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Abstract 7 

A tunnel emissions study was conducted to (partially) validate the Australian vehicle emissions software 8 

COPERT Australia and PIARC emission factors. The in-tunnel fleet mix differs substantially from the average 9 

on-road fleet, leading to lower emissions by factor of about 2.  Simulation with the P∆P software found that in-10 

tunnel air-flow roughly compensates for road gradient impacts on NOx emissions. PIARC emission factors are 11 

conservative and exhibit the largest prediction errors, except for one very good agreement for LDV NOx. 12 

COPERT Australia is generally accurate at fleet level for CO, NOx, PM2.5 and PM10, when compared with other 13 

international studies, and consistently underestimates emissions by 7% to 37%, depending on the pollutant. 14 

Possible contributing factors are under-representation of high/excessive emitting vehicles, inaccurate mileage 15 

correction factors, and lack of empirical emissions data for Australian diesel cars.  The study results demonstrate 16 

a large uncertainty in speciated VOC and PAH emission factors. 17 

Graphical abstract 18 

 19 
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Highlights 21 

• Tunnel studies are useful to partially validate vehicle emissions software 22 

• Air flow in tunnels can compensate the impacts of road gradients on vehicle emissions 23 

• Local fleet mix is an essential factor in validation studies 24 

Keywords 25 

Motor vehicle; emissions; tunnel; validation; road traffic 26 

1. Introduction 27 

Motor vehicles are a major source of air pollution and greenhouse gas (GHG) emissions in urban areas around 28 

the world. The close proximity of motor vehicles to the general population makes this a particularly relevant 29 

source from an exposure and health perspective. This is illustrated by Caiazzo et al. (2013) who estimated that 30 

total combustion emissions (particulates, ozone) in the U.S. account for about 210,000 premature deaths per 31 

year, with motor vehicles being the largest contributor, contributing to around 58,000 premature deaths per year, 32 

despite the fact that road transport only contributes about 7% to total PM2.5 emissions. 33 

Comprehensive measurement of vehicle emissions in urban networks is cost prohibitive due to the large number 34 

of vehicles that operate on roads with different emission profiles, large spatial and temporal variability in vehicle 35 

activity and many real-world factors that influence emission levels (Smit et al., 2008). The environmental 36 

impacts of road traffic are therefore commonly evaluated at different scales using transport and emission models 37 

and, in the case of air pollution, dispersion and exposure models. Models are also required to make projections 38 

into the future.  39 

Vehicle-emission prediction software is well-established in Europe and the US. However, these models have 40 

been found to not adequately represent Australian conditions in terms of fleet mix, vehicle technology, fuel 41 

quality and climate. Large errors of up to a factor of 20 have been reported when overseas models were directly 42 

applied to Australian conditions without calibration (Smit and McBroom, 2009). Therefore, two software 43 

packages have been developed specifically for Australian conditions, using comprehensive empirical data from 44 

major Australian laboratory emission testing programs. COPERT Australia has been developed to estimate 45 
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motor vehicle emissions at a regional and national level, while a power-based model (P∆P) was developed for 46 

local assessments, as will be discussed in section 2.2.  47 

As models are simplifications of reality, their limitations and accuracy should be clearly established. This paper 48 

presents results of a tunnel emissions study that was conducted in Brisbane, Australia. 49 

2. Method 50 

2.1 Tunnel studies 51 

There are several methods used to (partially) validate vehicle emission models, such as on-board emission 52 

measurements (PEMS), remote sensing, near-road air quality measurements and tunnel studies (Smit et al., 53 

2010). Like all validation methods, tunnel studies have specific strengths and weaknesses. A strength is that 54 

emissions are derived from a large sample of the on-road fleet under relatively controlled conditions, thereby 55 

adequately capturing inter-vehicle variability in emissions. The spatial resolution aligns better with distance-56 

based emission factors (g/km) commonly used in vehicle emission models, as compared with localised 57 

validation methods such as remote sensing and near-road air quality measurements. 58 

However, there are also some challenges with tunnel studies. They represent only a limited range of operating 59 

conditions (typically ‘smooth’, uncongested, high-speed driving). As a consequence, validation results cannot be 60 

directly translated, for example, to commonly occurring urban driving conditions at lower speeds. Tunnels may 61 

also have significant uphill and downhill gradients, and in-tunnel air-flows affecting emissions. Furthermore, 62 

assumptions relating to the unknown proportion of vehicles in cold-start mode and actual vehicle loads are 63 

required to make a comparison with model predictions. Nevertheless, tunnel studies provide a useful approach to 64 

(partially) validate vehicle emission models for specific traffic situations.  65 

Tunnel studies have been extensively used around the world to compare model predictions with observed values 66 

(e.g. De Fré et al., 1994; Hausberger et al., 2003; Geller et al., 2005). In these studies, emission factors, 67 

expressed as grams of pollutant per vehicle kilometre (g/veh.km, subsequently denoted as g/km), are determined 68 

using the differences between the concentration levels at the tunnel entrance and exit, combined with tunnel 69 

features (e.g. road length), traffic flow and traffic conditions, as well as either measured tunnel air-flow or a 70 

dilution factor based on a tracer gas (e.g. SF6). Regression analysis is often used to develop mean emission 71 

factors (g/km) by time of day for basic vehicle classes (e.g. light-duty vehicle, LDV and heavy-duty vehicle, 72 

HDV). License plate information is typically recorded to obtain a detailed breakdown of the on-road fleet. In 73 

tunnels with distinct traffic flow patterns (e.g. separate bores for trucks), separate emission factors can be 74 
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produced. Tunnel lengths vary from a few hundred metres to 10 km. Several studies are done in tunnels with 75 

significant road gradients up to 4.2%. The averaging time of measurement is typically one hour and total 76 

sampling times vary from 10 hours to a month (Smit et al., 2010). 77 

2.2 Australian vehicle emissions software 78 

COPERT (COmputer Program to calculate Emissions from Road Transport) is a globally used software tool 79 

used to calculate air pollutant and GHG emissions produced by road transport, and its scientific development is 80 

managed by the European Commission. A dedicated Australian version of COPERT was developed to reflect 81 

local fleet composition and driving characteristics and provide vehicle emission estimates for the Australian 82 

situation (Mellios et al., 2013; Smit and Ntziachristos, 2013a). The software has been adopted by the National 83 

