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Abstract 24 

Electro-concentration of nutrients from waste streams is a promising technology to enable 25 

resource recovery, but has several operational concerns. One key concern is the formation of 26 

inorganic scale on the concentrate side of cation exchange membranes when recovering 27 

nutrients from wastewaters containing calcium, magnesium, phosphorous and carbonate, 28 

commonly present in anaerobic digester rejection water. Electrodialytic nutrient recovery was 29 

trialed on anaerobic anaerobic digester rejection water in a laboratory scale electro-30 

concentration unit without treatment (A), following struvite recovery (B), and following 31 

struvite recovery as well as concentrate controlled at pH 5 for scaling control (C). Treatment 32 

A resulted in large amount of scale, while treatment B significantly reduced the amount of 33 

scale formation with reduction in magnesium phosphates, and treatment C reduced the 34 

amount of scale further by limiting the formation of calcium carbonates. Treatment C resulted 35 

in an 87±7% by weight reduction in scale compared to treatment A. A mechanistic model for 36 

the inorganic processes was validated using a previously published general precipitation 37 

model based on saturation index. The model attributed the reduction in struvite scale to the 38 

removal of phosphate during the struvite pre-treatment, and the reduction in calcium 39 

carbonate scale to pH control resulting in the stripping of carbonate as carbon dioxide gas. 40 

This indicates that multiple strategies may be required to control precipitation, and that 41 

mechanistic models can assist in developing a combined approach. 42 

Keywords 43 

Electrodialysis; nutrient recovery; membrane scaling; modelling; physico-chemistry; electro-44 

chemistry 45 

Highlights 46 

Struvite pre-precipitation essential for phosphate scaling control 47 

Multiple scale control strategies required for different precipitates 48 
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Generalized precipitation models effective for the specific case of electrodialysis scaling 49 

 50 

Nomenclature 51 

Variable Meaning 

r  Rate of change of concentration of aqueous, gas or solid 
components (mol m-3 s-1) 

k Semi-empirical rate coefficient for mineral formation (s-1) 

S Aqueous, gas or solid phase species concentration (mol m-3) 

Ksp Solubility product constant (-) 

kla The overall film mass transfer coefficient (s-1) 

KH Henry’s law constant (mol L-1 atm-1) 

pCO2 Partial pressure of CO2(g) in the atmosphere (atm) 

Facid Flow rate of acid (m3 s-1) 

kacid Proportional control coefficient (-) 

pHCres pH of the concentrate reservoir (-) 

 52 

 53 

 54 
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1. INTRODUCTION 55 

Fertilizer price instability due to increasing global demand, energy costs and resource 56 

limitations, has put increased pressure on the Australian agriculture industry. It has been 57 

identified that a substantial fraction of major macronutrients (100% P and K, 50% N) can be 58 

serviced from existing waste streams (Batstone et al. 2015, Mehta et al. 2016). An emerging 59 

technology is electro-concentration of ammonium and potassium ions from the waste stream 60 

of anaerobic digester supernatant, which has been passed through a centrifuge (hereafter 61 

referred to as centrate) (Mehta et al. 2015). Specifically, centrate is a target for nutrient 62 

recovery, particularly for ammonium and potassium recovery. 63 

 64 

Electrodialysis (ED) is an electrochemical membrane process in which an alternating series 65 

of cation exchange membranes (CEMs) and anion exchange membranes (AEMs) are placed 66 

between the terminal anode and cathode. Concentrate and diluate solutions are pumped, also 67 

in an alternating arrangement, through the chambers between the ion exchange membranes 68 

(IEMs). Applying current to the terminal electrodes induced a potential gradient which results 69 

in the movement of anions or cations through the AEMs or CEMs, respectively, due to 70 

migration. This migration results in the ions becoming concentrated in the concentrate 71 

solution.  72 

 73 

Membrane processes in water and wastewater treatment, not limited to electro-concentration 74 

processes, face the common problem of mineralization of inorganic solids on the surface of 75 

the membranes, known as membrane scaling. To address this problem, feed pre-treatment 76 

using filtration, coagulation and flocculation or acid addition; use of anti-scalant chemicals; 77 

and/or chemical cleaning of the membranes using acidic or basic chemicals is performed, 78 

with each treatment option adding cost and operational downtime in the case of membrane 79 
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cleaning (Greenlee et al. 2009). More recent studies also suggest the use of in situ measures, 80 

including application of a pulsed-electric field, as well as electroconvective vortices through 81 

operating at overlimiting current to reduce scale formation (Mikhaylin and Bazinet, 2016). 82 

 83 

A critical limitation of this application may be the phenomenon of membrane scaling due to 84 

concentration polarization, leading to enhanced rates of membrane scale in electrochemical 85 

IEM systems being fed with wastewater (Casademont et al. 2007, Xu and Huang 2008, 86 

Zhang et al. 2011). Concentration polarization results in higher concentrations of ions on the 87 

concentrate side of the CEM and depletion of ions on the diluate side (Baker 2004). Many 88 

studies focus on the diluate side concentration polarization phenomenon due the fact that it 89 

limits the maximum efficient operating current of the system (Choi et al. 2002, Krol et al. 90 

