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Abstract 

Previous findings indicate age-related differences in frontal-amygdala connectivity during 

emotional processing. However, direct evidence for age differences in brain functional activation 

and connectivity during emotional processing and concomitant behavioral implications is 
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lacking. In the present study, we examined the impact of aging on the neural signature of 

selective attention to emotional information during working memory (WM) encoding. 

Participants completed an emotional WM task in which they were asked to attend to emotional 

targets and ignore irrelevant distractors. Despite an overall reduction in accuracy for older 

relative to younger adults, no behavioral age effect was observed as a function of emotional 

valence. The functional connectivity patterns of left ventrolateral prefrontal cortex showed that 

younger adults recruited one network for encoding of both positive and negative emotional 

targets and this network contributed to higher memory accuracy in this cohort. Older adults, on 

the other hand, engaged two distinct networks for encoding of positive and negative targets. The 

functional connectivity analysis using left amygdala further demonstrated that older adults 

recruited one single network during encoding of positive as well as negative targets whereas 

younger adults recruited this network only for encoding of negative items. The engagement of 

amygdala functional network also contributed to higher memory performance and faster 

response times in older adults. Our findings provide novel insights into the differential roles of 

functional brain networks connected to the medial PFC and amygdala during encoding of 

emotionally-valenced items with advancing age.  

Keywords: Aging, Emotion, Working Memory, Functional Connectivity, PLS, amygdala, fMRI 

Aging is characterized by an overall decline in several cognitive domains, including working 

memory (WM) and episodic memory. Behavioral and neural evidence has suggested that 

attentional deficits in suppressing task-irrelevant information underlie decline in WM 

performance with advancing age (Gazzaley & D'Esposito, 2007). However, despite overall age-

related cognitive impairment in inhibiting task-irrelevant information, emotional processing is 

typically well preserved in aging (Reuter-Lorenz & Lustig, 2005). According to one dominant 
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theory, the socioemotional selectivity theory (SST), limited time perception in late adulthood 

leads to a motivational shift, and subsequent changes in processing of emotional information 

(Carstensen et al., 1999). Consistent with this account, a number of behavioral studies have 

demonstrated that older adults show a processing bias for positive, compared to negative 

information in attention (Allard & Isaacowitz, 2008; Mather & Carstensen, 2003, 2005; 

Samanez-Larkin et al., 2009), decision making (Lockenhoff & Carstensen, 2007; Löckenhoff & 

Carstensen, 2004), and memory (Charles et al., 2003; Mather & Knight, 2005; Ziaei et al., 2015). 

This processing bias is often referred to as the positivity effect (For a review see Reed et al. 

(2014)). It has been argued that the positivity effect relies on top-down attentional control 

subserved by the prefrontal cortex (Mather, 2012). However, there is limited understanding of 

the underlying neural correlates involved in the positivity effect. 

In addition to behavioral support for the positivity effect in aging, neuroimaging studies 

have reported changes in activity patterns of regions involved in emotional processing, such as 

the amygdala and lateral PFC. More specifically, age-related increased recruitment of PFC, 

along with decreased amygdala activity is the most consistent finding across studies (for reviews 

see Mather (2012); Nashiro et al. (2012)). In addition to regional activation differences, age-

related alterations in the functional connectivity between amygdala and PFC regions have been 

reported. For instance, St Jacques et al. (2010)) showed that the functional connectivity between 

the amygdala and ventral anterior cingulate cortex was greater during evaluation of negative 

items in older compared to younger adults. Moreover, during the processing of positive relative 

to negative stimuli, older adults showed a stronger connectivity between medial PFC and 

retrosplenial cortex when engaged in deep processing (semantic elaboration), whereas younger 

adults demonstrated the opposite pattern (Ritchey et al., 2011a). The findings of prefrontal - 
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amygdala functional connectivity during processing of emotional items suggest that older adults, 

more so than their younger counterparts, may engage in regulatory mechanisms, particularly 

during processing of negative emotions. Given that emotional processes are widely distributed 

over multiple functionally interacting brain regions (Pessoa, 2008), it is reasonable to suggest 

that the process of encoding emotional items are supported by large-scale brain networks rather 

than isolated brain areas. Therefore, understanding the functional brain networks of such highly 

complex processes will provide insights into how emotional and cognitive operations are 

affected by increasing age in both healthy and clinical populations. Only a few studies, however, 

have investigated age-related changes in functional brain connectivity during emotional 

processing and the results have been inconclusive. The primary aim of this study is to investigate 

the impact of aging on functional brain network connectivity between PFC and amygdala and the 

rest of the brain during WM encoding of emotional items. 

In order to identify age-related differences in neural activation and functional connectivity 

patterns associated with selective attention during encoding of emotional items in WM, both 

univariate and multivariate (spatial-temporal partial-least-squares, PLS) analyses were applied. 

First, we aimed to investigate age-related differences in behavior and brain activation by 

instructed attention to emotional targets during WM encoding; second, to examine the functional 

connectivity pattern between lateral PFC and the rest of the brain in response to task-relevant 

emotional items, and third, to explore the functional connectivity pattern between the amygdala 

and the rest of the brain during instructed attention to task-relevant emotional items.  

In order to achieve these aims, we first identified activity patterns associated with instructed 

attention to emotional target items across age groups using whole-brain univariate statistics. Key 

regions implicated in selective attention during WM encoding were subsequently used for seed-
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behavioral PLS to examine whether functional connectivity patterns involved in WM encoding 

were modulated by emotional valence, if functional connectivity differed between age groups, 

and whether functional connectivity was related to task performance. Given previous evidence 

for a positivity effect in older adults, we hypothesized that younger and older adults would show 

differential recruitment of brain networks in response to positive and negative target items. If 

younger and older adults show age-invariant functional network engagement from each of the 

seed regions, results from the seed PLS analysis should reveal a common circuitry with a 

possibility for quantitative differences. Alternatively, if younger and older adults engage distinct 

networks that support emotional processing, then results from the seed PLS analysis should 

reveal separate networks that are differentially connected to the seed regions as a function of 

emotional valence.  