Pollutant Inventory as the recommended model for motor vehicle emission inventories and has been used to 84 

estimate motor vehicle emissions for all states and territories in Australia (UQ, 2014). 85 

COPERT Australia estimates emissions for 122 air pollutants and greenhouse gases. The software estimates 86 

emissions of both cold-start and hot-running exhaust and non-exhaust pollutants. COPERT Australia predicts 87 

emissions for 226 individual vehicle classes, which are defined in terms of vehicle type (e.g. small passenger car, 88 

large SUV, heavy bus, rigid truck, articulated truck), fuel type (petrol, E10, diesel, LPG) and ‘emission control 89 

technology level’ or ADRs (Australian Design Rules), which are the vehicle emission standards adopted in 90 

Australia (equivalent to Euro standards since 2003). The software accounts for various other factors such as 91 

driving conditions (average speed), fuel quality, impacts of ageing on emissions and meteorology (ambient 92 

temperature and humidity). 93 

The P∆P software uses engine power (P, kW) and the change in engine power (∆P, kW) to simulate fuel 94 

consumption and CO2 and NOx (hot-running) emissions for 73 Australian vehicle classes for each second of 95 

driving (Smit, 2013). P∆P has adopted the vehicle classification used in COPERT Australia, but with a focus on 96 

the most important vehicle classes. Similar to COPERT Australia, the software was developed using empirical 97 

data from a verified Australian emissions database with about 2,500 second-by-second emission tests (1 Hz) and 98 

about 12,500 individual aggregated ‘bag’ measurements using real-world Australian drive cycles. Multivariate 99 

time-series regression models have been fitted to these data using P and ∆P as predictor variables. The input to 100 

the model is speed-time data (1 Hz) and information on road gradient, wind speed, vehicle loading and use of air 101 

conditioning (on/off). This information is used to compute the required (change in) engine power for each 102 

second of driving, and subsequently predict second-by-second fuel consumption and emissions. The software 103 

has been used to estimate vehicle emissions in small urban networks using output from a microscopic transport 104 
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model. The purpose was to estimate the impacts of a safety intervention programs on vehicle emissions using on-105 

road GPS measurements and to assess the impacts of dynamic speed limits on emissions (Smit, 2014). The 106 

software is ideally suited to examine the combined impacts of vehicle speed, road gradient and piston air-flow in 107 

tunnels on emissions for all major on-road vehicle types (cars, SUVs, LCVs, rigid trucks, buses, articulated 108 

trucks). 109 

PIARC (Permanent International Association of Road Congresses) publishes country-specific emission factor 110 

tables that are widely used around the world to estimate emission levels generated in tunnels, and assess 111 

ventilation requirements to maintain acceptable in-tunnel air quality and visibility (PIARC, 2012) .PIARC 112 

provides CO and NOx emission factors (g/h), and opacity factors (m3/h, proxy for particulate matter) specifically 113 

for the Australian on-road fleet. Emission rates are provided for a range of speeds and road gradients for four 114 

vehicle classes, i.e. petrol and diesel passenger cars, light-duty vehicles (petrol/diesel mix) and diesel heavy-115 

goods vehicles. 116 

2.3 Measurements in the Brisbane CLEM7 tunnel 117 

Brisbane’s Clem Jones Tunnel (CLEM7) has 4.8 km of twin one-directional 2-lane tunnels, with a cross-118 

sectional area of about 60 m2, linking major Brisbane roads. To control for portal emissions, the tunnel is 119 

subjected to forced ventilation through a combination a of jet fans inside the tunnel and exhaust fans located near 120 

the portals. Air monitoring equipment was installed in the north tunnel ventilation vent on 25 August 2014, as is 121 

shown in Figure 1. 122 

 123 

Figure 1 – Installing measurement equipment in the CLEM7 Northbound tunnel vent. 124 
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Air-monitoring data (five-minute average) was collected in the vent for 9 days for CO, NO, NO2, NOx, PM2.5, 125 

PM10, speciated volatile organic compounds (VOCs) and polycyclic aromatic hydrocarbons (PAHs), as well as 126 

variables quantifying conditions in the tunnel vent (temperature, relative and absolute humidity, atmospheric 127 

pressure).  128 

Nitrogen oxides (NO, NO2, NOx) were measured using a light emission (chemiluminescent) analyser (Teledyne 129 

API200). Carbon monoxide (CO) was measured with an infrared absorption instrument utilising the gas filter 130 

correlation technique (Teledyne API300). Particle concentrations were measured with a Thermo Scientific 1405-131 

DF TEOM Continuous Dichotomous Ambient Air Monitor to simultaneously measure PM2.5 and PM10.  132 

In contrast to high-resolution (5-minute) measurements of CO, NOx and PM, sampling periods for VOCs and 133 

PAHs are 24 hours or longer and they were not conducted for the full measurement period. Evacuated canisters 134 

fitted with timers and critical orifices were used to take VOC samples over a 24-hour period on sequential days 135 

in the tunnel vent. Some canisters experienced problems with the timer and did not provide a sample. Samples 136 

were successfully collected for a total of four days. The canisters were then sent for laboratory analysis using gas 137 

chromatography and mass spectrometry (GC/MS) in accordance with the US EPA Compendium TO-15 analysis 138 

method. PAHs have been collected using a low-volume air sampler in combination with a frit and a sorbent 139 

cartridge (XAD-2 resin) over an approximately nine-day sampling period. After sampling, they were extracted 140 

together to obtain the gas-phase and particle-associated PAH concentrations. Gas Chromatography – High-141 

Resolution Mass Spectrometry was used for the PAHs analysis. 142 

The pollutant monitoring data were checked by pre- and post-test calibration, as daily calibration for zero and 143 

span values could not be carried out during the test period. Particulate matter monitoring data collected with the 144 

TEOM instrument were verified according to Australian Standard AS/NZS 3580.9.13:2013.  145 

