 

regional scales.  
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Low resolution (biannual) analysis of Yttrium, using solution ICP-MS, has shown promise as 

a gauge of fine sediment budget to the GBR, due to its role in secondary (biological) 

processes being considered insignificant (Lewis et al., 2007).  Earlier studies applying LA-

ICP-MS analysis of Y also demonstrated a decreasing concentration away from sources of 

sedimentary input, further suggesting that peaks may coincide with flood events (Alibert et 

al., 2003), but the lower precision in this study renders interpretation equivocal.  Seasonally 

resolute studies of REEs, that may reflect high flow rainfall events, are to date relatively 

under-examined in geochemical investigations of coral aragonite, mainly due to previously 

low detection limits available and sample preparation time (Wyndham et al., 2004).  As 

sample protocols and detection limits of solution ICP-MS improve, investigations into utility 

of REEs as a proxy of riverine terrigenous input to nearshore reefs are now more accessible.   

Therefore, high-resolution analysis of REEs in chronologically-controlled annual banding of 

massive corals, with particular attention to Ce and La (LREEs), are suggested to provide a 

more cohesive separation of high flow riverine input onto reefs versus signals resulting from 

secondary biological processes as seen in exclusive Ba/Ca analysis.  

Hypothesis 3: Time series of rare earth elements and Yttrium from chronologically 

controlled coral cores provides a proxy of riverine sedimentary input to coral reefs. 

• Coral geochemical proxies for terrigenous input – The rare earth elements (REEs) 

offer potential as a proxy for reconstructing rainfall/flood events (Wyndham et al., 

2004) and turbidity as, in coastal waters, ~90% are derived from suspended and 

dissolved riverine input (Dubinin, 2004). However, few records coral REE chemistry 

in massive corals from the GBR at sub-annual resolution are currently available. This 

study used cores from four massive Porites sp. corals live collected from the 

Frankland Islands and Sudbury Cay, a region that experiences a known water quality 

gradient driven by discharge from the Russell-Mulgrave River. The geochemical 

proxy data from these cores is compared with in situ data loggers (Australian Institute 

of Marine Science) and river discharge, rainfall (Australian Bureau of Meteorology) 

and wind data (DERM). These records have been used to determine regional 

relationships between geochemical proxies in corals that can record reliable riverine 

input events to inshore turbid reefs that allow for a more cohesive view of reef 

sediment input histories and environmental conditions. Results of this study are 

presented in Chapter 5: 
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“High resolution geochemical analysis of massive Porites sp. corals, Wet Tropics, GBR; 

Rare Earth Elements and Yttrium as indicators of terrigenous input” 

Leonard, N.D., Welsh, K.J., Nguyen, A.D., Sadler, J., Pandolfi, J.M., Clark, T.R., Zhao, J-x., 

Webb, G.E.  

(In prep) - Target Journal – Geochimica et Cosmochimica Acta 

 

A synthesis and general discussion of the main results of this thesis and directions for future 

research is presented in Chapter 6.   
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Abstract 

Three emergent sub-fossil reef flats from the inshore Keppel Islands, Great Barrier Reef 

(GBR), Australia, were used to reconstruct relative sea level (RSL). Forty-two high-precision 

uranium-thorium (U-Th) dates obtained from coral microatolls and non-microatoll colonies 

(2σ age errors from ± 8 to 37 years) in conjunction with elevation surveys provide evidence 

in support of a non-linear RSL regression throughout the Holocene.  Results show that RSL 

was as least 0.75 m above present from ~6,500 – 5,500 years before present (yr. BP; before 

1950). Following this highstand, two sites indicate a coeval lowering of RSL of at least 0.4 m 

from 5,500 – 5,300 yr. BP which was maintained for ~200 years. After the lowstand, RSL 

returns to higher levels before a 2,000 year hiatus in reef flat corals after 4,600 yr. BP at all 

three sites. A second possible RSL lowering event of ~0.3 m from ~2,800 –1,600 yr. BP is 

then detected before RSL stabilises ~0.2 m above present levels by 900 yr. BP. Whilst the 

mechanism of the RSL instability is still uncertain, the alignment with previously reported 

RSL oscillations, rapid global climate changes and mid-Holocene reef “turn-off” on the GBR 

are discussed. 
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Introduction 

It is indisputable that coral reefs are under increasing pressure from anthropogenic influence 

globally (Pandolfi et al., 2003, Veron et al., 2009, Muthukrishnan and Fong, 2014).  

Nevertheless, natural processes have equally affected reef development throughout geological 

history, and worldwide coral reefs have suffered significant disturbances and hiatuses prior to 

anthropogenic influence (Buddemeier and Hopley, 1988, Hughes and Connell, 1999, 

Smithers et al., 2006, Perry and Smithers, 2011, Hamanaka et al., 2012, Toth et al., 2012). 

Determining the driving mechanisms of previous reef disturbance events is not only vital to 

interpreting Holocene reef histories, but allows for improved understanding of the future 

trajectory of reefs under changing climatic and environmental conditions. 

Eustatic sea level (ESL) transgressive/regressive cycles are one of the primary controls of 

coral reef expansion/contraction throughout the Quaternary (Kennedy and Woodroffe, 2002, 

Hopley et al., 2007). Where ESL is dominated by changes in ice sheet volume and global 

steric variations, relative sea level (RSL) at any given coastline is governed by ESL 

contributions, as well as regional glacio-hydro-isostatic and tectonic effects (Lambeck and 

Nakada, 1990, Lambeck, 1993, Lambeck et al., 2014), water redistribution (Mitrovica and 

Milne, 2002) and climate (Hamanaka et al., 2012). At near-field sites (i.e. close to former 

icesheets and melt water) glacio-isostatic influence on RSL is dominant, however at far-field 

locations (distant from major ice accumulations) RSL at centennial to millennial timescales is 

mainly controlled by hydro-isostasy, equatorial ocean syphoning and steric effects which can 

produce significant spatial and temporal variability over just a few hundred kilometres 

(Lambeck and Nakada, 1990, Mitrovica and Milne, 2002). 

Geophysical modelling of the regional response to glacio-hydro-isostatic processes has 

resulted in the identification of distinct zones of globally predicted RSL throughout the 

Holocene (Clark et al., 1978, Pirazzoli and Pluet, 1991).  The islands and reefs of the inshore 

Great Barrier Reef (GBR), proximal to the mainland Queensland coast are characterised by a 

rapidly rising RSL from the early to mid-Holocene, culminating in a RSL highstand of +1 to 

+3 m by ~5,000 years before present  after which  significant meltwater contribution from the 

large northern hemisphere icesheets ceased (Clark et al., 1978, Nakada and Lambeck, 1989). 

Evidence of this highstand  along the Australian east coast (AEC) between 7,000 – 5,000 

years before present (yr. B.P; where present is  1950) is widespread and widely accepted 

(McLean et al., 1978, Hopley, 1980, Chappell et al., 1982, Chappell, 1983, Woodroffe et al., 
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2000, Lewis et al., 2008, Yu and Zhao, 2010b, Leonard et al., 2013), although the magnitude 

and precise timing of the highstand is yet to be unequivocally refined (see Lewis et al., 2008 

and , Lewis et al., 2013 for comprehensive reviews of Australian sea level throughout the 

Holocene). 

Inshore reef development on the GBR reflects the rapid early to mid-Holocene RSL rise with 

coral initiation following inundation of the shallow Pleistocene shelf from ~8,500 yr. BP, 

followed by rapid reef accretion in either “catch up” or “keep up” modes of growth until 

~5,500 yr. BP (Neumann and Macintyre, 1985, Kleypas and Hopley, 1992, Smithers et al., 

2006, Perry and Smithers, 2011, Camoin and Webster, 2015). After ~5,500cal yr. BP 

however, both RSL and reef growth histories become increasingly ambiguous. Whether RSL 

regressed smoothly (Chappell, 1983) or oscillated/stepped down (Baker and Haworth, 2000, 

Baker, 2001, Lewis et al., 2008) on the AEC following the mid-Holocene highstand has been 

a contentious issue for over four decades. Indeed, different statistical treatments of the same 

sea level (SL) data  suggests either regression mode to be equally likely (Woodroffe, 2009).  

At the same time, stratigraphic hiatuses in coral reef cores and a lack of reef initiation in the 

northern and southern inshore GBR have been documented from 5,500 – 2,800 yr. BP, 

suggestive of significant environmental change at this time, yet this hiatus is not detected in 

the central GBR (Perry and Smithers, 2011). Perry and Smithers (2011) proposed that a 

reduction in vertical accommodation space due to a slowly falling RSL in synergy with 

changes to environmental conditions at inshore locations (e.g. temperature, rainfall and shore 

progradation) limited significant reef aggradation/progradation in the mid-Holocene.  

However,   such a synchronous and broad-scale response is suggestive of either a more abrupt 

change in RSL  than  currently proposed for the GBR (Chappell, 1983), or that rapid and 

wide scale climatic and environmental change was the primary driver of reef “turn-off” 

(Buddemeier and Hopley, 1988). 

Whilst rapid changes or oscillations of RSL during the Holocene have been proposed for the 

AEC, they are most often dismissed as artefacts of the proxies used and uncertainties of age-

error calculations (Perry and Smithers, 2011). In order to obtain a temporally continuous 

record it is often necessary to incorporate dissimilar SL indicators, or SL indicators from 

large latitudinal ranges, into a single  interpretation potentially obscuring subtle variations 

(Chappell, 1983, Sloss et al., 2007, Lewis et al., 2008, Lewis et al., 2013). Additionally, 

directly comparing or combining data from separate studies is problematic as: a) the 

reference datum and the absolute elevation of the indicators being used may differ; b) 
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inconsistent methods between studies are used to establish elevation and age; c) large age 

errors may be associated with dating techniques [e.g. for 14C dating, substantial age errors up 

to ± 500 years may be introduced if temporal changes in atmospheric production rates as well 

as global and regional marine 14C reservoir effects are taken into consideration  (McGregor et 

al., 2008, Yu et al., 2010, Hua et al., 2015)]; and d) the environmental context of the 

indicators is critically important but is often difficult to interpret and commonly not reported. 

The primary objective of this study was to determine whether low magnitude RSL instability 

could be detected using highly precise U-Th dating techniques of coral microatolls from 

multiple sites in a tectonically stable far-field region. In addition, we also obtained samples of 

non-microatolls to relate dated microatolls to reef flat development at their time of growth.  

This sampling regime allowed for both intra- and inter-site comparisons of equivalent data, 

thereby increasing the confidence in the absolute RSL signal versus single reef 

geomorphological effects.  This study is the first comprehensive evaluation of Holocene RSL 

and reef flat history in the Keppel Islands, a region for which data has been notably absent 

(Hopley et al., 2007, Lewis et al., 2013). 

Materials and Methods 

Regional Setting 

The Keppel Islands are a group of continental islands located on the inner shelf of the 

southern GBR, Queensland, Australia (23˚10’S, 150˚59’E; Fig. 1).  The islands are located in 

a macro tidal setting with a maximum tidal range of ~5 m. The region experiences a 

seasonally dry tropical climate in which most (on average 60%) of the rainfall typically 

occurs in the short wet season between December and March (B.O.M., 2011).  Inter-annual 

variability is also high, with long dry periods often followed by episodic high flow rainfall 

events associated with tropical cyclones or monsoonal lows (Douglas et al., 2006, Brooke et 

al., 2008) which are modulated by complex interactions of the El Niño Southern Oscillation 

(ENSO) and Pacific Decadal Oscillation (Rodriguez-Ramirez et al., 2014). Due to frequent 

disturbance events (e.g. cyclones flood plumes) the modern Keppel Islands reefs are 

dominated by fast growing arborescent Acropora sp. (see Supp. 1). Although it has been 

suggested that in the Holocene suspended sediment loads from flood events were likely to be 

relatively high due to naturally sparse vegetative cover, no data are currently available for 

Holocene reef development or environmental conditions in this region (Douglas et al., 2006). 
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Three islands with evident emergent reef flats containing fossil corals and microatolls in 

growth position were visited from the 19th to 23rd June 2013 at low tide: North Keppel Island 

(NKI), Great Keppel Island (GKI) and Humpy Island (HI; Fig. 1). All sites displayed seaward 

sloping reef flats with no evidence of significant reef rims present. Microatolls of various 

sizes (diameter range 40 cm to 250 cm; Fig. 2; Table 1) were targeted to allow for the 

detection of possible shorter phases of RSL instability that may not be recognised if only the 

largest microatolls were sampled. Microatolls were elevated up to 0.4 m above the fossil reef 

flat substrate that was either overlain by thick unconsolidated mixed siliciclastic/carbonate 

sediments (Fig. 2a) or infilled with authogenic carbonate sands (Fig. 2d). At HI (microatolls 

n=12; non-microatolls n=10) and GKI (microatolls n=8), elevations were taken using a 

Magnum-Proshot 4.7 Laser Level and Apache Lightning 2 receiver and referenced against 

replicate timed-still tide levels. Due to limited time to access the reef flat at low tide at NKI, 

microatolls (n=13) were measured directly against still water level within groups that had 

elevation differences <5 cm.  All elevations were determined using tide gauge data from 

Rosslyn Bay (Station-024011A; Fig. 1) provided by Maritime Safety Queensland (MSQ) and 

reduced to metres relative to present which we defined as the height above local mean low 

water spring tide (MLWS; 0.76 metres above lowest astronomical tide for the Keppel 

Islands); the level to which microatolls are constrained by the air-sea interface (Scoffin et al., 

1978, Smithers and Woodroffe, 2000, Murray-Wallace and Woodroffe, 2014). 

Even though conditions were calm on all days (<5 kt winds; mean sea-level pressure (MSLP) 

~1,000 hPa), we acknowledge that measuring the absolute elevation of microatolls by 

referencing to timed-still tide levels is imprecise, mainly related to possible time lags between 

tide gauge location (Rosslyn Bay) and our sites. Although the difference in tide time in the 

Keppel Islands is only ± 5 minutes from the mainland (which was taken into consideration 

when calculating heights), so as not to underestimate errors associated with our methodology 

we calculated the propagated error terms of both the tide heights within a half hour period of 

our sea level tie points (<0.1 m) and the replicate tie points (<0.05 m) giving an error term of 

0.11 m. We therefore assigned a conservative error of ±15 cm to our measurements to 

incorporate both sources of potential error associated with tide measurements.  It must be 

noted however, that the error of the relative position of each coral sample to each other within 

each site is minimal and is a function of the laser level (accuracy of ± 1.0 mm/30 m; HI and 

GKI) or relative position to each other (< 0.05 m; NKI). 
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Samples of coral were collected with a hammer and chisel from the centre of each coral 

microatoll where the elevation and diameter were recorded (Table 1). The flat, upper surface 

of the centre of the coral microatoll where the corallites were observed to radiate (Fig. 2c) 

represents the surface of the colony that was originally constrained be the air-sea interface, 

and was used to justify our sampling strategy.  Samples were also taken from the centre of 

non-microatoll fossil colonies (i.e. in situ remnant robust branching colonies and massive 

corals with no radial corallites) at HI (n=10) to determine the timing of reef flat development.  

Personal observations and previous dating trials have revealed that the centres of microatolls 

and corals are generally less prone to bio-erosion and detrital inclusions allowing for more 

precise U-Th age determinations. 

Uranium-thorium dating 

Samples were prepared for U-Th dating by Multi-Collector Inductively Coupled Mass 

Spectrometry (MC-ICP-MS) at the Radiogenic Isotope Facility,  the University of 

Queensland, using methods described in Clark et al. (2012, 2014b) and Leonard et al. (2013).  

Full laboratory methods are described in detail in Supplementary 2 of the present paper.  

Samples of coeval material with different levels of cleaning protocol were measured for age 

validation of replicate samples and to determine local detrital 230Th/232Th ratios 

using 230Th/232Th-238U/232Th isochrons (Supp. Fig. 3.1).  Sample ages were calculated using 

the decay constants of Cheng et al. (2000) using Isoplot/Ex software (Ludwig, 2003) and 

corrected for initial/detrital 230Th using a two-component mixing correction scheme described 

by Clark et al. (2014a) using 230Th/232Thhyd and 230Th/232Thdet ratios of 1.08 ± 0.23 and 0.62 ± 

0.14, respectively. 

Results 

Uranium-thorium age data 

Measured 232Th for the corals collected from the Keppel Islands was variable, with 98% of 

samples ranging from 0.08–12.41 ppb (72%  <3.5 ppb) suggesting relatively small to 

negligible initial 230Th and/or non-radiogenic detrital 230Th contamination in most of the 

samples we collected (Table 1). Elevated 232Th (25.72 ppb) and a low 230Th/232Th ratio (6.84) 

was determined for sample GKI007, indicating significant contamination with detrital 230Th 

and justifying the removal of this sample from further analysis (N.B. removal of this data 

point did not affect the interpretation of RSL). All samples appear to have remained a closed 
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system supported by δ234U values falling within analytical error of the modern seawater value 

of 146.0 ± 3‰ and uranium concentrations similar to previously reported values for pristine 

coral, ranging from 2.6–3.5 ppm (Henderson, 2002, Cobb et al., 2003, Shen et al., 2008, 

Clark et al., 2012, Leonard et al., 2013). The average detrital 230Th/232Th ratio obtained from 

the Keppel Islands isochrons (0.62 ± 0.14; Supp. Fig. 3.1) is close to the 0.64 ± 0.04 ratio 

reported by Clark et al. (2014a) for massive Porites corals from the Palm Islands 

(18°43/146°35; Fig. 1) - a comparable inshore site ~650 km north of the present study area.  

The three replicate isochron samples used for age validation (GKI003, GKI004 and GKI005) 

are all within age error of the reported U-Th age of the final ultra-cleaned sample (Supp. Fig. 

3.2). 

Age-Elevation 

Keppel Islands corrected 230Th ages of non-microatoll corals and microatolls (n = 42; 

reported hereafter as calendar years before present – 1950) ranged from 6,864 - 968 yr. BP, 

although distributed discontinuously throughout this time (Table 1). Reef flats had developed 

at all three sites by the mid-Holocene, yet no reef flat samples were found to be dated at any 

site between ~4,600 – 2,800 yr. BP. All elevations are reported relative to MLWS tide height 

to which open water microatolls are constrained and therefore considered representative of 

height above/below present RSL. 

Humpy Island is the smallest island and reef flat of the three sites investigated in this study.  

The modern leeward reef lies 150–350 m from the emerged reef flat, which is situated in a 

small embayment on the southwest of the island (Fig. 1 and Supp. 4a). The oldest microatoll 

at this site was Cyphastrea spp. (6,209 ± 27 yr. BP) at 0.4 m above present, however, large 

branching corals as early as 6,800 yr. BP are present (Fig. 3, Table 1).  Both microatolls and 

non-microatolls are found from ~6,200 to 5,500 yr. BP at ~ 0.7 m above present, suggestive 

of a fully developed reef flat (Fig. 3).  Four Porites sp. microatolls dated between ~5,300-

5,100 yr. BP are ~0.4 – 0.7 m lower than their older counterparts (Fig. 3) with no corals 

found above this elevation for this period.  After 5,100 yr. BP, only two late-Holocene 

microatolls ~0.2 m above present at ~970 yr. BP are found at this site. 

On Great Keppel Island (Fig. 1, Supp. 4b), the modern reef is located almost perpendicular to 

a rocky headland at the seaward edge of an embayment on the south west of the island and is 

dominated by branching Acropora sp. (Fig. 2b). The relict emergent reef is located ~50 m 

towards the shore from the living coral zone and is partially covered by mixed 
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siliciclastic/carbonate sediment.  Only one mid-Holocene sample (GKI 009) was dated at 

~6,500 yr. BP at 0.52 m above present MLWS level.  Whilst more mid-Holocene samples are 

most likely present at GKI, the occurrence of relatively thick unconsolidated sediments 

means that they are probably only intermittently exposed (Fig. 2a). The remaining samples 

from GKI are all late Holocene from 2,800 -1,400 yr. BP.  Microatolls are at 0.3 m above 

present sea level at 2,856 yr. BP, -0.07 m by 1,640 yr. BP, 0.05 m at 1,550 yr. BP and 0.17 m 

at 1468 yr. BP (Fig.4a). 

At North Keppel Island (NKI; Fig. 1, Supp. 4c) modern coral growth is mainly constrained to 

the reef slope, with small Acropora sp. recruits and a few modern microatolls (living tissue 

<5 cm thick on the edge of the colony; Supp. 4d) in areas of intermittent negative relief.  

Fossil microatolls at NKI are ~0.8 m above present sea level from 5,800 – 5,700 yr. BP and 

0.4 m above present sea level between 5,350 – 5,125 yr. BP. From 5,000 – 4,600 yr. BP, 

microatolls are ~0.7 m above present sea level after which no further reef flat corals were 

sampled in this study at NKI (Fig 4a). 

Discussion and interpretation 

High-precision U-Th age-elevation data from corals and microatolls in the Keppel Islands 

provides evidence in support of a non-linear RSL regression throughout the Holocene on the 

southern GBR.  Our study is based on 42 U-Th dates obtained from in situ fossil microatolls 

(n=32) and relict reef flat corals (non-microatolls; n=10) from three continental islands. This 

is the first account of centennial scale RSL instability documented from multiple reefs within 

the same region. 

Mid-Holocene (6,500-4,600 yr. BP) 

Models of glacio-hydro-isostatic response of RSL predict a highstand of +1 to + 3 m for the 

inshore GBR in the mid-Holocene (Clark et al., 1978, Chappell et al., 1982, Lambeck and 

Nakada, 1990, Lambeck, 2013). The earliest microatoll samples in the Keppel Islands are 0.4 

– 0.5 m above present from ~6,500 – 6,200 yr. BP and ~ 0.7 m by 6,000 yr. BP (Fig. 3 and 4).  

Elevations of non-microatoll corals from HI suggests that the highstand was likely reached 

just after ~6,200 yr. BP, however, determining absolute RSL from non-microatolls is not 

possible (Fig. 3a). The highstand in the Keppel Islands, is both later and lower than 

previously proposed highstand for the AEC [e.g. 1.0 -1.5 m at 7,400 yr. BP  (Sloss et al., 

2007) and  7,000 yr. BP  (Lewis et al., 2008)]. However, these previous highstand age and 
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elevation data must be treated with caution as they are based either on a limited number of 

radiocarbon ages obtained from supratidal deposits, for which upper elevation ranges are 

difficult to determine (Sloss et al., 2007), or recalibrated radiocarbon data from a number of 

different studies utilising different methods and indicators (Lewis et al., 2008). Early reef 

initiation in the Keppel Islands may have been inhibited by conditions unsuitable or marginal 

for coral growth due to the movement of the coastal terrigenous sediment wedge (TSW) 

and/or resuspension of pre-transgressive sediments (Larcombe and Woolfe, 1999). 

Nevertheless, RSL appears to have not peaked in the southern GBR until after 6,200 yr. BP. 

Furthermore, microatoll elevations designate the lower height estimate of RSL, commonly 

~0.5 m lower than fixed biological indicators ( FBI's; e.g. tubeworms and oyster beds;  Lewis 

et al., 2008) or more when compared to mangrove deposits (Sloss et al., 2007), which makes 

our data comparable to previous elevation reconstructions. Furthermore, the magnitude and 

timing of the mid-Holocene highstand may vary between coastal and shelf sites due to mantle 

rheology, or by latitude as a function of Antarctic melt water contribution (Lambeck, 2002). 

Following the highstand in the Keppel Islands, two sites (HI and NKI) show a rapid coeval 

fall in RSL of 0.4 m – 0.7 m at 5,500 yr. BP, with no microatolls or non-microatoll corals 

found above 0.4 m between 5,300 – 5,100 yr. BP. This lowering of RSL cannot be explained 

by a lack of accommodation space as microatolls reform at NKI at higher elevations (0.6 – 

0.7 m) from 5,000 – 4,600 yr. BP at more landward locations on the reef flat (see Fig. 5). 

Although ponding must be considered when interpreting the return to higher RSL after 5,100 

yr. BP, we consider this unlikely at NKI.  A shore-to-sea survey showed that towards the reef 

slope the area of highest elevation (potentially causing ponding) is only 0.4 m above present 

(Supp. 4d).  Thin ponded extant microatolls (<5 cm vertical living tissue above the substrate; 

Supp. 4e) are present on the reef flat at NKI at ~0.4 m above present MLWS, which is still 

0.2 – 0.3 m lower than the microatolls dated between 5,000 – 4,600 yr. BP. The morphology 

of the modern microatolls also differs from their fossil counterparts with the former defined 

by planar surfaces formed by very still moated water levels and the latter being vertically 

more substantial with irregular surfaces (Fig. 2d) which is indicative of a free draining reef 

flat environment (Smithers and Woodroffe, 2000). Due to the temporal overlap of this 

lowstand at two reef sites we consider that the macro tidal setting, which can result in 

significant elevation differences between modern microatolls, is not sufficient to explain this 

lowstand.  If elevation differences in this region were driven primarily by tidal range, the data 
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obtained in our study would consistently show temporally indiscreet elevation differences of 

> 0.3 m throughout the Holocene, which is not apparent. 

The timing and magnitude of the sudden RSL lowering in the Keppel Islands is in strong 

agreement with FBI data from the southern AEC which exhibited a RSL fall of ~0.6 m 

between 5,400 – 5,000 yr. BP (Baker and Haworth, 2000, Sloss et al., 2007).  On Magnetic 

Island, U-Th derived microatoll data also indicates that RSL was higher at 5,800 yr. BP 

compared to 5,400 – 5,000 yr. BP (Yu and Zhao, 2010b). When previously reported 

(recalibrated; Lewis et al., 2008) microatoll data from the GBR (Chappell, 1983) are 

compared with the Keppel Islands data, the lowered RSL between 5,300 – 5,100 yr. BP is 

still evident, with samples elevated higher found prior to and following the inferred lowstand 

(Fig. 4b). 

The RSL lowering in the Keppel Islands at 5,500 yr. BP is contemporaneous with a period of 

significant change to reefs on the GBR (Smithers et al., 2006, Lybolt et al., 2011, Perry and 

Smithers, 2011, Leonard et al., 2013).  Following the concept of reef “turn on” and “turn off” 

events initially proposed by Buddemeier and Hopley (1988), Perry and Smithers (2011) 

analysed data from 76 reef core records from the inshore GBR and noted that reef initiation 

ceased from ~5,500 yr. BP in both the northern (Cape Tribulation; 1,000 km north) and 

southern GBR (Cockermouth, Penrith, and Scawfell Islands; ~300 km north of the present 

study). Similarly, in Moreton Bay (~550 km south of the Keppel Islands) sudden reef flat 

termination (Leonard et al., 2013) and increasing coral depth followed by a reef hiatus 

(Lybolt et al., 2011) have been documented from ~ 5,600 yr. BP. Lack of vertical 

accommodation space, proximity to the coastal TSW and climate change were suggested as 

the likely cause of reef “turn-off” (i.e. reduction of accretion) on the inshore GBR (Perry and 

Smithers, 2011). However, it was noted by the authors that similar patterns and/or transitions 

from aggrading to prograding modes of growth were observed on mid- and outer -shelf reefs 

far from the effects of terrigenous input or resuspension.  In Moreton Bay, a rapid fall in RSL 

and/or climatic change were suggested to have increased turbidity producing unfavourable 

conditions for coral growth (Leonard et al., 2013). However, a recent analysis of 

foraminiferal assemblages from Moreton Bay demonstrated water quality was continuously 

and consistently marginal to degraded from 7,400 yr. BP to present (Narayan et al., 2015), 

suggesting that a sudden increase in turbidity was likely not the primary driver of reef demise 

in this region. 
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The period of reduced accretion (“turn-off”) was followed by a significant hiatus in reef 

growth from ~4,600 yr. BP that lasted for two millennia in the northern and southern GBR 

(Smithers et al., 2006, Perry and Smithers, 2011).  Equally, no corals or microatolls were 

found in the Keppel Islands between 4,600 and 2,800 yr. BP.  Previously presented RSL data 

from the AEC is contradictory, with some authors suggesting that SLs were 1 m (Flood and 

Frankel, 1989) to 1.7 m higher (Baker and Haworth, 2000) during this period, whilst others 

contest possible lowered RSLs at this time (Lewis et al., 2008). Lewis et al. (2008) proposed 

a significant negative oscillation of RSL at 4,600 yr. BP based on 115 recalibrated 14C sea-

level indicators from the AEC (Fig 4b).  If RSLs were lowered during these periods, sediment 

loads to inshore reefs would increase due to mainland coastal sedimentary  progradation, with 

flood plumes reaching further across the shelf and increased wave re-suspension of fine 

sediments which may have resulted in significantly reduced reef accumulation or hiatus at 

some locations as noted by Perry and Smithers (Perry and Smithers, 2011). Clearly, more SL 

proxies that temporally bracket, or are within, the GBR hiatus period are needed before any 

conclusions can be drawn. Nevertheless, the synchronicity of a RSL oscillation at 5,500 yr. 

BP and reef flat hiatus at 4,600 yr. BP in the Keppel Islands with significant reductions in 

reef initiation and reef hiatus elsewhere on the GBR is noteworthy. 

Late Holocene re-initiation (2,800 yr. BP to present) 

Microatoll records suggest that reef flats in the Keppel Islands reinitiated between 2,800 – 

2,500 yr. BP, similar to the timing of reef re-initiation (~2,300 yr. BP) reported in the 

northern and southern GBR  (Perry and Smithers, 2011).  As only a limited number of 

samples at GKI and HI were found in the present study in the late Holocene, our 

interpretation of RSL is at this stage cautious. Microatoll evidence suggests that between 

2,800 – 2,500 yr. BP RSL was 0.3 – 0.2 m above present, after which RSL appears to have 

been just below or close to present levels by 1,640 yr. BP. Microatolls are then found at 

increasing elevations up to 0.2 m above present from 1,470 – 970 yr. BP. Lewis et al. (2008) 

proposed a similar oscillation centred at 2,800 yr. BP at comparable elevations to our present 

record.  More recently, Harris et al. (2015) reported a rapid fall in RSL after ~2,200 yr. BP at 

One Tree Island (southern GBR), however they suggested that RSL was ~1.0 m above 

present between 3,900 – 2,200 yr. BP.  Baker and Haworth (2000) suggested that an absence 

of succession of various FBIs indicated a rapid RSL fall in Port Hacking (1,200 km south of 

the Keppel Islands) between 3,500 and 3,400 yr. BP, after which RSL was stable until ~2,800 

yr. BP.  However, following this period of RSL stability  the Port Hacking data from two 
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sites within the same region displayed divergent trends, one falling and one rising (Baker and 

Haworth, 2000). Perry and Smithers (2011) inferred that reef re-initiation on the GBR during 

the late Holocene   likely occurred due to  RSL stabilisation  and the associated retreat of the 

TSW and shoreline resulting in conditions becoming more favourable for accretion. 

However, data from the Keppel Islands and elsewhere on the GBR and AEC suggests that 

after 2,800 yr. BP RSL was unstable at centennial timescales.  It is unclear at this stage as to 

why reefs re-initiated in the late Holocene even if RSL fell smoothly or oscillated. 

