Accepted Manuscript

Title: The welfare risks and impacts of heat stress on sheep shipped from Australia to the Middle East

Author: Clive Phillips

PII:	S1090-0233(16)30159-9
DOI:	http://dx.doi.org/doi: 10.1016/j.tvjl.2016.09.011
Reference:	YTVJL 4884

To appear in: The Veterinary Journal

Accepted date: 29-9-2016

Please cite this article as: Clive Phillips, The welfare risks and impacts of heat stress on sheep shipped from Australia to the Middle East, *The Veterinary Journal* (2016), http://dx.doi.org/doi: 10.1016/j.tvjl.2016.09.011.

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

1	Review
2 3	
3 4	The welfare risks and impacts of heat stress on sheep shipped from Australia to
5	the Middle East
6	
7	Cline Dhilling
8 9	Clive Phillips
10	
10 11 12	Centre for Animal Welfare and Ethics, School of Veterinary Science, University of Queensland, Gatton 4343, Queensland, Australia
13	
14	
15	
16 17 18	* Corresponding author. Tel.: +61 7546 01158. <i>E-mail address:</i> <u>c.phillips@uq.edu.au</u> (C. Phillips).
19	

Mortality rates on board are increased during the northern hemisphere summer

The risk posed by heat stress and means of mitigating the risk are reviewed

Mortality appears due to a combination of heat stress, salmonellosis and inanition

Australia sends about two million sheep to the Middle East annually

Highlights

•

٠

•

20

25	
26	Abstract
27	This review considers the welfare issues confronting sheep due to heat stress on
28	board ships undertaking long distance voyages. Sheep engage behavioural and
29	physiologic mechanisms to attempt to mitigate heat stress, but the evidence from
30	Australian shipments from 2005 to 2014 is that mortality approximately doubles when
31	sheep are transported from Australia in winter to the Middle East in summer. Much of
32	this increase has been attributed to salmonellosis and inanition, but this may have been
33	mistaken for, or exacerbated by, heat stress. The Australian government's estimate of
34	the heat stress threshold of sheep is substantially higher than that observed under
35	simulated live export conditions, which leads to an underestimate of the importance of
36	heat stress in sheep on voyages where mortality is high. Improved temperature
37	monitoring on ships and the creation of both a robust model of the impact of increased
38	temperatures on sheep morbidity and mortality, and a heat stress scale for sheep would
39	assist in understanding and addressing this welfare concern. The high risk to sheep
40	exported from Australia during summer in the Middle East is sufficient to warrant
41	consideration of restriction of trade during this period.
42	
43	Keywords: Animal welfare; Heat stress; Live export; Sheep; Ship
44	
45	

46 Introduction

47	Australia exports approximately two million sheep annually, 98% of which go
48	to the Middle East ¹ . The transition from the southern to northern hemisphere means
49	those animals experience a large change in temperature within two weeks, from
50	temperatures as low as 0° C immediately prior to boarding at Portland ² to temperatures
51	of 40° C and above in the Middle East (Pal and Eltahir, 2016). Voyages leaving
52	Australia during the southern hemisphere winter and entering a northern hemisphere
53	summer pose a particularly high risk to sheep, which may derive from their
54	susceptibility to heat stress (Norris and Richards, 1989) and/or a natural reduction in
55	appetite of the sheep in the fat deposition phase during the second half of the year
56	(Higgs et al., 1991). Sheep are particularly at risk of heat, rather than cold, stress
57	because of the large amount of heat generated by the fermentative digestion of their
58	feed by micro-organisms in the reticulorumen. Furthermore, large amounts of heat and
59	moisture are generated within a ship by the high stocking density of livestock, as well
60	as heat generated by the ship's engine (Caulfield et al., 2014). Many of the sheep are
61	sent from Australia for the Eid al-Adha festival of sacrifice, currently in
62	mid-September, but advancing by 10 days each year, which will bring the timing of the
63	voyages close to mid-summer in the Middle East.

¹ See: Livecorp Sheep Statistics. www.livecorp.com.au/industry-information/industry-statistics/sheep-statistics (Accessed 27 September 2016).

² See: Weather2. www.myweather2.com/City-Town/Australia/Victoria/Portland/climate-profile.aspx?month=6 (Accessed27 September 2016).

64	The mechanisms used by individual sheep to mitigate heat stress are well known
65	for land-based farming systems, but this review considers the risks of heat stress to
66	sheep on ships and the impacts on their welfare.
67	
68	General animal responses to heat stress
69	Research using a rat model demonstrates that the early stages of heat stress are
70	characterised by tachycardia and increased blood pressure, with the latter falling in
71	severe heat stress (Quinn et al., 2014). Ultimately multi-organ failure is responsible for
72	mortality during heat stroke, including, in particular, myocardial infarction, renal
73	tubular necrosis and nephrosis, and acute liver necrosis (Quinn et al., 2014). Renal
74	dysfunction has been detected in sheep subjected to thermal conditions similar to those
75	experienced by sheep transported from Australia to the Middle East (Stockman et al.,

76 2011).

77

Temperature sensors are located in the skin, buccal cavity, spinal cord and 78 79 hypothalamus, relaying information to the preoptic area of the hypothalamus, the main 80 centre for temperature regulation (Beatty, 2005). In some species, high ambient 81 temperatures are accompanied by a cranial arterio-venous difference in blood 82 temperature which protects brain function (Vesterdorf et al., 2011). As an example this 83 protective function, heating of the preoptic area and rostral hypothalamus artificially 84 leads to rapid cessation of eating in goats, supporting thermostatic control of feed intake 85 (Bianca, 1965).

86

87	During heat stress, the core body temperature of animals increases and humans
88	at least report unpleasant sensations (Parkinson et al., 2016). In humans, terminal heat
89	stress is accompanied by central nervous system (CNS) disorders, including
90	intracranial hypertension, delirium, convulsion and coma. Cattle are also reported to
91	have neurologic signs in terminal heat stress (Beatty 2005). The events appear to be
92	triggered by ischemic and oxidative damage to the hypothalamus (Chen et al., 2013). In
93	non-terminal heat stress, pain and exhaustion are frequently reported (Sahu et al.,
94	2013), as are hypothermia and continued production of the stress hormone
95	corticosterone (Chen et al., 2013). There is some commonality in responses to heat
96	stress between rodents and humans (Chen et al., 2013) and between humans and sheep
97	(Damanhouri and Tayeb, 1992). The studies that have been conducted in sheep,
98	particularly as models for heat stroke in humans, have demonstrated impairment of
99	platelet function (Mohanty et al., 1997), as well as the beneficial effects of the muscle
100	relaxant dantrolene and the opioid antagonist naloxone (Damanhouri and Tayeb, 1992).
101	

102 Heat stress responses in sheep

The heart rate of sheep increases in response to the requirements for additional 103 blood flow to the lungs to support hyperventilation (Cezar et al., 2004). In cattle at least, 104 105 core body temperature also fluctuates more widely than usual (Beatty et al., 2006, 106 2007). Sheep reduce their activity levels, lie down for prolonged periods, and have little 107 appetite (Black et al., 1994). Lying helps to reduce heat load by providing a ready conduit for the heat to the floor, which has greater conductivity than air (Silanikove, 108 109 2000). Stress levels increase in extreme heat stress, as evidenced by increased blood cortisol concentration in sheep exposed to 35-44 °C for 35 days, to approximately three 110

