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Abstract—One of the main drawbacks of the existing oscillation
damping controllers that are designed based on offline dynamic
models is adaptivity to the power system operating condition.
With the increasing availability of wide-area measurements and
the rapid development of system identification techniques, it
is possible to identify a measurement-based transfer function
model online that can be used to tune the oscillation damping
controller. Such a model could capture all dominant oscillation
modes for adaptive and coordinated oscillation damping con-
trol. This paper describes a comprehensive approach to identify
a low-order transfer function model of a power system using
a multi-input multi-output (MIMO) autoregressive moving aver-
age exogenous (ARMAX) model. This methodology consists of
five steps: 1) input selection; 2) output selection; 3) identification
trigger; 4) model estimation; and 5) model validation. The pro-
posed method is validated by using ambient data and ring-down
data in the 16-machine 68-bus Northeast Power Coordinating
Council system. The results demonstrate that the measurement-
based model using MIMO ARMAX can capture all the dominant
oscillation modes. Compared with the MIMO subspace state
space model, the MIMO ARMAX model has equivalent accu-
racy but lower order and improved computational efficiency.
The proposed model can be applied for adaptive and coordinated
oscillation damping control.

Index Terms—Autoregressive moving average exoge-
nous (ARMAX), correlation coefficient index, oscillation
damping control, subspace state space, subspace state-space
system identification (N4SID), system identification, transfer
function model, wide-area measurement system (WAMS).
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I. INTRODUCTION

IN TODAY’S interconnected power grids, low-frequency
oscillation is a significant issue limiting the power trans-

fer capability and even deteriorating the power system
security [1]. In order to suppress low-frequency oscillations,
local and wide-area power system stabilizers (PSSs) are
installed or proposed to provide supplementary damping con-
trol through generator excitation systems [2], flexible alter-
nating current transmission systems (FACTS) devices [3], and
high-voltage direct current (HVDC) links [4].

However, since these oscillation damping controllers are
usually tuned based on several typical operating conditions,
their performances may degrade if the actual operating con-
dition is significantly different from the typical operating
conditions considered in the offline design procedure. In some
extreme cases, they even provide negative damping. Limited
adaptivity is considered as one of the main drawbacks of these
controllers.

A robust control scheme can be utilized to improve
adaptivity. In general, a robust oscillation damping con-
troller is designed based on a detailed system model under
a selected dominant operating condition with bounded model
uncertainty [5], [6]. The variations of operating condition are
reflected in the additive and/or multiplicative uncertainty of the
system model. Nevertheless, it is not easy to determine
the uncertainty boundary of the system model. Additionally,
the controller performance may not be optimal when the actual
operating condition deviates from the dominant one.

An adaptive control scheme is another approach to improve
adaptivity, which can update the controller parameters online
to track the continuous variations in operating conditions.
Recently, with the increasing application of the wide-area mea-
surement system (WAMS) [7], [8] and the rapid development
of system identification techniques [9], the adaptive control
approach has drawn increasing attention. For instance, a self-
tuning adaptive PSS based on artificial neural networks is
proposed in [10]. In [11], the parameters of phase lead-lag
compensators are updated based on the online modal analy-
sis. However, most of the research focuses on the adaptivity
of the individual damping controller, while the coordination
among different controllers has not been fully addressed. If
the system model depicting all the dominant oscillation modes
is identified online, it is feasible to optimize the controllers’
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parameters at the control center, and remotely configure the
parameters of dispersed damping controllers. In this way,
the adaptivity of the individual controller and the coordi-
nation among different oscillation modes can be achieved
simultaneously [12].

Fast online identification of the system model to capture all
oscillation modes (not a single mode) of the power system
is the prerequisite of the adaptive and coordinated oscillation
damping control. Two categories of measurement-based mod-
els can be used for system identification: 1) the subspace state
space model and 2) the autoregressive moving average exoge-
nous (ARMAX) model. The subspace state space model is
usually identified by numerical algorithms for the subspace
state-space system identification (N4SID) method [13]–[15]
or the stochastic subspace identification method [16], [17].
However, the main drawback of these two approaches is slow
computation speed due to singular value decomposition (SVD)
of a large-dimensional matrix. Since the slow calculation speed
is one of the barriers to apply the subspace state space model
for oscillation damping control in the online environment,
a recursive adaptive stochastic subspace identification method
is presented in [17] to reduce the computation time.