Mechanisms of relative sea level oscillations 

Neotectonics and hydro-isostasy 

The AEC is considered to have been tectonically stable throughout the Holocene (Lambeck 

and Nakada, 1990, Lambeck, 2002, Woodroffe and Horton, 2005), however, neotectonic 

uplift of up to 1 m per 1,000 years to the east of the Broad Sound fault (~130 km north of the 

Keppel Islands) has been suggested (Kleypas and Hopley, 1992). At Broad Sound the 

continental shelf is at its widest (~200 km) compared with just south of the Keppel Islands 

where the shelf is approximately three times narrower (~70 km; Fig. 1). The resulting tidal 

range is the highest on the GBR (Cook and Mayo, 1977); being up to twice that of the Keppel 

Islands.  It is possible that differential down warping (i.e. larger effect on the wider shelf) 

following the mid-Holocene highstand resulted in an increase in tidal range in the Keppel 

Islands region, which would result in a lowering of the MLWS level without a need for any 

RSL change or eustatic contribution (Kleypas and Hopley, 1992). Although feasible, we 

consider this unlikely as tidal adjustment would likely manifest as a more gradual change in 

the RSL curve which is not the case in the present study. This process would also fail to 

explain the extended period of RSL lowering then the return to higher RSL following the 

lowstand and cannot explain the oscillations reported from other sites both north and south of 

the Keppel Islands that occur synchronously. 

Antarctic ice melt history in response to the Arctic melt water transgression is predicted to 

have continued throughout the mid- to late Holocene as a result of increasing ESL (Nakada 

and Lambeck, 1989), although the effect on RSL in the southern hemisphere is poorly 

constrained and rarely discussed.  Antarctic contributions to the RSL history of the AEC have 

been predicted to result in lower amplitude highstands being reached in the southern GBR 

compared to the northern GBR (Nakada and Lambeck, 1989), which is broadly supported by 
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the data presented here; ~0.7 m above present compared to 0.7 - 2 m highstands reported in 

more northerly regions (Hopley, 1980, Chappell, 1983, Flood and Frankel, 1989, Baker, 

2001, Lewis et al., 2008, Yu and Zhao, 2010a). Conversely, Bryant (1992) suggested that the 

peak highstands were trending opposite, with higher SL reached in the southeast of the 

continent and reducing northwards. Neither of these models is in agreement with the FBI data 

presented by Haworth et al. (2002), who suggested the AEC continental shelf had not 

responded differentially to hydro-isostatic down warping across north-south latitudinal 

gradient. Therefore, although the data presented here appears to support the earlier models of 

Nakada and Lambeck (1989), uncertainties regarding variation in continental shelf width and 

isostatic response to mass water loading during the mid-Holocene transgression are yet to be 

resolved. Although it is important to understanding regional responses of RSL to water 

loading, the rapidity of the oscillations detected in the present study also generally precludes 

continental tilting or shelf down warping as the driving mechanism of the RSL oscillations in 

the present study.  

Climate and sea level 

Evidence of rapid climate change events during the Holocene are numerous, and although 

attempts to reconcile a global Holocene climate signal have been made (Bond et al., 1997, 

Bond et al., 2001, Mayewski et al., 2004, Wanner et al., 2011, Wanner et al., 2015) the 

currently available records are significantly biased to the northern hemisphere, with 

continuous high resolution records from the southern hemisphere being relatively sparse 

(Wanner et al., 2015). Furthermore, whether rapid (sub-centennial to centennial) shifts in 

climate translated to either minor relative or eustatic SL variability is difficult to ascertain and 

rarely discussed.  In the Northwest Pacific, Hamanaka et al. (2012) interpreted reef hiatus 

events at Kodakara Island in the Mid-Holocene to be associated with oscillations in RSL, and 

suggested links to possible eustatic oscillations driven by Atlantic and Pacific cold events and 

associated short lived ice build-up. Similarly, links between climate perturbations and SL 

oscillations in the Atlantic at ~6,500 and 2,200 yr. BP (Schellmann and Radtke, 2010) and in 

the Pacific in response to the “Little Climatic Optimum” and “Little Ice Age” of the late 

Holocene have also been proposed (Nunn, 1998, Nunn, 2000a, Nunn, 2000b). Conversely, 

glacio-isostatically adjusted mangrove and reef deposit data from the Seychelles (Indian 

Ocean) suggests that ESL has been largely insensitive to climate fluctuations over the past 

2,000 years prior to anthropogenic influence (Woodroffe et al., 2015). Although a recent re-

analysis of available “far-field” sea level data by Lambeck et al. (2014) concluded that no 
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oscillations of >0.2 m occurred during the last 6,000 years, this conclusion is limited to 

timescales of  ≥200 years due to age uncertainties, which is above the temporal detection 

limit of the oscillations presented here for the Keppel Islands. Unfortunately, insufficient 

continuous high resolution climate data in the southern hemisphere (Wanner et al., 2011, 

Wanner et al., 2015) makes interpretation of Holocene regional and global climate signals on 

SL variability tenuous.  Coral proxy derived (Sr/Ca and δ18O) sea surface temperature (SST) 

data from Orpheus Island (18.5˚S, 146.5˚E) and King Reef (17°46’S, 146°08’E) in the 

northern GBR suggest that SSTs were ~1.0 – 1.2˚C warmer than present at ~5,300 (Gagan et 

al., 1998) and 4,700 years before present (Roche et al., 2014). Warmer SSTs have also been 

inferred from foraminiferal δ18O analysis from near Indonesia, with warm/wet and stable 

conditions prior to 5,500 – 5,300 yr. BP (Brijker et al., 2007). Conversely, coral data from 

Indonesia and Papua New Guinea suggests a cooling of ~1.2˚C at ~5,500 yr. BP (Abram et 

al., 2009). With consideration of the age errors in these records, a possible 1.0 – 2.0˚C change 

in SST affecting the Indo-Pacific during the mid-Holocene is possible, however this cannot 

be validated with the data currently available. 

In this study we have demonstrated that by using high precision U-Th dating techniques, in 

conjunction with elevation surveys of a single SL indicator at multiple sites, it is possible to 

detect minor (<1 m) RSL fluctuations. The RSL oscillations presented here for the Keppel 

Islands are in good temporal agreement with episodes of significant change to reefs on the 

GBR throughout the Holocene (“turn-off” and hiatus events). With current  models predicting 

a 0.2 - 0.6 m contribution to sea level rise for each 1˚C of global warming in the future 

(Church et al., 2013) is it not then possible that similar scale cooling events in the Holocene 

had comparable effects on at least RSL signals in the far-field? Given the rates and 

magnitudes of change in the present study, and lack of evidence for any other geological or 

geomorphological contributions, we consider significant sub-centennial to centennial climate 

perturbations the most likely driver of RSL oscillations in the Keppel Islands.  Clearly, more 

high resolution RSL records are needed to determine whether this is a local, regional or 

global signal, and robust links to possible climate perturbations are required before any 

further conclusions can be drawn. 

High resolution palaeo-sea level reconstructions are not only critical to interpreting reef 

growth history on the GBR, but will enable improved predictions of reef response to future 

SL variability (Camoin and Webster, 2015).  Further, precisely dated RSL records in 
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conjunction with high resolution palaeo-climate data will enable refinement to model 

parameters for use in future sea level rise projections. 
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Tables 
Table 1: Results of MC-ICP-MS uranium–thorium dating and elevation surveys of fossil microatolls from the Keppel Islands, Southern Great Barrier Reef, Australia. Elevation is relative to 
modern mean low water spring tide level (MLWS). Elevation errors for microatolls are based on the standard deviation of tidal datum measurements (1σ) and positive elevation errors for 
non-microatolls (≥0.35m) reflect the uncertainty of depth range of non-microatoll samples. 

Sample 
Name U (ppm) 232Th (ppb) (230Th/ 232Th) (230Th/238U) (234U/238U) Uncorr. 

Age (a)  
Corr. 

Age (b) 
Age (yr BP 

- 1950) 
initial  

δ234U (c) 
Genus/Growt

h form (*) 

Coral 
Diam. 
(cm) 

Elev. 
(m) 

Elevation 
error Latitude Longitude 

HUMP 001 2.8147 ± 0.0017 1.3017 ± 0.0028 385.5 ± 1.7 0.05875 ± 0.00024 1.1435 ± 0.0013 5753 ± 25 5739 ± 25 5676 ± 25 145.9  ± 1.3 Leptastrea 85 0.66 ±0.15 
 23˚12'46.4 150˚58'10.8 

HUMP 002 2.6366 ± 0.0018 0.1065 ± 0.0012 4294 ± 49 0.05705 ± 0.00019 1.1449 ± 0.007 5576 ± 19 5570 ± 19 5507 ± 19 147.2 ± 0.7 Cyphastrea 150 0.64 ±0.15 23˚12'46.4 150˚58'11.0 

HUMP 003  3.3272 ± 0.0024 1.6978 ± 0.0025 364.9 ± 1.6 0.61366 ± 0.00026 1.1436 ± 0.0010 6015 ± 27 6002 ± 27 5939 ± 27  143.6 ± 1.0 Pavona* 120 0.23 -0.15/≥0.35 23°12'45.9 150°58'09.5 

HUMP 004 3.3226 ± 0.0024 7.366 ± 0.013 82.5 ± 0.3 0.06026 ± 0.00021 1.1449 ± 0.0009 5898 ± 22 5849 ± 25 5785 ± 25 147.4 ± 0.9 Branching* 180 0.46 -0.15/≥0.35 23˚12'46.8 150˚58'10.5 

HUMP 006 3.4795 ± 0.0013 2.4757 ± 0.0038 227.4 ± 1.0 0.05332 ± 0.00021 1.1422 ± 0.0010 5215 ± 21 5197 ± 22 5134 ± 22 144.4 ± 1.0 Porites 250 0.16 ±0.15 
 23˚12'46.0 150˚58'08.6 

HUMP 007 3.5303 ± 0.0017 1.4009 ± 0.0021 404.0 ± 1.4 0.05284 ± 0.00017 1.1436 ± 0.0011 5161 ± 18 5149 ± 18 5086 ± 18 145.7 ± 1.1 Porites 70 0.09 ±0.15 
 23˚12'45.9 150˚58'08.6 

HUMP 008 3.0912 ± 0.0027 2.3010 ± 0.0044 225.2 ± 1.2 0.05525 ± 0.00028 1.1437 ± 0.0011 5402 ± 28 5382 ± 29 5319 ± 29 145.9 ± 1.1 Porites 75 0.2 ±0.15 
 23˚12'45.8 150˚58'08.9 

 HUMP 009 3.3431 ± 0.0019 5.5019  ± 0.0075 112.5 ± 0.5 0.06104 ± 0.00024 1.1455 ± 0.0010 5973 ± 24 5930 ± 32 5867 ± 32  145.6 ± 1.0 Pavona* 110 0.19 -0.15/≥0.35 23°12'45.6 150°58'09.7 

HUMP 010 3.4909 ± 0.0021 3.6409 ± 0.0049 205.6 ± 0.7 0.07067 ± 0.00023 1.1442 ± 0.0009 6953 ± 24 6928 ± 25 6864 ± 25 147.1 ± 1.0 Branching* 250 0.1 -0.15/≥0.35 23˚12'44.1 150˚58'10.1 

HUMP 011 2.8329 ± 0.0018 0.4291 ± 0.0015 1283.4 ± 6.8 0.06407 ± 0.00026 1.1449 ± 0.0012 6281 ± 27 6273 ± 27 6209 ± 27 147.5 ± 1.2 Cyphastrea 75 0.4 ±0.15 
 23˚12'44.4 150˚58'10.7 

HUMP 012 3.0712 ± 0.0014 1.2108 ± 0.0022 514.7 ± 2.0 0.06688 ± 0.00022 1.1440 ± 0.0010 6570 ± 23 6558 ± 24 6495 ± 24 146.7 ± 1.0 Porites 
Cylindrica* 90 0.46 -0.15/≥0.35 23˚12'44.4 150˚58'11.0 

HUMP 013 3.0504 ± 0.0022 12.409 ± 0.021 48.6 ± 0.2 0.06519 ± 0.00029 1.1443 ± 0.0009 6398 ± 30 6310 ± 37 6247 ± 37 147.1 ± 0.9 Porites 
Cylindrica* 110 0.58 -0.15/≥0.35 23˚12'44.9 150˚58'11.5 

HUMP 014 3.1765 ± 0.0019 6.4363 ± 0.0087 95.8 ± 0.4 0.06395 ± 0.00026 1.1443 ± 0.0011 6272 ± 27 6227 ± 29 6163 ± 29 147.0 ± 1.1 Porites 
Cylindrica* 210 0.58 -0.15/≥0.35 23˚12'44.8 150˚58'11.4 

HUMP 015 3.5019 ± 0.0016 2.3805 ± 0.0042 298.8 ± 1.3 0.06694 ± 0.00028 1.1437 ± 0.0007 6579 ± 28 6561 ± 28 6497 ± 28 146.4 ± 0.7 Porites 
Cylindrica* 70 0.59 -0.15/≥0.35 23˚12'45.1 150˚58'11.3 

HUMP 016 3.5124 ± 0.0021 2.8456 ± 0.0033 248.9 ± 0.8 0.06645 ± 0.00022 1.1448 ± 0.0009 6522 ± 23 6502 ± 23 6438 ± 23 147.5 ± 0.9 Porites 
Cylindrica* 100 0.64 -0.15/≥0.35 23˚12'45.3 150˚58'11.3 

HUMP 017 3.3614 ± 0.0021 2.2358 ± 0.0039 265.5 ± 0.9 0.05820 ± 0.00017 1.1426 ± 0.0009 5702 ± 18 5685 ± 18 5621 ± 18 145.0 ± 0.9 Porites 
Cylindrica* 200 0.1 -0.15/≥0.35 23˚12'46.8 150˚58'07.7 

HUMP 018 2.8587 ± 0.0014 0.4336 ± 0.0012 219.2 ± 1.9 0.010959 ± 0.000090 1.1468 ± 0.0007 1048 ± 9 1041 ± 9 977 ± 9 147.3 ± 0.7 Cyphastrea 230 0.1 ±0.15 
 23˚12'47.9 150˚58'08.2 

HUMP 019 3.0813 ± 0.0014 0.4114 ± 0.0014 246.7 ± 2.0 0.010854 ± 0.000080 1.1460 ± 0.0013 1039 ± 8 1032 ± 8 968 ± 8 146.4 ± 1.3 Cyphastrea 170 0.2 ±0.15 
 23˚12'46.7 150˚58'08.5 

HUMP 020 3.4097 ± 0.0015 0.4805 ± 0.0014 1176.3 ± 6.3 0.05464 ± 0.00025 1.1463 0.0011 5328 ± 25 5321 ± 25 5257 ± 25 148.6 ± 1.1 Porites 150 0.3 ±0.15 
 23˚12'47.1 150˚58'08.7 

HUMP 021 2.7724 ± 0.0017 0.054188 ± 0.00066 9150± 120 0.05867 ± 0.00023 1.1449 ± 0.0012 5739 ± 24 5734 ± 24 5670 ± 24 147.2 ± 1.3 Cyphastrea 180 0.7 ±0.15 
 23˚12'46.4 150˚58'11.1 

HUMP 022 3.2932 ± 0.0014 1.8478 ± 0.0023 327.9 ± 1.3 0.06065 ± 0.00024 1.1452 ± 0.0007 5935 ± 24 5920 ± 24 5856 ± 24 147.6 ± 0.7 Porites 210 0.66 ±0.15 
 23˚12'46.4 150˚58'11.0 
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Sample 
Name U (ppm) 232Th (ppb) (230Th/ 232Th) (230Th/238U) (234U/238U) Uncorr. 

Age (a)  
Corr. 

Age (b) 
Age (yr BP 

- 1950) 
initial  

δ234U (c) 
Genus/Growt

h form (*) 

Coral 
Diam. 
(cm) 

Elev. 
(m) 

Elevation 
error Latitude Longitude 

HUMP 023 3.5361 ± 0.0016 1.2274 ± 0.0019 546.7 ± 2.0 0.06254 ± 0.00021 1.1456 ± 0.0008 6123 ± 21 6112 ± 21 6048 ± 21 148.2 ± 0.8 Leptastrea 130 0.68 ±0.15 
 23˚12'46.2 150˚58'11.0 

NKI 001 3.1841 ± 0.0022 0.5042 ± 0.0016 1018.0 ± 6.0 0.05313 ± 0.00027 1.1422 ± 0.0008 5196 ± 27 5189 ± 27 5125 ± 27 144.3 ± 0.8 Porites 250 0.39 ±0.15 
 23°04'57.6 150°53'52.8 

NKI 002 2.8433 ± 0.0014 7.5792 ± 0.0084 63.9 ± 0.2 0.05615 ± 0.00017 1.1457 ± 0.0010 5482 ± 18 5423 ± 23 5359 ± 23 148.0 ± 1.0 Porites 120 0.39 ±0.15 
 23°04'57.6 150°53'52.2 

NKI 003 2.9487 ± 0.0011 0.0203 ± 0.0010 2238 ± 14 0.05082 ± 0.00018 1.1434 ± 0.0008 4960 ± 18 4954 ± 18 4891 ± 18 145.5 ± 0.8 Cyphastrea 70 0.63 ±0.15 
 23°04'52.7 150°53'51.7 

NKI 004 3.2567 ± 0.0015 2.5073 ± 0.0039 205.9 ± 0.9 0.05224 ± 0.00021 1.1438 ± 0.0010 5101 ± 21 5081 ± 21 5017 ± 21 145.9 ± 1.0 Porites 110 0.63 ±0.15 
 23°04'52.4 150°53'51.6 

NKI 005 3.2033 ± 0.0014 3.7824 ± 0.0044 134.1 ± 0.5 0.05218 ± 0.00018 1.1448 ± 0.0009 5089 ± 19 5061 ± 20 4997 ± 20 147.0 ± 1.0 Porites 100 0.63 ±0.15 
 23°04'52.4 150°53'51.1 

NKI 006 2.6269 ± 0.0012 0.2884 ± 0.0014 1382.9  ± 9.6 0.05004 ± 0.00024 1.1454 ± 0.0008 4874 ± 25 4867 ± 25 4803 ± 25 147.4 ± 0.8 Favites 90 0.73 ±0.15 
 23°04'50.5 150°53'50.8 

NKI 007 3.2162 ± 0.0011 0.2171 ± 0.0011 2202 ± 15 0.04899 ± 0.00020 1.1450 ± 0.0010 4770 ± 21 4764 ± 21 4701 ± 21 147.0 ± 1.0 Cyphastrea 100 0.73 ±0.15 
 23°04'49.8 150°53'50.9 

NKI 008 3.2828 ± 0.0016 10.544 ± 0.013 50.1 ± 0.2 0.05303 ± 0.00025 1.1442 ± 0.0010 5177 ± 25 5108 ± 30 5044 ± 30 146.4 ± 1.0 Porites 90 0.73 ±0.15 
 23°04'49.6 150°53'50.9 

NKI 009 2.9348 ± 0.0012 3.4989 ± 0.0050 130.6 ± 0.5 0.05132 ± 0.00018 1.1443 ± 0.0010 5006 ± 19 4977 ± 20 4913 ± 20 146.4 ± 1.0 Porites 80 0.73 ±0.15 
 23°04'49.2 150°53'50.6 

NKI 010 2.7258 ± 0.0012 0.5414 ± 0.0016 792.8 ± 4.7 0.05189 ± 0.00027 1.1448 ± 0.0008 5061 ± 27 5052 ± 27 4988 ± 27 146.9 ± 0.8 Favites 160 0.77 ±0.15 
 23°04'48.5 150°53'49.3 

NKI 011 3.2569 ± 0.0014 0.0837 ± 0.0010 5687 ± 72 0.04819 ± 0.00020 1.1475 ± 0.0008 4680 ± 20 4676 ± 20 4612 ± 20 149.5 ± 0.8 Cyphastrea 120 0.77 ±0.15 
 23°04'48.4 150°53'48.9 

NKI 012 2.7301 ± 0.0015 3.1752 ± 0.0039 158.5 ± 0.7 0.06075 ± 0.00024 1.1448 ± 0.0010 5948 ± 25 5919 ± 26 5856 ± 26 147.2 ± 1.0 Porites 200 0.77 ±0.15 
 23°04'48.0 150°53'49.0 

NKI 013 2.8941 ± 0.0011 0.3032 ± 0.0011 1716 ± 10 0.05925 ± 0.00027 1.1452 ± 0.0008 5795 ± 27 5789 ± 27 5725 ± 27 147.6 ± 0.8 Cyphastrea 140 0.79 ±0.15 
 23°04'47.1 150°53'49.3 

GKI 001 3.2827 ± 0.0012 2.3108 ± 0.0033 131.0 ± 0.6 0.03039 ± 0.00015 1.1445 ± 0.0007 2938 ± 15 2919 ± 15 2856 ± 15 145.7 ± 0.7 Porites 130 0.29 ±0.15 
 23°11'48.2 150°56'19.4 

GKI 002 3.1006 ± 0.0012 11.496 ± 0.017 14.5 ± 0.1 0.01772 ± 0.00012 1.1456 ± 0.0009 1702 ± 12 1623 ± 23 1559 ± 23 146.3 ± 0.9 Porites 90 0.1 ±0.15 
 23°11'47.8 150°56'18.8 

GKI 003 2.9822 ± 0.0011 4.4127 ± 0.0058 33.5 ± 0.3 0.01632 ± 0.00012 1.1456 ± 0.0008 1566 ± 12 1532 ± 15 1468 ± 15 146.3 ± 0.8 Porites 130 0.17 ±0.15 
 23°11'47.3 150°56'19.5 

GKI 004 2.7803 ± 0.0010 1.4822 ± 0.0023 96.6 ± 0.7 0.01698 ± 0.00012 1.1482 ± 0.0011 1626 ± 12 1611 ± 13 1547 ± 13 148.9 ± 1.1 Cyphastrea 150 0.05 ±0.15 
 23°11'45.9 150°56'19.8 

GKI 005 3.1125 ± 0.0010 7.356 ± 0.011 23.5 ± 0.2 0.01827 ± 0.00011 1.1448 ± 0.0009 1756 ± 11 1704 ± 17 1640 ± 17 145.6 ± 0.9 Porites 50 -0.07 ±0.15 
 23°11'44.9 150°56'19.6 

GKI 007# 3.1193 ± 0.0010 25.717 ± 0.034 6.8 ± 0.1 0.01859 ± 0.00014 1.1478 ± 0.0007 1783 ± 14 1611 ± 45 1548 ± 45 147.9 ± 0.9 Porites 70 0.12 ±0.15 
 23°11'46.0 150°56'20.1 

GKI 008 3.0879 ± 0.0013 2.3435 ± 0.0033 110.8 ± 0.4 0.02770 ± 0.00010 1.1456 ± 0.0009 2672 ± 10 2652 ± 11 2588 ± 11 146.7 ± 0.9 Cyphastrea 100 0.2 ±0.15 
 23°11'45.4 150°56'21.4 

GKI 009 3.0791 ± 0.0014 0.7192 ± 0.0014 867.2 ± 4.1 0.06676 ± 0.00029 1.1442 ± 0.0010 6557 ± 30 6548 ± 30 6484 ± 30 146.9 ± 1.1 Goniastrea 40 0.52 ±0.15 
 23°11'45.3 150°56'24.0 

                
Ratios in parentheses are activity ratios calculated from atomic ratios using decay constants of Cheng et al. (2000) (2000) (2000) (2000)(a) Uncorrected 230Th age was calculated using Isoplot/EX 3.0 program (Ludwig, 
2003).(b) 230Th ages were corrected using the two-component correction method of Clark et al. (2014a) Th/232Thhyd and 230Th/232Thdet  activity ratios of 1.08 ± 0.23 and 0.62 ± 0.14, respectively. 
(c) 234U = [(234U/238U) − 1] × 1000.                        * Indicates non- microatoll # Sample removed from analysis.# Sample removed from analysis.
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Figures 

 

Figure 1: Queensland, Australia, showing the Great Barrier Reef (in grey) and the location of the Keppel Islands. Blue line 
is 200 m isobath; the continental shelf is shaded in blue; b) Locations of the Keppel Islands (North Keppel, Great Keppel 
and Humpy Islands) and fossil reef flat sites (black stars). 
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Figure 2: a) Microatoll at Great Keppel Island. Note thick unconsolidated sediment surrounding sample. b) Modern reef 
seaward of relict reef at Great Keppel Island dominated by branching and plate Acropora sp. c) Surface morphology of 
Cyphastrea sp. microatoll demonstrating radiation of corallites from the centre of the colony d) Large microatoll at the 
seaward edge of North Keppel Island reef (survey rod in centre of microatoll is ~1.3m) 
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Figure 3: Uranium-thorium (U-Th) age-elevation data for microatolls and non-microatoll samples from Humpy Island, 
Great Barrier Reef, Australia. Solid symbols are microatoll samples (elevation errors of ±0.15 m; see methods). Open 
symbols are non-microatoll samples. As non-microatoll corals are not constrained equally by the air-sea interface, 
positive elevation errors are given as ≥0.35 m. Elevation is metres (m) above present mean low water spring tide. U-Th 
ages are years before present (yr. BP; before 1950) with errors at 2σ level (N.B. some age error bars are smaller than 
symbol width). 

 

 

 

 

Figure 4: a) Uranium-Thorium (U-Th) age-elevation data for microatolls from the Keppel Islands, Great Barrier Reef 
(GBR), Australia; Great Keppel Island (GKI; green), North Keppel Island (NKI; blue) and Humpy Island (HUMP; red). 
Elevation is metres (m) above present mean low water Spring tide. U-Th ages are years before present (yr. BP; before 
1950) with errors at 2σ level (N.B. some age error bars are smaller than symbol width). b) Microatoll data from the 
Keppel Islands (same as [a]) compared to previously published recalibrated (Lewis et. al 2008) microatoll data from the 
Great Barrier Reef; black circles - Chappell (1983) minimum elevation and grey shaded area – Lewis et al. (2008) sea level 
envelope for the Australian east coast. Shaded red bars are periods of suggested relative sea level (RSL) oscillations. 
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Figure 5: Schematic of inferred Holocene reef flat development at North Keppel Island, Great Barrier Reef, Australia. 
Microatoll positions are based on actual position on the reef flat and reef age is from U-Th derived ages. Elevation is 
metres relative to present mean low water spring tide.  Red microatoll symbols represent those being formed at that 
time period (i.e. living); black microatoll symbols represent fossil corals at that time period. Blue shaded area represents 
RSL for each phase. N.B. Subsurface corals are an assumption based on general models of reef development. 
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Supplementary 

Supplementary 1: Keppel Islands 

Situated ~18 km from the Queensland coastal town of Yeppoon and ~40 km north of the 

mouth of the Fitzroy River (Fig. 1 main text), the Keppel Islands group is impacted by 

intermittent flood plumes and high turbidity events.  It has been suggested that throughout the 

Holocene, suspended sediment loads from flood events were likely to be relatively high in the 

Fitzroy River basin due to naturally sparse vegetative cover in the region (Douglas et al., 

2006). However, commencing in 1962 as part of the Brigalow Land Development Fitzroy 

Basin Scheme, 4.5 million hectares of native vegetation were cleared for agricultural and 

grazing development (Cowie et al., 2007). Long-term monitoring of these sites indicate an 

increase in run-off within cleared catchments from 5% to 9-11% (Cowie et al., 2007). Recent 

major flood events have resulted in mass mortality of corals in the Keppel Islands; most 

notably in 1991 (up to 85% mortality; Van Woesik, 1991) and 2011 (up to 100% in some 

locations; Jones and Berkelmans, 2014). Mass coral bleaching due to positive thermal 

anomalies combined with increased turbidity were also documented in this region during the 

2002 and 2006 El Niño events, with up to 100% of coral affected to some degree in both 

events, and ~40% mortality reported in 2006 (GBRMPA Elvidge et al., 2004, 2006).  These 

acute and relatively frequent disturbance events, in conjunction with the latitudinal 

marginality of the Keppel Island reefs, have been suggested as the primary driver for the 

dominant mono-specific stands of fast growing arborescent Acropora sp.[Fig. 2b – main text] 

(van Woesik and Done, 1997).   

Supplementary 2: Uranium-thorium methods 

All coral aragonite samples in the present study were prepared at the Radiogenic Isotope 

Facility, University of Queensland, Australia. Sub-samples of the coral were cut using a 

diamond blade saw, avoiding areas of obvious bio-erosion and surficial organics. For further 

removal of detrital and organic contaminants, sub-samples were crushed to a small grain size 

(~1 mm diameter) and soaked in 15% H2O2 overnight.  The crushed sub-samples were then 

ultra-sonicated for 15 minutes, rinsed with Milli-Q water (18.2 MΩcm-1), ultra-sonicated and 

rinsed until the water ran clear and then dried on a hotplate in the ultra-clean lab at <40˚C 

overnight. Once dried, approximately 15-50 mg of sample material was inspected under a 

compound microscope to select the purest aragonite material (i.e. no inclusion of 
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detritus/organics, sediment, calcite, or pyrite) for dating.  Samples were spiked with a 233U-
229Th mixed tracer and fully dissolved in a pre-cleaned Teflon beaker with 15.8N quartz-

double-distilled HNO3.  To ensure complete homogenisation of the spike-sample solution, 3-

4 drops of 30% H2O2 was added to remove any organic contaminants, each beaker was 

tightly capped, and the solution heated on a hotplate with a temperature setting of 120°C 

overnight. Once the sample was completely dissolved, each beaker was uncapped and the 

spiked solution dried down at 90°C on a hot-plate.  Dried samples were then re-dissolved 

using 1-2 drops of 7N HNO3 and passed through ion-exchange columns containing Bio-Rad 

AG1X8 anion resin to separate U from Th using column separation procedures described in 

detail in Clark et al. (2014).  After collection, separate U and Th solutions were centrifuged at 

3,500 rpm for 10 min, remixed in appropriate proportions based on quadrupole ICP-MS pre-

screening of U-Th concentrations in the stock solutions, and then measured on a Nu Plasma 

multi-collector inductively coupled plasma mass spectrometer (MC ICP-MS) fully 

automatically using a Cetac ASX110 auto-sampler (see Clark et al., 2014b for detailed 

procedure). 
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Supplementary 3: U-Th validation 

 

Supplementary Figure 3.1: 230Th/232Th versus 238U/232Th isochrons for three sub-samples of fossil microatolls from Great 
Keppel Island, Australia. Inset shows the isochron-inferred averaged 230Th/232Th ratio of 0.62 ± 0.14, which is comparable 
to the ratio reported by Clark et al. (2014a) for massive Porites corals from the Palm Islands of 0.64 ± 0.04. 

 

 

 

Supplementary Figure 3.2: Uranium-Thorium (U-Th) age determination of replicate samples with no cleaning, H2O2 
cleaning and ultra-cleaned samples for the Keppel Islands, Great Barrier Reef. Note all replicate ages are within error 
(2σ). Largest age errors are “uncleaned” samples. 
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Supplementary 4: Microatoll locations and ages 

Figure 4: Satellite imagery of islands and reefs of the Keppel Islands, Great Barrier Reef showing microatoll and non-
microatoll coral locations and elevations relative to present (where present is equivalent to Mean Low water Spring 
tide). a) Humpy Island; b) Great Keppel Island and c) North Keppel Island. 