111	times basal levels within a week, progressing to four times basal levels within 2-3
112	weeks (Indu et al., 2015). This indicates prolonged distress when exposed to chronic
113	heat stress (Silanikove, 2000). Similarly, adrenaline, noradrenaline and ACTH are
114	increased in sheep in hot conditions (Cwynar et al., 2014).
115	
116	As heat stress increases, the heat loss mechanisms in sheep change from passive
117	loss, via radiation, conduction and convection, to active heat loss, mainly via
118	vasodilation in the extremities (especially the legs and ears) and panting, but also via
119	sweating, if there is only a small amount of wool cover (Marai et al., 2007). Sheep also
120	attempt to spread their hind legs, assuming stocking densities allow this, thereby
121	exposing the highly vascularised skin under their flanks and increasing heat loss
122	through convection ³ . Tongue lolling, or extrusion of the tongue from the buccal cavity,
123	has been observed in heat-stressed sheep on ships (Black et al., 1994). Tongue lolling
124	increases both heat loss from the tongue and air inspiration.
125	
126	Panting, or breathing rates over 40 breaths per minute (bpm), in sheep becomes
127	common when maximum dry bulb temperature (DBT) reaches 26 $^{\circ}$ C (Silanikove,
128	2000), a temperature which is usually exceeded by the end of voyages from an
129	Australian winter to a Middle East summer (Fig. 1). Panting accelerates air passage
130	over the nasal turbinates, protecting the brain from rising body temperatures. Sheep are
131	a species where high ambient temperatures are accompanied by a cranial arterio-venous
132	difference in blood temperature (Vesterdorf et al., 2011). Under extreme conditions,

³ See: Experimental methods for evaluating herbage P.107 <u>http://www.archive.org/stream/experimentalmeth00camp/experimentalmeth00camp_djvu.txt</u> (Accessed 27 September 2016)

133 panting to increase heat loss raises respiration rate from the basal rate of 25-30 bpm up 134 to 300 bpm, according to Silanikove (2000). The maximum respiration rate is suggested 135 to be approximately 320 bpm by Turnpenny et al. (2000), similar to the 300 bpm 136 measured by Hales and Brown (1974). At high heat loads breathing converts to a deep 137 form of panting which has a lower respiration rate of about 166 bpm and results in air 138 exchange into the deeper parts of the lungs (Hales and Brown 1974). Interestingly, 139 McCarthy, a live export veterinarian reported that a transition from rapid breathing to 140 low rate panting occurs at a rate of 220-240 bpm⁴. These conclusions are consistent 141 with the findings of Stockman (2006) that, in thermal conditions experienced during 142 transport of sheep from Australia to the Middle East, the mean respiration rate 143 increased from 50 to 207 bpm, with individual sheep reaching 250 to 300 bpm. Whilst 144 the mean respiratory rate did not differ between two consecutive heating periods. 145 separated by 2.5 days, there was a transition to open mouth panting with reduced 146 respiratory rate in the second heating period. On the days before open-mouth panting, the sheep were observed to have a wrinkled top lip with increased nasal secretions 147 148 (Stockman et al 2011), which could be a warning sign. A consequence of prolonged 149 panting is respiratory alkalosis (Stockman et al., 2011); however, this rapidly 150 disappears on return to normal temperature (Stockman et al., 2011). 151 152 If air temperature (DBT) exceeds body temperature, normally 38.3-39.9°C, the

152 In all temperature (DBT) exceeds body temperature, normally 58.5-59.9 C, the
153 cooling effect of ventilation is reduced or eliminated; at this point, severe heat stress is
154 usually evident (Mahjoubi et al., 2015). Wet bulb temperature (WBT) includes

⁴ See: Pilot Monitoring of Shipboard Environmental Conditions and Animal Performance. www.livecorp.com.au/LC/files/ca/ca8fa4fb-c775-4e21-8af8-60cddc2f2170.pdf. (accessed 27 September 2016)

155	humidity, and is a more accurate measure of the likelihood of heat stress than DBT. The
156	Australian government has defined the heat stress threshold for sheep as the maximum
157	ambient WBT at which heat balance of the deep body temperature can be controlled
158	using available mechanisms of heat loss. According to the Australian government, the
159	heat stress threshold for adult Merino sheep is $30.6^{\circ}C^{5}$, however this is not supported by
160	industry research (Maunsell, 2004) suggesting that the heat stress threshold may range
161	from 26 to 30 °C and research by Stockman et al (2011), who recorded increase core
162	body temperature of adult Merino wethers at 26-28°C. It may be that the rate of change
163	of ambient temperature may influence the temperature at which the core body
164	temperature begins to increase, since ship mortality data suggest that sudden increases
165	are associated with a rapid rise in mortality (Norris and Richards, 1989).
166	
167	
107	Nutritional requirements of sheep for maintenance increase exponentially
168	Nutritional requirements of sheep for maintenance increase exponentially during heat stress as a result of the energetic cost of heavy panting (Ames and Ray,
168	during heat stress as a result of the energetic cost of heavy panting (Ames and Ray,
168 169	during heat stress as a result of the energetic cost of heavy panting (Ames and Ray, 1983; Silanikove, 2000). The increased requirement occurs in conjunction with reduced
168 169 170	during heat stress as a result of the energetic cost of heavy panting (Ames and Ray, 1983; Silanikove, 2000). The increased requirement occurs in conjunction with reduced feed intake, which itself reduces the heat generated by rumen digestion (Morand-Fehr
168 169 170 171	during heat stress as a result of the energetic cost of heavy panting (Ames and Ray, 1983; Silanikove, 2000). The increased requirement occurs in conjunction with reduced feed intake, which itself reduces the heat generated by rumen digestion (Morand-Fehr and Doreau, 2001). The latter is typically about 50% of the energy consumed (Torrent
168 169 170 171 172	during heat stress as a result of the energetic cost of heavy panting (Ames and Ray, 1983; Silanikove, 2000). The increased requirement occurs in conjunction with reduced feed intake, which itself reduces the heat generated by rumen digestion (Morand-Fehr and Doreau, 2001). The latter is typically about 50% of the energy consumed (Torrent and Johnson, 2001). As feed intake is reduced, it is possible that heat stressed sheep

⁵ See: Australian Government Department of Agriculture Mortality Investigation Report 46 www.agriculture.gov.au/Style%20Library/Images/DAFF/__data/assets/pdffile/0003/2364213/ mortality-investigation-report-46.pdf (accessed 27 September 2016)

176	Long periods of heat exposure have cumulative effects on ruminants. In cattle,
177	subcutaneous temperature increased over seven days of consistent heat stress (Beatty et
178	al., 2006). Evidence of the inability of sheep to cope with prolonged, repeated exposure
179	to heat stress in simulated shipboard conditions was provided by Caulfield et al. (2014),
180	who noted that a second exposure of sheep to high temperatures by Stockman et al.
181	(2011) induced a greater increase in core body temperature than the first.
182	
183	Estimating the risk of heat stress on livestock shipments
184	Heat stress measures
185	Heat stress risk increases with both temperature and humidity. Risk has been
186	well documented for cattle, in particular, as a function of these two factors, and
187	combined into a temperature: humidity index (THI) ⁶ (Sparke et al., 2001; Lowe et al.,
188	2002). To the author's knowledge, THI does not appear to have been investigated in
189	sheep and validated with stress measurements. A relationship between THI, DBT and
190	humidity has been reported by Marai et al. (2007), but it is unclear whether this is
191	derived from empirical measurements with sheep:
192	THI = DBT - ([0.31 - 0.31 RH] [DBT - 14.4])
193	where DBT is the dry bulb temperature (°C) and RH is relative humidity in %.
194	
195	There are other complex thermal comfort indices that incorporate radiation,
196	wind speed, air temperature, partial vapour pressure and black globe temperature
197	(Barbosa and Silva, 1995). However, two simpler scales for heat stress are based on

