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Abstract: A new Gadolinium(III)–coumarin complex, DO3A-Gd-CA, was designed and prepared
as a dual-modal probe for simultaneous fluorescence and relaxivity responses to fluoride ions (F−)
in aqueous media and mice. DO3A-Gd-CA was designed by using Gd(III) center as an MRI signal
output unit and fluoride binding site, and the 4-(diethylamino)-coumarin-3-carboxylic acid (CA)
as a fluorescence reporter. Upon the addition of fluoride ions to the solution of DO3A-Gd-CA, the
liberation of the coordinated CA ligand led to a 5.7-fold fluorescence enhancement and a 75% increase
in the longitudinal relaxivity (r1). The fluorescent detection limit for fluoride ions was determined
to be 8 µM based on a 3σ/slope. The desirable features of the proposed DO3A-Gd-CA, such as high
sensitivity and specificity, reliability at physiological pH and low cytotoxicity enable its application
in visualization of fluoride ion in mice. The successful in vivo imaging indicates that DO3A-Gd-CA
could be potentially used in biomedical diagnosis fields.
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1. Introduction

Detection and diagnosis of diseases at early stage with a high level of accuracy is the key
factor to be considered in biomedical and clinical researches on the treatment of diseases [1,2].
The disease biomarkers are often detected at all stages during diseases diagnostic and treatment,
while such detection remains a challenge currently [3,4]. Molecular imaging enables visualization
of disease biomarkers and their metabolisms in living systems in real time at various levels from
molecules and single cells, to tissues, and organs, which allows detection and differential diagnosis
of diseases [5,6]. Over the past decades, a variety of molecular imaging techniques, such as positron
emission tomography (PET), X-ray computed tomography (CT), magnetic resonance imaging (MRI)
and fluorescence imaging (FI), have been widely used in clinical diagnostics, biomedical research
and molecular imaging fields [7–10]. Each method has its inherent advantages and considerations.
For instance, a magnetic resonance imaging (MRI) technique is characterized by superb spatial
resolution but low sensitivity and requires a high concentration of the contrast agent [11]. Fluorescence
imaging, on the other hand, has much higher sensitivity and the potential for real-time imaging,
but with limited penetration depth of optical photonics, which restricts their application in the
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detection of biomarkers in deep tissues [12].These limitations could be addressed by the dual-modal
or multi-modal imaging techniques proposed recently [13–15]. A fluorescence/MRI dual-modal probe
fabricated by integrating a fluorescent unit with a contrast agent could thus be used for imaging
of biomarkers in vivo. With these dual-modal probes, detailed information on biomarkers in cells
and organs within live bodies could be observed simultaneously employing fluorescence imaging
and MRI techniques [16].Therefore, molecular probes, defined as a class of molecules that bind
selectively to the analyte of interest with concomitant change in one or more properties of the system,
such as fluorescence color [17–19], redox potential and magnetic resonance [20], plays fundamental
roles in advanced imaging techniques [21]. In recent years, numerous efforts have been made for
the development of molecular probes for the monitoring of biomarkers in biological systems [22].
Nevertheless, to the best of our knowledge, anions fluorescence/MRI dual-modal probes based on
Gd(III) complex have been scarcely reported [23].

Due to the important roles of anions played in live organisms, environmental samples, and in
the broad applications (e.g., catalysis, etc.), the development of molecular probes for the selective
and sensitive sensing and quantification of anions of interest have attracted considerable interest [24].
Among various important anions in biological systems, fluoride ion, being the smallest and most
electronegative anion, has particularly attracted attention due to its profound effects on human
health. It is well known that intake of acute amount of fluoride ions is beneficial to the treatment of
osteoporosis and dental health [25]. On the other hand, excessive intake of fluoride ions may induce
various diseases, such as gastrointestinal dysfunction, dental fluorosis, bone fluorosis, and so on [26,27].
Accordingly, the development of molecule probes for the selective and sensitive detection of fluoride
ion in biological systems is urgently needed.