The ARMAX model identification can be an alter-
native to overcome the drawback of high-computational
burden [18], [19]. The family of autoregressive models has
already been used to represent system dynamics for oscillation
damping control [20], [21]. However, the identified ARMAX
model is generally a single-input single-output (SISO) model,
which may reflect only one oscillation mode because the
model is used to control single oscillation mode.

This paper proposes a methodology to identify a multi-input
multi-output (MIMO) ARMAX-based transfer function model
using measurement data to capture all the dominant oscilla-
tion modes. Both ambient data (by varying generation or load)
and ring-down data (system large disturbances, e.g., gener-
ation trip) are used for system identification. The proposed
approach is demonstrated by a case study in the 16-machine
68-bus Northeast Power Coordinating Council (NPCC) sys-
tem. Results show that the identified model using ARMAX
is able to accurately represent the power system dominant
oscillatory behaviors. Compared with the subspace state space
model, the ARMAX model has equivalent accuracy but lower
order and improved computational efficiency.

The remaining content of this paper is organized as
follows. Section II describes the relationship between the
full-order system model and the measurement-based models.
The methodology and the flowchart of system identification
for oscillation damping control are presented in Section III. In
Section IV, the methodology is validated by the case study in
the NPCC system. Discussion and future work are given
in Section V. Section VI concludes this paper.

II. RELATIONSHIP BETWEEN FULL-ORDER SYSTEM

MODEL AND MEASUREMENT-BASED MODELS

The full-order system model for the small signal analysis is
usually represented by the state space method which is a set
of first order differential equations based on the linearization

around a certain operation point, as shown in the following
equations:

�ẋ = A�x + B�u (1)

�y = C�x + D�u (2)

where, �x is the state vector, �y is the output vector, and �u
is the input vector; A is the state matrix, B is the input matrix,
C is the output matrix, and D is the feedforward matrix.

Obviously, the subspace state space model is indeed a kth
order reduced model of the full-order system model. The only
parameter that needs to be determined before A–D matrix esti-
mation is the reduced model order, which requires SVD of
a large-dimensional matrix. On the other hand, the MIMO
ARMAX model is the equivalent discrete transfer function
model of the original system. Based on (1) and (2), the
continuous transfer function between inputs and outputs is
represented as

G(s) = C(sI − A)−1B + D. (3)

If the inputs and outputs of the system are determined, the
system model can be represented as
⎡
⎢⎢⎢⎣

G11(s) · · ·
G21(s) · · ·

G1n(s)
G2n(s)

...

Gm1(s)

· · ·
· · ·

...

Gmn(s)

⎤
⎥⎥⎥⎦

⎡
⎢⎢⎢⎣

�u1(s)
�u2(s)

...

�un(s)

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣

�y1(s)
�y2(s)

...

�ym(s)

⎤
⎥⎥⎥⎦

(4)

where �ui(s) and �yj(s) are the ith and jth elements of the
input vector and the output vector, respectively. Gij is the
element of the G matrix at position (i, j). m and n are
the number of system outputs and the number of system inputs,
respectively.

Since the denominator of each element Gij of G con-
tains the common eigenvalues of the system [22], (3) can be
expressed as

G(s) = 1∏r
i=1(s − λi)

Ḡ(s) (5)

where λi is ith mode in the system. In the model, the charac-
teristic polynomial has interarea modes which are observable
to most of the system and local modes which are observable to
the certain part of the system. The common denominator can
reduce the model order substantially since the transfer func-
tion derived here is a reduced order model of the full power
system model.

Equation (4) shows that the certain output may be regarded
as the aggregated result from the contribution of all the inputs.
Therefore, in the discrete-time domain, the contribution of the
input signals to the outputs at the sampling time t can be
exhibited as [9]

α(z)y(t) = β(z)u(t) + γ (z)e(t) (6)

where y(t) is the vector of m outputs, u(t) is the exogenous
part which is the vector containing the known p excitations,
and e(t) is the moving average part which is the vector with q
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unknown noise. p+q = n ·α(z), β(z) and γ (z) are the autore-
gressive polynomial matrix, the exogenous polynomial matrix,
and the moving average polynomial matrix, respectively.
z is the shift operator

α(z) = I + α1 × z−1 + · · · + αna × z−nα (7)

β(z) = β0 + β1 × z−1 + · · · + βnβ × z−nβ (8)

γ (z) = I + γ 1 × z−1 + · · · + γ nγ × z−nγ . (9)

The matrices α(z), β(z), and γ (z) in (7)–(9) can be
expanded as

α(z) =
⎡
⎢⎣

1 · · · 0
...

