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The Distortion Theorem implies that the irregularity of bond

distances in a distorted coordination polyhedron causes an

increase of mean bond distance. Examination of 40 polyhedra

containing the lone-pair cation TeIV shows that this does not

imply an increase in polyhedral volume. Volumes of these

polyhedra are 10.3–23.7 Å3, compared with the 12.83 Å3

expected for a hypothetical regular octahedron. There is little

correlation between volume and measures of polyhedral

distortion such as quadratic elongation, bond-angle variance

or vector bond valence. However, the oxygens of our

polyhedra lie very close to a sphere of best fit, centred at

� 1 Å from the TeIV atom. The TeIV–centre distance is an

index of lone-pair stereoactivity and is linearly related to the

radius Rsph of the sphere; this is explained by a more localized

lone pair repelling the anions more strongly, leading to a

longer non-bonded distance between the lone pair and anions.

Polyhedral volume still varies considerably for a given Rsph,

because the oxygen ligands may be distributed over the whole

sphere surface, or confined to a small portion of it. The

uniformity of this distribution can be estimated from the

distance between the sphere centre and the centroid of the O6

polyhedron. TeIV–centre and centroid–centre distances alone

then account for 95% of the variation observed in volume for

polyhedra which are topologically octahedral. Six of the

polyhedra studied that are outliers are closer in shape to

pentagonal pyramids than octahedra. These have short

distances from the central TeIV cation to other TeIV and/or

to large, polarizable cations, suggesting additional weak

bonding interactions between these species and the central

lone pair. The flexibility of lone-pair polyhedra is further

enhanced by the ability of a single polyhedron to accom-

modate different cations with different degrees of lone-pair

activity, which facilitates more diverse solid solution beha-

viour than would otherwise be the case.
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1. Introduction

The presence of non-bonding lone pairs of electrons on a

central atom has long been known to have a severe perturbing

effect on the arrangement of ligands around that atom (e.g.

Sidgwick & Powell, 1940; Gillespie & Nyholm, 1957). In the

valence-shell electron-pair repulsion (VSEPR) model of the

latter authors, the lone pair not only plays the stereochemical

role of an additional ligand, but also repels bond pairs more

than they do each other. Thus, the lone pair subtends a more

solid angle at the central atom and is effectively ‘larger’ than

conventional ligands.

Lone-pair repulsion leads to a characteristically asymmetric

coordination for the central atom, in which the strongly bound

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of Queensland eSpace

https://core.ac.uk/display/83978783?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


ligands are all displaced to one side, away from the lone pair.

However, the lone-pair atom frequently acquires additional

more distant ligands, on the same side as the lone pair. In

molecular solids, these may be atoms from more topologically

distant parts of the same molecule or atoms in different

molecules. In either case, the additional interactions can be

significant in stabilizing molecular complexes and packing

them to form a three-dimensional structure. In a paradigm

where bonds are assumed to be two-centre electron-pair

bonds of integral order � 1, interactions with such species are

treated as special cases: they have been referred to as

‘secondary bonds’. Alcock and co-workers described many

instances in an extensive series of papers (cf. Alcock &

Harrison, 1982; Alcock et al., 1992).

In solids with extended, non-molecular structures, coordi-

nation numbers generally are higher than in molecular

materials, and bonding departs from the two-centre, integral-

order model even in simple structures such as that of rocksalt.

It is common for lone-pair cations in extended structures to

have numerous weakly bonded neighbours in addition to their

primary ligands. The strong ‘primary’ and weak ‘secondary’

bonds to neighbours of a central atom with a lone pair become

part of a continuum of bonded interactions that show a wide

range of bond strengths. Systematic correlations for given

pairs of species have been established between bond distance

and ‘bond valence’ (essentially analogous to nonintegral bond

order), which may take power-law (e.g. Brown & Wu, 1976) or

logarithmic form (e.g. Brown & Altermatt, 1985; Brese &

O’Keeffe, 1991). In the latter case, the bond distance r for a

given bond valence s between a given pair of species is given

by

r ¼ r0 � b ln s: ð1Þ

The softness parameter b has usually been assigned the

value of 0.37 Å irrespective of the species pair (Brown &

Altermatt, 1985; Brese & O’Keeffe, 1991), although Brown

(2002) notes that larger values may be appropriate for more

polarisable species. Further alternative parameterizations are

discussed in the review of Brown (2009). A recent introduc-

tion to the use of bond-valence theory in modelling coordi-

nation geometry has been given by Brown (2013a).

Accurate bond-valence parameters are desirable, given

their utility in assessing the overall quality of structure

determinations and distinguishing isoelectronic species such as

O2�, OH� and H2O. Therefore, we recently determined

revised r0 and b parameters for SbIII—O and SbV—O (Mills,

Christy, Chen & Raudsepp, 2009) and for TeIV—O and

TeVI—O (Mills & Christy, 2013). It is apparent from these data

that for the cations with stereoactive lone pairs, there is no

qualitative difference between the short–strong ‘primary

bonds’, usually 3–4 in number and oriented away from the

lone pair, and the longer ‘secondary’ bonds. A single set of

parameters gives well behaved bond-distance and bond-

valence behaviour for all interactions out to our cut-off

distance of 3.5 Å. Hence, in the majority of structures

containing lone-pair cations, it is possible to define a coordi-

nation polyhedron of up to 12 ligands which completely

surrounds the cation and the lone pair (cf. Mills & Christy,

2013, supplement 1). A good general example of such a

polyhedron with bimodal distribution of bond distances and

asymmetric positioning of the central cation is given by Te1 in

the structure of balyakinite, CuTeO3 (Lindqvist, 1972). This Te

cation has a total of 9 oxygen neighbours within 3.5 Å. Three

O atoms on the side of Te facing away from the lone pair are at

distances < 2 Å and have bond valence > 1, while the six O

atoms on the same side as the lone pair are much further away,

with very low bond valences (Fig. 1). The lone pair behaves

like a small additional anion bonded at a short distance to Te,

and repelling other anionic species.

