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Abstract 

This work shows the preparation and separation performance assessment of carbon membranes 

derived from phenolic resin by a vacuum-assisted method and carbonisation in an inert atmosphere. 

The vacuum time played an important role in tailoring the structure of the membranes. For instance, 

pore volumes and surface areas increased from 0.81 and 834 to 2.2 cm
3
 g

-1
 and 1910 m

2
 g

-1
, 

respectively, as the vacuum time exposure increased from 0 to 1200 s. The significant structural 

changes correlated very well with water permeation, as fluxes increased by 91% as the vacuum time 

increased from 0 to 1200s, reaching up to 169 kg m
-2

 h
-1

 at 5 bar. Molecular weight cut-off tests 

showed no rejection for the smaller glucose and sucrose molecules, though this increased to ~ 80% 

and full rejection for 36kD and 400kD polyvinyl pyrrolidine. Interestingly, FTIR spectra showed 

that the peaks of C-H stretching vibration (2800-3200 cm
-1

) and C-O stretching (1030 cm
-1

) became 

more pronounced as a function of increasing vacuum time, strongly suggesting that the use of 

vacuum further assisted in the polycondensation of phenolic oligomers. Based on these outcomes, a 

cluster to cluster model is proposed, whereby vacuum application promoted crosslinking reactions 

of the phenolic resin, creating microporous regions within the clusters, and mesoporous regions 

between the clusters.  
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1. Introduction 

Inorganic membranes have a wide range of industrial applications for processing liquids and 

coupled with the large number of available inorganic materials, makes this field of research 

attractive to solve separation problems. Applications such as alumina membranes for juice 

processing [1], protein separation [2], and oil/water emulsion separation [3], titania membranes for 

wastewater processing [4], zirconia membranes for processing vegetable oil [5] and food [6], 

zeolites for the dehydration of organic solvents [7], cobalt silica membranes for ammonia separation 

from waste waters [8] and carbonized templated silica membranes for desalination [9] are some of 

many examples. Inorganic membranes have a very wide range of pore sizes from microfiltration to 
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ultrafiltration to nanofiltration and even down to the sub-nanometer range depending on the 

materials of choice and synthesis conditions. 

One material of interest in this field is carbon derived membranes following the pioneering work of 

Koresh and Soffer [10] in 1983, who initiated extensive research activity in micropore tailoring of 

carbon by pyrolysing polyimide hollow fibres, where pore sizes are typically in the region of 3-6Å 

[11]. Subsequently, a variety of precursor materials were used to prepare carbon membranes, 

including derivatives of polyimides [12, 13], polyfurfuryl alcohol (PFFA) [14], phenolic resins [15-

18], polyacylonitrile [19], and polymers of intrinsic microporosity (PIM) [20]. Carbon membranes 

have been extensively developed for gas separation, though also investigated for liquid separation 

including oil/water [21], desalination [22], de-colorization of coke furnace wastewater [23], 

pervaporation of azeotropic benzene–cyclohexane mixtures [24], oil and water separation [25] and 

separation of chromium (VI) in ultrafiltration of water solutions [26] as representative examples. An 

advantage of carbon membranes is related to the good stability conferred by carbon structures.  

The pore dimension of carbon membranes can be finely adjusted by thermo-chemical treatment 

(pyrolysis or carbonization) to give narrow pore size distributions [27] and temperature plays an 

important role in the microporosity formation [28, 29]. Lately, polymeric precursors have been 

coated on the surface of porous ceramic substrates followed by carbonization in an inert atmosphere 

up to 800 °C, or even higher depending on the desired structural features of the carbon membrane 

matrix. Ceramic substrates have been reported to provide ideal surfaces for the coating of phenolic 

resins, particularly porous alumina tubes which allow this technology to be scaled up. This has been 

shown by Pacheco Tanaka and co-workers [30-33] by coating novolac and resol phenolic resins, or 

by mixing alpha-alumina with novolac. A very recent development involves the preparation of 

carbon-alumina mixed matrix membranes, where the phenolic resin was incorporated into the 

porous structure of an alumina substrate by a vacuum impregnation, showing that the vacuum time 

played an important role in the structural formation of the mixed matrix membranes [22]. Phenolic 

resins have several advantages for the preparation of CMS membranes such as better control of its 

crosslinking density, molecular weight and pore size by sol-gel chemistry and carbonization process 