1999, Kanavova et al. 2014, Nikonenko et al. 2014). In particular, the concentrate side of the 91 

membrane is of interest in this study as it is a common site of membrane scaling in many 92 

applications where phosphate, calcium, magnesium and/or carbonate are present. The scope 93 

of this study considers inorganic membrane scaling across the entire domain of the diluate 94 

and concentrate streams. This includes the solution reservoirs, bulk solution in the chambers 95 

and the diffusion boundary layers (DBLs) close to the membrane surface. The relatively 96 

higher concentrations observed in the solution immediately next to the membrane (as 97 

compared to the bulk solution away from the membrane in the chambers and reservoirs) 98 

result in a higher saturation index (SI) for certain minerals within this membrane surface 99 

boundary layer, compared to the bulk solutions.  100 

 101 

While some modelling work has been done to study speciation and acid-base equilibria in 102 

electrochemical systems, no models have combined electrochemical and solid-phase physico-103 

chemical mechanisms to study the scaling in ED (Thompson Brewster et al. 2016, Nikonenko 104 
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et al. 2003, Dykstra et al. 2014). The aim of this study is to understand the causes and identify 105 

control strategies of membrane scaling during ED using centrate feed by developing a 106 

dynamic mechanistic model of ED, including precipitation of common scaling minerals. A 107 

practical outcome of this study will be to study centrate as a feed (diluate) stream into the ED 108 

cell, compared to effluent from an upstream pilot scale struvite crystallizer. 109 

 110 

The operation of ED for nutrient recovery from wastewater will differ compared to traditional 111 

desalination. It is envisaged that product recovery will be taken from the additional volume 112 

accumulating in the concentrate reservoir due to water fluxes from electro-osmosis and 113 

osmosis. Operating currents will be 70-90% of the limiting current, and will focus on 114 

generating product concentrate with minimal energy input. The model used is capable of 115 

approaching limiting current (described mechanistically by depletion of solute ions in the 116 

DBLs). Over limiting current mechanisms such as electro-convection are not studied here 117 

since above limiting operation is inefficient for ion recovery in this application. 118 

 119 

2. METHODS 120 

2.1 Experiments 121 

Reactor configuration 122 

Experiments were performed in a batch-mode, laboratory scale ED unit, with electrolytes, 123 

concentrate and diluate being recirculated through reservoirs as shown in Figure 1. The unit 124 

was equipped with two CEM membranes (General Electric CR67) and two AEM membranes 125 

(General Electric AR204SZRA), each with an effective area of 12 x 14 cm (168 cm2), and a 126 

20 mm spacing. The amount and thickness of membrane scaling and fouling was not pre-127 

determined and a commonly sized ED cell of 0.3-2 mm spacing would have clogged during 128 

even short-term experiments of several hours. Hence wider 20 mm spaces were utilized to 129 
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prevent clogging and to enable independent study of the scaling and fouling occurring on 130 

each different membrane without cross contamination between different membranes.  131 

 132 

Figure 1: Configuration of the laboratory scale electrodialysis (ED) system. Anion exchange 133 

membranes (AEM) and cation exchange membranes (CEM) are shown with diffusion 134 

boundary layer (DBL) spatial areas indicated on either side. The scheme shows all modeled 135 

streams including convective flows in and out of the reservoirs, water fluxes across the 136 

membranes, as well as CO2(g) stripping and acid dosing for pH control in the concentrate 137 

reservoir.  138 

 139 

A mesh stainless steel cathode and a Ti/PtIrO2 electrode as the anode (Magneto special 140 

anodes B V, Netherlands) were utilized. The configuration of the system was anode-CEM-141 

AEM-CEM-AEM-cathode. The reservoirs were vented to maintain atmospheric pressure. A 142 

potentiostat (GW INSTEK model GPC 3030) was used to supply a constant current of 500 143 

mA (29.8 A m-2). This current density resulted in formation of scale within the 72 h 144 

experimental duration, while also falling within the operational limits of the potentiostat. The 145 
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concentrate and diluate streams had a flow rate of 60 mL min-1 each. Sodium nitrate (5 g L-1) 146 

electrolyte was supplied to the anodic and cathodic compartments at the same flowrate of 60 147 

mL min-1 each. Sodium and nitrate ions are highly soluble and should not affect precipitation 148 

in the reactor except for their contribution to ionic strength. While cathodic reduction of 149 

nitrate is possible, previous work did not observe this to be significant (Thompson Brewster 150 

et al. 2016), and it if it did occur it would not significantly impact the key objective of 151 

precipitation modelling in the major scale areas in the central chambers of the cell. In full 152 

scale application, work should be done to using electrolyte solutions with low propensity for 153 

undesirable electrode reactions.  154 

 155 

Operating conditions 156 

Three experiments were carried out to evaluate the benefits of two types of anti-scaling 157 

treatments compared to using reject wastewater. For the first treatment (treatment A), the 158 

initial diluate and concentrate solution was centrate from Luggage Point Sewage Treatment 159 