Although lone pairs cannot be distinguished in conven-

tional electron-density maps, they can be visualized when

electron-spin correlations are taken into account, using an

electron-localization function (ELF) applied to an ab initio

model of a structure (Becke & Edgecombe, 1990; Seshadri,

2001; Raulot et al., 2002). In ELF contour plots, lone pairs

manifest as domains of non-bonding electron density which

form caps sitting adjacent to the cores of the lone-pair atom. If

the lone pair is highly stereoactive, the cap is small and of high

electron density. Conversely, a lone pair with little stereo-

activity is spread out until it ultimately becomes a spherical

sheath surrounding the core. This picture of the lone pair is

more consistent than the pseudo-anion model with the vector

bond-valence approach to coordination geometry of Harvey et

al. (2006) and Zachara (2007), which is discussed briefly below.

However, the two models are compatible: the pseudo-anion

model for the lone pair corresponds at least qualitatively to

the centroid of the lone-pair density as shown by ELF

mapping. Fig. 2 compares the two styles of depiction for lone

pairs with different degrees of stereoactivity. A highly

stereoactive lone pair is shown in Fig. 2(a) as a pseudo-anion

that is well separated from the nucleus of its parent atom,

while a less active lone pair is depicted as a similar sphere lying

much closer to the nucleus, embedded in the core electrons of

the atom. Conversely, Fig. 2(b) shows the active lone pair as a
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Figure 1
A typical TeIVOn polyhedron: that of Te1 in balyakinite, CuTeO3. The
lone pair is indicated by a small sphere on the side of the central Te atom.
Note the separation of the 9 oxygen neighbours into a group of 3 that are
at a short distance (< 2.0 Å) with bond valence (BV) > 1, facing away
from the lone pair, and a group of 6 on the same side as the lone pair that
are much further away (> 2.7 Å) and more weakly bound (BV < 0.2).



small, dense, well localized cap of non-bonding electron

density on the atom, while the less-localized lone pair appears

as a lower-density cap of non-bonding electrons that spreads

over most of the surface of the atom.

Lone-pair activity may be suppressed when other ligands

are very numerous and the coordination number high, or

when the other ligands are very large (e.g. heavy halide and

chalcogenide anions), but is frequently seen for sulfides

[exceptions include PbII in galena, PbS and BiIII in kupcikite,

(Cu,Fe)4Bi5S10; Topa et al., 2003]. However, strong lone-pair

stereoactivity is almost ubiquitous in oxycompounds; PbII in

rosiaite, PbSb2O6, is one of the very few exceptions (Basso et

al., 1996). Brown (2011) discussed the influence of ligands and

their preferred bonding valences on the degree of stereo-

activity shown by lone pairs.

In distorted polyhedra the cation is considerably displaced

from the centroid of the polyhedron, while the lone pair

generally lies closer to the centroid, consistent with its struc-

tural role as a quasi-anion which repels the true anionic

ligands of the cation. Frequently, the structure can be related

to others that do not possess stereoactive lone pairs, either by

(i) restoring the cation to the centroid of its coordination

polyhedron or (ii) replacing the lone pair at the centroid of the

polyhedron with a small anion such as F� or O2�, and modi-

fying the charge and position of the cation so as to maintain

charge balance and create a smaller, symmetrical coordination

polyhedron for it. Examples of the first type of relationship are

those between the structures of stibnite, Sb2S3 (Bayliss &

Nowacki, 1972) and �-U2S3 (Zachariasen, 1949), or between

Pb-dominant and other members of the alunite supergroup of

minerals (cf. Mills, Kampf, Raudsepp & Christy, 2009; Mills et

al., 2009, 2010; Mills & Nestola, 2012). An example of the

latter would be between the structures of the massicot poly-

morph of PbO and the scrutinyite form of PbO2, as discussed

in Hyde & Andersson (1989).

Whatever the functional relationship between r and s, it

takes the form of a nonlinear curve that is concave upwards.

Therefore, any irregularity in bond distances to a central atom

leads to an increase in the mean distance, in order to maintain

a constant bond-valence sum on the central atom: this is the

well known ‘Distortion Theorem’ (Allmann, 1975; Brown,

1978; Urusov, 2003). The lengthened mean bond distance

would contribute to an increase in volume of the coordination

polyhedron, and hence an increase in molar volume of the

structure as a whole. However, a polyhedron has several

possible modes of distortion available to it, and it may be

possible for bond angles to change such that the longer bond

distances can be accommodated in a smaller volume rather

than a larger one.

In this study, we investigate the relationship between

polyhedral volume and the degree of lone-pair stereoactivity

for a suite of 40 TeIV—O polyhedra from published structure

refinements that are included in the Inorganic Crystal Struc-

ture Database (Fachinformationszentrum Karlsruhe, http://

icsd.fiz-karlsruhe.de). However, the qualitative conclusions of

this study are applicable to any polyhedron distorted by lone-

pair stereoactivity, whether the central cation is TeIV or other

species such as PbII, SbIII etc.

2. Methodology

The volume effect of lone-pair stereoactivity is readily inves-

tigated through a combination of surveying experimental

structure determinations with the use of simple theoretical

models. In Mills, Christy, Chen & Raudsepp (2009), we

considered a model in which a regular coordination poly-

hedron of O atoms surrounded an SbIII cation, expanded in

response to off-centring of the cation. It was shown that cation

displacement of approximately 1 Å, regarded as typical for

heavy lone-pair species such as SbIII and TeIV by Hyde &

Andersson (1989), increased the mean cation–oxygen bond

length by nearly 6% and the polyhedral volume by 16%.

However, we have since examined the volumes of a range of

real coordination polyhedra, and have found that their actual

behaviour can be much more varied, as reported in this study.

Mills & Christy (2013) used bond distance data from 208

TeIV—O polyhedra to refine bond-valence parameters r0 =

1.9605 Å and b = 0.41. The coordination number of Te ranged

from 3 to 12, using a Te—O distance cutoff of 3.5 Å,

comparable to the shortest cation–cation distances. Since the

regular octahedron provides a well defined reference state for

zero distortion, we selected for the current study the subset of

40 polyhedra in which Te has exactly six oxygen neighbours

(Table 1). A regular TeIVO6 octahedron with a formal valence

of 4.0 on Te has the bond distance r = 2.1267 Å and volume =

(4/3)r3 = 12.825 Å3.

