
Accepted Manuscript

Vascularised bone transfer: history, blood supply and contemporary problems

David S. Sparks, Daniel B. Saleh, Consultant Head and Neck Plastic Surgeon,
Warren M. Rozen, Dietmar W. Hutmacher, Michael A. Schuetz, Michael Wagels

PII: S1748-6815(16)30172-3

DOI: 10.1016/j.bjps.2016.07.012

Reference: PRAS 5063

To appear in: Journal of Plastic, Reconstructive & Aesthetic Surgery

Received Date: 27 April 2016

Revised Date: 12 June 2016

Accepted Date: 5 July 2016

Please cite this article as: Sparks DS, Saleh DB, Rozen WM, Hutmacher DW, Schuetz MA, Wagels M,
Vascularised bone transfer: history, blood supply and contemporary problems, British Journal of Plastic
Surgery (2016), doi: 10.1016/j.bjps.2016.07.012.

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to
our customers we are providing this early version of the manuscript. The manuscript will undergo
copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please
note that during the production process errors may be discovered which could affect the content, and all
legal disclaimers that apply to the journal pertain.

http://dx.doi.org/10.1016/j.bjps.2016.07.012


M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

Title Page 

 

Title 

Vascularised bone transfer: history, blood supply and contemporary problems 

 

Authors 

David S Sparks1,2,3*, Daniel B Saleh1,4, Warren M Rozen5, Dietmar W Hutmacher3, 

Michael A Schuetz3 and Michael Wagels1,2 

 

Affiliations 

1Department of Plastic & Reconstructive Surgery, Princess Alexandra Hospital, Woollongabba, 

Australia 

2Southside Clinical Division, School of Medicine, University of Queensland, Woollongabba, 

Australia 

3Institute of Health and Biomedical Innovation, Queensland University of Technology, Kelvin 

Grove, Australia 

4Consultant Head and Neck Plastic Surgeon, Department of Plastic and Reconstructive Surgery, 

Newcastle hospitals, Newcastle, UK 

5Monash University, Monash University Plastic and Reconstructive Surgery Unit, Department of 

Surgery, Clayton, Australia 

 

*Corresponding author 

Department of Plastic and Reconstructive Surgery 

Princess Alexandra Hospital & School of Medicine, University of Queensland 

199 Ipswich Rd Woolloongabba QLD Australia 4012 

Ph: +61430374476 

Email: d.sparks@uq.edu.au  

 

Presentation 

This article was presented in Brisbane, Australia, at the Royal Australian College of Surgeons 

Annual Scientific Conference in May of 2016. 

 

Conflict of interest: none 

Word count (excluding references/tables): 3924 

Reference count: 82 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

Tables: 3 

Figures (including sub-figures): 10 

ABSTRACT 

 

Background: Since the description of the free fibula flap by Taylor in 1975, 

many flaps composed of bone have been described. This review documents the 

history of vascularised bone transfer and reflects on the current understanding 

of blood supply in an effort to define all clinically described osseous flaps.  

Methods: A structured review of MEDLINE and Google Scholar was performed 

to identify all clinically described bone flaps in humans. Data regarding patterns 

of vascularity were collected where available from the anatomical literature. 

Results: Vascularised bone transfer has evolved stepwise in concert with 

advances in reconstructive surgery techniques. This began with local flaps of the 

craniofacial skeleton in the late 19th century, followed by regional flaps such as 

the fibula flap for tibial reconstruction in the early 20th century. Prelaminated 

and pedicled myo-osseous flaps predominated until the advent of microsurgery 

and free tissue transfer in the 1960s and 1970s. Fifty-two different bone flaps 

were identified from 27 different bones. These flaps can be broadly classified 

into three types to reflect the pedicle: nutrient vessel (NV), penetrating 

periosteal vessel (PPV) and non-penetrating periosteal vessel (NPPV). NPPVs can 

be further classified according to the anatomical structure that serves as a 

conduit for the pedicle which may be direct-periosteal, musculoperiosteal or 

fascioperiosteal.  

