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ABSTRACT 

This study demonstrates that silicon additions are effective in refining the microstructure of additive 

layer manufactured (ALM) titanium components. The addition of up to 0.75wt% silicon to 

commercially pure titanium manufactured by wire arc ALM results in a significant reduction of the 

prior-β grain size. It is observed that silicon also reduces the width of the columnar grains and allows 

for the nucleation of some equiaxed grains through the development of constitutional supercooling 

and growth restriction. The grain size of the ALM components is compared to a casting process and 

it is found that the as-deposited microstructure produced during ALM exhibits larger average grain 

sizes. Using the Interdependence model for predicting grain size, it was determined that the 

population of nucleant particles that naturally occur in titanium, has comparable potency (i.e. ability 

to activate at a similar undercooling) regardless of the processing method, however, the ALM 

process contains fewer, sufficiently potent, nucleant particles than for the casting process due to the 

effect of subsequent cycles of remelting and heating.  

Keywords: additive manufacturing, grain refinement, titanium, silicon 

1. INTRODUCTION 

Titanium’s high strength to weight ratio, corrosion resistance and ability to withstand high 

temperatures makes its alloys prime candidates for aerospace applications [1, 2]. The highly 

desirable properties of titanium such as high ductility, strength and thermal resistance also make it 

very difficult to machine [1]. Subtractive manufacturing is inefficient in terms of time and material 

waste. For example, in the F-22 Raptor, an aircraft composed of approximately 39% titanium, only a 

tenth of the material purchased is used in the aircraft, with the remainder being lost due to 

machining waste [3]. Additive Layer Manufacturing (ALM) is an emerging net shape forming 

technology that seeks to address these material wastage issues [4]. ALM processes involve building 

components from powder or wire through selective melting or sintering in a layer-by-layer fashion 

[5]. Wire arc ALM is a novel method that allows for greater production rates (several kg/hr) and 

allows for the bulk production of large components [6].  

One key issue preventing the widespread use of additively manufactured products is the fact that 

the material properties of ALM components can be inferior compared to those of conventionally 

fabricated products [6]. In titanium alloys, the local solidification of small melt pools during layer 

deposition can result in epitaxial growth and the formation of columnar grains as heat is primarily 

extracted through the previously deposited solidified layer, often across a steep thermal gradient 

[7]. The emergence of grain boundary α that forms during the subsequent solid state transformation 

along aligned prior-β columnar grains can result in highly anisotropic properties and poor ductility in 

components produced by ALM [8-11].  

The issue of large directional grains can be addressed either with the addition of potent nuclei, a 

solute that promotes constitutional supercooling or a combination of the two [12, 13]. The 

Interdependence model clearly shows the interdependence between solute and particle potency in 

creating an equiaxed structure. Nuclei are naturally present in liquid metals and are the starting 

point of every grain. Introducing additional potent nucleant particles by inoculation would facilitate 

grain refinement by increasing the total number of grains and therefore reducing the average grain 

size [14]. Select growth restricting solutes can promote grain refinement by providing the 
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constitutional supercooling required to activate nucleant particles. Columnar grain growth occurs 

parallel to the direction of heat transfer from a pre-existing solid region and must be restricted to 

obtain homogeneity and to facilitate grain refinement. Constitutional supercooling of the melt pool 

reduces the growth rate of columnar grains at the solid-liquid interface [12]. This allows for 

additional nucleation events to take place within the melt thereby increasing the grain density. By 

using potent nuclei and a solute in unison, grain refinement can be optimised to produce a large 

number of nucleation events.  

The purpose of this study is to improve the microstructure of wire arc additively manufactured 

titanium to enable wider use of ALM products. Specifically, prior-β grain size reduction is targeted to 

improve properties such as yield strength, ductility and toughness [15]. Previous research [16-20] 

has demonstrated that silicon is effective in improving the β-grain density through constitutional 

supercooling for cast titanium alloys. At the time of writing, there is no commercial grain refining 

technology available or a clear understanding within the field of the factors that promote effective 

grain refinement of solidified ALM components. This study aims to address this gap in knowledge by 

investigating silicon as a grain refiner in the unique solidification conditions experienced by 

additively manufactured titanium products. 