In recent years, lanthanide (Ln) complexes have been reported to be an excellent candidate for the
development of the responsive optical probes owing to their unique photophysical properties [28–30].
By virtue of the extremely high Ln–fluoride affinity, the coordinated molecules or fluorophores of
Ln complexes can be displaced by fluoride ions. As the result of this interaction, the liberation of
the coordinated ligands may lead to the changes in several observable signals, such as colour [31],
fluorescence and MR [32,33]. Due to their high magnetic moment and symmetric electronic ground
state, gadolinium(III) complexes have been frequently chosen as MRI contrast agents [34]. As a
consequence of the fluoride ions-induced displacement, the relaxivity of Gd(III) complexes thus could
be finely tuned by changing in q (number of coordinated water molecular) upon the addition of
targeted fluoride ions in aqueous solution (Scheme 1) [35–43].
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Chemical Reagent Co., Ltd. (Shanghai, China). GdCl3, 1,4,7,10-Tetraazacyclododecane (Cyclen),
tert-Butyl bromoacetate and trifluoroacetic acid were purchased from Alfa Aesar.

1H-NMR and 13C-NMR spectra were recorded with an AVANCE600MHZ spectrometer (BRUKER)
with chemical shifts reported as ppm (in DMSO, TMS as internal standard). API-ES mass spectra
were recorded on an Agilent 6530QTOF spectrometer. Fluorescence spectra were determined with
LS 55 luminescence spectrometer (Perkin Elmer, Waltham, MA, USA). The absorption spectra were
measured with a Lambda 900 UV/VIS/NIR spectrophotometer (Perkin Elmer, Waltham, MA, USA).
Longitudinal relaxivity (r1) and MR imaging were performed on an MesoMR23-060H-I Analyst
Analyzing & Imaging system (Shanghai Niumag Corp., Shanghai, China) using a 0.5 T magnet,
point resolution = 256 × 128 mm, section thickness = 1 mm, TE = 18.2 ms, TR = 400 ms, and number
of acquisitions = 4.

2.2. Synthesis and Characterization of 4-(Diethylamino)-coumarin-3-carboxylic acid (CA)

4-(diethylamino)-coumarin-3-carboxylic acid (CA) was synthesized according to the literature
procedurein 78% yield [44]. 1H-NMR (DMSO-d, 600 MHz) δ (ppm): 12.52 (s, H), 8.59 (s, 1H), 7.64
(d, J = 12.0 Hz, 2H), 6.79 (d, J = 12.0 Hz, 2H), 6.57 (s, 1H), 3.49 (m, J = 9.0 Hz, 4H), 1.14 (t, J = 9.0 Hz,
6H). 13C-NMR (DMSO-d, 150 MHz) δ (ppm): 165.0, 160.0, 158.4, 153.4, 149.9, 132.3, 110.5, 107.8,
107.7, 96.4, 44.9, 12.8. ESI-HRMS (positive mode, m/z) Calcd for C14H15NO4: 261.1001 [CA − H]+;
Found: 260.0995.

2.3. Synthesis and Characterization of DO3A-Gd

1,4,7-Tris(carboxymethyl)-1,4,7,10-tetraazacyclododecane (DO3A) and DO3A-Gd were
synthesized according to the literature procedure [45,46]. ESI-HRMS (positive mode, m/z) of DO3A,
Calcd for C14H27N4O6: 347.1931: [DO3A + H]+; Found: 347.1936; ESI-HRMS (positive mode, m/z) of
DO3A-Gd, Calcd for C14H22GdN4O6: 500.0802 [DO3A-Gd]−; Found: 500.0781.

2.4. Synthesis and Characterization of DO3A-Gd-CA

DO3A-Gd-CA was prepared by addition of 1.0 equiv. of [DO3A-Gd]Na to CA (10 µM) solution
in CH3CN-H2O (9:1, v/v, pH = 7.4). ESI-HRMS (positive mode, m/z) of [DO3A-Gd-CA]−, Calcd for
C28H37GdN5O10: 761.1803, Found: 761.1778.