For this study, polyhedral volume is defined as the volume

of the convex hull defined by vertices at the centres of the

oxygen ligands and straight-line edges connecting those
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Figure 2
Comparison of two different styles of visualization of lone pairs. Large
spheres represent the core electron density of a lone-pair atom in each
case. (a) A highly stereoactive lone pair shown as a small quasi-anion at a
relatively large distance from the nucleus of the atom (left), while a less
stereoactive pair is closer to the nucleus, almost subsumed within the core
(right). (b) The same lone pairs as depicted in ELF contour maps. The
stereoactive lone pair appears as a small cap of high nonbonding electron
density on one side of the atom core (left), while the less active lone pair
is spread into a nearly complete spherical shell surrounding the core
(right).



vertices. Volumes of the TeIVO6 polyhedra were calculated in

the visualization software package CrystalMaker1 (Crystal-

Maker Software Ltd, Oxford, UK; http://www.crystalma-

ker.com). The range of volumes of these polyhedra was

extraordinarily wide, from 10.3 to 23.7 Å3, or 80 to 185% of

the volume of a regular TeIVO6 polyhedron. In one case

(Sr3Te4O11; Dytyatev & Dolgikh, 1999), four symmetrically

distinct TeO6 polyhedra have volumes between 10.78 and

17.96 Å3 in the same structure. Clearly, distortion associated

with lone-pair stereoactivity can cause either moderate

contraction or very strong expansion of the polyhedron, so it is

an oversimplification to assume that increasing distortion

always leads to expansion.

Our aim in this study was to survey a range of different

measures of polyhedral distortion, in order to identify which

of them best displayed the properties expected for the ‘degree

of lone-pair stereoactivity’, how that property correlated with

polyhedral volume, and which were

the other principal factors involved in

controlling the volume of the poly-

hedron.

2.1. Measures of polyhedral distor-
tion

Before we can quantify distortion,

an ‘undistorted’ reference state must

be defined; as mentioned above, this is

the regular octahedron with ideal

bond lengths for this study. Polyhedra

have a large number of degrees of

freedom (the shape of a general MX6

group requires 15 parameters for full

description, corresponding to the 7 �

3 independent coordinates of the

constituent atoms minus 6 rigid-body

rotations and translations). Rather

than work in such a multi-dimensional

parameter space, authors have

devised many approaches to repre-

sent distortion as a single or small

number of parameters. The simplest

possibility, arising directly from the

Distortion Theorem, is the mean

bond distance. The distortion

theorem implies that this should

correlate strongly with the variance of

bond distances. The mean bond

distance is equivalent, less a

subtracted constant, to the deviation

of the mean bond distance from the

ideal bond distance in the regular

polyhedron, as advocated by Brown

(2006), who compared this parameter

with the distortion parameter of Lalik

(2005), which is founded in informa-

tion theory, but is in essence a bond-

valence weighted mean bond distance. Urusov (2006) showed

that bond-distance variance correlates with mean bond

distance, but that the quantitative relationship varies with the

style of distortion. Another pair of quite different distortion

parameters that show mutual correlation are bond-angle

variance and ‘quadratic elongation’, defined as the mean-

squared ratio of bond distances to the distance in a regular

polyhedron of the same volume, but not necessarily with the

ideal bond-valence sum at the central atom (Robinson et al.,

1970). A problem noted by Brown (2006) is that most

distortion measures assume that all ligands have the same

identity, and cannot be applied where this is not the case. A

relatively recent approach that solves this problem is the use

of the vectorial bond-valence sum of Harvey et al. (2006). This

allows robust determination of the most symmetrical point in

any coordination polyhedron and provides a coupling between

bond-distance distortion and angular distortion in polyhedra
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Table 1
The TeIVO6 polyhedra investigated in this study, with their volumes.

The asterisks in the left-hand column indicate the polyhedra that have pyramidal rather than octahedral
topology.

ICSD # Compound Site Reference Vpoly (Å3)

1 1 (Te4O)Cr2O10 Te2 Meunier et al. (1976) 14.338
2 293 Ni3(OH)2(TeO3)2 Te1 Perez et al. (1976) 16.028
3 294 Co3(OH)2(TeO3)2 Te1 Perez et al. (1976) 15.882
4 2397 (NH4)2Te2O5(H2O)2 Te2 Johansson (1978) 16.169
5 8283 Fe2Te3O9 Te3 Astier et al. (1976) 14.619
6 14168 CuTeO3 Te2 Lindqvist (1972) 14.419
7 24781 NaKTeO3�3H2O Te1 Daniel et al. (1982) 23.739
8 25021 Fe2Te4O11 Te2 Pertlik (1972) 14.267
9 26451 Li2Te2O5 (P21/n) Te2 Cachau-Herreillat et al. (1981) 14.484

10 26533 NiTe2O5 Te2 Platte & Trömel (1981) 13.763
11 26536 Na2Te2O5�2H2O Te2 Daniel et al. (1981) 18.036
12 27515 TeO2 (P41212) Te1 Lindqvist (1968) 14.894

*13 35345 K2Te2O5�3H2O Te1 Andersen & Moret (1983) 10.337
14 36394 In2Te3O9 Te1 Philippot et al. (1978) 14.473
15 37069 Ba3Te4O11 Te3 Hottentot & Loopstra (1983) 19.903
16 48114 MgTeO3�6H2O Te1 Andersen et al. (1984) 18.568
17 50702 Co2Te3O8 Te2 Feger et al. (1999) 12.763
18 50703 Ni2Te3O8 Te2 Feger et al. (1999) 12.740
19 50704 Cu2Te3O8 Te2 Feger et al. (1999) 12.949
20 50705 Zn2Te3O8 Te2 Feger et al. (1999) 12.917
21 59167 Cs2Te4O9 Te1 Loopstra & Goubitz (1986) 14.929
22 60067 CdTeO3 Te2 Krämer & Brandt (1985) 12.246
23 61673 HgTeO3 Te2 Krämer & Brandt (1986) 14.900
24 68878 Nd2Te4O11 Te1 Castro et al. (1990) 14.789

*25 68878 Nd2Te4O11 Te2 Castro et al. (1990) 12.261
26 73991 MnTe2O5 Te1 Miletich (1993) 11.932

*27 74396 SrTeO3 (P1) Te1 Elerman (1993) 12.757
*28 74396 SrTeO3 (P1) Te5 Elerman (1993) 12.463