Tolling statistics are continuously collected at the exit of the northbound tunnel using camera-imaging 146 

technology. License plate numbers (LPNs) are collected and date-time stamped for each vehicle that passes the 147 

cameras. Each vehicle is then classified as a motorcycle, car, light commercial vehicle (LCV) or heavy 148 

commercial vehicle (HCV) using height, length and width of each vehicle, which are determined when the 149 

vehicles travel through a specific zone on the road. Figure 2 shows the variation of traffic volumes going through 150 

the tunnel by hour of day and day of the week. 151 
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 152 

Figure 2 – Average total traffic count by hour of day and by day of the week. 153 

Figure 3 shows a time-series plot of measured NOx concentration levels (µg/m3) in the north ventilation stack, 154 

including the urban background concentration levels measured at South Brisbane station. The daily variation in 155 

traffic flows is clearly visible in the concentration data, as is the difference between weekdays and weekend (30 156 

and 31 August). 157 

 158 

Figure 3 – Hourly averaged tunnel vent NOx concentrations (NO2-equivalents) and urban background 159 

concentrations. 160 
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2.4 Emission computation 161 

Examination of five-minute data was performed to check the quality and validity of the raw concentration 162 

measurements, before hourly averaged values were computed. Tunnel emissions were computed by multiplying 163 

hourly-averaged measurements of time-aligned and background-corrected concentrations by tunnel air-flow data 164 

(m3/h). Ambient concentration data from nearby monitoring stations were used to estimate concentrations at the 165 

tunnel entrance point. Hourly vehicle travel in the tunnel is quantified with a variable called ‘vehicle kilometres 166 

travelled’ (veh.km/h). Hourly VKT were computed by multiplying total traffic volume (veh/h) derived from 167 

tolling statistics with total distance (km). NOx emissions were corrected for humidity. 168 

2.5 In-tunnel fleet mix 169 

The LPN data were cross-referenced with vehicle registration information from the Queensland Department of 170 

Transport and Main Roads, and individual vehicles were allocated to one of the 226 vehicle classes used in 171 

COPERT Australia. About 13% of LPN could not be matched with Queensland vehicle registration data, 172 

reflecting unidentified license plates and the portion of inter-state and unregistered vehicles. A comparison 173 

between the average Queensland fleet (UQ, 2014) and the in-tunnel fleet based on analysis of license plate 174 

numbers revealed that there are significant differences.  175 

Whereas the VKT weighted proportion of diesel and petrol/E10 vehicles is similar (~ 29% and ~70%, 176 

respectively), the tunnel has higher proportion of medium passenger cars and SUVs, as compared with the 177 

Queensland average fleet. Importantly, the vehicle fleet in the tunnel is substantially younger with better engine 178 

and emission-control technology, as compared with the average 2010 Queensland fleet. This is partly explained 179 

with the difference in base year, but also expected to reflect a tendency for newer vehicles to use tolled tunnels. 180 

The impact of fleet mix on emissions is further discussed in section 3.3. 181 

2.5 Road gradient and air-flow 182 

In-tunnel air speeds are measured continuously and vary from 7 to 18 km/h, depending on the time of day. The 183 

road gradient profile of the tunnel was determined from tunnel design maps. In-tunnel driving behaviour was 184 

recorded and analysed in a brief measurement campaign of traffic conditions by driving a car in and around the 185 

CLEM7 tunnel on 27 August 2014 in the morning peak hour (8:30am – 10:00am) using the ATLAS II1 smart 186 

app (Safi et al., 2015). Driving behaviour in the tunnel can be characterised as ‘free-flow freeway conditions’ 187 

with an 80 km/h speed limit. Using this information, the P∆P software was run to quantify the combined impact 188 
 
1 Advanced Travel Logging Application for Smartphones II. 
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of road gradient, (piston) air-flow and tunnel driving conditions on vehicle emissions. Two input files were 189 

created: 1) a second-by-second input file for in-tunnel vehicle speed, (variable) air speeds and road gradient 190 

(Figure 4), and 2) a second-by-second input file with the same vehicle speed profile but with zero air speed and 191 

zero road gradient (‘base case’).   192 

Total emissions (grams of NOx) were then calculated for each tunnel journey for a range of in-tunnel wind 193 

speeds, and divided by total tunnel distance to compute average emission factors (g/km) for LDVs and HDVs. 194 

By dividing these composite emission factors with the ‘base case’ values, correction factors were computed as a 195 

function of in-tunnel air speed. The results are shown in Figure 5. COPERT Australia emission factors for NOx 196 

are corrected with these values. 197 

 198 

 199 

Figure 4 – Visualised second-by-second input file for the P∆P software, including in-tunnel air speed (range), 200 

road gradient profile and vehicle speed for tunnel. 201 
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 202 

Figure 5 – Correction factors for combined road grade and in-tunnel air-flow impacts on vehicle emissions in the 203 

CLEM7 tunnel for LDVs and HDVs as computed with the P∆P software. 204 

The road gradient effect on in-tunnel emissions is substantial with an approximately 20% net increase in NOx 205 

emissions (air speed is zero km/h). However, in-tunnel air speed is predicted to have a significant impact on 206 

emissions: it roughly compensates for the impacts of road gradient at higher air speeds due to reduced 207 

aerodynamic drag. The average correction factor for the full measurement period, accounting for variable in-208 

tunnel air-flows, is therefore small: 1.01 and 1.08 for LDVs and HDVs, respectively.  209 

2.6 Start emissions 210 

Cold starts contribute significantly to total vehicle emission loads, on average, 42%, 31%, 7% and 5% to total 211 

emissions of CO, VOCs, NOx and PM2.5, respectively, for the Queensland fleet (UQ, 2014). The extent to which 212 

in-tunnel vehicles are in cold-start mode is difficult to determine, and would require a detailed analysis of start 213 

location and distance driven to the tunnel entry. This information is not readily available. However, given that 214 

the bulk of cold-start emissions are typically emitted in the first minute of driving (Smit and Ntziachristos, 215 

2013b) and the long length of the tunnel, it is expected that most vehicles will be driving in hot-running 216 

conditions. As a result, the unknown impact of cold-start conditions is expected to be insignificant. 217 