2.5. General Procedures of Spectroscopic Detection

Stock solutions of CA (1 mM) were prepared in CH3CN. Before spectroscopic measurements,
the solution was freshly prepared by diluting the high concentration of stock solution to corresponding
solution (10 µM, CH3CN:H2O = 9:1, pH = 7.4). DO3A-Gd-CA stock solution for anions sensing was
prepared in situ by addition of 1.0 equiv. of [DO3A-Gd]Na to CA (10 µM) solution in CH3CN-H2O
(9:1, v/v, pH = 7.4). Each time, a 3 mL solution of probe was filled in a quartz cell of 1 cm optical path
length, and different stock solutions of cations were added into the quartz cell gradually by using a
micro-syringe. Excitation wavelength for CA was 408 nm.

2.6. Association Constant Calculation

The Benesi-Hildebrand equation was used as shown below [47].

1
F0 − F

=
1

Ka(F0 − Fmin)[DO3A-Gd]
+

1
F0 − Fmin

where F and F0 represent the fluorescence emission at 460 nm of CA in the presence and absence of
[DO3A-Gd]−, respectively, Fmin is the saturated fluorescence intensity.
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2.7. MRI Experiment

Male 8-week-old mice were purchased from the Animal Experiment Center of Dalian Medical
University. All live mice experiments were performed in compliance with the relevant laws and
institutional guidelines.

All MR relaxivity measurements were performed on a MesoMR23-060H-I Analyzing & Imaging
system (Shanghai Niumag Corp.). The specific relaxivity values of r1 were calculated through the
curve fitting of 1/T1 (s−1) vs. the concentration of DO3A-Gd-CA (0.2 mM). T1-weighted MR images
were acquired using a multi-slice gradient echo sequence.

3. Results

3.1. Synthesis and Photophysical Characterization of DO3A-Gd-CA in Solution

The formation of DO3A-Gd-CA was investigated by recording the changes in UV-Vis absorption
and fluorescence spectra. As shown in Figure 1, consistent with the free coumarin derivative,
CA displayed a major absorption maximum at 402 nm in aqueous medium (CH3CN:H2O = 9:1,
pH = 7.4) [48]. In the presence of an increasing amount of [DO3A-Gd]− (0–15 µM), an obvious
bathochromic-shift in the absorption band from 402 nm to 430 nm and an increase in the absorption at
430 nm were noted, which could be assigned to the complexation of CA with Gd(III) center.
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Figure 1. UV-Vis absorption spectra of CA (10 μM) in the presence of increasing amount of  
DO3A-Gd (0–15.0 μM) in CH3CN-H2O (9:1, v/v, pH = 7.4). Insert: The maximum absorbance band of 
CA at 430 nm against the concentrations of DO3A-Gd. 

The complexation of CA with [DO3A-Gd]− was further studied by the analysis of fluorescence 
titration. CA displayed strong fluorescence at 460 nm in CH3CN-H2O (9:1, v/v, pH = 7.4). As 
expected, the fluorescence intensity of CA decreased gradually with a 12 nm bathochromic-shift in 
the emission band in the presence of an incremental addition of [DO3A-Gd]−. The fluorescence 
intensity reached a constant value when 12 μM fluoride ion was added (Figure 2, insert). The 
decrease of fluorescence intensity (more than 81.5% fluorescence quenching) and bathochromic-shift 
of emission wavelength suggested the formation of the complex DO3A-Gd-CA [49,50]. Based on the 
1:1 binding mode, the association constant (Ka) was evaluated to be 4.3 × 103 M−1 using the 
Benesi–Hildebrand method (Figure S6) [51]. Furthermore, no obvious changes of the fluorescent 
intensities within 13 h, indicating that DO3A-Gd-CA is reliable under the test condition (Figure S7). 
The proposed structure of DO3A-Gd-CA was further confirmed by ESI-HRMS. As shown in Figure 
S8, analysis of the solution of DO3A-Gd-CA revealed the presence of a peak assigned to 
[DO3A-Gd-CA]− at m/z = 761.1778, indicating the formation of the expected 1:1 stoichiometry 
complex between DO3A-Gd and CA. 