29 82490 Mn2Te3O8 Te2 Cooper & Hawthorne (1996) 13.359
30 82641 Bi2Te2W3O16 Te1 Champarnaud-Mesjard et al. (1996) 13.164
31 85922 NaGaTe2O6 Te1 Miletich & Pertlik (1998) 14.971
32 87978 (NH4)4(Mo6TeO22)�2H2O Te1 Balraj & Vidyasagar (1999) 11.663
33 87979 Rb4(Mo6TeO22)�2H2O Te1 Balraj & Vidyasagar (1999) 11.564

*34 88996 Sr3Te4O11 Te1 Dytyatev & Dolgikh (1999) 10.775
35 88996 Sr3Te4O11 Te3 Dytyatev & Dolgikh (1999) 15.872
36 88996 Sr3Te4O11 Te6 Dytyatev & Dolgikh (1999) 17.961

*37 88996 Sr3Te4O11 Te7 Dytyatev & Dolgikh (1999) 13.256
38 89893 CaCu10(TeO3)4(AsO4)2(OH)2�4H2O Te1 Burns et al. (2000) 13.752
39 89893 CaCu10(TeO3)4(AsO4)2(OH)2�4H2O Te2 Burns et al. (2000) 14.155
40 90109 Rb2TeMo2O6(PO4)2 Te1 Guesdon & Raveau (2000) 13.130



(Brown, 2013b), and correlates in magnitude with distortion

measures related to the shortest bond distance (Bickmore et

al., 2013). Many other simple distortion measures are refer-

enced by Urusov (2003) and Brown (2006).

We examined several distortion parameters for possible

correlation with polyhedral volume, and in most cases found

little or no relationship. However, some distortion measures

which did yield evocative results were those of Balić-Žunić &

Makovicky (1996) and Makovicky & Balić-Žunić (1998).

These authors sought a description of distortion that was

independent of the geometry and topology peculiar to any

specific polyhedron, and hence defined a sphere of best fit to

the shell of ligands. The deviation of a polyhedron from ideal

could then be quantified in terms of:

(i) the radius Rsph of the sphere of best fit (relative to that

for a regular polyhedron);

(ii) the standard deviation �R of distances from ligands to

the surface of that sphere, and the derived quantity ‘sphericity’

= 1 � �R/Rsph;

(iii) the distance � from the central atom to the centre of

the sphere;

(iv) Makovicky & Balić-Žunić (1998) also introduced a

volume distortion parameter which is the proportionate

difference between the volume Vpoly of a distorted polyhedron

and the volume Vreg of a regular polyhedron with the same

sphere of best fit, �% = 100 � (Vreg � Vpoly)/Vreg.

The results presented below make use of these parameters

and others closely related to them.

3. Results

We first plotted the mean bond distance hri against the stan-

dard deviation �(r) of bond distances for the polyhedra of this

study. The data are shown in Table 2. There was a strong

covariation, as anticipated from the distortion theorem. This

appeared to be approximately linear, except that it did not

extrapolate to r = 2.127 Å at �(r) = 0, as would be expected

from the bond-valence parameters of Mills & Christy (2013).

A quadratic fit extrapolated much closer to that value

(< 0.04 Å) than either a linear or cubic fit, and also had a

slightly improved regression coefficient for fitted against

observed values

hri ¼ 2:089þ 0:2283�ðrÞ þ 0:460�2ðrÞ ðr2 ¼ 0:957Þ: ð2Þ
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Table 2
Parameters for TeO6 polyhedra of this study.

Symbols are: hri = mean bond distance, �(r) = standard deviation of bond
distances, |S| = magnitude of vector bond valence, Cpoly = geometrical centroid
of O6 polyhedron, � = distance from Te to centre Csph of O6 sphere of best fit,
Rsph = radius of sphere, �sph = standard deviation of O—Csph distances.

hri (Å)
� (r)
(Å) |S| (v.u.)

Te—Cpoly

(Å) � (Å)
Rsph

(Å)
�sph

(Å)

1 2.377 0.567 1.822 0.369 1.084 2.602 0.097
2 2.487 0.653 1.479 0.570 1.061 2.575 0.166
3 2.451 0.621 1.609 0.408 0.959 2.561 0.147
4 2.436 0.662 1.738 1.148 1.203 2.689 0.058
5 2.413 0.625 1.828 0.624 1.126 2.618 0.106
6 2.394 0.617 1.607 0.510 1.179 2.648 0.145
7 2.363 0.579 1.808 0.517 1.648 2.962 0.000
8 2.270 0.501 1.868 0.545 0.786 2.406 0.038
9 2.475 0.775 1.683 0.374 1.035 2.561 0.162

10 2.575 0.789 1.512 0.379 0.767 2.399 0.118
11 2.304 0.447 1.781 0.234 1.355 2.808 0.110
12 2.672 0.891 1.486 0.057 0.881 2.469 0.099

*13 2.317 0.509 1.647 0.658 1.322 2.768 0.120
14 2.305 0.483 1.622 0 0.936 2.514 0.074
15 2.329 0.533 1.778 0.395 1.516 2.911 0.047
16 2.327 0.533 1.797 1.068 1.104 2.581 0.000
17 2.390 0.610 1.761 0.352 1.029 2.618 0.124
18 2.322 0.469 1.698 0.347 0.958 2.573 0.127
19 2.395 0.619 1.741 0.402 1.033 2.607 0.117
20 2.640 0.851 1.805 0.366 1.075 2.644 0.124
21 2.426 0.632 1.602 0.211 1.303 2.751 0.226
22 2.346 0.547 1.773 0.292 1.444 2.934 0.253
23 2.334 0.516 1.690 0.022 0.996 2.565 0.048
24 2.660 0.908 1.681 0.164 1.706 3.077 0.217

*25 2.290 0.468 1.640 0.706 0.939 2.498 0.190
26 2.476 0.744 1.741 0.315 1.103 2.644 0.074

*27 2.476 0.697 2.042 0.930 1.168 2.697 0.363
*28 2.438 0.664 1.966 1.010 1.242 2.743 0.085

29 2.319 0.500 1.779 0.334 1.092 2.659 0.109
30 2.345 0.536 1.767 0.323 0.907 2.507 0.051
31 2.308 0.480 1.730 0.446 0.854 2.467 0.083
32 2.241 0.382 1.567 0.102 0.831 2.449 0.073
33 2.241 0.379 1.581 0.109 0.837 2.454 0.062

*34 2.548 0.746 1.719 0.902 1.441 2.889 0.129
35 2.450 0.688 1.900 0.266 1.472 2.886 0.170
36 2.511 0.755 1.756 0.794 1.456 2.830 0.121

*37 2.502 0.704 1.678 0.706 1.248 2.725 0.095
38 2.354 0.511 1.737 0.381 1.043 2.619 0.031
39 2.424 0.634 1.834 0.456 1.431 2.884 0.060
40 2.333 0.548 1.765 0.146 1.304 2.784 0.164

Figure 3
Mean bond distance hri for TeIVO6 polyhedra of this study, plotted against
standard deviation �(r). Fitted curves are unconstrained quadratic (solid
line) and quadratic constrained to pass through hri = 2.127 Å at �(r) = 0
(dashed line), consistent with the TeIV—O bond-valence parameters of
Mills & Christy (2013).