Plant. This is a major wastewater treatment plant (WWTP) in Brisbane, Australia, which 160 

treats a mix of domestic and industrial wastewaters. The centrate had been left to settle at 161 

minimum overnight with the supernatant decanted for use in the experiments. The first 162 

scaling treatment (treatment B) involved passing the centrate solution through a pilot struvite 163 

crystallization process also located at Luggage Point WWTP. The struvite crystallization 164 

doses sodium hydroxide and magnesium chloride for pH control, and to promote phosphate 165 

recovery. The second scaling treatment (treatment C) involved automated H2SO4 acid dosing 166 

of the concentrate reservoir to maintain a constant pH value of 5, in addition to the struvite 167 

crystallization pre-treatment. Initial concentrate and diluate solutions were the same at the 168 

start of each experiment. Initial volumes of the diluate, concentrate and electrolyte solutions 169 
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were 20, 2 and 10 L for all three treatments, respectively. The electrolyte was replaced as the 170 

potential began to reach the limit of the potentiostat (30 V). 171 

 172 

Analytical techniques 173 

Sampling was done 7 times during the experimental period, with 30 or 45 mL samples taken 174 

from the reservoirs. Elemental analysis was performed using Inductively Coupled Plasma 175 

Optical Emission Spectroscopy (ICP-OES) (Perkin Elmer Optima 7300DV, Waltham, MA, 176 

USA) after nitric acid digestion for total and soluble cation concentrations (calcium, sodium, 177 

potassium, magnesium). Lachat QuickChem8500 Flow Injection Analysis (FIA) (Lachat 178 

Instruments, Loveland, CO, USA) was used to measure total soluble NH4
+-N, PO4

3--P, NOx-179 

N and NO2
--N. The start and finish samples were also analyzed by: ion chromatography (IC) 180 

for anions (Dionex ICS-2100 IC system, Dionex, CA, USA); total organic carbon (TOC) and 181 

inorganic carbon (TIC) (Shimadzu TOC-L CSH Total Organic Carbon Analyzer with TNM-182 

L TN unit, Kyoto, Japan); gas chromatography for volatile fatty acids (VFA) (Agilent 183 

Technologies 7890A GC System, CA, USA); and chemical oxygen demand (COD) (Merck 184 

Spectroquant® COD cell tests HC565173 25-1500 mg/L Spectroquant®). Total solids (TS) 185 

were measured by evaporating and drying a 10 mL wastewater sample at specified 186 

temperature (103 to 105℃). Total suspended solids (TSS) was determined as the difference 187 

between TS and total dissolved solid (TDS) as per standard methods (Eaton et al. 1998). 188 

Total solution volumes were also measured at the start and end of the experimental period 189 

(for the concentrate and diluate) and, before and after electrolyte replacement. 190 

 191 

After the experiments, membranes were weighed to evaluate the mass of fouling and scaling 192 

accumulated on and within the membrane. As the membranes must remain hydrated before 193 

they are used in the experiments, the dry weight was estimated by measuring the percentage 194 
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of water weight of clean wet membranes. Three hydrated AEM and CEM samples were cut in 195 

4 cm by 4 cm pieces, patted dry with paper towel and weighed. They were then dried in an 196 

oven at 50℃ until they recorded a constant weight, indicating they were completely dry. The 197 

percentage of water in a hydrated membrane was then calculated to be 33.7±0.4% and 198 

33.3±0.5% for CEMs and AEMs, respectively. At the completion of the ED experiments, the 199 

membranes were dried in the oven under the same conditions as the sample membranes. The 200 

final weight was subtracted from the initial weight to estimate the mass of scaling and/or 201 

fouling. It is possible some additional scale formed during the drying process. Assuming a 202 

worst case scenario of the maximum water loss containing the highest concentrations seen 203 

during the experiments, the potential for scale formation would be less or equal to the 204 

confidence limits represented in the results. 205 

 206 

After the membranes were dried, the composition of the scale was analyzed for bulk 207 

characterization using ICP as well as FIA to determine total Kjeldahl nitrogen (TKN) and 208 

total phosphorous (TP) (Lachat QuikChem8000 Flow Injection Analyzer, Lachat 209 

Instruments, Loveland, CO, USA). Total organic and inorganic carbon in the scale was not 210 

possible to quantify as the pH of the solution required to dissolve the minerals would result in 211 

stripping of carbon dioxide. Scanning electron microscopy (SEM) (Philips XL30 Scanning 212 

Electron Microscope, Philips Electron Optics, Eindhoven, Netherlands) for secondary 213 

electron and backscattered electron imaging as well as energy dispersive x-ray analysis 214 

(SEM-EDS) (EDAX SiLi detector, AMETEK, USA) was performed to provide further 215 

information about the variation in scale size, structure and elemental composition of the scale 216 

samples.  217 

 218 

2.2 Modelling approach 219 
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Physico-electrochemical  220 

The model in this study expanded previous work in Thompson Brewster et al. (2016) to 221 

include multi-species ion precipitation and compartment scaling, as well as expansion to a 222 

broader range of components, in order to describe real wastewater. The model includes a 223 

simplified Nernst-Planck equation to describe mass transport, a charge balance to describe 224 

pH, and charge proportioning between multiple counter and co-ions for ion transport through 225 