⁶ See: Meat and Livestock Australia Tips and Tools Feedlots Heat Load in Feedlot Cattle https://futurebeef.com.au/wp-content/uploads/Heat-load-in-feedlot-cattle.pdf. (Accessed 27 September 2016)

198 respiration rates (bpm): low: 40-60, medium - high: 60-80, high: 80-120, and severe 199 heat stress: > 200 (Silanikove, 2000); and mild 120-140, moderate 140-180 and severe $> 180^4$. Because respiration rate increases initially then decreases with advancing heat 200 stress, simple respiration rate monitoring is inadequate as a measure of heat stress. 201 202 Silanikove's scale is based on a review of the literature and in particular observations 203 by Hales and Brown (1974), who subjected sheep to elevated temperatures in controlled conditions. McCarthy's scale⁴ is based on shipboard observations and is 204 205 contained in a report to the live export industry. Whilst the two scales are similar in 206 their attribution of severe heat stress, Silanikove concluded from their controlled elevation of temperature and water vapour pressure that moderate heat stress exists at 207 lower respiration rates than that suggested by McCarthy following shipboard 208 observations⁴. Neither study validated the stress responses, for example with cortisol 209 210 measurements (Cwynar et al., 2014), and these stress descriptions appear to be 211 somewhat arbitrary, at least at all levels up to severe, with the exception that McCarthy's scale⁴ additionally requires that the sheep are observed to be drooling at all 212 213 heat stress levels (mild, moderate and severe). The severe level was probably 214 determined by both authors to be a typical level for slow, deep panting during extreme heat stress. The McCarthy scale⁴ may have been influenced by the desirability of 215 216 minimising evidence of heat stress in sheep for the live export industry, in terms of 217 demonstrating good sheep welfare. Turnpenny et al. (2000) considered that moderate 218 heat stress only commences above 270 bpm, using data reported by Hales and Brown (1974). McCarthy⁴ advocated using a qualitative panting scale, in conjunction with his 219 220 respiration rate scale described above, to determine heat stress. In this, moderate heat 221 stress has to be accompanied by occasional open mouth panting and severe heat stress

222	by both open mouth panting and drooling and/or tongue extension from the buccal
223	cavity. A panting scale for cattle used by Gaughan et al. (2008) also includes the
224	presence of foam from the mouth. There is a need to develop an effective measure of
225	heat stress in sheep that is validated with physiological stress measures.
226	
227	High WBT and respiration rate have been identified by many stakeholders in the
228	Australian live export industry as key animal welfare measures on ship (Pines et al.,
229	2007). This suggests that heat stress is believed by stakeholders to be a significant
230	welfare problem. However, onboard veterinarians note that it is difficult to count
231	respiration rate accurately ⁴ . Nevertheless, there has been no attempt by industry to
232	develop a comprehensive and validated heat stress scoring system in sheep that is
233	appropriate to live export situations.
234	
235	The Australian Standards for the Export of Livestock ⁷ require a daily report to
236	the Australian government to be prepared by an accredited stockperson or, if present, an
237	accredited veterinarian, which includes a daily characterisation of the respiratory
238	character of the livestock on board as normal, panting or gasping. The lack of clarity on
239	what is meant by 'panting or gasping' further supports the case for the development of a
240	validated heat stress scale for sheep.
241	

242 Risk of exposure to high temperatures and heat stress

⁷ See: Australian Standards for the Export of Livestock (Version 2.3) 2011 and Australian Position Statement on the Export of Livestock.

www.agriculture.gov.au/SiteCollectionDocuments/animal-plant/animal-welfare/standards/version2-3/a ustralian-standards-v2.3.pdf (Accessed 27 September 2016)

243	A model for heat stress risk assessment has been used by the Australian live
244	export industry since 2003. This has been reviewed in an industry report ⁸ and by
245	Caulfield et al (2014). The model estimates heat stress risk from predicted: (1) WBT en
246	route and at destination port for the time of year; (2) mortality rate at this WBT,
247	adjusted for animal factors, live weight, body condition, coat type, and acclimatisation;
248	and (3) ship factors, such as ventilation rate and stocking density (the latter can be
249	varied in the event of the mortality risk being too high). Although based on scientific
250	principles, the model has been criticised for the limited database utilised, for using
251	unaudited vessel ventilation data, and for not being validated against actual
252	performance data ⁸ (Caulfield et al., 2014). For example, open decks are subject to
253	widely varying ventilation, depending on wind speed and direction. Without calibrating
254	
254	the model for differences between open and closed decks, it is not possible to know
254 255	the model for differences between open and closed decks, it is not possible to know what wind speed at sheep level is produced by a specific ventilation rate ⁴ .
255	
255 256	what wind speed at sheep level is produced by a specific ventilation rate ⁴ .
255 256 257	what wind speed at sheep level is produced by a specific ventilation rate ⁴ . The model assumes that a 2% (or lower) risk of 5% (or higher) mortality rate is
255 256 257 258	what wind speed at sheep level is produced by a specific ventilation rate ⁴ . The model assumes that a 2% (or lower) risk of 5% (or higher) mortality rate is acceptable. The acceptability of this limit depends on public opinion, with high
255 256 257 258 259	what wind speed at sheep level is produced by a specific ventilation rate ⁴ . The model assumes that a 2% (or lower) risk of 5% (or higher) mortality rate is acceptable. The acceptability of this limit depends on public opinion, with high mortality events being used by advocacy groups to draw attention to the ethics of the
255 256 257 258 259 260	what wind speed at sheep level is produced by a specific ventilation rate ⁴ . The model assumes that a 2% (or lower) risk of 5% (or higher) mortality rate is acceptable. The acceptability of this limit depends on public opinion, with high mortality events being used by advocacy groups to draw attention to the ethics of the trade, e.g. by RSPCA Australia (Phillips, 2015). Ferguson et al. ⁸ state that the climatic
255 256 257 258 259 260 261	what wind speed at sheep level is produced by a specific ventilation rate ⁴ . The model assumes that a 2% (or lower) risk of 5% (or higher) mortality rate is acceptable. The acceptability of this limit depends on public opinion, with high mortality events being used by advocacy groups to draw attention to the ethics of the trade, e.g. by RSPCA Australia (Phillips, 2015). Ferguson et al. ⁸ state that the climatic parameters used for establishing the model, in particular the range of WBT experienced

⁸ See: Livecorp meat and Livestock Australia Review of the Livestock Export Heat Stress Risk Assessment Model (HotStuff). www.livecorp.com.au/LC/files/a3/a3a29b97-183c-4aad-8b6c-c90fb526dd06.pdf (Accessed 27 September 2016)

Australian government estimates that the WBT at which mature Merino sheep will die is $35.5^{\circ}C^{1}$; however, the Australian live export industry suggests that hyperthermia occurs at temperatures 'approaching or exceeding 30 °C' WBT⁹.