Methods and Materials 

Participants 

Sixteen healthy younger adults and 15 healthy older adults participated in this study. Three 

younger and two older participants were excluded from the analysis due to extensive movement 

in the scanner and brain signal losses. Therefore, analyses were conducted on the data from 13 

younger adults (9 females; M = 22.6, SD = 1.69; range = 23-26 years) and 13 older adults (9 

females; M = 68.23, SD =3.7 years; age range = 64-74). Younger participants were 

undergraduate students recruited from Stockholm University and older adults were community 

volunteers. All participants were right-handed, Swedish speakers, with no history of neurological 

or psychiatric problems, and had normal or corrected-to-normal vision using MRI compatible 

glasses. All participants were screened for claustrophobia, neurological and psychiatric 

medications, and MRI compatibility. Additionally, older adults were screened for cognitive 
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impairments using Mini Mental State Examination (MMSE; Folstein et al. (1975)). All 

participants took part in two separate test sessions; one for behavioral assessments, and one for 

the fMRI scanning. Informed consents were obtained from all participants. The investigation was 

approved by the Ethical Review Board in Stockholm. Participants were paid 800 SEK (~ $95 

USD) for their participation and were debriefed after they completed the second session.  

Materials 

Stimuli consisted of seven hundred eighty six pictures that were drawn from the 

International Affective Pictures Systems (IAPS; Lang et al., 2008). Based on the IAPS rating 

system, 312 were rated as negative (valence: M = 2.83, SD = 1.7, arousal: M = 5.54, SD = 2.17), 

312 as positive (valence: M = 6.79, SD = 1.73; arousal: M = 4.83, SD = 2.3), and 162 as neutral 

(valence: M = 4.87, SD = 1.26; arousal: M = 2.79, SD =2.0). No significant differences were 

found between the arousal levels of positive and negative pictures (p > .05). Pictures were 

presented against a black background using E-prime 2.0 (Psychology Software Tools, Pittsburgh, 

PA, USA), and were presented at a 600 × 800-pixel resolution.  

Procedure 

The study consisted of two sessions; first a behavioral testing session which took place at 

the Department of Psychology at Stockholm University, and second, an fMRI session which took 

place at the MRI facility at the Karolinska hospital on a separate day. Both sessions were 

conducted within a week. During the behavioral testing session, participants completed the color-

word Stroop test (Jensen & Rohwer, 1966), a complex short-term memory tests (operation span; 

Unsworth et al. (2005), and an emotion regulation questionnaire (Gross & John, 2003). Older 

adults also completed the MMSE. In addition, practice runs of the emotional WM tasks were 

performed in preparation for the scanning session. During the second session, and prior to MR 
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scanning, participants were verbally instructed on how to perform the task, and also performed a 

practice run until they were familiarized with the task.  

Experimental design 

A modified version of a visual WM task developed by Gazzaley et al. (2005a) was used to 

investigate age-related changes in brain networks involved in selective attention to emotional 

items. Participants first received an instruction to either attend to negative or positive pictures (5 

sec), while ignoring irrelevant distractors. Then, three sequential screens, each composed of a 

pair of pictures were presented (2.5 sec for each pair separated by a 0.5 sec fixation cross). 

Presentation of all three screens were followed by a fixation cross (maintenance phase; 4 sec), 

and finally a WM probe (retrieval phase; 2 sec). Trials were separated by an intertrial interval 

(ITI) with a variable length (42% ITIs of 1.5 sec, 28% ITIs of 3 sec, 14% ITIs of 4.5 sec, 12% 

ITIs of 6 sec, and 4% ITIs of 7.5 sec), allowing for an independent estimation of the BOLD 

response on a trial-by-trail basis (Huettel et al., 2014). 

A full description of the task is provided elsewhere (Ziaei et al., 2014). In short, five 

different conditions were used: (1) attend to negative pictures/ignore positive pictures, (2) attend 

to negative pictures/ignore neutral pictures, (3) attend to positive pictures/ignore negative 

pictures, (4) attend to positive pictures/ignore neutral pictures, (5) and passive viewing (Fig. 1). 

During encoding, pairs of emotional-neutral (positive-neutral or negative-neutral pairs) or 

emotional-emotional (positive-negative or negative-positive) pictures were presented, and 

participants were instructed to focus on the relevant target and ignore the irrelevant item (Figure 

1). During retrieval, an emotional picture (with either positive or negative valence) was 

presented. Participants were instructed to respond with their index finger if the probe matched 

one of the previously presented pictures, and press with their middle finger if the probe did not 
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match any of the previously presented pictures. All responses were collected using a scanner 

compatible response box (Lumitouch, Inc.). The valence of the retrieval cue (probe item) and the 

target always matched. Thus, if participants were instructed to attend to positive pictures (target 

item), the probe also had positive valence. Fifty novel and 50 previously-shown images were 

used as probes. For the passive viewing condition, 50 % of the probes were positive and 50% 

were negative. Neutral pictures were never used as probes. For each condition, participants 

performed 20 trials in four different blocks (5 trials in each block) in two separate runs. The 

order of conditions was counterbalanced between participants. 

[Insert Figure 1 about here ] 

Recognition memory task: After scanning, participants performed a self-paced recognition 

memory task that included images that were included in the WM target set, but were not used as 

probes in the WM task. One-hundred and thirty pictures (100 previously shown pictures; 20 

pictures from each condition) intermixed with 30 novel stimuli (10 from each of 

positive/negative/neutral categories) were chosen for the recognition memory task. For each 

picture, participants were asked to indicate whether the picture had been presented previously 

during the WM scanning task, and also, for each picture, were asked to rate the confidence of 

their responses using a 4-point scale (one of four responses: sure old, unsure old, unsure new, 

sure new). The hit rates for WM and recognition memory is presented in Supplementary Figure 1 

& Table 1.  

Image Acquisition, Preprocessing, and Analysis 

Magnetic resonance imaging was performed using a 3-Tesla General Electric scanner 

MR750 equipped with a 32 channel head coil. Acquisition of functional data was achieved using 

a gradient echo-planar imaging sequence (37 transaxial slices, odd–even interleaved, 2 mm in 
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plane resolution, gap: 0.5 mm, repetition time [TR]: 2000 ms, echo time [TE]: 30 ms, flip angle: 

80°, field of view: 25 × 25 cm, voxel size: 2 × 2 × 2 mm). In order to allow for progressive 

saturation of the fMRI-signal, 10 dummy scans were collected, and discarded prior to 

experimental image acquisition. High-resolution T1-weighted structural images were also 

collected with a 3D fast spoiled gradient echo sequence (180 slices, with a 1 mm thickness, TR = 

8.2 ms, TE = 3.2 ms, flip angle: 12°, field of view: 25 × 25 cm). The emotional WM task was 

presented to the participants on a computer screen, seen through a mirror mounted on the head 

coil. Participants were using headphones and earplugs to dampen scanner noise, and cushions 

inside the head coil minimized head movements. 