[34-37]. Other types of polymers as carbon precursors, like polyimide, can also produce high 

quality CM membranes. However, polymers have very large poly-dispersity and molecular weight 

distribution, the degree of manipulation of material property is restricted, contrary to phenolic 

resins. 
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In this work we report the effect of a vacuum-assisted method as a pre-treatment of carbon thin 

films using a phenolic resin, prior to curing and carbonization. Contrary to the carbon-alumina 

mixed matrix membranes, the carbon membranes in this work were formed by dip-coating a 

phenolic resin solution on an alumina substrate, thus forming a resin thin film first. The membranes 

were subsequently exposed to a desired vacuum time, followed by curing and carbonization in an 

inert nitrogen atmosphere, resulting in a carbon thin film. Carbon materials were also prepared in 

the same fashion as the membranes and characterized using TGA, FTIR and nitrogen adsorption. 

The characterization work was correlated to the performance of the carbon membranes, and a 

mechanism is proposed to explain the structural tailoring of the porous carbon matrix. 

2. Experimental 

2.1 Materials and characterisation 

Phenolic resin Resinox IV-1058 (see chemical structure in the appendix Fig. A1) was used as 

precursor to prepare carbon materials and membranes (CM). The resin was mixed with methanol at 

1:10 wt% ratio and aged under stirring for 2 hours at room temperature. Subsequently, a small 

amount of the resultant solution was dispensed in a petri dish to form a thin resin film. The petri 

dish was directly placed inside a closed desiccator where a vacuum was applied for a desired 

period. Then the samples were cured in an oven at 60 °C for 24 hours. These samples are 

abbreviated as resin gel (RG) followed by a number which indicates the vacuum time. For instance, 

RG600 is a resin gel sample exposed to 600 s of vacuum time. The RG samples were placed in a 

furnace with a PID temperature controller and carbonised in an inert nitrogen atmosphere with a 

ramping and cooling rate of 5 °C min
-1

 up to 700 °C and a dwell time of 2.5 h. 

Structural properties of the CM material were analysed using an ASAP 2020 apparatus 

(Micromeritics Instrument Corporation). The samples were degassed at 200 °C for 24 hours under 

high vacuum prior to nitrogen adsorption at 77 K. Specific surface areas and pore volume were 

calculated via the multi-point Brunauer-Emmett-Teller (BET) model and the pore size distribution 

was determined using a Barrett-Joyner-Halenda (BJH) model. Thermogravimetric analysis (TGA) 

of the RG samples was carried out using a differential scanning calorimeter / thermogravimetric 

analyser (Mettler-Toledo, TGA/DSC 1) from 30 to 1000 °C at the same carbonisation conditions as 

the CM materials. The RG and CM materials were also characterized by using a Shimadzu 

IRAffinity-1 Fourier-transform infrared spectrometer with a Pike MIRacle attenuated total 
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reflectance accessory (ATR-FTIR) to determine the functional groups of the precursor phenolic 

resin after curing (RG samples) and after carbonisation (CM samples). 

2.2 Membrane preparation, characterisation and testing 

All CM membranes were coated on the outer shell of alumina tubular substrates (Ceramic Oxide 

Fabricators, Melbourne, Australia), with details of the substrate listed in Table 1. A dip coating 

method was used, where a substrate was immersed into the phenolic resin solution for 1 min of 

holding time with 10 cm min
-1

 dipping and withdrawal rate. After dip coating, the membrane was 

immediately exposed to a vacuum pressure (< 1 Torr) via the inner shell of the tube for a desired 

time (from 30 to 1200 s).  Subsequently, the coated membranes were cured and carbonised in the 

same manner as the CM materials described above. The CM nomenclature is also used, where 

CM30 membrane refers to carbonised membranes exposed to vacuum for a period of 30 s. The 

cross section and surface of the resultant CM membranes were analysed by scanning electron 

microscope (SEM, JEOL JSM-7001F) with a hot (Schottky) electron gun at an accelerating voltage 

of 10 kV.  