2. METHOD 

Wire arc ALM was chosen due to its relatively low cost and fast deposition rates. The apparatus 

consisted of a EWM Tetrix350 welding machine which acted as the power source needed to melt the 

raw wire. The wire feedstock was Commercially Pure (CP) ASTM Grade 1 titanium (Baoji Xinnuo Net 

Metal Materials Co. Ltd, Fe - 0.023wt%, C - 0.009wt%, N - 0.014wt%, O - 0.05wt%, Ti Balance). It was 

supplied through an automatic Tetrix 4L wire feed unit and was deposited by the welder on to a Ti-

6Al-4V base plate. The welder’s electrode, the wire feed nozzle and a gas shield were designed to 

move in unison through the use of a Computer Numerical Control interface. This allowed the system 

to move in all three dimensions, enabling the fabrication of complex 3D structures. The operating 

parameters of the apparatus are listed in Table 1. 
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Table 1. Parameters used during the ALM process  

AM Machine Parameters  

Welder Type Tungsten Inert Gas (TIG) 

Electrode Tungsten–rare earth, 2.4 mm diameter 

Welding Current 150 A 

Distance between electrode and base plate 5 mm 

Titanium Wire Grade (feedstock) ASTM Grade 1 

Wire Diameter 1 mm 

Wire Feed Rate 1.5 m/min 

Deposition Rate 150 mm/min 

Shielding Gas Argon, 99.999% purity 

   

The ALM machine was used to deposit straight lines of titanium 200 mm in length and approximately 

10 mm in width. Ten layers of titanium were deposited for each build for a total of three samples. 

The first build was a control sample and contained no silicon. Silicon was added to the subsequent 

two builds through the use of specially prepared silicon paints, in a similar fashion reported 

elsewhere [21]. Two silicon paints were used for this experiment: one with 25 wt% silicon and 

another with 40 wt% silicon. Both paints contained an alcohol based gel into which silicon powder 

was added. The gel was chosen so that it would evaporate quickly upon deposition onto the 

substrate, leaving only silicon particles behind and minimising possible contamination. Oxidation of 

the samples was prevented during the deposition process by using a specially designed gas trailing 

shield to surround the deposited samples with high purity argon gas.  

The silicon powder particles used in the paints were less than 1 µm in diameter. This particle size 

was chosen to allow for rapid dissolution and adequate diffusion within the deposited titanium once 

melted. To introduce the silicon into the deposited material, the silicon paint was applied prior to 

the deposition of each layer along the arc’s path. The titanium wire feedstock was then deposited 

over the paint layer where in-situ alloying occurred. This process was repeated for ten layers of 

deposition. The two silicon paints were used to create two samples: one with low silicon content and 

the other with high silicon content. Figure 1 shows the components of the ALM machine as well as a 

partially completed experimental component. 
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Figure 1. ALM apparatus with welding torch, wire feed and gas shield as well as a titanium component under 

construction.  

After deposition, the samples were stress-relieved for 2 hours at 480oC as per industry standards [2, 

22]. Small areas of the samples were cut so that their elemental composition and silicon content 

could be determined using spectroscopy. The chemical composition of each sample and the 

feedstock wire is shown in Table 2. There is a small increase in Fe, N and O after deposition 

compared to the initial wire composition. Following this, three cross-sections were cut from each 

sample at various locations and were mounted in resin and polished using conventional techniques.  

Table 2. Average compositions of ALM samples (wt%). 

Silicon Content Si (%) Fe (%) N (%) O (%) Ti (%) 

Wire Feedstock - 0.023 0.009 0.05 bal. 

None 0.04 0.11 0.04 0.19 bal. 

Low 0.19 0.11 0.05 0.17 bal. 

High 0.75 0.05 0.03 0.16 bal. 