Figure 1. UV-Vis absorption spectra of CA (10 µM) in the presence of increasing amount of DO3A-Gd
(0–15.0 µM) in CH3CN-H2O (9:1, v/v, pH = 7.4). Insert: The maximum absorbance band of CA at
430 nm against the concentrations of DO3A-Gd.

The complexation of CA with [DO3A-Gd]− was further studied by the analysis of fluorescence
titration. CA displayed strong fluorescence at 460 nm in CH3CN-H2O (9:1, v/v, pH = 7.4). As expected,
the fluorescence intensity of CA decreased gradually with a 12 nm bathochromic-shift in the emission
band in the presence of an incremental addition of [DO3A-Gd]−. The fluorescence intensity reached a
constant value when 12 µM fluoride ion was added (Figure 2, insert). The decrease of fluorescence
intensity (more than 81.5% fluorescence quenching) and bathochromic-shift of emission wavelength
suggested the formation of the complex DO3A-Gd-CA [49,50]. Based on the 1:1 binding mode,
the association constant (Ka) was evaluated to be 4.3 × 103 M−1 using the Benesi–Hildebrand
method (Figure S6) [51]. Furthermore, no obvious changes of the fluorescent intensities within 13 h,
indicating that DO3A-Gd-CA is reliable under the test condition (Figure S7). The proposed structure
of DO3A-Gd-CA was further confirmed by ESI-HRMS. As shown in Figure S8, analysis of the solution
of DO3A-Gd-CA revealed the presence of a peak assigned to [DO3A-Gd-CA]− at m/z = 761.1778,
indicating the formation of the expected 1:1 stoichiometry complex between DO3A-Gd and CA.
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was firstly investigated by UV-Vis spectra titration analysis. The major absorption band of 
DO3A-Gd-CA (10 μM) at 430 nm decreased and the absorption peak assigned to free CA at 402 nm 
emerged by the addition of 0–200 μM tetrabutylammonium fluoride (n-Bu4NF) to the DO3A-Gd-CA 
solution (Figure 3). The final absorption spectrum was in agreement with the native CA in identical 
conditions (Figure S9a), which corroborated the results of the decomplexing of DO3A-Gd-CA in the 
presence of fluoride ion. The changes of absorption spectra ofDO3A-Gd-CA in the presence of other 
physiologically and environmentally important anions, such as Br−, I−, AcO−, HSO4−, NO3−, OH− and 
H2PO4− were then evaluated by UV-Vis analysis. As illustrated in Figure 4, obvious changes in 
UV-Vis spectra were obtained upon the addition of fluoride ions, instead of other anions even at 
high concentrations (concentration of Cl−, PO43− are 100 mM and 1 mM, respectively). This result 
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Figure 2. Fluorescence spectra of CA (10 µM) in CH3CN-H2O (9:1, v/v, pH = 7.4) in the presence
of different amounts of DO3A-Gd (0–15.0 µM). Insert: Fluorescence intensities of CA at 460 nm as a
function of the concentration of DO3A-Gd. Excitation was performed at 408 nm.