  218 
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2.7 High-emitters 219 

Vehicle ageing has a significant and unavoidable effect (increase) on vehicle emissions, and this is aggravated 220 

by poor maintenance and tampering. Vehicle fleet emissions are dominated by a small percentage of ‘high-221 

emitters’ with excessive emission levels, which has been confirmed by different types of emission studies 222 

including laboratory test programs (e.g. Sjödin and Lenner, 1995; Pierson et al. 1999, Choo et al., 2007; RTA, 223 

2009) and remote sensing studies (e.g. Zhang et al., 1995, NIWA, 2008; 2015). Studies have shown that 224 

emissions from ‘high-emitting’ vehicles can be at least 50 times higher than a properly functioning catalyst car 225 

(e.g. Sjödin et al., 1997), and improper maintenance (and tampering) has been indicated as the principal reason 226 

for the skewness of vehicle emission distributions. The latter will remain unchecked and unverified in the 227 

absence of inspection and repair programs, as is the case in Australia.  228 

Recent remote sensing studies (Park et al., 2012) suggest that the skewness of (~1 Hz) emission distributions for 229 

CO, hydrocarbons (HC) and NOx has increased over the last decade due to high-emitting vehicles, whereas fleet-230 

averaged emissions have decreased considerably. Bishop et al. (2012) reported that 1% of on-road vehicles in the 231 

USA contributed about 10% to total vehicle emissions in the late 1980s, and that this contribution of 1% of on-232 

road vehicles now has increased to about 30%. This is, to some extent, also caused by the the irregular emissions 233 

behavior of modern cars, which is increasingly characterised with low emission levels and brief and large 234 

emission peaks (e.g. De Haan and Keller, 2000; Smit, 2013). 235 

This change in on-road emission profiles reflects two main trends 1) the penetration of cleaner vehicles into the 236 

fleet over time due to increasingly strict emission standards and improved control technologies with irregular 237 

emissions behaviour, and 2) the presence of vehicles that are badly tuned or have been tampered with, have 238 

engine issues and/or have malfunctioning or partly functioning emission control systems (catalysts, lambda 239 

sensors, faulty fuel caps, fuel injector malfunction, worn turbochargers, clogged air filters etc.).  It is noted that 240 

there could be other reasons for the occurrence of vehicles with excessive emission levels than tampering, engine 241 

(tuning) issues and malfunctioning emission control systems, such as poorly retrofitted fuel systems and to some 242 

extent even heavy loads.  243 

  244 
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3. Results and discussion 245 

3.1 NO2 to NOx ratios 246 

NO2 to NOx ratios are of interest as they quantify the proportion of NOx that is directly emitted as NO2. The box-247 

and-whisker plot in Figure 6 shows that NO2 to NOx ratios are typically 0.15 during times of day with significant 248 

traffic volumes (6 AM – 8 PM). This is in line with expected mean primary NO2 emissions at fleet level (e.g. 249 

Soltic and Weilenmann, 2003; Carslaw and Beevers, 2005). COPERT Australia predicts an average ratio of 0.13.  250 

 251 

Figure 6 – Box-and-whisker plot of measured NO2 to NOx ratios in the tunnel by hour of day.  252 

Red line shows the predicted ratio with COPERT Australia. 253 

Atmospheric photo-oxidation produces ozone in the urban atmosphere, which reacts with NO in e.g. vehicle 254 

exhaust producing NO2. This reaction occurs relatively fast in heavy trafficked areas, including tunnels, resulting 255 

in reduced ozone concentrations and elevated NO2 concentrations (e.g. McConnell et al., 2006). At night, NOx 256 

concentrations are substantially reduced (Figure 3) and ozone formation ceases. On balance, NO2 to NOx ratios 257 

can be high at low ambient concentration levels (typically 0.75 to 0.90). This effect is visible in Figure 6, where 258 

NO2 to NOx ratios in the tunnel are higher at night (around 0.25). At night, traffic volumes in the tunnel are small 259 

(Figure 2) and ratios are more affected by ambient ratios.  This suggests that for model validation, hours with 260 

small traffic volumes should not be used as these measurements can be significantly impacted by potential errors 261 

in estimated background concentration levels. 262 

  263 
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3.2 Model prediction errors  264 

Figure 7 shows hourly emission predictions and observations in goodness-of-fit plots for each pollutant. A dot 265 

point represents one hourly value. The grey dashed 45° lines indicate a perfect fit without bias. Any dot points 266 

on this line show model predictions that are equivalent to observations. If a point lies below the 45° line, the 267 

model under-predicts, and if is lies above the 45° line, the model over-predicts.  268 

 269 

Figure 7 – Hourly COPERT Australia predictions versus measured tunnel emissions by pollutant (red line = 270 

linear regression line, red shading = 95% confidence intervals). 271 

A linear ordinary least-squares (OLS) regression model was fitted to these data: 272 

� = �	� + 	�          Equation 1 273 
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In this model P represents a vector of hourly predictions, O the vector of hourly observations, ββββ is a vector of 274 

regression coefficients (β0, β1) and εεεε is the vector of error terms.  275 

This model is useful as the slope (β1) can be used to estimate the systematic error or bias in COPERT predictions 276 

in relation to the measured tunnel emissions. The coefficient of determination (R2), estimated intercept (b0) and 277 

slope (b1) and bias are shown in Table 1.  278 

Table 1 – Model performance statistics showing fitted regression coefficients (± standard error, p-value), 279 

coefficient of determination and bias. 280 

Pollutant b0 b1 R2 Bias 
CO  +5.66 ± 99.61 (p = 0.955) 0.63 ± 0.02 (p < 0.001) 0.88 -37% 
NOx -89.40 ± 56.13 (p = 0.114) 0.74 ± 0.02 (p < 0.001) 0.93 -26% 
PM2.5 +10.10    ± 3.61 (p = 0.006) 0.80 ± 0.04 (p < 0.001) 0.78 -7% a) 
PM10 +13.96    ± 4.63 (p = 0.003) 0.74 ± 0.04 (p < 0.001) 0.78 -14% b) 

a bias for an average concentration value of 77 µg/m3, bias is a function of observed concentration and ranges from +52% at the lowest measured 281 
concentration to –13% at the highest measured concentration, b bias for an average concentration value of 114 µg/m3, bias is a function of observed 282 
concentration and ranges from +32% at the lowest measured concentration to –19% at the highest measured concentration. 283 