268

269 Temperatures on board live export shipments often increase during voyages, 270 which in the extreme can cause an exponential elevation in core body temperature and 271 respiration rate that indicate a failure to cope and potentially result in death of the sheep 272 (Caulfield et al., 2014). Interpretation of shipboard temperature associations with 273 mortality would be aided by more accurate measurement of thermal conditions on 274 ships. Temperatures may be under-reported by several degrees by ship veterinarians, 275 who are employed by the exporting companies (Caulfield et al., 2014). Furthermore, 276 temperatures may not be recorded at the hottest time of the day, and are often noted in 277 the morning in preparation for a midday meeting with the captain (personal 278 communication, Dr Lynn Simpson). Thermal data loggers have been tested on live export shipments and could provide useful information to link to mortality events⁴. 279 280 Whatever monitoring method is used, determining the appropriate location and number 281 of sites is crucial and requires further research. 282

On livestock ships, temperatures may remain relatively constant throughout the day. On land, livestock experiencing heat stress during the day alter their behaviour to be active at night when it is cool, including feeding and oestrous behaviour. This opportunity is less available to sheep on ships because of the limited reduction in

⁹ See: Livecorp, Meat and Livestock Australia, Veterinary Handbook for Cattle, Sheep and Goats. <u>www.veterinaryhandbook.com.au/Diseases.aspx?id=46&diseasenameid=116&speciesid=-1&syndrome</u> <u>id=</u> (Accessed 29 September 2016)

287 temperature at night, especially on closed decks. Sheep on open decks reliant on natural 288 ventilation are at high risk when there is no crosswind, which is most likely to occur in port. Ships may adopt a zigzag pathway to increase the crosswind⁴, but this is not 289 possible in narrow waters. These factors exacerbate the heat stress risk above the level 290 291 expected on land. Allowing cattle access to cool temperatures for just 3-6 h at night 292 allows them the opportunity to lose the previous day's accumulated heat load 293 (Silanikove, 2000; Sparke et al., 2001). Although sheep have a higher surface area to 294 weight ratio and, therefore, greater potential to lose heat, compared to cattle (Brody, 295 1944), their coat has significant insulating properties (Beatty et al., 2008). Australian 296 standards (ASEL, 2011) place restrictions on the export of sheep with wool more than 25 mm long; however, hair sheep, such as those of the Awassi breed, are not subject to 297 298 such restrictions.

299

On voyages from Australia to the Middle East, WBT may exceed 30 °C 300 301 (Caulfield et al., 2014). Recommended maximum DBT for transporting sheep has been 302 estimated as 25 °C, based on mathematical modelling of the species' requirements for 303 space to move, and ventilation and heat losses (Randall, 1993). Some areas of the ship are prone to high temperatures such as those near engine and boiler rooms, heated fuel 304 305 tanks or under the top deck. While Australian government regulations require that, 306 where ambient temperature exceeds 22 °C, any temperature increase in adjacent livestock space is less than 3 °C¹⁰, compliance with this is not known. Temperature 307

¹⁰ See: Australian Government Australian Maritime Safety Authority Marine Order 43 (Cargo and cargo handling — livestock) 2006 in effect under the Navigation Act 2012

www.amsa.gov.au/vessels/standards-regulations/marine-orders/documents/MO43-modcomp-130729Z. pdf (Accessed 27 September 2016)

10

308 mitigation is only likely to be available for sheep in the outer pens on open decks, due to

309 some limited exposure to the colder night air. The greatest risks for open deck sheep

310 that have no mechanical ventilation occur when the ship is stationary or when there are

311 no cross winds.

312

313 Heat stress risk is increased by the inability of sheep to avoid hot areas in the

ship, because the official space allowance is low (0.26 m² for a 28 kg sheep to 0.32 m² 314

315 for a 51 kg sheep¹¹). These space allowances are less than the Australian minimum

requirements for sheep in feedlots or sheds (at least 0.5 m^2 /head for a wether ^{12 13 14}), but 316

more than those for land transport (0.19 m² for a 28 kg sheep to 0.25 m² for a 50 kg 317

sheep¹⁵). Land transport is shorter in duration than long haul sea voyages, hence tighter 318

stocking is accepted. However, the only research to investigate stocking density on live 319

320 export voyages failed to include any voyages to the Middle East in their summer

321 (Phillips and Petherick, 2014). As a result, the relationship between heat stress and

stocking density has never been investigated appropriately in long haul sea transport. 322

¹¹ See Australian Standards for the Export of Livestock (Version 2.3) 2011 and Australian Position Statement on the Export of Livestock p.90.

www.agriculture.gov.au/SiteCollectionDocuments/animal-plant/animal-welfare/standards/version2-3/a ustralian-standards-v2.3.pdf (Accessed 27 September 2016)

¹² See: Primary Industries Standing Committee Model Code of Practice for the Welfare of Animals, The Sheep 2nd Ed. PISC Report 89. https://ablis.business.gov.au/ACT/resource/COP290.pdf (accessed 29 September 2016).

¹³ See: Australian Standards for the Export of Livestock (Version 2.3) 2011 and Australian Position Statement on the Export of Livestock p.63.

www.agriculture.gov.au/SiteCollectionDocuments/animal-plant/animal-welfare/standards/version2-3/a ustralian-standards-v2.3.pdf (Accessed 27 September 2016).

¹⁴ See: Australian Animal Welfare Standards and Guidelines. www.animalwelfarestandards.net.au (Accessed 27 September 2016). ¹⁵ See: Australian Animal Welfare Standards and Guidelines Edition One Version 1.1 21 September

^{2012.}

www.animalwelfarestandards.net.au/files/2015/12/Land-transport-of-livestock-Standards-and-Guidelin es-Version-1.-1-21-September-2012.pdf. (Accessed 27 September 2016).

D

324	Since the industry has not appropriately investigated, documented and
325	researched heat stress on live export voyages, the only logical conclusion is that
326	voyages to Middle East summer are an extreme animal welfare risk. An independent
327	report to the Australian government on live export from Australia to the Middle East ¹⁶
328	recommended that: "There must be a continuation of the current industry investment in
329	rigorous research and development programs on the suitability of different types of
330	livestock for export: - in the meantime exports should be banned in circumstances
331	where the available evidence indicates that the risks of adverse outcomes are
332	predictably high". This supports the case for prohibiting the voyages to the Middle East
333	summer.
334	
334 335	Mortality and morbidity resulting from heat stress effects on sheep transported
	Mortality and morbidity resulting from heat stress effects on sheep transported by ship
335	
335 336	by ship
335 336 337	by ship Mortality
335 336 337 338	by ship Mortality The suffering caused by exposure to heat stress is significant. Many sheep
 335 336 337 338 339 	by ship Mortality The suffering caused by exposure to heat stress is significant. Many sheep experience heat stress without dying, but as mortality is the only welfare measure that is
 335 336 337 338 339 340 	by ship Mortality The suffering caused by exposure to heat stress is significant. Many sheep experience heat stress without dying, but as mortality is the only welfare measure that is publicly available regarding shipboard 'performance', it is relevant to investigate
 335 336 337 338 339 340 341 	by ship Mortality The suffering caused by exposure to heat stress is significant. Many sheep experience heat stress without dying, but as mortality is the only welfare measure that is publicly available regarding shipboard 'performance', it is relevant to investigate seasonal variation and compare on-board mortality rates with those on land. Mortality

¹⁶ See: Livestock Export Review Final Report A Report to the Minister for Agriculture, Fisheries and Forestry. www.agriculture.gov.au/SiteCollectionDocuments/animal-plant/animal-welfare/trade/export-transport-review/keniry_review_jan_04.pdf (Accessed 27 September 2016).

the southern hemisphere to the Middle East progress (Black et al., 1994). At high
DBTs of 40-42 °C, each degree increase in temperature can be extremely detrimental to
sheep survival (Sejian et al., 2013).