3.2. Spectroscopic Studies of DO3A-Gd-CA towards Fluoride Ion in Aqueous Medium

By virtue of the high affinity of gadolinium(III) center and fluoride ions, fluoride is expected to
replace the coordinated CA ligand [52], resulting the significant changes in UV-Vis and fluorescence
spectra of CA, by which fluorescence detection of fluoride ion could be achieved. The stock solution of
DO3A-Gd-CA for anion sensing was prepared in situ by the addition of 1.0 equiv. of [DO3A-Gd]−

to CA solution (10 µM) in CH3CN-H2O (9:1, v/v, pH = 7.4). The displacement approach was firstly
investigated by UV-Vis spectra titration analysis. The major absorption band of DO3A-Gd-CA (10 µM)
at 430 nm decreased and the absorption peak assigned to free CA at 402 nm emerged by the addition of
0–200 µM tetrabutylammonium fluoride (n-Bu4NF) to the DO3A-Gd-CA solution (Figure 3). The final
absorption spectrum was in agreement with the native CA in identical conditions (Figure S9a),
which corroborated the results of the decomplexing of DO3A-Gd-CA in the presence of fluoride
ion. The changes of absorption spectra ofDO3A-Gd-CA in the presence of other physiologically
and environmentally important anions, such as Br−, I−, AcO−, HSO4

−, NO3
−, OH− and H2PO4

−

were then evaluated by UV-Vis analysis. As illustrated in Figure 4, obvious changes in UV-Vis
spectra were obtained upon the addition of fluoride ions, instead of other anions even at high
concentrations (concentration of Cl−, PO4

3− are 100 mM and 1 mM, respectively). This result indicates
that DO3A-Gd-CA is specific toward fluoride ions over other competitive anions.
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Figure 3. UV-Vis absorption spectra of DO3A-Gd-CA (10 µM) in the presence of increasing
concentrations of fluoride ions (0–200 µM) in CH3CN-H2O (9:1, v/v, pH = 7.4). Insert: Ratiometric
changes of absorbance band of CA (A430/A402) as a function of fluoride ions concentrations.
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Figure 4. UV-Vis absorption spectra of DO3A-Gd-CA (10 µM) in the presence of various anions (200 µM)
in CH3CN-H2O (9:1, v/v, pH = 7.4): H2PO4

− (0.2 mM), PO4
3− (1 mM), HSO4

− (0.2 mM), Br−(0.2 mM),
I− (0.2 mM), NO3

− (0.2 mM), OH− (0.2 mM), AcO− (0.2 mM), Cl− (100 mM), F− (0.2 mM).

To evaluate the capability of DO3A-Gd-CA as the fluorescence probe for fluoride ions, emission
spectra of DO3A-Gd-CA were then investigated. As shown in Figure 5, DO3A-Gd-CA presented a
weak fluorescence emission. Upon the addition of fluoride ion, the maximum emission wavelength of
DO3A-Gd-CA at 472 nm was gradually shifted to 460 nm, accompanied by an increase in fluorescence
intensity. When 200 µM fluoride ion was added, the fluorescence intensity increased to a maximum
value. The intensity and overall pattern of the emission spectrum closely match those of native CA state,
indicating the liberation of coordinated CA ligand (Figure S9b). Job’s plots of the fluorescence emission
variation at 460 nm against the mole fraction of fluoride ions clearly showed the inflection point at 0.67
(Figure S10), which supported that DO3A-Gd-CA binding fluoride ion with 1:2 binding stoichiometry.
The fluoride-induced replacement process was further verified by HRMS. Upon the addition of fluoride
ions into the aqueous solution of DO3A-Gd-CA, the peak of [DO3A-Gd-CA]− at m/z = 761.1778
disappeared, and a new peak at m/z = 260.0930 assigned to [CA–H+]− was emerged, indicating that
the binding between fluoride ions with Gd(III) centers led to the release of CA (Figure S11). To evaluate
the selectivity of DO3A-Gd-CA toward fluoride ion against other anions, the changes in fluorescence
of DO3A-Gd-CA were examined in the presence of 0.2 mM various anions (Br−, I−, H2PO4