Fitted intercepts are expected to be zero as zero emission predictions (no vehicles in the tunnel) should 284 

correspond to zero emission measurements. The intercepts are not significantly different from zero for CO and 285 

NOx, but are significantly different for PM. One contributing factor is that background concentration levels are 286 

relatively high for PM (on average 6 µg/m3 for PM2.5 and 14 µg/m3 for PM10). As a consequence, errors in 287 

background concentration data can significantly impact on the results. There are also significant differences 288 

between the empirical base for the COPERT software and the tunnel results that may significantly affect 289 

measured PM mass concentrations, and can distort expected relationships with regard to traffic volume, driving 290 

conditions and fleet mix. Whereas laboratory emission measurements are conducted under strictly defined and 291 

controlled conditions, the tunnel PM samples measure particles that have aged (typically 8 minutes after 292 

emission from exhaust pipe) and have undergone several processes such as nucleation, coalescence and 293 

condensation, as well as absorption to and re-entrainment from tunnel walls. Tunnels are also uncontrolled in 294 

relation to non-exhaust PM emissions, and could be significantly influenced by e.g. trucks carrying dusty loads.  295 

The regression model suggests that the prediction software under-estimates emissions by 7 to 37%, depending on 296 

the pollutant. These validation results appear to be relatively good. For instance, a review of 50 international 297 

vehicle emission model validation studies showed that reported model prediction errors are generally within a 298 
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factor of 2 for NOx and within a factor of 3 for CO and PM, although differences as high as a factor of 5 have 299 

been reported (Smit et al. 2010).  300 

A plausible factor for this consistent underestimation may be (in part) an incomplete representation in the 301 

COPERT Australia emission factors of vehicles with high or even excessive emissions (‘high-emitters’), as was 302 

discussed in section 2.7. This issue has been reported in other studies. For instance, NRC (2000) considered that 303 

under-representation of emissions from high-emitters in the US MOBILE model was one of the chief reasons for 304 

MOBILE under-predicting real-world fleet emissions. A related factor could be inaccurate computation of 305 

ageing effects of Australian vehicles. Although COPERT Australia simulates the effects of ageing with generic 306 

mileage-correction algorithms, they are based on limited non-Australian data. In fact, recent research suggests 307 

that these correction algorithms underestimate ageing effects on emissions substantially and thus require further 308 

calibration (Borken-Kleefeld and Chen, 2015).  309 

3.3 Model prediction errors by vehicle class  310 

Consideration of vehicle class specific prediction errors facilitates cost-effective and focused vehicle emission 311 

measurement programs that target specific vehicle classes, which show substantial discrepancies between 312 

observed and predicted emission factors. Composite emission factors (g/km) were computed by dividing hourly 313 

tunnel emissions (g/h) by total hourly travel (veh.km/h). Hours with reduced average speeds less than 75 km/h 314 

(e.g. due to tunnel maintenance) were removed to ensure homogeneous and comparable traffic conditions. 315 

Hourly data with less than one vehicle going through the tunnel per minute were also removed. This is important 316 

because hourly data with a small number of vehicles can be significantly influenced by errors in urban 317 

background concentrations, in particular for pollutants with relatively high background levels such as particles 318 

(PM), as was discussed previously.  319 

The hourly composite emission factors (e) are plotted against the percentage of heavy-duty vehicles (pHDV). An 320 

example for NOx is shown in Figure 8. Figure 8 shows the hourly tunnel data, as well as the hourly predictions 321 

with the COPERT Australia and P∆P model. The significant variation in the COPERT Australia and P∆P model 322 

predictions reflects the impact of the changing fleet mix for each hour of the sampling period inside the tunnel. 323 
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 324 

Figure 8 – Measured and predicted NOx composite emission factors for each hour, fitted regression models with 325 

95% prediction intervals and outliers. 326 

A two-step approach was employed in the regression analysis for the tunnel data. The occurrence of excessive-327 

emitters in a particular hour is expected to substantially increase the composite emission factor (g/km) and will 328 

show up as outliers in the computed emission factors. It is important to include these valid outliers in the 329 

determination of composite emission factors from the in-tunnel measurements. However, this poses specific 330 

issues in the model-fitting process that need to be addressed.  331 

Therefore a robust weighted linear modelling (RWLM) approach was first used to identify these outliers. This 332 

regression is weighted with the total VKT for each hour to account for the higher accuracy of data points with 333 

more vehicles. Any hourly emission value that exceeds the median value plus three times the (robust) standard 334 

deviation is tagged as an outlier (shown as black solid dots in Figure 8).  335 

As the second step, a (VKT-)weighted ordinary least squares (OLS) linear regression was performed on the data 336 

without outliers. The regression model is defined as: 337 

� = 	
	�
 	+ �	�
�� + 	�         Equation 2 338 

Here eh is the mean of the hourly emission values that were tagged as outliers, and ph is the proportion of outliers 339 

in the data. It is thus assumed that high-emitters 1) form a small portion of the fleet and occur randomly in time, 340 
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and 2) are not significantly affected by the proportion of HDVs. For the CLEM7 data the number of hours with 341 

outliers (significant ‘high-emitter impacts’) was 2% for PM, 3% for NOx and 4% for CO. This percentage is in 342 

line with overseas reports. For instance, Choo et al. (2007) analysed 837,829 Inspection and Maintenance (I/M) 343 

test results and found that approximately 4.6% of all vehicles are labelled as ‘gross polluters’. The high-emitter 344 

offset (eh × ph) in equation 2 typically adds an offset value of 10-15% to the mean emission factor (pHDV = 5%). 345 

A similar weighted ordinary least squares (OLS) linear regression model was fitted to the COPERT 346 

Australia/P∆P model predictions (Equation 2, but without the high-emitter offset term).  347 

After model fitting, light-duty and heavy-duty emission factors were computed by using pHDV values of 0% and 348 