IEMs. Thompson Brewster et al. (2016) integrated the ED model with the speciation model in 226 

Flores-Alsina et al. (2015), allowing speciation, ion-pairing and pH effects to be simulated. 227 

These methods allow the diffusion and migration of ions to be linked with their speciation 228 

relating to pH and ionic strength of the solution in the direction of transport, perpendicular to 229 

the electrodes and membranes. The model uses a discretized approach for evaluating the 230 

average localized concentrations across different spatial areas in the cell and reservoirs 231 

corresponding to Figure 1. Concentrations are dynamically evaluated based on ionic fluxes 232 

and water flows between the spatial areas.  233 

 234 

For this study, the model in Thompson Brewster et al. (2016) needed to account for real 235 

wastewater solutions and expansion of the model from 5 to 11 model components was 236 

necessary. The components included total concentrations of sodium, potassium, calcium, 237 

magnesium, ammonium, phosphate, nitrate, acetate, chloride, carbonate and sulfate. As a 238 

result, this required the expansion of the model to include 79 model species, which include 239 

ion pairs as well as species made through acid or base dissociation of the above components 240 

(see Table S1.1 for the full list of species). Initial conditions were set to the initial 241 

concentrations of the centrate for the concentrate and diluate areas, or, for electrolyte areas, 242 

the electrolyte solution described in Section 2.1, or the initial volumes of the variable volume 243 

reservoirs as described in Section 2.1. For precipitation states an initial condition of 10-11 M 244 
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was used.  Spatial boundary conditions are zero flux at the electrodes, and zero concentration 245 

gradient at the electrodes.  It is noted that there are lateral advective flows through 246 

concentrate and diluate chambers, but these act on bulk compartments only.  247 

 248 

Solid phase chemistry was incorporated to account for the formation of precipitants in all 249 

reservoirs, bulk chambers and DBLs in the diluate and concentrate, but excluding the 250 

electrolyte. Mbamba et al. (2015) uses a parallel precipitation model using a semi-empirical 251 

rate approach, where an independent rate of formation of each of the multiple minerals is 252 

calculated from a pool of participating ions. This method was used to calculate the localized 253 

formation of mineral precipitants across the different spatial areas of the diluate and 254 

concentrate chambers, DBLs and reservoirs. The minerals chosen, based on the criteria in 255 

Mbamba et al., (2015), were struvite, amorphous calcium phosphate (ACP), calcium 256 

carbonate monohydrate (CCM) and magnesium phosphate. Struvite, ACP and CCM are 257 

included as there was evidence to suggest their formation based on the ICP and SEM-EDS 258 

results. Struvite, ACP and CCM are known to be common minerals found in wastewater and 259 

have been previously modelled in wastewater systems (Mbamba et al. 2015). Magnesium 260 

phosphate was added as it was difficult to distinguish the formation of struvite from 261 

magnesium phosphate using SEM-EDS due to the low sensitivity to low elemental mass 262 

elements like nitrogen (Mikhaylin and Bazinet, 2016). However, only a small amount of 263 

magnesium phosphate was obtained from the simulations and model results supported the 264 

preferential formation of struvite. Calcium sulfate was not included due to a high KSP = 265 

4.92×10-5 (Scott, 2012), and hence calcium sulfate never had a SI>1 in any part of the 266 

domain. 267 

 268 
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Chemical precipitation formation equations are shown in Equations 1 to 4, for struvite, ACP, 269 

CCM and magnesium phosphate, respectively, where r is the rate of formation or dissolution 270 

(mol m-3 s-1), k is the semi-empirical rate coefficient (s-1), and S is the state variable 271 

concentration of the species (mol m-3 for mineral species, mol L-1 for aqueous species). Scale 272 

formation only occurred if the SI of the mineral was greater than one; if the SI was less than 273 

one, mineral dissolution occurred. Rates of dissolution were modelled empirically using the 274 

same equation as formation, with the final exponent term decreased to 1 to account for the 275 

diffusion limitation of dissolution reactions (Mbamba et al. 2015). During these studies 276 

precipitation was the dominant mechanism. The semi-empirical rate coefficients and the 277 

pKsp values used in the model were 5, 0.5, 5 and 1 h-1 and 13.26, 7.144, 25.46 and 23.98 for 278 

struvite, CCM, ACP and magnesium phosphate, respectively (Scott, 2012, Mbamba et al. 279 

2015). 280 

3
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Mbamba et al. (2015) developed this model in three parts: equilibrium, kinetic and gas 285 

transfer. The equilibrium set of algebraic equations is similar to the one used here to account 286 
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for the speciation and acid-base pairings. The kinetic part is included by adding to and 287 

amending the set of ODEs used to describe the concentrations of ions in the ED cell by 288 

adding one state equation for each precipitant in each spatial area for the diluate and 289 

concentrate parts of the cell and reservoirs. A limitation of the precipitation model is that 290 

precipitation of solids inside the membrane itself will not occur, as the membrane is not 291 

considered a spatial domain in the finite element matrix. 292 

 293 

Gas transfer of CO2 was included as shown in Equation 5, where r is the rate of CO2(g) 294 

formation (mol m-3 s-1), kla is the overall film mass transfer coefficient (0.001 s-1), SCO2(aq) is 295 

the concentration of dissolved carbon dioxide in the liquid bulk phase as calculated in the 296 

equilibrium part of the model (mol L-1), KH is the Henry’s law constant (0.034 mol L-1 atm-1) 297 

and pCO2(g) is the partial pressure of CO2(g) (0.00032 atm) (Mbamba et al. 2015). NH3(g) 298 

stripping was not included as it was not observed to occur during the experiments. 299 