. 

Table 1. The properties of porous alumina substrate 

Material α-Al2O3 

Mean pore diameter (nm) 100 

Dimensions (mm) Outer diameter: 10 ; inner diameter: 7 

Length (cm) 4.3-5.3 

Pre-treatment Calcined in air at 1000 °C for 8 hours 
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The CM membranes were tested for permeation and the rejection of organic substances using a 

permeation rig as schematically shown in Fig. 1. A pressure vessel was used to hold an aqueous 

solution of interest which was pressurised to a desired pressure (valve V-1) using nitrogen gas from 

a high pressure cylinder. This provided the driving force (i.e. pressure gradient) for the permeation 

of water through the membrane which was placed in a membrane module. Permeation testing was 

carried out in a dead-end mode, where the retentate stream was closed. The permeate stream was 

collected in a beaker on an electronic scale linked to a computer.  

 

The flux, Jv (L m
-2

 h
-1

) was calculated using the follow equation: 

tA

W
J v




           (1) 

where W is the permeated mass (kg) collected over a predetermined time t (h) at steady state, and 

A is the effective permeation area (m
2
). The collected permeate was analysed using a Shimadzu 

UV-2700 UV-Vis spectrometer to determine the concentration of organic substances (i.e. glucose, 

sucrose, polyvinyl pyrrolidine (PVP molecular weights of 36kD and 400kD) against calibrated 

curves. The rejection (R) of substances was calculated using the following equation: 
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where pC  and fC are the concentrations of the solute in the permeate and feed streams, respectively. 
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Fig. 1. Schematic of the pressure driven membrane testing rig 

 

3. Results and discussion 

 

3.1 Materials Characterisation 

The TGA results in Fig. 2 indicate that there are no significant variations between the RG samples 

prepared using different vacuum time. For all the resin gel samples, it is observed that there are four 

decomposition steps of the gels, which is in line with reports elsewhere [38, 39]. The first step 

occurs at temperatures up to 200 °C, and the second step between 250 and 330 °C with mass losses 

of ~8 and ~13 wt% for each step, respectively. The initial mass loss up to 200 °C is associated with 

physisorbed water. The second mass loss is assigned to the initial onset of carbonisation and 

thermal decomposition of phenolic compounds [40, 41]. At this second stage, the mass losses of the 

RG600 and RG1200 samples are slightly higher than the other RG samples. This suggests that the 

longer vacuum time assisted the release of some volatile organic compounds. The third stage 

illustrates a large mass loss of approximately 23 wt% between 320 to 700 °C which predominantly 

correlates with the majority of chemical decomposition and recombination reactions within the 

carbonized resin structure. This last fourth stage leads to the formation of carbon matrix. The total 
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mass loss of all RG samples at 700 °C is calculated to be ~46 wt%, suggesting a high yield of the 

carbonised product.  

 

 

Fig. 2. TGA curves of RG samples exposed to varying vacuum time. 

 

FTIR analysis was carried out to examine the chemical evolution of phenolic resin before and after 

carbonisation at 700 °C with different applied vacuum times as displayed in Fig. 3. Overall, the 

FTIR spectra of the dried resin gel samples in Fig. 3a display a large number of peaks overlapping 

in the lower wavenumbers between 750 and 1750 cm
-1

, similar to those reported by Roczniak and 

co-workers [42]. These clusters of peaks in the region from 1700 to 600 cm
-1

 show strong signature 

bands assigned to hydrocarbons [43]. The strong bands in this region include the C=C stretch of 

phenyl rings (1600-1500 cm
-1

), C-H at 1500-1300 cm
-1

, the broad peak of C-O stretching of phenol 

(1300-1000 cm
-1

) and several other smaller peaks related to the C-H stretching bands [44]. Fig. 3a 

also reveals that the peaks of C-H stretching vibration (2800-3200 cm
-1

) and C-O stretching (1030 
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cm
-1

) are becoming more pronounced as a function of increasing vacuum time. This strongly 

suggests that the use of vacuum further assisted in the polycondensation of phenol oligomers, which 

resulted in resin crosslinking [45-47]. This vacuum-assisted reaction is most likely due to the faster 

drying rates, which leads to increased resin concentration. 