 

The polished sections were then analysed using microscopy to determine the number of prior-β 

grains within each section. The conventional ASTM intercept method was not employed to 

determine grain size for this study due to the directional nature of grain growth. As grain sizes varied 

depending on the axis of measurement, a variant of the planimetric method [23] was utilised to 

determine the level of refinement. Using this method all grains were counted manually and grain 

boundaries were traced on digital photographs to verify the measurements. These outlines were 

added to allow for easier visualisation of the grain boundaries as they cannot be viewed clearly at 

low magnifications. This method provides an accurate method for determining the grain size through 

the sections. Figure 2 compares an unedited image to its enhanced image for reference. The total 

number of grains within each 2D section was divided by the sample’s area to obtain a 2D grain 

density (grains/mm2).  A total of nine samples were analysed in this manner; three for each level of 

silicon. 
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Figure 2. Comparison of raw (A) and enhanced (B) images used in the analysis to enhance visualisation of prior- 

β grain boundaries and determine the grain size. The prior-β grain boundaries are visible due to the presence 

of grain boundary-α that forms on these boundaries during the β→α transformation. Within the prior-β grains, 

the α-phase adopts widmanstätten and colony-α structures [24].  The areas marked by the rectangles in A1 

and B2 are shown at a higher magnification in A2 and B2 respectively.    

3. RESULTS AND DISCUSSION 

The technique of using a silicon rich paint and in-situ alloying with the wire feedstock successfully 

produced a homogenous deposit with no evidence of unalloyed silicon found. Moreover, with in-situ 

alloying it was determined that the prior-β grain size decreased with increasing silicon content. 

Figure 3 shows the outlines of the prior-β grain boundaries within three sections of varying silicon 
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concentration. These results were quantified through the use of 2D grain density measurements 

(grains/mm2) and the results are shown in Figure 4. 

 
Figure 3. Prior-β grain structure of additive manufactured CP titanium with a) 0.04% Si, b) 0.19% Si and c) 

0.75% Si.    

 
Figure 4. The effect of silicon on the average prior-β grain density of additively manufactured CP titanium. 

Error bars indicate total range of grain density values.    

Figures 3 and 4 indicate a clear decrease in the average size of prior-β grains with increasing silicon 

concentration. Figure 3 also shows that the grain size is dramatically reduced along the outer edge of 

each ALM build. This feature may suggest that the surface which has direct contact with the argon 

atmosphere cools quickly upon deposition forming a chill zone similar to that found in cast 

microstructures near the mould wall. The presence of an oxide film may also enhance nucleation on 

the surface. For ALM processes, however, many of these small grains either experience grain growth 
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from the heat generated by subsequent layer deposition or are remelted. Solidification then occurs 

epitaxially on grains present in previously formed layers, taking on a columnar structure due to the 

steep thermal gradients experienced. While columnar growth is also expected in traditionally cast 

components, it is more prevalent in this ALM processes due to the strong directional heat flow into 

the base plate creating a steep temperature gradient. It can be seen from Figure 3 that silicon 

addition reduces the grain size but does not lead to a uniform equiaxed grain size although Figure 3c 

appears to be a mixture of columnar and equiaxed regions along its length. Silicon’s role as a grain 

refiner is expected to reduce columnar growth by promoting the nucleation of equiaxed grains in 

constitutionally supercooled zones. Instead, many of the columnar grains become narrower with 

increased silicon content due to lateral rejection of silicon rich solute slowing growth in this direction 

thus promoting further nucleation where the columnar structure is initiated. The vertical lengths of 

the columnar grains remain similar to those of the silicon-free samples. Columnar grain growth is 

primarily located in the centre of each sample where unidirectional heat flow promotes favourably 

orientated grain growth in the vertical direction.  

The prior-β grain boundaries observed in Figure 3 demonstrate that the microstructures of ALM 

components differ from those of conventionally manufactured components. The degree of this 

difference is quantified in Figure 5 which compares the grain refining effects of silicon observed in 

the current work with results observed for cast microstructures. The average 2D grain density values 

were used to determine the average grain sizes. Figure 5 shows the relationship between the grain 

size and the silicon content in comparison with pervious work conducted on castings made with CP 

titanium by Bermingham et al. [17]. It is apparent from Figure 5 that the additively manufactured 

samples have larger grain sizes for a similar silicon content. 
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Figure 5. Prior-β grain size versus silicon content on additive manufactured titanium and cast titanium (results 

obtained from Bermingham et al. [17]). Error bars indicate the range of grain sizes and silicon content for 

multiple test samples.    