( ) 1000
)(2)(2)(2

×−=
gaqg COHCOlCO pKSakr  (5) 300 

 301 

Water transport  302 

The experiments showed significant increases (175% to 335%) in concentrate reservoir 303 

volume over the course of the experiments (see Table S4.1) due to the water transport caused 304 

by osmosis and electro-osmosis (Pronk et al. 2006). To account for the impact of water flux 305 

on the concentrate concentrations, the state equations for the diluate and concentrate 306 

reservoirs and chambers were expanded by removing the constant volume assumptions in the 307 

reservoirs and including an additional water flux term into the diluate and concentrate 308 
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chambers. The state equations used in the model corresponding to nomenclature in Figure 1 309 

are shown in Equations S2.1-S2.43.  310 

 311 

Concentrate pH control  312 

To simulate treatment C, the model included acid dosing to maintain the concentrate pH at 313 

pH 5 by using a proportional control loop. This control loop added a flow of sulfuric acid in 314 

order to match the calculated pH in the concentrate reservoir (pHCres) to the set point pH (5) 315 

using Equation 6, where Facid is the flow rate of acid (m3 s-1) and kacid is the proportional 316 

control coefficient (10-7). 317 

( )5−=
resCacidacid pHkF  (6) 318 

 319 

3. RESULTS AND DISCUSSION 320 

3.1 Wastewater characterization  321 

Anaerobic digester centrate was collected from Luggage Point WWTP, Brisbane, during 322 

February and March 2016. The pH, TSS, COD, total and soluble Ca, total and soluble Mg, 323 

soluble PO4
3--P and soluble NH4

+-N of the centrate used in this study were compared against 324 

longer tern data (January-April 2016) (Table S3.1, Figure S3.1). The comparison indicates 325 

that for most of the parameters the experimental wastewater has similar composition to the 326 

average values taken during the almost four months of baseline comparison data. On average, 327 

over the baseline comparison period the struvite crystallization process removed 86±8% and 328 

27±8% of the phosphorous and calcium, respectively, while it increased the magnesium 329 

concentration due to addition of magnesium chloride by 292±271% (an average 330 

concentration increase of 1.82 mM) compared to the average value for direct centrate. During 331 

this time, a separate study on magnesium dosing was being carried out at the struvite pilot 332 
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plant, which contributed to the high variability in the magnesium concentrations. In treatment 333 

C the influent total and soluble Mg were over 20 times higher than for the other two 334 

treatments. This is likely due to reduced phosphate concentration in the centrate, leading to a 335 

temporary overdose of Mg in the struvite crystallizer just prior to the collection period.  336 

 337 

 338 

3.2 Experimental results 339 

Membrane fouling and scaling 340 

Formation of a white scale was observed on the concentrate side of the inner CEM (Cc) for 341 

treatment A and B (Figures S5.2 and S5.6). A layer of brown fouling was formed on the 342 

diluate side of the inner AEM (Aa) in all treatments (Figures S5.3, S5.7 and S5.11). Figure 2 343 

shows the masses of membrane fouling and scaling observed on each membrane during the 344 

three consecutive runs. Using upstream struvite precipitation reduced the majority of scaling 345 

for the inner CEM membrane, i.e. the CEM closest to the cathode (Cc), and controlling the 346 

pH at pH 5 reduced it further. Using combined pre-treatment and pH control (treatment C) 347 

reduced the amount of scaling on this CEM by 87±7% compared to the direct centrate 348 

(treatment A). Furthermore, pH control of the concentrate did not make a difference to 349 

membrane fouling on the inner AEM, i.e. the AEM closest to the anode (Aa). However, using 350 

struvite crystallization pre-treatment significantly reduced the amount of membrane fouling 351 

on the inner AEM during both treatments B and C by 64±8% and 63±10%, respectively. 352 

While modelling organic fouling is not within the scope of this study, this is a reasonable 353 

topic for future analysis, including the effect of struvite pre-treatment on organic fouling 354 

reduction. Organic foulants could be included in the model as partially charged complex 355 

organics which precipitate above a specific threshold (considering also the charge change 356 
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with pH). There is, however, a substantial amount of fundamental research needed to support 357 

this model. 358 

 359 

Figure 2: Mass of membrane fouling and scaling where Ac and Cc represent anion and cation 360 

exchange membranes closest to the cathode, respectively. Aa and Ca represent anion and 361 

cation exchange membranes closest to the anode, respectively. Treatments A, B and C are 362 

shown in dark grey (darkest), green (lightest) and blue, respectively. 363 

 364 

After drying the membranes, any recoverable scale was analyzed using ICP, TKN, TP as well 365 

as SEM-OES. Table 1 shows the results of the bulk characterization of the scale using ICP, 366 