348

349 The mean monthly mortality from national livestock export industry shipboard 350 performance report data (377 voyages over 9 years) is summarised in Fig. 2. The figure 351 demonstrates a pronounced increase in mortality of all classes of sheep exported during 352 the southern hemisphere winter/spring. More specifically, mean mortality monthly 353 rates depicted from November 2005 to the present show a distinct increase between 354 June and October, with the highest rate in August. Increased mortality in the second 355 half of the year has been recognised in the annual national livestock export industry shipboard performance reports, most recently¹⁷. Early reports contained a Research 356 357 Summary that gave the main causes of sheep mortalities as a persistent inappetence, salmonellosis inanition (PSI) condition, accountable for about 75 % of all sheep 358 deaths¹⁸. Heat stress was acknowledged to be an occasional risk factor. No attempt was 359 360 made in veterinary reports on 'salmonellosis' in export sheep to differentiate observed 361 gross and histopathological lesions with those caused by hyperthermia (Curran, 2013). 362 This may be related to the lack of studies of pathology of hyperthermia in sheep.

363

364 The PSI condition is commonly accompanied by adrenal gland hypertrophy

¹⁸See: Livecorp National livestock export industry shipboard performance report 2008.

indicating the association of stress (Higgs et al., 1993). Any analysis of the effects of

¹⁷ See: Livecorp Meat and Livestock Australia Final Report Project code: W.LIV.0288. www.livecorp.com.au/LC/files/e7/e776991c-918e-401d-bb0f-5c0de31f1463.pdf (Accessed 27 September 2016).

www.livecorp.com.au/research-development/reports/national-livestock-export-industry-shipboard-p-% 286%29 (Accessed 27 September 2016).

366 heat stress on sheep in live export must consider the interrelationship between PSI and 367 heat stress. PSI is reported to account for approximately 75 % of mortality in the live export of sheep from Australia to the Middle East¹⁹. Higgs et al. (1993) found that the 368 369 excretion of Salmonella spp. increased over the duration of voyages from Australia to 370 the Middle East, which they attributed to the developing inanition. However, 371 extrapolating from research in humans and other animals, heat stress may exacerbate 372 PSI. During heat stress increased cutaneous blood flow is accompanied by reduced 373 splanchnic blood flow, and the resultant oxidative and nitrosative stress in an ischemic 374 environment enables bacteria to cross the tight junction barrier from the gut lumen into 375 the systemic circulation (Leon and Helwig, 2010). The increased gut epithelial 376 permeability also increases the likelihood of endotoxin leakage. It has been hypothesized that this can contribute to multi-organ system dysfunction, since 377 378 endotoxaemia ensues if the endotoxins cannot be neutralised by the liver, macrophage 379 activity, antibodies or high-density lipoproteins (Lim et al., 2007). The resultant 380 cytokine release and inflammatory response can lead to systemic coagulation and 381 haemorrhage, necrosis, apoptosis and multi-organ failure (Lim and McKinnon, 2006). 382 Current models of heat stroke based on clinical observations of humans and other 383 animals propose that, following migration of endotoxins into the circulatory system, the 384 activation of the immune cells and cytokines promote inflammation and drive the 385 clinical symptoms of heat stroke more than the hyperthermia (Lim and McKinnon, 386 2006; Lim et al., 2007). Furthermore, evidence from animal models suggests that 387 controlling the endotoxaemia protects against heat stress, and conversely a pre-existing

¹⁹ See: Meat and Livestock Australia Final Report Project Code: LIVE123 www.livecorp.com.au/LC/files/4f/4f560cff-2c64-4da1-b64d-7bab541e866a.pdf (Accessed 27 September 2016).

388	inflammation compromises heat tolerance (Lim et al., 2007). Thus, in monogastric
389	animals at least, heat stress is associated with reduced immunocompetence. In
390	ruminants, the survival of Salmonella spp. in the rumen is enhanced by low feed intake
391	(Brownlie and Grau, 1967). Therefore, as most sheep are exposed to Salmonella spp. in
392	the feedlot, during the voyage or both, it is possible that the combination of heat stress
393	and the PSI may enhance mortality. Curran (2013) has contended this proposed
394	synergism to suggest that heat stress on live sheep exports has been misdiagnosed as
395	PSI, citing the similarity of clinical effects in the intestine observed post mortem.
396	G
397	Morbidity
398	Given the marked physiologic and behavioural responses to heat, it is evident
399	that heat stress results in considerable morbidity in sheep on ships. On land, heat stress
399 400	that heat stress results in considerable morbidity in sheep on ships. On land, heat stress in sheep has been reported when THI exceeds 22 (Marai et al., 2007), but in cattle, at
400	in sheep has been reported when THI exceeds 22 (Marai et al., 2007), but in cattle, at
400 401	in sheep has been reported when THI exceeds 22 (Marai et al., 2007), but in cattle, at least, homeostasis prevents elevation of rectal temperature until THI exceeds
400 401 402	in sheep has been reported when THI exceeds 22 (Marai et al., 2007), but in cattle, at least, homeostasis prevents elevation of rectal temperature until THI exceeds approximately 78 (Silanikove, 2000). The latter study identified four levels of heat
400 401 402 403	in sheep has been reported when THI exceeds 22 (Marai et al., 2007), but in cattle, at least, homeostasis prevents elevation of rectal temperature until THI exceeds approximately 78 (Silanikove, 2000). The latter study identified four levels of heat stress in livestock: innocuous, aversive, noxious, and extreme. From the previous

407

Increased panting and sweating both use water vapour as a conduit for surplus heat, and the consequent loss of body water increases water requirements. In cattle it has been observed that voluntary drinking water intake may be doubled during heat stress (Beatty et al., 2006, 2007). Sheep congregate around the water troughs to meet

412	their increased water needs during heat stress, and it may become more difficult for
413	other sheep to reach the troughs. If sheep are unable to drink to requirements,
414	dehydration ensues, which allows body temperature to increase (Silanikove, 2000),
415	causing the profoundly negative emotion of thirst (Ogino et al., 2014), and increasing
416	risk of heat stroke (Leon and Helwig, 2010). Increased water intake leads to increased
417	urination, which can result in deficiencies in sodium and potassium (Beatty et al.,
418	2006). Water temperature may exceed 40 $^{\circ}$ C when live export sheep arrive in the
419	Middle East, leading to reduced ability to control body temperature by drinking
420	(Savage et al., 2008; McKinley et al., 2009).
421	S
422	Sheep remain on solid floors on ships. The accumulating excreta is desiccated
423	into a dry, friable powder by the high ship ventilation rate. Over a journey of typical
424	duration, the depth of the powder builds up to approximately 10 cm (Pines and Phillips,
425	2011). However, with the increased ratio of urine to faeces during heat stress,
426	exacerbated by the associated reduced feed intake, there is a risk that the excreta will
427	turn into slurry. This in turn can increase humidity in the ship's environment, which
428	increases WBT and exacerbates heat stress. High humidity in inhaled air reduces an
429	animal's capacity to expel moisture and, hence, body heat, during expiration (Liu and
430	Li, 2009). The risk of these occurrences will be exacerbated during periods of limited
431	air flow on open decks, which rely in part on natural ventilation as opposed to the
432	lower, enclosed decks, which rely solely on forced air ventilation.
433	
434	Conditions on board ship, especially high humidity and high stocking density,
435	limit the opportunity for sheep to mitigate the effects of heat stress. At high

