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Highlights

 Starch structural changes under shear was studied using SEC and 

SAXS

 Amylopectin molecules degraded to a stable size under shear

 Shear disrupted the starch lamellar structure effectively

 Higher-amylopectin starch was more prone to granule damage
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18 Abstract: This work investigated the effect of shear on the starch degradation, with a particular 

19 focus on the changes in molecular and lamellar structures. Corn starches with different 

20 amylose/amylopectin ratios (waxy corn starch, or WCS: 1:99; normal corn starch, or NCS: 25:75; 

21 and Gelose 80 starch, or G80: 80:20) were used as model materials to be processed using a Haake 

22 twin-rotor mixer for different times. Molecular and lamellar structural analysis was performed using 

23 size-exclusion chromatography (SEC) and small-angle X-ray scattering (SAXS). The degree of 

24 damage of starch at the granule level was evaluated by an assay kit. The results showed that amylose 

25 molecules in starch granules did not change significantly, while amylopectin molecules degraded to a 

26 stable size caused by the shear treatment. The average thickness of semi-crystalline lamellae 

27 disappeared rapidly during processing. A typical positive deviation from Porod’s law at a high q 

28 region was observed, attributed to the presence of thermal density fluctuations or mixing within 

29 phases. Nonetheless, the degree of mixing within phases for the processed samples was lower than 

30 the native starch. The study of the mass fractal structure indicated that the scattering objects of the 

31 processed starches were more compact than those of the native counterparts. Furthermore, waxy corn 

32 starch (containing mostly amylopectin) experienced the greatest granule damage than the other 

33 starches. All the results showed that the rigid crystal structure in amylopectin is more sensitive to the 

34 shear treatment than the flexible amorphous structure in amylose. This mechanistic understanding at 

35 the microstructure level is helpful in designing the processing of starch-based foods or plastics with 

36 desired functional properties.

37

38 Keywords: starch, degradation, shear strength, amylose, lamellar structure 
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39 1. Introduction 

40 Starch is the main component of cereal-based foods, which is a primary source of energy for 

41 humans. Besides, due to its total biodegradability, low cost, and wider availability, starch has 

42 attracted much attention as an important raw material for producing biodegradable plastics to replace 

43 some petroleum-based polymers (Yu, Dean, & Li, 2006). Extrusion is commonly used in industry for 

44 the processing of starch-based foods and materials. Gelatinization and degradation are two most 

45 important phenomena in extrusion processing, affecting the material performance (Liu et al., 2013). 

46 Starch degradation during processing has shown to be strongly correlated to the mechanical 

47 properties of starch-based materials (Liu, Halley, & Gilbert, 2010; Li, Hasjim, Xie, Halley, & 

48 Gilbert, 2014).

49 It is well known that the multi-scale structure of the starch granule is mainly composed of 

50 amylose and amylopectin. These two macromolecules are the basis of the aggregation and granule 

51 structure of starch and provide an excellent conceptual approach to the understanding of the 

52 structure-processing-property relationships of natural polymers (Pérez & Bertoft, 2010; Wu, Witt, & 

53 Gilbert, 2013; Liao, Liu, Liu, Lin, Yu, & Chen, 2014). Amylose is a linear molecular with a few long 

54 branches, whereas amylopectin is highly branched, containing ~5% branching points and a large 

55 number of short branches (Damager, Engelsen, Blennow, Lindberg Møller, & Motawia, 2010; Pérez 

56 et al., 2010). The outer parts of amylopectin branches (A and B1 chains) form clusters of double 

57 helices, which build up the crystalline lamellae; and the internal parts (B2, B3 and C chains) locate in 

58 the amorphous lamellae (Jane, Xu, Radosavljevic, & Seib, 1992). The alternating crystalline and 

59 amorphous lamellae with a ~9 nm repeat distance collectively form the semi-crystalline growth rings 

60 in a starch granule (Calvert, 1997; Damager et al., 2010). Amylose is in either amorphous or single 
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61 helical conformation and is interspersed among amylopectin molecules (Jane et al., 1992; Lopez-