The difference in the average grain sizes of the ALM and cast components can be explained by the 

Interdependence model [25]. This model relates grain size to nucleation parameters and alloy 

chemistry. Specifically, solute parameters such as the concentration of the alloy, Co, solute diffusion 

rate, D, and growth restriction factor, Q, are used in conjunction with nucleant parameters such as 

the required activation undercooling, ∆Tn, and particle spacing, xsd, to determine the average grain 

size. This relationship is given by equation 1: 

    (1) 

where dgs is the average grain size in micrometres, zΔTn is the incremental amount of undercooling 

required to re-establish the nucleation undercooling of the most potent nucleant particle, v is the 

grain growth velocity, Cl
* is the percentage of solute at the solid liquid interface and k is the partition 

coefficient of the solute. xsd is the distance between the nucleation-free zone defined by the first 

two terms in equation (1) and the next most potent activated nucleant particle in the melt. Equation 

1 assumes a constant particle number density for all compositions. The intercept of the fitted line 

with the y-axis in Figure 6 is an indication of the size of xsd. In essence, the model indicates that the 

solidified grain size depends on the presence of a nucleant particle population in the melt (with an 

average spacing of xsd and each particle requires a critical amount of constitutional supercooling for 

activation), as well as the presence of a segregating solute that provides the necessary amount of 

constitutional supercooling (which depends on Q, D and v in equation 1).  

For a given composition of silicon solute, D, Q, C0 and k would be the same for both cast and ALM 

scenarios, but the different processing conditions could experience different cooling rates which 

would cause the grain growth velocity (v) to differ. However, despite the differences between the 

casting and ALM processes, it is found from experimental observation that the growth velocities are 

reasonably similar. In previous work Bermingham et al. investigated the solidification conditions 

between the ALM process used here and previous casting work by comparing the secondary 

dendrite arm spacing (SDAS) of boron containing titanium alloys [21]. In both casting [26] and ALM 

[21] processes it was found that the SDAS was comparable at approximately 25µm, indicating similar 

cooling rates during solidification. Therefore, from this it is expected that the grain growth velocity 

(v) at the solid - liquid interface will be comparable given that the cooling rates (defined as the 

product of thermal gradient and growth velocity) during the casting and ALM processes are similar.  

With all other parameters of the Interdependence model being the same or at least similar in value, 

the remaining factors which may contribute to the discrepancy between the measured ALM and cast 

grain sizes in Figure 5 are the required nucleation supercooling zΔTn (potency) and the distance 

between nucleant particles xsd. These two factors depend on the types of nucleant particles present 

in the melt, their prevalence and whether or not they are activated during solidification.  
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Figure 6. Average prior-β grain size versus the inverse of the growth restriction factor for wire arc additively 

manufactured and cast titanium-silicon alloys (results obtained from Bermingham et al. [17]). Silicon content is 

inversely proportional to 1/Q. Error bars indicate ± 1 standard deviation for multiple test samples.     

Figure 6 plots the relationship between the average grain size against the inverse of the growth 

restriction factor (1/Q) for the ALM and cast samples. It has been found that in general the gradient 

of the trend lines (i.e. the slope calculated by first terms in Equation 1) indicates the relative potency 

of the nucleant particles and the intercept is xsd related to the maximum number of activatable 

particles [27]. The gradients of the two trend lines are similar, visually confirming that the 

parameters defining the slope of Equation 1 are similar for both the cast and ALM cases. Given that 

all other parameters defining the slope in Equation 1 are comparable, it can be concluded that the 

potency of the nucleant particles (given by ∆Tn) is also similar for both casting and ALM. The major 

difference between the ALM and casting processes, however, is the y-intercept value xsd. The xsd 

parameter is the distance between activated nucleant particles and it is evident that the casting 

process contains a higher density of nucleant particles than that present during the ALM process (i.e. 

smaller xsd).  