436	temperatures on one voyage from New Zealand to Saudi Arabia, sheep attempted to
437	move to the well ventilated parts of each pen, especially around ventilators, or to the
438	feed trough (Black et al., 1994). In so doing, it was observed that smothering occurred
439	as they struggled over sheep that were lying down (Black et al., 1994). Movement in
440	areas with a slurry of excreta was noted to be particularly difficult (Black et al., 1994).
441	It was also observed on this voyage that sheep plunged into other sheep to get access to
442	better ventilated areas. The consequence was commonly death by suffocation, which
443	represented the largest cause of mortality on that one voyage in which heat stress
444	occurred (Black et al., 1994).
445	
446	The heat stress experiences of individual sheep will vary according to their
447	position on the ship. If they are near the heat sources in the ship identified earlier they
447 448	position on the ship. If they are near the heat sources in the ship identified earlier they will have an increased ambient temperature. If they are near ventilation outlets they will
448	will have an increased ambient temperature. If they are near ventilation outlets they will
448 449	will have an increased ambient temperature. If they are near ventilation outlets they will experience greater cooling effects. At a local level, sheep ventilation will be impaired
448 449 450	will have an increased ambient temperature. If they are near ventilation outlets they will experience greater cooling effects. At a local level, sheep ventilation will be impaired by the high stocking density adopted on ships. Sheep that can elevate their heads above
448 449 450 451	will have an increased ambient temperature. If they are near ventilation outlets they will experience greater cooling effects. At a local level, sheep ventilation will be impaired by the high stocking density adopted on ships. Sheep that can elevate their heads above other sheep are at a significant advantage (Black et al., 1994) as they are able to
448 449 450 451 452	will have an increased ambient temperature. If they are near ventilation outlets they will experience greater cooling effects. At a local level, sheep ventilation will be impaired by the high stocking density adopted on ships. Sheep that can elevate their heads above other sheep are at a significant advantage (Black et al., 1994) as they are able to facilitate heat loss through their ears (Marai et al., 2007). Likewise, those that can reach
 448 449 450 451 452 453 	will have an increased ambient temperature. If they are near ventilation outlets they will experience greater cooling effects. At a local level, sheep ventilation will be impaired by the high stocking density adopted on ships. Sheep that can elevate their heads above other sheep are at a significant advantage (Black et al., 1994) as they are able to facilitate heat loss through their ears (Marai et al., 2007). Likewise, those that can reach water troughs are advantaged (Taylor, 1983). As there is limited sheep movement
 448 449 450 451 452 453 454 	will have an increased ambient temperature. If they are near ventilation outlets they will experience greater cooling effects. At a local level, sheep ventilation will be impaired by the high stocking density adopted on ships. Sheep that can elevate their heads above other sheep are at a significant advantage (Black et al., 1994) as they are able to facilitate heat loss through their ears (Marai et al., 2007). Likewise, those that can reach water troughs are advantaged (Taylor, 1983). As there is limited sheep movement around pens (Pines and Phillips, 2013), many individual animals have little or no

Heat stress is promoted by the same conditions that increase volatilisation ofammonia, a noxious gas that causes considerable suffering under live export

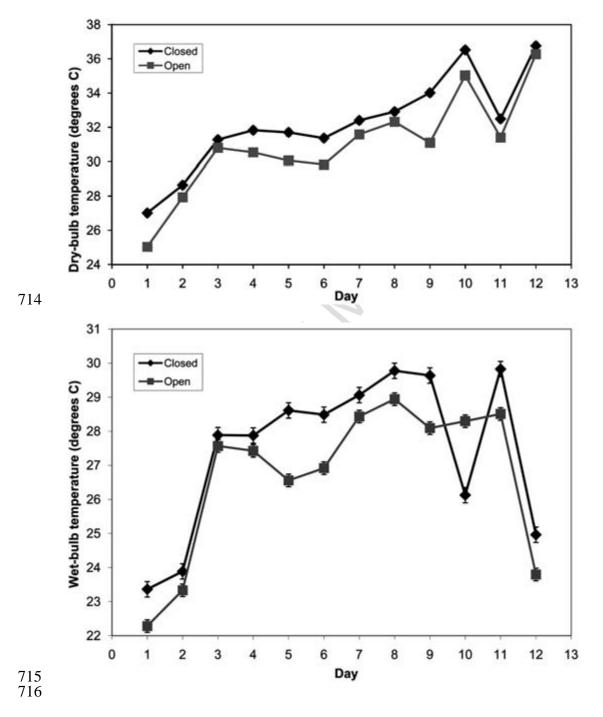
460	conditions, including reduced feed intake (Phillips et al., 2010, 2012). These conditions
461	include high temperatures and high stocking density per volume of air space, such as in
462	double-tiered decks. The possibility of synergistic effects between heat stress and
463	ammonia has not been investigated and is worthy of study.
464	
465	The impact of the heat load on sheep welfare on-board is therefore
466	significant. As well as documented heat stress responses, it is clear that many voyages
467	entail factors that both exacerbate the condition and increase the risk of it occurring. In
468	addition, it may also generate behaviours that threaten the welfare of other sheep, such
469	as plunging into and smothering other sheep, again potentially resulting in mortality.
470	Australian space allowances appear small, in comparison with other long duration
471	accommodation for sheep.
472	
472	
	Conclusions
473	Conclusions Evidence is provided that conditions on live export shipments regularly expose
473 474	×O
473 474 475	Evidence is provided that conditions on live export shipments regularly expose
473 474 475 476	Evidence is provided that conditions on live export shipments regularly expose sheep to heat stress, which appears to be most severe for sheep transported from
473 474 475 476 477	Evidence is provided that conditions on live export shipments regularly expose sheep to heat stress, which appears to be most severe for sheep transported from Australian winters to summer in the Middle East. There is limited information on how
 472 473 474 475 476 477 478 479 	Evidence is provided that conditions on live export shipments regularly expose sheep to heat stress, which appears to be most severe for sheep transported from Australian winters to summer in the Middle East. There is limited information on how the industry addresses these concerns, and what parameters should be or are measured
473 474 475 476 477 478	Evidence is provided that conditions on live export shipments regularly expose sheep to heat stress, which appears to be most severe for sheep transported from Australian winters to summer in the Middle East. There is limited information on how the industry addresses these concerns, and what parameters should be or are measured to determine the extent of heat stress. Industry has developed a heat stress risk model,
473 474 475 476 477 478 479	Evidence is provided that conditions on live export shipments regularly expose sheep to heat stress, which appears to be most severe for sheep transported from Australian winters to summer in the Middle East. There is limited information on how the industry addresses these concerns, and what parameters should be or are measured to determine the extent of heat stress. Industry has developed a heat stress risk model, but this requires further research before its effectiveness is known. There is an urgent
473 474 475 476 477 478 479 480	Evidence is provided that conditions on live export shipments regularly expose sheep to heat stress, which appears to be most severe for sheep transported from Australian winters to summer in the Middle East. There is limited information on how the industry addresses these concerns, and what parameters should be or are measured to determine the extent of heat stress. Industry has developed a heat stress risk model, but this requires further research before its effectiveness is known. There is an urgent need to develop both a THI and a panting scale for sheep that are properly validated

484	the Middle East in summer are broadly known: high temperature and humidity; reduced
485	variation in circadian temperature; high stocking densities which increase heat
486	production and limit opportunities for sheep to mitigate heat load effects; the presence
487	of excreta and variable ventilation rates. However, relationships with heat stress are not
488	adequately quantified, and investigations into the actual impact of each of these factors
489	on heat stress on ships has been poorly investigated. Since voyages to Middle East
490	summer are an extreme animal welfare risk and an independent report to the Australian
491	government concluded that exports should be banned if the evidence is the risks of
492	adverse outcomes are predictably high, there is a case for prohibiting these voyages.
493	
494	Conflict of interest statement
495	The author of this paper has no financial or personal relationships with people or
496	organisations that have inappropriately influenced or biased the content of the paper.
497	
498	Acknowledgements
499	The author is grateful to Animals Australia for part-funding of this review. Two
500	anonymous reviewers provided valuable comments.
501	
502	References