 

a) Humpy Island microatolls (black) and non microatolls (red)  
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b) Great Keppel Island microatolls 
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c) North Keppel Island microatolls
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Supplementary Figure 4e: Photograph of a thin ponded modern microatoll (<0.05 m depth of living tissue)                     
and small Acropora spp. recruits on the reef flat at North Keppel Island, southern Great Barrier Reef, Australia. 
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Supplementary Figure 4d: Substrate survey from shore to reef slope of the emerged fossil reef at North Keppel Island, Great 
Barrier Reef, Australia. Elevation is in metres lowest astronomical tide (MLAT), vertical distance is in metres. Dashed line is 
modern mean low water spring tide (MLWS) and red squares are approximate fossil microatoll locations across the reef flat 
with elevation error of ± 0.15m.  
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Abstract  

Rising sea level is of significant concern in the coming century, yet predicting the rate and 

magnitude of eustatic and relative sea level rise in response to global climate change is 

complex. Potential analogues are provided within the recent geological past, yet previous 

links between palaeo-climate and -sea level have been tenuous due to large age uncertainties 

and paucity in relative sea level records. Here we present a sea level history for the Great 

Barrier Reef, Australia derived from 94 high precision uranium-thorium dates of sub-fossil 

coral microatolls across a wide latitudinal range (11˚S – 20˚S). Our results provide evidence 

for two periods of relative sea level instability (>-0.3m) at ~5500 and 4600 years before 

present which coincide with significant reef “turn-off” events. We suggest that these sea level 

events may be synchronous with periods Indo-Pacific sea surface temperature anomalies, of 

dampened El Niño Southern Oscillation activity, rapid global cooling events and glacial 

advances. We conclude that the magnitude of these events suggests a eustatic/thermosteric 

contribution operating in conjunction with regional climatic controls. 
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Introduction 

Within the coming century rising sea level is one of the greatest consequences of climate 

change (Haigh et al., 2014).  Not only are millions of people living in coastal communities at 

threat of being displaced, but the vulnerabilities of coastal ecosystems are still relatively 

uncertain (Hamylton et al., 2014). At local to regional scales the immediate and future 

impacts of sea level rise (SLR) will be governed largely by the rate of change and adaptation 

thresholds (Hamylton et al., 2014), yet understanding the spatial heterogeneity of relative sea 

level (RSL) change in response to eustatic SLR is complex (Wong et al., 2014, Milne et al., 

2009, Milne and Mitrovica, 2008). The Holocene offers a potential analogy for understanding 

future sea level variability with temperatures and sea levels higher than present comparable in 

magnitude to those projected for the coming century (Hodell et al., 2001). Yet whether sea 

level has oscillated significantly at centennial timescales in response to climate perturbations 

during the Holocene is controversial (Fairbridge, 1961, Baker and Haworth, 2000, Baker et 

al., 2005, Baker et al., 2001, Woodroffe and Horton, 2005, Lambeck et al., 2014).  

Efforts to reconstruct eustatic sea level (ESL) since the termination of the Last Glacial 

Maximum (LGM) are often hampered by differentiating true eustatic signals from hydro-

glacio- isostatic adjustment and local tectonics (Lambeck et al., 2014, Milne and Mitrovica, 

2008). Therefore, precisely dated geological indicators in tectonically stable “far-field” 

regions (far from former glaciations) such as Australia offer the best potential to develop RSL 

histories that may shed light on global ESL history (Milne and Mitrovica, 2008, Lambeck, 

2002, Lambeck and Nakada, 1990).  

Geophysical models place the Australian East Coast (AEC) within Zone IV of post-glacial 

melt response (Clark et al., 1978) which  is characterised by a mid-Holocene RSL highstand, 

representing the cessation of northern hemisphere ice melt (glacio-eustasy), followed by a 

RSL regression to present levels where ocean mass redistribution and hydro-isostasy 

dominate the signal (Nakada and Lambeck, 1989, Mitrovica and Milne, 2002). These models 

were supported by the seminal work of Chappell (1983) using coral microatoll data from the 

GBR which demonstrated a mid-Holocene highstand of 1.0 - 1.5m above modern levels by 

~6000 years before present (yBP), followed by a linear (smooth fall) RSL regression to 

modern levels. However, reports of an oscillating or stepped RSL signal both relative to 

Australia (Woodroffe and Horton, 2005, Baker and Haworth, 2000, Baker et al., 2005, 

Fairbridge, 1961, McGowan and Baker, 2014) and elsewhere in the Indo-Pacific are 
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numerous (Hamanaka et al., 2012, Compton, 2001, Compton, 2006, Rashid et al., 2013). 

Whilst geophysical models are informative of centennial to millennial scale processes 

pertaining to rheological and water redistribution response of RSL to ESL changes, they do 

not take into consideration climatic perturbations that may have played a role in sub-

centennial ESL or RSL variability.  

Here we present the results of 94 high-precision uranium-thorium (U-Th) dates of coral 

microatolls (Porites sp.), in conjunction with elevation surveys, across ~ 10 degrees of 

latitude on the GBR (Fig 1b). Coral microatolls, especially Porites sp., are considered one of 

the most reliable palaeo-sea-level indicators, as the upper flat surface of the colony is 

constrained by the air-sea interface (Murray-Wallace and Woodroffe, 2014), with modern 

microatoll elevations lying generally within a vertical range of ~10cm of mean low water 

spting (MLWS) tide level (Chappell et al., 1983). We therefore report all elevations relative 

to modern site specific MLWS level (see Methods) with all U-Th ages reported as years 

before present (yBP), where present is defined as 1950. 

Holocene sea level 

Our results show that continental island reefs flats had developed by 7000 yBP along ~10˚ of 

latitude on the inshore GBR (Fig 1, Fig. 2; Extended Data Table 1). In the northern GBR (Fig 

2a, c - High, Haggerstone and Gore Islands) microatolls are found at least 0.5 ± 0.15m above 

modern MLWS from ~7000 – 5500 yBP (Ext. data Fig. 1a). The timing of this highstand is in 

good agreement with previous data from the GBR (Lewis et al., 2008) and AEC (Sloss et al., 

2007) although we found no evidence of RSLs >1m in the mid-Holocene. Higher mid-

Holocene RSLs cannot be discounted however, as microatolls delineate the MLWS tide level. 

Lewis et al (2008) reported a systematic -0.5m offset between microatoll RSL data when 

compared data obtained from fixed biological indicator data likely due to site specific 

environmental conditions (e.g. wave energy). Furthermore, we acknowledge the limitation of 

deriving absolute RSLs using our methodology, and therefore concentrate on the relative 

elevations of the microatolls both within and between sites (instrumental precision ± 

0.001m/30m; see Methods).  

Compared to the Northern GBR, data from the central GBR indicates a rising RSL from 6900 

to 6600 yBP at an average rate of ~1.4mmyr-1 (Fig. 2d – Stone Island). This rate of RSL rise 

is similar to a contemporaneous record from the Keppel Islands (southern GBR) of ~0.5 – 
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1.1mmyr-1 between ~6900 and 6200 yBP (Fig 2e; Leonard et al., 2016). This pattern of RSL 

rise in the southern and central GBR suggests that either a) the timing of the RSL highstand is 

latitudinally displaced due to a lag in water mass redistribution; or more likely b) hydro-

isostatic adjustment occurred on this wider section of the continental shelf in the early mid-

Holocene, with regional variation possibly related to the NE-SW structural lineament 

boundaries across the shelf in this region (Kleypas and Hopley, 1992).   

After 5500 yBP reef flat growth ceased abruptly at High Island (Fig. 2c) and north Gore 

Island (Fig. 2a). Evidence that Holocene MLWS level was close to present MLWS levels 

between 5200 – 5000 yBP is found both at Fitzroy Island (-0.2m) and Hayman Island 

(~0.0m; Fig. 2c-d). At Alexandra Reef, a mainland fringing reef, substantial microatoll 

development at ~0.5 ± 0.15m above present did not commence until after 5000 yBP (Fig 2b). 

This later initiation was likely due to turbid conditions being unfavourable for substantial 

coral growth due to reworking of coastal pre-transgressive sediments (Larcombe and Woolfe, 

1999). A rapid RSL lowering of -0.3 - 0.5m then occurs at Alexandra Reef ~4600 yBP lasting 

for at least 400 years (Fig. 2b). Whilst there is overlap of microatoll U-Th dates at the time of 

the transition from higher to lower RSL this can be explained by both our sampling strategy 

and the individual coral morphologies at this site. Whilst we sampled and measured the 

microatolls from the centre of the colony, the outer rims of the microatolls of the higher 

population displayed lowered rims indicating a RSL fall during their lifetime, whilst the 

lower population were planar suggesting they grew up to lower RSL (Supp. Fig. 1).  This 

lowstand is also further supported by evidence from the leeward reef flat of Gore Island 

where microatolls occur close to the elevation (~+0.08m) of their modern counterparts 

between 4300 and 4000 yBP (Fig. 2a; Ext. data Fig.1b) and at Fitzroy Island where 

microatolls were found to be below their modern counterparts at 4400 yBP (Fig. 2c). After 

4000 yBP RSL appears to have risen 0.2 - 0.3m to 2800 yBP, after which no further samples 

were dated in our present work.  

Linear and Gaussian models (with 95% confidence bounds) of the microatoll data from the 

present study combined with previously published data from the Keppel Islands (obtained 

using the same methodology; Leonard et al., 2016) indicates that a four term Gaussian model 

is the best fit for the data (adjusted r-squared– 0.36) compared with the linear model (0.15; 

Suppl. Table 2). Significance in the normality of residuals (p = 0.05, n=130; Filliben, 1975) is 

also only achieved with an increase in terms (Gauss 4; Supp. Fig 4). Both the linear and 

lower term Gaussian functions (Gauss 1) over estimate the microatoll RSL height from 5500 
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– 5000 yBP and 4500 – 4000 yBP (negative residuals) and under estimate RSL from 5000 – 

4500 yBP (positive residuals; Supp. Fig 4), supporting RSL oscillations in the mid-Holocene.  

Rapid sea level lowering events  

In agreement with previous AEC sea-level records and geophysical models (Fig.3a; Nakada 

and Lambeck, 1989) our data indicates a RSL regression from a mid-Holocene highstand at 

~7000 yBP to present levels largely attributable to ocean syphoning (Chappell, 1983, 

Mitrovica and Milne, 2002). However we find the regression to be punctuated by rapid 

lowering events at 5500 and 4600 yBP (Fig. 2, Fig. 3a).  

The RSL lowering event at 5500 yBP in the central GBR and the Keppel Islands of at least -

0.4m after 5500 yBP (Leonard et al., 2016) also coincides with significant reductions in reef 

flat progradation (Smithers et al., 2006, Perry and Smithers, 2011) as well as a sudden reef 

“turn-off” in Moreton Bay by 5600 yBP (Fig. 2e; Leonard et al., 2013). The second RSL 

level lowering event of ~0.2 - 0.4m at 4600 yBP in the present study agrees well with the 

oscillation proposed by Lewis et al. (2008) which was based on a comprehensive review and 

re-calibration of sea level data from the AEC (Fig 2e). This negative oscillation is also 

synchronous with reef flat “turn-off” in the Keppel Islands (Leonard et al., 2016) and a 

significant reef “hiatus” event in the southern and northern GBR (Perry and Smithers, 2011). 

The lack of samples after 2800 yBP in our far north GBR record, albeit tentative, adds 

support to another possible RSL fall previously identified on the AEC (Lewis et al., 2008, 

Leonard et al., 2016). Despite the response of individual reefs being variable, the 

configuration of the combined RSL signal and synchronicity of re/initiation at some sites 

between these lowstand periods suggests a return to higher levels.  

The question then remains as to the cause of these oscillations in the Australian coastal zone. 

Firstly, the coherence of the oscillations across an extensive latitudinal range rules out 

regional neotectonic activity or local reef/coastal dynamics, although local variations in the 

absolute level of the RSL reconstruction may be affected. Secondly, the centennial timescales 

of the oscillations precludes hydroisostasy/ocean syphoning as the primary driver however, 

these factors explain well the overall regressive trend following the highstand. Therefore, we 

infer that the oscillations detected in our record are of a eustatic, thermosteric or regional 

climatic origin, or a combination of these factors. In an attempt to resolve the mechanism/s 
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for these oscillations, we compare our data to both regional and global records of sea level, 

temperature and climatic conditions throughout the Holocene.  

Eustasy  

Mid- to late- Holocene eustatic sea level oscillations of over 1m, as first proposed by 

Fairbridge (1961), have been debated for over half a century. If the oscillations we present 

are of eustatic origin, then oscillations with comparable chronologies should be detectable in 

other tectonically stable far-field locations, although the magnitude may differ due to local 

response and the indicators used. As stated previously the oscillations we present here are in 

good agreement with data from elsewhere on the GBR and AEC at 5500, 4600 and after 2800 

yBP (Lewis et al., 2008, Leonard et al., 2016). In the north west Pacific at Kodakara Island 

(Fig. 1A) disconformities (and hiatus) in an uplifted coral reef  at ~5800, ~4200 and ~3200 

yBP were reported, with the latter two events associated with sea level oscillations linked to 

northern hemisphere cooling (Hamanaka et al., 2012). Geomorphic evidence from the 

Atlantic coast of South Africa (Fig 1A) indicates a rapid SL drop to below present after 

~5500 yBP and between 4800 - 4200 yBP (Compton, 2006) consistent with the GBR record 

presented here, although of much larger amplitudes. Facies and faunal interpretations on the 

coast of Bangladesh (Fig 1A) also record a stepped RSL regression with rapid lowering from 

5900 – 5700 yBP, and at 5500 yBP and a minor regression after 4800 yBP (Rashid et al., 

2013).  Yet, a recent comprehensive analysis of far-field RSL and global ice volume data 

since the LGM by Lambeck et al. (Lambeck et al., 2014) reported that no oscillations of 

>0.2m were detectable during the last 6000 years of the Holocene. However, limitations 

apply to using differing sea-level indicators with various elevation errors from a number of 

studies, and may only provide information on the upper or lower limits of the SL signal 

within any one region (Lambeck et al., 2014).   

The most chronologically continuous far-field RSL record for the Holocene is that from 

Kiritimati (Fig. 1AWoodroffe et al., 2012). Derived from microatoll age-elevation data, this 

record has two limitations as acknowledged by the authors (Woodroffe et al., 2012). Firstly, 

an unexpectedly large (~1m) geoidal gradient was discovered in the living microatoll 

populations across the atoll (Woodroffe et al., 2012). This was rectified by comparing fossil 

microatoll elevations to their nearest living counterparts, which is common practice, yet 

requires that the geoid has remained stable over millennia. More significantly, no living 

comparisons were available on the emergent atoll interior (Woodroffe and McLean, 1998), so 
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the interior populations were aligned with reef flat populations (Woodroffe et al., 2012).  This 

method of elevation reduction, although unavoidable in this instance, is somewhat limiting as 

it negates the effects of ponding or tide attenuation associated with lagoon populations, which 

makes determination of absolute sea level difficult (Woodroffe and McLean, 1998). 

Separating the interior microatoll population data from reef flat data greatly affects the 

continuity of the record, resulting in a RSL history that cannot state explicitly against 

possible oscillations of >0.25m. The elevation of the fossil reef flat microatolls close to 

present sea level between 4700 – 4100 yBP and after 2800 yBP does not disagree with the 

timing of the negative SL oscillations proposed here for the GBR (Ext. data Fig 2b). 

Interestingly, the highest (uncorrected) microatoll population from the centre of the atoll 

occur between our lowstand periods, suggesting that populations inside the former reticulate 

lagoon may have been either isolated from oceanic influence or have reduced tidal flushing 

leading to coral demise between 4600 - 4000 yBP and 2800-2100 yBP (within dating 

uncertainties). Unfortunately the age errors (> ±500 years) of the two earliest reef flat 

samples between 6000 – 5000 yBP make comparisons with our data difficult. We therefore 

suggest that current studies in support of a stable ESL during the mid to late Holocene are 

still open to alternate interpretation. 

Links to climate 

At a regional scale, the largest annual to decadal modulating climate system on the GBR is 

the El Niño Southern Oscillation (ENSO), with La Niña (El Niño) associated with increased 

(decreased) precipitation in the Austral summer. Although the effect of El Niño/La Niña 

events on sea surface height (SSH) on the AEC is not well understood, in the central Pacific 

SSH can vary by as much as 0.3 – 0.4m due to the varying phases of ENSO (Woodroffe and 

McLean, 1998). Recent evidence also suggests that during La Niña phases low latitude 

glaciers advance (Francou et al., 2004) and Antarctic glacier melting is greatly reduced 

(Dutrieux et al., 2014) increasing the potential of terrestrial water storage in the Southern 

Hemisphere (SH).  

Marine based reconstructions of ENSO variability on the GBR in the Holocene are restricted 

to short time windows. Sea surface temperature (SST-Sr/Ca) and sea surface salinity (SSS - 

δ18O) at ~6200 (re-calibrated 14C) and 4700 yBP SSTs were shown to be ~1˚ warmer than 

present on the GBR with a suggested increase in evaporation and salinity ranges associated 

with strong flood events (Gagan et al., 1998, Roche et al., 2014). A multi-proxy terrestrial 
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record of pluvial conditions in southern Australia (Fig. 1A) also shows a La Niña like mean 

state of climate inferred from rainfall maximums at ~5800 – 5200, ~4500 and from ~3500 – 

2700 yBP (Gliganic et al., 2014). These periods are also synchronous with phases of 

dampened El Niño events identified at Laguna Pallcacocha, Ecuador (Moy et al., 2002) and 

to cooling (or contraction) of the Indo-Pacific warm pool (IPWP) in the western Pacific (Fig. 

1A; Supp. Fig. 3e-f; Abram et al., 2009). Coral based SST anomaly data from the Indo-

Pacific also demonstrates warmer than present conditions ~6500 followed by a transition to 

cooler temperatures by ~5500 y BP (Fig. 3b; Sadler et al., 2016 and references therein).  

At a broader scale, foraminiferal abundance and δ18O analysis of a deep sea core off the 

South Australian coast (Fig. 1A –CORE 1) demonstrates distinct marine cooling events at 

5800, 4300 and 2700 yBP of possibly ~2˚C (Ext. data Fig 3b), which are observed to be 

aligned with cooling events in the EPICA DOME C ice core (Moros et al., 2009). Significant 

SST cooling and ice expansion was also detected in the South Atlantic sector of the Southern 

Ocean between ~5500 – 4700 yBP (Fig. 1A – CORE 2; Hodell et al., 2001). In the northern 

hemisphere, evidence from Greenland (GISP2; Fig.1A) suggests rapid cooling events of 1.5 – 

2.0˚C from 5600 – 5400 yBP, 5000 – 4700 yBP and a stepped cooling trend from 2100 – 

1200 yBP (Ext. data Fig 2d; Alley, 2004). Rapid cooling also occurs in the North Atlantic 

(Bond Cycles 4, 3 and 2) at 5900, 4200 and 2800 yBP (Supp. Fig. 5c; Bond et al., 1997) 

which is aligned with periods of global glacier advances (Supp. Fig .5a; Mayewski et al., 

2004, Denton and Karlén, 1973). With modelled projections of future SLR suggesting a 0.2 – 

0.6m per +1°C (Church et al., 2013), a first order approximation of observed cooling events 

of ~1˚C in the northern and southern hemisphere during the Holocene may reconcile the RSL 

oscillations on the GBR. Although marine and terrestrial palaeo-temperature reconstructions 

within a given study are not indicative of global mean response, the synchronicity of cooling 

events and the RSL oscillations described here for the GBR are noteworthy and require 

further investigation. 

Conclusions 

Based upon measurements of coral microatoll elevations dated with high-precision U-Th 

techniques, our study is the first to show coherent rapid RSL oscillations represented across a 

large geographic range, supporting a model of SL instability throughout the Holocene. We 

suggest that although the response of individual coral reefs to RSL lowering events on the 

GBR has been variable throughout the Holocene, the broad scale synchronicity of responses 
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at 5500 and 4600 yBP and after 2800 yBP, co-occurring oscillations reported at other far-

field locations, and links to documented climate shifts is noteworthy. The RSL oscillations 

detected in our study are of a much smaller magnitude (<0.5m) than previously suggested 

ESL oscillations (>1m). Although still open for debate, we propose that the RSL oscillations 

presented here are likely the result of ocean-atmosphere climatic perturbations affecting SSTs 

and sensitive mountain ice-cap and non-polar icesheet water storage balances in both the 

northern and southern hemispheres. These climate signals may have further been emphasized 

locally due to the response of the ENSO system.  

With recent advancements in the accuracy and precision of geochronological techniques we 

suggest that future research effort be concentrated on high resolution SL data from other 

regions (where tectonic history is negligible) and on reconstructing high resolution 

palaeoclimate records, especially in the southern hemisphere. Establishing links between sea 

level and climate in the recent geological past, and refining RSL histories with regards to 

eustatic changes will ultimately improve models of future climate change scenarios, which 

are imperative for coastal planning and management.  

Methods 

As part of a multi-faceted project conducted under the National Environmental Research 

Program (NERP) numerous islands and coral reefs of the inshore GBR (11˚S to 23˚S) were 

visited between 2012 and 2014 (see Supp. 1 for site descriptions). Reef flats were visited at 

the lowset tides possible to be able to target fossil Porites sp. microatolls for RSL 

reconstructions. Corals were deemed to be in situ based on the orientation of corallite growth 

direction and relationship to the surrounding substrate (i.e. relative position of other fossil 

microatolls and other fossil reef features). It must be considered however that some samples 

may have been transported as a result of high energy storm/cyclone events so careful 

evaluation of the final data is necessary.  

Using only a single type of sea-level indicator that is well constrained to a predictable level 

mean low water spring (MLWS) tide reduces the uncertainty of interpretation between sites 

and negates the need for elevation interpolation required when a variety of sea level 

indicators are used. As current hydro-and-glacio-isostatic models for the region are based on 

a limited number of previously published sea level records that are geographically and 

chronologically discontinuous, we present our age-elevation data separated into four 
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latitudinal zones ranging between 11˚S - 20˚S (<25km from the mainland) based on relative 

location of sites to each other, and width of the continental shelf. No correction has been 

applied for glacial isostatic adjustment (GIA), as although this would affect the absolute RSL 

elevation, it has little effect on the relative position of microatolls to each other within one 

region.  

Sample collection and elevation surveys 

Elevations of microatolls were taken using a Magnum-Proshot 4.7 Laser Level and Apache 

Lightning 2 receiver and referenced against a timed-still tide level and, where possible, 

modern living counterparts. The elevation was taken from the centre of each microatoll along 

with the coral surface diameter and GPS location (Ext. Data TBL 1). Elevations were 

calculated using the nearest tide gauge data from Maritime Safety Queensland (MSQ), time 

adjusted, and reduced to elevation relative to present mean low water spring tide (MLWS; 

semi-diurnal tides) or mean lowest low water (MLLW; diurnal tides) as given by the 

Australian Bureau of Meteorology. Although elevation errors between each sample within 

sites is minimal and a function of the laser level accuracy (± 0.001m/30m), we acknowledge 

the uncertainties of deriving absolute elevations from timed-still tide levels and assign a 

vertical error term to measurements of ± 18cm for Haggerstone Island and a conservative 

error term of ±15 cm to the remaining sites (based on the propagation of tidal error correction 

and tide tie points of the living population of microatolls at this site compared to modern 

MLWS/MLLW levels; Supp. Fig. 6).  

Our previous dating experience indicated that the centre of the microatolls generally had 

lower detrital inclusions and micro-borings than the edges, which greatly improves the 

uranium-thorium (U-Th) age accuracy. Therefore, samples of each microatoll were collected 

for dating from the centre of each colony using a hammer and chisel. Sometimes the centre of 

the colony was more bio-eroded than the edge, or the exact centre unclear, so samples were 

taken from the edge of these colonies as indicated in as (E) in Extended Data Table 1.  

U-Th dating 

Samples were prepared for U-Th dating at the Radiogenic Isotope Facility, at The University 

of Queensland, using a pre-cleaning treatment as described in Leonard et al. (2015). Crushed 

and ultra-cleaned samples were picked manually under a binocular microscope to allow the 

best aragonite to be selected for dating (i.e. lacking any detritus, alteration or cements). 
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Picked samples were then weighed (15-50mg), spiked with a 233U-229Th mixed tracer and 

dissolved in pre-cleaned Teflon beakers with 15.8N quartz-double-distilled HNO3. 

Additionally, 6-10 drops of 30% H2O2 was added to the dissolved sample solutions to 

remove any remaining organics and ensure complete homogenisation of the spike-sample 

solution. The Teflon beakers were capped, and the solution heated to 90˚C on a hotplate 

overnight to ensure complete digestion. The solution was then dried down completely on a 

hotplate set at 90°C. Following complete drying, samples were re-dissolved using 700µl of 

7N HNO3 and passed through pre-conditioned Bio-Rad AG1X8 anion resin ion-exchange 

columns to separate U from Th. Quadrupole ICP-MS pre-screening of the collected U and Th 

solutions was conducted, and where necessary, U and Th solutions were remixed in 

appropriate proportions. After thorough mixing of the U-Th solution samples were 

centrifuged at 3500 rpm for 10 minutes and then measured fully automatically using a Cetac 

ASX110 auto-sampler on a Nu Plasma multi-collector inductively coupled plasma mass 

spectrometer (MC ICP-MS) as described in Clark et al. (2014). Sample ages were calculated 

using the decay constants of Cheng et al. (2000) using Isoplot/Ex software (Ludwig, 2003), 

and corrected for initial detrital 230Th using a two-component mixing correction scheme 

described by Clark et al. (2014). 

Statistical Analysis 

Relative sea level microatoll data from this study as well as U-Th dated microatoll data 

obtained from the Keppel Islands by Leonard et al. (2016) was combined to a derive a single 

sea level envelope for the GBR. The mode of RSL fall to present levels was tested by 

applying linear and Gaussian models (two – four terms employed) to the data points with 

95% confidence in Matlab®. The significance of the normality of the residuals from the 

models were assessed using the correlation coefficient of the probability in PAST statistical 

programme.  
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Figures 

 

Figure 1: A) World map showing locations of climate and sea level data referred to in the main text of the present study. Red square with (B) indicates Queensland, Australia, the region of 

this study. B) Map of Queensland, Australia and the Great Barrier Reef showing the locations of sites in the present study, red circles indicating site locations within each region. 
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Figure 2: (a-d) U-Th age - elevation plots of fossil Porites microatolls for four regions on the Great Barrier Reef (GBR), 
Australia (e) compared with previously published sea-level records from the Australian east coast (AEC). Elevation is 
given as height in metres above present mean low water spring tides with errors of ±0.15m. All age errors are 2σ (note 
some age errors are smaller than the icon width). a) Far North (small w above samples from Gore North indicate 
windward location); b) Alexandra Reef – samples and surveys conducted in 2012 (squares) and 2013 (diamonds); c) High 
Island (diamonds) and Fitzroy Island (squares) and d) Stone Island (diamonds) and Hayman Island (squares). e) U-Th age 
– elevation plot of Leonard et al. 2016 from the Keppel Islands, southern GBR (blue circles), sea level envelope of Lewis 
et al. 2008 (grey shaded) with suggested lowstands (grey bars) and microatoll data from the southern Great Barrier Reef 
of Harris et al. 2015 (aqua bars). 
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Figure 3: a) U-Th dated microatoll elevation data (metres [m] relative to modern mean low water spring tide) for the 
Great Barrier Reef (GBR), Australia (GOR N – Gore North, GOR – Gore Island, HAG –Haggerstone Island, ALR – Alexandra 
Reef, HI – High Island, FTZ – Fitzroy Island, St. I – Stone Island, HAY – Hayman Island - this study) and including U-Th 
dated microatoll data of Leonard et al. (2016) from the Keppel Islands (KEP; southern GBR). Blue shaded area represents 
the relative sea level (RSL) envelope of the northern GBR and orange shading represents the central – southern GBR. 
Dashed line is the geophysical model of Nakada and Lambeck (1989) from Halifax Bay (GBR). b) Coral derived (Sr/Ca) sea 
surface temperature (SST) anomaly data from the Indo-Pacific (˚C; Sadler et al., 2016 and references therein).  
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Supplementary 

Regional site descriptions 

The Great Barrier Reef is the largest coral reef system in the world, with over 2900 reefs and 

900 coral cays and islands. The region is recognised as an international World Heritage area, 

however the overall health of the GBR was recently brought into question by the United 

Nations Educational, Scientific and Cultural Organization (Hughes et al., 2015). Increasing 

anthropogenic pressures combined with global climate change has resulted in a significant 

decline in coral cover in recent decades (Hughes et al., 2015). However this is not the first 

time the GBR has suffered significant disturbance, with a ~2000 year hiatus or reef “turn-off” 

event reported in the northern and southern sectors during the mid-Holocene (Perry and 

Smithers, 2011, Smithers et al., 2006). Whilst it has been recognised that understanding these 

natural reef “turn-on” and “turn-off” cycles is imperative to better predicting future reef 

trajectories (Perry and Smithers, 2011), the cause of the mid-Holocene hiatus is still 

equivocal. 

Three possible drivers of the mid-Holocene “turn-off” have been suggested being; a) 

conditions marginal to reef growth caused by changes in climatic conditions; b) reef flat 

senescence limiting accretion potential; c) a regressing sea level following the mid-Holocene 

highstand resulting in emergence of reef flats (Perry and Smithers, 2011) and d) an oscillating 

Holocene RSL (Leonard et al., 2015, Harris et al., 2015).  

Far North Great Barrier Reef 

Far North (12˚S, 143˚E) 

Gore (11˚59S, 143˚14E) and Haggerstone Islands (12˚02S, 143˚17E) lie ~1km and 10km off 

the south east of Cape Grenville respectively. Two reef flats were visited in August 2014 at 

Gore Island (north-north-east and west) and one site to the southwest of Haggerstone Island 

(Fig. 1B (a) main text)). The emergent reef flats at Gore Island are well developed, and 

contained numerous fossil microatolls. The modern reef community is mainly restricted to 

the reef crest and slope, with some tabulate and branching Acropora, massive forms of 

Goniastrea and Porites, soft corals and foliose algae present. Although living corals on the 

modern reef crest were patchy, in situ samples appear to have been recently covered in a 

relatively thick layer of mud, and extensive fields of large Acropora rubble clasts indicate this 

is likely the  result of tropical cyclone Ita earlier in 2014 (Supp. Fig 2a). These reef flats are 
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largely infilled and lack any structural complexity. Comparatively, the south east portion of 

the reef flat visited at Haggerstone Island was less well developed. Whilst some areas of the 

reef flat were infilled, a considerable back reef lagoon is still present where modern coral 

growth is prolific (Supp. Fig 2b).  

Northern Great Barrier Reef 

Alexandra Reef (16°31S, 145°28E) 

Alexandra Reef is an extensive interconnecting complex of reefs that extend from Yule Point 

in the south to Port Douglas in the north. Although largely considered an amalgamation of 

mainland fringing reefs, geomorphological studies in this region by Bird (1971) suggests that 

these reefs actually established as shore detached reefs, and subsequent sea level regression 

and coastal progradation has led to infilling of a former back reef lagoon with clastic fluvial 

deposits from the Mowbray River and its tributaries. The emerged reef flat contains extensive 

fields of large (>2m) Porites microatolls. The modern reef flat is largely infilled, and is at the 

limit of vertical growth. Live coral cover is patchy, with only a few small Acropora sp., 

Goniastrea sp. and Porites sp. microatolls. Sediments are mainly biogenic carbonate rubble 

mixed with quartzose sands and muds.  