62 Rubio, Flanagan, Gilbert, & Gidley, 2008). 

63 The mechanical shear in extrusion processing induces gelatinization, with the breakage of the 

64 crystalline structure of starch (Xie, Halley, & Avérous). This process is entirely different from the 

65 usual gelatinization process under heat-moisture treatment (Zhang, Chen, Liu, & Wang, 2010) or 

66 annealing (Liu, Yu, Simon, Dean, & Chen, 2009). In our previous paper, the lamellar structure of 

67 starch during gelatinization process was studied by synchrotron-SAXS/WAXS (Zhang et al., 2015; 

68 Kuang et al., 2016). It was observed that, before the gelatinization temperature, the lamellar peak 

69 intensity decreased, and the thickness of crystalline lamellae increased, whereas the size of both 

70 amorphous and crystallinity lamellae disappeared rapidly around the gelatinization temperature. 

71 However, there have been no comprehensive studies on the change of starch lamellar structure under 

72 shear treatment. 

73 On the other hand, shear may also induce the change in the molecular size of starch. Liu et al. 

74 (2010) and Li et al. (2014) have used size-exclusion chromatography (SEC) to investigate the 

75 degradation mechanism of corn starch during extrusion. They found that the mechanical energy 

76 played a dominant role in reducing the starch molecular size, and amylopectin in starch granules was 

77 more susceptible to shear degradation than amylose. However, as extrusion is a process involving a 

78 complex flow and multiple temperature sections, it is difficult to obtain a precise understanding of 

79 the relationship between processing conditions and the resultant structure of starch. 

80 Recently, an internal twin-rotor mixer has been used to understand the gelatinization (Xue, 

81 Yu, Xie, Chen, & Li, 2008; Wang, Yu, Xie, Chen, Li, & Liu, 2010) and chemical modification (Qiao 

82 et al., 2012; Qiao, Bao, Liu, Chen, Zhang, & Chen, 2014) of starch during processing. A HAAKE 
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83 Rheomix twin-rotor mixer can not only be used a processing device, but also serves as a rheometer to 

84 accurately monitoring the processing conditions (Yang, Bigio, & Smith, 1995). This device can 

85 represent a short section of an extruder so it could be useful to understand the processing-structure 

86 relationship in a simpler manner. Yet, the change of the multi-level starch structure during kneading 

87 using a twin-rotor mixer has not been reported. 

88 In this study, corn starches with different amylose/amylopectin ratios were used as model 

89 materials to reveal the shear-induced starch degradation during kneading. The molecular and 

90 lamellar structures were studied by SEC and small-angle X-ray scattering (SAXS), respectively. The 

91 information obtained from this study would help to understand the shear degradation mechanism and 

92 to design new starch materials with accurately-controlled structures.

93

94 2. Material and Method

95 2.1 Sample and sample prepared 

96 Commercially-available corn starches with different amylose contents were used in this 

97 experimental work. Waxy corn starch (WCS) (1% amylose content) was supplied by Lihua Starch 

98 Industry Co., Ltd.. Normal corn starch (NCS) (25% amylose content) was provided by Huanglong 

99 Food Industry Co., Ltd.. Gelose 80 starch (G80) (80% amylose content) was supplied by National 

100 Starch Pty Ltd. (Lane Cove, NSW 2066, Australia). 

101 Starch and water were pre-mixed in a high-speed mixer (capacity 10 L, SRLW 10/25, 

102 Fanchang machinery Co. LCD, China) at 1000 rpm for 5 min. An infrared heating balance (Model 

103 DHS-20, Longway & Yueping, Shanghai, China) was used to measure the moisture content during 
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104 heating the sample to 110 °C for 20 min. The total moisture content (about 35%) of a specimen was 

105 taken as the sum of the original starch moisture content and the added water.