Layer remelting is a phenomenon that may account for the apparent observation that the alloys 

produced by the ALM process contain fewer activated nucleant particles than alloys produced by the 

casting process. In Figure 3 it is observed that the finest grains in the ALM parts are often found in 

the top region, particularly near the top surface layer. When the top of the previously deposited 

layer remelts during the ALM process by the newly deposited layer, many of the fine equiaxed grains 

that are present in the original top surface remelt and then on re-solidification grow epitaxially on 

the existing unmelted solid part of the layer. Furthermore, the additional thermal exposure as a new 
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layer is deposited may also promote grain growth in the solid below the remelted layer. Both of 

these scenarios would have the effect of increasing the overall measured grain size. In Figure 6 the 

grain size for the top final layer (10th layer) has been included and it is clear that the grain size in this 

region is much smaller than the bulk ALM grain size and is close to the grain size of the cast alloys. It 

also reaffirms the earlier conclusion that the alloys used during the ALM process likely contain 

nucleant particles with a comparable potency to those present in the cast alloys.  

The magnitude of the destruction of equiaxed grains during remelting provides a valuable insight 

into the requirements of a refinement technology able to form equiaxed grains during solidification 

after remelting of each deposited layer. If these naturally occurring nucleant particles can be 

identified, and more of them introduced during ALM, then smaller grain sizes comparable to the 

casting process may be achievable. Furthermore, as indicated by equation 1, introducing nucleant 

particles that activate at lower undercooling (i.e. particles of higher potency with lower ∆Tn) would 

also result in substantial refinement by increasing nuclei activation rates. The goal of future research 

is to discover new potent nucleant particles that have the potential to promote a fine equiaxed grain 

size during ALM even under layer remelting conditions given that nucleation ahead of the 

solid/liquid interface is essential to prevent epitaxial growth of oriented columnar grains. In titanium 

castings, Bermingham et al. [28] developed a method using titanium powder as an endogenous 

nucleant which, in conjunction with growth-restricting solute, was effective in reducing the grain size 

by an order of magnitude. Recently, Wang et al. [29] and Zhang et al. [30] observed fine equiaxed 

grains in titanium alloy components manufactured by direct metal deposition (LENS process) under 

certain processing conditions and concluded that these had nucleated on partially melted powder 

particles. This demonstrates that the columnar-to-equiaxed transition and refinement of β-grains 

during ALM is possible if suitable nucleant particles can be introduced.  

4. CONCLUSIONS 

Silicon was added to wire arc additively manufactured titanium components to refine the size of 

prior-β grains through constitutional supercooling and growth restriction. It was found that 

increasing the silicon content results in smaller grain sizes but it does not prevent the formation of 

columnar grains in the microstructure. Silicon additions refine the width of the columnar grains by a 

growth restriction process as solute is laterally segregated. By comparing the average grain size 

measurements with similar alloys produced by casting, it was found that the ALM components 

contained coarser grains for similar silicon concentrations. Utilising the Interdependence model, it 

was determined that the activated nucleant particles are the same or have a similar nucleation 

potency for both solidification conditions, and that the average distances between nucleating 

particles were much greater for the ALM structures when compared to cast components. This 

difference indicates that the ALM components contain a lower density of activated nucleant 

particles compared to the castings. However, it was found that the grain size of the top ALM layer is 

similar to cast titanium suggesting that the initially formed equiaxed grains are eliminated during 

layer remelting and subsequent epitaxial columnar growth coarsens the grain size. It can be 

concluded that the prior-β grain sizes of wire arc additively manufactured titanium components can 

be controlled by adding silicon but further refinement can only be achieved when potent nucleant 

particles are added in conjunction with silicon.  
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Highlights 

• Silicon addition decreases prior-β grain size in wire arc Additive Layer Manufactured (ALM) 

titanium. 

• Cast alloys have smaller grains compared to the same alloys produced by ALM. 

• Cyclical remelting during ALM destroys some equiaxed grains and favours epitaxial columnar 

growth. 