All fMRI data were preprocessed using the statistical parametric mapping software (SPM8, 

Welcome Department of Imaging Neuroscience, University College London, UK) implemented 

in MATLAB 2010b (Mathworks Inc., MA). Following slice timing correction, motion correction 

was done using the INRIAlign toolbox (Freire et al., 2002). Following coregisteration, the “New 

Segment” procedure was used to segment the T1 image into gray matter (GM) and white matter 

(WM). The “DARTEL” toolbox was used to create a custom group template from the segmented 

GM and WM images (Ashburner, 2007). In addition, deformation from the group-specific 

template to each of the subject-specific GM/WM images was computed (i.e. flow field). Finally, 

the coregistered fMRI images and segmented GM/WM images were nonlinearly normalized, 

subject by subject, to the sample-specific template (using a subject-specific flow field), affine 

aligned into the Montreal Neurological Institute (MNI) template, and finally smoothed using an 8 

mm FWHM Gaussian kernel. At the end, a correction was applied to remove noise in the data 

using the voxel-level linear model (Macey et al., 2004). The artifact repair toolbox 
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(http://cibsr.stanford.edu/tools/human-brain-project/artrepair-software.html) was also utilized to 

correct for movement. None of the participants required more than 3% repair from all volumes.  

Whole-brain univariate analysis: Functional MRI data was collected in two separate runs. 

Each run contained 10 trials of each condition (see above) with a total time of approximately 30 

min. The order of runs was counterbalanced across participants. Given our aim of investigating 

brain networks associated with encoding and corresponding memory performance, only the 

encoding phase was modeled in the framework of the general linear model (GLM) as 

implemented in SPM8. Blocked sustained responses were modeled with a boxcar function, 

whereas event-related transient responses were modeled as delta functions based on trial onset. 

All regressors of interest were convolved with the hemodynamic response function (HRF). 

Onsets of all trials were included in the analyses. In order to account for in-scanner movement, 

three translational [x y z] and three rotational (pitch, roll, and yaw) regressors obtained from the 

realignment step were included as covariates of no interest in the individual fixed effect analyses. 

Single-subject statistical contrasts were set up using the GLM, and group data were analyzed in a 

random-effects model that differentiated between conditions and effects of age. Statistical 

parametric maps were generated using t statistics to identify regions activated according to the 

model. All results are reported in MNI space. Unless otherwise specified, whole-brain analyses 

were employed when no regional a-priori hypothesis was considered; in these cases, only effects 

surviving a family-wise error (FWE) corrected (cluster and/or height) level of P = .05.  

Partial least squares (PLS) analyses: To investigate multivariate relations between brain 

activation and behavioral performance, along with experimentally induced functional 

connectivity in relation to aging, seed-PLS analysis was conducted (McIntosh et al., 1996; 

McIntosh et al., 2004). For a detailed tutorial of PLS, see Krishnan et al. (2011). PLS analyses 
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were used to extend the univariate analyses by using a network-level approach. In contrast to 

univariate analyses, which assess the significance of each voxel separately, PLS identifies 

activity patterns across the brain in relation to the experimental manipulation of interest. As the 

activation patterns identified by PLS reflects activity changes across all regions of the brain 

simultaneously, there is no need for multiple comparison correction. Moreover, PLS is a data-

driven approach which decomposes the data into a set of patterns that capture the most amount of 

variance in the data, rather than using prior assumptions by imposing contrasts between 

conditions of interest. 

For this study, we were primarily interested in identifying brain networks involved in WM 

encoding of emotional targets. Therefore, we collapsed across conditions with emotional and 

neutral distractors resulting in three conditions; instructed attention to positive target items 

(positive condition), instructed attention to negative target items (negative condition), and 

passive viewing (passive). A cross-correlation matrix was computed as the correlation between 

behavior (accuracy and RT), the temporal signature of the seed region, and activity in all other 

brain voxels across participants within each experimental condition (young-positive, young-

negative, young-passive, old-positive, old-negative, and old-passive). This cross-correlation 

matrix was then subjected to singular value decomposition (SVD) to identify a set of orthogonal 

latent variables (LVs), which represent linear combinations of the original variables. The first 

LV accounts for the largest covariance of the data, with progressively smaller amount for each 

subsequent LV. The first set of saliencies of each LV represent the pattern of covariance of 

behavioral performance, seed voxel, and the rest of the brain across experimental conditions. 

Additionally, the brain score reflects how strong each subject contributes to the pattern expressed 

in each LV.  
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The statistical significance of each LV was assessed using permutation tests that involve 

reordering the rows of the data matrix and recalculating the LVs of the reordered matrix using a 

SVD approach. The number of times a singular value exceeds the original singular value yields 

the probability of significance of original LVs. In the present study, 500 permutations were 

performed. In addition, stability of voxel saliencies contributing to each LV was determined 

using bootstrap estimation of standard errors (SEs), using 100 bootstrap samples. The Bootstrap 

Ratio (BR) was computed, and voxels with BR > 3 (approximately a Z-score of 3, corresponding 

to p < 0.0001, two-tailed) were considered as reliable. All reliable clusters comprised at least 50 

contiguous voxels. In addition, the upper and lower percentiles of the bootstrap distribution were 

used to generate 95% confidence intervals (CIs) around the brain and correlation scores 

respectively to facilitate interpretation. For example, brain/correlation scores were considered 

unreliable when CIs crossing zero and two groups were considered significantly different from 

each other if the CIs did not overlap.  

We identified two seed regions for seed-behavior PLS analysis; the left amygdala (-30 -6 -

10) and the left VLPFC (-38 16 26). The selection of both of these seeds was based on two 

criteria; first reliable task-related activation for instructed attention to emotional items in the 

univariate whole-brain analysis, and, second, converging evidence from previous studies 

demonstrating the role of amygdala and VLPFC in emotional processing. The VLPFC has been 

shown to be involved in emotion regulation (Buhle et al., 2014), attention to emotional stimuli 

(Lindquist et al., 2012), and deep processing of emotional stimuli among older adults (Ritchey et 

al., 2011a). The amygdala also has been reported as a key region involved in emotional processes 

in a number of neuroimaging and brain lesion studies (for instance see (Adolphs, 1999; Lindquist 

et al., 2012; Pessoa & Adolphs, 2010; Wager et al., 2015). In addition to the analyses reported 
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here, we also conducted functional connectivity analyses with only correct trials using the 

amygdala and VLPFC as seeds. These results are generally in agreement with the reported 

findings here, but are presented in the Supplementary results for transparency. 