Discussion: The blood supply to bone is well described and is important to the 

reconstructive surgeon in the design of reliable vascularised bone suitable for 

transfer into defects requiring osseous replacement. Further study in this field 

could be directed at the implications of the pattern of  bone flap vascularity on 

reconstructive outcomes, the changes in bone vascularity after osteotomy and 

the existence of “true” and “choke” anastomoses in cortical bone. 
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INTRODUCTION 

Bone grafts have been the mainstay of reconstruction of bone defects for 

more than a century1. When a critical but as yet undefined defect size is reached, 

the outcomes of non-vascularised bone grafting become unpredictable1. The 

work of Ostrup2,3, Frederikson2, Weiland4, Berggren5, Taylor6,7, and Wood8 

highlight the advantages of vascularised bone. When compared with non-

vascularised bone graft for the reconstruction of critical sized bone defects, 

vascularised bone shows earlier union and more robust biomechanical 

integrity2,4, as well as resistance to progressive resorption and the devitalizing 

effects of defect site-related sepsis8 and irradiation3. This can be inferred from 

the current understanding of osteogenesis, fracture healing and tissue perfusion. 

Since the description of the free fibula flap by Taylor in 19756, a large 

number of osseous flaps have been described. Yet, in contrast to soft tissue 

reconstruction, it appears the anatomical patterns of vascularity in bone are not 

typically applied to the selection or manipulation of the osseous component of a 

flap. This is particularly the case in reconstructions where the soft tissue defect 

is the surgical focus. It is a basic tenant of composite reconstructions elsewhere, 

such as the nose, that the supporting structures are at least as important as the 

overlying soft tissue coverage. Indeed the failure of the former produces poor 

outcomes, such as contracture, that can be very hard to correct secondarily.  

We are indebted to the efforts of Brookes9, Trueta10, Crock11, 

Rhinelander12 and others13-17, whose anatomical studies have facilitated an 

understanding of the patterns of osseous vascularity. The design of reliably 

vascularised bone suitable for transfer into defects requiring osseous 

replacement is critical, and yet can often be overlooked at the detriment to the 

intended reconstruction. This review aims to define and classify the pattern of 

blood supply for all clinically described vascularised bone transfers as well as to 

identify and define questions relevant for contemporary research. 
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METHODS 

A structured literature review was performed to determine all clinically 

described bone flaps. The search terms included “vascularised bone transfer” or 

“bone flap”. Further terms were used for each bone in the body as relevant (ie. 

parietal bone, temporal bone etc.). Articles were included only if it was the 

original clinical description for that particular bone transfer. This was performed 

with reference to any clinical description: case reports, case series and other 

higher quality studies. Articles without a clinical case or clinical description 

component (ie. theoretical papers and cadaveric-only studies) were excluded. 

Furthermore, vascularised transfers of the whole toe, finger or joints were not 

included. Databases used included MEDLINE (via PubMed) and Google scholar, 

and articles were limited to human studies and English language. A review of 

citations within the identified articles was also performed to identify any further 

records of relevance. Once all clinically described bone flap papers were 

identified, patterns of blood supply were defined with reference to the original 

clinical references of these bone flaps as well as relevant studies found through 

an additional scoping review of the anatomical literature and key references17-19. 

 

RESULTS 

Described bone flaps 

The results of our literature search as represented by a flow chart can be 

found in Figure 1. In total, 52 different bone flaps were identified from 27 

different bones. Clinically described flaps incorporating a vascularised bony 

component are presented in Table 1, Table 2 and Table 3 for the axial skeleton, 

upper limb girdle and lower limb girdle respectively. Patterns of blood supply 

presented for each flap should be considered a guide, and were based on the 

anatomical and clinical literature where it was available.  

History 

Clopton Havers contributed to our early understanding of bone blood 

supply, publishing his “Osteologia Nova” which he communicated to the Royal 

Society in 169120. After the early work of Antoni van Leeuwenhoek, Havers 

formally described the Haversian canal and surmised at its role in providing 

nutrients to the surrounding lamellae. Bernhard Albinus, a master of dissection 
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in the 18th century, built on the work of Havers and was the first to fully 

appreciate the finer vasculature within bone21. With microscopy, he went on to 

describe the dual pattern of blood supply to bone from both a periosteal and a 

medullary origin. These findings would stand unchallenged for more than two 

centuries. 