106

107 2.2Haake rheometer

108 A Haake Rheocord Polylab RC500p system incorporating a HAAKE Rhemix 600p twin-

109 rotor mixer (ThermoHaake, Germany) was used in the experimental work. This equipment was 

110 described in detail previously (Xue et al., 2008; Wang et al., 2010). The material was introduced into 

111 the mixer through a top-mounted loading hopper, and torque and temperature were recorded 

112 immediately after loading. The roller speed of 75 rpm and initial temperatures 70 °C were used. The 

113 samples were collected at different times (0, 2, 5, 7, 10 and 15 min) and ground into power using a 

114 cryo-grinder (ZM200, Retsch) under liquid nitrogen for further analysis.

115

116 2.3 Size-exclusion chromatography

117 The molecular size and size distribution of fully-branched and debranched starch molecules 

118 were measured using size-exclusion chromatography (SEC) (Tran, Shelat, Tang, Li, Gilbert, & 

119 Hasjim, 2011). The extracted native starch granules (about 6 mg) were dissolved in DMSO/LiBr 

120 solution and then debranched using isoamylase in acetate buffer (pH ~3.5), following the method of 

121 Li, Hasjim, Dhital, Godwin, and Gilbert (2011). Then, the weight size distributions of fully-branched 

122 and debranched starch molecules were analyzed in duplicate using SEC (Agilent 1260 series, Agilent 

123 Technologies, Santa Clara, California, USA) equipped with a refractive index detector (Optilab T-

124 rEX, WYATT Corp., USA). The injection volume was 100 μL, the flow rate was 0.3 mL/min, and 

125 the column oven temperature was at 80 °C. A series of columns (GRAM precolumn, GRAM 30, and 
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126 GRAM 3000 analytical columns, Polymer Standard Services, Mainz, Germany) were used to analyze 

127 the size distribution of fully-branched starch molecules. Another series of columns (GRAM 

128 precolumn, GRAM 100, and GRAM 1000 analytical columns, Polymer Standard Services, Mainz, 

129 Germany) were used to analyze the size distribution of debranched starch molecules. A series of 

130 pullulan standards (Polymer Standard Services, Mainz, Germany) with varying molecular weights 

131 ranging from 342 to 2.35 × 106 Da were used for calibration to obtain the relationship between the 

132 SEC elution volume and the hydrodynamic volume Vh (which is the separation parameter for SEC). 

133 Data are presented as the SEC weight distribution, w(log Vh), as a function of the corresponding 

134 hydrodynamic radius Rh, with Vh = (4/3)PiRh
3. Because the largest standard had a hydrodynamic 

135 radius of ~ 50 nm, this is the maximum size at which calibration is reliable. The dependence of Rh on 

136 elution volume for larger sizes was obtained by extrapolation of the calibration curve and thus are 

137 only semi-quantitative, and also sensitive to day-to-day variations (Wang, Hasjim, Wu, Henry, & 

138 Gilbert, 2014).

139

140 2.4 Small-angle X-ray scattering (SAXS)

141 Synchrotron small-angle X-ray scattering (SAXS) measurements were carried out at the 

142 BL16B1 beamline at the Shanghai Synchrotron Radiation Facility (SSRF), China. Distilled water 

143 was added to the starch in a glass vial to obtain a starch suspension with the starch:water ratio being 

144 1:3 (w/v). The suspension was equilibrated for 24 h before SAXS tests. Then, the starch suspension 

145 (0.70 mL) was loaded into a 2-mm-thick sample cell, of which both the front and back windows 

146 were covered with the Kapton tape. Two-dimensional (2D) Mar165 were used to collect the 2D 

147 SAXS patterns. The wavelength of the incident X-ray was 1.24 Å, and the sample-to-detector 
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148 distance (SDD) was 1940 mm for SAXS measurements. A beef tendon specimen was used as 

149 standard materials for the calibration of the scattering vector of SAXS. By measuring sample 

150 adsorption using the ionization chambers in the front and back of the sample cell, we performed data 

151 correction, calibrated the SAXS data from the background scattering, and normalized the data on the 

152 primary beam intensity. Background subtraction follows the equation: 

153 Ib(θ). 𝐼𝑠(𝜃) = 𝐼𝑡(𝜃) ‒
𝐼𝑡

𝐼𝑏

𝑇𝑡

𝑇𝑏

154 It(θ), Ib(θ) and Is(θ) represent the distribution of scattering intensity of samples held in cells, sample 

155 cells and pure samples, respectively. It and I represent values of samples held in the cells and sample 

156 cells, read from the ionization chambers in front of sample cell. Ti and Tt represent the transmissivity 

157 of the samples held in cells and sample cells. 