Results 

Behavioral Findings  

Signal detection theory was used to calculate memory accuracy scores by subtracting false 

alarms from hits. Due to extreme values (1- extreme bias in favor of yes to all conditions or 0 - 

extreme bias in favor of no responses), all data were put through loglinear transformation using 

the approach proposed by Stanislaw and Todorov (1999). The loglinear approach involved 

adding 0.5 to the number of hits and FAs and adding 1 to the number of signal and noise trials 

before calculating the hit and FA rates. Thus, memory accuracy scores were computed as 

loglinear hits – loglinear false alarms.  

Working memory performance
1
: First, we tested whether instructed attention to specific 

emotional targets had an impact on WM accuracy. As predicted, results from a 5 (conditions) by 

2 (age groups) repeated measure ANOVA revealed a significant main effect of condition 

(F(4,96) = 7.36, p < .01, ηp
2
= .23), showing higher WM accuracy in conditions with instructed 

attention, compared to passive viewing (all ps< .05). No significant differences were found 

between instructed attention conditions (all ps > .05). The main effect of age was also significant, 

showing that older adults had lower accuracy compared to younger adults (F(1,24) = 15.27, p < 

.01, ηp
2
 = .38; Fig. 2). The age group by condition interaction did not reach significance (F(4,96) 

= 1.09, p = .36, ηp
2
= .04; Fig. 2A).  

                                                 
1
 The WM performance was also analyzed using nonparametric statistics. A Mann-Whitney test indicated that 

older adults had lower WM accuracy compared to younger adults in all conditions (all ps < .005). 
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Next, we examined the role of instructed attention on reaction times (RTs) using a 5 

(condition) by 2 (age group) repeated measure ANOVA. There was a significant reduction in 

RTs for instructed attention compared to passive viewing in across age groups (F(4,88) = 3.07, p 

= .02, ηp
2
= .12), but the age by condition interaction was not significant (F(4,88) = .14, p = .96, 

ηp
2
= .01). As expected, older adults responded slower relative to younger adults (F(1,22) = 

44.72, p < .01, ηp
2
= .67). No significant differences were found between instructed attention 

conditions (all ps > .05; Fig. 2B). 

Recognition memory performance: We further investigated whether instructed attention 

during encoding influenced off-line recognition memory performance. First, a 5 (conditions) by 

2 (age groups) repeated measure ANOVA analysis revealed a significant main of condition 

(F(4,88) = 4.52, p < .05, ηp
2
 = .17), showing that recognition memory accuracy was higher for 

instructed attention conditions compared to passive viewing (all ps < .05), with the exception of 

the condition where participants selectively attended to positive items while ignoring neutral 

items (p = .17). Neither the main effect of age nor the age by condition interaction was 

significant (Fs < 1; Fig. 2C).  

 [Insert Figure 2 about here ] 

fMRI Findings  

Univariate whole brain analysis 

To investigate brain correlates associated with processing of emotional items during 

selective attention, we contrasted all conditions in which participants were instructed to attend to 

emotional targets with the passive viewing condition (instructed attention > passive viewing) 

across both groups using a full factorial model in SPM. A network of fronto-parietal regions, 

including bilateral ventrolateral prefrontal cortex (VLPFC), anterior cingulate cortex (ACC), 

insula, bilateral parietal cortex, and left amygdala, was found to be associated with instructed 
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attention to emotion during WM encoding. These findings are consistent with prior literature 

reporting increased fronto-parietal activation during instructed attention (Corbetta & Shulman, 

2002a; Desimone & Duncan, 1995; Gazzaley & Nobre, 2012). The reverse contrast (passive 

viewing > instructed attention) showed significant activation in a set of regions known to be part 

of the default-mode network (DMN); including angular gyrus, inferior parietal cortex, 

midcingulate cortex, precuneus, and posterior cingulate cortex (Buckner et al., 2008; Raichle et 

al., 2001). This finding is in line with previous research indicating enhanced suppression of the 

DMN with task difficulty/effort across a variety of cognitive tasks (Buckner et al., 2008; 

Mazoyer et al., 2001; Shulman et al., 1997). 

Next, we investigated age-related differences in brain activation identified from the whole-

brain analysis across participants. These comparisons were masked by the overall activation 

pattern for task-positive (instructed attention > passive viewing) and task-negative (passive 

viewing > instructed attention) brain activation patterns across participants. Brain activation 

associated with instructed attention to emotion for younger adults was compared to the 

corresponding pattern for older adults. Older adults showed less recruitment in a sub-set of the 

task-positive fronto-parietal regions, along with reduced DMN activation compared to younger 

adults (Fig. 3).  

To further investigate the role of amygdala, this region showed to be significant at a peak-

level threshold during all instructed attention conditions relative to passive viewing. Therefore, 

for the following functional connectivity analysis, the coordinates acquired from univariate 

analysis were used (-30 -6 -10). 

 [Insert Figure 3 about here ] 
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Seed-Behavioral PLS Findings  

Although results from the univariate analysis revealed that the left amygdala and the 

VLPFC was part of the network which was more activated during instructed attention relative to 

passive viewing across the two age groups, it is still plausible that the networks that are 

functionally connected to these regions might differ between age groups. Using seed-behavioral 

PLS, we therefore mapped brain network functional connectivity with each seed region (VLPFC 

and amygdala), and examined potential modulation of these networks as a function of target 

item’s emotional valence, and whether age-related changes in functional connectivity as well as 

brain – behavior correlations differed between younger and older adults. 

Left VLPFC (-38 16 26) 

The left VLPFC seed analysis resulted in two significant LVs. LV1 (p =.000) accounted for 

34% of the covariance in the data, and showed a positive seed and positive memory accuracy 

correlation during encoding of negative items among older adults. Although both younger and 

older adults engaged this network (LV1; Fig. 4B, overlapping CIs across green and purple bars 

for VLPFC during negative condition), the correlation with seed was reliable only in older 

adults, (i.e. purple bar’s CI in the younger group crosses zero). This network also revealed a 

negative correlation with WM reaction time for both positive and negative items among older 

adults, indicating that older adults who responded faster engaged this network (yellow regions) 

to a larger extent. Critically, the correlation with RT was remarkably different across the two 

groups (non-overlapping CIs across purple and green bars for RT). Regions that were positively 

connected to the seed region (and facilitated faster response in older group; regions in yellow) 

included right insula, right inferior parietal lobule (IPL), bilateral inferior frontal gyrus (IFG), 

right superior frontal gyrus (SFG), and right middle temporal gyrus (Fig. 4A & Table 2). Regions 
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with a negative functional connectivity (anticorrelated; regions in blue) with the seed region 

included right cerebellum, right middle occipital gyrus, and right precentral gyrus. No reliable 

correlation was found for seed, memory accuracy, or RT in the younger group in any of the 

conditions (CIs cross zero). 