. . .
...

0 · · · 1

⎤
⎥⎦ +

⎡
⎢⎣

α
(1)
11 · · · α

(1)
1m

...
. . .

...

α
(1)
m1 · · · α

(1)
mm

⎤
⎥⎦

× z−1 + · · · +
⎡
⎢⎣

α
(nα)
11 · · · α

(nα)
1m

...
. . .

...

α
(nα)
m1 · · · α

(nα)
mm

⎤
⎥⎦ × z−nα (10)

β(z) =

⎡
⎢⎢⎣

β
(0)
11 · · · β

(0)
1p

...
. . .

...

β
(0)
m1 · · · β

(0)
mp

⎤
⎥⎥⎦ +

⎡
⎢⎢⎣

β
(1)
11 · · · β

(1)
1p

...
. . .

...

β
(1)
m1 · · · β

(1)
mp

⎤
⎥⎥⎦

× z−1 + · · · +

⎡
⎢⎢⎣

β
(nβ)
11 · · · β

(nβ)
1p

...
. . .

...

β
(nβ)
m1 · · · β

(nβ)
mp

⎤
⎥⎥⎦ × z−nβ (11)

γ (z) =
⎡
⎢⎣

1 · · · 0
...

. . .
...

0 · · · 1

⎤
⎥⎦ +

⎡
⎢⎢⎣

γ
(1)
11 · · · γ

(1)
1q

...
. . .

...

γ
(1)
m1 · · · γ

(1)
mq

⎤
⎥⎥⎦

× z−1 + · · · +

⎡
⎢⎢⎣

γ
(nγ )
11 · · · γ

(nγ )
1q

...
. . .

...

γ
(nγ )
m1 · · · γ

(nγ )
mq

⎤
⎥⎥⎦ × z−nγ (12)

where nα , nβ, and nγ are the orders of the outputs, exoge-
nous inputs, and noise, respectively. α(z) is an m × m matrix,
β(z) is an m × p matrix, and γ (z) is an m × q matrix.

In order to calculate the coefficient matrix, the two-stage
least square algorithm is detailed in the Appendix.

The MIMO ARMAX model is identified in the discrete-
time domain. If converted into the continuous-time domain, the
system transfer function can be represented by a polynomial
function as

G(s) = y(s) ×
[

u(s)
e(s)

]−1

=
[
α−1(z)β(z)α−1(z)γ (z)

]
z=esTs

(13)

where Ts is the sampling period

G(s) = α∗(z)
|α(z)|

[
β(z)γ (z)

]
z=esTs (14)

where α∗(z) is the adjugate matrix of α(z) and |α(z)| can be
rewritten as

r∏
i=1

(s − λi) = |α(z)|z=esTs . (15)

Since the identification procedure may introduce the unex-
pected modes which are numerical artifacts and weaker modes,
these modes need to be filtered out from the dominant low
frequency modes which range from 0.2 to 2.5 Hz. In [23],
a feasible method which can finish selecting the modes through
pseudo-energy from the MIMO ARMAX model has been
employed in the proposed method. The modes with the high-
est energy may be the true system modes, and ones with low
energy would be fake modes.

Based on above analysis, both MIMO subspace state space
model and MIMO ARMAX model are equivalent transfer
function models of the original system. The subspace state
space model is represented by a set of differential equations
in continuous-time domain, while the MIMO ARMAX model
is represented by a set of difference equations in discrete-time
domain.

III. METHODOLOGY FOR ARMAX MODEL

IDENTIFICATION

This section introduces the methodology to build the MIMO
ARMAX model using measurement data to capture dominant
interarea modes of the power system for oscillation damping
control. The block diagram of the presented methodology is
shown in Fig. 1, which consists of five steps: 1) input selec-
tion; 2) output selection; 3) identification trigger; 4) model
estimation; and 5) model validation. The adaptive and coordi-
nated control design based on the validated MIMO ARMAX
model is discussed in Section V.

A. ARMAX Model Input Selection

The first step is to choose the input signals. If applying the
ARMAX model for an oscillation mode meter, any measurable
signal can be selected as the input of the ARMAX model.
However, since the purpose of the ARMAX model in this
paper is oscillation damping control, actual controllable signals
in the power system should be selected as the inputs of the
ARMAX model, e.g., the controllable setpoint signals of PSS,
FACTs devices, and HVDC links. In other words, the input
signals of the ARMAX model can be controlled and modulated
to suppress the target oscillation modes. Furthermore, in order
to reduce the number of the ARMAX inputs, the conventional
residue method can be used to preselect the signal with high
sensitivity of dominant oscillation modes.