However, a quadratic fit that was contrained to pass

through the y axis at hri = 2.127 Å had almost the identical

regression coefficient and was visually coincident with the

other curve where it passed through the data points

hri ¼ 2:127þ 0:1004�ðrÞ þ 0:5632�2
ðrÞ ðr2

¼ 0:957Þ: ð3Þ

The fitted curves are shown in Fig. 3. Note that the figure

distinguishes by different symbols two subsets of the data.

Although these follow the same trend in Fig. 3, the six ‘non-

octahedral’ polyhedra were outliers on many other charts

made during this study. Close inspection of the actual coor-

dination polyhedra in the structures revealed that these were

not topologically octahedral. A polyhedron has the same

topology as a regular octahedron if four edges meet at each of

the six vertices. However, these six polyhedra were so

deformed that two vertices had edges running to all five of the

others, giving the overall form of a pentagonal pyramid with a

slightly nonplanar base (Fig. 4). The pyramidal polyhedra are

indicated by asterisks in Tables 1–3.

Polyhedral volume is plotted against mean TeIV—O

distance in Fig. 5. If non-octahedra were not distinguished, the

data would appear to spread over a triangular field. However,

when topologies were distinguished as in Fig. 3, it became

apparent that the data for true octahedra lay on a positive

linear trend. Because of the considerable scatter, the low

correlation coefficient (r2 = 0.75) did not increase if other

polynomial fits were applied.

The vector bond valence of Harvey et al. (2006) was

calculated for all the polyhedra of this study, and was always

significant in magnitude: 1.47–2.04 valence units (v.u.). It

showed a negligible correlation with mean bond distance (r2 =

0.11) or polyhedral volume (r2 = 0.04) and only weak trends

when plotted against the maximum bond valence and

minimum coordination number parameters of Bickmore et al.

(2013). For reference, the magnitude of vector bond valence

has been included in Table 2. The modified vector bond

valence of Zachara (2007) was also calculated, but correlated

even worse with other parameters than the original version;

this was not considered further.

The off-centring of the TeIV atom from the centre of the O6

polyhedron would be expected to correlate strongly with lone-

pair stereoactivity. The geometrical centroid Cpoly of the

polyhedron was defined by the mean of the position vectors of

the six O atoms. The sum of squares of distances from the

centre to the O atoms is minimized at this point. The distance
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Figure 4
(a) Ball-and-stick and polyhedral views of the TeIVO6 polyhedron of
MgTeO3�6H2O (Table 1, #16), showing stretched octahedral shape with
trigonal symmetry. (b) Polyhedron surrounding Te1 of Sr3Te4O11 (Table 1,
#34), showing approximate pentagonal pyramidal shape with five edges
converging at one vertex.

Table 3
Parameters relating to the filling of the sphere of best fit by a polyhedron.

Polyhedral volume is repeated from Table 1 for convenience. Other symbols:
rC—C = distance between Cpoly and Csph, � = rC—C/Rsph, Vcalc = volume
estimated from � and rC—C using the regression equations in the text.

rC—C

(Å) � 1 � �2
Vpoly

(Å3)
Vsph

(Å3) Vpoly/Vsph

Vcalc

(Å3)

1 0.999 0.384 0.853 14.338 73.809 0.194 15.083
2 0.662 0.257 0.934 16.028 71.494 0.224 17.608
3 0.646 0.252 0.936 15.882 70.342 0.226 16.316
4 1.056 0.393 0.846 16.169 81.408 0.199 16.261
5 1.053 0.402 0.838 14.619 75.188 0.194 15.063
6 1.115 0.421 0.823 14.419 77.811 0.185 15.102
7 1.131 0.382 0.854 23.739 108.832 0.218 22.813
8 0.646 0.268 0.928 14.267 58.356 0.244 13.915
9 0.926 0.362 0.869 14.484 70.350 0.206 15.074

10 0.740 0.308 0.905 13.763 57.848 0.238 13.069
11 1.150 0.410 0.832 18.036 92.753 0.194 17.625
12 0.824 0.334 0.889 14.894 63.022 0.236 13.891

*13 1.230 0.444 0.803 10.337 88.816 0.116 15.957
14 0.924 0.368 0.865 14.473 66.564 0.217 13.792
15 1.217 0.418 0.825 19.903 103.317 0.193 19.431
16 0.036 0.014 1.000 18.568 72.028 0.258 20.552
17 1.186 0.453 0.795 12.763 75.170 0.170 12.507
18 1.119 0.435 0.811 12.740 71.386 0.178 12.329
19 1.144 0.439 0.807 12.949 74.184 0.175 12.970
20 1.218 0.461 0.788 12.917 77.380 0.167 12.721
21 1.265 0.460 0.789 14.929 87.199 0.171 15.158
22 1.647 0.561 0.685 12.246 105.774 0.116 12.042
23 1.001 0.390 0.848 14.900 70.647 0.211 13.909
24 1.731 0.563 0.683 14.789 121.996 0.121 14.358

*25 0.676 0.271 0.927 12.261 65.277 0.188 15.755
26 1.229 0.465 0.784 11.932 77.424 0.154 12.867

*27 0.820 0.304 0.908 12.757 82.128 0.155 18.142
*28 1.222 0.446 0.801 12.463 86.403 0.144 14.997

29 1.205 0.453 0.795 13.359 78.740 0.170 13.134
30 0.797 0.318 0.899 13.164 65.962 0.200 14.503
31 0.793 0.322 0.897 14.971 62.854 0.238 13.819
32 0.933 0.381 0.855 11.663 61.548 0.189 12.365
33 0.947 0.386 0.851 11.564 61.888 0.187 12.317

*34 1.483 0.513 0.736 10.775 100.971 0.107 14.373
35 1.424 0.493 0.757 15.872 100.688 0.158 15.632
36 1.191 0.421 0.823 17.961 94.960 0.189 18.520

*37 1.121 0.411 0.831 13.256 84.759 0.156 16.227
38 1.116 0.426 0.818 13.752 75.214 0.183 13.445
39 1.523 0.528 0.721 14.155 100.489 0.141 13.577
40 1.450 0.521 0.729 13.130 90.404 0.145 12.697



of TeIV from this position, calculated in CrystalMaker1, was 0–

1.15 Å, with a mean of 0.45 Å and standard deviation 0.29 Å.