158

159 2.5 Damage of starch granules

160 The degree of damage to starch granules was determined according to the AACC method 76-

161 31.01 using an assay kit from Megazyme International Ltd. (Ireland) (AACC International Method 

162 76-31.01). The tests were based on the susceptibility to amylolytic enzyme hydrolysis, using the 

163 Megazyme starch damage assay kit in triplicate, following the procedure provided by the 

164 manufacturer (AACC International Method 76-13.01).

165

166 3. Result and Discussion

167 3.1 Shear behavior of starch

168 The Haake rheometer with a twin-roll mixer can be used not only for melting and blending of 

169 polymers (Liu, Wang, Chow, Yang, & Mitchell, 2014), but also provides information on torque 
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170 variation during the kneading process. Fig. 1 shows a typical curve of torque variation with time for 

171 a starch during kneading. The peak (a) occurred during the loading due to the resistance force when 

172 the cold materials were rapidly loaded into the mixer. After the loading of material, the torque 

173 decreased, and then increased to form a broad peak (b), representing the maximum viscosity 

174 resulting from the granule swelling and gelatinization. After the second peak (b), more starch 

175 granules were destroyed, resulting in a decreasing torque (c) until the end of the measurement (20 

176 min), with the gradually-reduced decrease rate (d). Moreover, the temperature increased gradually 

177 with time, resulting in the reduction in viscosity and torque. 

178 In our previous paper (Xue et al., 2008; Wang et al., 2010), the effects of water content, rotor 

179 speed and initial temperature on the torque and temperature have been studied. The results showed 

180 that the starch granules first swelled and then disintegrated, and finally all the granules were 

181 destroyed. Microscopy and DSC confirmed that the semi-crystallinity structure of starch granules 

182 was destroyed by the shear stress. 

183

184 3.2 Molecular size distribution of fully branched starch during shear

185 Although DSC and polarized-light microscopy can detect the crystal structure change during 

186 the kneading process, the change of starch molecular structure (such as size and size distribution) is 

187 still unclear. Fig. 2 shows weight distributions of the whole (fully-branched) starch molecules 

188 collected at different kneading times by SEC. All the weight distributions of the whole starch 

189 molecules were normalized to the highest peak. For NCS, two peaks were observed from SEC. One 

190 peak (Rh = ~10 nm) was due to amylose, and the other (Rh = ~100 nm) was due to amylopectin (Liu 

191 et al., 2010; Tran et al., 2011; Li et al., 2014). 
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192 The amylopectin peak area for NCS and WCS became smaller and amylose peak area 

193 became larger during kneading compared with their native counterparts. However, the value did not 

194 change significantly for G80, which may relate to its more intact granule (Li et al., 2014). From Fig. 

195 2, it was clearly seen that the amylose/amylopectin ratio also affected the degradation mechanism of 

196 starch. The amylopectin molecule was easier to degrade than amylose during kneading. For the 

197 degraded amylopectin molecules (WCS), a new peak (Rh = ~50 nm) representing the stable size 

198 achieved during kneading could be identified. The shear-induced molecular size reduction to a stable 

199 value has also been reported previously (Liu et al., 2010; Li et al., 2014). For NCS, the size of 

200 amylopectin molecules decreased with time and showed a stable size of 50 nm. For amylose 

201 molecules (G80), the highest value of Rh was about 10 nm from the whole molecules SEC weight 

202 distributions, which was smaller than the stable size for WCS and NCS. This difference might be due 

203 to the smaller size of the amylose in G80.