Taking PSS as an example, the selected input signal is
illustrated in Fig. 2. The voltage reference of the excitation
system (Vref) is usually a given constant value to maintain the
generator terminal voltage around its rating value. For a local
PSS, its output (Vpss) is added to the Vref to provide damping
to suppress local oscillation modes. If using probing data for
ARMAX model identification, the sum of Vref and the probing
signal can be selected as the input. Nevertheless, when using
ambient data or ring-down data, since there is no variant signal
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Fig. 1. Flowchart of the proposed model identification methodology.

Fig. 2. Illustration of the input signal of the ARMAX model.

added to Vref, the summation of the voltage reference, terminal
voltage (Vt), and the output of PSS, is selected as the input
signal of the ARMAX model.

B. ARMAX Model Output Selection

The outputs of the ARMAX model should be able to reflect
the dominant modes in the power system. Rotor angular speed,
tie-line active power, and generator bus frequency are the
most commonly used observation signals to reflect oscillations.

These types of signals can be selected as the outputs of the
ARMAX model.

For a large power system, it is unnecessary to select
too many signals as the outputs of the ARMAX model.
Instead, it is feasible to select one representative signal for
each coherent group to reduce the output number of the
ARMAX model. Traditionally, coherency analysis is con-
ducted by using a classical two-order generator model in the
offline environment [24]. This paper utilizes the correlation
coefficient index (CCI) [25] to identify the coherency groups
online using pure measurement data in the online environment.

The process of identifying coherent machines does not nec-
essarily guarantee that interarea modes can be observed in
the measurements. Therefore, the fast Fourier transform (FFT)
algorithm is adopted to select the optimal output of the
ARMAX model in each coherent group after the coherency
analysis. The candidate measurement signals are ranked from
high to low according to the normalized magnitude at the fre-
quency point of the dominant modes, and then the highest one
in each coherent group will be selected as the outputs of the
ARMAX model. Summarily, the criterion for the representa-
tive outputs in each of coherency groups is that they have
the best observability for all target interarea oscillation modes
through the FFT computation. Furthermore, In order to retain
the characteristics for the full system, each coherency group
may keep a measurement at least.

C. Identification Trigger

Three types of measurement data (probing data, ambient
data, and ring-down data) can be utilized to build the ARMAX
model [26]–[28]. For a large power grid, probing data are the-
oretically ideal to build the model because system response
usually contains most of the modes when a probing signal
is injected into the system. However, probing data require
consistent excitations, which is not practical during system
operation. Compared with probing data, ambient data, and
ring-down data are much easier to be collected in the online
environment because they can be measured when load varia-
tion/generation regulation is within a small range or with large
system disturbances (e.g., line trips, generation trips, and load
sheddings) during system operation. Hence, both ambient data
and ring-down data are considered in this paper.

The online model identification is triggered by system
events including generation trips, load sheddings, and topol-
ogy changes due to line trips, etc., these system events can be
detected by the existing situational awareness functions based
on wide-area measurement. If there are events, the model will
be update immediately when the data collection is ready. In
addition, the identification procedure can be triggered by pre-
defined timer (periodical trigger). If there is no system events,
the model will be updated using collected ambient data in
every 5 min.

D. ARMAX Model Estimation

Before using the ambient data and ring-down data, it is
necessary to remove direct current trends within the measure-
ment data. Normally, this operation is known as de-trending,
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and keeps the result from being overwhelmed by the nonzero
mean and the trend terms.

There are several candidate models in the model pool,
which is expected to avoid revising models several times in
one update cycle so that the identification process can keep
the computational efficiency. In the model pool, the orders
of the MIMO ARMAX models have been adopted depend-
ing on the priori knowledge. The highest order of the MIMO
ARMAX model in the model pool is 50. When the iden-
tification is triggered, these ARMAX models with different
orders in the model pool will be identified simultaneously.
The model coefficients in (10)–(12) can be computed by
using the two-stage least square algorithm as shown in the
Appendix. The model with highest accuracy indices in both
time domain and frequency domain specified in the next sec-
tion is selected as the identified model. If the identification
results from all MIMO ARMAX models cannot fulfill the
accuracy requirements, the current identification would be
abandoned. The parameters of the adaptive controllers would
not be model updated in this cycle.