Local bone flaps, such as the “osteoplastic” calvarial flap designed by 

Wagner in 188922 were designed to address issues of surgical access. Regional 

bone flaps23 soon followed and were applied in the late nineteenth and 

throughout the twentieth century to segmental bone defects. Before and during 

World War I, Blair24 reconstructed a range of bony defects in the craniofacial 

skeleton with the use of an approach not dissimilar to bone graft pre-lamination. 

In this way, he transferred a rib autograft into a random pattern neck skin flap 

for extended mandible reconstruction in 1915. The advent of microsurgery did 

not neglect bony tissues and Taylor appears to have provided the first clinical 

description of a free vascularised bone flap performed in 19746. 

Modern orthopaedic and microvascular techniques drove the desire for a 

more complete understanding of the patterns of bone vascularity.  Brookes9, 

Trueta10 and Crock11 extended our understanding of bony blood supply in the 

modern era. They further helped to define the interplay between both the 

endosteal and periosteal vascular networks. This work and that of Ostrup2,3, 

Weiland4 and Berggren5 provided the scientific basis for a number of osseous 

flap transfers including the fibula6 and the deep circumflex iliac artery flaps7, 

which now serve as workhorse flaps in modern reconstructive applications 

(Figure 2). 

Blood supply to bone 

The ideal bone flap should possess: 

1. Similar morphology, whether cancellous, cortical or both and in the 

case of the latter, the number of cortices. 

2. An uninterrupted blood supply following any form of manipulation e.g 

osteotomy, corticotomy, decortication or a combination of these. 

3. Sufficient bone volume and a structural configuration that meets the 

biomechanical demands of the recipient site. 

4. Minimal donor site morbidity 
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The functional organization of blood supply to bone is composed of an afferent 

arterial system, a capillary bed and an efferent venous system9-12,25. The afferent 

arterial system distributes oxygen and nutrients to the “functional vascular 

lattice” of cortical and medullary sinusoidal networks. These sinusoidal 

networks are comparable to capillaries in other tissues. The efferent venous 

system is a pathway of drainage through the cortex, to periosteal venules or 

through large medullary venous sinuses/nutrient veins to reach the extra-

osseous venous system. Blood flow is considered to be centrifugal in direction 

from endosteum to the periosteum. The pressure gradient from within the 

marrow cavity (45-60mmHg) to the periosteal capillary network favours 

outward flow. This is further facilitated by the muscular pump mechanism and 

impact forces associated with locomotion10. A full discussion of bone venous 

drainage is beyond the scope of this article and we refer the reader to recent key 

references9,25. 

Perfusion of the bones in the appendicular skeleton is by three systems of 

vessels9,10,18: These are the endosteal nutrient vessels (NV), penetrating 

periosteal vessels (PPV) typical of the metaphysis and epiphysis, and non-

penetrating periosteal vessels (NPPV) typical of the diaphysis (Figure 3). 

Intracortical connections between periosteal and endosteal supply are through a 

complex lamellar system of vessels that bridge obliquely to the longitudinal 

Haversian canals. The zone between periosteal supply and the endosteal supply 

is disputed9-11, although it is suggested by some experimental studies that the 

inner two-thirds of cortical bone is supplied by the endosteal system whilst the 

outer one-third is supplied by the periosteal system, particularly at sites of dense 

fascial attachment12 It is also suggested that the watershed or choke zone is 

dynamic, such that the endosteal supply dominates perfusion to cortical bone in 

youth whereas in advanced age, a greater thickness of the cortex may be 

supplied by periosteum9. Connection between these two systems occurs in the 

form of a passive intermediate capillary network where the endosteal source of 

flow is typically dominant9,12,25. 

Nutrient vessel (NV) 

The NV has a periosteal and endosteal contribution to the pattern of long 

bone vascularisation, with both longitudinal and centripetal supply along the 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

endosteal surface9(Figure 3). The endosteal supply, composed of ascending and 

descending medullary vessels, extends to and supplies the metaphyseal 

cancellous bone12. Vascular supply thus extends across the entire endosteal bone 

surface and perfuses the inner 50% or more of the cortex. In vascularised bone 

transfer, this may permit reliable survival of an en-bloc segment of long bone 

based on a NV such as a segment of the fibula6 or a rib based posteriorly on the 

posterior intercostal artery26. Of those flaps described, four different bone flaps 

appear to align with the NV pattern of blood supply (Tables 1 and 3). 