−, HSO4
−,

AcO−, NO3
−, OH−, AcO−) and 100 mM Cl−, 1 mM PO4

3−. The maximum emission of DO3A-Gd-CA
significantly increased in the presence of fluoride ions exclusively, whereas other anions did not induce
any detectable fluorescence enhancement (Figure 6). To further verify the excellent selectivity for
fluoride ions, the competitive experiments were conducted by the addition of 0.2 mM fluoride ion to
the mixture of DO3A-Gd-CA and diverse coexisting anions. As shown in Figure 6, negligible effects
on the detection of fluoride ions were found in the presence of various completive anions, indicating
DO3A-Gd-CA is a fluorescence probe specific for fluoride ion detection [53]. The excellent selectivity
to fluoride ions is partly due to the highest affinity to gadolinium(III) center compared to other anionic
analytes [54]. The relative fluorescence intensity of DO3A-Gd-CA is linearly proportional to fluoride
ions concentration of 0–30 µM (Figure S12), and the detection limit was calculated to be 8 µM based on
a 3σ/slope under experimental conditions, which is low enough for fluoride ion sensing in aqueous
medium and biological systems [55].
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Figure 6. Changes in fluorescence intensity of DO3A-Gd-CA (10 μM) toward fluoride ion in the 
presence of various competing anions in CH3CN-H2O (9:1, v/v, pH = 7.4): 1. H2PO4− (0.2 mM),  
2. PO43− (1 mM), 3. HSO4− (0.2 mM), 4. Br− (0.2 mM), 5. I− (0.2 mM), 6. NO3− (0.2 mM), 7. OH− (0.2 mM), 
8. AcO− (0.2 mM), 9. Cl− (100 mM), 10. F− (0.2 mM), and 11. All anions mixed. The intensities were 
recorded at 460 nm, excitation at 408 nm. 

3.3. MRI Responses of DO3A-Gd-CA towards Anions in Aqueous Medium and In Vivo 

The longitudinal relaxivity (r1) of DO3A-Gd-CA towards fluoride ions was further investigated 
by a MesoMR23-060H-I Analyzing & Imaging system at 25 °C. As shown in Figure 7,  
DO3A-Gd-CA (0.2 mM) exhibited relatively low longitudinal relaxivity (r1 = 1.67 mM−1∙s−1), 
suggesting that no inner-sphere water molecule was bonded to Gd(III) ion arising from the 
complexation of EDTA-Gd with CA (q = 0) [56]. Upon the addition of fluoride ion into the aqueous 
solution containing EDTA-Gd-CA (0.2 mM), the relaxivity increased to 2.957 mM−1∙s−1 (Figure 7), 
which closely matched the native EDTA-Gd state (Figure S13). The result demonstrated the 
replacement of coordination CA in the presence of fluoride ions. In addition, the corresponding  
T1-weighted images of DO3A-Gd-CA (0.2 mM) presented a continuous increase in spot brightness 
with increasing fluoride ion concentrations (Figure 7 insert). The increase in longitudinal relaxivity 
(r1) demonstrated the applicability of DO3A-Gd-CA as an efficient T1 MRI probe. 

Figure 5. Fluorescence spectra of DO3A-Gd-CA (10 µM) in the presence of different concentrations
of fluoride ion (0–200 µM). Insert: Fluorescence intensities of DO3A-Gd-CA (10 µM) at 460 nm as a
function of fluoride ions concentration (0–200 µM). Excitation was performed at 408 nm.
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Figure 6. Changes in fluorescence intensity of DO3A-Gd-CA (10 µM) toward fluoride ion in the
presence of various competing anions in CH3CN-H2O (9:1, v/v, pH = 7.4): 1. H2PO4

− (0.2 mM),
2. PO4

3− (1 mM), 3. HSO4
− (0.2 mM), 4. Br− (0.2 mM), 5. I− (0.2 mM), 6. NO3

− (0.2 mM), 7. OH−

(0.2 mM), 8. AcO− (0.2 mM), 9. Cl− (100 mM), 10. F− (0.2 mM), and 11. All anions mixed. The intensities
were recorded at 460 nm, excitation at 408 nm.