E. ARMAX Model Validation

After identifying the ARMAX model, it is necessary to val-
idate whether the model is good enough to describe the system
oscillatory characteristics. The identified ARMAX model is
validated in both time domain and frequency domain.

In time domain, the response of the identified model is
compared with actual response. In order to determine if the
response of the model matches with the actual one, the fitting
accuracy index is defined as

Accuracy Index =
⎛
⎝1 −

∥∥∥Yi − Ŷi

∥∥∥
∥∥Yi − Ȳi

∥∥

⎞
⎠ × 100% (16)

where Yi is the response of the constructed model, Ŷi is the
response of the actual system, and Ȳi is the mean of actual
system response over several periods. If this index is closer
to 100%, it indicates that the response of the model under
validation matches the actual system better.

In frequency domain, the eigenvalues calculated by the
denominator polynomial of the MIMO ARMAX model are
compared with results of matrix pencil (MP) analysis of the
measurement data. MP is a modal extraction technique (simi-
lar to Prony method), which effectively estimates the dominant
modes’ information in a response [29]. In (15), the modes of
the system can be derived from the denominator of the poly-
nomial function. Based on the sampling period Ts, a mode
with real part σ and imaginary part ω can be written as

σ + jω = 1

Ts
× ln(ξ) (17)

where ξ is a vector of poles in the z-domain.
The criterion, which determines the model is good or not, is

that the accuracy index is over 85%, and the deviations of real
parts and imaginary parts of eigenvalues in frequency domain
are less than 0.05, compared with the results of MP.

Fig. 3. Single line diagram of the 16-machine 68-bus NPCC system.

TABLE I
MODAL ANALYSIS OF THE NPCC SYSTEM

Supposing the inputs and outputs are temporarily unavail-
able due to the topology changes, the selection of inputs and
outputs needs to be redone manually.

IV. CASE STUDY

A. Brief Introduction of the NPCC System

The proposed method is validated in the 16-machine 68-bus
NPCC system, which is a reduced order model of the
New England test system (NETS)/New York power sys-
tem (NYPS) interconnected system. As shown in Fig. 3,
NETS and NYPS are represented by two groups of genera-
tors (G1 to G9, and G10 to G13), respectively. Three other
neighboring areas are approximated by equivalent generator
models (G14 to G16). Generators G1 to G8 and G10 to G13
have direct current excitation systems, while G9 has fast static
excitation. The rest of the generators have manual excitation.
In order to create multiple oscillation modes with poor damp-
ing ratios, only G1 to G3, and G8 to G9 are equipped with
local PSSs. The system parameters can be referred to [30].

The study system has four dominant interarea oscillation
modes. Their oscillation frequencies and damping ratios are
given in Table I. There are three modes with poor damping
ratio. It is noted that the 0.63 Hz mode has the smallest damp-
ing ratio, in which the generators in NETS oscillate against
the generators in NYPS.

It is assumed that PMU devices are installed at all the buses
to measure bus frequency and generator variables, like volt-
age reference of excitation system, PSS output, and generator
terminal voltage. In this paper, measurement data are gener-
ated by dynamic simulation in MATLAB/Simulink. According
to the PMU measurement accuracy specified in the standard
IEEE C37.118-1, a randomized time-variant measurement
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Fig. 4. Coherency analysis based on CCI.

error within 5mHz is added to the simulation data [31].
The simulation data and the measurement error together
are considered to be real-measurement data collected by
field PMUs.

B. Input and Output Selection

As mentioned in Section III-A, the controllable setpoint sig-
nals of a power system should be selected as the input signals.
Since there are five generators equipped with local PSSs, and
ambient data and ring-down data are utilized for model iden-
tification, the sum of voltage reference, terminal voltage, and
output of PSS at each of these five generators is selected as
an input signal of the ARMAX model.

The output selection is based on coherency analysis and
FFT analysis. The results of CCI-based coherency anal-
ysis are given in Fig. 4. The red part, green part, and
blue part represent high, intermediate, and low coherency
between different generators, respectively. The results illus-
trate that the study system can be divided into five coherency
groups: 1) G1 to G9; 2) G10 to G13; 3) G14; 4) G15;
and 5) G16. The coherency analysis results are consistent
with those of the conventional method [22]. In this paper,
frequency signals at each generator bus are the candidate out-
put signals. Since G14–G16 are the equivalent generators in
coherency groups 3–5, respectively, bus frequency f14–f16
are selected as the representative signal of each coherency
groups.