Surprisingly, no correlation was observed between the Te—

Cpoly distance and polyhedron volume (r2 = �0.01) or Te—

Cpoly distance and vector bond valence (r2 = 0.00).

An alternative method of identifying a centre for the

polyhedron is as the centre of a sphere of best fit for the O

atoms. At this point Csph, the variance of distances to the O

atoms is minimized. The algorithm for calculating this position

is given by Balić-Žunić & Makovicky (1996). The distance �
of TeIV to Csph is larger than the Te—Cpoly distance, with the

range 0.76–1.71 Å, mean 1.15 Å and a smaller standard

deviation of 0.24 Å. This distance � is more consistent with

the cation–lone pair distances of Hyde & Andersson (1989),

who model the lone pair as a quasi-anion (cf. Figs. 2a and b).

They give 1.25 Å as a typical cation–lone-pair distance for

TeIV.

The standard deviations �sph of distances Csph—O for

polyhedra were small. The ratios (�sph/Rsph), where Rsph is the

fitted sphere radius, was 0–0.135, with a mean value of 0.043

for the 40 polyhedra. By considering the change to a tetra-

hedral volume element defined by three O atoms and Csph, if

one Csph—O distance is increased by a small amount (�) and

another is decreased by the same amount, it is readily shown

that the volume varies proportional to (1 � �2), and hence that

the volume of the whole polyhedron varies according to

1 � (�sph/Rsph)2. Hence, departure from sphericity does not

perturb the volume of the polyhedra of this study by more

than 2%, and more typically does so by only 0.2%. Thus, the O

atoms do indeed lie on the surface of a sphere to a very good

approximation. This lends credence to the idea that the anions

maintain a nearly constant distance from an entity at the

sphere centre, which can be equated with the lone pair.

No correlation was observed between the two types of Te—

C distance (r2 = 0.08), or between � and vector bond valence

(r2 = 0.17). The TeIV—Csph distance � showed a positive

correlation with hri, albeit with considerable scatter (r2 = 0.48).

This is as expected if � represents the degree of lone-pair

stereoactivity, while the mean TeIV—O distance increases with

polyhedral distortion in accordance with the distortion

theorem. No significant correlation was seen between � and

the polyhedral volume Vpoly (r2 = 0.15). However, a very

strong linear correlation was found between � and Rsph (Fig.

6). For the true octahedra

Rsph ¼ 1:883þ 0:6809� ðr2
¼ 0:975Þ: ð4Þ

The pyramidal polyhedra also lie along the same trend,

suggesting that this relationship is not sensitive to polyhedral

topology. The Te—C distances and sphere parameters Rsph

and �sph are given in Table 2. The extremely strong correlation

of equation (4) further supports the notion that the sphere of

best fit and the location of its centre are physically significant.

This relationship arises presumably because the greater

stereoactivity of the lone pair (measured by �, corresponding

to the distance between cations and quasi-anions in Fig. 2a) is

reflected in greater non-bonded electron density at the sphere

centre (identified with the centroids of the lone-pair caps of

Fig. 2b) and hence greater repulsion between that non-

bonding density and the anions of the polyhedron. Increasing

� thus increases the non-bonded distance between anions and

the lone pair, at which this repulsion is balanced by the

attractive force mediated through the bonds to the central
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Figure 6
Well defined linear relationship between the Te—Csph distance � and
sphere radius, irrespective of polyhedral topology.

Figure 5
Polyhedral volume versus mean bond distance, showing the trend with
some scatter for topological octahedra, while non-octahedra are low-
volume outliers.



cation. There is sufficient flexibility in placement of the anions

on the surface of the sphere that although the mean TeIV—O

distance hri and Rsph correlate positively, they do so weakly

(r2 = 0.38). It is clear that the well defined linear relationship of

equation (4) and Fig. 6 is not predominantly a consequence of

the overall increase in mean bond distance with distortion.

Despite their importance as indicators of lone-pair stereo-

activity and lone pair–anion interaction, the parameters � and

Rsph are poor predictors of polyhedral volume Vpoly. A plot of

Vpoly against Rsph showed r2 = 0.29. This is because the

behaviour of Vpoly is affected by an additional aspect of

polyhedral geometry that is highly variable, namely the extent

to which the O6 polyhedron fills the sphere. Fig. 7 shows again

the polyhedra of Fig. 4, with their respective spheres of best fit.

The MgTeO3�6H2O polyhedron is a slightly stretched octa-

hedron with trigonal symmetry (Andersen et al., 1984). It is

appreciably larger than the ideal regular TeIVO6 octahedron

(Vpoly = 18.57 Å3, compared with 12.83 Å3), has a moderately

large sphere [Rsph = 2.581 Å, Vsph = (4/3)�Rsph
3 = 72.03 Å3],

but O atoms are distributed across both the top and bottom

halves of the sphere and the polyhedron occupies a relatively

large proportion of the spherical space: Vpoly/Vsph = 0.258. The

most uniform distribution of O atoms, forming a regular

octahedron circumscribed by the sphere, would have

Vpoly/Vsph = 1/� ’ 0.318. Conversely, the very flattened pyra-

midal polyhedron of Sr3Te4O11 Te1 (Dytyatev & Dolgikh,

1999) has all its O atoms confined to a small portion of a very

inflated sphere. In this case, Rsph = 2.889 Å, Vsph = 100.97 Å3,

but Vpoly is only 10.78 Å3, because Vpoly/Vsph takes the much

lower value of 0.107. The polyhedra depicted exhibit the

extreme values of Vpoly/Vsph for this study; all others have

intermediate values. The ratio Vpoly/Vsph is closely related to

the volume defect parameter � % of Makovicky & Balić-

Žunić (1998): � = 100 � (1 � �Vpoly/Vsph), if the reference

polyhedron is a regular octahedron.