 

 

 

Fig. 3. FTIR spectra of RG and CM materials (a) before and (b) after carbonisation 
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The FTIR spectra of the CM materials that were carbonised at 700 °C (Fig. 3b) suggest a substantial 

change has occurred during the carbonisation process. From this figure, most of the strong 

vibrational peaks characteristics of the hydrocarbons in the fingerprint region (lower wavenumbers) 

have almost disappeared indicating that these organic functional groups have undergone thermal 

combustion and carbonization. Interestingly after carbonization, the only remaining groups to be 

observed in the FTIR are the C-H (2800-3200 cm
-1

) and C–O (1000-1150 cm
-1

) peaks, both of 

which become well-defined and increase in intensity as a function of increasing vacuum time, 

especially for the CM600 and CM1200 samples. These peaks are attributed to the methylene and 

ether linkages from the crosslinking reactions which seemed to be preserved even after 

carbonization treatment. 

 

Nitrogen sorption isotherms for the CM materials are shown in Fig. 4a, which exhibit the 

combination of typical IUPAC Type-I and Type-VI adsorption/desorption behaviours. This is 

characteristic of microporous and mesoporous structures, respectively. At very low relative 

pressures (p/po < 0.01), the nitrogen isotherms revealed a microporous structure (Type-I) and 

gradually increase at higher relative pressure (Type-VI) which is attribute to the presence of 

mesoporous structures. The hysteresis in the desorption branch is almost unnoticeable, but becomes 

more evident as the vacuum time increases and does indicate an increase in pore size accompanied 

by a broader pore size distribution. It is interesting to note that the micropore adsorption at very low 

partial pressures (p/po < 0.01) are very similar for all the CM samples, but the adsorption increases 

at higher relative pressure. Table 2 shows that the total pore volume significantly increased by 

almost three-fold from 0.81 to 2.25 cm
3
 g

-1
 as the vacuum time increased from CM0 to CM1200 

samples, respectively.  

 



 

 

11 

 

 

Fig. 4: (a) Nitrogen sorption isotherms and (b) pore size distribution of CM materials. 

 

Table 2 also lists the surface areas of the CM materials. The BET surface area increased 

significantly as a function of the vacuum time, from 834.5 (CM0) to 1910.5 (CM1200) m
2
 g

-1
, and 

likewise the total pore volumes from 0.81 (CM0) to 2.25 (CM1200) cm
3
 g

-1
. These results strongly 

suggest that the exposure to vacuum time conferred the CM matrix with a higher proportion of 

microporous structure, as the BET surface area is measured at the microporous region of the 

isotherm at low relative pressures (p/po < 0.20). Fig. 4b displays the pore size distribution (PSD) 

based on the Barrett-Joyner-Halenda (BJH) method by using the desorption branch of the isotherms 

in Fig. 4a. The PSD results clearly indicate the formation of a tri-modal distribution. The first 

distribution is very narrow and well-defined microporous region below 15 Å. The second 

distribution starts in the microporous region of 15 Å and broadly extends to mesoporous region of 

up to 50 Å. The third region is mesoporous starting at 50 Å all the way through to the macroporous 

region (> 500 Å). Further, increasing the vacuum exposure time led to a systematic increase in both 

mesoporous and macroporous distributions. 
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Table 2 – BET surface areas and pore volumes of CM materials. 

CM 

Material 

BET  

Surface Area 

(m
2
 g

-1
) 

Microporous 

Volume 

(cm
3
 g

-1
) 

Mesoporous 

Volume 

(cm
3
 g

-1
) 

Macroporous 

Volume 

(cm
3
 g

-1
) 

Total Pore 

Volume  

(cm
3
 g

-1
) 

CM0 834.5 0.31 0.49 0.02 0.81 

CM30 1138.6 0.39 0.82 0.03 1.24 

CM120 1112.6 0.38 0.81 0.03 1.22 

CM600 1436.8 0.39 1.20 0.04 1.64 

CM1200 1910.5 0.52 1.66 0.06 2.25 

 

3.2 Membrane characterisation and testing 

SEM images of a blank alumina tubular support and the five carbon membranes from no vacuum 