100%, respectively, in the linear regression models for each pollutant. Table 2 shows predicted and observed 349 

emission factors for LDVs and HDVs, including 95% confidence limits. 350 

Table 2 – Composite emission factors (mg/km) in hot-running conditions for LDVs and HDVs, including 95% 351 

confidence limits and comparison with COPERT Australia/P∆P and PIARC. 352 

Pollutant COPERT Australia/P∆P PIARC CLEM7 Tunnel 
Light-duty vehicles (pHDV = 0%) 

CO 718 ±29 (1,662) a,c * 2,486 *  1,370 ±79 
NOx 307 ±23 (681) a,b * 504 519 ±36 
PM2.5 13 ±1 (26) a * − 15 ±2 
PM10 18 ±1 (32) a − 21 ±3 

Heavy-duty vehicles (pHDV = 100%) 
CO 941 ±340 (1,055) a 1,308 *  -90 ±939 
NOx 3,780 ±273 (6,634) a,b * 7,538 *  4,771 ±435 
PM2.5 124 ±12 (134) a − 137 ±26 
PM10 142 ±12 (149) a * − 210 ±36 
a prediction for Queensland average fleet within brackets,  b COPERT prediction includes P∆P correction for tunnel road gradient and air-flow,  353 
c 962 mg/km if corrected for road gradient impacts, * statistically significant difference with observations (p < 0.05) 354 

Table 2 shows that the fleet mix in the tunnel has a large impact on predicted emission factors. This was already 355 

visible in Figure 8, which shows the variation in predictions solely due to variation in the in-tunnel fleet mix. In 356 

addition, COPERT Australia predictions for the average Queensland fleet produce LDV and HDV emission 357 

factors that are a factor of 1.7-2.3 and 1.1-1.7 higher, respectively, as compared with the in-tunnel fleet. These 358 

results shows the sensitivity of model predictions to the local fleet mix, and indicates that detailed local fleet mix 359 

information should be explicitly considered in validation studies.  360 
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The PIARC emission factors for CO and NOx reflect the in-tunnel fleet mix and are substantially higher than 361 

COPERT in all cases, varying from a factor of 1.6 to 3.5, depending on the pollutant and vehicle class. These 362 

results indicate that PIARC emission factors are generally conservative. 363 

In terms of prediction errors, comparison of the measured and predicted emission factors show that in several 364 

cases the differences between observations and predictions are not significantly different from zero (p < 0.05), 365 

i.e. PIARC: LDV NOx, COPERT Australia: HDV PM2.5, LDV PM10, HDV CO, as is shown in Table 2. 366 

The PIARC and COPERT Australia CO emission factors for LDVs are 81% higher and 48% lower, respectively, 367 

than the value measured in the tunnel, and these differences are statistically significant (p < 0.05). A possible 368 

reason for the underestimation of CO emissions in COPERT could be additional emissions due to cold starts and 369 

road gradient. The unknown impact of cold-start conditions is expected to be insignificant, as discussed in 370 

section 2.6. The PIARC method suggests an increase in the CO LDV emission factor of 34% due to road 371 

gradient effects in the tunnel. Correcting COPERT Australia predictions with this correction factor reduces the 372 

prediction error for COPERT Australia from -48% to -30%. It is suggested that high-emitting vehicles in the on-373 

road fleet and possibly inaccurate mileage correction factors play a significant role in the underestimation, as 374 

will be discussed later. 375 

A negative HDV emission factor is estimated for CO with the tunnel model, with a 95% confidence interval of -376 

1.0 to +0.8 g/km. This large uncertainty is the result of substantial variability in observed CO emissions and 377 

significant extrapolation (pHDV > 0.22). The COPERT Australia CO emission factor for HDVs is 0.9 ±0.3 g/km 378 

and is not statistically significant (p < 0.05). Cold-start effects on the CO HDV emissions are expected to be 379 

insignificant. The PIARC method applied to the CLEM7 tunnel suggests an increase in the CO HDV emission 380 

factor of 6% due to road gradient effects. The computed PIARC CO emission factor for HDVs is about 40% 381 

higher than the COPERT Australia value. 382 

COPERT Australia predicts an average LDV NOx emission factor of 0.7 g/km for the Queensland fleet, but a 383 

substantially lower value of 0.3 g/km for the actual fleet mix in the tunnel. These values have been corrected for 384 

the impacts of road gradient and piston air-flow in the tunnel, using the P∆P software (Section 2.5). The 385 

corrected LDV COPERT Australia NOx emission factor is 40% lower than the (humidity-corrected) value 386 

measured in the tunnel and this difference is statistically significant (p < 0.05). This may reflect a higher-than-387 

expected proportion of (diesel) vehicles with maintenance issues. The result is of interest as there is a lack of 388 

empirical vehicle emissions test data for Australian light-duty diesel vehicles in particular. This is in contrast to 389 

light-duty petrol vehicles for which extensive emission test programs have been carried out in Australia. As a 390 
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consequence, European emission algorithms for diesel cars were directly used in COPERT Australia, and it is 391 

the only vehicle type for which Australian vehicle emission measurements have not been available.  392 

The PIARC NOx emission factor for LDVs is almost equivalent to the observed value. However, PIARC 393 

overestimates the NOx emission factor for HDVs with 60% and this difference is statistically significant (p < 394 

0.05). The tunnel measurements produce a composite HDV NOx emission factor of 4.7 g/km. COPERT 395 

Australia predicts an average HDV NOx emission factor of 6.6 g/km for the Queensland fleet, but a substantially 396 

lower value of 3.8 g/km for the actual fleet mix in the CLEM7 tunnel. These values have been corrected for the 397 

impacts of road gradient and piston air-flow in the tunnel using the P∆P software. The corrected HDV COPERT 398 

Australia NOx emission factor is 19% lower than the value measured in the tunnel, and the difference is 399 

statistically significant (p < 0.05). This may reflect heavy-duty diesel vehicles with e.g. maintenance issues and 400 

elevated NOx emissions that are not yet fully reflected in the software. 401 

COPERT Australia predicts an average LDV PM2.5 and PM10 emission factor of 26 and 32 mg/km for the 402 