The second LV (p = .010) accounted for 14% of the covariance, and revealed a network 

which was positively correlated with the VLPFC during encoding of both positive and negative 

items among younger adults. This network also facilitated WM accuracy for positive and 

negative items in this group. This network which was positively connected to the seed region 

among younger adults for both conditions (regions in yellow) included left IFG, left superior 

medial gyrus, left middle temporal gyrus, left middle frontal gyrus, left inferior temporal gyrus, 

left superior parietal lobule (SPL), right hippocampus, right parahippocampus, bilateral fusiform 

gyrus (FG), right cerebellum, and left thalamus (Fig. 5A). This particular network was also 

engaged during encoding of positive, but not negative items, in the older adults’ group. The 

engagement of this network was related to slower response time and lower WM accuracy for 

negative items among older adults (Fig. 5 & Table 2). Note that, although both younger and 

older adults reliably and similarly engaged the network for attending to positive items (LV2; Fig. 

5B, overlapping CIs across purple and green bars for positive conditions), the correlation with 

accuracy differed considerably between the two groups (non-overlapping CIs across purple and 

green bars for accuracy). Regions that were anticorrelated with the seed (regions in blue) 

included right IFG, right superior temporal gyrus (STG), and right occipital gyrus (Fig. 5 & 

Table 2).  

 [Insert Figures 4&5 & Table 2 about here ] 
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Left Amygdala (-30 -6 -10) 

One significant LV was identified when the left amygdala was used as a seed. This LV (p= 

.0001) accounted for 44% of the covariance in the data and exhibited a network that showed a 

positive seed correlation during encoding of both positive and negative items in the older group 

but only for encoding of negative items in the younger group. This network, that included left 

middle temporal gyrus, right IFG, right superior and middle frontal gyrus, right insula, right 

hippocampus and right superior medial gyrus (yellow regions, Fig. 6A), was also engaged by 

older adults who showed higher accuracy and faster RTs for both positive and negative items. 

Note that, although both younger and older adults engaged this network (LV1; Fig. 6B, 

overlapping CIs across green and purple bars for the amygdala during positive condition), the 

correlation with the seed region was reliable in the older, but not for the younger adults (i.e. 

purple bar’s CI in the younger adults crosses zero). For younger adults, however, this network 

was only correlated with the seed during encoding of negative items (Fig. 6 & Table 3). No 

reliable correlation was found for RT or memory accuracy among younger adults (CIs cross 

zero). 

Taken together, results from the left VLPFC seed functional connectivity analyses showed 

that, for older adults, VLPFC was connected to two separate networks during WM encoding of 

positive and negative items. One network facilitated faster response times in older adults in both 

conditions (LV1), and memory accuracy for negative items only. Younger adults, on the other 

hand, engaged one network for both encoding of positive and negative items, and this network 

was positively correlated with performance (LV2). Results from the functional connectivity 

analysis using the amygdala as a seed revealed that older adults recruited a single network during 

encoding of both positive and negative items which facilitated faster response times and memory 

accuracy for both positive and negative items. Younger adults, on the other hand, only recruited 
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this network for encoding of negative items and this network did not contribute to their 

behavioral performance. 

 [Insert Figure 6 & Table 3 about here ] 

Discussion 

The present study was designed to investigate age-related changes in brain functional 

activity and connectivity associated with instructed attention to emotional valence during WM 

encoding. We specifically aimed to identify the functional brain networks connected to the left 

VLPFC and the left amygdala during encoding of positive or negative items. The behavioral 

results showed that instructed attention to items with a specific emotional valence, relative to 

passive viewing, resulted in enhanced WM and recognition memory accuracy, along with faster 

reaction times. Whole-brain analyses across age groups demonstrated increased activation of a 

fronto-parietal network during instructed attention, relative to passive viewing, and activation of 

the default-mode network. Older adults exhibited reduced activation in a subset of the fronto-

parietal task positive regions, along with reduced DMN activation, relative to their younger 

counterparts. Functional connectivity analyses using VLPFC as a seed was related to activation 

in two separate networks, which were involved in processing of positive and negative items 

among older adults. Younger adults, however, engaged one network connected to VLPFC during 

encoding of both emotional targets, and this network contributed to memory accuracy in this age 

group. Amygdala functional connectivity was associated with network engagement during 

encoding of both positive and negative items in older adults but only negative items among 

younger adults. These results indicate that specific brain networks are differentially engaged by 

younger and older adults, and are also differently modulated by emotional valence.  
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Behavioral Findings 

In line with previous findings (Gazzaley et al., 2005b), enhanced memory performance during 

instructed attention compared to passive viewing was found for working and recognition 

memory in both age groups, while older adults had overall worse performance compared to 

younger adults. This finding suggests that enhanced attention to task-relevant information during 

encoding improves performance both in the short- and long-term, and indicate beneficial effects 

from instructed attention during WM encoding.  

While there was a general effect of improved performance for instructed attention, we did 

not find any evidence for a positivity effect in older adults. While this was somewhat 

unexpected, this finding is line with some previous evidence that have not been able to 

demonstrate a positivity effect ((Grühn et al., 2005; Kensinger et al., 2002), for a review see 

Ziaei and Fischer (2016)). Reed and colleagues (2014) have argued that the lack of positivity 

effect in some experiments could be due to the experimental instructions and task characteristic. 

However, using a similar paradigm with a larger sample size, Ziaei et al. (2015) recently reported 

a significant positivity effect in older, relative to younger adults in recognition memory. Thus, 

one potential explanation for the lack of a positivity effect in the current study may be lack of 

statistical power due to the small sample size. Indeed, the positivity effect is typically rather 

small (Ruffman et al., 2008), and a small sample size might reduce the possibility for detecting 

this effect in the behavioral data.  

Whole-Brain Analysis 

In line with previous neuroimaging studies, instructed attention compared to passive 

viewing, revealed increased activation in a fronto-parietal network, including IFG, ACC, insula, 

and the parietal cortex (Yarkoni et al., 2009). The role of fronto-parietal network engagement 
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during top-down modulation of attention is well documented in studies of selective attention 

(Corbetta & Shulman, 2002b; Yarkoni et al., 2009). A likely role for fronto-parietal network 

engagement is in directing attention to and processing of relevant items, and filtering out task 

irrelevant information. Similar to the present findings, a number of studies have also linked 

fronto-parietal network engagement to top-down attentional processes during WM encoding, 

which may result in subsequent enhancement of WM accuracy and faster RTs (for a review, see 

Gazzaley and Nobre (2012). Our findings corroborate and extend these previous observations to 

the emotional domain by showing the role of the fronto-parietal circuit during encoding of 

emotional information.  