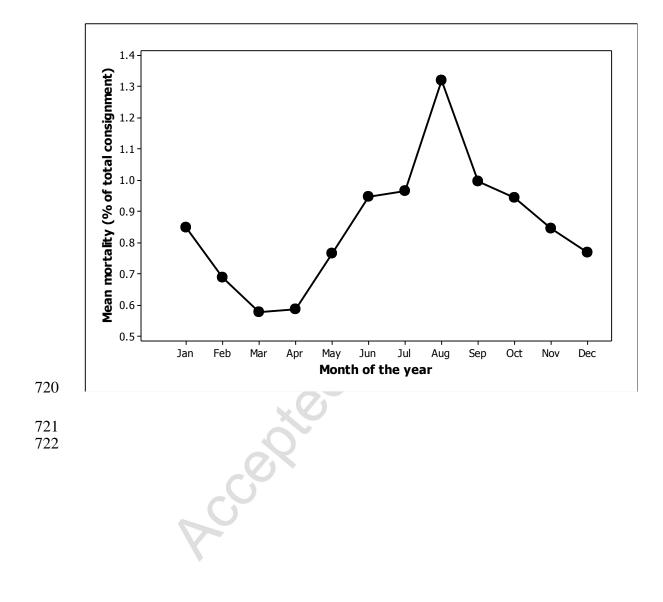
Ames, D.R., Ray, D.E., 1983. Environmental Manipulation to Improve Animal
Productivity. Journal of Animal Science 57, 209-220.
Barbosa, O.R., Silva, R.G., 1995. Thermal comfort indices for sheep. Boletim de
Indústria Animal 52: 29-35 (in Portuguese, with abstract in English).

509 510 511	Beatty, D.T., 2005. Prolonged and continuous heat stress in cattle: physiology, welfare, and electrolyte and nutritional interventions. PhD thesis, Murdoch University.
512 513 514 515	Beatty, D.T., Barnes, A., Taylor, E., Pethick, D., McCarthy, M., Maloney, S.K., 2006. Physiological responses of <i>Bos taurus</i> and <i>Bos indicus</i> cattle to prolonged, continuous heat and humidity. Journal of Animal Science 84, 972-985.
515 516 517 518 519	Beatty, D.T., Barnes, A., Taplin, R., McCarthy, M., Maloney, S.K., 2007. Electrolyte supplementation of live export cattle to the Middle East. Australian Journal of Experimental Agriculture 47, 119-124.
520 521 522 523	Beatty, D. T., Barnes, A., Fleming, P. A., Taylor, E., Maloney, S. K., 2008. The effect of fleece on core and rumen temperature in sheep. Journal of Thermal Biology 8, 437-443.
524 525	Bianca, W., 1965. Reviews of the progress of dairy science. Section A. Physiology. Cattle in a hot environment. Journal of Dairy Research 32, 291-345.
526 527 528 529 530	Black, H., Matthews, L.R., Bremner K.J., 1994. The behaviour of male lambs transported by sea from New Zealand to Saudi Arabia. New Zealand Veterinary Journal 42, 16-23.
531 532 533	Brody, S., 1944. Bioenergetics and Growth, pp. 356-363. MacMillan Publishing Company, New York.
535 534 535 536 537	Brownlie, L.E., Grau, F.H. 1967. Effect of food intake on growth and survival of Salmonellas and <i>Escherichia coli</i> in the bovine rumen. Journal of General Microbiology 46, 125-134.
538 539 540 541	Caulfield, M.P., Cambridge, H., Foster, S.F., McGreevy, P.D., 2014. Heat stress: A major contributor to poor animal welfare associated with long-haul live export voyages. The Veterinary Journal 199, 223-228.
542 543 544 545	Cezar, M.F., Souza, B.B., Souza, W.H., 2004. Evaluation of physiological parameters of sheep from Dorper, Santa Inês and their crosses in climatic conditions of northeast semi-arid. Ciência e Agrotecnologia 28: 614-620 (in Portuguese, with abstract in English).
546 547 548 549	Chen, SH., Lin, MT., Chang, CP., 2013. Ischemic and oxidative damage to the hypothalamus may be responsible for heat stroke. Neuropharmacology 11, 129-140.
550 551 552 553 554	Curran, G., 2013. Hyperthermia as a disease entity in sheep. In: Proceedings of the Australian Sheep Veterinarians Annual Conference, Albany, Australia, pp. 198-206.

555	Cwynar, P., Kolacz, R., Czerski, A., 2014. Effect of heat stress on physiological
556	parameters and blood composition in Polish Merino rams. Berliner und
557	Muchener Tierarztliche Wochenschrift 127, 177-182.
558	
559	Damanhouri, Z.A., Tayeb O.S., 1992. Animal models for heat stroke studies. Journal of
560	Pharmacological and Toxicological Methods 28, 119-127.
561	
562	Gaughan, J.B., Mader, T.L., Holt, S.M., Lisle, A., 2008. A new heat load index for
563	feedlot cattle. Journal of Animal Science 86, 226-234.
564	
565	Hales, J.R.S., Brown G.D., 1974. Net energetic and thermoregulatory efficiency during
566	panting in the sheep. Comparative Biochemistry and Physiology, Part A:
567	Physiology 49, 413-422.
568	
569	Higgs, A.R.B., Norris, R.T., Richards, R.B., 1991. Season, age and adiposity influence
570	death rates in sheep exported by sea. Australian Journal of Agricultural
571	Research 42, 205-214.
572	
573	Higgs, A.R.B., Norris, R.T., Richards, R.B., 1993. Epidemiology of salmonellosis in
574	the live sheep export industry. Australian Veterinary Journal 70, 330-335.
575	
576	Indu, S., Sejian, V., Naqvi, S.M.K., 2015. Impact of simulated semiarid tropical
577	environmental conditions on growth, physiological adaptability, blood
578	metabolites and endocrine responses in Malpura ewes. Animal Production
579	Science 55, 766-776.
580	
581	Leon, L.R, Helwig, B.G., 2010. Heat stroke: Role of the systemic inflammatory
582	response. Journal of Applied Physiology 109, 1980-1988.
583	
584	Lim, C.L., Mackinnon, L.T., 2006. The roles of exercise-induced immune system
585	disturbances in the pathology of heat stroke - the dual pathway model of heat
586	stroke. Sports Medicine 36, 39–64.
587	
588	Lim, C.L., Wilson, G., Brown, L., Coombes, J.S., McKinnon, L.T., 2007. Pre-existing
589	inflammatory state compromises heat tolerance in rats exposed to heat stress.
590	American Journal of Physiology – Regulatory Integrative and Comparative
591	Physiology 292, R186-R194.
592	
593	Liu, L., Li, Y.G., 2009. A theoretical analysis of the final sizes of human respiratory
594	droplets in different relative humidities. In: Proceedings of the Fifth
595	International Workshop on Energy and Environment of Residential Buildings
596	and Third International Conference on Built Environment and Public Health.
597	Guilin, China, pp. 290-304.
598	
599	Lowe, T.E., Gregory, N.G., Fisher, A.D., Payne, S.R., 2002. The effects of temperature
600	elevation and water deprivation on lamb physiology, welfare, and meat quality.
601	Australian Journal of Agricultural Research 53, 707 – 714.