204

205 3.3 Molecular size distribution of debranched starch during shear

206 Typical SEC weight distributions of debranched starch molecules are shown in Fig. 3. For 

207 NCS, a bi-modal peak was observed which was associated with the amylopectin branches (Rh < 4 

208 nm) and there was a broader bi-modal peak, which was associated with the amylose branches (Rh > 4 

209 nm) (Tran et al., 2011). Besides, there was a shoulder peak at about Rh ≈ 2 nm representing the B2, 

210 B3 chains in amylopectin branches, which spans more than one lamella. In Fig. 3, there were no 

211 qualitative differences in the weight distributions of the debranched starch between NCS and its 

212 processed samples collected at different times. The results indicated that the glycosidic bonds near or 

213 at the branching points, sometimes termed building blocks (Dhital, Shrestha, & Gidley, 2010), of the 
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214 amylopectin molecules, were susceptible to shear degradation during the melting kneading process. 

215 WCS and G80 showed similar results in this study. 

216

217 3.4 Lamellar structure change during shear

218 The SAXS one-dimensional (1D) scattering intensity distributions for starches with different 

219 amylose content are shown in Fig. 4. A clear lamellar peak at q = ~0.68 nm−1 was observed in SAXS 

220 curves of native starches, which was corresponding to the 9–10 nm semi-crystalline lamellar 

221 structure of starch (Chen, Wang, Kuang, Zhou, Wang, & Liu, 2016). From Fig. 4, it can be clearly 

222 seen that the scattering intensity of the lamellar peak for the amylopectin-rich starch was higher than 

223 the amylose-rich starch, indicating a higher electron density contrast (Δr = ρc – ρa, where ρc and ρa 

224 are the electron densities of the crystalline regions and the amorphous regions in the semi-crystalline 

225 lamellae) between crystalline and amorphous lamellae 

226 It could also be clearly seen in Fig. 4 that the lamellar peak disappeared rapidly (as early as 2 

227 min), which meant that the crystalline lamellar structure was damaged by shear. The kneading 

228 process is different from a general gelatinization process where heating (Vermeylen, Derycke, 

229 Delcour, Goderis, Reynaers, & Koch, 2006; Zhang et al., 2015), microwave heating (Fan et al., 2013; 

230 Fan et al., 2014), or ultra-high hydrostatic pressure (Yang, Gu, Lam, Tian, Chaieb, & Hemar, 2016a) 

231 was applied. The in-situ SAXS data showed that the change under mechanical kneading was a more 

232 gradual process. The crystalline lamellar size of starch obtained from the correlation function was 

233 increased even before the gelatinization temperature. The twin-rotor mixer would provide the shear 

234 energy to destroy the starch granules structure. The rigid crystallites in starch granules were mainly 

235 formed by amylopectin and these crystallites were most susceptible to shear, as seen from the SEC 
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236 results showing the decrease in the size of amylopectin. The destruction to the amylopectin 

237 crystallites was proposed to lead to the disappearance of the lamellar peak. 

238

239 3.5 Mixing within phase and fractal dimension of starch granule

240 It is well known that only the scattering by an ideal two-phase system with sharp boundaries 

241 obeys Porod’s law (Li et al., 2001). However, deviation from this law is often observed in practice. A 

242 negative deviation is due to the finite diffuse-boundary thickness between two phases and a positive 

243 deviation due to the density fluctuation resulting from either the movement of electrons or 

244 compositional heterogeneity within scattering elements (Xu et al., 2004). In this study, the ln (I × q4) 

245 ~q2 patterns of the starch treated in the mixer are shown in Fig. 5. All the starch samples showed a 

246 typical positive deviation from Porod’s law at a high q region, which could be attributed to the 

247 presence of thermal density fluctuations or mixing within phases (Yang et al., 2016a; Yang et al., 

248 2016b). In the current work, the mixing of the starch was that between crystalline and amorphous 

249 phases. Compared to the native starch, the treated starch displayed a reduced slope, suggesting the 

250 degree of mixing within phases was lower than the native starch.