Queensland fleet, and a substantially lower value of 13 and 18 mg/km for the actual fleet mix in the tunnel, 403 

respectively. This value is about 10-15% lower than the value observed in the tunnel, but this difference is only 404 

statistically significant for PM2.5 (p < 0.05). COPERT Australia predicts an average HDV PM2.5 and PM10 405 

emission factor of 134 and 149 mg/km for the Queensland fleet, and a lower value of 124 and 142 mg/km for the 406 

actual fleet mixes in the tunnel, respectively, which is about 10% and 30% lower than the observed values. The 407 

difference is statistically significant (p < 0.05) for PM10 only. These results indicate that overall prediction errors 408 

(under-estimation) for PM are small, but more significant for HDVs. Given the range of factors that complicate 409 

validation for PM that were discussed before, these results show a remarkably good performance of COPERT 410 

Australia.  411 

The analysis of vehicle-class specific prediction errors has shown that largest prediction (%) errors for COPERT 412 

Australia are observed for LDVs for the majority of pollutants (CO, NOx, PM2.5), except for PM10 where HDVs 413 

have the highest (relative) error. PIARC emission factors generally show the largest prediction errors, except for 414 

one very good agreement for LDV NOx. Composite emission factors in COPERT Australia are not significantly 415 

different (p < 0.05) from those observed in the tunnel in 25% of the cases. COPERT Australia emission factors 416 

for LDVs and HDVs have prediction errors ranging from about 10-40%. It is suggested that high-emitting 417 

vehicles in the on-road fleet play a significant role in the underestimation.  418 

 419 

3.4 VOC emission factors  420 
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Individual hydrocarbons include gas-phase VOCs, gas-phase semi-volatile hydrocarbons (also commonly called 421 

SVOCs) and particulate-phase hydrocarbons, where condensation of semi-volatile HCs on aerosols occurs. The 422 

exact definition of the hydrocarbons varies in literature and depends on the measurement equipment used. VOCs 423 

are roughly defined as being C1-C12 hydrocarbons, SVOCs as C10-C26 (mainly alkanes and aromatics) and 424 

particulate phase hydrocarbons as C14+.  Analysis of the VOC canisters identified 28 individual VOCs above the 425 

limit of detection, which are mainly alkanes, alcohols and aromatics. Table 3 shows the results. 426 

Table 3 – Measured and predicted emission factors (mg/km) for speciated VOCs (± standard error). 427 

Speciated VOC Tunnel COPERT Australia Error 
Ethanol 27.0 (±5.6) − − 
Acetone 15.9 (±0.9) 0.2 -99% 
Toluene 14.0 (±1.0) 4.7 -66% 
Xylene (m-& p-) 11.5 (±3.1) 3.9 -66% 
2-Methylbutane   7.6 (±0.8) − − 
Pentane   6.1 (±0.8) 3.4 -44% 
Benzene   5.6 (±0.8) 2.1 -62% 
Methylene-chloride   4.7 (±3.6) − − 
1,2,4-Trimethylbenzene   3.9 (±1.5) 1.1 -71% 
Hexane   3.0 (±0.6) 1.1 -62% 
Xylene (o-)   3.0 (±1.0) 1.9 -36% 
Undecane   2.6 (±1.4) 0.3 a -88% 
4-Ethyltoluene   2.5 (±1.5) − − 
Cyclohexane   2.4 (±0.8) 0.3 b -86% 
p-Diethylbenzene   2.4 (±1.4) − − 
Decane   2.4 (±1.2) 0.2 -93% 
Octane   2.2 (±1.3) 0.2 -93% 
1,3,5-Trimethylbenzene   2.2 (±1.2) 0.4 -83% 
2,2,4-Trimethylpentane   2.2 (±1.2) − − 
Nonane   2.1 (±1.1) 0.1 -97% 
Styrene   2.0 (±1.1) 0.2 -87% 
Heptane   1.9 (±1.1) 0.8 -59% 
Ethylbenzene   1.8 (±1.0) 2.3 +24% 
Acrolein   1.8 (±0.1) 0.3 -85% 
1,3-Butadiene   1.5 (±0.1) 0.5 -67% 
Isopropylalcohol   1.2 (±0.3) − − 
Methylethylketone (MEK)   1.0 (±0.2) 0.1 -93% 
Methyltert-butylether (MTBE)   0.7 (±0.0) − − 
∑∑∑∑   135 24  
a COPERT Australia category “alkanes C10-C12”, b COPERT Australia category “cycloalkanes” 428 
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The difference between COPERT Australia and the tunnel measurements is large. COPERT substantially 429 

underestimates emission factors for individual VOCs, typically with a factor of 5, but in some cases an order of 430 

magnitude lower.  431 

In addition, 43 VOCs for which COPERT Australia provides emission factors, were either not included 432 

(aldehydes; 3.3 mg/km as predicted with COPERT) or were not measured above the limit of detection in the 433 

tunnel. As a consequence, only 33% of the sum of speciated VOCs predicted with COPERT Australia is reported 434 

in Table 3 (24 mg/km). The sum of speciated VOCs has an observed value of 135 mg/km in the tunnel, which is 435 

46% lower than the total value predicted with COPERT Australia (72 mg/km).  436 

The VOC profiles are quite different as shown in Figure 9. The proportion of alcohols in the observations is 437 

substantial (21%) and absent in the COPERT predictions. The high observed values are related to the use of E10 438 

in Queensland. The COPERT Australia VOC profile is dominated by alkanes and alkenes (47% and 17%), 439 

whereas the tunnel observations have proportions of 22% and 1%, respectively. The aromatics content is more 440 

similar with 36% (observed) and 29% (predicted). The observed proportion of ketones (12%) is however 441 

substantially higher than the predicted value of 0.4%. 442 

 443 

Figure 9 –  Proportion of VOCs in fleet emission factors by VOC class as observed in the tunnel (“CLEM7 444 

tunnel”) and the complete VOC profile as predicted with COPERT Australia (“COPERT Australia”). 445 

These results demonstrate the large uncertainty in speciated VOC emission factors, and this suggests that further 446 

studies to improve VOC profiles and associated emission factors are warranted. 447 