(CM0) to 1200 seconds (CM1200) of applied vacuum time are shown in Fig. 5. The surface SEM 

image (Fig. 5a) for the alumina support shows inter-particle voids between alumina particles, 

contrary to the all CM membranes which show various degree of surface coverage as the voids are 

mostly plugged by the carbon materials. There are no major differences of surface coverage for all 

CM membranes (Figs. 5b to 5f). The alumina particle shapes are visible on the surface, contrary to 

CM thin films which generally cover porous substrates (see schematics in Appendix Fig. A2). This 

clearly indicates that the phenolic resin covered the alumina particles and also penetrated into the 

substrate for all the membranes. This is confirmed by the representative cross section of CM0 (Fig. 

5g) and CM1200 (Fig. 5h) membranes shows that the phenolic resin penetrated into the alumina 

substrate between 4.5 and 9.5 µm. This observed penetration effect is closely associated with the 

contact between a dry porous surface (alumina substrate) and liquid (phenolic resin sol), which 

induces wetting forces and infiltration of liquid into porous materials [48].  It is also associated with 

the quality of the substrate, as in this work we did not add interlayers to the alumina substrate, 

aiming at reducing the production costs of CM membranes. However, the CM1200 membrane 

thickness is more than twofold higher than the CM0 membrane (i.e. no vacuum). These results 

suggest that upon the formation of the resin film like the CM0 membrane, the vacuum has then 
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drawn the phenolic polymers further into the porous substrate. Song and co-workers [22] also 

reported impregnation of porous substrates by a wet vacuum-assisted method, though their work 

lead to deep impregnation as phenolic resin sols permeated through the porous alumina support. In 

this work, a dry vacuum-assisted method was applied once resin thin films were formed, with a 

minor degree of resin impregnation into the porous substrate. In general, all the membranes do not 

seem to form a homogenous carbon layer structure.  
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Fig. 5. SEM image of surfaces of (a) an alumina support; membranes (b) CM0, (c) CM30, (d) 

CM120, (e) CM600 and (f) CM1200; cross sections of (g) CM0 and (h) CM1200. 

 

Fig. 6 shows the water flux permeation for pure water as the feed solution. There is a clear trend 

observed that water flux permeation of the CM membranes increased gradually with higher pressure 

and higher vacuum time. Firstly, by increasing the feed pressure, water flux increases due to an 

increase of the pressure gradient (i.e. driving force) across the membrane.  The highest fluxes were 

measured at 185 and 169 kg m
-2

 h
-1

 at 5 bar for the alumina substrate and CM1200 membrane, 

respectively. At the equivalent pressure of 5 bar, CM0 (i.e. no vacuum) membrane has the lowest 

flux with 3.9 kg m
-2

 h
-1

. At the other end of the pressure gradient (2 bar), CM1200 delivered a water 

flux of 77 kg m
-2

 h
-1 

but CM0 has only 3.3 kg m
-2

 h
-1

.  

 

 

Fig. 6. Water flux (± 7%) at steady state for CM membranes and alumina substrate at 25 C. 
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The water flux and rejection of molecular weight (MW) cut-off results for water (18 g mol
-1

), 

glucose (180 g mol
-1

), sucrose (342 g mol
-1

), and PVP (36k and 400k g mol
-1

) are displayed in Figs. 

7a and 7b. The first trend observed confirms the water flux trends in Fig. 6. As the membranes are 

exposed to longer vacuum times, higher water fluxes are observed in in all the different organic 

substances. A second trend is that the water fluxes generally decreased as the MW of the organics 

increased, though there are a few minor variations. The CM0 membrane was non-permeable to the 

majority of the substances, except for water and glucose. The CM30 membrane was permeable to 

all MW cut-off solutions, thus showing the onset of pore opening by the vacuum-assisted method. 

However, the water fluxes reduced abruptly by almost threefold from pure water to glucose 

solution, and then slightly reduced as the MW increased to sucrose, PVP36k and PVP400k. The 

membranes exposed to higher vacuum times (CM120, CM600 and CM1200) gave a different trend 

as the fluxes for pure water and glucose solution were quite similar (CM120 and CM600) or 

changed slightly only (CM1200). However, the slightly increase in MW from glucose to sucrose 

resulted in an abrupt reduction in flux. These results clearly indicate that the vacuum-assisted 

method has an effect in tailoring the pore size structure of the CM membranes.  