Penetrating periosteal vessels (PPV) 

In the adult, the metaphyseal and epiphyseal PPV provide a predictable 

end-artery extension to the endosteum 27(Figure 3). However, the PPV endosteal 

supply is less dominant than the NV, and generally only permits a 

unicorticate/corticocancellous osseous flap to be harvested when based on a 

metaphyseal PPV. The PPV pattern of supply appears to correspond with ten 

different described bone flaps (Tables 1, 2 and 3). The iliac crest flap based on 

the deep circumflex iliac artery is one example of this type of flap with multiple 

PPV arising from the pedicle7, as is the medial femoral condyle (MFC) flap with a 

more discrete perfusion pattern28(Figure 4).  

Non-penetrating periosteal vessels (NPPV) 

The NPPV do not appear to have a contribution to the endosteum, and the 

periosteal contribution to the cortical bone is generally limited to areas of the 

outer one-third where fascial and periosteal attachments are dense12(Figure 2). 

It would appear, periosteum with a thin layer of cortical bone is all that can be 

reliably harvested on the NPPV system, and much experimental work supports 

this concept10,13,14,16. In the setting of ablative surgery, trauma or the placement 

of an intramedullary nail where flow from the NV is interrupted, the periosteal 

blood supply to the corticocancellous bone becomes important12. The pattern of 

vascularisation in cutaneous flaps can be manipulated in accordance with the 

angiosome concept espoused by Taylor29. It is not known whether the same 

applies to bone such that by fate or design, a more substantial volume of bone 

can be brought to rely on an anatomically minor source of perfusion. Fifty 

osseous flaps conform to the NPPV pattern of supply (Tables 1, 2 and 3). 
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The NPPVs can be further sub-classified on the basis of anatomical studies 

performed by Simpson17(Figure 3). In addition to direct periosteal branches 

from source arteries, there are connections between arterial networks in muscle 

or fascia attached directly to bone. Direct periosteal (DP) vessels  pass directly 

from a named truncal or compartmental artery without traversing a bridge of 

muscle or fascia to reach the periosteum. An example of this type of flap would 

be the 2nd metacarpal flap30. Another sub-type of NPPV is the musculoperiosteal 

pattern (MP), where branches to the periosteum arise from vessels that course 

within and a muscle that has an origin or insertion on the bone. An example of 

this would be the sternum31 or ribs32,33 via their respective muscle attachments 

to pectoralis major, latissimus dorsi and serratus anterior. The third branching 

pattern is the fascioperiosteal (FP), whereby vessels to the periosteum pass from 

sources arteries that course between layers of folded deep fascia connected to 

bone. The radial forearm osteocutaneous flap34 is an excellent example of the 

latter, with direct FP vessels of the NPPV-type that permits harvest of a cortical 

flap in conjunction with fasciocutaneous tissue. 

Epiphyseal blood supply 

 In youth, the presence of growth plates complicates arterial supply 

further. Experimental and clinical studies suggest that the epiphyseal surface of 

the growth plate is supplied from epiphyseal vessels, often derived from direct 

epiphyseal arteries that enter between the articular cartilage and the physeal 

growth plate35. This is responsible for vascularity to the resting, germinal, 

proliferating, and upper hypertrophic cell layers of the growth plate by a process 

of diffusion10. The metaphyseal surface of the growth plate derives its blood 

supply from the nutrient artery, which is considered to be the dominant supply 

to the metaphysis27. This is the primary source for the osteoprogenitor cells that 

produce the osteoid required for endochondral bone formation. In addition to 

the epiphyseo-metaphyseal supply there is also a periosteal supply from local 

perichondrial vessels that integrate and link with the local epiphyseal and 

metaphyseal supply. The fibular epiphysis is a good example where knowledge 

surrounding the vascular supply to the growth plate can be manipulated to 

facilitate transfer of a growth plate with sustained long bone growth35. Irregular 

type bones, such as the carpal and tarsal bones, are predominantly covered in 
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articular cartilage or have ligamentous connections, and as such, carry a blood 

supply akin to the epiphyseal pattern, where multiple epiphyseal vessels 

contribute to arterial supply and venous drainage9. 