Within the fronto-parietal network, older adults exhibited reduced activation in a sub-set of 

these regions, such as bilateral IFG, bilateral parietal cortex, bilateral anterior insula, and 

bilateral fusiform gyrus. While reduced frontal engagement in older adults during WM retrieval 

has been suggested to account for age-related decline in WM performance (e.g. (Rypma & 

D'Esposito, 2000), the link between frontal activation during encoding and age-related decline in 

WM performance is relatively unknown. Given the importance of fronto-parietal activation for 

selective attention in WM tasks, the observed age-related reduction of activity in task relevant 

regions suggest a link between impaired encoding-related attentional processes, and emotional 

WM performance in older adults, which is supported by prior findings (Ferri et al., 2013; 

Gazzaley et al., 2005b).  

Similarly, the reverse contrast (passive viewing > instructed attention) yielded activation in 

regions which are known to be parts of the DMN. In line with previous WM and episodic 

memory findings (Ferri et al., 2013; Persson et al., 2007; Sambataro et al., 2010), reduced 
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default-mode activation in older adults might indicate impaired ability in suppressing task-

irrelevant information during WM encoding.   

Functional Connectivity with VLPFC  

Functional connectivity results with left VLPFC as a seed revealed that this region was 

functionally connected to one network among older adults during instructed attention to negative 

items. The first network (LV1), which was functionally connected to the VLPFC for encoding of 

negative items in older adults included left amygdala, right middle frontal gyrus, bilateral IFG, 

right superior frontal gyrus, and bilateral middle temporal gyrus. Engagement of this network is 

in line with a number of studies in younger adults, and suggests a role of VLPFC in regulation of 

negative emotion (Ochsner & Gross, 2005; Phan et al., 2005), and that such regulatory functions 

may engage cognitive control processes. For instance, Wager and colleagues (2008) 

demonstrated that VLPFC – subcortical connectivity predicted reappraisal success. St Jacques et 

al. (2010) also showed increased activity of the PFC in response to the evaluation of negative 

items, and stronger connectivity between PFC, amygdala, and hippocampus was found for 

subsequently remembered negative items. The involvement of PFC regions during instructed 

attention to negative emotion is also in line with findings from a recent meta-analysis on emotion 

regulation (Buhle et al., 2014) that reported increased activity in cognitive control regions, 

including medial and lateral PFC, posterior parietal cortex, along with modulation of amygdala 

activation, in emotion regulation tasks. Although there were no explicit regulatory instructions in 

this experiment, in a process model of emotion regulation, attentional deployment has been 

highlighted as a core function of emotion regulation strategies, and may influence emotional 

responding by redirecting attention within a given situation (Gross & Thompson, 2007). 

Consequently, recruitment of a cognitive control network during WM encoding of negative 



23 

 

emotions by older adults might indicate that they were engaged in regulatory processes, and that 

this recruitment is selective for negative emotions. Thus, current findings provide neuroimaging 

support for previous behavioral findings showing enhanced ability for older adults in regulating 

negative emotions (Charles & Carstensen, 2007; Scheibe & Carstensen, 2010).  

Moreover, another network, that included left IFG, left superior medial frontal gyrus, right 

hippocampus, left FG, right cerebellum, left middle temporal gyrus, left SPL, and the left 

thalamus was functionally connected to the VLPFC during encoding of positive items for both 

age groups (LV2). Although some regions did overlap with the brain regions from LV1 (see 

above), most of the regions were uniquely associated with instructed attention to positive items. 

This suggests that in older adults, two, at least partially, separate networks were involved in WM 

encoding of negative and positive items respectively. The involvement of frontal and 

hippocampal regions during encoding of positive information is in line with previous studies on 

episodic memory indicating age-differential connectivity for encoding of positive and negative 

information (Addis et al., 2010). Our findings indicate that, unlike younger adults, older adults 

recruit additional specific anterior PFC regions for processing of positive items which might 

result in increased memory performance.  

Younger adults, on the other hand, recruited one single network for encoding of both 

positive and negative items (LV2). This finding suggests that younger adults may be less 

influenced by emotional valence of the targets during encoding. Although there was no 

significant positivity bias in the behavioral data among older adults, the engagement of 

differential brain networks for processing positive and negative items in the older group suggest 

that at the brain network level, older adults engage two separate functional networks connected 

to VLPFC during encoding of positive and negative items. The lack of behavioral evidence for a 
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positivity bias along with a brain functional segregation between positive and negative 

information suggest that the neural changes might provide a more sensitive measures relative to 

behavioral performance in identifying age by valence interactions (Ritchey et al., 2011b).  

Functional Connectivity with Amygdala  

Functional network connectivity with the amygdala was characterized by engagement in 

superior temporal gyrus, ACC, superior medial gyrus, angular gyrus, and the thalamus for older 

adults during encoding of both positive and negative items. Most likely, recruitment of this 

network is influenced by the increased cognitive control effort required for instructed attention 

during WM encoding, regardless of emotional valence. The lack of age-related differences in 

modulation of the amygdala network by valence among older adults provide evidence for 

functional preservation of the amygdala functionality in aging (Ritchey et al., 2011b; St Jacques 

et al., 2009b; St Jacques et al., 2010; Wright et al., 2006). Although a majority of studies have 

reported amygdala activation for negative emotions such as fear, sadness, and anger (for 

extensive reviews see (Lindquist et al., 2012; Phelps & LeDoux, 2005; Sander et al., 2005; 

Wager et al., 2015), Hamann (2003), for instance, proposed that the amygdala codes for arousing 

stimuli irrespective of valence. Thus, our current findings do not seem to support age-related 

alterations in amygdala activity for different emotionally-valenced information (St Jacques et al., 

2009a), but rather suggest that amygdala, and by extension, its network, is engaged during 

encoding of emotional items irrespective of valence. 

Brain-Behavior Relationships 

Ventrolateral PFC functional network connectivity was associated with faster response 

times and higher accuracy for negative items in older adults. The fact that faster and more 

accurate older adults recruited a wide-spread network that included frontal and parietal regions to 
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a larger extent, adhere to the view that frontal regions are core components of an executive 

control network that are also involved in effortful emotionally task-related activity. This is also 

in line with prior findings showing recruitment of frontal regions during cognitive effortful tasks 

(Cabeza, 2002; Davis et al., 2008). One possibility for this pattern of activity is that RTs reflect 

effort or time-on-task effects (Yarkoni et al., 2009), and faster individuals and individuals with 

higher accuracy may engage this fronto-parietal brain regions in order to perform the task 

appropriately.  