251 The fractal dimension from SAXS data can be used to describe the self-similar structure of 

252 starch granules in a given region (Suzuki, Chiba, & Yarno, 1997), which means the structure is 

253 independent of the observation scale. The fractal dimension helps to quantify the compactness 

254 properties such as mass (m) and surface area (A). The slope (−α) of logI (q) vs. log q curves in the 

255 linear region was calculated, with linear regression analysis, leading to fractal dimensions (Df). For α 

256 between 1 and 3, Df equals α and the material is characterized as mass fractal (Dm) in a three-
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257 dimensional space (Leite et al., 2007). These parameters could indicate if the density profile of the 

258 scattering objects has a self-similar nature.

259 The length scale for Df ranging from 1 to 3 for all corn starches with different mixing time is 

260 between 32 nm and 57 nm, suggesting the presence of a mass fractal structure in starch granules. 

261 However, the value for the shear-treated starch was lower than the native starch, which meant that 

262 the scattering objects in the treated starch were more compact.

263

264 3.6 Degree of damage of starch granules

265 Mechanical kneading can damage starch granules to some extent, which significantly 

266 influence the physicochemical properties of starch. The damage to the starch granules in the mixer 

267 (see Table 1) increased significantly from about 0 to over 20%, even 40% for WCS. Moreover, the 

268 degree of damage for WCS was higher than that for G80, which also suggested that WCS was more 

269 fragile. The different susceptibility of various starches was also observed using lab-scale ball milling 

270 (Tester, 1997). The degrees of damage of starches detected here were in agreement with our previous 

271 paper (Wang et al., 2010). Overall, the starch with higher amylose content was more resistant to 

272 external physical treatment. 

273

274 4. Conclusion

275 The structural changes of corn starches with different amylose contents during kneading 

276 using a twin-rotor mixer were investigated. Resulting from kneading, no apparent changes were 

277 observed for the amylose molecules in starch granules, while amylopectin molecules degraded to a 

278 stable size during the processing. The lamellar peak, which represents the average thickness of semi-
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279 crystalline lamellae disappeared rapidly during mixing. A typical positive deviation from Porod’s 

280 law at a high q region was observed, which was attributed to the presence of thermal density 

281 fluctuations or mixing within phases. The degrees of mixing within phases for the processed starches 

282 were lower than for the native counterparts. The mass fractal values indicated that the scattering 

283 objects of the processed starch were more compact. Moreover, the degree of damage of WCS was 

284 higher than those of the other two starches. All the results showed that the rigid crystallites of 

285 amylopectin in starch granules were more susceptible to shear degradation compared with the 

286 flexible amorphous amylose. The starch degradation mechanism, concluded from the present study, 

287 is similar to the dry grinding mechanism of starch granules at a cryogenic temperature. This 

288 mechanistic understanding from the characterizations of different starch structural levels is helpful in 

289 designing the processing of starch-based foods and plastics with desired structure and improved 

290 functional properties.
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397 Fig. 2 SEC weight distributions of whole (fully-branched) starches after kneading for different times.

398 Fig. 3 SEC weight distributions of debranched maize starch after kneading for different times.
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Fig.1 Typical curve of torques vs. time measured by the Haake Rheomix mixer for G80
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Fig. 2 SEC weight distributions of whole (fully-branched) starches after kneading for different 
times.
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Fig. 3 SEC weight distributions of debranched maize starch after kneading for different times.
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Fig.4 Double-logarithmic SAXS patterns of corn starches after kneading for different times.
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Fig.5 Porod SAXS patterns of corn starches after kneading for different times
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Table 1 Degree of damaged starch granules (%) after kneading for different times.

Time (min) WSC NCS G80

0 1.5±0.02 0.7±0.01 1.2±0.00

2 32.3±0.22 24.8±0.10 22.0±0.02

5 24.3±0.01 21.1±0.07 22.8±0.02

7 41.4±0.10 20.6±0.01 19.5±0.04

10 39.9±0.10 21.4±0.07 26.2±0.99

15 36.4±0.07 25.2±0.01 20.5±0.13
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