 

DISCUSSION 

Patterns of blood supply and implications for bone healing 

It seems logical that successful reconstruction of critical sized bone 

defects should demand appropriately vascularised and morphologically similar 

bone, though the precise dimensions of a defect that is critical is not known and 

may vary from one circumstance to another. The evolving role of select 

vascularised bone transfers in achieving union and carpal stability in chronic 

recalcitrant scaphoid non-union where non-vascularised and pedicled 

vascularised bone transfers have failed is testament to this36,37. An 

understanding of the patterns of osseous vascularisation may help to explain 

this. Recent reports on the use of pedicled transfers for scaphoid nonunion 

suggest variable union rates between 27% and 100%, depending on the choice of 

flap30,36,38,39. The pattern of blood supply for these pedicled bone flaps generally 

corresponds to the NPPV configuration30,38,39. This pattern of blood supply may 

not be sufficient to vascularise the entire bone segment raised – especially if 

there is a cancellous component included. For pedicled grafts in scaphoid 

nonunion, there are exceptions. Mathoulin and Haerle36 described a pedicled 

bone graft of the distal radius based on the radial palmar carpal arch artery 

(rPCA), an artery that routinely penetrates the cancellous bone of the distal 

radius and thus represents an epiphyseal-type PPV pattern of blood supply40. In 

a series of 17 patients where this flap was used to treat scaphoid nonunion36, all 

obtained union in an average of 60 days. Jones et al.37 compared a free medial 

femoral condyle flap and a pedicled vascularised distal radius bone flap, based 

on the 1,2 intercompartmental supra-retinacular artery (1,2-ICSRA) pedicle, for 

scaphoid non-union. They found a higher rate of union (P=0.005) and shorter 

time to healing (P<0.001) for the MFC flap. As described earlier, the pattern of 

blood supply to the MFC flap is best categorized as a PPV (Figure 3) 

configuration with the ability to harvest a vascularised corticocancellous portion 

(Figure 3D). The 1,2-ICSRA best resembles a NPPV direct periosteal blood 
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supply, with only 6% of vessels entering the cancellous component of the graft 

on cadaveric studies40. It must be recognized that many factors may be at play in 

the study by Jones et al., including the potential for sampling error (n = 22) and 

selection bias with a retrospective series including multiple operating surgeons. 

However, reliable vascularity to the entire corticocancellous graft may yet play a 

role in the success of the rPCA36 and the MFC flap37 in scaphoid nonunion. 

Further comparative studies across common bone reconstructions may help to 

correlate perfusion type and bone flap success but clearly, an understanding of 

the vascularisation of bone units used for reconstruction is critical. 

Osteotomy design to preserve blood supply 

Issues concerning the viability of the free vascularised osseous transfer 

have been raised recently and may highlight the role of osteotomies in the 

reconstructive design process41. Jacobsen et al.41 studied free fibula flaps used to 

reconstruct the mandible in 10 patients.  Biopsies at the time of dental implant 

insertion (mean 19 months post-op) were taken. All bone biopsies showed 

evidence of either complete cortical necrosis or patchy bony necrosis, despite 

description by the authors as having a bleeding periosteal layer overlying intact 

cortex at the time of biopsy. Although most patients had undergone radiotherapy 

to the region, this is still a curious observation. The fibula flap is a tubular 

corticocancellous strut that typically relies on the NV for bone viability in 

microvascular transfer. In keeping with the current understanding of bone blood 

supply, it is conceivable that interruption of the endosteal supply and 

subsequent reliance on the NPPV circulation may devitalise portions of the flap 

distal to the segment in direct continuity with the NV. It is necessary to 

osteotomise the fibula up to six times to ensure an adequate contour of the bone 

flap for implant placement and restoration of facial contour. This in turn may 

lead to decreased or arrested perfusion to osteotomised segments, leading to 

varying rates of resorption and patchy necrosis of the transferred bone. This 

could have major consequences such as loosening of hardware intended for 

osteosynthesis and the inability to osseointegrate prosthetic implants. It is 

possible that clinical outcomes are moderated by the dynamic and age-

dependant nature of the watershed outlined earlier. Alternatively, the iliac crest, 

with its distinctive natural curve, may be transferred without osteotomies for 
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central or hemi-mandibular defects, which thereby serves to preserve the PPV-

type blood supply for this flap. Osteotomy-related devascularisation may help to 

account for the higher incidence of implant loss with vascularised fibula for 

mandible reconstruction when compared with iliac crest, as demonstrated by a 

recent meta-analysis42. Moreover, in the emerging era of tailored oncological 

care, head and neck cancer patients can expect much improved survival rates, 

and so, longevity of a functioning reconstruction becomes increasingly 

important. 