TKN and TP on all parts of the experimental membranes where it was observed to occur. The 367 

cation components in the scale include calcium, magnesium and nitrogen. Phosphorous is the 368 

only anion which was analyzed in the scale, but it is likely that carbonate precipitants are also 369 

present based on aqueous phase concentrations of TIC. A summary of the SEM-OES 370 

observations about scale size, composition and shape for the 6 scale samples is also in Table 371 

1. SEM-OES images and frequency graphs are in Figures S6.1 to S6.75.  372 

 373 
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Table 1: Summary of the composition of scale formed during the three ED experiments. 374 

Sample Ca 
(ICP) 
(mM/g) 

Mg 
(ICP) 
(mM/g) 

P (TP) 
(mM/g) 

TKN 
(TKN) 
(mM/g) 

SEM-OES summary  

(Note: nitrogen is difficult to detect 
using this method) 

Treatment A 
inner CEM (Cc) 
concentrate side 

3.50 2.79 2.99 1.82 Varied composition, size and 
structure. Indicated elemental 
combinations include calcium, carbon 
and oxygen; magnesium, 
phosphorous and oxygen; and 
calcium, phosphorous and oxygen.   

Treatment A 
inner AEM 
(Aa) 
concentrate side 

3.87 1.72 3.91 1.52 Varied composition, size and 
structure. Indicated elemental 
combinations include calcium, 
phosphorous and oxygen; and 
magnesium, phosphorous and 
oxygen. 

Treatment B 
inner CEM (Cc) 
concentrate side 

8.12 0.13 0.10 0.07 Consistent, small shape and 
composition. The only indicated 
elemental combination includes 
calcium, carbon and oxygen. 

Treatment B 
inner AEM 
(Aa) 
concentrate side 

0.25 4.28 N/A N/A Some variation in shape, size and 
composition. Indicated elemental 
combinations include calcium, carbon 
and oxygen; and magnesium, 
phosphorous and oxygen.  Organics 
present. 

Treatment C 
inner AEM 
(Aa) 
concentrate side 

0.03 4.75 4.10 2.11 Consistent large size and 
composition. Indicated elemental 
combinations include either low or 
high carbon content magnesium, 
phosphorous and oxygen 

Treatment C 
outer AEM 
(Ac) 
concentrate side 

0.02 3.56 3.24 2.03 Consistent large size and 
composition. Indicated elemental 
combinations include either low or 
high carbon content magnesium, 
phosphorous and oxygen 

  375 
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3.3 Modelling results 376 

Model calibration for the CO2(g) kla  value and effective membrane resistance fraction was 377 

conducted using the data from treatment A, and validated using the data from treatments B 378 

and C. The full experimental and modelled results are shown in Figure S7.1, and have been 379 

summarized into a normalized correlation scatter plot in Figure 3, which has an associated 380 

normalized R2 value of 0.77. Further discussion of the calibration may be found in Section 381 

3.5.  382 

 383 

Figure 3: Normalized correlation plot comparing the model components and pH to treatments 384 

A, B and C shown here in black (darkest), green (lightest) and blue, respectively. 385 

 386 

Figure 4 shows the model output for the concentration of each precipitant across all spatial 387 

areas of the diluate and concentrate chambers and DBLs of the ED cell. The notably higher 388 
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concentrations in the concentrate DBLs next to the inner membranes indicate that the model 389 

is consistent with the experimental observations of where the mineralization occurred. In 390 

addition, the model is consistent with the observations of the types of mineralizing elements 391 

described in Table 1. While conditions leading to supersaturation were expected on both the 392 

inner CEM and AEM concentrate sides during treatment A and B. The pH control of the 393 

concentrate in treatment C was ineffective to sufficiently lower the SI of struvite and prevent 394 

scale formation in this area.  395 
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 396 

 397 

Figure 4: Modelled precipitation in the diluate and concentrate chambers and diffusion boundary layers (DBLs) for each of the three 398 

electrodialysis (ED) treatments. From left to right shows the DBLs and chambers of the cell, with the orientation of the cathode to the left and 399 

the anode to the right; the location of the inner cation exchange membrane (CEM) and anion exchange membrane (AEM) are shown for 400 

references to their location in the cell. Treatments A, B and C are shown in black (darkest), green (lightest) and blue, respectively. 401 
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 402 

3.4 Mechanisms contributing to membrane scaling 403 

Figure 4 shows the simulated results occuring in the DBL spatial area at the major scaling site 404 

on the concentrate side of the central CEM for the three treatments. The inlays in Figure 4 405 

show that the struvite pre-treatment in treatments B and C depleted the initial concentrations 406 

of phosphorous such that formation of struvite was limited. This explaination based on PO4
3- 407 

limitation is supported by similar NH4
+ concentrations, Mg2+ concentrations and pH in 408 

treatment B compared to treatment A. In treatment C, the pH of the concentrate stream was 409 

controlled at pH 5, resulting in the speciation of carbonate to be driven towards H2CO3(aq) 410 

instead of CO3(aq)
2- and HCO3(aq)