Wet Tropics 

Fitzroy Island (16˚55S, 145˚59E) 

Fitzroy Island is located ~6km from the mainland coast. The fringing reefs are narrow, and 

coral cover is low and declined significantly after the 1998 bleaching event (10-30% in 1986 

to <5% in 2002) (Sweatman et al., 2008). The fossil microatolls here are located under a thin 

veneer of living corals and microatolls. 

High Island (17˚09S, 146˚00E) 

High Island is a small continental island located ~5km from the mainland coast (Liu et al., 

2014). The leeward reef flat is ~300m wide and the reef slope drops off rapidly (~45˚) to a 

muddy sediment wedge where coral growth is limited (Wolanski et al., 2005). The emergent 

reef flat contains numerous large fossil Porites microatolls (>2m diameter), with live coral 

limited to mainly juvenile recruits. The island is impacted regularly by flood plumes derived 

from the Russell-Mulgrave River, and by tropical storms and cyclones (Liu et al., 2014, Chin 

et al., 2006). 
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Central Great Barrier Reef 

Stone Island (20˚02S, 148˚17E) 

Stone Island is located <2km from the mainland coast in the central GBR. The emerged reef 

flat is extensive however we avoided the most elevated regions due to possible ponding. This 

was interpreted from the reef having a “step” running shore parallel on the south western 

portion of the reef flat (Supp. Fig 3). The lower level reef flat substrate is largely infilled and 

lacks any structural complexity, although intermittent branching and plate Acropora are 

present. The reef flat at Stone Island was reportedly completely destroyed by a cyclone in 

1918, however anecdotal evidence suggests that the reef was recovering 20-30 years ago, 

however the living coral communities we observed in 2012 were extremely limited.  

Hayman Island (20˚03S, 148˚53E) 

Hayman Island is a large continental island located ~25km from the coast within the 

Whitsundays Group in the central GBR. The Whitsundays experience tidal ranges of up to 

4m (meso-tidal) and the climate is dominated by seasonal rainfall occurring from December 

to March.  Whilst initial investigations suggested that the reef on Hayman Island developed 

as a shore detached reef crest, followed by subsequent infilling of the lagoon (Hopley, 1982), 

more recent dating has indicated a shore to sea progradational mode of growth (Kan et al., 

1996). Modern reef growth is mainly limited to the reef crest and slopes. Discontinuous 

banks of rubble and large coral boulders have been deposited due to previous storms behind 

the modern reef crest. The reef flat has reached sea level and is mostly infilled, lacking any 

significant topographic variation. 
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Supplementary Table 

Supplementary Table 1: Results from MC-ICP -MS Uranium Thorium dating and elevation surveys of fossil Porites microatolls from the Great Barrier Reef, Australia. Microatoll elevations 
are given as metres relative to lowest astronomical tide (mLAT) and relative to regionally specific mean low water spring tide (MLWS). Elevation errors are ± 15cm except for Haggerstone 
Island (HAG) which is ±18cm based on the standard deviation of the living (modern) population.   

Sample 
Name U (ppm) 232Th (ppb) (230Th/ 

232Th) (230Th/238U) Corr. (234U/  
238U) 

Uncorr. 
Age Corr. Age Age 

(yBP ) 
δU234 Diam 

(cm) 
Elev. 
mLAT 

Elev. rel. 
to 

present 
(MLWS) 

Latitude Longitude 

GOR N 002 2.8823 ± 0.0016 13.787 ± 0.018 19.6 ± 0.2 0.03086 ± 0.00027 1.1470 ± 0.0007 2976 ± 26 2880 ± 33 2815 ± 33 147.0 ± 0.7 160 0.80 0.28 11˚59'02.1 143˚14'48.6 

GOR N 003 3.1165 ± 0.0016 8.946 ± 0.013 32.9 ± 0.3 0.03109 ± 0.00028 1.1456 ± 0.0009 3002 ± 27 2943 ± 30 2878 ± 30 145.6 ± 0.9 190 0.79 0.27 11˚59'02.3 143˚14'48.4 

GOR N 004 2.5509 ± 0.0012 7.858 ± 0.011 37.0 ± 0.4 0.03760 ± 0.00035 1.1465 ± 0.0010 3639 ± 34 3575 ± 37 3510 ± 37 146.5 ± 1.0 150 0.89 0.37 11˚59'02.6 143˚14'48.1 

GOR N 005 2.6300 ± 0.0013 17.168 ± 0.023 18.2 ± 0.2 0.03913 ± 0.00035 1.1469 ± 0.0010 3788 ± 35 3658 ± 43 3593 ± 43 146.9 ± 1.0 150 0.86 0.34 11˚59'02.5 143˚14'48.3 

GOR N 006 2.5218 ± 0.0011 19.994 ± 0.026 16.9 ± 0.1 0.04411 ± 0.00029 1.1452 ± 0.0008 4287 ± 28 4129 ± 42 4065 ± 42 145.2 ± 0.8 70 0.83 0.31 11˚59'02.9 143˚14'48.1 

GOR N 007 2.5822 ± 0.0016 24.429 ± 0.029 18.7 ± 0.1 0.05823 ± 0.00038 1.1469 ± 0.0010 5689 ± 38 5503 ± 53 5438 ± 53 146.9 ± 1.0 130 0.91 0.39 11˚59'03.0 143˚14'48.0 

GOR N 008 2.5805 ± 0.0011 5.4510 ± 0.0086 85.3 ± 0.6 0.05940 ± 0.00042 1.1449 ± 0.0008 5816 ± 42 5770 ± 43 5705 ± 43 144.9 ± 0.8 120 0.89 0.37 11˚59'03.1 143˚14'47.8 

GOR N 009 2.7130 ± 0.0016 2.7941 ± 0.0055 193.4 ± 1.6 0.06563 ± 0.00054 1.1447 ± 0.0009 6446 ± 55 6421 ± 55 6356 ± 55 144.7 ± 0.9 170 0.86 0.34 11˚59'03.2 143˚14'47.4 

GOR N 010 2.6430 ± 0.0011 17.678 ± 0.017 26.8 ± 0.2 0.05906 ± 0.00035 1.1457 ± 0.0011 5778 ± 35 5645 ± 44 5580 ± 44 145.7 ± 1.1 170 0.67 0.15 11˚59'03.0 143˚14'46.9 

GOR N 011 2.6807 ± 0.0015 4.6588 ± 0.0079 110.7 ± 0.9 0.06342 ± 0.00051 1.1476 ± 0.0010 6207 ± 51 6168 ± 52 6103 ± 52 147.6 ± 1.0 180 0.65 0.13 11˚59'03.2 143˚14'46.6 

GOR N 012 2.3603 ± 0.0009 14.398 ± 0.017 33.9 ± 0.2 0.06819 ± 0.00038 1.1467 ± 0.0010 6694 ± 39 6571 ± 46 6507 ± 46 146.7 ± 1.0 110 0.67 0.15 11˚59'03.5 143˚14'46.2 

GOR N 013 2.7231 ± 0.0012 10.392 ± 0.014 55.2 ± 0.3 0.06947 ± 0.00036 1.1471 ± 0.0007 6822 ± 37 6743 ± 40 6679 ± 40 147.1 ± 0.7 160 0.89 0.37 11˚59'05.3 143˚14'50.3 

GOR N 014 3.0441 ± 0.0016 18.349 ± 0.025 33.9 ± 0.2 0.06742 ± 0.00029 1.1472 ± 0.0006 6614 ± 29 6494 ± 38 6429 ± 38 147.2 ± 0.6 80 0.97 0.45 11˚59'05.5 143˚14'50.3 

GOR N 015 2.5883 ± 0.0012 6.621 ±0.012 84.8 ± 0.6 0.07152 ± 0.00047 1.1465 ± 0.0010 7033 ± 49 6979 ± 50 6914 ± 50 146.5 ± 1.0 200 0.96 0.44 11˚59'05.3 143˚14'50.6 

GOR N 016 2.7168 ± 0.0016 22.455 ± 0.026 25.2 ± 0.2 0.06866 ± 0.00043 1.1483 ± 0.0008 6732 ± 44 6569 ± 54 6504 ± 54 148.3 ± 0.8 230 1.09 0.57 11˚59'05.3 143˚14'51.1 
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GOR N 019 2.8329 ± 0.0013 6.8821 ± 0.0092 75.0 ± 0.5 0.06005 ± 0.00041 1.1465 ± 0.0009 5873 ± 42 5822 ± 43 5757 ± 43 146.5 ± 0.9 210 0.76 0.24 11˚59'05.3 143˚15'52.6 

GOR N 020 2.5204 ± 0.0013 11.340 ± 0.016 42.1 ± 0.4 0.06249 ± 0.00053 1.1472 ± 0.0011 6115 ± 54 6024 ± 57 5959 ± 57 147.2 ± 1.1 90 0.68 0.16 11˚59'05.9 143˚14'52.3 

GOR N 021 3.1270 ± 0.0015 3.5266 ± 0.0076 195.1 ± 1.3 0.07253 ± 0.00047 1.1476 ± 0.0011 7129 ± 48 7103 ± 48 7038 ± 48 147.6 ± 1.1 240 0.78 0.26 11˚59'06.8 143˚14'51.3 

GOR N 022 2.8696 ± 0.0015 9.007 ± 0.012 67.4 ± 0.4 0.06971 ± 0.00045 1.1474 ± 0.0007 6844 ± 46 6779 ± 47 6714 ± 47 147.4 ± 0.7 70 0.76 0.24 11˚59'06.1 143˚14'51.0 

GOR N 023 2.8876 ± 0.0010 4.8027 ± 0.0072 122.2 ± 0.6 0.06698 ± 0.00029 1.1459 ± 0.0010 6576 ± 29 6540 ± 30 6475 ± 30 145.9 ± 1.0 110 1.10 0.58 11˚59'09.3 143˚14'52.6 

GOR N 024 3.0197 ± 0.0012 2.2988 ± 0.0065 269.3 ± 1.3 0.06756 ± 0.00027 1.1461 ± 0.0011 6633 ± 28 6614 ± 29 6549 ± 29 146.1 ± 1.1 70 1.13 0.61 11˚59'09.5 143˚14'52.7 

GOR N 025 3.0528 ± 0.0017 3.9747 ± 0.0065 145.3 ± 1.1 0.06234 ± 0.00046 1.1468 ± 0.0011 6102 ± 47 6072 ± 47 6008 ± 47 146.8 ± 1.1 60 1.17 0.65 11˚59'09.5 143˚14'52.7 

GOR 001 2.3476 ± 0.0011 6.642 ± 0.010 47.5 ± 0.4 0.04427 ± 0.00038 1.1481 ± 0.0011 4291 ± 37 4231 ± 39 4166 ± 39 148.1 ± 1.3 120 0.64 0.12 11˚59'27.2 143˚14'42.1 

GOR 002 2.5954 ± 0.0013 31.290 ± 0.044 11.3 ± 0.1 0.04481 ± 0.00057 1.1469 ± 0.0013 4350 ± 57 4114 ± 74 4049 ± 74 146.9 ± 0.7 170 0.60 0.08 11˚59'27.2 143˚14'42.1 

GOR 004 2.5986 ± 0.0017 64.354 ± 0.096 6.03 ± 0.05 0.04923 ± 0.00042 1.1455 ± 0.0007 4797 ± 42 4316 ± 105 4251 ± 105 145.5 ± 1.0 100 0.57 0.05 11˚59'27.0 143˚14'42.2 

GOR 005 2.4778 ± 0.0016 6.176 ± 0.013 55.2 ± 0.6 0.04532 ± 0.00046 1.1463 ± 0.0010 4403 ± 46 4349 ± 47 4284 ± 47 146.3 ± 0.9 90 0.61 0.09 11˚59'27.1 143˚14'42.1 

HAG 002 2.6509 ± 0.0012 6.3338 ± 0.0099 61.4 ± 0.4 0.04836 ± 0.00031 1.1454 ± 0.0008 4708 ± 31 4657 ± 33 4592 ± 33 145.4 ± 0.8 170 0.86 0.34 12˚02'24.3 143˚17'45.6 

HAG 003 2.5732 ± 0.0012 0.4684 ± 0.0039 699.5 ± 7.4 0.04196 ± 0.00028 1.1453 ± 0.0010 4073 ± 28 4064 ± 28 3999 ± 28 145.3 ± 1.0 120 0.75 0.23 12˚02'24.0 143˚17'45.4 

HAG 010 3.3752 ± 0.0019 25.850 ± 0.036 13.3 ± 0.1 0.03344 ± 0.00033 1.1467 ± 0.0008 3229 ± 32 3079 ± 44 3014 ±44 146.7 ± 0.8 80 0.60 0.08 12˚02'14.4 143˚17'43.9 

HAG 011 3.3160 ± 0.0014 38.081 ± 0.044 8.8 ± 0.1 0.03315 ± 0.00023 1.1460 ± 0.0009 3204 ± 22 2979 ± 50 2915 ±50 146.0 ± 0.9 200 0.68 0.17 12˚02'14.1 143˚17'44.6 

HAG 012 2.4244 ± 0.0011 2.5762 ± 0.0058 115.6 ± 0.8 0.04049 ± 0.00027 1.1461 ± 0.0009 3925 ± 27 3899 ± 27 3834 ± 27 146.1 ± 0.9 160 0.69 0.18 12˚02'13.1 143˚17'44.4 

HAG 013 4.8141 ± 0.0022 22.859 ± 0.027 39.2 ± 0.2 0.06138 ± 0.00034 1.1451 ± 0.0011 6014 ± 35 5920 ± 40 5855 ± 40 145.1 ± 1.1 230 0.68 0.16 12˚02'12.1 143˚17'43.0 

HAG 014 2.5354 ± 0.0058 8.2182 ±0.0099 38.4 ± 0.3 0.04098 ± 0.00034 1.1442 ± 0.0008 3980 ± 34 3913 ± 37 3848 ± 37 144.2 ± 0.8 170 0.61 0.09 12˚02'18.0 143˚17'43.2 

HAG 017 2.6635 ± 0.0012 0.9449 ± 0.0042 483.7 ± 4.1 0.05656 ± 0.00041 1.1467 ± 0.0009 5521 ± 42 5509 ± 42 5444 ± 42 146.7 ± 0.9 130 0.95 0.44 12˚02'26.0 143˚17'45.1 

HAG 018 2.5872 ± 0.0013 3.9198 ± 0.0068 117.9 ± 0.8 0.05887 ± 0.00041 1.1469 ± 0.0011 5752 ± 41 5718 ± 42 5653 ±42 146.9 ± 1.1 110 0.91 0.40 12˚02'26.3 143˚17'45.2 

ALR 001 2.5021 ± 0.0009 10.296 ± 0.013 40.0 ± 0.1 0.05420  ± 0.00015 1.1472 ± 0.0012 5280  ± 16 5174 ± 55 5111 ± 55 149.5 ± 1.2 150 1.26 0.54 16˚31'17.9 145˚28'36.2 
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ALR 002 2.7799 ± 0.0013 7.5724 ± 0.0084 57.3 ± 0.1 0.05140  ± 0.00010 1.1464 ± 0.0010 5005  ± 11 4934 ± 37 4871 ± 37 148.6 ± 1.0 160 1.21 0.49 16˚31'18.1 145˚28'36.4 

ALR 003 2.7066 ± 0.0020 12.286 ± 0.041 32.7 ± 0.1 0.04893  ± 0.00013 1.1499 ± 0.0010 4774  ± 14 4627 ± 60 4564 ± 60 152.0 ± 1.1 380 1.19 0.48 16˚31'17.7 145˚28'36.2 

ALR 004 2.5278 ±  0.0016 2.3775 ± 0.0041 158.3 ± 0.4 0.04908  ± 0.00010 1.1480 ± 0.0010 4767  ± 11 4743 ± 16 4680 ± 16 150.0 ± 1.0 210 1.24 0.52 16˚31'17.7 145˚28'36.2 

ALR 009 2.8455 ±0.0027 9.744 ± 0.014 40.1 ± 0.1 0.04520  ± 0.00011 1.1482 ± 0.0009 4382  ± 11 4293 ± 45 4230 ± 45 150.1 ± 0.9 150 0.72 0.01 16˚31'13.6 145˚28'42.8 

ALR 010 2.8546 ± 0.0011 11.599 ± 0.022 37.0 ± 0.1 0.04949  ± 0.00010 1.1467 ± 0.0008 4814  ± 10 4709 ± 53 4646 ± 53 148.8 ± 0.8 180 0.67 -0.05 16˚31'12.4 145˚28'43.3 

ALR 011 2.8471 ± 0.0020 8.4773 ± 0.0090 49.5 ± 0.1 0.04852 ± 0.00012 1.1468 ± 0.0008 4717  ± 12 4640 ± 40 4577 ± 40 148.9 ± 0.8 110 0.75 0.03 16˚31'12.6 145˚28'44.0 

ALR 012 2.9301 ± 0.0016 15.163 ± 0.028 29.1 ± 0.1 0.04969 ± 0.00013 1.1458 ± 0.0011 4837  ± 14 4703 ± 68 4640 ± 68 148.0 ± 1.1 120 0.60 -0.12 16˚31'19.2 145˚28'33.0 

ALR 014 2.7393 ± 0.0015 6.6920 ± 0.0081 62.5 ± 0.2 0.05034 ± 0.00015 1.1453 ± 0.0008 4904  ± 16 4841 ± 35 4778 ± 35 147.4 ± 0.8 160 1.33 0.61 16˚31'20.1 145˚28'33.5 

ALR 015 2.7196 ±0.0019 25.966 ± 0.034 16.8 ± 0.1 0.05299 ± 0.00017 1.1467 ± 0.0009 5161  ± 17 4914 ± 124 4851 ± 124 149.2 ± 1.0 130 1.33 0.61 16˚31'20.2 145˚28'33.3 

ALR 022 2.7068 ±0.0013 4.735 ± 0.013 85.9 ± 0.5 0.04951 ± 0.00029 1.1474 ± 0.0013 4821 ± 29 4776 ± 37 4713 ± 37 147.4 ± 1.3 250 1.17 0.47 16˚31'18.7 145˚28'35.7 

ALR 024 2.7294 ± 0.0021 13.662 ± 0.035 30.0 ± 0.1 0.04949 ± 0.00018 1.1431 ± 0.0009 4838 ± 18 4708 ± 67 4645 ± 67 143.1 ± 0.9 247 1.18 0.48 16˚31'19.1 145˚28'36.1 

ALR 028 2.9374 ± 0.0023 7.161 ± 0.018 70.7 ± 0.3 0.05681 ± 0.00022 1.1442 ± 0.0011 5568 ± 23 5504 ± 39 5441 ± 39 144.2 ± 1.1 99 1.02 0.33 16˚31'20.8 145˚28'36.7 

ALR-030 2.9289 ± 0.0026 2.035 ± 0.005 214.9 ± 1.2 0.04920 ± 0.00026 1.1436 ± 0.0013 4806 ± 26 4788 ± 28 4725 ± 28 143.6 ± 1.3 220 1.08 0.39 16˚31.18.7 145˚28.37.5 

ALR 033 2.8562 ± 0.0019 12.821 ± 0.021 35.9 ± 0.2 0.05307 ± 0.00020 1.1435 ± 0.0011 5195 ± 21 5078 ± 62 5015 ± 62 143.5 ±1.1 130 1.04 0.34 16˚31'19.3 145˚28'37.4 

ALR 034 2.8753 ± 0.0015 5.982 ± 0.013 73.7 ± 0.4 0.05055 ± 0.00023 1.1436 ± 0.0010 4942 ± 24 4888 ± 36 4825 ± 36 143.6 ± 1.0 205 1.04 0.34 16˚31'17.5 145˚28'37.6 

ALR 035 3.2863 ± 0.0021 7.266 ± 0.015 69.5 ± 0.4 0.05061 ± 0.00027 1.1460 ± 0.0009 4937 ± 27 4880 ± 39 4817 ± 39 146.0 ±0.9 110 1.04 0.34 16˚31'18.6 145˚28'37.2 

ALR 036 2.5220 ± 0.0016 5.574 ± 0.012 68.8 ± 0.3 0.05008 ± 0.00020 1.1452 ± 0.0015 4887 ± 21 4830 ± 36 4767 ± 36 145.2 ± 1.5 215 1.05 0.35 16˚31'17.5 145˚28'37.2 

ALR 037 2.9145 ± 0.0018 3.3063 ± 0.0091 137.8 ± 0.8 0.05150 ± 0.00028 1.1452 ± 0.0017 5030 ± 29 5000 ± 32 4937 ± 32 145.2 ± 1.7 330 1.08 0.38 16˚31'17.4 145˚28'37.1 

ALR-038 2.7090 ± 0.0018 17.704 ± 0.042 22.2 ± 0.2 0.04782 ± 0.00042 1.1447 ± 0.0012 4665 ± 43 4495 ± 95 4432 ± 95 144.7 ± 1.2 295 0.94 0.15 16˚31'15.7 145˚28'41.0 

ALR 040 2.8280 ± 0.0011 5.175 ± 0.013 80.1 ± 0.5 0.04829 ± 0.00030 1.1473 ± 0.0008 4701 ± 30 4653 ±38 4590 ± 38 147.3 ± 0.8 250 0.91 0.12 16˚31'15.3 145˚28'41.3 

ALR 041 2.7872 ± 0.0016 21.026 ± 0.042 19.2 ± 0.2 0.04771 ± 0.00040 1.1475 ± 0.0013 4642 ± 40 4447 ± 105 4384 ± 105 147.5 ± 1.3 180 0.92 0.13 16˚31'14.4 145˚28'41.2 
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ALR 043 2.8267 ± 0.0014 9.463 ± 0.013 43.0 ± 0.2 0.04749 ± 0.00020 1.1468 ± 0.0015 4622 ± 21 4536 ± 48 4473 ± 48 146.8 ± 1.5 205 0.90 0.11 16˚31'14.2 145˚28'40.7 

ALR 045 2.9426 ± 0.0020 12.334 ± 0.023 33.7 ± 0.2 0.04660 ± 0.00027 1.1460 ± 0.0010 4537 ± 27 4429 ± 61 4366 ± 61 146.0 ± 1.0 185 0.91 0.12 16˚31'14.5 145˚28'40.9 

ALR 046 2.6213 ± 0.0014 14.081 ± 0.034 26.1 ± 0.2 0.04627 ± 0.00025 1.1449 ± 0.0012 4509 ± 26 4370 ± 74 4307 ± 74 144.9 ± 1.2 190 0.87 0.08 16˚31'13.8 145˚28'41.5 

ALR 047 2.9077 ± 0.0020 19.800 ± 0.043 22.2 ± 0.1 0.04991 ± 0.00022 1.1484 ± 0.0014 4857 ± 22 4681 ± 90 4618 ± 90 148.4 ± 1.4 360 0.88 0.10 16˚31'13.2 145˚28'41.7 

ALR 050 2.4478 ± 0.0016 7.731 ± 0.014 47.6 ± 0.3 0.04952 ± 0.00027 1.1472 ± 0.0012 4823 ± 27 4742 ± 49 4679 ± 49 147.2 ± 1.2 240 1.32 0.5 16˚31'19.7 145˚28'33.8 

ALR 052 2.5661 ± 0.0015 14.758 ± 0.029 27.9 ± 0.2 0.05278 ± 0.00026 1.1453 ± 0.0013 5158 ± 27 5008 ± 79 4945 ± 79 145.3 ± 1.3 215 1.27 0.45 16˚31'20.2 145˚28'33.7 

ALR 057 2.8427 ± 0.0017 25.345 ± 0.042 17.5 ± 0.1 0.05138 ± 0.00027 1.1481 ± 0.0013 5006 ± 28 4775 ± 118 4712 ± 118 148.1 ± 1.3 170 1.37 0.55 16˚31'22.2 145˚28'33.0 

ALR 060 2.7202 ± 0.0016 17.993 ± 0.041 22.4 ± 0.1 0.04885 ± 0.00023 1.1484 ± 0.0012 4751 ± 23 4580 ± 88 4517 ± 88 148.4 ± 1.2 120 1.31 0.49 16˚31'22.8 145˚28'33.2 

FI 001 2.6878 ± 0.0014 30.024 ± 0.040 13.0 ± 0.1 0.0479 ± 0.0002 1.1472 ± 0.0014 4662 ± 18 4434 ± 115 4371 ± 115 147.2 ± 1.4 ~300 0.16 -0.22 16˚55'35.9 145˚59'24.2 

FI 002 2.4995 ± 0.0025 25.332 ± 0.037 14.6 ± 0.1 0.0488 ± 0.0002 1.1460 ± 0.0011 4760 ± 18 4553 ± 105 4490 ± 105 146.0 ± 1.1 ~300 0.15 -0.23 16˚55'35.7 145˚59'24.3 

FI 003 2.8224 ± 0.0010 32.575 ± 0.047 14.68 ± 0.04 0.0558 ± 0.0001 1.1457 ± 0.0013 5462 ± 14 5226 ± 118 5163 ± 118 145.7 ± 1.3 ~300 0.15 -0.22 16˚55'35.4 145˚59'24.3 

HIG 002 3.0050 ± 0.0016 13.693 ± 0.016 44.8 ± 0.1 0.06729  ± 0.00014 1.1515 ± 0.0012 6583  ± 15 6466 ± 60 6403 ± 60 151.7 ± 1.2 270 1.00 0.40 17˚09'29.0 146˚00'20.2 

HIG 003 3.2503 ± 0.0021 16.349 ± 0.019 37.4 ± 0.1 0.06203  ± 0.00014 1.1511 ± 0.0012 6056  ± 15 5926 ± 66 5863 ± 66 151.2 ± 1.2 310 1.06 0.46 17˚09'28.9 146˚00'20.4 

HIG 005 3.0075 ± 0.0023 13.857 ± 0.030 46.6 ± 0.2 0.07069  ± 0.00017 1.1490 ± 0.0010 6943  ± 18 6824 ± 62 6761 ± 62 149.1 ± 1.0 300 1.04 0.44 17˚09'28.8 146˚00'21.2 

HIG 006 2.8269 ± 0.0017 22.838 ± 0.031 27.4 ± 0.1 0.07281  ± 0.00021 1.1476 ± 0.0009 7168  ± 22 6958 ± 106 6895 ± 106 147.9 ± 0.9 465 0.99 0.39 17˚09'28.6 146˚00'21.2 

HIG 008 2.8994 ± 0.0021 12.187 ± 0.011 44.0 ± 0.1 0.06091  ± 0.00012 1.1479 ± 0.0009 5961  ± 13 5852 ± 56 5789 ± 56 148.1 ± 0.9 215 1.11 0.51 17˚09'29.5 146˚00'21.3 

HIG 009 2.8710 ± 0.0021 8.3394 ± 0.079 63.8 ± 0.2 0.06107  ± 0.00019 1.1489 ± 0.0009 5971  ± 19 5896 ± 42 5833 ± 42 149.0 ± 0.9 510 1.10 0.50 17˚09'29.7 146˚00'21.2 

HIG 011 3.2979 ± 0.0018 19.261 ± 0.032 39.5 ± 0.1 0.07595  ± 0.00016 1.1484 ± 0.0011 7482  ± 18 7331 ± 77 7268 ± 77 148.6 ± 1.1 260 1.13 0.53 17˚09'29.1 146˚00'21.9 

HIG 013 2.9202 ± 0.0018 13.626 ± 0.036 42.1 ± 0.2 0.06477  ± 0.00016 1.1472 ± 0.0013 6354  ± 17 6233 ± 62 6170 ± 62 147.3 ± 1.3 335 1.15 0.55 17˚09'27.7 146˚00'21.3 

HIG 001-E 2.9298 ± 0.0017 5.916 ± 0.0093 89.2 ± 0.2 0.05935 ± 0.00014 1.1489 ± 0.0009 5798 ± 30 5746 ± 30 5683 ± 30 149.0 ± 0.9 110 0.93 0.33 17˚09'29.1 146˚00'19.8 

HIG 003-E 2.8322 ± 0.0021 4.2349 ± 0.0083 122.5 ± 0.4 0.06039 ± 0.00017 1.1495 ± 0.0011 6055 ± 18 5861 ± 26 5798 ± 26 149.5 ± 1.1 310 1.06 0.46 17˚09'28.9 146˚00'20.4 
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Ratios in parentheses are activity ratios calculated from atomic ratios using decay constants of Cheng et al. (2000). All values have been corrected for laboratory procedural blanks. All errors 
reported in this table are quoted as 2σ.  

a. Uncorrected 230Th age was calculated using Isoplot/EX 3.0 program (Ludwig, 2003). 

b. 230Th ages were corrected using the two-component correction method of Clark et al. (2014) using 230Th/232Thhyd and 230Th/232Thdet activity ratios of 1.08 ± 0.23 and 0.62 ± 0.14, respectively. 

c. δ234U = [(234U/238U) − 1] × 1000. 