It is apparent from Fig. 7 that the centroid Cpoly of the O6

polyhedron lies very close (0.036 Å) to the centre of the

sphere Csph for MgTeO3�6H2O, while the two centres are well

separated (1.483 Å) for Sr3Te4O11 Te1. If the two centres

coincide, then the O atoms are rather uniformly distributed

over the sphere, and the coordination polyhedron can occupy

much of the width of the sphere. Conversely, as Cpoly moves

further away from the centre of the sphere, the polyhedron is
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Figure 7
The polyhedra of Fig. 4, shown inside their spheres of best fit. (a)
Topologically octahedral TeIVO6 of MgTeO3�6H2O, with O atoms
spanning much of the sphere. The centroid of the polyhedron nearly
coincides with that of the sphere: rC—C = 0.036 Å. The polyhedron is
relatively large (Vpoly = 18.57 Å3) because it occupies a large fraction of a
small sphere (Rsph = 2.581 Å, Vsph = 72.03 Å3, Vpoly/Vsph = 0.258). (b)
Pyramidal TeIVO6 of Sr3Te4O11 Te1, with O atoms confined to one side of
the sphere. The centroid of the polyhedron and the sphere centre are far
apart: rC—C = 1.483 Å. The polyhedron is small (Vpoly = 10.78 Å3) because
it occupies a very small fraction of a large sphere (Rsph = 2.889 Å, Vsph =
100.97 Å3, Vpoly/Vsph = 0.107).

Figure 8
Correlation for octahedra between the degree of filling of the sphere of
best fit and the parameter �, derived in the text from the distance between
sphere centre and polyhedron centroid.



confined to smaller segments of the sphere, and the cross-

sectional area of the polyhedron becomes restricted to

correspondingly smaller values. This suggests that the distance

rC—C between Cpoly and Csph can be used to estimate

Vpoly/Vsph. If we define � = rC—C/Rsph, the maximum possible

cross-section would be expected to decrease roughly propor-

tional to (1 � �2). A good linear relationship can be seen in

Fig. 8 between (1 � �2) and (Vpoly/Vsph) for the topological

octahedra

ðVpoly=VsphÞ ¼ 0:464ð1� �2
Þ � 0:1957 ðr2

¼ 0:916Þ: ð5Þ

The remaining six polyhedra appear to lie on a separate but

parallel trend, with smaller volumes.

We have established that the offset � between the central

cation and the sphere centre quantifies the degree of lone-pair

stereoactivity, and that a strong correlation exists between �
and Rsph. Thus, the degree of lone-pair activity determines the

size of the spherical surface on which the anions are distrib-

uted. However, the distribution of anions around the sphere

can vary quite independently of �, and the asymmetry of this

is approximately measured by polyhedron centroid–sphere

centre distance rC—C. This determines the efficiency with

which the polyhedron fills the sphere, giving another strong

correlation between rC—C and Vpoly/Vsph. Putting equations (4)

and (5) together, we can obtain an estimate for the polyhedral

volume, derived from � and rC—C. The resulting Vcalc values

are compared with the experimental volumes Vpoly in Fig. 9.

For true octahedra, a linear relationship is obtained, with a

gradient close to unity and intercept close to zero

Vcalc ¼ 0:9704Vpoly þ 0:4711 ðr2
¼ 0:912Þ: ð6Þ

The r.m.s. deviation between Vcalc and Vpoly is 0.75 Å3, or

about 3–7%. Thus, about 95% of the variation in Vpoly can be

accounted for as a function of just the two parameters � and

rC—C. Much of the remaining deviation may be due to

inaccuracies or intrinsic strain in the determined structures.

However, equation (6) applies only for polyhedra that are

topologically octahedral. The pyramidal polyhedra form a

separate cluster in Fig. 9, with volumes much smaller than

would be predicted by this equation. While relationships such

as those of equations (5)–(6) may exist for a wide range of

polyhedra, the numerical coefficients differ for different

polyhedral topologies. The parameters rC—C, � and calculated

polyhedral volumes Vcalc are given in Table 3.

4. Conclusions

Although the mean bond distance increases with the irregu-

larity of a coordination polyhedron in accordance with the

Distortion Theorem, this does not always imply that the

volume of the polyhedron increases. The 40 TeIVO6 polyhedra

of this study show a very wide range of volumes, from 80–

185% of the 12.83 Å3 predicted for the regular TeIVO6 octa-

hedron using the bond-valence parameters of Mills & Christy

(2013).

Most measures of polyhedral distortion described in the

literature (quadratic elongation, bond-angle variance, vector

bond valence etc.) do not correlate well with polyhedral

volume. However, we have found relationships for TeIVO6

polyhedra with octahedral topology that allow volume to be

predicted with good accuracy from just two parameters. The

nature of these parameters demonstrates that fitting a sphere

of best fit to the ligand shell, as advocated by Balić-Žunić &

Makovicky (1996) and Makovicky & Balić-Žunić (1998), has

considerable physical significance. The O atoms of all our

polyhedra lie close to a spherical surface, whether the poly-

hedron is of octahedral topology or not. The centre of the

sphere lies 0.7–1.7 Å from the central cation, at the distance

expected for a stereoactive lone pair in the model of Hyde &

Andersson (1989). The radius of the sphere Rsph is a linear

function of the offset � of the central cation from the sphere

centre, irrespective of polyhedral topology.

This relationship is explained as a result of increased

repulsion between the anions and the greater non-bonding

electron density as a lone pair becomes more localized, which

leads to an increase in non-bonded distance between the lone

pair and the anions.

However, the O atoms may span a large or small portion of

the spherical surface area, quite independent of the radius of

their sphere of best fit, and this is what allows the extra-

ordinary variability of polyhedral volume. An approximate

measure of the degree to which the polyhedron fills the sphere

can be derived from the distance between the sphere centre

and the centroid of the O atoms. For octahedra, an equation

can be written that predicts volume to within a few percent

using just the centroid–centre distance rC—C and �. Similar

relationships probably occur for other types of polyhedron,

albeit with different numerical coefficients in the equations.
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Figure 9
Experimental volumes of polyhedra Vpoly compared with those calculated
from just � and rC—C.