“True” and “choke” anastomoses in cortical bone 

A further consideration of importance to bone flap harvest and osteotomy 

design are the zones of blood supply within the bone cortex and along its 

periosteal surface (Figure 3). Gur et al.43 showed that an osteotomy distal and 

proximal to the nutrient artery in a live porcine model does not change viability 

of the fibula bone if the periosteal envelope is preserved. In this study eight pigs 

underwent unilateral osteotomy at several different sites along the fibula and 

after 21 days there was no clear difference in bone histological viability between 

the segments, despite a reduction in bone blood flow to these segments 43. This 

raises the possibility that the centrifugal flow of blood, driven by the endosteal 

pressure gradient, is reversed in certain areas with flow therein shunting from 

the periosteal system to the endosteum – perhaps mirroring the presence of 

“true” anastomoses44 between the periosteal and endosteal circulation at these 

sites. As flow through this system is attenuated, viability to the remaining flap 

may be partly preserved based on this periosteal supply alone14.  

Further understanding can be derived from the work of Huggins and 

Weige13, who were able to show medium to large areas of medullary infarction in 

rabbit femurs during the immediate 2 weeks following nutrient artery ablation. 

From a histological perspective, those bones reviewed after this two week period 

(up to 88 days post intervention) showed minimal change compared with 

normal bone tissue. Following a period of avascularity and reduced 

intramedullary pressure, the periosteal circulation may re-assert itself as the 

principal source of perfusion to the corticocancellous bone. This mechanism may 

not be dissimilar to the concept of “choke” anastomoses in the integument44 and 

vascular changes as seen with the delay phenomenon19.  
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Another concept is the change in periosteal blood supply during age9, and 

the effects this may have on the cortical bone choke zone. In particular, Trueta10 

and Crock11 both reported a pronounced periosteal blood supply to cortical bone 

in human cadavers of the seventh decade and older. Brookes evaluated this 

concept further, and compared the dominance of the periosteal supply to the 

femoral diaphysis in a limited number of limbs attained from subjects between 

21 and 88 years of age at the time of death9. He found that before the age of 35, 

the diaphyseal cortex was predominantly vascularised by the endosteal 

circulation and that in older age (70 years and older) the periosteum was more 

dominant. When extrapolating this concept to vascularised bone transfer, it may 

be that the perfusion to the iliac crest based on the DCIA PPV-type circulation is 

more reliably preserved in the younger demographic. In contrast, for the elderly 

patient, the osteotomised fibula (with its distal segments sustained only by the 

NPPV type circulation) may be a more appropriate choice to ensure sufficient 

bone vascularity. The clinical significance of the age-related changes in cortical 

bone blood supply, as it relates to vascularised bone transfer, appears unclear to 

date and both anatomical and clinical studies are required to further define the 

impact of this concept. 

In addition to the anastomotic zones in the cortex, there is also a dense 

vascular network along the periosteal surface. For the fibula, the outer cortical 

bone distal to the NV foramen relies on the NPPV pattern of supply, which is 

particularly dense at sites of muscle attachment17 and is the basis for the 

peroneus brevis osteomuscular flap45. Harvesting muscle attached to the 

longitudinal axis is typically employed to protect the peroneal artery pedicle but 

may also help to augment overall blood supply to the bone flap by making use of 

the MP NPPV pattern of supply17. In terms of venous drainage, adjacent muscle 

harvested with the flap may also assist venous outflow and thereby reduce the 

intrinsic resistance of the vascular circuit within the bone transfer, as muscle can 

augment venous drainage in long bones10. Ultimately, this may have implications 

for improved anastomotic patency in the bone flap. Further work using modern 

histological and imaging techniques is required to validate the process of 

ongoing perfusion to segments of bone sustained only by the periosteal 
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circulation, age-related changes to the periosteal blood supply as well as the 

possible existence of “true” and “choke” vessel phenomenon in cortical bone. 