 

Further evidence of the vacuum effect on structural tailoring is provided by plotting the rejection 

results versus the MW as displayed in Fig. 7b. The CM0 rejected (100%) all the organic substances 

tested except water. As the kinetic diameter of water is 0.26 nm and the diameters of sucrose and 

glucose are 0.86 nm [49] and 0.9 nm [50], these results strongly suggest that the CM0 membranes 

have pores well below 0.86 nm. All membranes exposed to vacuum could not reject glucose and 

sucrose, thus giving a clear indication that pore sizes of CM30 to CM1200 membranes have 

increased well above 0.9 nm. Nevertheless, a rejection of 80% was observed for PVP36k for the 

CM30, and 35-45% for the other membranes. Finally, all CM membranes fully rejected the higher 

MW of PVP400k. These results are interesting as all membranes are characterised by a very broad 

pore size distribution as shown in Fig. 4b. The ability of the CM0 membrane to reject even glucose 

strongly suggests that the membrane has percolation pathways containing micro/meso/macro pores 

(see Table 2), though rejection is controlled by the micropores. This means that the larger 

mesopores and macropores are linked within the micropores of the CM0 matrix. In the case of the 

membranes exposed to vacuum, the MW cut-off results suggest that the percolation pathways 

changed, with a clear indication that microporosity is no longer the controlling mechanism for 
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rejection. Table 2 shows that under vacuum the mesoporous regions increased significantly whilst 

the contribution of the macropore region is very marginal and could be neglected. Therefore, the 

effect of vacuum in crosslinking the phenolic resin as ascertained by FTIR analysis (Fig. 3b), 

coupled with the results of water fluxes (Fig.  6) and MW cut-off (Fig. 7), indicate that the 

percolation pathways were modified, leading to the formation of new pathways controlled by the 

mesopores (2 ≤ dp ≤ 50 nm).  

 

 

 

 

Fig. 7. (a) Water flux and (b) organic rejection of CM membranes. 

 

3.3 Structural tailoring by vacuum 

The water flux and rejection results of the CM membranes coupled with the morphological features 

of the CM materials exposed to varying vacuum times are interesting and warrant further 

discussions on the potential mechanism of structural formation. It is proposed that the 

morphological features of the CM material are due to the effect of vacuum leading to a cluster to 
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cluster aggregation of phenolic resin in a sequential manner as schematically depicted in Fig. 8 and 

described as follows: 

1) By applying vacuum, the longer the vacuum time the more likely that the functional groups 

of the phenolic resin would be brought into closer proximity for the crosslinking reaction. 

2) Crosslinking reaction caused by the clustering of polymeric chains increases microporosity 

and surface area. 

3) As cluster to cluster formation proceeded as a function of the vacuum time, the gap between 

the clusters, or the inter-cluster space, increased and that caused an increase in total pore 

volume, accompanied by a broadening of the pore size distribution.  

 

The crosslinking of functional groups, as ascertained by the FTIR spectra (Fig. 3a), shows that the 

characteristic vibrational stretchings for C=C, C‒C, C‒H, OH, C‒OH groups of the precarbonized 

resin greatly diminished after carbonization (Fig. 3b). Also, it is observed that a greater peak 

intensity around 2800‒3200 cm
-1

 for the CH2 linking group and 1030 cm
-1

 for the C–O ether linking 

group occurred on the expense of the OH stretching peak broadly around 3300 cm
-1

.  
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Fig. 8. Schematic of the effect of the vacuum exposure time on the cluster to cluster mechanim of 

formation of CM materials and membranes. 

 

A final proof of the proposed cluster to cluster aggregation mechanism is supported by the 

performance of the membranes. The lowest water flux was measured for the CM0 membrane, 

which increased sequentially as a function of the vacuum exposure time in the order of  

CM0<CM30<CM120<CM600<CM1200. The highest water flux was reached by the CM1200 of 

169 kg m
-2

 h
-1

 at 5 bar, which was 91% higher than the CM0 membrane. The CM membrane 

performance results correlated very well with the CM membrane morphological features. It is well 

known that materials with higher total pore volumes and surface area deliver higher fluxes as 

clearly indicated in Fig. 4 and Table 2.  