 

HIG 004-E 2.6600 ± 0.0027 20.860 ± 0.024 24.6 ± 0.1 0.06347 ± 0.00016 1.1493 ± 0.0015 6210 ± 18 6008 ± 102 5664 ± 102 149.6 ± 1.5 175 1.10 0.50 17˚09'29.0 146˚00'20.7 

HIG 006-E 2.9066 ± 0.0021 16.342 ± 0.022 35.9 ± 0.1 0.06656 ± 0.00021 1.1489 ± 0.0013 6525 ± 23 6379 ± 76 6317 ± 76 149.1 ± 1.3 465 1.12 0.52 17˚09'28.6 146˚00'21.2 

HIG 007-E 2.4044 ± 0.0014 21.311 ± 0.021 20.4 ± 0.1 0.05967 ± 0.00015 1.1458 ± 0.0010 5846 ± 16 5617 ± 115 5554 ± 115 146.1 ± 1.0 440 1.12 0.52 17˚09'29.0 146˚00'21.3 

HIG 011-E 2.8991 ± 0.0017 32.591 ± 0.051 18.0 ± 0.1 0.06676 ± 0.00017 1.1470 ± 0.0010 6556 ± 18 6265 ± 146 6202 ± 146 147.3 ± 1.1 260 1.13 0.53 17˚09'29.1 146˚00'21.9 

HIG 012-E 2.8797 ± 0.0019 5.0386 ± 0.0063 108.4 ± 0.3 0.06248 ± 0.00015 1.1494 ± 0.0011 6110 ± 16 6065 ± 28 6002 ± 28 149.5 ± 1.1 410 1.19 0.59 17˚09'28.1 146˚00'21.5 

HIG 014-E 2.5618 ± 0.0008 35.505 ± 0.086 13.88 ± 0.04 0.06341 ± 0.00011 1.1459 ± 0.0013 6209 ± 13 5926 ± 141 5863 ± 141 148.8 ± 1.3 335 1.15 0.55 17˚09'27.5 146˚00'21.5 

HIG 015-E 2.8629 ± 0.0011 9.775 ± 0.015 60.8 ± 0.1 0.06837 ± 0.00016 1.1433 ± 0.0008 6724 ± 17 6655 ± 39 6592 ± 39 146.1 ± 0.8 450 1.15 0.55 17˚09'27.2 146˚00'21.5 

ST.I 002 3.0884 ± 0.0018 13.75 ± 0.028 47.2 ± 0.2 0.0692 ± 0.0003 1.1465 ± 0.0012 6810 ± 30 6694 ± 64 6631 ± 64 146.5 ± 1.2 70 0.92 0.26 20˚02'31.7 148˚17'09.3 

ST.I 003 2.9531 ± 0.0023 11.06 ± 0.020 56.5 ± 0.3 0.0697 ± 0.0003 1.1482 ± 0.0013 6852 ± 34 6755 ± 59 6692 ± 59 148.2 ± 1.3 200 0.93 0.27 20˚02'31.6 148˚17'09.4 

ST.I 004 3.0112 ± 0.0025 6.061 ± 0.013 103.4 ± 0.6 0.0686 ± 0.0004 1.1480 ± 0.0013 6736 ± 37 6684 ± 45 6621 ± 45 148.0 ± 1.3 130 0.90 0.24 20˚02'31.9 148˚17'09.4 

ST.I 005 2.69525 ± 0.00094 2.0210 ± 0.0035 288.9 ± 0.7 0.0714 ± 0.0001 1.1480 ±0.0012 7020 ± 14 7004 ± 16 6941 ± 16 148.0 ± 1.2 290 0.51 -0.15 20˚02'32.0 148˚17'09.5 

ST.I 007 2.9438 ± 0.0021 10.45 ± 0.022 60.9 ± 0.3 0.0712 ± 0.0003 1.1485 ± 0.0013 7002 ± 33 6910 ± 56 6847 ± 56 148.5 ± 1.3 240 0.53 -0.13 20˚02'32.2 148˚17'09.7 

ST.I 012 2.9567 ± 0.0016 6.17 ± 0.018 102.7 ± 0.5 0.0706 ± 0.0003 1.1458 ± 0.0011 6958 ± 32 6903 ± 42 6840 ± 42 145.8 ± 1.1 120 0.46 -0.19 20˚02'34.9 148˚17'11.8 

HAY 001* 2.3655 ± 0.0010 17.941 ± 0.047 0.74 ± 0.01 0.0018 ± 0.0000 1.1471 ± 0.0010 176 ± 3 21 ± 78 1992 ± 78 147.1 ± 1.0 50 0.61 0.00 20˚03'16.9 148˚53'52.4 

HAY 002 3.0096 ± 0.0010 28.453 ± 0.059 17.6 ± 0.1 0.0549 ± 0.0001 1.1467 ± 0.0009 5360 ± 15 5167 ± 97 5104 ± 97 146.7 ± 0.9 90 0.65 0.04 20˚03'17.1 148˚53'52.1 

HAY 003E 3.1494 ± 0.0016 26.76 ± 0.35 19.3 ± 0.1 0.0539 ± 0.0001 1.1467 ± 0.0015 5266 ± 14 5093 ± 87 5030 ± 87 146.7 ± 1.5 130 0.67 0.06 20˚03'17.4 148˚53'51.3 
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Supplementary Table 2: Summary statistics for linear and Gaussian models (see Supp. Fig. 4) of relative sea level (RSL) on 
the Great Barrier Reef, Australia. Where SSE is the Sum of Squares due to error, R-square is the square of the correlation 
between the predicted response values and response values, Adjusted R-square is adjusted using the residuals degrees 
of freedom, RMSE is the root mean squared error.  
 

Goodness of Fit SSE R-square 
Adjusted 
R-square RMSE 

Linear 6.52 0.15 0.15 0.22 

Gaussian 1 5.85 0.24 0.23 0.21 

Gaussian 2 5.02 0.35 0.32 0.20 

Gaussian 3 4.93 0.36 0.32 0.20 

Gaussian 4 4.52 0.41 0.36 0.20 
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Supplementary Figures 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

a b 

Supplementary Figure 2: Photographs from far north Queensland Great Barrier Reef a) In situ branching, plating and small 
massive corals covered in thick sediment on the seaward edge of the reef flat at leeward Gore Island and b) Haggerstone 
Island back reef lagoon. 

a b 

Supplementary Figure 1: Photographs of fossil microatolls from Alexandra Reef, Queensland, Australia. a) microatoll showing  
a reduction in height around the outer rim indicative of a fall in RSL and; b) microatoll with a planar upper surface indicating 
growth up to a constant RSL.  
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Supplementary Figure 3: Photograph of Stone Island (20˚02S, 148˚17E), Great Barrier Reef, Australia, looking towards 
the island (with Bowen in the background). Note the shore parallel “step” which is an emerged coral reef suggestive of 
possible ponding. Microatolls for this study were only taken from the lower reef terrace. 



96 
 

 

Supplementary Figure 4: Linear and Gaussian models of RSL based on U-Th dated coral microatolls and probability plots 
(normal distribution of the model residuals) from the Great Barrier Reef, Australia. Elevation is in metres (m) relative to 
present mean low water spring tide (MLWS), Age is in years before present (yBP) where present is defined as 1950.  
Gaussian 1-4 represents number of terms included in the analysis. Dotted blue lines are 95% confidence bounds, red 
dashed squares indicate predictive tendency of the residuals of the models indicating poor fit to the data. The 
correlation coefficient of normal distribution of the residuals is only significant (p = 0.05) for the highest term Gaussian 
model (Gaussian 4).  
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Supplementary Figure 5: Holocene climate records of; a) Northern and Southern hemisphere glacier advances (Denton 
and Karlén, 1973, Mayewski et al., 2004);  b) δ18O derived Southern Ocean cooling events (Moros et al., 2009); c) 
percent haematite stained grains from North Atlantic cold events (Bond et al., 2001, Bond et al., 1997); d) Greenland ice 
core GISP 2 temperature record (Alley, 2004);  e) Sr/Ca coral proxy derived SST from the western Pacific (Abram et al., 
2009) and; f) Number of El Niño Southern Oscillation (ENSO) events in the eastern Pacific (Moy et al., 2002; Ecuador 
sediment record). 
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Supplementary Figure 6: Elevations of modern Porites sp. microatolls (closed symbols) compared to site specific modern 
mean low water spring tide level (MLWS; open symbols) obtained from the Australian Bureau of Meteorology. Errors 
are ± 15cm for Gore North (GOR N), Stone Island (St.I) and Hayman Island (HAY) calculated from laser level accuracy and 
still tide timed data. Haggerstone Island (HAG) elevation error is ± 18cm calculated from the standard deviation of 
modern microatoll elevations. * The modern microatoll used for Stone Island comparison was obtained from Bramston 
Reef located 3 km from the site.  
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Abstract  

Globally, coral reefs are under increasing pressure both through direct anthropogenic 

influence and increases in climate extremes. Understanding past climate dynamics that 

negatively affected coral reef growth is imperative for improving management strategies, and 

modelling of future coral reef responses to a changing climate. The El Niño Southern 

Oscillation (ENSO) is the primary source of climate variability at inter-annual timescales on 

the Great Barrier Reef (GBR), Australia. Applying continuous wavelet transforms to visually 

assessed coral luminescence intensity in massive Porites corals from the central GBR, we 

demonstrate that these records reliably reproduce ENSO variance patterns for the period 1880 

– 1985. We then applied this method to three sub-fossil corals from the same reef to 

reconstruct ENSO variance from ~5200 – 4300 years before present (yBP). We show that 

ENSO events were less extreme and less frequent after ~5200 yBP on the GBR compared to 

modern records. Growth characteristics of the corals are consistent with cooler sea surface 

temperatures (SST) between 5200 and 4300 yBP compared to both the millennia prior 

(~6000 yBP) and modern records. Understanding ENSO dynamics in response to SST 

variability at geological timescales is instrumental to improving predictions of future ENSO 

response to a rapidly warming climate.  
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Introduction 

With the future of coral reefs uncertain due to local and global environmental change, 

elucidating the controls on reef growth and decline in the recent geological past, prior to 

anthropogenic impacts, is imperative for developing realistic future management strategies 

(Pandolfi, 2015). Records of globally significant reef ‘turn-off’ (Buddemeier and Hopley, 

1988) or hiatus events in the mid-Holocene (~6500 – 4500 years before present; yBP) are 

numerous, and have been attributed to various exogenic processes such as sea-level 

variability (Hamanaka et al., 2012, Leonard et al., 2013, Harris et al., 2015, Leonard et al., 

2015), broad-scale climate shifts (Smithers et al., 2006, Perry and Smithers, 2011) or changed 

frequency and intensity of El Niño Southern Oscillation events (ENSO; Lybolt et al., 2011, 

Toth et al., 2012).  

The effects of extreme ENSO events on the health of coral reef ecosystems has gained 

interest since the globally unprecedented mass coral bleaching event of 1998 which, due to 

anomalously high summer sea surface temperatures (SST; Hoegh-Guldberg, 1999, Lough, 

2000), resulted in up to 87% of inshore corals on the Great Barrier Reef (GBR), Australia,  

being affected to some extent (Berkelmans and Oliver, 1999). This event was aligned with 

the strongest El Niño event recorded over the past century, and possibly over the past 

millennium (Lough, 2000). Alarmingly, first assessments (aerial and underwater surveys) of 

the effects of the 2015-2016 El Niño event have reported on moderate to severe bleaching for 

large tracts of coral reefs north of Townsville on the GBR, however the full extent of 

mortality and recovery will not be known for some time (GBRMPA, 2016). 

Extreme La Niña events are also detrimental to coral reefs, with increased and persistent 

rainfall and increased tropical cyclogenesis (Kuleshov et al., 2008) resulting in amplified 

sediment and pollutant input and physical destruction to the GBR lagoon, causing coral 

mortality (Butler et al., 2013, Jones and Berkelmans, 2014). Therefore, understanding ENSO 

dynamics on the GBR in the Mid-Holocene is not only vital to disentangling the cause/s of 

reef hiatuses in the past, but offers an opportunity to understand potential response to changes 

to ENSO in the future.  

A suite of proxies in both terrestrial and marine environments have been developed to 

interpret climatic and environmental dynamics at geological timescales (Wanner et al., 2008, 

Jones et al., 2009). Both geochemical and ecological information can be extracted from 

sediment cores, offering long histories of climatic data to be inferred, but at relatively low 
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(centennial – millennial) resolution (e.g. Gupta et al., 2003, Conroy et al., 2008, Marcott et 

al., 2013). Conversely, annually banded coral skeletons enable high-resolution analysis of 

palaeoclimate proxies, often at intra-annual scales, yet are normally restricted to short time 

windows for sub-fossil corals (Zinke et al., 2015).  

One of the simplest and most efficient methods of extracting information from massive coral 

cores is by measuring growth characteristics, such as linear extension, calcification rate and 

skeletal density. These growth characteristics have been linked to both environmental and 

climatic controls on modern corals from the GBR (Lough et al., 1999, Lough and Barnes, 

2000, Cooper et al., 2008, De'ath et al., 2009, Cantin and Lough, 2014), Thailand  (Tanzil et 

al., 2009, Tanzil et al., 2013), the Maldives (Storz and Gischler, 2010) and the central Red 

Sea (Cantin et al., 2010). Annual density bands in corals (Knutson et al., 1972) enable 

measurement of the linear extension rates in massive, long-lived Porites, where high density 

and low density couplets represent one year of coral growth. A report of the growth 

characteristics of 264 colonies and 35 cores obtained from Porites on the GBR demonstrated 

broad scale geographic responses, and latitudinal patterns in extension and calcification rates, 

with lower rates linked to cooler sea surface temperatures (SSTs) in the southern GBR 

(Lough et al., 1999).  

A second rapid assessment method is the visual assessment of coral luminescent lines under 

ultra-violet (UV) light (Isdale et al., 1998, Lough and Barnes, 2000, Hendy et al., 2003, 

Lough, 2007). The correlation between  luminescent lines in nearshore corals of the GBR and 

river discharge/rainfall was first described by Isdale (1984), with initial investigations 

suggesting that the distinct luminescent lines resulted from terrestrial humic/fulvic acids 

transported in river flood plumes (Boto and Isdale, 1985, Susic et al., 1991), a link further 

supported by Llewellyn et al. (2012). Rainfall, and thus river flow, in northeast Queensland 

coastal river catchments is strongly modulated by ENSO with El Niño (La Niña) events 

supressing (increasing) rainfall (Lough, 1991). Consequently, luminescent lines in corals 

used to reconstruct rainfall and  river flow for the region have also been used to infer the 

frequency and strength of driving climatic mechanisms such as ENSO and the Pacific 

Decadal Oscillation (PDO) beyond instrumental records (Isdale et al., 1998, Lough et al., 

2002, Lough, 2007, Lough, 2011b, Lough et al., 2014, Rodriguez-Ramirez et al., 2014). 

Holocene records of ENSO derived from GBR coral luminescence suggests that the 

frequency and intensity of ENSO was reduced ~6000 yBP (Lough et al., 2014). Coral 

luminescence and δ18O from a microatoll at King Reef suggests generally wetter conditions 
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by ~4700 yBP, in agreement with palynological evidence from north Queensland of more La 

Niña like mean state of climate at this time (Shulmeister and Lees, 1995). Similar evidence of 

reduced ENSO variance has also been found in central Pacific corals at 4300 yBP (McGregor 

et al., 2013); although an alternative explanation suggests that Mid-Holocene ENSO variance 

was not reduced, but that modern ENSO variance is comparatively greater than that of the 

last 7000 years (Cobb et al., 2013).  

A number of environmental and climatic studies are now taking advantage of wavelet 

analysis of time-series data (Gu and Philander, 1995, Torrence and Compo, 1998, Grinsted et 

al., 2004, Debret et al., 2009, Grove et al., 2013, Walther et al., 2013, Soon et al., 2014, 

Lough et al., 2015). Wavelet power spectrums allow interpretation of one dimensional time 

series data in two dimensional time-frequency space, allowing for modes of climate 

variability, and climate variability through time, to be assessed simultaneously (Torrence and 

Compo, 1998). Grove et al. (2013) used cross-wavelet coherency to demonstrate links 

between coral luminescence and proxy records of the PDO in Madagascar. On the GBR, 

wavelet analysis of coral Ba/Ca signals showed high inter-annual variability, with periodicity 

possibly linked to ENSO (Walther et al., 2013). Lough et al. (2015) used regression analysis 

of luminescence data from a 364-year coral core from Havannah Island to reconstruct 

Burdekin River flow, with a subsequent wavelet analysis revealing weakened ENSO variance 

(in the 2-8 year band) prior to 1860, and increasing variability in the latter part of the 19th 

century (Lough et al., 2015).  

The focus of the present study is the application of rapid visual assessment of luminescence 

intensity as a proxy for river flow (Lough, 2011b), combined with wavelet power spectrum 

analysis, to assess mid-Holocene climate variability and ENSO dynamics. This approach is 

applied to a previously published modern luminescence record from Great Palm Island (GPI), 

central GBR (Hendy et al., 2003), and three fossil corals retrieved as part of a dredging 

program from the same reef.  ENSO dynamics are determined through analysis of the Niño 3 

(5N-5S 150W-120W) and Niño 3.4 (5N-5S 170W-120W) sea surface temperature (SST) 

anomaly ENSO index (see www.ncdc.noaa.gov/teleconnections/enso/indicators/sst.php; and 

Trenberth and Stepaniak, 2001). 
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Methods 

Regional Setting 

Great Palm Island (GPI, 18˚44, 146˚34) is a nearshore (~30km from the mainland) granitic 

island located in the Queensland dry tropics (Fig. 1; Jompa and McCook, 2003). The region 

experiences most of its annual rainfall in the austral spring - summer (October-March); 

however, inter-annual variability is high (Lough, 1991) driven mainly by ENSO variability 

(Risbey et al., 2009, Klingaman et al., 2013). Located ~60km north-west of Townsville, GPI 

is regularly affected by freshwater flows from the Burdekin River (King et al., 2001), the 

largest contributor to terrestrially derived sediments onto the GBR (Brodie et al., 2010, 

Schroeder et al., 2012, Bainbridge et al., 2014). 

Fossil core collection and processing 

Between January and May 2009, ~11 000m3 of material was dredged from the main channel 

to GPI to allow for better access to the jetty.  The resultant dredge material was transported 

by barge to a landfill site in Townsville. Amongst the dredge material were several massive 

“bommies” (1.5 to 2.5 m diameter) of which, in July 2012, five Porites (Palm Island - PAM 

1.0, 2.0, 3.0, 5.0 and 6.0) and one Favia (PAM 4.0) were cored using a pneumatic drill (water 

lubricated), with additional surface samples of two Porites (PAM 7.0 and 8.0) collected by 

hammer and chisel. As the original orientation of the corals was unknown, small pilot cores 

were drilled and the cores were extracted to check the alignment of the annual density bands. 

Once the orientation was established, cores were drilled using a ~6 cm diameter coring barrel. 

In an effort to improve alignment, some corals were sampled 2-3 times at different locations 

on the colony (e.g. PAM 3.0 - 3.3). Cores were rinsed in water prior to transportation. To 

further assess the orientation of the cores, computed tomography (CT) scans were conducted 

at St Vincent’s Hospital, Brisbane. Images were viewed in the software programme Osirex® 

where the best alignment was determined using 3D visualisation of the annual density bands. 

Based on the density band alignment viewed in the CT scans, corals PAM 1.0, 2.0, 3.0, 3.1 

and 5.0 were selected for further preparation. These coral cores were cut longitudinally along 

the inferred major growth axes into ~6 mm thick slices, ultra-sonicated in Milli-Q water for 

15 minutes three times, and dried in a carbonate only oven at ~60˚C in facilities at the School 

of Earth and Environment, University of Western Australia.  
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To examine the annual density bands in the coral slabs, the selected corals were X-rayed at 

Queensland Diagnostic Imaging, Indooroopilly, Queensland (Supp. Figs. 1a-c). The clearest 

and most continuous density bands were observed in PAM 5.0, PAM 2.0 and PAM 3.1, so 

these were selected for further analysis. Annual linear extension rates were measured 

between adjacent high density bands using the X-ray positive prints (austral summer – 

summer) which was also used to establish the core chronological length (i.e. one couplet of 

high and low density banding is equal to one year of growth) (Lough and Barnes, 1990). 

Eight separate fossil coral colonies from GPI were dated by high precision U-Th dating at the 

Radiogenic Isotope Facility at the University of Queensland following the methods of 

Leonard et al. (2015) and Clark et al. (2014b). Approximately 50mg of ultra-cleaned 

aragonite was used for dating both near the base of the coral cores (n = 6; PAM 1.0 –PAM 

6.0) and surface samples from colonies that were not cored (PAM 7.0 – PAM 8.0). Core 

replicates (from adjacent annual bands and different cores from the same colony) were dated 

in 2012 and 2014 to cross-check the age of the colonies. Sample ages were calculated using 

the decay constants of Cheng et al.(2000) using Isoplot/Ex software (Ludwig, 2003) and 

corrected for initial detrital 230Th using a two-component mixing correction (Clark et al., 

2014a). 

Corals slabs were viewed under UV light in a darkened room and visual assessment of 

luminescent lines was conducted following the methods of Hendy et al. (2003) and Lough 

(2007) where luminescent lines are graded; 0 = no visible line; 1 = faint luminescent line; 2 = 

moderate luminescent line and; 3 = strong luminescent line (Supp. Figs. 1a-c). This simple 

visual assessment has been shown to be reproducible to 81% between different assessors 

(Lough et al., 2002), and has been successfully used to cross correlate chronologies between 

coral cores on the GBR (Hendy et al., 2003). Luminescent line intensity was first viewed for 

a modern coral core collected from nearby Havannah Island in 2009 (Fig. 1) for comparison 

with luminescence strength in the fossil corals. We then assigned visual assessment indices to 

the annual luminescent signals in the fossil corals with the clearest and most continuous 

luminescent lines (PAM 5.0 – 55 years, PAM 2.0 – 21 years and PAM 3.1 -53 years).  

Data analysis 

To determine whether the fossil coral luminescence index data could reliably reconstruct 

ENSO, continuous wavelet transforms were first applied to a previously published 

luminescence index record from a modern coral record spanning 1880 – 1985 from GPI 
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(Hendy et al., 2003) and to ENSO (Niño 3.0 and Niño 3.4) SST indices for the same period. 

As luminescent signals are annual, monthly (extended) HadISST1 data for Niño 3 

(www.esrl.noaa.gov/psd/gcos_wgsp/Timeseries/Data/nino3.long.anom.data) and Niño 3.4 

(www.esrl.noaa.gov/psd/gcos_wgsp/Timeseries/Data/nino34.long.anom.data) data were 

converted to average annual indices (Jan-Dec).  Continuous wavelet transforms (Morlet) were 

performed in Matlab® statistical programme using the online toolkit of Grinsted et al.  (2004)  

available from www.glaciology.net/wavelet-coherence, which is modified from and includes, 

the toolkit of Torrence and Compo (1998; http://paos.colorado.edu/research/wavelets/).  

Cross wavelet transform (XWT) and wavelet coherency transform (WCT) were then applied 

to the luminescence data and averaged annual Niño 3 and Niño 3.4 SST anomaly data to 

determine periods of high common power and covariance, respectively. Morlet wavelet 

transforms were then applied to the three fossil coral records from GPI with the clearest 

annual density banding and luminescence lines for comparison (PAM 5.0, PAM 2.0 and 

PAM 3.1).  

Results 

Uranium-thorium dating 

Eight separate massive colonies were U-Th dated from the GPI dredge material, comprising 

six coral cores and two surface samples (Table 1).  The oldest colony was dated to 6079 ± 23 

and the youngest to 3784 ± 13 years before present (yBP – where present is 1950); however, 

six of the eight colonies all lived and died in the period between ~5300 and 4300 yBP. Core 

PAM 5.1 showed an interruption in growth, ~16.5 cm from the top of the core, where the 

corallites at the surface were preserved, likely due to partial mortality. Dating of the coral 

core below and above this horizon revealed indistinguishable ages (5120 ± 46 and 5125 ± 42 

respectively). This core contained conspicuous brown bands just prior to and after this 

surface, with an increase in micro- and macro-borings. Under binocular microscope these 

bands were found to be caused by organic filaments threading through the pores of the 

skeleton parallel to the growth surface. These bands are possibly a micro-algae or remnants 

of macro-algae; however, further work is needed to identify the exact cause.   

Density banding was not always clear throughout all the cores collected, which can be due to 

coring not being perfectly oriented along the major growth axes of the colonies and 

convoluted growth patterns (Lough and Barnes, 1992). Clear annual density bands were 

observed in PAM 5.0, 3.1 and 2.0 (Supp. Figs. 1a-c). The average linear extension rates of 
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coherent density bands of these cores were all <10mmyr-1, with the top ~10cm of PAM 3.1 

<5mmyr-1 (Supp. Fig 1c). These three corals also showed the clearest luminescent lines when 

viewed under UV light and were therefore selected for visual luminescence assignment 

(Supp. Figs. 1a-c). Luminescence index assignment in the top ~8 – 10 cm of each core was 

not possible due to significant detritus interfering with the luminescent signal. The resultant 

luminescent index record lengths based on clear annual density patterns were thus; PAM 5.0 

– 55 years, PAM 2.0 – 21 years and PAM 3.1 - 53 years.     

Wavelet analysis of modern coral luminescence 

As numerous fossil corals from multiple sites that chronologically overlap are rare (Lough et 

al., 2014), we used only the single modern luminescence record from GPI to test the efficacy 

of wavelet transforms in reproducing ENSO signals. Visual comparison of wavelet power 

spectra of modern coral luminescent index records from GPI (Hendy et al., 2003) and 

annually averaged Niño 3 and Niño 3.4 SST index records show coherent power of variance 

for periods of relatively strong ENSO in the 2-8 band frequency (1890-1920 and 1970-1980) 

and reduced ENSO variance (1930-1950; Fig. 2). The Niño 3.4 wavelet analysis shows no 

significant power for 1890 – 1920; however it is still notably high for this period (Fig. 2b). 

Cross wavelet transform (XWT) of Niño 3 and Niño 3.4 with GPI luminescence index data 

shows high common power (95% significance level) in the ~2-4 year band for 1890-1910, in 

the 4-7 year band for 1910-1920 and the 1-4 year band for 1970-1980 (Fig. 3). Arrows in the 

significant regions of the 4-7 year band indicate a lag in the response between Niño 3, Niño 

3.4 and the GPI coral luminescence index data. A test of wavelet coherency (WTC) indicates 

more significant covariance between the GPI luminescence index data and Niño 3.4 than 

Niño 3, especially in the 8 year band for 1935 – 1960 (Fig. 4). Significant covariance occurs 

between GPI luminescence and both ENSO index regions in the 2-8 year band for ~ 1890-

1920 and in the early 1970’s. A strong power and significant coherency are observed in the 

~15- 30 year band, although this is largely within the cone of influence (COI), so is 

interpreted cautiously.   

Wavelet analysis of fossil coral luminescence 

Continuous wavelet transforms (Morlet) of the fossil coral core luminescent indices shows 

significance in the power spectra (95% confidence interval) for PAM 5.0 (~5200 yBP) and 

PAM 3.1 (~4300 y BP) however, not for PAM 2.0 (~4900 yBP) (Fig. 5). The lack of 

significance in the PAM 2.0 coral is likely due to the limited number of years in this record 
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(21 years) which may only reflect three normal ENSO cycles (2-7 years). This coral does 

however indicate a relatively weak signal of variance in the 1-3 year band. At 5200 yBP 

(PAM 5.0; Fig 5a), significant power is observed in the 5-8 year band for the earliest part of 

the record, then only briefly significant in the 2-3 year band before no further significance in 

period is observed. At 4300 yBP, PAM 3.1 (Fig. 5c) is only intermittently significant in the 1-

6 year band, with increased power also observed in the ~10 -16 year band (although largely 

within the COI). 

Discussion 

Currently there is a lack of continuous high-resolution palaeoclimate data from the Southern 

Hemisphere (Neukom and Gergis, 2012, Wanner et al., 2015) largely due to difficulties in 

obtaining suitable samples for sub-annual to decadal proxy reconstructions. Massive fossil 

corals offer the ability to conduct high-resolution sampling at sub-annular scales (Cobb et al., 

2013, Zhang et al., 2014); however, finding a continuous temporal sequence of samples 

across millennia is difficult, and the preservation state of the corals greatly affects 

geochemical signal reliability (McGregor and Gagan, 2003, McGregor and Abram, 2008). At 

nearshore locations on the GBR, measured and visually assessed annual coral UV 

luminescence signals have been shown to reliably record river flow and rainfall variability 

associated with both ENSO (Hendy et al., 2003, Lough, 2011a) and the PDO (Rodriguez-

Ramirez et al., 2014) thus offering potential as a valuable archive for reconstructing palaeo-

ENSO activity. Here we demonstrate the potential for wavelet transforms of rapid visual 

assessment of luminescent lines in corals to reconstruct ENSO-related climate variability in 

the central GBR.  

Wavelet transform of modern coral luminescence 

The visually assessed modern coral luminescence data from GPI used in the present study 

was first reported by Hendy et al. (2003) as part of a luminescence cross chronology 

calibration effort, with a subsequent study using measured luminescence values on the same 

coral (Lough, 2007).  A significant correlation was found between the luminescence master 

chronology based on up to 8 coral luminescence records for the central GBR and an 

instrumental and modelled Burdekin river discharge record (Isdale et al., 1998) for 1894-

1985 (r = 0.82;  Hendy et al., 2003), and the GPI only core (r = 0.69; Lough, 2007) indicating 

that coral luminescence is a reliable proxy for river discharge volume. Hendy et al. (2003) 

also reported a weak but significant (r = -33) correlation between their luminescence master 
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chronology and reconstructed Niño 3 SST index (Mann et al., 2000) from 1650-1980. 

However, the strength of the relationship between ENSO and Queensland rainfall and river 

flow does vary through time (Hendy et al., 2003), being modulated on multi-decadal time 

scales by the PDO (Kiem et al., 2003, Verdon et al., 2004, Meinke et al., 2005, Rodriguez-

Ramirez et al., 2014)  

In the present study, continuous wavelet transform of the GPI coral luminescent index record 

(Hendy et al., 2003) for the period 1880 – 1985 is comparable to both the Niño 3 and Niño 

3.4 SST indices, with significant peaks in the ~3-7 year band (p = 0.05) in 1890–1900, the 

early 1950’s, and 1970-1980 (Fig. 2). The only difference between the Niño 3 and Niño 3.4 

region data is a significant power in the ~7 year band in the Niño 3 record between 1910 -

1920.  Although this band has relatively high power in the Niño 3.4index, it is not significant. 

This phase is evident (and significant) in the GPI luminescence record, suggesting that central 

Queensland rainfall responds to SST anomalies in both ENSO index regions. The 

luminescent index record also shows reduced ENSO variance between ~1925-1950 which is 

coincident with a PDO warm phase (1916-1943), which has been shown to weaken ENSO 

teleconnections and reduce the inter-annual variability of Queensland rainfall (Lough, 1991, 

Lough, 2007).  

Wavelet coherency (Fig. 4) indicates higher and stronger covariance between the GPI coral 

record and the Niño 3.4 region, indicating that SST anomalies in the central Pacific are more 

strongly linked to Queensland rainfall than Niño 3, as noted in previous coral records from 

the same region (Lough et al., 2015). Higher power is also observed in the annual cycle when 

ENSO variance is reduced, which is in agreement with observations that increased annual 

cycle amplitudes decreases ENSO variance (Wang, 1994, Gu and Philander, 1995), although 

the relationship between these two cycles is not fully resolved (Qian et al., 2011, Emile-geay 

et al., 2016). High power and sometimes significant covariance between Niño 3 and GPI, and 

Niño 3.4 and GPI also occurs in the ~16-35 year band, which is likely a manifestation of the 

PDO; however, as most of this record falls outside the cone of influence (COI) it is 

interpreted cautiously (Fig. 4). Overall the modern GPI luminescence record reflects both 

phases of increased and decreased ENSO activity in the 3-7 year band over the 100 year 

record compared to both Niño 3 and Niño 3.4 ENSO indices, and is therefore considered 

appropriate for interpreting palaeo-ENSO signatures from the fossil coral cores. 
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Fossil coral analysis and ENSO 

Examination of the UV luminescence index of the fossil coral cores from GPI provide 

windows into mid-Holocene ENSO variability at ~5200 y BP (PAM 5.0), 4900 y BP (PAM 

2.0) and ~4300 y BP (PAM 3.1) on the GBR.   The intensity of the luminescent lines in the 

fossil cores was reduced when compared to a modern core from nearby Havannah Island and 

with the modern luminescent index data of Hendy et al. (2003) from GPI. Although the depth 

at which the fossil corals grew is unknown, previous results derived from massive Porites 

corals from nearby by Rib Reef ( ~35km to the NE) demonstrated no significant difference in 

either luminescent signal or linear extension rates in corals collected from between 0 - 20 

metres depth (Carricart-Ganivet et al., 2007) suggesting that fossil coral depth is unlikely to 

affect our results.  

A second caveat for consideration is that the reduced luminescent intensity observed in the 

fossil corals  may be due to either less intense discharge events in the mid-Holocene or to 

modern rainfall to run-off ratio increases due to anthropogenic catchment modifications in the 

Burdekin region (Lough et al., 2015). Yet, regardless of differences observed in luminescent 

intensity, the relative variability of the inter-annual luminescent signal is informative for 

understanding the periodicity of Burdekin River discharge events and thus ENSO variability.  