3.3. MRI Responses of DO3A-Gd-CA towards Anions in Aqueous Medium and In Vivo

The longitudinal relaxivity (r1) of DO3A-Gd-CA towards fluoride ions was further investigated
by a MesoMR23-060H-I Analyzing & Imaging system at 25 ◦C. As shown in Figure 7, DO3A-Gd-CA
(0.2 mM) exhibited relatively low longitudinal relaxivity (r1 = 1.67 mM−1·s−1), suggesting that no
inner-sphere water molecule was bonded to Gd(III) ion arising from the complexation of EDTA-Gd with
CA (q = 0) [56]. Upon the addition of fluoride ion into the aqueous solution containing EDTA-Gd-CA
(0.2 mM), the relaxivity increased to 2.957 mM−1·s−1 (Figure 7), which closely matched the native
EDTA-Gd state (Figure S13). The result demonstrated the replacement of coordination CA in the
presence of fluoride ions. In addition, the corresponding T1-weighted images of DO3A-Gd-CA
(0.2 mM) presented a continuous increase in spot brightness with increasing fluoride ion concentrations
(Figure 7 insert). The increase in longitudinal relaxivity (r1) demonstrated the applicability of
DO3A-Gd-CA as an efficient T1 MRI probe.
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The changes in relaxivity of DO3A-Gd-CA were fluoride-specific over other physiologically 
important anions including Br−, I−, H2PO4−, HSO4−, AcO−, NO3−, OH−, AcO−, Cl− (100 mM) and  
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vivo magnetic resonance imaging (MRI), the long-term cellular toxicity of DO3A-Gd-CA was 
evaluated by means of a MTT assay [57,58]. The MDA-MB-231 cell viabilities remained more than 
80% at a high concentration of 200 μM even with an incubation time of 24 h, demonstrating the low 
cytotoxicity of DO3A-Gd-CA (Figure S14). In addition, the suitable pH range for DO3A-Gd-CA was 
evaluated to be 3.0–11.0, suggested that the probe is suitable for application under physiological 
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interest (0.5 mM) in CH3CN-H2O (9:1, v/v, pH = 7.4). Insert: T1-weighted MR images (T1 
measurements at a proton frequency of 20 MHz) of DO3A-Gd-CA (0.2 mM ) in the presence of (1) Br− 
(0.5 mM); (2) I− (0.5 mM); (3) Cl− (100 mM); (4) PO43− (1.0 mM); (5) H2PO4− (0.5 mM); (6) HSO4− (0.5 mM); 
(7) NO3− (0.5 mM); (8) OH− (0.5 mM); (9) AcO− (0.5 mM); (10) F− (0.5 mM); and (11) All anions mixture. 

Figure 7. Changes in the longitudinal relaxivity (r1) of DO3A-Gd-CA (0.2 mM) as a function of the
fluoride ion concentration (0–0.5 mM) in CH3CN-H2O (9:1, v/v, pH = 7.4). Insert: T1-weighted MR
images of DO3A-Gd-CA recorded versus different concentrations of fluoride ion: (a) 0 mM; (b) 0.1 mM;
(c) 0.3 mM; (d) 0.5 mM.

The changes in relaxivity of DO3A-Gd-CA were fluoride-specific over other physiologically
important anions including Br−, I−, H2PO4