 

Nitrogen adsorption analysis revealed that the CM materials resulted in a tri-model pore size 

distribution (Fig. 4b). It was also observed that the vacuum time exposure played an important role 

in tailoring the structure of the CM materials, as increasing the vacuum time led to a significant 

increase in the total pore volume and BET surface area. As the latter is generally calculated for the 
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first nitrogen adsorbed layer, and that microporous structures have higher surface area than 

mesoporous structures, these results clearly indicate that increasing the vacuum time conferred a 

higher degree of microporosity, particularly that the surface area of CM1200 was measured very 

high reaching values close to 2000 m
2
 g

-1
.  

 

 

Fig. 9. (a) Water flux (± 7%) of membranes at 5 bar and (b) normalised flux as a function of the 

membrane vacuum exposure time. 

 

In order to further understand the vacuum effect in tailoring the structure of the CM membranes, 

Fig. 9b provides an indication of the normalised flux calculated from the flux of the MW cut-off 

solution divided by the pure water flux for each membrane. Since a water molecule has a kinetic 

diameter of 0.26 nm, the reduction in the normalised flux signifies that membrane pores were 

blocked due to the presence of the organics with larger molecular size. The normalized flux of CM0 

membrane was determined to be 0.04 and 0.02 for glucose and sucrose solutions which means the 

membrane was able to block these organics up to 96 and 98%, respectively. In another word, only 4 

and 2% of the porous structures were accessible to water permeation only. In fact, CM0 was 

prepared using a conventional method of carbon molecular sieve membranes tailored for gas 
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separation, where average pores are generally between 2.5 to 5.0 nm. Hence, this explain the 

extremely low fluxes observed by the CM0 membranes. The MW cut-off results for the CM30 

membrane strongly suggest that ~71% of the porosity was blocked by the glucose, which increased 

to ~78% by the sucrose, followed by ~93% to ~97% by the PVP36k and PVP400k molecules, 

respectively. The membranes prepared with high vacuum times (CM120, CM600 and CM1200) 

present relatively lower pore obstructions for all the organic substances tested, clearly indicating 

that the pore size broadening of the CM membranes becomes more prevalent for vacuum time in 

excess of 30 s. 

 

4. Conclusions 

This work shows that vacuum played a major role in structural tailoring of carbon membranes. 

Water fluxes increased as a function of the vacuum time, which correlated well with pore volume 

and BET surface area increased. The nitrogen isotherms clearly showed the formation of a 

microporous region and other mesoporous and macroporous regions. MW cut-off tests showed the 

fluxes the carbon membranes could not reject the smaller molecules of glucose and sucrose, though 

high rejections of 80% and 100% were achieved from PVP polymers with 36kD and 400kD. 

Further characterisation clearly indicates that reactions of the phenolic resin occurred since the 

onset of the vacuum exposure, and the cross-linking of phenolic oligomers increases as a function 

of the vacuum time. The characterisation results, coupled with the membrane results, strongly 

suggest a cluster-to-cluster mechanism, leading to the aggregation of the phenolic compounds in 

close proximity, thus forming microporosity within the clusters, and meso and macroporosity 

between the clusters. 
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Appendix 

 

 

 

Fig. A1. Condensation of phenolic resin leading to the formation of (A) CH2 methylene and (B) C–

O ether linkages. 
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Fig. A2. Schematics of (I) conventional CMS membranes prepared on alumina substrates with 

interlayers and (II) this work. 
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Highlights 

 Carbon membranes derived from phenolic resin by a vacuum-assisted method.  

 Significant pore volume (2.2 cm
3
 g

-1
) and surface area (1910 m

2
 g

-1
) with vacuum.  

 Water flux increased by 91% as vacuum time for membranes was raised from 0 to 1200s. 

 Vaccum assisted the polycondensation reactions of phenolic oligomers.  

 Vacuum promoted a cluster aggregation mechanism with micro/mesoporous regions.  

 