Moreover, another VLPFC-related functional network was found to be related to memory 

accuracy in younger adults for WM encoding both positive and negative items. This particular 

network included lateral and medial frontal regions that have a known role in cognitive control 

(such as left IFC and ACC), and memory processes (such as the hippocampus). Increased 

functional connectivity between the VLPFC and ACC as well as the hippocampus was 

associated with enhanced performance for both positive and negative items among younger 

adults. The ACC plays a critical role in executive control via a distributed attentional network. 

Indeed, it has been suggested that the ACC is part of a core system for maintaining a task-set 

relevant for goal-directed behavior (Dosenbach et al., 2008). Previous studies have also shown 

that ACC activation is positively correlated with successful attention shifting (Kondo et al., 

2004). At a more general level, activation in these regions has repeatedly been associated with 

behavioral performance across task domains (Eriksson et al., 2011; Kim, 2011; Walsh et al., 

2011). Therefore, it seems that younger adults, relative to older adults, recruited a less distributed 

network during WM encoding of emotional targets, irrespective of valence, although the 

cognitive processes associated with functional connectivity in this network remains to be 

specified.  
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Finally, three methodological limitations of this study have to be acknowledged. First, it has 

to be noted that our results reported in this paper included all trials during the encoding phase. 

The reason for including all trials was that the primary focus of this paper was to examine age 

differences in attentional processes during WM encoding of positive and negative emotions, and 

not on the successful encoding of individual emotional items. Given that older and younger 

adults did not show any positivity or negativity preference behaviorally, we decided to analyze 

all trials included in each condition. We did, however, conduct additional analyses using only 

correct trails which is reported as supplementary material. Importantly, we were able to replicate 

the results for the brain networks connected to the amygdala also when only correct trials were 

considered. The pattern of the VLPFC network was slightly different from the analyses reported 

with all trials, but these supplementary analyses still corroborate our original findings suggesting 

that older adults recruit one brain network for encoding of negative items which resembles the 

emotion regulation network and one additional network for encoding of only positive items in 

older group relative to younger adults. Second, the arousal and valence ratings for pictures were 

drawn from IAPS. Evidence indicates that there might be age-related differences in arousal 

ratings of IAPS pictures (Grühn & Scheibe, 2008). Future studies are required to investigate how 

brain activation and memory performance is modulated by subjective ratings of the pictures. 

Finally, the use of eye-tracking during the task would provide helpful insights into the attentional 

mechanisms underlying instructed attention during WM encoding (please refer to Ziaei et al. 

(2015) for more information on the eye-tracking data). Additionally, given that there was no 

significant difference between neutral and emotional distractors, we pooled them together for 

this study. Future research is needed to investigate the age-related changes in processing 

emotional and neutral distractors. 
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Taken together, the seed PLS analyses demonstrated differential frontal functional 

connectivity networks for WM encoding of positive and negative items in older adults, while 

younger adults recruited a single network regardless of emotional valence. Amygdala functional 

connectivity revealed a single network which was engaged during encoding of both positive and 

negative items among older adults, suggesting that this network subserves a different function 

relative to the networks connected to VLPFC seed. Although there was lack of a behavioral 

positivity effect, the functional connectivity findings highlight the engagement of cognitive 

control regions during encoding of negative items, perhaps as a way to down regulate negative 

emotions, and a separate and more localized network during encoding of positive items among 

older adults. These findings imply that older adults’ preference for positive items might stem 

from differential engagement of brain networks during processing of both positive and negative 

items, relative to their younger counterparts. Mapping age differences in frontal-amygdala 

functional connectivity will contribute to further understanding of the changes in emotion-

cognition interactions in normal aging which can be used as makers for diagnosis of clinical 

disorders that are characterized by aberrant emotional dysfunction.  
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Figure legends 

Figure 1. Experimental design. The task includes five conditions; (1) attend to negative 

pictures/ignore neutral pictures, (2) attend to negative pictures/ignore positive pictures, (3) attend 

to positive pictures/ignore neutral pictures, (4) attend to positive pictures/ignore negative 

pictures, and (5) passive viewing of the pictures. During retrieval, participants were asked to 

decide whether the probe was a part of the previously presented target set or not. 

Figure 2. Working memory and recognition memory performance for older and 

younger adults. Accuracy performance is based on loglinear hits – loglinear false alarms (FA). 

Bars represent 1 standard error of the mean (SEM). The results indicated that older adults were 

less accurate and slower relative to younger adults. Additionally, both age groups were faster and 

more accurate in responding during instructed attention relative to passive viewing. Panel A 

represents working memory accuracy, panel B represents working memory reaction times, and 

panel C represents long-term memory accuracy.  

Figure 3. Whole-brain univariate analysis. (A) Represents the activation in all conditions 

vs. passive viewing (yellow color). Regions in green represent areas with reduced activation in 

older adults compared to younger adults. (B) Regions in blue color shows increased activation in 
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passive viewing vs. all conditions. Areas in green reflect reduced deactivation in older adults 

relative to younger adults.  

Figure 4. Seed-PLS results using left VLPFC as a seed (LV1). Panel A represents a 

pattern of whole brain activity in LV1. For LV1, regions shown in yellow indicate greater 

activity for instructed attention to negative items in older adults only. Panel B represents brain 

scores from LV1 indicating significant correlations between the brain regions connected to the 

left VLPFC and behavioral performances, such as RTs and accuracy, during negative conditions 

among older group (Green bars). Error bars denote 95% confidence intervals for the correlations 

calculated using the bootstrap procedure. All reported regions have BSR ≥ 3. L = left 

hemisphere, R = right hemisphere 

Figure 5. Seed-PLS results using left VLPFC as a seed (LV2). Panel A represents the 

whole brain functional connectivity associated with LV2. Regions depicted in yellow color 

reflect areas with greater activity during encoding of positive items in older adults, and encoding 

of both positive and negative items in the younger group. Panel B represents the brain scores 

indicating the positive correlation between the brain networks connected to VLPFC during 

encoding of both emotional items and higher accuracy during retrieval of positive and negative 

items among younger adults (purple bars). Error bars denote 95% confidence intervals for the 

correlations calculated using the bootstrap procedure. All reported regions have BSR ≥ 3. L = 

left hemisphere, R = right hemisphere. 