The six polyhedra that have coordination approximating

pentagonal pyramidal rather than octahedral show the same

relationships as octahedra for mean versus standard deviation

of bond distance and for � versus sphere radius, but otherwise

are low-volume outliers. The sphere centre Csph lies well

outside the O6 polyhedron in these cases, as can be seen from

the example in Fig. 6. This can be interpreted as the lone pair

pointing into a void in the anion substructure; there are no

further O atoms within 4 Å of the TeIV cation. However, in all

cases, there are multiple additional TeIV cations and/or large,

polarizable cations (KI, SrII, NdIII) at 3.3–4 Å on this side of

the central TeIV atom. Bonding between such a species (NaI)

and the lone pair of SnII is discussed in the case of Na4SnO3 by

Brown (2011). Thus, in the non-octahedral polyhedra of this

study, weak bonds occur between lone pairs and large,

deformable cations and/or attractive dipole–dipole interac-

tions occur between lone-pair cations, and that the full coor-

dination sphere around the central lone pair should include

these additional non-anionic species. These cases provide

extreme examples of the responsivity of lone-pair coordina-

tion polyhedra to the local environment. It is very frequently

the case that two topologically similar but symmetrically

distinct coordination polyhedra in the same structure may

show quite different degrees of lone-pair activity �, poly-

hedron-sphere asymmetry � and polyhedron volume. This is

well demonstrated by the two distorted TeIVO6 octahedra of

juabite, CaCu10(TeO3)4(AsO4)2(OH)2�4H2O (Burns et al.,

2000), which are numbers 38–39 in Tables 1–3 of this study.

Quite different oxygen coordination numbers can also occur:

for balyakinite, CuTeO3 (Lindqvist, 1972), Te1 has 9 oxygen

neighbours (Fig. 1), while Te2 has only 6 (Tables 1–3, #6).

The flexibility of volume displayed by the lone-pair coor-

dination polyhedra means that polyhedra cannot be assumed

to become more symmetrical with the application of pressure.

Contraction of polyhedra can be achieved by making the

ligand geometry less symmetrical, even if the sphere of best fit

increases in radius (which is our measure of increasing lone-

pair stereoactivity). Furthermore, the polyhedron is free to

expand with pressure, if other parts of the structure can

contract sufficiently to compensate. Symmetrization of poly-

hedra due to decrease in lone-pair activity with increasing

pressure is well documented for compounds such as stibnite,

Sb2S3, and bismuthinite, Bi2S3 (Lundegaard et al., 2003, 2005).

However, high-pressure experiments show that some lone-

pair materials behave in the opposite fashion. For example,

transformations to structures with lone-pair cations in less

regular coordination environments with increasing pressure

are known for PbO (Adams et al., 1992), PbS (Grzechnik &

Friese, 2010), and the sulfosalts Pb3Bi2S6 and Pb6Bi2S9 (Olsen

et al., 2008, 2011).

Conversely, for a given geometry of ligands, it is possible for

bond valences to be equally satisfied either for a large cation

with relatively little lone-pair stereoactivy, or for a smaller

cation with a more active lone pair. This suggests that solid

solutions between lone-pair cations can be unusually flexible,

and there is evidence that this is so. Consider PbII—O and

TeIV—O, which for the case of hypothetical regular MO6

octahedra are estimated to have bond distances of 2.469 and

2.127 Å using the bond-valence parameters of Krivovichev &

Brown (2001) and Mills & Christy (2013), respectively. Note

that the formal charges on Pb and Te differ by 2 v.u., and also

that the PbII—O distances are � 16% longer than TeIV—O

distances, corresponding to a 47% difference in traditional

ionic radii if rO2� = 1.40 Å is assumed. Both of these differ-

ences would make extensive solid solution unlikely according

to Goldschmidt’s Rules (Goldschmidt, 1926), which would

favour solid solution only if the charge difference is 1 v.u. or

less and the ionic radius difference is < 15%. Nevertheless,

Kampf et al. (2010) described the mineral telluroperite,

PbII
3TeIVO4Cl2 and published a single-crystal structure

refinement for it, in which equal proportions of PbII and TeIV

mix randomly on one cation site, bonded to 4O + 4Cl. They

noted that the overall bond-valence sum for this cation was

significantly low (2.42 rather than 3), and attributed the

discrepancy to the average cation position being less off-

centre than would be expected for TeIV. Site splitting between

the PbII and TeIV locations is also supported by the large U33

displacement parameter for this site (Kampf et al., 2010, Table

3). This is exactly what one would expect if the larger PbII sits

closer to the polyhedron centre, with more equal bond

distances and smaller � than the smaller TeIV. Using the bond-

valence parameters of Krivovichev & Brown (2001) for PbII—

O, Brese & O’Keeffe (1991) for PbII—Cl, and Mills & Christy

(2013) for TeIV—O and TeIV—Cl, it is possible to estimate the

separation between PbII and TeIV by adjusting their z coor-

dinates in order to obtain ideal bond-valence sums on both

cations. The BVS equals the formal valence if z = 0.044 for

TeIV or z = 0.139 for PbII; these positions are 1.185 Å apart.

The average z coordinate weighted by atomic number

(� scattering factor) is 0.102, close to the value of 0.0961

refined for the unsplit cation by Kampf et al. (2010). The

calculated split is much larger that those observed when lone-

pair cations substitute for large cations without stereoactive

lone pairs, such as the 0.49–0.53 Å separation between the

split Ba and Pb sites of hyalotekite (Christy et al., 1998).

Overall, this study shows that the degree of stereoactivity of

a lone pair on a central cation does not have a predictable

effect on the volume of the surrounding coordination poly-

hedron. What is predictable is that the anions surround the

lone pair at a non-bonded distance which increases with the

the degree of stereoactivity. However, there is great flexibility

in positioning of the anions within that shell surrounding the

lone pair, which allows the coordination polyhedron to adopt

a huge range of bonding patterns, volumes and geometries so

as to fit the surrounding structure. The flexibility of lone-pair

polyhedra is further enhanced by the ability of a single poly-

hedron to accommodate different cations with different

degrees of lone-pair activity, which facilitates a broader range

of solid solution than would otherwise be the case.
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