- (noting that mathematically H2CO3(aq) is equivalent to 411 

CO2(aq)). The rate of CO2(g) stripping is driven by the concentrations of H2CO3(aq) (CO2(aq)), 412 

which in the case of pH controlled at pH 5 is much higher. Therefore, more carbonate leaves 413 

the system as gas resulting in the depletion of the aqueous carbonate component as seen in 414 

the inlays of Figure 4. This depletion of carbonate results in a SI below 1 for CCM and less 415 

precipitation occurring. The acid-base dissociation framework used in the model is generally 416 

applicable to any solution that contains these components. However, this study has 417 

highlighted the physico-chemically described speciation of carbonate as a key aspect of scale 418 

formation. Generalized speciation models could be a useful took to evaluate scale formation, 419 

particularly during overlimiting current applications such as Cifuentes-Araya et al. (2013) 420 

and Mikhaylin et al. (2016), where steep ionic concentration gradients may exist. 421 

 422 

3.5 Calibration analysis 423 

Compared to the original membrane transport model described in Thompson Brewster et al. 424 

(2016), the modelled effective membrane resistance to ion transport was increased an order of 425 

magnitude in order to fit the concentration profiles over time. This includes protons and 426 
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hydroxide ions as they function as co-ions. Since migration is fixed by the overall current, the 427 

main effective change is balance between ionic back diffusion versus forward migration. It is 428 

likely that the Membranes International Inc. membranes (Membranes International Inc., 429 

2016a, 2016b) used in Thompson Brewster et al. (2016) have electrical resistances which 430 

differ to the membranes used here. Due to different test conditions used to evaluate 431 

manufacturer membrane resistances these values are difficult to compare without the use of a 432 

standardized model (such as used here). This model parameter (the effective membrane 433 

resistance to ion transport) appears to be very important, particularly for electrodialytic 434 

nutrient recovery, as it affects the back diffusion of ions and the maximum concentrations in 435 

the concentrate stream. These are both key issues to the practical application of 436 

electrodialytic nutrient recovery, and the balance of membrane selectivity versus resistance 437 

for mixed ions has not been covered extensively in the literature. This additional effective 438 

membrane resistance benefits the increase in concentration would need to be practically 439 

evaluated in regards to the resulting increase in energy consumption, but such a study is 440 

beyond the scope of this paper.  441 

 442 

3.6 Implications for design and application 443 

This study demonstrated that scaling in ED with real wastewater occurs due to inorganic 444 

species such as PO4
3-, NH4

+, Mg2+, Ca2+ and CO3
2-, which form low-solubility minerals. The 445 

formation of struvite scale can by limited by removal of phosphate from the aqueous phase, 446 

while in the case of calcium carbonates it is aqueous carbon dioxide that needs to be 447 

removed. The intended use of this technology is downstream of a struvite recovery unit for 448 

reject centrate liquor in a standard WWTP. The main outcome of this study is that coupling 449 

these technologies is useful for scale control during ED with wastewater relatively high in 450 

phosphorous. The more effective the struvite recovery unit is at removing all the phosphate, 451 
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and if possible calcium, from the wastewater, the less scale will be formed and therefore the 452 

maintenance costs for the ED unit will be lower. However, due to its main purpose, the 453 

struvite recovery unit does not reduce the calcium or carbonate concentrations as much as the 454 

phosphorous. It is noted that pH control of the concentrate is far more expensive (due to 455 

chemical consumption) than phosphate removal, and hence there is a hierarchy of control 456 

measures. Use of aeration pre-treatment for struvite crystallization to raise the pH may be 457 

beneficial as it is known to remove carbonates in addition to promoting struvite formation. 458 

Based on the mass of scale formed during the different treatments, it is estimated that the in 459 

situ scale reduction treatment C would extend the need for a shut-down chemical cleaning 460 

using acid-wash by approximately 7 times compared to treatment A. While this study used 461 

spacers of 20 mm, spacers of 5-10 mm are envisaged for pilot and full scale operation using 462 

centrate feed based on the scale control treatments identified here. 463 

 464 

The description of scale prevention here is very similar to Shaffer and Mintz (1966), their key 465 

recommendation is to keep the solution below the supersaturation limit. The model developed 466 

here can be used to dynamically identify which conditions will lead to the supersaturation 467 

limit in the complex solutions and in spatial areas where it is difficult to pre-determine the 468 

concentrations, for example in DBLs. This coupled electrochemical and physico-chemical 469 

modelling tool should be used for processes where scaling is likely to occur, such as dairy 470 

processing (Casademont et al. 2007, Casademont et al. 2008), phosphate recovery from 471 

reverse osmosis concentrate (Zhang et al. 2013), or other applications concerning nutrient 472 

recovery from faeces or urine streams (Ledezma et al. 2015, Mondor et al. 2009). This study 473 

highlights the usefulness of ED as a nutrient recovery technology for domestic centrate 474 

wastewater which is low in phosphate. However, due to the complex physico-chemistry of 475 

electrochemical technologies, we hesistate to nominate ED as a optimal technology of any 476 
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liquid stream low in phosphate, as calcium and magnesium based scales are common 477 

occurances in many systems. Model based analysis using the specific concentrate and diluate 478 

conditions would be necessary to perform before coming to such a conclusion for other types 479 

of wastewater. 480 

 481 

Future  studies could study scale control using pulsed-modes of current, membranes with 482 

different properties and electroconvective vortices which occur at overlimiting current 483 