The modern GPI average luminescence index value (0.9 ± 1.1; standard deviation) is similar 

to the average values for PAM 5.0 (0.8 ± 0.8), PAM 2.0 (1.0 ± 0.75) and PAM 3.1 (1.0 ± 

0.7). However, the standard deviations for the modern coral are higher than for the fossil 

corals, suggesting reduced ENSO variability in the mid-Holocene. Further visual inspection 

of the luminescent index time series shows far fewer intense (strong La Niña) and absent 

luminescent line (strong El Niño) events occurred in the Holocene record compared to the 

modern luminescence record, indicating that the strength of ENSO was also subdued in the 

mid-Holocene compared to the late 20th century (Supp. Figs. 2a-d).  

Wavelet transform (Morlet) of the luminescent signal at 5200 y BP (PAM 5.0) indicates an 

active ENSO in the 5-8 year band in the earlier part of the coral record, similar to modern 

ENSO variance (Fig. 5a). This was followed by a shift to increased frequency (~3 year band) 

and then no significant periodicity towards the end of the record. At ~4900 y BP (PAM 2.0) 

there was no significant spectral power across the series although there is slight power at the 

annual to biannual level (Fig. 5b). This may be partly a function of the shorter record (21 

years) available from this core which does not cover an entire ENSO cycle (Walther et al., 
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2013); however, a reduction in ENSO frequency after ~5100 y BP was also evident in core 

PAM 5.0. At ~4300 y BP (PAM 3.1) there were temporally shorter significant periods of 

variance in the 1-4 year band and 11-20 year band, suggesting less frequent ENSO events at 

this time (Fig. 5c). Our combined coral luminescence record is in agreement with previous 

climate reconstructions indicating reduced frequency of ENSO between ~5500 and 3500 y 

BP in the eastern Pacific Galapagos Islands (Zhang et al., 2014), central Pacific Line Islands 

(Cobb et al., 2013), and Kiritimati Island (McGregor et al., 2013). Reduced intensity and 

variability of luminescent signals have also been reported for a series of fossil corals (~6000 

y BP) from Magnetic Island (~40 km south of GPI), which is also influenced by Burdekin 

River discharge (Lough et al., 2014). A marked difference between the fossil corals from GPI 

fossil and Magnetic Island is a substantially lower linear extension rate at GPI. The mid-

Holocene corals from Magnetic Island exhibited similar extension rates to their modern 

counterparts (12.14 ± 3.58 mm.yr-1 and 13.34 ± 4.43 mm.yr-1, respectively). Comparatively, 

average modern linear extension rates for Porites on GPI are  with nearby massive Porites at 

Pandora and Havannah Islands having modern extension rates of 15.3 ± 2.6 mm.yr-1 and 12.1 

± 3.3 mm.yr-1, respectively(Lough and Barnes, 1997, Lough et al., 1999).  This gives an 

average regional growth rate of Porites of 15.4 ± 3.3 mm.yr-1 compared to  the 5200 yBP GPI 

coral which had an average linear extension of only 6.9 ± 1.4 mm.yr-1, with similarly low 

extension rates for the 4900 and 4300 y BP colonies (generally <10mm.yr-1). As annual 

extension rates have been shown to be greater in large (1.6 - 8.0 m height) versus small 

colonies (0.1 -0.7 m) on the GBR (Lough and Barnes, 2000), and the GPI fossil corals are all 

>1.5 m diameter, the lower extension rate is inferred to be indicative of an environmental or 

climatic influence. On the GBR (and throughout the Indo-Pacific) average linear extension 

rates have been linked to average SST, with more southerly locations (lower SST) showing 

reduced linear extension (Lough and Barnes, 2000, Lough and Cantin, 2014), thus suggesting 

cooler SST conditions at GPI at 5200 yBP compared to present. In a comprehensive review 

of growth characteristic of Porites corals on the GBR, Lough and Barnes (2000) 

demonstrated that for each 1˚C rise in SST, average linear extension increased by 3.1 mmyr-1.  

Using this as a first order assumption for the fossil GPI corals this suggests SST were ~2.5˚C 

cooler at 5200 yBP than at 6000 yBP (Lough et al., 2014). Cooler than present SSTs of -

2.0˚C at 5200 yBP have recently been inferred from Sr/Ca records from a Porites coral core 

from Heron Island, southern GBR, which corroborates with the evidence presented here for 

GPI. This recent paleo-SST record from Heron Island differs from an earlier Sr/Ca resolved 
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SST reconstruction that suggested 1˚C warmer conditions at 5300 yBP in the central GBR 

(Gagan et al., 1998); however, recalibration of the C14 date of this coral places it at ~6200 

yBP (Sadler et al., in review), supporting evidence of similar extension rates to modern corals 

at 6000 y BP at Magnetic Island (Lough et al., 2014). As linear extension has also been 

shown to be lower at offshore than inshore sites in the modern record (Lough et al., 1999), an 

alternate interpretation of lower linear extension rates at GPI is that the waters surrounding 

these reefs were more oligotrophic in the mid-Holocene. Further work on high-resolution 

paleo-SST is clearly required on the GBR before any firm conclusions can be drawn.  

However, the documented cooling at Heron Island and in the wider Pacific after ~5500 y BP 

(Sadler et al., in review) suggests that reduced SSTs are the most likely source of limited 

linear extension at GPI in the mid-Holocene. 

Conclusions 

Deriving high-resolution paleoclimatic and paleoenvironmental data from massive corals is 

generally time intensive and expensive. In the present study we have shown that simple 

visual assessment of luminescent lines in annually banded Porites, used in conjunction with 

continuous wavelet transforms (Morlet), enables reconstruction of major characteristics of 

ENSO variability in time-frequency space. Besides the obvious advantages of reduced 

processing times compared to geochemical analysis, this method also allows for evaluation of 

fossil Porites cores that may not be perfectly aligned with the growth axis, or are 

diagenetically altered. Furthermore, as luminescence in corals is visible as a surface 

phenomenon, distortions due to convoluted colony growth are negligible compared to 

assessments of linear extension, calcification and density (Lough and Barnes, 1990).  

Consequently, this method can potentially be applied to massive colonies that had been 

previously rejected because alignment with the growth axis was imperfect such as those 

collected as part of reef matrix coring efforts. 

Results from wavelet transforms of coral luminescence indices between ~5200 and 4300 yBP 

at GPI suggests less frequent and less intense ENSO events during the mid-Holocene, which 

agrees well with previous observations from elsewhere on the GBR (Lough et al., 2014) and 

in the wider Pacific (Cobb et al., 2013, McGregor et al., 2013, Zhang et al., 2014). The 

reduction in ENSO frequency in the 2-7 year band after 5200 y BP is also coincident with 

lower linear extension rates in the fossil corals compared to modern values, suggestive of 

cooler SSTs, which is in agreement with a recent Sr/Ca reconstruction from the southern 
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GBR (Sadler et al. 2016 – in review). This record encompasses the period when significant 

and widespread reef flat declines and reef “turn off” events occurred on the GBR at 5500 yBP 

and 4600 yBP, respectively (Smithers et al., 2006, Perry and Smithers, 2011). Although the 

majority of the corals dredged from GPI all lived and died within the period of reef decline 

on the GBR, we find no evidence of increased intensity or frequency in ENSO that would 

drive mid-Holocene reef mortality on the GBR. This is contrary to evidence for the eastern 

Pacific reef hiatus after 4200 yBP for which presumed El Niño related bleaching, and La 

Niña related increases in turbidity were attributed to reef “turn-off” and hiatus, respectively 

(Toth et al., 2012).  

Future work should concentrate on applying this method to fossil Porites cores retrieved from 

reef matrix cores to enable more ENSO windows of the past to be reconstructed, and to 

previously published luminescent records from the GBR covering the past few centuries. 

Understanding ENSO dynamics in response to SST variability over longer time scales than 

the instrumental record period is important for predicting how this dominant mode of tropical 

inter-annual climate variability may respond to a rapidly warming climate, and what effect 

this may have on the future of the GBR. 
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Tables 
Table 1: Results of multi-collector inductively coupled plasma mass spectrometry (MC-ICP-MS) uranium-thorium dating of fossil corals cores and surface samples from Great Palm 
Island, central Great Barrier Reef, Australia. 

Sample Name Date of 
Chemistry U (ppm) 232Th (ppb) (230Th/ 

232Th) (230Th/238U) Corr.  
(234U/  238U) 

Uncorr. 
Age (a) 

Corr. Age 
(b) 

Age ( y BP 
- 1950) 

δU234 
 (c) Genus 

Core 
length 
(cm) 

PAM 1.0 15/02/2014 2.6890 ± 0.0012 1.2338 ± 0.0048 307.0 ± 2.5 0.04642 ± 0.00033 1.1450 ± 0.0009 4517 ± 33 4503 ± 33 4438 ± 33 145.0 ± 0.9 Porites 34 

PAM 1.1 13/02/2012 2.8058 ± 0.0024 1.2874 ± 0.0018 303.4 ± 1.1 0.04588 ± 0.00016 1.1470 ± 0.0007 4462 ± 16 4450 ± 17 4388 ± 17 147.0 ± 0.7 Porites 30 

PAM 2.0 13/02/2012 2.7591 ± 0.0015 0.45560 ± 0.00063 936.1 ± 2.5 0.05094 ± 0.00012 1.1463 ± 0.0012 4969 ± 13 4965 ± 13 4902 ± 13 146.3 ± 1.2 Porites 82 

PAM 2.0 15/02/2014 2.5638 ±0.0015 0.6552 ± 0.0041 605.5 ± 5.8 0.05100 ± 0.00037 1.1447 ± 0.0007 4974 ± 37 4964 ± 37 4899 ± 37 144.7 ± 0.7 Porites 35 

PAM 3.0 13/02/2012 2.7118 ± 0.0028 0.45363 ± 0.00086 821.4 ± 2.9 0.04528 ± 0.00014 1.1471 ± 0.0009 4401 ± 14 4397 ± 15 4335 ± 15 147.1 ± 0.9 Porites 42 

PAM 3.0 15/02/2014 2.7214 ± 0.0014 0.4343 ± 0.0040 857 ± 11 0.04510 ± 0.00040 1.1473 ± 0.0008 4377 ± 40 4368 ± 40 4303 ± 40 147.3 ± 0.8 Porites 42 

PAM 3.1 15/02/2014 2.5429 ± 0.0013 0.4355 ± 0.0035 796.7 ± 8.4 0.04497 ± 0.00031 1.1456 ±0.0011 4370 ± 31 4362 ± 31 4297 ± 31 145.6 ± 1.1 Porites 44 

PAM 3.2 13/02/2012 2.6785 ±0.0016 0.42553 ± 0.00087 860.8 ± 2.4 0.045069 ± 0.000092 1.1471 ± 0.0007 4381 ± 10 4376 ± 10 4314 ± 10 147.1 ± 0.7 Porites 47 

PAM 3.3 15/02/2014 2.8155 ± 0.0017 2.6904 ± 0.0060 142.8 ± 1.1 0.04498 ± 0.00034 1.1483 ± 0.0008 4361 ± 34 4338 ± 34 4273 ± 34 148.3 ± 0.8 Porites 32 

PAM 4.0 13/02/2012 2.6108 ± 0.0014 0.15531 ± 0.00053 2530 ± 11 0.04959 ± 0.00015 1.1481 ± 0.0007 4826 ± 15 4762 ± 15 4698 ± 15 148.1 ± 0.7 Favia 40 

PAM 5.0 13/02/2012 2.6597 ± 0.0011 0.23197 ± 0.00038 1865.9 ± 5.2 0.05363 ± 0.00012 1.1464 ± 0.0010 5237 ± 13 5235 ± 13 5173 ± 13 146.4 ± 1.0 Porites 48 

PAM 5.0 15/02/2014 2.6747 ± 0.0012 0.6904 ± 0.0042 644.4 ± 5.7 0.05481 ± 0.00034 1.1461 ± 0.0010 5350 ± 35 5339 ± 35 5274 ± 35 146.1 ±1.0 Porites 48 

PAM 5.1  
(below death surface) 15/02/2014 2.6203 ± 0.0013 0.1732 ± 0.0042 2442 ± 62 0.05320 ± 0.00046 1.1454 ± 0.0010 5191 ± 46 5185 ± 46 5120 ± 46 145.4 ± 1.0 Porites 82 

PAM 5.1 
 (above death surface) 15/02/2014 2.8330 ± 0.0011 0.4821 ± 0.0037 951 ± 10 0.05332 ± 0.00042 1.1466 ± 0.0010 5198 ± 42 5190 ± 42 5125 ± 42 146.6 ± 1.0 Porites 82 

PAM 6.0 13/02/2012 2.6642 ± 0.0017 1.4520 ± 0.0011 221.5 ± 0.6 0.03979 ± 0.00011 1.1463 ± 0.0009 3860 ± 11 3846 ± 13 3784 ± 13 146.3 ± 0.9 Porites 50 

PAM 7.0 13/02/2012 2.5900 ± 0.0016 3.3012 ± 0.0036 149.6 ± 0.4 0.06286 ± 0.00016 1.1448 ± 0.0009 6174 ± 17 6141 ± 23 6079 ± 23 144.8 ± 0.9 Porites - 

PAM 8.0 13/02/2012 2.6450 ± 0.0020 4.2888 ± 0.0061 90.4 ± 0.3 0.04831 ± 0.00013 1.1469 ± 0.0010 4704 ± 14 4662 ± 25 4600 ± 25 146.9 ± 1.0 Porites ~50 

Ratios in parentheses are activity ratios calculated from atomic ratios using decay constants of Cheng et al. (2000). All values have been corrected for laboratory procedural blanks. All errors reported in this table are 
quoted as 2σ. (a) Uncorrected 230Th age was calculated using Isoplot/EX 3.0 program (Ludwig 2003). (b) 230Th ages were corrected using the two-component correction method of Clark et al. (2014a) 
using 230Th/232Thhyd and 230Th/232Thdet activity ratios of 1.08 ± 0.23 and 0.62 ± 0.14, respectively. (c) δ234U = [(234U/238U) - 1] *1000
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Figures 
 

 

Figure 1: Map showing location of the Palm Islands Group, central Great Barrier Reef, Australia, in relation to the 
Burdekin River and; b) Great Palm Island indicating location of the modern and fossil Porites corals. 
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Figure 2: Continuous wavelet transform (Morlet) of annual averaged Niño 3.0 (a) and Niño 3.4 (b) sea surface 
temperature (SST) anomaly data and coral luminescence index data (c) from Great Palm Island (GPI; Hendy et al. 
2003). Period is in years, black contour line indicates significance in power spectrum (p = 0.05), shaded area indicates 
values outside the cone of influence (COI). Colour graded bar (right) is the wavelet power spectrum. Note the coral 
luminescence record visually predicts well the overall phases of increased (significant) El Niño Southern Oscillation 
(ENSO) periods in the 2-7 year band.  
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Figure 3: Cross wavelet transform (XWT) of annual averaged Niño 3.0 (a) and Niño 3.4 (b) sea surface temperature 
(SST) anomaly data and Great Palm Island (GPI) coral luminescence index data (Hendy et al. 2003). Period is in 
years, black contour line indicates significance in high common power (p = 0.05), shaded area indicates values outside 
the cone of influence (COI). Colour graded bar (right) is the wavelet power spectrum Arrows indicate in-phase 
(right), anti-phased (left) response of luminescence to SST.   
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Figure 4: Wavelet coherence (WTC) of annual averaged Niño 3 (a) and Niño 3.4 (b) sea surface temperature (SST) 
data and Great Palm Island (GPI) coral luminescence index data (Hendy et al. 2003). The WTC finds regions in time 
frequency space where the two time series co-vary but don’t necessarily have high power (Grinsted et al. 2004). 
Period is in years , black contours are the 5% significance level against red noise background and arrow directions 
indicate in phase (right) and anti-phased responses (left). Colour graded bar (right) is the wavelet power spectrum.  
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Figure 5: Continuous wavelet transform of mid-Holocene coral luminescence index data from Great Palm Island, 
central Great Barrier Reef, Australia. Period is in years, black contour line indicates significance in power spectrum 
(p = 0.05), shaded area indicates values outside the cone of influence (COI). Colour graded bar (right) is the wavelet 
power spectrum; a) PAM 5.0 – 53 year record; b) PAM 2.0 – 21 year record and; c) PAM 3.1 – 53 year record. 
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Supplementary 
 

  PAM 5.0 a) 
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PAM 2.0 

b) 
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PAM 3.1 

c) 

Supplementary Figure 1: Digitally enhanced photographs of ultraviolet (UV) luminescence lines (left) and X-ray images 
of fossil Porites from Great Palm Island, central Great Barrier Reef, Australia (ruler scale is cm). a) PAM 5.0 (~5200 
years before present (yBP –where present is 1950); b) PAM 2.0 (~4900 y BP) and; c) PAM 3.1 (~4300 y BP). 
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Supplementary Figure 2: Visually assessed ultra-violet (UV) luminescence index data from Great 
Palm Island, central Great Barrier Reef, Australia (see Methods in main text). a) Modern coral core 
(year is AD; Hendy et al. 2003); and fossil corals b) PAM 5.0; c) PAM 2.0 and; d) PAM 3.1. Years for 
the fossil corals are before present (y BP) where present is defined as 1950. 
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Supplementary Figure 3: Annual averaged Niño 3.4 (green bars) and Niño 3.0 (blue bars) sea surface temperature 
(SST) anomaly data (˚C; black line) and visually assessed luminescence index data from modern coral cores from the 
Palm Islands, Great Barrier Reef, Australia.  
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Abstract 

Increased sediment supply due to catchment modification and subsequent decreasing water 

quality in developed coastal regions is affecting coral reefs globally. Yet obtaining water 

quality baselines beyond instrumental monitoring and prior to anthropogenic influence is 

problematic. Massive, annually banded Porites corals offer the potential to reconstruct both 

spatial water quality gradients and water quality changes through time, by use of the 

geochemical proxies that are incorporated into the skeletal matrix. The rare earth elements 

(REEs) offer potential as tracers of river discharge and water quality in coastal waters, as 

~90% of REEs are terrestrially derived. Here we present the results of ~monthly resolved 

REE, yttrium (Y) and barium (Ba) concentrations from four massive Porites corals collected 

across a known water quality gradient in the Wet Tropics, Great Barrier Reef, Australia. 

Results show that sub-annual REE time series patterns were comparable between the corals 

despite having significantly different total concentrations. Annual peaks in total REE 

concentrations also reflect regional rainfall and river discharge. Spatial interpolation models 

of average Y/Ho molar ratios reflect the cross shelf water quality gradient, whereas REE and 

Y spatial interpolations better reflect local (reef) scale difference in water quality. The results 

from this study demonstrate that high resolution REE and Y analysis of Porites corals offer 

great potential for assessing water quality gradients in palaeoenvironmental reconstructions, 

and for assessing sub-annual to annual rainfall and river discharge beyond instrumental 

monitoring.  
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Introduction 

Recognised as an international World Heritage Area, the Great Barrier Reef (GBR) is the 

largest contiguous coral reef system in the world (Hughes et al., 2015). However, increasing 

anthropogenic pressure (sedimentation, over fishing, coastal development) combined with 

global climate change (e.g. increasing temperatures and coral bleaching) has resulted in a 

significant decline in coral cover in recent decades (Pandolfi et al., 2003, Hughes et al., 

2015). Understanding both climatic and environmental conditions that effected coral reef 

growth and reef ecology in the recent geological past is thus invaluable to improving 

predictions of future response (Pandolfi, 2015). Turbidity and fluvial sediment delivery to the 

GBR following European settlement has been cited as a major control on reef health and 

community composition, especially at inshore locations (Fabricius, 2005, Smith et al., 2005, 

Roff et al., 2013), yet deriving water quality baselines prior to instrumental monitoring is 

challenging (De'ath and Fabricius, 2010). Long lived, annually banded massive corals 

provide a unique opportunity for  high resolution reconstruction of past  environmental and 

climatic conditions by use of both luminescent lines (Isdale et al., 1998, Lough et al., 1998, 

Lough et al., 2014, Rodriguez-Ramirez et al., 2014) and geochemical proxies that are 

incorporated into the skeletal matrix during coral growth (Shen and Sanford, 1990, Fallon 

and McCulloch, 2002, Fallon et al., 2003, McCulloch et al., 2003, Correge, 2006, Lewis et 

al., 2007, Prouty et al., 2010, Lewis et al., 2012, Walther et al., 2013, Saha et al., 2016). 

Visible under ultra violet (UV) light, luminescence bands in massive Porites corals have been 

shown to be robust indicators of river discharge at near shore locations on the GBR (Isdale, 

1984, Isdale et al., 1998, Lough et al., 2002, Lough, 2011a), thereby serving as a tool for 

quantifying river flow beyond instrumental records (Lough et al., 2015). Subsequently, 

luminescence records also have been used to reconstruct longer term climatic drivers of 

Australian rainfall such as the El Niño Southern Oscillation (ENSO) (e.g. Hendy et al., 2003, 

Lough et al., 2014) and the Pacific decadal oscillation (PDO) (Rodriguez-Ramirez et al., 

2014). Yet, luminescent bands offer no interpretation of ambient seawater conditions, 

including sediment loads, derived from high discharge/rainfall events. Consequently, trace 

elements and isotopic signatures incorporated into the skeletal lattice during coral growth are 

commonly used to reconstruct past seawater conditions, however, for geochemical proxies to 

be used reliably in palaeoenvironmental reconstructions it is first necessary to demonstrate 

homogeneity of geochemical signals at local to regional scales in modern corals that align 

with instrumental data (Prouty et al., 2008).  
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The most commonly reported proxy for riverine sediment input onto the GBR is Barium 

(Ba), which is desorbed from fine suspended sediments at low salinities in the estuarine 

mixing zone, and therefore acts as a dissolved tracer of flood plumes reaching reefs  

(McCulloch et al., 2003, Sinclair and McCulloch, 2004, Lewis et al., 2007, Jupiter et al., 

2008, Lewis et al., 2012). An estimated 5-10 fold increase in fluvial sediment delivery to the 

GBR since European settlement was inferred from Ba/Ca baseline levels in the Burdekin 

River region (McCulloch et al., 2003) and peaks in Ba/Ca have been found to correspond 

generally well with instrumental records of high rainfall/river flow events (Sinclair and 

McCulloch, 2004, Wyndham et al., 2004, Walther et al., 2013). However, a 250 year coral 

record from Havannah Island, GBR showed that Ba/Ca did not peak with luminescent bands 

prior to European settlement, only matching well with luminescence and known flood events 

after anthropogenic influence increased (McCulloch et al., 2003). Peaks in Ba/Ca decoupled 

from river discharge events also have been reported from elsewhere on the GBR (Sinclair, 

2005, Jupiter et al., 2008), with corals in close proximity to each other (<100m) displaying 

high variability (Lewis et al., 2012). Although the exact cause of Ba anomalies is still 

undetermined, biological mediation in the water column (Sinclair, 2005, Lewis et al., 2007, 

Elliot et al., 2009), release of Ba from hyper-saline mangrove zones during dry seasons or 

sub-marine ground water seeps have all been proposed (Alibert et al., 2003). 

In contrast with Ba, Yttrium (Y) which is not biologically mediated, has been shown to be a 

more conservative proxy for fine suspended sediments across water quality gradients at 

annular or longer timescales (Alibert et al., 2003, Jupiter et al., 2008, Lewis et al., 2012), but 

is seemingly less reliable at sub-annual resolution (Prouty et al., 2010, Moyer, 2012). In the 

Palm Islands region (GBR), average coral Y concentrations were found to be six times higher 

at inshore versus mid-shelf sites (Alibert et al., 2003) and positive correlations in annual 

mean Y/Ca values and luminescent band intensity were also reported in the Whitsundays, yet 

inter-annual Y/Ca was not significantly correlated with either river discharge or luminescence 

(Lewis et al., 2012). The rare earth elements (REEs) offer potential as a proxy for 

reconstructing rainfall/flood events and turbidity as, in coastal waters, ~90% are derived from 

suspended and dissolved riverine input (Dubinin, 2004). Yet, compared with Ba and Y, high 

resolution records of REEs in corals are relatively few (Sholkovitz and Shen, 1995, Naqvi et 

al., 1996, Fallon and McCulloch, 2002, Akagi et al., 2004, Nguyen et al., 2013), and only two 

records of REEs in corals from the GBR are currently available (Wyndham et al., 2004, 

Jupiter, 2008).  
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In marine geochemistry relative shale normalised (subscript SN)  patterns of REE or REEs 

and Yttrium (REYSN) can be more informative than measurements of absolute concentrations 

(Quinn et al., 2004). Normalisation of the REYs against a terrestrial input value (e.g., an 

upper crust proxy such as a shale) allows for comparison in relation to both terrigenous and 

expected coastal seawater REY behaviour. The larger ionic radii of  the light rare earth 

elements (LREEs)  means that in the estuarine mixing zone these elements are preferentially 

adsorbed onto Fe-organic and salt-enriched colloids (Hoyle et al., 1984, Elderfield et al., 

1990) with preferential association with larger particles in seawater, compared with ~ 70% of 

HREEs with particles < 0.4µm (Hoyle et al., 1984). The resultant pattern of shale normalised 

REYs for coastal sea water is therefore identified by LREE depletion, a superchondritic Y/Ho 

ratio and negative Ce anomaly as a result of the oxidation of Ce3+ to insoluble Ce4+ and 

subsequent removal from the water column by particulate scavenging (Elderfield and 

Greaves, 1982, Hoyle et al., 1984, Elderfield et al., 1990, Sholkovitz et al., 1994). Although 

Y and Ho are considered a geochemical pair due to near identical ionic radii (Lawrence et al., 

2006), Ho is scavenged twice as fast as Y in the estuarine mixing zone at relatively low 

salinities [5.5‰ (Nozaki et al., 1997, Lawrence and Kamber, 2006)] therefore, lower Y/Ho 

ratio values are indicative of fresh water intrusion (i.e. fluvial plumes).  

To further investigate the utility of REEs in high resolution palaeoclimatic and broad scale 

palaeoenvironmental reconstructions we present the results of ~monthly resolved REE, Y and 

Ba concentration data obtained from four modern Porites sp. coral cores collected across a 

known water quality gradient in the Wet Tropics region of the GBR. 

Materials and Methods 

Location and environmental setting 

The Frankland Islands and Sudbury Cay are located in the Wet Tropics region of the GBR, 

Australia (Fig. 1). The Frankland Islands group consists of five continental islands (High, 

Russell, Normanby, Mabel and Round Island), which support fringing reefs to the leeward 

and windward. These islands are all within ~10 km of the coast, and are influenced by the 

Russell and Mulgrave Rivers, which discharge into the GBR lagoon via the Mutchero Inlet. 

Flood plume frequency analysis derived from satellite imagery demonstrates that plumes are 

typically advected north by the predominant south-easterly trade winds. Consequently, High 

Island is influenced more often by river discharge events than Russell Island, although both 
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sites are impacted by river flood plumes annually. On the mid-shelf  at Sudbury Cay  (located 

~ 32 km north east of the Russell-Mulgrave River system) flood plumes are estimated to 

reach this site only once every 4 – 6 years (Fig. 1; Devlin et al., 2001).  

Annual rainfall is seasonal with more than 60% falling in the austral summer (December – 

March) with a rainfall to run off conversion of ~60% (Connolly et al., 2007). The lower 

coastal catchment areas of both the Russell and Mulgrave rivers have been modified to 

accommodate predominantly sugar-cane, with grazing, fruit crops and other minor 

horticultural activities also within the region (Furnas, 2003, Connolly et al., 2007). Within the 

catchments, the lowland tributaries of the Russell River are significantly degraded due to the 

removal of riparian vegetation leading to bank destabilisation, and subsequently, higher 

sediment loads than the Mulgrave River (Arthington et al., 2007). 

Coral core collection, treatment and sampling  

Coral cores were collected live in November 2012 using a pneumatic drill on SCUBA at ~5 

m depth on the leeward side of Russell (FRI 12.1, FRI 12.3) and High (HI 12.1) islands and 

within the lagoon at Sudbury Cay (SUD 12.1; Fig. 1). Cores were rinsed in fresh water and 

air dried before transportation.  Cores were cut along the growth axis into 6 mm thick slabs at 

the School of Earth and Environment, University of Western Australia.  Sections were ultra-

sonicated three times in Milli-Q water for 15 minutes and dried in an oven at 60˚C.  Core 

sections were X-rayed at St Vincent’s hospital, Brisbane, to determine growth axis and 

chronology based on density band counting. Coral slabs also were viewed under ultra violet 

light to allow visualisation of luminescent bands in the corals. 

Based on river discharge data from the Department of Natural Resources and Mines 

(https://www.dnrm.qld.gov.au/water/water-monitoring-and-data) for the Russell (Station 

Number - 111101D), Mulgrave (111007A) and South Johnstone rivers (112101B), as well as 

daily rainfall data from Deeral (Station 031021; http://www.bom.gov.au/climate/data/), 

periods of substantially low and high rainfall/river discharge were selected for analysis. The 

2001-2003 period was identified as having the lowest river runoff, with increased discharge 

recorded for the 2004-2006 period. To capture the entire record spanning ~2000-2006, 5 – 10 

cm sections of each coral were selected with at least 1 year of overlap between the cores. One 

annual band from the base of coral FRI 12.1 (~1950) was also sampled to allow for 

comparison with modern values. Approximately 5 mg of aragonite was milled across the 

coral cores at ~1 mm increments following sub-annular bands along the primary growth axis 

https://www.dnrm.qld.gov.au/water/water-monitoring-and-data
http://www.bom.gov.au/climate/data/
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using a hand held Dremel drill with a flexible shaft extension and 1 mm diamond tip bit. To 

eliminate sample cross-contamination the coral cores were cleaned with compressed air 

between each sample and a new drill bit was used between every sample.  

Geochemical procedures  

Approximately 2 mg of each powdered sample was weighed on a five digit scale and 

transferred to ultra-cleaned 5 ml Teflon tubes. Samples were dissolved in ~4.5 ml (weighed) 

of 2% HNO3 containing 6 ppb concentrations of internal standards 

of 6Li, 45Sc, 103Rh, 115In, 187Re, 207Bi and 235U to achieve a final sample dilution factor of 

~2500. Stock solutions of certified standards W2a-1, BIR-1 and BHVO-2 were weighed and 

diluted using the same internal standard solution to a final dilution factor of ~5000. The coral 

standard Jcp-1 (Okai et al., 2002) was similarly prepared to a final dilution factor of ~2500. 

All samples and standards were ultra-sonicated for 30 minutes to ensure complete digestion 

and homogenisation of the solutions, after which they were centrifuged at 3500 rpm for 15 

minutes immediately prior to measurement on a Thermo X-series Quadrupole Inductively 

Coupled-Mass Spectrometer (ICP-MS) at the Radiogenic Isotope Facility, The University of 

Queensland. Samples were run over four batches of ~100 samples each, with one-half of FRI 

12.3 samples run in batch 1 and the other half in batch 4 to check for trace element matching. 

Elemental count rates were corrected for any internal and external drifts and oxide 

interferences. The corrected elemental count rates were then used to calibrate against the 

W2a-1 standard to calculate elemental concentrations, except for Ca, Mg, Ba, U and Sr, 

which were calibrated using the Jcp-1 standard.  