In order to select one representative signal for
groups 1 and 2, all the generator bus frequency signals
in groups 1 and 2 are analyzed by using FFT analysis in
several separate tests. The normalized results of FFT analysis
are shown in the radar chart in Fig. 5. Bus frequency at
buses 5 and 13 always have the highest amplitudes for four
dominant interarea modes under these different operating
conditions. The above result can be compared and verified
by the results derived from the residue method based on
the full-order system model. Fig. 6 shows the magnitude of
different generator buses in the residue analysis. Thus, the
analysis result based on measurement match with the result

Fig. 5. Observation signal selection results using FFT analysis of three tests.

Fig. 6. Observation signal selection results using residue method.

from the circuit model. Finally, bus frequencies f5, f13–f16
are the selected observation signals for coherency groups 1–5,
respectively.

C. Performance of the MIMO ARMAX Model

Both ambient data and ring-down data are applied to build
the MIMO ARMAX model. As mentioned in Section III-D,
the fitting accuracy index is used for time domain validation,
while the results from the MP algorithm are selected as the
benchmark in frequency domain validation. Additionally, the
MIMO ARMAX model is compared with the MIMO N4SID
model in estimation accuracy and computation time. Base on
numerous offline experiments, the structures of models in the
model pool can be determined. The best four different orders
of the MIMO ARMAX models for identification using ambient
data and ring-down data are (6, 4, 3), (8, 5, 3), (12, 8, 5), and
(15, 9, 5), while the best four different orders of the MIMO
N4SID models are 30, 40, 50, and 60.
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Fig. 7. Comparison of bus frequency response at bus 5 (generation
modulation at bus 3).

Fig. 8. Comparison of bus frequency response at bus 5 (load modulation
at bus 10).

1) Ambient Data: The ambient data are created by mod-
ulating generation (or load) within a narrow range (±2%) at
each generator bus (or load bus). These 50 (16 generator buses
and 34 load buses) independent sets of ambient data are used
to build the MIMO ARMAX model and the MIMO N4SID
model. In addition, the measurement error within 5mHz is
injected into the output signals to emulate the noise in the
measurement data. The data is downsampled to a rate of 5 sam-
ples per second and 5 min window size length is chosen in
the ambient data analysis.

Taking the independent sets of ambient data by generation
modulation at bus 3 and load modulation at bus 10 for instance,
Figs. 7 and 8 show the time domain response comparison of
the actual system, the MIMO ARMAX model and the MIMO
N4SID model in these two cases, respectively. The optimal
order of the MIMO ARMAX model for maximum fitting accu-
racy is (nα, nβ, nγ ) = (8, 5, 3), while the optimal order of the
MIMO N4SID model is 40. Both MIMO ARMAX model and
MIMO N4SID model have similar time domain response with
the actual system even if measurement error is present. Due to
page limitation, other four outputs of the measurement-based
models (frequency of buses 13–16) are not given (similarly
hereinafter).

In frequency domain, the eigenvalues of all of the four
dominant interarea modes are also estimated by using the
MP algorithm, the MIMO ARMAX model, and the MIMO

Fig. 9. Eigenvalue comparison. (a) Model 1 (0.38 Hz). (b) Mode 2 (0.41 Hz).
(c) Mode 3 (0.63 Hz). (d) Mode 4 (0.83 Hz).

TABLE II
ACCURACY OF MODES FOR ARMAX AND N4SID USING AMBIENT DATA

N4SID model using the 50 independent sets of ambient
data. For the optimal orders in two models, the eigenvalues
comparison and the error of modes identification comparing
with MP are shown in Fig. 9 and Table II which contains
absolute values of maximum bias (Max.) and standard devi-
ation (Std.), respectively. Both MIMO ARMAX model and
MIMO N4SID model can capture all the interarea oscilla-
tion modes. Nevertheless, the estimation results of the MIMO
ARMAX model are slightly closer to the benchmark than the
MIMO N4SID model.

2) Ring-down Data: Generation trip, load shedding, and
line trip events are generated to demonstrate how the proposed
methodology behaves with the ring-down data. The sampling
rate is 30 samples per second, and the data window is 10 s.
In order to eliminate the impact of system transient, the first
swing data is removed for model identification. Also, 5 mHz
measurement error is included.