 448 

 449 

 450 
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3.4 PAHs emission factors  451 

Observed and predicted PAH emission factors are presented in Table 4. 452 

Table 4 – Measured and predicted emission factors (ng/km) for speciated PAHs. 453 

Speciated PAH Tunnel COPERT Australia Error 
Napthalene 4,793,031  700,352       -85% 
Phenanthrene        5,264    20,841    +296% 
Pyrene        2,510      9,405    +275% 
Fluoranthene        1,377    10,625    +672% 
Anthracene           648     2,094    +223% 
Benzo(a)anthrancene           194     1,159    +497% 
Chrysene           194     2,599 +1,237% 
Benzo(e)pyrene           194     1,814    +833% 
Benzo(b)fluoranthene           154     1,094    +611% 
Benzo(g,h,i)perylene           134     1,354    +913% 
Benzo(a)pyrene           121        682    +462% 
Benzo(k)fluoranthene             81        948 +1,071% 
Indeno(1,2,3‐cd)pyrene             77        767    +897% 
Dibenzo(a,h)anthracene             49        132    +173% 
∑∑∑∑ 4,804,028 753,869  

COPERT substantially overestimates emission factors for almost all PAHs, typically with a factor of 3-13, 454 

except for napthalene, which is underestimated with a factor of 7. In addition, 12 PAHs for which COPERT 455 

Australia provides emission factors, were not measured above the limit of detection in the tunnel. As a 456 

consequence, only 97% of the sum of PAHs predicted with COPERT Australia is reported in Table 3 (753,896 457 

ng/km). The sum of PAHs has an observed value of 4.80 mg/km in the tunnel, which is 516% higher than the 458 

value predicted with COPERT Australia (0.78 mg/km), and due to the discrepancy for naphtalene which makes 459 

up the bulk of total PAHs. These results demonstrate the large uncertainty associated with PAH emission factors, 460 

and suggests that further studies to improve PAH profiles and associated emission factors are needed. 461 

 462 

  463 
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5. Conclusions 464 

This paper presents results of a tunnel emissions study that was conducted in Brisbane, Australia, to (partially) 465 

validate the Australian vehicle emissions software COPERT Australia and PIARC emission factors. Emissions 466 

of NOx, NO2, PM2.5, PM10, CO, VOCs and PAHs generated in the 4.8 km-long tunnel were monitored for 9 days 467 

in the north ventilation vent. Other data were collected including traffic counts, license plates, in-tunnel air-flow, 468 

speed-time profiles using a smart app, tunnel design maps and background concentrations.  469 

Analysis found that the the in-tunnel fleet mix differs substantially from the average on-road fleet, with a larger 470 

proportion SUVs and younger vehicles, leading to lower emissions by factor of about 2.  471 

The P∆P software was run to examine and quantify the combined impact of road gradient, (piston) air-flow and 472 

tunnel driving conditions on NOx emissions. The road gradient effect on in-tunnel emissions is substantial with 473 

an approximately 20% increase in NOx emissions. However, in-tunnel air-flow roughly compensates for road 474 

gradient impacts at higher air speeds due to reduced aerodynamic drag. On average, NOx emissions are increased 475 

by 1-8%.  476 

Typical measured in-tunnel NO2 to NOx ratios were 0.15, which is close to 0.13 predicted with COPERT 477 

Australia. The results suggest that the COPERT Australia is generally accurate at fleet level for CO, NOx, PM2.5 478 

and PM10, when compared with similar international studies. COPERT underestimates emissions by 7% to 37%, 479 

depending on the pollutant. These findings apply only to the specific measurement conditions in the tunnel, i.e. a 480 

free-flow speed of about 80 km/h, the particular road gradient profile and ventilation conditions (piston effect) 481 

and the specific young fleet mix. As a consequence, these results cannot be used to make generic statements 482 

about accuracy of the software. Instead, other studies are required to quantify prediction accuracy in other urban 483 

conditions, using for instance remote sensing or near-road air-quality measurements. 484 

COPERT Australia composite LDV/HDV hot-running emission factors for CO, NOx, PM2.5 and PM10 are not 485 

significantly different (p < 0.05) from those observed in the tunnel in 25% of the cases. For the other cases, 486 

emissions are consistently underestimated by ~ 10-40%, depending on the pollutant and vehicle class. The 487 

largest prediction errors are observed for LDVs for the majority of pollutants (CO, NOx, PM2.5), except for PM10 488 

where HDVs have the highest (relative) error.  It seems plausible that three factors play a role in the 489 

underestimation: 1) under-representation of high/excessive-emitting vehicles in the model due to the absence of 490 

Inspection and Maintenance (I/M) programs in Australia,  2) lenient vehicle ageing (mileage) correction factors 491 

in the COPERT software, and 3) lack of empirical emissions data for Australian diesel LDVs.  492 
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Nevertheless, these validation results appear to be relatively good in comparison with other international 493 

validation studies. This is particularly the case for PM, which tends to have the lowest prediction errors, despite 494 

the range of factors that complicate validation for PM. In comparison with COPERT Australia, PIARC emission 495 

factors are conservative and exhibit the largest prediction errors, except for one very good agreement for LDV 496 

NOx.  497 

In regard to speciated VOCs, the difference between COPERT Australia and the tunnel measurements is large, 498 

with substantially different VOC profiles. COPERT substantially underestimates emission factors for individual 499 

VOCs, typically with a factor of 5, but in some cases an order of magnitude lower. COPERT substantially 500 

overestimates emission factors for almost all PAHs, typically by a factor of 3-13, except for napthalene, which is 501 

underestimated with a factor of 7. These results demonstrate the large uncertainty in speciated VOC and PAH 502 

emission factors, which suggests that further studies to improve local VOC and PAH profiles and associated 503 

emission factors are required. 504 

The results indicate that further targeted emissions testing for diesel vehicles using e.g. PEMS would benefit 505 

vehicle emission modelling and air-quality assessments in Australia. Other tunnel datasets in other cities, 506 

preferably of longer duration than a week, could be analysed in a similar fashion to see if these results are 507 

confirmed. 508 
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