Apparent distribution coefficients 

The concentration of REEs in coral is governed by the distribution coefficient for each 

element incorporated into the aragonite lattice compared with seawater, and relative to 

calcium [Ca] given by the equation: 

DREE =  
(REE/Ca)𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐

(REE/Ca)𝑠𝑠𝑠𝑠𝑐𝑐𝑠𝑠𝑐𝑐𝑠𝑠𝑠𝑠𝑐𝑐
 

Where Ca seawater = 0.01 mol/kg and Ca REE = 10 mol/kg (Sholkovitz and Shen, 1995, 

Webb and Kamber, 2000). Although no seawater was collected as part of the present study, 

an apparent distribution coefficient was calculated from previously published seawater values 

from the Wet Tropics region.  For calculations of DREEs, sea water REE (REE(sw)) values 
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from Yongala Reef  were used for SUD 12.1, and REE(sw) values from High Island were used 

for FRI 12.1, FRI 12.3 and HI 12.1 (Wyndham et al., 2004; Supp. Tbl. 4). REE(sw) values 

from High Island (the most turbid site with higher REE(sw)) were chosen as the seawater 

samples were collected in October 2002, which was a period of considerable drought in the 

region. Reduced run-off for this period would likely lead to an under-representation of the 

average REE concentrations under “normal” rainfall climatology and therefore over-estimate 

the apparent DREE in the corals if the Frankland Islands REE(SW) values were used. 

Concentrations for seawater Tb, Tm and Lu were not reported for seawater in the Frankland 

Islands or Yongala Reef so these were interpolated using a mixing line derived from Mud of 

Queensland (MUQ; Kamber et al., 2005), High Island, Frankland Island and Yongala Reef 

near neighbour values (Wyndham et al., 2004). 

Geochemical analysis 

Based on in situ sea surface temperature (SST) data from the Frankland Islands and Arlington 

Reef (Australian Institute of Marine Science), annual cycles of geochemical data were 

defined using the peaks and troughs of the Sr/Ca signal (measured simultaneously) with the 

coldest months assigned to July – August (highest Sr/Ca) and the warmest months assigned to 

January - February. Distinct patterns of ΣREE enabled further sub-annual refinement of the 

chronology of the cores. For the overlapping time period (2001-2002), ΣREE, Y, and Ba 

concentrations in the four coral colonies were compared by analysis of variance in Excel 

(ANOVA- with unequal variance). Pairwise t-tests with Bonferroni adjustments were then 

used to determine differences in the mean concentrations between each core for ΣREE, Y and 

Ba.  

Rare earth element and Y (REY) data were normalised using Mud of Queensland (MuQ; 

shale normalised-REYSN) values of Kamber et al. (2005) to examine general REYSN patterns 

between cores, and for selected points of interest (peaks, troughs, anomalous points) based on 

time series data of the ΣREE signal.  

Water quality gradients were reconstructed using a kriging spatial interpolation in PAST 

statistical package using Mud of Queensland [MuQ; (Kamber et al., 2005)] as point source 

values (i.e. Russell-Mulgrave River) and the average concentration data for ΣREE, ΣREY 

and Y/Ho mass ratio for each core plotted in latitudinal-longitudinal space.  
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Results 

Core chronology and growth characteristics 

X-ray positive images showed clear annual density bands in all the cores, although the rates 

of linear extension and tissue thickness of each colony was variable (Supp. Tbl. 1). As trace 

elements can be incorporated through the depth of the living tissue layer both extension rate 

and tissue thickness can affect sub-annual geochemical signals in corals (Taylor et al., 1995, 

Nothdurft et al., 2007). Therefore the ratio of tissue thickness relative to linear extension was 

used to determine an approximate month equivalent by which geochemical signals may be 

offset from a causative discharge event. Average linear extension was highest in FRI 12.3 

(2.10 ± 0.19 cmyr-1) compared to FRI 12.1 (1.59 ± 0.21 cmyr-1), HI 12.1 (1.66 ± 0.23 cmyr-1) 

and SUD 12.1 (1.18 ± 0.15 cmyr-1). Colony FRI 12.3 also had the lowest average tissue 

thickness/linear extension ratio (0.29), resulting in an approximated possible offset the 

geochemical signal of - 3months. Core FRI 12.1 displayed the highest possible offset of 

almost 7 months due to the relative thick living tissue layer (0.9 cm) compared to the average 

linear extension in this coral.  

Viewed under UV light, the annual luminescence bands in the three inshore corals were 

visibly well matched (Supp. Fig. 1), with a distinct double band observed in the three corals 

in 2000, which relates well to two major discharge events in the Mulgrave River (February 

and April). This double band event was not as clear in SUD 12.1, but still detectable. 

Luminescence intensity was relatively weak in all the corals for 2001-2003, which agrees 

well with lower overall discharge in the region for the same period. The coherency between 

the luminescent bands confirms the annual chronology based on density band counting, and 

the relative intensity of the luminescent bands compared with discharge data supports 

previous evidence that visual inspection of luminescent bands is a reliable indicator of 

relative river run-off volume (Hendy et al., 2003, Lough, 2011b).   

Apparent distribution coefficients 

The seawater REE concentrations derived from near neighbour values for Tb, Tm and Lu, 

although slightly lower (Tbl. 1; Tb -0.082, Tm -0.068 and Lu -0.062), compare well with 

Coral Sea sea-surface values (Zhang and Nozaki, 1996) and are therefore considered 

applicable for apparent DREE calculations. Mean apparent average DREE for all elements are 

relatively flat across the series for all four cores (Fig. 2) and are within the range of 
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previously reported values for corals [~1-4; (Sholkovitz and Shen, 1995, Akagi et al., 2004). 

The most uniform DREEs across the REE series was for coral FRI 12.3 with average apparent  

DREE of 1.38 ± 0.27 (standard deviation). High Island DREEs were slightly higher and more 

variable with an average across the series of 2.03 ± 0.42, with FRI 12.1 and SUD 12.1 having 

the highest deviations across the series (2.26 ± 0.54 and 1.45 ± 0.58 respectively). 

Geochemical time series 

Combined coral core time series spanned ~1999-2006, with an overlap between the four 

cores in 2001-2002. Concentrations of ΣREE, Y and Ba were highly variable within the cores 

at sub-annular - annular scales, but co-varied coherently in cores FRI 12.3 and HI 12.1 (Fig. 

3). On the mid-shelf (SUD 12.1), ΣREE and Y co-varied throughout the time series, however 

Ba peaks and troughs did not align with ΣREE, Y or the geochemical signals from the other 

cores (Fig. 3). Scaled annual to sub-annual ΣREE concentrations for cores HI 12.1, FRI 12.3 

and SUD 12.1 demonstrate coherent patterns of peaks and troughs that are generally well 

aligned with regional rainfall (Fig. 4).  

Core FRI 12.1 showed coherency with discharge for only part of the record (~April 1999 – 

February 2002) with two anomalously high peaks in ΣREEs (~250 ppb compared to an 

average of ~126 ppb) occurring in ~September 2000 and ~July 2001 (Supp. Fig. 2). These 

peaks were not associated with luminescent bands, and higher NdSN/YbSN ratios (0.63 and 

0.75 compared to an average of 0.33) demonstrate that have decreased LREE depletion. 

Smaller positive peaks in ΣREE concentrations are observed in SUD 12.1 in ~October 2000 

and August 2001, however no comparable peaks were observed in cores HI 12.1 and FRI 

12.3. Although the peaks in colony FRI 12.1 broadly align with moderately high rainfall and 

a maximum daily discharge of ~5800 ML/day in August 2000 and ~5000 ML/day in June 

2001, the lack of notable geochemical peaks in the other inshore corals suggests the peaks in 

coral FRI 12.1 are not directly related to a specific run-off event, and are more likely the 

result of localised resuspension of sediments. This core was subsequently removed from 

further time-series discussions however, as resuspension of sediments at inshore coral reefs is 

a significant contributor to turbidity regimes (Browne et al., 2013) it was included in the 

water quality spatial analysis (see Supp. 2 and Water Quality Gradient for further discussion).  
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Variance of geochemical concentrations  

Unequal variance ANOVA for the overlapping time period 2001-2002 for ΣREE , Y , and Ba  

concentrations indicated a significant difference between the cores (F= 60.92,  24.71 and 

320.16, respectively; p = <0.001; Supp. Tbl. 1). Pairwise t-tests with Bonferroni adjustments 

(95% confidence interval) revealed that all cores contained significantly different mean 

ΣREE concentrations from each other (p = <0.05; Supp. Table 2A) however, no significant 

difference was found for Y between cores FRI 12.3 and HI 12.1 (p = 4.51) or SUD 12.1 and 

FRI 12.3 (p = 0.43), and only cores FRI 12.3 and HI 12.1 showed a significant difference in 

Ba (p = <0.05; Supp. Tbl. 2B and 2C). Summary statistics for 2001-2002 demonstrate that the 

maximum ΣREE concentrations in coral FRI 12.1 are 2.5 and 4.2 times higher than HI 12.1 

and FRI 12.3, respectively, whilst the mid-shelf coral (SUD 12.1) contained between 2-8 

times lower concentrations of ΣREE than the inshore corals (Supp. Tbl. 3).  

Average ΣREE concentrations are comparable to previously reported coral values from the 

GBR (Supp. Tbl. 4), however, elevated concentrations were observed in colony FRI 12.1, 

mainly due to the two previously identified anomalous “winter” peaks.  

REYSN patterns in the Frankland Island cores generally display patterns reflecting those 

expected for coastal sea water, with a progressive enrichment of HREE relative to LREE 

across the series and notably lower Ce normalised values compared to La and Pr. Some 

exceptions to these trends were less pronounced negative Ce normalised values for corals FRI 

12.1 and SUD 12.1, with intermittent periods of positive Ce and Eu normalised anomalies in 

SUD 12.1 (Fig. 4b).  

Discussion 

The use of both luminescence bands and geochemical proxies in corals to extend 

environmental and climatic records beyond modern instrumentation is becoming common-

place (e.g., Saha et al., 2016). However, heterogeneity in geochemical Ba/Ca between corals 

and decoupling of signals from both river discharge data and luminescent bands is ubiquitous 

(McCulloch et al., 2003, Sinclair, 2005, Lewis et al., 2012). Until these anomalies are fully 

understood, and new possible proxies are developed, the use of geochemical signals for 

robust high-resolution water quality reconstructions is limited. Here we compare the results 

of ~ monthly resolution ΣREE, Y, and Ba signals in massive Porites corals to instrumental 
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records of river discharge, rainfall and flood plume frequency across a known water quality 

gradient in the Wet Tropics region of the GBR.    

Apparent distribution coefficients  

The uniformity of incorporation of REEs across the series into the coral skeleton (i.e. 

distribution coefficients; DREE) is an important consideration prior to their use in interpreting 

ambient seawater conditions (Sholkovitz and Shen, 1995, Webb and Kamber, 2000, Akagi et 

al., 2004). Mean apparent DREE calculated from seawater values from High Island (inshore) 

and Yongala Reef  (mid-shelf) were generally consistent across the series, ranging between 1-

3, which is in agreement with previous values reported from High Island, but lower than 

those reported previously for Frankland Island (~ 3 - 4; Wyndham et al., 2004). The 

difference in apparent DREE at Frankland Island is most likely due to  the collection time of 

Frankland Island seawater by Wyndham et al. (2004) in a drought period (October 2002) 

which would likely underrepresent normal climatology REE concentrations. Variation in 

apparent DREE values reflects the variability in water quality experienced by the corals 

through time.  

The variability in apparent DREE in core FRI 12.1 mainly affects the degree of LREE 

depletion, suggesting that this site is more influenced by LREE-rich runoff. High variability 

in LREEs has also been observed in Porites corals obtained from coastal Japan (Akagi et al., 

2004) and the Indian Ocean, with the latter attributed to monsoon driven increases in 

terrestrially derived LREEs (Naqvi et al., 1996). Comparatively, HI 12.1 showed the most 

variability in the HREE, suggesting dissolved phase processes are dominant at this site. 

Variability in SUD 12.1 DREES was extremely high for Ce and Eu, which was unexpected as 

this site is most removed from fluvial influence. This may be an artefact of the low 

concentrations of REEs in this coral, detrital contamination (Wyndham et al., 2004), surface 

redox chemistry (De Carlo et al., 1997, Bau and Koschinsky, 2009, Bau et al., 2014) or 

biological control (Alibert et al., 2003). Positive Ce anomalies (Ce/Ce*;Table 1) in some 

years at Sudbury Reef follow peaks in manganese (~1 month lag, not shown) and may be 

related to the release of Ce via dissolution of Mn oxides by photo-reduction (Alibert et al., 

2003). Nevertheless, given the temporal and spatial variability of REES in both corals and 

seawater, the apparent DREE for the four cores are comparable to each other and to previously 

reported values from the GBR (Wyndham et al., 2004), Bermuda (Sholkovitz and Shen, 
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1995) and Japan (Akagi et al., 2004) indicating that the REEs in the Frankland Island corals 

are representative of ambient local seawater concentrations. 

Geochemical time series  

Total REE concentrations in the Frankland Islands region showed high variability both 

spatially and temporally similar to previous observations from inshore corals on the GBR 

(Wyndham et al., 2004). For the overlapping period of 2001-2002 ΣREE concentrations were 

significantly different between all four sites (Supp. Tbl. 2), however scaled annual to sub-

annual time series of ΣREEs in cores FRI 12.3, HI 12.1 and SUD 12.1 co-vary coherently and 

appear to be related to rainfall (Fig. 4) and river discharge (Fig. 3) indicating these corals are 

reliably recording variations in seawater REE concentrations. Colony FRI 12.1 showed only 

limited covariance with the other cores, with two anonymously high peaks in ΣREE 

concentrations occurring in austral autumn-winter and has therefore been removed from 

further time series – discharge comparisons (see Supp. 2 for further discussion). Monthly 

resolution sampling of this core for ~1950 however, showed lower ΣREE concentrations (53-

80 ppb) compared to the 1999-2002 period (78 -248 ppb), demonstrating that ΣREE might 

indicate changes to sediment delivery to the GBR following European settlement and coastal 

development (Supp. Fig. 2). 

High Island (HI 12.1), which experiences more frequent flood plumes (Devlin et al., 2001) 

and higher turbidity (Fabricius et al., 2013), displayed higher average concentrations of 

ΣREE than FRI 12.3 and SUD 12.1 across the time series (85 > 55 >16 ppb respectively; 

Table 2). Peak ΣREE concentrations in HI 12.1 were as much as twice as high as those 

observed co-occurring in FRI 12.3 (132 ppb versus 84 ppb respectively) and four times 

higher than the mid-shelf coral SUD 12.1 (31 ppb). Average NdSN/YbSN ratios for the High 

Island coral also demonstrate increased depletion of LREEs relative to other inshore sites (HI 

12.1 = 0.2 < FRI 12.3 = 0.26 < FRI 12.1 = 0.33; Table 2). The overall higher ΣREE 

concentration but lower LREE proportions suggests that the turbidity at this site is composed 

of both particulate and dissolved fractions that are relatively persistent throughout the year. 

Across the time series, average inshore ΣREE concentrations are 2.5 to 7.5 higher at inshore 

locations than at the mid-shelf (Tbl. 2). This difference is greater than the ΣREE gradient 

reported between Round Top and Keswick Islands in southern-central GBR [~ 2 times] 

(Jupiter, 2008). The average ΣREE concentration of 50 ppb for FRI 12.3 is similar to the 

reported values from Round Top Island [53 ppb, 5 km offshore (Jupiter, 2008)], however, 
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both FRI 12.1 (~ 10 km offshore) and HI 12.1 (~6 km offshore) have significantly higher 

average ΣREE concentration values (126 ppb and 80 ppb respectively). Average ΣREE 

values for SUD 12.1 (17ppb) are only moderately lower than those reported for Keswick 

Island [~25 ppb; (Jupiter, 2008)] with both sites being similar distances from the coast (32  

km).  

The most coherent ΣREE signal (i.e. well defined peaks and troughs) was obtained from core 

FRI 12.3 which, although inshore, is located slightly south of the predominant plume 

direction and is therefore less affected by minor river discharge events (Fig. 1; Devlin et al., 

2001). The clearer geochemical signal in coral FRI 12.3 is also likely due to the 

comparatively low tissue thickness/extension ratio in this coral compared to the other 

colonies (Supp. Tbl. 1). Although the majority of element incorporation is predicted to occur 

at the precipitating surface of the coral, trace elements can be incorporated to secondary 

skeletal deposits throughout the depth of the living tissues layer (Taylor et al., 1995). In the 

Frankland Islands corals, this is seen as increases in ΣREE concentrations appearing to 

precede maximum discharge events (Fig. 3). Alternatively, initial increases in ΣREE 

concentrations in the corals may be recording transportation of sediment derived from early 

season rainfall events not associated with high river discharge. The covariance of the scaled 

ΣREE signals for FRI 12.3, HI 12.1 and SUD 12.1 and rainfall data (Fig. 4) indicates this is 

the most likely scenario, suggesting that even when discharge events are moderate, 

substantial sediment delivery still occurs to these reefs. The seasonally earlier and smaller 

discharge events may represent initial increased erosion following dryer months when 

mobilisation of fine topsoils is more prevalent. These results suggest that ΣREEs incorporated 

into inshore corals offer seemingly greater potential for use in rainfall reconstruction than in 

quantifying river discharge. 

Annual time series of Ba and Y co-varied with ΣREE in cores HI 12.1 and FRI 12.3, however 

sub-annual alignment was poor between all cores (Fig. 3). At the mid-shelf location (SUD 

12.1) Ba peaks occur largely in the early Austral spring, and are not aligned with river 

discharge or rainfall. These results are comparable to Ba/Ca patterns reported for Davies 

Reef, a similar mid-shelf site, for which biological processes were suggested to be dominant 

(Alibert et al., 2003). A lack of correlation  in sub-annual Ba and Y time-series signals 

between  inshore Porites have also been reported in the Whitsunday Islands (Lewis et al., 

2012), with Ba/Ca peaks commonly decoupled from discharge (Sinclair, 2005, Lewis et al., 

2012). Although the source of anomalous peaks has been ascribed to upwelling in shelf edge 
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regions (Walther et al., 2013), the cause at inshore and mid-shelf sites is still ambiguous. 

Notably, the most reliable relationships previously reported for Ba and river discharge are in 

corals under the influence of the Burdekin River in the Dry Tropics (Alibert et al., 2003, 

McCulloch et al., 2003, Sinclair, 2005). Satellite image observations of flood events have 

shown that in the Burdekin catchment, where cattle grazing is dominant, plumes contain 

higher levels of inorganic sediments compared to catchments in which sugarcane is grown, in 

which dissolved and particulate organics are generally higher (Schroeder et al., 2012). 

Barium concentrations in coastal waters, therefore, appear to be not only biologically 

mediated, but also largely dependent on regional scale hydrology (e.g. Dry Tropics versus 

Wet Tropics; Devlin et al., 2012), catchment geology and land use.  

REYSN patterns  

REYSN for the inshore Frankland Islands corals largely reflect that expected of coastal 

seawater, and average REYSN values for FRI 12.3 and HI 12.1 are indistinguishable from 

values previously reported by Wyndham et al. (2004) for the same sites (Fig. 5). Average 

REYSN patterns for  FRI 12.1 however show highly variable depletion of LREEs (NdSN/YbSN 

= 0.18 – 0.75; TBL. 2) and generally reduced negative Ce anomaly, similar to patterns in 

corals from Vietnam after port dredging activities (Nguyen et al., 2013) further validating our 

hypothesis that localised sediment resuspension is occurring at this site. The average REYSN 

pattern at Sudbury Reef (mid-shelf - SUD 12.1) is characterised by lower overall REY 

values, a reduced Ce anomaly, extremely positive Y values (relative to Ho) and an 

unexpected positive Eu anomaly. The relatively constant apparent distribution co-efficient for 

Eu for SUD 12.1 (2.25 ± 0.46) is within the range calculated for other inshore corals (1.4 - 

2.5) suggesting that this anomaly is not an artefact of the low concentrations in this coral and 

warrants further investigation. 

Comparison of REYSN of wet versus dry periods (Fig 6.) shows notable differences with 

higher ΣREE in wet versus dry periods. At High Island there is also increased fractionation of 

HREE across the series in wet versus dry years. The higher MUQ normalised HREE patterns 

observed at High Island compared with both FRI 12.3 and SUD 12.1 for wet years supports 

previous observations of flood plume dispersal in this region (Devlin et al., 2001) which are 

driven north by the predominant south-easterly winds. This is reflected in the local coral 

community structure, whereby High Island has the lowest juvenile coral recruitment and the 

lowest density of coral cover within the Frankland Islands group (Smith et al., 2005).  
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Water quality gradient; ΣREE, ΣREY and Y/Ho 

Given the clear distinctions between total ΣREE concentrations between sites in the 

Frankland Islands, spatial interpolations were applied to average ΣREE, ΣREY and Y/Ho 

values to assess whether coral cores could reliably reconstruct both broad scale and local 

water quality patterns  The spatial interpolation model of Y/Ho produced a simple water 

quality gradient (Fig.7) with inshore Y/Ho ratios not differentiating well at local scales, but 

predicting well the expected inshore-offshore gradient. Whilst the Y/Ho ratios for the inshore 

corals (minimum 69-74; maximum 108-125) fall close to that of near surface marine values 

[~40 -140;(Zhang and Nozaki, 1996, Nozaki et al., 1997, Zhang and Nozaki, 1998, Alibo and 

Nozaki, 1999)]  and are similar to previous coral records from the inshore GBR 

[67.3;(Jupiter, 2008)] and coastal Vietnam [52 -112; (Nguyen et al., 2013)], significantly 

higher Y/Ho ratios were observed at Sudbury Cay (>300; Tbl. 2). High Y/Ho ratios have also 

been observed by Jupiter et al. (2008) at a GBR mid-shelf site (140), and calculated ratios 

from Heron Reef (southern GBR) corals range from 300 – 1200 (Webb and Kamber, 2000). 

The super-chondritic ratios are driven by extremely low Ho values (0.2) recorded in the 

corals at both Sudbury Cay and Heron Reef, and supports previous observations of the 

persistence of Y in the soluble phase of sea water compared to REEs (Nozaki et al., 1997, 

Zhang and Nozaki, 1998). Although beyond the scope of this study, future work is 

recommended to determine the discrepancies between sea water Y/Ho ratios and mid-shelf 

corals.  Nevertheless, spatial interpolation of Y/Ho offers potential for reconstructing palaeo-

water quality gradients in regions where local hydrodynamics are not complex, or where 

palaeo-cross shelf water quality gradients are required for ecological evaluations. 

Compared to patterns of turbidity derived from in situ data (Fabricius et al., 2013) and flood 

plume frequency analysis (Devlin et al., 2001) the ΣREE spatial interpolation model (Fig. 7b) 

underestimated turbidity at High Island relative to NW Russell Island (FRI 12.1), whereas the 

ΣREY model (Fig 7c) better reflects both instrumental turbidity data and flood plume 

frequency reconstructions (Devlin et al., 2001, Schaffelke et al., 2008, Fabricius et al., 2013). 

This suggests that Y desorbed from particulates in the estuarine mixing zone effectively 

traces the extent of discharge plumes due to the strong solution complexation of Y (and to a 

lesser extent HREEs) with carbonate ions (dissolved) compared with LREE covalent 

complexation to particulates in sea water (Zhang and Nozaki, 1996, Quinn et al., 2004). The 

higher ΣREE concentrations in core FRI 12.1 than HI 12.1 was unexpected, as nearby in situ 

monitoring of these Islands for the period 2007 – 2010 indicates higher mean and maximum 
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turbidity at High Island (0.95 and ~7 Nephelometric Turbidity Units [NTU] respectively) 

compared with Russell Island (0.65 and ~2 NTU; Schaffelke et al., 2008, Fabricius et al., 

2013). Flood plume frequency mapping of Russell-Mulgrave River discharge events also 

indicates that High Island experiences more frequent flood plumes than Russell Island 

(Devlin et al., 2001). As the in situ data logger for the 2007-2010 monitoring period was 

located closer to FRI 12.3 (~80m) than to FRI 12.1 (~350m), the difference in ΣREE 

concentrations in coral FRI 12.1 may be due to sub-reef scale differences in turbidity. A 

mean ~monthly record of turbidity obtained in 2000 indicated a higher NTU value (1.3 NTU) 

for the NW of Russell Island (i.e. closer to core FRI 12.1) than values observed at sites on 

High Island reef (0.8 - 1.2 NTU) for the same period (Macdonald et al., 2013) suggesting the 

peaks observed in FRI 12.1 are likely reflecting localised resuspension at this site. Increased 

localised resuspension of sediments at FRI 12.1 could be due to either tidal current 

attenuation through the inter-reef passage, (Fig. 1) or to the coral’s close proximity (<30 m) 

to a permanent mooring buoy, which may cause intermittent disturbance of sediments. 

Regardless of the cause for higher turbidity at FRI 12.1, the ΣREY spatial interpolation 

provides an effective tool for reconstructing more complex palaeo-water quality gradients to 

assess past reef growth histories. These results suggest that spatial interpolation of REYs in 

non-traditional (non- massive) samples obtained from reef cores (Sadler et al., 2014) could 

potentially be used for point-time change, as well as spatial analysis of palaeo-water quality 

gradients to assess ecological heterogeneity.   

Conclusions  

The extensive coral reefs of the Great Barrier Reef (GBR) grow in widely divergent 

environments, with inshore reefs subjected to significantly higher terrigenoclastic input from 

rivers, as well as resuspension of coastal sediment, compared to the mid-shelf and outer reefs. 

The unique behaviours of the REEs and Y in coastal mixing zones suggests the potential for 

their use in reconstructing palaeo-climatic and environmental conditions that have controlled 

reef growth. Although further work needs to be undertaken to fully understand both the 

temporal and spatial variability of REYs at sub-annual timescales, the comparable 

distribution coefficients for the Frankland Islands to previously reported values on the GBR 

and elsewhere suggests that corals can be used successfully to interpret changes in REY 

systematics in coastal seawater. The primary aim of this study was to identify potential uses 
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for REY geochemistry in coastal locations for use in palaeo-research. A summary of our 

results is as follows: 

1. ΣREE concentration is a better indicator of regional rainfall than river discharge, 

as early season (smaller) peaks are likely associated more efficient removal of top 

soils following dry periods.  

2. Scaled ΣREE time series data matched well between the cores at annual to sub-

annual resolution irrespective of significant differences in total ΣREE 

concentrations between sites, thus offering potential for sub-annular to annual 

resolution rainfall and river discharge reconstructions 

3. ΣREE concentrations have the potential to track changes in sediment delivery to 

the GBR since European settlement, with higher ΣREE observed in 1999-2002 

(78 – 250 ppb in dry and wet years) than in 1950 (53-79 ppb).  

4. Spatial interpolation models of Y/Ho serve as indicator for cross shelf sediment 

delivery, however ΣREY models better predict known turbidity and flood plume 

patterns in regions of more complex oceanography. Applying a similar approach 

to corals obtained from reef matrix cores would allow for interpretation of 

ecological data in the context of relative turbidity between sites, transitions 

through cores or for interpretation of absolute time periods.   

5. Corals with the largest linear extension rate and lowest tissue thickness/extension 

ratios are best suited to geochemical analysis. To fully understand geochemical 

signals in fossil corals, determination of the tissue thickness (by measuring the last 

deposited dissepiment) is necessary prior to interpretation (Barnes and Lough, 

1992).  
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Table 1: Average rare earth element (REE) and Y concentration data (ppb) from the Frankland Islands, Great Barrier Reef (GBR-this study) and previously published REY data 
from corals on the GBR [Wyndham (2004), Webb and Kamber (2000) and Jupiter (2008)] , Bermuda [Sholkovitz and Shen (1995)] an sea water from Frankland Island, High Island 
(inshore) and Yongala  Reef (mid-shelf) GBR. (NB.  Bold and italicised seawater values for Tb, Tm and Lu are interpolated.) 
 
 
Location La Ce Pr Nd Sm Eu Gd Tb Dy Y Ho Er Tm Yb Lu 

 DL* 2.6 3.9 1.0 1.2 0.5 0.5 0.3 0.6 0.9 1.3 0.6 1.2 0.6 0.8 1.1 
 RSD (%) ** 2.6 1.9 1.1 1.0 1.3 1.3 1.2 1.5 0.9 3.2 1.0 0.8 0.8 1.0 1.3  

Coral 
               

Reference 
Russell Island (FRI 12.1) 25.71 32.93 4.90 18.69 4.22 1.16 5.25 0.85 5.62 118.04 1.39 4.39 0.77 5.65 0.96 This study 

Russel Island (FRI 12.3) 12.08 12.21 2.16 8.80 2.18 0.67 3.36 0.56 3.91 88.58 0.96 3.40 0.49 3.34 0.58 This study 

High Island (HI 12.1) 19.48 16.19 3.36 13.69 3.25 1.07 5.08 0.85 6.12 129.50 1.56 5.32 0.90 6.86 1.20 This study 

Sudbury Cay (SUD 12.1) 3.19 4.68 0.54 2.27 0.57 0.38 0.90 0.15 1.11 89.21 0.29 1.01 0.18 1.30 0.23 This study 

Frankland Island 15 11 2.9 11.7 2.8  4.1  4  1 3.1  3.5  
Wyndham (2004) 

High Island 17.2 13.7 3.5 14.9 3.7  5.2  6.1  1.5 5.1  6.5  
Wyndham (2004) 

Pandora Reef 29.8 14  22.3 5.3 1.5 7.6     7.8  9.6  
Wyndham (2004) 

Havannah Reef 27.5 17.4  19.1 4.8 1.6 6.5     6.5  7.6  
Wyndham (2004) 

Davies Reef 1.5 1.4  1.9 0.79       0.9  1  
Wyndham (2004) 

Heron Island 15.3 15 1.9 9.1 1.5 1.4 2.5 0.3 2.2 122 0.4 1.3  2 0.2 Webb and Kamber (2000) 

Heron Island 5.3 8.7 0.8 4.6  0.6 1.2 0.2 1.5 121 0.1 1.3  1.1 0.2 Webb and Kamber (2000) 

Heron Island 9.1 15.3 1.1 9.3  0.5 2.1 0.3 0.9 180 0.2 2.6  3.8 0.2 Webb and Kamber (2000) 

Round Top Island 26.84 19.62 5.21 22.38 5.02 1.49 7.29 1.19 8.65 138.62 2.07 6.15 0.94 6.07 0.99 Jupiter (2008) 

Keswick Island 5.05 4.93 1.09 4.76 1.35 0.37 2.08 0.33 2.82 82.62 0.58 2.00 0.36 2.68 0.05 (Jupiter 2008) 

Bermuda 19 60.8  30.6 9.76 1.85 13.1  10.8   8.84  8.12 1.26 Sholkovitz and Shen (1995) 

Bermuda 17.3 27.5  22.7 6.87 0.9 9.71  7.66   6.51  6.21 0.92 Sholkovitz and Shen (1995) 

Bermuda 13.3 20.8  19.2 5.42 1.2 8.42  8.39   7.3  6.95 1.01 Sholkovitz and Shen (1995) 

Bermuda (Porites sp.) 25.8 43.1  33.2 10.2 1.74   10.4   7.78  5.93 0.85 Sholkovitz and Shen (1995) 

Bermuda 12.7 17.4  18.4 5.96 1.25   9.74   8.79  7.31 1.01 Sholkovitz and Shen (1995) 

Tarawa 7.17 17.8  13.8 3.89  6.42  5.18   4.41  2.52 0.34 Sholkovitz and Shen (1995) 

Tarawa 12.1 24.2  20.5 7.41  9.84  5.45   6.19  2.76 0.38 Sholkovitz and Shen (1995) 

Seawater                 
Frankland Island (Oct 2002) 3.6 2.9 0.71 3.2 0.84 0.22 1.2 0.19 1.6  0.4 1.2 0.18 1.1 0.17 Wyndham (2004) 

High Island (Oct 2002) 8.9 9.7 1.7 7.6 1.8 0.47 2.7 0.42 3.4  0.87 2.8 0.42 2.6 0.39 Wyndham (2004) 

Yongala Reef (Feb 2001) 2.4 1.7 0.5 2.3 0.59 0.17 0.88 0.14 1.1  0.29 0.8 0.12 0.7 0.11 Wyndham (2004) 
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Table 2: Summary of selected geochemical data from ~monthly resolution sampling of Porites coral cores from the 
Wet Tropics, Great Barrier Reef, Australia. Y/Ho is molar ratio, total rare earth elements (ΣREE) and Yttrium (Y; 
ppb), Barium (Ba; ppm) and Y/Ho as molar ratios. Cerium anomaly (Ce/Ce*) was calculated using the equation 
[CeN/PrN * (PrN/NdN)], where element concentrations were normalised (N) using the values of Mud of Queensland 
(MUQ; Kamber et al. 2005). NdN/YbN are MUQ normalised ratios, where lower ratio values represent a relative 
depletion of light REE (LREE) compared to heavy REE (HREE). 
 