602	
603	Mahjoubi, E., Yazdi, M.H., Aghaziarati, N., Afsarian, O. Baumgard, L.H., 2015. The
604	effect of cyclical and severe heat stress on growth performance and metabolism
605	in Afshari lambs. Journal of Animal Science 93, 1632-1640.
606	
607	Marai, I.F.M., El-Darawany, A.A., Fadiel, A., Abdel-Hafez, M.A.M., 2007.
608	Physiological traits as affected by heat stress in sheep - a review. Small
609	Ruminant Research 71, 1-12.
610	
611	McKinley, M. J., Weissenborn, F., Mathai, M. L., 2009. Drinking-induced
612	thermoregulatory panting in rehydrated sheep: influences of
613	oropharyngeal/esophageal signals, core temperature, and thirst satiety.
614	American Journal of Physiology – Regulatory Integrative and Comparative
615	Physiology 296, R1881-R1888.
616	
617	Mohanty, D., Gomez, J., Mustafa, K.Y., Khogali, M., Das, K.C., 1997.
618	Pathophysiology of bleeding in heat stress: An experimental study in sheep.
619	Experimental Hematology 25, 615-619.
620	
621	Morand-Fehr, P. and Doreau, M. 2001. Effects of heat stress on feed intake and
622	digestion in ruminants. Production Animales 14, 15-27.
623	
624	Norris, R.T., Richards, R.B., 1989. Deaths in sheep exported by sea from Western
625	Australia – analysis of ship masters' reports. Australian Veterinary Journal 66,
626	97-102.
627	
628	Ogino, Y., Kakeda, T., Nakamura, K., Sato, S., 2014. Dehydration enhances
629	pain-evoked activation in the human brain compared with rehydration.
630	Anesthesia and Analgesia 118, 1317-1325.
631	
632	Pal, J.S., Eltahir, E.A.B., 2016. Future temperature in southwest Asia projected to
633	exceed a threshold for human adaptability. Nature Climate Change 6, 197-200.
634	
635	Parkinson, T., de Dear, R., Candido, C., 2016. Thermal pleasure in built environments:
636	alliesthesia in different thermoregulatory zones. Building Research and
637	Information 44, 20-33.
638	
639	Phillips, C.J.C., 2015. The Animal Trade. CAB International, Wallingford, UK, pp 91.
640	
641	Phillips, C.J.C., Petherick, J.C., 2014. The ethics of a co-regulatory model for farm
642	animal welfare research. Journal of Agricultural and Environmental Ethics 28,
643	127-142.
644	
645	Phillips, C.J.C., Pines, M.K., Latter, M., Muller, T., Petherick, J.C., Norman, S.T.,
646	Gaughan, J.B., 2010. The physiological and behavioral responses of steers to
647	gaseous ammonia in simulated long distance transport by ship. Journal of
648	Animal Science 88, 3579-3589.
5.0	

649	
650	Phillips, C.J.C., Pines, M.K., Latter, M., Muller, T., Petherick, J.C., Norman, S.T.,
651	Gaughan, J.B., 2012. The physiological and behavioral responses of sheep to
652	gaseous ammonia. Journal of Animal Science 90, 1562-1569.
653	
654	Pines, M., Phillips, C.J.C., 2011. Accumulation of ammonia and other potentially
655	noxious gases on live export shipments from Australia to the Middle East.
656	Journal of Environmental Monitoring 13, 2798-2807.
657	
658	Pines, M.K., Phillips, C.J.C., 2013. Microclimatic conditions and their effects on sheep
659	behavior during a live export shipment from Australia to the Middle East.
660	Journal of Animal Science 91, 4406-4416.
661	
662	Pines, M., Petherick, J.C. Gaughan, J.B., Phillips, C.J.C., 2007. Stakeholders'
663	assessment of welfare indicators for sheep and cattle exported by sea from
664	Australia. Animal Welfare 16, 489-498.
665	
666	Quinn, C.M., Carrie M., Duran, R.M., Audet, G.N., Charkoudian, N., Leon, L.R., 2014.
667	Cardiovascular and thermoregulatory biomarkers of heat stroke severity in a
668	conscious rat model. Journal of Applied Physiology 117, 971-978.
669	
670	Randall, J.M., 1993. Environmental parameters necessary to define comfort for pigs,
671	cattle and sheep in livestock transporters. Animal Production 57, 299-307.
672	
673	Sahu, S., Sett, M., Kjellstrom, T., 2013. Heat exposure, cardiovascular stress and work
674	productivity in rice harvesters in India: implications for a climate change future.
675	Industrial Health 51, 424-431.
676	
677	Savage, D.B., Nolan, J.V., Godwin, I.R., Mayer, D.G., Aoetpah, A., Nguyen, T.,
678	Baillie, N.D., Rheinberger, T.E., Lawlor, C., 2008. Water and feed intake
679	responses of sheep to drinking water temperature in hot conditions. Australian
680	Journal of Experimental Agriculture 48, 1044-1047.
681	
682	Sejian, V., Indu, S., Naqvi, S.M.K., 2013. Impact of short term exposure to different
683	environmental temperature on the blood biochemical and endocrine responses
684	of Malpura ewes under semi-arid tropical environment. Indian Journal of
685	Animal Sciences 83, 1155-1159.
686	7 minual Sciences 05, 1155-1157.
687	Silanikove, N., 2000. Effects of heat stress on the welfare of extensively managed
688	domestic ruminants. Livestock Production Science 67, 1-18.
689	domestic rummunts. Envestoek i roduction Science 07, 1-10.
690	Stockman, C.A., Barnes, A.L., Maloney, S.K., Taylor, E., McCarthy, M., Pethick, D.,
691	2011. Effect of prolonged exposure to continuous heat and humidity similar to
692	long haul live export voyages in Merino wethers. Animal Production Science
693	51, 135–143.
694	51,155 175.
$\overline{\mathbf{U}}$	


695 Taylor, G., 1983. What kills animals at sea? In: Deere, D. (Ed.), Animal Transport by 696 Sea. Marine Publications International Ltd., London, pp. 5-14. 697 698 Torrent, J., Johnson, D.E. 1996. The effect of emptying the rumen on the heat production of wethers. Livestock Production Science 45, 93-95. 699 700 701 Torrent, J., Turnpenny, J.R., Wathes, C.M., Clark, J.A., McArthur, A.J., 2000. Thermal 702 balance of livestock 2. Applications of a parsimonious model. Agricultural and 703 Forest Meteorology 101, 29-52. 704 Vesterdorf, K., Blache, D. & Maloney, S.K. 2011. The cranial arterio-venous 705 706 temperature difference is related to respiratory evaporative heat loss in a panting 707 species, the sheep (Ovis aries). Journal of Comparative Physiology B 181, 277-288. 708 709

710 Figure legends

- 711
- Fig. 1. Dry and wet bulb temperatures on the closed and open decks of a typical voyage
- from Fremantle to Muscat (12 days) in July 2005 (Pines and Phillips, 2013)

- Fig. 2. Mean sheep mortality rate over the 12 months of the year for shipments exported
- 718 from Australia between November 2005 to November 2014 (data derived from

719 Australian Government, 2015²⁰)

²⁰ See: All sheep (any class), exported from all Australian ports to a variety of destinations, but mostly in the Middle East. Australian Government Department of Agriculture and Water Resources, Live Animal Export Statistics Reports to Parliament. 2015. Sheep Export Voyages.

http://www.agriculture.gov.au/export/controlled-goods/live-animals/live-animal-export-statistics/reports-to-parliament (Accessed 27 September 2016).