−, HSO4
−, AcO−, NO3

−, OH−, AcO−, Cl− (100 mM)
and PO4

3− (1 mM) (Figure 8). In addition, a distinctly increased imaging intensity in the presence
of 0.5 mM fluoride ions was obtained, whereas no obvious differences were observed upon addition
of other competitive anions (Figure 8, insert). In order to investigate the feasibility of DO3A-Gd-CA
for the in vivo magnetic resonance imaging (MRI), the long-term cellular toxicity of DO3A-Gd-CA
was evaluated by means of a MTT assay [57,58]. The MDA-MB-231 cell viabilities remained more
than 80% at a high concentration of 200 µM even with an incubation time of 24 h, demonstrating the
low cytotoxicity of DO3A-Gd-CA (Figure S14). In addition, the suitable pH range for DO3A-Gd-CA
was evaluated to be 3.0–11.0, suggested that the probe is suitable for application under physiological
conditions (Figure S15).
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Figure 8. Longitudinal relaxivity (r1) responses of DO3A-Gd-CA (0.2 mM) to various anions of interest
(0.5 mM) in CH3CN-H2O (9:1, v/v, pH = 7.4). Insert: T1-weighted MR images (T1 measurements at a
proton frequency of 20 MHz) of DO3A-Gd-CA (0.2 mM ) in the presence of (1) Br− (0.5 mM); (2) I−

(0.5 mM); (3) Cl− (100 mM); (4) PO4
3− (1.0 mM); (5) H2PO4

− (0.5 mM); (6) HSO4
− (0.5 mM); (7) NO3

−

(0.5 mM); (8) OH− (0.5 mM); (9) AcO− (0.5 mM); (10) F− (0.5 mM); and (11) All anions mixture.
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Then, in vivo MRI experiments were studied using a 0.5 T MRI instrument. As shown in Figure 9b,
after the injection of DO3A-Gd-CA (0.2 mM), a 40.1% contrast enhancement at the site of injection
was observed compared with the baseline of the pre-injection image (Figure 9a). Further injection of
fluoride ions (0.2 mL, 0.5 mM) into the hind legs of the mice led to the significant contrast effect of
T1-weighted MR images in the areas of interest (Figure 9c). To demonstrate the potential applications of
DO3A-Gd-CA in biomedical diagnosis fields, the proposed probe was subcutaneously injected into one
hind leg of mouse and then imaged at different time points, respectively. As shown in Figure S16, the
successive bright MRI action of the DO3A-Gd-CA on mice model was achieved at four representative
time points, even after 12 h, suggesting that the contrast agents could continuously improve contrast
in tissues and have a relatively longer blood circulation time. The results of images demonstrated that
DO3A-Gd-CA could serve as a MRI probe for imaging of fluoride ions in vivo.
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In summary, we reported the design and synthesis of a novel mononuclear nine-coordinate 
complex, DO3A-Gd-CA as fluoride-specific fluorescence and MRI dual-modal probe. Upon the 
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evaluate its potential biological applications. In vivo magnetic resonance imaging (MRI) in mice 
indicates that DO3A-Gd-CA can be potentially used as a powerful tool for the detection of fluoride 
ions in live systems. Given these promising results, we believe that DO3A-Gd-CA is valuable both in 
methodology and potential application, which provides a new flexible strategy for the rational 
design of bimodal or multimodal probes for anion sensing. 
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4. Conclusions

In summary, we reported the design and synthesis of a novel mononuclear nine-coordinate
complex, DO3A-Gd-CA as fluoride-specific fluorescence and MRI dual-modal probe. Upon the
addition of fluoride ions to the aqueous solution of DO3A-Gd-CA, the replacement of the coordination
aromatic carboxylic acid (CA) led an increase in longitudinal relaxivity (r1) and an enhancement
in fluorescence intensity, realizing switch-on dual-modal responses towards fluoride ions in water
medium. The desirable features of DO3A-Gd-CA, such as high sensitivity, suitability at physiological
pH, favorable dynamical stability and low cytotoxicity encouraged us to further evaluate its potential
biological applications. In vivo magnetic resonance imaging (MRI) in mice indicates that DO3A-Gd-CA
can be potentially used as a powerful tool for the detection of fluoride ions in live systems. Given
these promising results, we believe that DO3A-Gd-CA is valuable both in methodology and potential
application, which provides a new flexible strategy for the rational design of bimodal or multimodal
probes for anion sensing.
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