 

Sample    
Σ REE 

 (2001-2002) Y/Ho Y Ba  
Ce/Ce* ΣREE  

(all years) 
NdN/YbN 

 
DL*   1.3 0.05    

 
RSD%**   3.23 0.74    

FRI 12.1 Min 78.55 69.7 81.47 2.52 0.64 73.57 0.18 

 
Max 247.74 126.0 166.33 5.60 2.10 247.74 0.75 

 
Average 126.32 88.6 121.01 3.79 0.89 112.49 0.33 

HI 12.1 Min 66.99 74.7 108.81 3.44 0.44 56.37 0.16 

 
Max 97.10 88.5 159.08 5.54 0.73 132.06 0.26 

 
Average 78.98 82.6 123.00 4.47 0.54 84.92 0.20 

FRI 12.3 Min 40.94 82.6 82.04 2.23 0.47 36.79 0.19 

 
Max 59.23 108.4 106.16 5.08 0.61 84.58 0.35 

 
Average 49.91 97.3 94.25 3.33 0.54 54.72 0.26 

SUD 12.1 Min 11.31 212.8 78.98 2.07 0.75 10.40 0.12 

 
Max 31.92 383.7 104.79 4.66 1.23 31.92 0.36 

 
Average 16.99 311.0 87.97 3.62 0.94 16.81 0.18 

*DL (Detection Limit) = 3 * the standard deviation of the blank (background)  

** RSD % (Relative Standard Deviation) = standard deviation/average*100 (1σ) 
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Figures

Figure 1: Frankland Islands region, Wet Tropics, Great Barrier Reef, Australia. Grey shading indicates 
flood plume frequency distribution (Devlin et al. 2001), stars indicates locations of Porites sp. coral cores at 
Sudbury Cay (blue) and inset a) High Island (red) and b) Russell Island (green and orange). 
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Figure 2: Quartile plots of apparent distribution coefficients (DREE) for four Porites sp. corals (HI 12.1, FRI 12.3, FRI 
12.1, SUD 12.1) from the Wet Tropics, Great Barrier Reef (GBR), Australia compared to previously reported 
average DREE for Porites sp. corals from the GBR - High and Frankland Islands, Pandora, Havannah and Davies 
Reefs (Wyndham et al. 2004), Round Top and Keswick Islands (Jupiter 2008) and Bermuda (Sholkovitz and Shen 
1995). 
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Figure 3: Geochemical time series data for Porites corals from the Wet Tropics, Great Barrier Reef, Australia; a) 
High Island (HI 12.1); (b) Russell Island (FRI 12.3) and (c); Sudbury Cay (SUD 12.1). Maximum daily river 
discharge (ML.day-1) for the Russell and Mulgrave Rivers are also shown (d). Blue and red vertical bars represent 
high and moderate discharge events respectively. 
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Figure 4:  Scaled geochemical time series data for Porites corals from the Wet Tropics, Great Barrier Reef, Australia; 
High Island (HI 12.1; red), Russell Island (FRI 12.3; green) and Sudbury Cay (SUD 12.1; blue); and daily rainfall 
(mm.day-1) for Deeral Station 031021 (grey). 
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Figure 5: Average Mud of Queensland [MUQ; Kamber et al. 2005) normalised REE and Yttrium (REY) data from 
four Porites corals from the Wet Tropics, Great Barrier Reef (GBR), compared with previously reported coral and 
sea water data from the GBR. 
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Figure 6: Mud of Queensland (MUQ; Kamber et al. 2005) normalised rare earth element and Yttrium (REY) composition of 
Porites sp. corals from the Wet Tropics, Great Barrier Reef, Australia for wet (high rainfall/high discharge) and dry periods for 
High Island (HI 12.1 – red), Russell Island (FRI 12.3 – green) and Sudbury Cay (SUD 12.1 – blue). Also shown are High Island 
and Yongala Reef sea water values [x1000] (Wyndham et al. 2004). 
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Figure 7: Gridded spatial interpolation of average monthly resolution geochemical data from Porites sp. coral cores in the 
Wet Tropics, Great Barrier Reef, Australia; a) Yttrium/Holmium (Y/Ho) molar ratio; (b) Total rare earth elements (ΣREE 
– ppb) and ; c) total rare earth elements and Y (REY – ppb) 

Y/Ho ΣREE 

ΣREY 
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Supplementary 

Supplementary 1: Growth Characteristics 

Supplementary Table 1: Measured tissue thickness and annual linear extension of four Porites sp. corals from the 
Frankland Islands, Great Barrier Reef.  The average ratio is defined as the tissue thickness/average linear extension. 
Month equivalent values were calculated by multiplying the ratio by 12 (months). 

 
FRI 12.1 HI 12.1 FRI 12.3 SUD 12.1 

Tissue Thickness (cm) 0.9 0.5 0.6 0.5 

     Linear extension *(cmyr-1) 1.7 1.8 2.3 1.2 

 
1.6 1.7 2 1.4 

 
2 2 2.3 1.3 

 
1.6 1.5 2 1.4 

 
1.8 1.5 2 1 

 
1.3 1.2 1.7 1 

 
1.6 2 2.3 1.1 

 
1.5 1.7 2 1.3 

 
1.6 1.7 2.2 1.2 

 
1.5 1.5 2.2 1 

 
1.7 1.7 

 
1 

 
1.2 

  
1.2 

Average (cmyr-1) 1.59 1.66 2.10 1.18 

Standard Deviation (cm) 0.21 0.23 0.19 0.15 

Ratio (average) 0.57 0.30 0.29 0.43 

~Month equivalent 6.8 3.6 3.4 5.1 
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Supplementary Figure 1: Scaled and digitally enhanced photographs of coral luminescent bands in four Porites sp. 
corals from the Wet Tropics, Great Barrier Reef, Australia.  Dashed lines represent overlapping period of 2001-2002 
used for geochemical comparisons (see main text).  
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Supplementary 2: Coral FRI 12.1 

Coral FRI 12.1 from the NW side of Russell Island shows two anomalous peaks (~250 ppb) 

which are approximately twice the baseline values for this coral (Supp. Fig. 2). These peaks 

do not correspond to any similarly high peaks in the other corals, or with UV luminescence, 

and occur almost coevally with the lowest annual SST (highest Sr/Ca). Although moderately 

high discharge events were observed in the instrumental record at this time, increased in 

Nd/Yb ratios (i.e. colloidal association) and a lack of observable peaks in the other inshore 

corals suggests that localised resuspension may be the primary driver. Mud of Queensland 

(Kamber et al., 2005) normalised REY patterns are notably different compared to the wet and 

dry phase REY trends from the other inshore corals, with a shale-like pattern characterised by 

no negative Ce anomaly and little depletion of LREEs. Similar REY patterns, although of 

much higher concentrations, were attributed to resuspension following dredging activities in 

Vietnam by Nguyen et al. (2013). The location of this coral at an inter-reef passage, and close 

to a permanent mooring buoy, likely results in localised resuspension of sediments at this site. 

The larger tissue thickness of this colony compared to the other cores from the region (0.9 cm 

compared to ~0.5cm; Supp. Tbl. 1) also supports the notion that this coral has increased 

exposure to both organic and inorganic nutrient sources (Barnes and Lough, 1992).  
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Supplementary Figure 2: (a) Geochemical time series data for Porites coral from Russell Island (FRI 12.1) from the Wet 
Tropics, Great Barrier Reef, Australia and; (b) Maximum daily river discharge (ML.day-1) for the Russell and Mulgrave 
Rivers. Blue and red vertical bars represent high and moderate discharge events respectively. 
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Supplementary 3: Geochemical statistics 

Supplementary Table 2: Single Factor Analysis of Variance (ANOVA) of geochemical data from four coral cores 
from the Frankland Islands, Great Barrier Reef for the period 2001-2002; FRI 12.1 AND FRI 12.3 from Russell 
Island and HI 12.1 from High Island (inshore) and SUD 12.1 from Sudbury Cay (mid-shelf). A) Total rare earth 
elements (ΣREE); B) total Yttrium (Y); and C) total Barium (Ba). 

C: Barium 
SUMMARY 

     Groups Count Sum Average Variance 
  FRI 12.1 16 60630.01 3789.375 731852.1 
  HI 12.1 19 84.74543 4.460286 0.298068 
  FRI 12.3 20 64.85241 3.242621 0.350854 
  SUD 12.1 10 36.22231 3.622231 0.834916 
  ANOVA 

      Source of Variation SS df MS F P-value F crit 
Between Groups 1.73E+08 3 57616525 320.1559 2.87E-37 2.755481 
Within Groups 10977801 61 179963.9 

   
       Total 1.84E+08 64 

    

B: Yttrium 
SUMMARY 

     Groups Count Sum Average Variance 
  FRI 12.1 16 1936.179 121.0112 437.3454 
  HI 12.1 19 2336.937 122.9967 217.383 
  FRI 12.3 20 1883.547 94.17733 54.12034 
  SUD 12.1 10 879.7391 87.97391 76.26461 
  

       
       ANOVA 

      Source of Variation SS df MS F P-value F crit 
Between Groups 14809.39 3 4936.464 24.70714 1.38E-10 2.755481 
Within Groups 12187.74 61 199.7991 

   
       Total 26997.14 64 

    

A: ΣREE 
     SUMMARY 

      Groups Count Sum Average Variance 
  FRI 12.1 16 2021.134 126.3209 1813.32 
  HI 12.1 19 1500.695 78.98397 78.72337 
  FRI 12.3 20 995.4418 49.77209 20.21776 
  SUD 12.1 10 169.8788 16.98788 51.84102 
  ANOVA 

      Source of Variation SS df MS F P-value F crit 
Between Groups 88282.98 3 29427.66 60.91748 2.46E-18 2.755481 
Within Groups 29467.52 61 483.0741 

   
       Total 117750.5 64 
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Supplementary Table 3: Pairwise t-tests of geochemical data from four coral cores from the Frankland Islands, Great 
Barrier Reef for the period 2001-2002. FRI 12.1 AND FRI 12.3 from Russel Island and HI 12.1 from High Island 
(inshore) and SUD 12.1 from Sudbury Cay (mid-shelf). A) Total rare earth elements (ΣREE); B) total Yttrium (Y); 
and C) total Barium (Ba). Significant Bonferroni adjusted differences (95% confidence) are in bold. 

A: t-Test: Two-Sample Assuming Unequal Variances: ΣREE 

        FRI 12.1 HI 12.1   FRI 12.1 FRI 12.3 

Mean 126.3209 78.98397 Mean 126.3209 49.77209 

Variance 1813.32 78.72337 Variance 1813.32 20.21776 

Observations 16 19 Observations 16 20 

Hypothesized Mean Difference 0 
 

Hypothesized Mean Difference 0 
 

df 16 
 

df 15 
 

t Stat 4.367426 
 

t Stat 7.158676 
 

P(T<=t) one-tail 0.000239 
 

P(T<=t) one-tail 1.64E-06 
 

t Critical one-tail 1.745884 
 

t Critical one-tail 1.75305 
 

P(T<=t) two-tail 0.000479 
 

P(T<=t) two-tail 3.29E-06 
 

t Critical two-tail 2.119905   t Critical two-tail 2.13145   

Bonferroni 0.002871 
 

Bonferroni 1.97E-05 
 

      

  FRI 12.1 SUD 12.1   HI 12.1 FRI 12.3 

Mean 126.3209 16.98788 Mean 78.98397 49.77209 

Variance 1813.32 51.84102 Variance 78.72337 20.21776 

Observations 16 10 Observations 19 20 

Hypothesized Mean Difference 0 
 

Hypothesized Mean Difference 0 
 

df 16 
 

df 26 
 

t Stat 10.04296 
 

t Stat 12.86701 
 

P(T<=t) one-tail 1.29E-08 
 

P(T<=t) one-tail 4.4E-13 
 

t Critical one-tail 1.745884 
 

t Critical one-tail 1.705618 
 

P(T<=t) two-tail 2.59E-08 
 

P(T<=t) two-tail 8.8E-13 
 

t Critical two-tail 2.119905   t Critical two-tail 2.055529   

Bonferroni 1.55E-07 
 

Bonferroni 5.28E-12 
 

      

  SUD 12.1 FRI 12.3   HI 12.1 SUD 12.1 

Mean 16.98788 49.77209 Mean 78.98397 16.98788 

Variance 51.84102 20.21776 Variance 78.72337 51.84102 

Observations 10 20 Observations 19 10 

Hypothesized Mean Difference 0 
 

Hypothesized Mean Difference 0 
 

df 13 
 

df 22 
 

t Stat -13.1718 
 

t Stat 20.2994 
 

P(T<=t) one-tail 3.39E-09 
 

P(T<=t) one-tail 4.88E-16 
 

t Critical one-tail 1.770933 
 

t Critical one-tail 1.717144 
 

P(T<=t) two-tail 6.78E-09 
 

P(T<=t) two-tail 9.76E-16 
 

t Critical two-tail 2.160369   t Critical two-tail 2.073873   

Bonferroni 4.07E-08 
 

Bonferroni 5.86E-15 
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B: t-Test: Two-Sample Assuming Unequal Variances:  Yttrium 

        FRI 12.1 HI 12.1   FRI 12.1 FRI 12.3 

Mean 121.0112 122.9967 Mean 121.0112 94.17733 

Variance 437.3454 217.383 Variance 437.3454 54.12034 

Observations 16 19 Observations 16 20 

Hypothesized Mean Difference 0 
 

Hypothesized Mean Difference 0 
 

df 26 
 

df 18 
 

t Stat -0.31886 
 

t Stat 4.895897 
 

P(T<=t) one-tail 0.376192 
 

P(T<=t) one-tail 5.82E-05 
 

t Critical one-tail 1.705618 
 

t Critical one-tail 1.734064 
 

P(T<=t) two-tail 0.752383 
 

P(T<=t) two-tail 0.000116 
 

t Critical two-tail 2.055529   t Critical two-tail 2.100922   

Bonferroni 4.5143 
 

Bonferroni 0.000698 
 

        FRI 12.1 SUD 12.1   HI 12.1 FRI 12.3 

Mean 121.0112 87.97391 Mean 122.9967 94.17733 

Variance 437.3454 76.26461 Variance 217.383 54.12034 

Observations 16 10 Observations 19 20 

Hypothesized Mean Difference 0 
 

Hypothesized Mean Difference 0 
 

df 22 
 

df 26 
 

t Stat 5.587467 
 

t Stat 7.662115 
 

P(T<=t) one-tail 6.43E-06 
 

P(T<=t) one-tail 1.97E-08 
 

t Critical one-tail 1.717144 
 

t Critical one-tail 1.705618 
 

P(T<=t) two-tail 1.29E-05 
 

P(T<=t) two-tail 3.93E-08 
 

t Critical two-tail 2.073873   t Critical two-tail 2.055529   

Bonferroni 7.72E-05 
 

Bonferroni 2.36E-07 
 

        SUD 12.1 FRI 12.3   HI 12.1 SUD 12.1 

Mean 87.97391 94.17733 Mean 122.9967 87.97391 

Variance 76.26461 54.12034 Variance 217.383 76.26461 

Observations 10 20 Observations 19 10 

Hypothesized Mean Difference 0 
 

Hypothesized Mean Difference 0 
 

df 16 
 

df 26 
 

t Stat -1.92987 
 

t Stat 8.020506 
 

P(T<=t) one-tail 0.035774 
 

P(T<=t) one-tail 8.43E-09 
 

t Critical one-tail 1.745884 
 

t Critical one-tail 1.705618 
 

P(T<=t) two-tail 0.071547 
 

P(T<=t) two-tail 1.69E-08 
 

t Critical two-tail 2.119905   t Critical two-tail 2.055529   

Bonferroni 0.429283 
 

Bonferroni 1.01E-07 
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C: t-Test: Two-Sample Assuming Unequal Variances: Ba 

        FRI 12.1 HI 12.1   FRI 12.1 FRI 12.3 

Mean 3.789375 4.460286 Mean 3.789375 3.242621 

Variance 0.731852 0.298068 Variance 0.731852 0.350854 

Observations 16 19 Observations 16 20 

Hypothesized Mean Difference 0 
 

Hypothesized Mean Difference 0 
 

df 25 
 

df 26 
 t Stat -2.70695 

 
t Stat 2.173439 

 
P(T<=t) one-tail 0.006031 

 
P(T<=t) one-tail 0.019521 

 t Critical one-tail 1.708141 
 

t Critical one-tail 1.705618 
 

P(T<=t) two-tail 0.012063 
 

P(T<=t) two-tail 0.039043 
 

t Critical two-tail 2.059539   t Critical two-tail 2.055529   

Bonferroni 0.072376 
 

Bonferroni 0.234257 
 

        FRI 12.1 SUD 12.1   HI 12.1 FRI 12.3 

Mean 3.789375 3.622231 Mean 4.460286 3.242621 

Variance 0.731852 0.834916 Variance 0.298068 0.350854 

Observations 16 10 Observations 19 20 

Hypothesized Mean Difference 0 
 

Hypothesized Mean Difference 0 
 

df 18 
 

df 37 
 t Stat 0.46495 

 
t Stat 6.67974 

 
P(T<=t) one-tail 0.323771 

 
P(T<=t) one-tail 3.8E-08 

 t Critical one-tail 1.734064 
 

t Critical one-tail 1.687094 
 

P(T<=t) two-tail 0.647543 
 

P(T<=t) two-tail 7.6E-08 
 

t Critical two-tail 2.100922   t Critical two-tail 2.026192   

Bonferroni 3.885255 
 

Bonferroni 4.56E-07 
 

        SUD 12.1 FRI 12.3   HI 12.1 SUD 12.1 

Mean 3.622231 3.242621 Mean 4.460286 3.622231 

Variance 0.834916 0.350854 Variance 0.298068 0.834916 

Observations 10 20 Observations 19 10 

Hypothesized Mean Difference 0 
 

Hypothesized Mean Difference 0 
 

df 13 
 

df 12 
 

t Stat 1.194273 
 

t Stat 2.661104 
 

P(T<=t) one-tail 0.126854 
 

P(T<=t) one-tail 0.010375 
 

t Critical one-tail 1.770933 
 

t Critical one-tail 1.782288 
 

P(T<=t) two-tail 0.253707 
 

P(T<=t) two-tail 0.020749 
 

t Critical two-tail 2.160369   t Critical two-tail 2.178813   

Bonferroni 1.522244 
 

Bonferroni 0.124494 
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Chapter 6 
Conclusions and future directions 

Conclusions 

The Great Barrier Reef (GBR) is the largest coral reef system in the world, with over 2900 

reefs and 900 coral cays and islands. Many of the inshore reefs on the GBR demonstrate 

similar patterns of reef growth history, initiating around 8500 yBP following inundation of 

the shallow Pleistocene shelf during the post glacial marine transgression, and accreting 

rapidly in a either a “catch up” or “keep up” mode of growth until ~5500 yBP (Neumann and 

Macintyre, 1985, Kleypas and Hopley, 1992, Smithers et al., 2006, Perry and Smithers, 

2011). Yet after 5500 cal. yr. BP the growth history of the GBR becomes convoluted, with a 

significant reduction in reef flat progradation from 5500 to 4800 cal. yr. BP (Smithers et al., 

2006) and significant reef “turn-off” after 4600 yBP (Perry and Smithers, 2011). Three 

possible drivers of the mid-Holocene “turn-off” have been suggested being; a) a slowly 

regressing sea level following the mid-Holocene highstand resulting in emergence of reef 

flats; b) reef flat senescence limiting accretion potential; and c) conditions marginal to reef 

growth caused by changes in climatic conditions (Perry and Smithers, 2011). The primary 

aim of this thesis, therefore, was to investigate the possible environmental and/or climatic 

mechanisms responsible for the mid-Holocene reef hiatus on the Great Barrier Reef.  

Holocene sea level 

Whether eustatic sea level oscillated throughout the Holocene or if ocean volumes remained 

constant following the post glacial marine transgression has been a contentious issue for 

decades. Evidence from the Australian East Coast (AEC) has given support to both 

hypotheses however palaeo-sea level reconstructions have often been restricted by 

chronologies with large age errors making interpretations at sub-centennial scales 

problematic. 

In Chapter 2 three emergent sub-fossil reef flats from the inshore Keppel Islands, Great 

Barrier Reef (GBR), Australia, were used to examine whether, by using a single type of sea 

level indicator (coral microatolls) in conjunction with high precision U-Th dating, sub-

centennial sea level variability could be reliably detected. Elevation surveys and U-Th dates 
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from the coral microatolls (n=32) and reef flat coral colonies (n=10) provided evidence in 

support of an oscillating relative sea level (RSL) regression following a mid-Holocene 

highstand. Results demonstrate that RSL was as least 0.75 m above present from ~6,500 – 

5,500 yBP but then a rapid lowering of RSL of at least 0.4 m occurred from 5,500 – 5,300 

yBP. RSL returned to higher levels following this lowstand, before a 2,000 year hiatus in reef 

flat corals after 4,600 yBP. A second RSL lowering event of ~0.3 m from ~2,800 –1,600 yr. 

BP was also detected. This is the first evidence of RSL instability in the mid-Holocene from 

the southern GBR, and contributes significantly to the sea level database for the Australian 

east coast. 

To determine whether the RSL oscillations detected in the southern GBR was a local scale 

response, or if RSL oscillated coherently elsewhere on the GBR Chapter 3 focussed on 

reconstructing RSL across a large latitudinal range on the GBR (11˚S – 20˚S). Elevation 

surveys and high precision U-Th dates of 94 microatolls from eight separate reefs provided 

further evidence in support of a RSL oscillation at 5500 yBP, in agreement with the data from 

the Keppel Islands. Additionally, a second oscillation of ~-0.3m at 4600 yBP was also 

detected in this study. The synchronicity of the negative sea level oscillations with previously 

documented periods reduced reef accretion and reef “turn-off” suggests that sea level 

instability was likely the primary driver of the mid-Holocene hiatus on the GBR. The timing 

of the sea level oscillations on the GBR were also shown to coincide with SL oscillations 

reported elsewhere in the Indo-Pacific suggesting a eustatic contribution to SL instability in 

the Holocene. Furthermore, these SL oscillations were shown to correspond with periods of 

reduced ENSO activity (Gliganic et al., 2014), rapid cooling events (Hodell et al., 2001, 

Moros et al., 2009) and global glacier advances (Mayewski et al., 2004). It is therefore 

proposed Holocene SL oscillations are likely the result of ocean-atmosphere climatic 

perturbations affecting SSTs and sensitive mountain ice-cap and non-polar icesheet water 

storage balances in both the northern and southern hemispheres. These climate signals may 

have been emphasized on the GBR due to the response of the ENSO system, however, high 

resolution (sub-centennial) climate records for the southern hemisphere are notably limited 

(Wanner et al., 2015). Therefore, the second part of this thesis investigated new possible 

techniques for acquiring palaeo-climatic and –environmental data from massive Porites 

corals, with a focus on reconstructing rainfall and associated sediment delivery to the GBR 

which, on the GBR, is largely modulated by ENSO. 
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Coral luminescence and ENSO  

Luminescent lines in corals are commonly used  to assess river flow beyond the instrumental 

record on the GBR and to reconstruct rainfall frequency with links to driving climatic 

mechanisms such as ENSO and the Pacific Decadal Oscillation (PDO; Isdale et al., 1998, 

Lough et al., 2002, Lough, 2007, Lough, 2011, Lough et al., 2014, Rodriguez-Ramirez et al., 

2014). In Chapter 4 the utility of rapid visual assessment of ultraviolet (UV) luminescent 

bands in massive Porites sp. coral cores was tested by applying continuous wavelet 

transforms (CWT) to a previously published modern luminescent index record from Great 

Palm Island (Hendy et al., 2003) and sea surface temperature (SST) data from the Niño 3 

region for the same period (i.e. an indicator of ENSO). Applying CWTs allows for time series 

data to be viewed in time-frequency space, thereby allowing for detection of ENSO 

frequency through time.  The transformed modern coral luminescence record matched well 

with the Niño 3 SST ENSO signal, so was therefore considered a viable tool for use in 

palaeoclimate reconstructions. Continuous wavelet transforms were applied to luminescence 

index data of three massive Porites corals U-Th dated to 5200 yBP, 4900 yBP and 4300 yBP. 

Results from luminescence signals suggest less intense ENSO events during the mid-

Holocene with a reduction in ENSO frequency in the 2-7 year band after 5200 y BP. Limited 

linear extension rates in the fossil corals (<10mmyr-1) compared to modern values 

(~15mmyr-1) also suggest SSTs were cooler than present between 5200 - 4300 yBP. 

Reliable reconstructions of past environmental conditions on the GBR have previously been 

hampered by the effects of biological mediation of the geochemical signals found in massive 

corals. To date, the behaviour of rare earth elements (REEs) and REE and Yttrium (REY) at 

sub-annual scales is relatively unknown, with few high resolution studies of REEs conducted 

on corals (Sholkovitz and Shen, 1995, Naqvi et al., 1996, Fallon and McCulloch, 2002, Akagi 

et al., 2004), and only two records from the GBR (Wyndham et al., 2004, Jupiter, 2008). In 

Chapter 5 results from ~monthly resolved REE data obtained from four live collected 

Porites sp. coral cores from a the Frankland Islands region, Wet Tropics, GBR are presented. 

The location of the live coral cores across a known water quality gradient was reflected in the 

total REE (ΣREE) concentrations of the corals, and spatial interpolation of the data 

reconstructed broad cross shelf (Y/Ho) and locally relevant (ΣREY) water quality gradients 

well. Total REE concentrations were also shown to potentially track changes in sediment 

delivery to the GBR since European settlement and potentially throughout the Holocene, with 

higher ΣREE observed in 1999-2002 (78 – 250 ppb in dry and wet years) than in 1950 (53-79 



174 
 

ppb). Time series of ΣREE showed better potential as an indicator of regional rainfall than for 

discharge as the potential erosivity of top soils after dry periods (i.e. Queensland winter) 

increased delivery of sediment regardless of river discharge magnitude.  

Future research directions 

With the future of corals reefs uncertain due to a changing climate and increasing 

anthropogenic pressure, understanding what caused reef “turn-off” events in the geological 

past is imperative to improving future management strategies. Results presented within this 

thesis (Chapters 2 and 3) strongly suggest that an oscillatory mode of RSL regression 

following the mid-Holocene highstand was the primary cause of the hiatus in reef growth 

observed on the GBR after 5500 y BP. The late Holocene RSL is still however tenuous, as 

relatively few samples were dated for this period. Future research should focus on 

establishing RSL for the late Holocene to understand the driver of reef re-initiation in the last 

2800 years on the GBR.  

In support of previous work this research has demonstrated that coral microatolls are reliable 

indicators of RSL variability and that U-Th ages can be constrained to sub-centennial 

accuracies, and therefore should be targeted more intensively in future research. 

Reconstructing SL for the wider Indo-Pacific region using microatolls would allow for 

evaluation of regional scale response to rapid climate shifts throughout the Holocene, 

enabling improvements to future projections in response to changing global climate. 

Continuous wavelet analysis of modern coral luminescent index data shows great potential 

for use in the fossil coral record for reconstructing ENSO on the GBR. This fast and 

economic method not only has the potential to be applied to cores obtained from dredged 

coral material, but also to significant fragments of Porites material recovered during reef 

matrix coring efforts where misalignment along the major growth axis limits their utility in 

geochemical studies. The increased number of records potentially available via this method 

would allow for progressive expansion of ENSO “windows”. Future work should concentrate 

on utilising corals previously rejected for geochemical analysis, and to cores obtained from 

numerous reef matrix coring expeditions across the GBR to expand the current record of 

ENSO variance throughout the Holocene. 

Chapter 5 of this thesis demonstrated that ΣREE concentrations in corals have the potential 

to reconstruct water quality changes and water quality gradients across the GBR throughout 
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the Holocene. Future research should be focussed on at least annually resolved concentrations 

of REE and REYs both across the continental shelf and within distinct time periods within 

reef matrix cores to further elucidate environmental conditions on the GBR that led to the 

mid-Holocene reef hiatus. Furthermore, longer sub-annular records of REEs in modern corals 

should be analysed and compared to rainfall and river discharge events to better understand 

the high resolution variability of REYs incorporated into coral skeletons.   

Overall, this thesis has demonstrated a tangible link between relative sea level oscillations in 

the mid-Holocene to the previously recognised reef “turn-off’ or hiatus on the GBR, 

suggesting that relatively minor (<0.5m) oscillations in RSL can have an extremely 

detrimental effect on reef growth. However, results from the Keppel Islands suggest that if 

RSL rises in line with future projections there is the potential for re-colonization of currently 

emerged fossil reef substrates if environmental and climatic conditions are suitable for coral 

growth. The use of continuous wavelet transforms to visually assessed luminescence time 

series indices in long-lived corals has also been presented as a novel, rapid and cost efficient 

technique to determine past climatic variations in the strength and frequency of ENSO on the 

GBR. Luminescence records from the central GBR indicate reduced ENSO activity on the 

GBR between ~5200 and 4300 yBP, thus making ENSO an unlikely mechanism for reef 

decline in the mid-Holocene. This thesis has also demonstrated that REYs incorporated into 

coral skeletons show potential in reconstructing palaeo-water quality gradients and temporal 

changes in water quality throughout the Holocene, allowing for interpretations of 

environmental conditions on the GBR leading up to the mid-Holocene hiatus, and to changes 

to sediment delivery following European settlement. Understanding coral reef response to 

variations in environmental and climatic conditions in the geological past is imperative to 

better predicting response potential under future climate change scenarios. 
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