Figs. 10 and 11 are two cases of validation using the
53 (16 generations, 34 loads, and 3 tie-lines) independent
sets of ring-down data. Fig. 10 shows the bus frequency
response at bus 5 in case of 20% generation trip of G3 at
time t = 1 s. Fig. 11 shows the bus frequency response at bus
5 in case of 20% load shedding at bus 39 at time t = 1 s. In
the two cases, the optimal order the MIMO ARMAX model
is (nα, nβ, nγ ) = (12, 8, 5), and the optimal order the MIMO
N4SID model is 60.

For the optimal orders in two models from all sets of
ring-down data, the comparison of the estimated eigenvalues
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Fig. 10. Comparison of bus frequency response at bus 5 (20% generation
trip of G3).

Fig. 11. Comparison of bus frequency response at bus 5 (20% load shedding
at bus 39).

Fig. 12. Eigenvalue comparison. (a) Model 1 (0.38 Hz). (b) Mode 2
(0.41 Hz). (c) Mode 3 (0.63 Hz). (d) Mode 4 (0.83 Hz).

using each independent set of ring-down data and the error of
modes identification comparing with MP are given in Fig. 12
and Table III, which contains absolute values of maximum
bias (Max.) and standard deviation (Std.), respectively.

Similarly, both MIMO ARMAX model and MIMO N4SID
model can capture all the dominant oscillation modes of the
study system. The event data at the first swing are removed

TABLE III
ACCURACY OF MODES FOR ARMAX AND N4SID USING

RINGDOWN DATA

TABLE IV
PERFORMANCE COMPARISON OF THE TWO MODELS

IN MODEL POOL

for the identification since the strong nonlinearity may corrupt
the model identification.

The estimation accuracy and computation time compari-
son of the two models are shown in Table IV. The cases
“generation modulation at bus 3” and “20% load shedding
at bus 39” are selected as examples. In order to have equiv-
alent fitting accuracy and mode estimation results with the
MIMO ARMAX model, it is necessary to increase the order
of the MIMO N4SID model. For instance, when using ring-
down data, the MIMO N4SID models with low order are not
capable of exhibiting the dynamic behavior under the contin-
gencies in the system unless the order is increased to 60. If
the order of the MIMO N4SID model is 40 (or 50), the fitting
accuracy index is 65.3% (or 74.1%). However, the order of the
MIMO ARMAX model is (nα, nβ, nγ ) = (12, 8, 5), which is
much less.

More importantly, if two models needs to get similar result,
the MIMO N4SID model identification requires about 7–8 s,
while the MIMO ARMAX model requires about 1 s. The com-
putation time of the MIMO ARMAX model is much less than
the MIMO N4SID model. It is noted that although the order
of the MIMO ARMAX for identifying the ring-down data is
higher than the order for identifying the ambient data, the
computational speed does not increase significantly.
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Fig. 13. General architecture of the adaptive and coordinated oscillation
damping control system.

V. DISCUSSION AND FUTURE WORK

The use of the MIMO ARMAX model has many obvious
and potential benefits. The simplest but most important one is
that the model is a measurement-based model, which requires
very little prior information about the system. Since the MIMO
ARMAX model selects actual controllable signals in a power
system as the inputs, it is a causal model which is able to
capture all the dominant oscillation modes and represent the
entire power system for oscillation damping control. More
importantly, the MIMO ARMAX model has equivalent accu-
racy with the MIMO subspace state space model, but requires
lower order and less computation time. Hence, it is more suit-
able to improve adaptivity and coordination of the oscillation
damping control system in the online environment. Moreover,
the case study shows the circumstance where only the set-
points of PSS are selected as the input of the ARMAX model.
If FACTS devices and HVDC links are employed by power
system, the proposed methodology still applies for the cir-
cumstances where the setpoints of FACTS devices and HVDC
links are selecting as the inputs signals.

The general architecture of the adaptive and coordinated
oscillation damping control system is shown in Fig. 13. Taking
one wide-area oscillation damping controller at a genera-
tion based on lead-lag compensation for instance, the MIMO
ARMAX model is identified using ambient data or ring-down
data from WAMS. In normal operating conditions, the model
will be updated using ambient data. The model updating rate
could be once per 5 min. If an event (e.g., line trip, genera-
tion trip, or load shedding) occurs, the model is updated using
the latest ring-down data. The model could be updated within
11–12 s (including data window and computation time). The
starting point of the ring-down data can be determined by
event detection function in WAMS. It is noted that the iden-
tified model is a closed-loop system model, which includes
the controller requiring parameter update. However, since the
parameters of the controller are already known, it is not diffi-
cult to derive the open-loop system model which excludes the
controller.