 

CONCLUSION 

Vascularised bone is an excellent reconstructive option for bone defects, 

particularly in the setting of critical-sized defects. An important part of defect 

analysis is the osseous defect and consideration should be given to its functional 

requirements because in this regard, not all bone flaps are the same. Further 

study will be needed to define the implications of the pattern of bone flap 

vascularity on reconstructive outcomes, whether osteotomy in certain flaps 

handicaps the intended reconstruction, and whether “true” and “choke” 

anastomoses exist in cortical bone. 

 

 

 

 

 

 

 

 

 

FIGURE LEGENDS 

Figure 1. Flow diagram depicting the literature review process and results. 

*Search terms for this component of the strategy included each bone in the 

human body (parietal bone, temporal bone etc.). ^The pattern of blood supply 

was assessed based on the description in the article along with a scoping review 

of the anatomical literature and in accordance with work by Panje and Cutting18, 

Cormack and Lamberty19 and Simpson17. 

 

Figure 2. Traumatic segmental defect of the right radius (A, B) reconstructed 

with a  free vascularised fibula transfer (C) with clinical union and an optimal 

functional outcome (D). White arrow with whole stem indicates defect site. 

White arrow with interrupted stem indicates defect with fibula reconstruction. 
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Figure 3. A system for bone flap classification based on the current 

understanding of blood supply patterns to bone. NV, nutrient vessel; PPV, 

penetrating peiosteal vessel; NPPV, non-penetrating periosteal vessel; Asc., 

ascending; Desc., descending. 

 

Figure 4. The chimeric medial femoral condyle flap, harvested from the medial 

aspect of the knee (A, B). The blood supply, via the osteoarticular branch of the 

descending genicular artery (C, arrow), is the most common source vessel for 

bone harvest (D, arrow). Based on this vessel axis, variations of skin and muscle 

(D, arrowhead), cartilage and tendinous tissue can be harvested alongside bone. 
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Table 1. Clinically described vascularised bone transfers of the axial skeleton 

with source vessels and proposed patterns of blood supply. NV, nutrient vessel; 

PPV, penetrating peiosteal vessel; NPPV, non-penetrating periosteal vessel; DP, 

direct periosteal; MP, musculoperiosteal; FP, fascioperiosteal; Ref., reference for 

original flap description; STA, superficial temporal artery; OccA, occipital artery; 

SmA, submental artery; SpThyr, superior thyroid artery; TAA, thoraco-acromial 

axis; IMA, internal mammary artery; TDA, thoracodorsal artery; PIntercostA, 

posterior intercostal artery. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Bone flap (source vessel) Ref. Blood supply 

Temporal/parietal bones (STA) 
46

 NPPV (FP/MP) 
Occipital bone (OccA) 

47
 NPPV (FP/MP) 

Mandible, coronoid process (STA) 
48

 NPPV (MP) 

Mandible, body (SmA) 
49

 NPPV (MP) 
Hyoid with sternohyoid (SpThyr) 

50
 NPPV (MP/DP) 

Sternum, anterolateral (TAA) 
31

 NPPV (MP) 
Rib, anterior (TAA) 

51
 NPPV (MP) 

Rib, anterior (IMA) 
52

 NPPV (DP/MP) 
Rib, laterally with serratus anterior (TDA) 

32
 NPPV (MP) 

Rib, laterally with latissimus dorsi (TDA) 
33

 NPPV (DP/MP) 
Rib, posterolateral (PIntercostA) 

26
 NV & NPPV (DP) 
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Table 2. Clinically described vascularised bone transfers of the upper limb girdle 

with source vessels and proposed patterns of blood supply. NV, nutrient vessel; 