Figure 6. Seed-PLS results using left amygdala as a seed. Panel A represents the 

functional connectivity pattern for LV1. Panel B represents a correlation between activity in left 

amygdala, RTs, accuracy, and the scores representing activity in regions seen in panel A. Error 
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bars denote 95% confidence intervals for the correlations calculated using the bootstrap 

procedure. All reported regions have BSR ≥ 3. L = left hemisphere, R = right hemisphere.

 

Table 1. Descriptive and inferential statistics for the background measures for younger and older 

adults. 

Measures 

Older adults 

Younger 

adults 

Inferential 

statistics 

Mean (SD) Mean (SD) t df 

Age  68.23 (3.7) 

 

22.53 (1.71)   

Gender 9 females, 4 males 

9 females, 4 

males 

  

MMSE 27.61 (1.19) -   

Emotion Regulation 

Questionnaire 

    

Reappraisal 24.30(9.25) 30.23 (7.06) 

1.

83 

24 

Suppresssion 10.00(3.87) 11.38 (5.28) 

0.

76 

24 

Stroop test (in ms)     

Congruent 1428 (261.11) 

842.72 

(183.60) 

6.

62
*
 

24 

Incongruent 1650.95 (308.76) 

1034.30 

(209.60) 

5.

98
*
 

24 

Neutral 1313.85 (184.80) 

817.99 

(168.19) 

7.

15
*
 

24 

Stroop effect 222.11 (149.54) 

         191.58 

(75.25) 

1.

43 

24 
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Operation span 20.1 (13.4) 46.9 (20.9) 

3.

69
*
 

24 

Working memory      

FA for negative items 0.06 (0.09) 0.03 (0.01) 

1.

30 

24 

FA for positive items 0.06 (0.12) 0.03 (0.02) 

0.

98 

24 

Hits for positive items 0.63 (0.18) 0.84 (0.14) 

3.

35
**

 

24 

Hits for negative items  0.66 (0.18) 0.88 (0.07) 

4.

03
**

 

24 

Recognition memory     

Hits for positive 0.55 (0.08) 0.52 (0.15) 

0.

54 

22 

Hits for negative 0.64 (0.12) 0.54 (0.15) 

1.

78 

22 

FA for positive 0.32 (0.13) 0.34 (0.20) 

0.

28 

22 

FA for negative 0.37 (0.17) 0.32 (0.17) 

0.

62 

22 

*= p < .05, ** = p < .01; MMSE = Mini Mental State Examination. Stroop effect in ms refers to 

incongruent minus congruent trials 

 

Table 2 

Peak coordinates for clusters from the functional connectivity (PLS) analysis using VLPFC 

(-38 16 26) as a seed region. 
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Regions Hem 
MNI 

coordinates[XYZ] 
BR 

Cluster size 

(in voxels) 

LV1     

Middle Occipital Gyrus R [42 -80 0] 4.95 1604 

Cerebellum R [40 -66 -24] 4.74 153 

Precentral Gyrus R [14 -22 72] 4.29 62 

Cerebellum R [12 -74 -16] 3.90 95 

Inferior Frontal Gyrus R [46 26 2] -5.88 398 

Medial Temporal Gyrus R [64 -46 8] -5.58 1033 

Rolandic Operculum R [52 4 16] -5.23 156 

Inferior Parietal Cortex R [52 -52 30] -5.08 842 

Insula lobe R [38 12 -6] -4.50 171 

Superior Frontal Gyrus R [28 56 10] -4.36 169 

LV2     

Inferior Frontal Gyrus L [-40 18 26] 8.19 430 

Superior Medial Gyrus L [-2 50 38] 6.17 101 

Parahippocampus R [20 -22 -24] 5.26 295 

Middle Frontal Gyrus R [32 30 38] 4.76 74 

Hippocampus R [28 -24 -8] 4.75 50 

Cerebellum R [44 -64 -26] 4.69 369 

Fusiform Gyrus L [-34 -48 -22] 4.68 213 

Middle Temporal Gyrus L [-48 -20 -14] 4.54 219 

Middle Frontal Gyrus L [-38 16 46] 4.49 148 

Superior Parietal Lobe L [-20 -78 52] 4.46 76 

Thalamus L [-14 -30 -2] 4.45 72 

Middle Frontal Gyrus L [-20 28 52] 4.42 72 

Inferior Temporal Gyrus L [-54 -54 -6] 4.13 147 

Fusiform Gyrus R [20 -48 -14] 3.94 117 
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Hem = hemisphere, BA = Broadmann Area, BR = Bootstrap Ratio 

 

 

Table 3 

Superior Occipital Gyrus R [28 -68 32] -5.42 1101 

Superior Temporal Gyrus R [52 -26 8] -5.00 413 

Inferior Frontal Gyrus R [54 20 10] -4.14 74 

Regions Hem 

MNI 

coordinates BR 

 

Cluster 

size (in voxels) 

XYZ  

LV1     

Middle Temporal Gyrus L [-50 -50 6] 9.06 24241 

Inferior Frontal Gyrus R [58 12 14] 6.44 657 

Postcentral Gyrus R [64 -14 24] 6.41 111 

Superior Frontal Gyrus R [26 16 38] 6.04 683 

Middle Frontal Gyrus R [36 54 6] 5.89 404 

Superior Medial Gyrus R [6 56 0] 5.15 424 

Insula Lobe R [44 8 -6] 4.91 169 

Hippocampus R [28 -8 -18] 4.37 308 

Superior Medial Gyrus R [0 48 18] 3.20 97 

Precentral Gyrus L [-60 8 28] -6.46        257 

Middle Temporal Gyrus R [42 -72 8] -5.84        2250 

Cerebellum R [14 -80 -20] 5.09 211 

 L [-12 -52 -10] -4.60 67 

Middle Frontal Gyrus L [-42 56 4] -3.90 69 
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Peak coordinates for clusters from the functional connectivity (PLS) analysis using 

amygdala (-30 -6 -10) as a seed region.  

 

 

Hem = hemisphere, BA = Broadmann Area, BR = Bootstrap Ratio 

Highlights 

 Older adults recruit a fronto-parietal network during encoding of negative emotion. 

 Older adults recruit separate frontal regions for encoding of positive emotions.  

 Young adults recruited one vlPFC network for encoding of positive & negative items. 

 Age-related cortical-subcortical shift was found for encoding of emotional items. 

 Positivity bias in aging may stem from fronto-parietal cognitive control network. 

 

Figure 1 

Middle Occipital Gyrus L [-32 -88 8] -3.87 578 

Fusiform Gyrus L [-28 -50 -18] -3.56 100 

Cuneus R [8 -94 24] -3.55 50 

Middle Temporal Gyrus L [-68 -22 0] -3.50 54 
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