Based on the identified model, the residue phase can be
estimated under the latest operating condition, and is used to
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Fig. 14. Time sequence of the adaptive approach.

update the parameters of the lead-lag compensator (T1–T4).
Moreover, the optimal gain (Ka) is determined by optimization
to maximize the overall damping improvement of all oscilla-
tion modes in consideration. The updated control parameters
are remotely configured to dispersed controllers in different
power plants and substations.

Fig. 14 shows the time sequence of the adaptive approach.
Model A is identified using the ambient data, and then the
oscillation damping controllers are tuned based on Mode A for
the next disturbance. If there is no event, Model A and con-
troller parameters are updated using the ambient data in the
next data window. When an event (Event 1) occurs, the con-
trollers will perform with tuned parameters based on the
latest Model A. After Event 1 occurred, Model B is identi-
fied using the ring-down data, and the controller parameters
can be updated based on Model B. Although the controllers
perform with the parameters tuned based on Model A (not
Model B) during Event 1, the oscillation damping control
system is able to track the continuous variation of operat-
ing conditions and ready to experience the next disturbance.
Similarly, Model C can be identified by the ambient data after
Event 1, while Model D will be identified using the ring-
down data in Event 2 to tune controllers for the subsequent
disturbance.

Our future work will focus on application of the MIMO
ARMAX model into adaptive and coordinated oscillation
damping control, including control architecture, coordinated
control scheme, remote parameter configuration, and demon-
stration in hardware test-bed.

VI. CONCLUSION

Aiming for the adaptive and coordinated oscillation damp-
ing control, the methodology to identify the MIMO ARMAX-
based transfer function model using pure measurement is
proposed in this paper. The case study in the NPCC system
demonstrates that the identified MIMO ARMAX model using
ambient data or ring-down data is able to accurately capture
all the dominant oscillation modes.

The time domain response of the MIMO ARMAX model
reflects that of the actual system, and the estimated eigenval-
ues are very close to the results of MP analysis. Compared
with the MIMO subspace state model, the MIMO ARMAX
model has equivalent accuracy but lower order and less com-
putation time. Future work will focus on applying the MIMO
ARMAX model for adaptive and coordinated oscillation
damping control.
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APPENDIX

The two-stage least square approach is provided in [9] for
the SISO ARMAX algorithm, and is extended to the MIMO
ARMAX case in (6). The least square algorithm may be
applied twice in two stages. The first stage is to estimate
the unknown random inputs for the MIMO ARMAX model
through the MIMO ARX model

αF(z)y(t) = βF(z)u(t) + e(t) (A1)

where F is the order of autoregressive and input parts of the
model, and F is higher than any of the orders in the MIMO
ARMAX model but is not more than double of the highest
order in the MIMO ARMAX.

The linear regression vector in [9] can be presented as

ϕF(t) = [−yT(t − 1) · · · − yT(t − F)

uT(t − 1) · · · uT(t − F)
]T

(A2)

and �Fis the coefficient matrix

�F =
[
αF

1 · · ·αF
F βF

1 · · · βF
F

]T
(A3)

where αF
i is ith autoregressive coefficient matrix, and βF

i is
ith known input matrix. The first least square estimation from
N samples of measurement is

�̂F =
[

1

N

N∑
t=1

ϕF(t)
[
ϕF(t)

]T

]−1[
1

N

N∑
t=1

ϕF(t)yT(t)

]
. (A4)

The estimated unknown inputs are

ê(t) = α̂F(z)y(t) − β̂F(z)u(t). (A5)

Therefore, (6) can be modified as (A6), which is the pseudo-
ARMAX model since it contains the estimation results

α(z)y(t) = β(z)u(t) + γ (z)ê(t). (A6)

Similarly, the linear regression is pseudo-linear regress

ϕ̂(t) = [−yT(t − 1) · · · − yT(t − na)

uT(t − 1) · · · uT(t − nb)
T

êT(t − 1) · · · êT(t − nc)
]
. (A7)

Thus, the coefficient matrix is

� =
[
α1 · · · αna β1 · · ·βnb γ 1 · · · γ nc

]T
. (A8)

The estimated coefficients of the MIMO ARMAX model
can be obtained from the second stage of the least square
algorithm

�̂ =
[

1

N

N∑
t=1

ϕ̂(t)ϕ̂T(t)

]−1[
1

N

N∑
t=1

ϕ̂(t)yT(t)

]
(A9)

where �̂ is the matrix coefficients which can be calculated by
two-stage least square.
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