(Cifuentes-Araya et al. 2013, Cifuentes-Araya et al. 2014, Mikhaylin et al., 2014, Mikhaylin 484 

& Bazinet,  2016). In addition, prior to full-scale operation, organic fouling formed on the 485 

diluate side of the AEM should be analyzed to determine whether pre-treatment removal or 486 

ED reversal (EDR) need to be applied to control fouling formation. 487 

 488 

4. CONCLUSIONS 489 

The combination of struvite removal pre-treatment and pH control at pH 5 reduced the 490 

amount of mineral scale observed during electro-concentration of real domestic reject 491 

wastewater. There is also preliminary evidence to suggest struvite pre-treatment reduced the 492 

amount of organic fouling in the system. A mechanistic model describing the behaviour of 493 

inorganic ions including aqueous, solid and gas phase physico-chemistry was developed. The 494 

model indicated that the mechanisms behind scale control on the concentrate side of the CEM 495 

were the removal of a limiting struvite component (phosphate) through the struvite 496 

crystallization pre-treatment and stripping of the carbonate component as CO2(g) which 497 

prevented the formation of CCM. 498 

 499 
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 1 

Figure 1: Configuration of the laboratory scale electrodialysis (ED) system. Anion exchange 2 

membranes (AEMs) and cation exchange membranes (CEMs) are shown with diffusion 3 

boundary layer (DBL) spatial areas indicated on either side. The scheme shows all modeled 4 

streams including convective flows in and out of the reservoirs, water fluxes across the 5 

membranes, as well as CO2(g) stripping and acid dosing for pH control in the concentrate 6 

reservoir.  7 

  8 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

2 

 

 9 

Figure 2: Mass of membrane fouling and scaling where Ac and Cc represent anion and cation 10 

exchange membranes closest to the cathode, respectively. Aa and Ca represent anion and 11 

cation exchange membranes closest to the anode, respectively. Treatments A, B and C are 12 

shown in dark grey (darkest), green (lightest) and blue, respectively. 13 

  14 
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 15 

Table 1: Summary of the composition of scale formed during the three ED experiments. 16 

Sample Ca 
(ICP) 
(mM/g) 

Mg 
(ICP) 
(mM/g) 

P (TP) 
(mM/g) 

TKN 
(TKN) 
(mM/g) 

SEM-OES summary  

(Note: nitrogen is difficult to detect 
using this method) 

Treatment A 
inner CEM (Cc) 
concentrate side 

3.50 2.79 2.99 1.82 Varied composition, size and 
structure. Indicated elemental 
combinations include calcium, carbon 
and oxygen; magnesium, 
phosphorous and oxygen; and 
calcium, phosphorous and oxygen.   

Treatment A 
inner AEM 
(Aa) 
concentrate side 

3.87 1.72 3.91 1.52 Varied composition, size and 
structure. Indicated elemental 
combinations include calcium, 
phosphorous and oxygen; and 
magnesium, phosphorous and 
oxygen. 

Treatment B 
inner CEM (Cc) 
concentrate side 

8.12 0.13 0.10 0.07 Consistent, small shape and 
composition. The only indicated 
elemental combination includes 
calcium, carbon and oxygen. 

Treatment B 
inner AEM 
(Aa) 
concentrate side 

0.25 4.28 N/A N/A Some variation in shape, size and 
composition. Indicated elemental 
combinations include calcium, carbon 
and oxygen; and magnesium, 
phosphorous and oxygen.  Organics 
present. 

Treatment C 
inner AEM 
(Aa) 
concentrate side 

0.03 4.75 4.10 2.11 Consistent large size and 
composition. Indicated elemental 
combinations include either low or 
high carbon content magnesium, 
phosphorous and oxygen 

Treatment C 
outer AEM 
(Ac) 
concentrate side 

0.02 3.56 3.24 2.03 Consistent large size and 
composition. Indicated elemental 
combinations include either low or 
high carbon content magnesium, 
phosphorous and oxygen 

17 
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 18 

Figure 3: Normalized correlation plot comparing the model components and pH to treatments 19 

A, B and C shown here in black (darkest), green (lightest) and blue, respectively. 20 

 21 
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 22 

 23 

 24 

Figure 4: Modelled precipitation in the diluate and concentrate chambers and diffusion boundary layers (DBLs) for each of the three 25 

electrodialysis (ED) treatments. From left to right shows the DBLs and chambers of the cell, with the orientation of the cathode to the left and 26 

the anode to the right; the location of the inner cation exchange membrane (CEM) and anion exchange membrane (AEM) are shown for 27 

reference to their locations in the cell. Treatments A, B and C are shown in black (darkest), green (lightest) and blue, respectively. 28 

 29 
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Highlights 1 

Struvite pre-precipitation essential for phosphate scaling control 2 

Multiple scale control strategies required for different precipitates 3 

Generalized precipitation models effective for the case of electrodialysis scaling 4 

 5 