PPV, penetrating peiosteal vessel; NPPV, non-penetrating periosteal vessel; DP, 

direct periosteal; MP, musculoperiosteal; FP, fascioperiosteal; Ref., reference for 

original flap description; SCMbr, sternocleidomastoid branch of superior thyroid 

artery; TCA, transverse cervical artery; TDA, thoracodorsal artery; CSA, 

circumflex scapular artery; DSA, dorsal scapular artery; PBA, profunda brachii 

artery; UA, ulnar artery; PinterosA, posterior interosseous artery; RA, radial 

artery; AIA, anterior interosseous artery; rPCA, right palmar carpal arch artery; 

1,2-IC SRA, 1st/2nd-intercomparmental supra-retinacular artery; 4th/5th- extensor 

compartment artery; DB of UA, deep branch of ulnar artery; SPB of RA, 

superficial palmar branch of radial artery; 1-DMA, 1st dorsal metacarpal artery; 

4-DMA, 4th dorsal metacarpal artery; PPDA, proper palmar digital artery; *can be 

harvested with latissimus dorsi or serratus anterior. 

 

 

Bone flap (source vessel) Ref. Blood supply 

Clavicle, sub-total (SCMbr) 
53

 NPPV (MP/FP) 

Clavicle, medial (SCMbr) 
24

 NPPV (MP/FP) 

Clavicle, lateral 
54

 NPPV (FP) 

Scapular spinous crest (TCA) 
18

 NPPV (MP) 

Scapular inferior angle (Angular artery of TDA*) 
55

 PPV 

Scapular lateral border (CSA) 
56

 NPPV (DP/FP/MP) 

Scapular medial border (DSA) 
57

 NPPV (DP/FP/MP) 

Humerus, lateral (PBA) 
58

 NPPV (FP/MP) 

Ulna, olecranon (PBA) 
59

 NPPV (MP) 

Ulna, volar shaft (UA) 
60

 NPPV (FP/DP) 

Ulna, dorsal shaft (PInterosA) 
61

 NPPV (FP/MP) 

Radius, lateral shaft (RA) 
62

 NPPV (FP) 

Radius, volar shaft with pronator quadratus (AIA) 
38

 NPPV (MP) 

Radius, volar/medial shaft (rPCA) 
63

 PPV > NPPV (DP) 

Radius, dorsal metaphysis (1,2-IC SRA) 
30

 NPPV (DP) 

Radius, dorsal metaphysis (4,5 ECA) 
39

 NPPV (DP) > PPV 

Pisiform (DB of UA) 
64

 NPPV (DP) 

Scaphoid tubercle with abductor pollicis brevis (SPB of 

RA) 

65
 NPPV (MP) 

Hamate (DB of UA) 
66

 NPPV (DP) 

1st metacarpal shaft (1-DMA) 
67

 NPPV (DP) 

2nd metacarpal shaft (1-DMA) 
68

 NPPV (DP) 

5th metacarpal shaft (4-DMA) 
69

 NPPV (DP/MP) 

Middle phalanx (PPDA) 
70

 NPPV (DP/FP) & PPV 
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Table 3. Clinically described vascularised bone transfers of the lower limb girdle 

with source vessels and proposed patterns of blood supply. NV, nutrient vessel; 

PPV, penetrating peiosteal vessel; NPPV, non-penetrating periosteal vessel; DP, 

direct periosteal; MP, musculoperiosteal; FP, fascioperiosteal; Ref., reference for 

original flap description; DCIA, deep circumflex iliac artery; SCIA, superficial 

circumflex femoral artery; LCFA, lateral circumflex femoral artery; SGA, superior 

gluteal artery; 4-LA, 4th lumbar artery; 4,5-LA, 4th/5th lumbar arteries; MCFA, 

medial circumflex femoral artery; DGA, descending genicular artery; LSA, lateral 

sural artery; ATA, anterior tibial artery; PTA, posterior tibial artery; PerA, 

peroneal artery; DPA, dorsalis pedis artery. 

 

 

 

 

 

 

Bone flap (source vessel) Ref. Blood supply 

Ilium, anterior crest (DCIA) 
7
 PPV & NPPV (DP/MP) 

Ilium, anterior crest (SCIA) 
7
 NPPV (DP/MP) 

Ilium, anterior with tensor fascia lata (LCFA) 
71

 NPPV (MP) 
Ilium, anterior with sartorius (LCFA) 

72
 NPPV (MP) 

Ilium, lateral (SGA) 
73

 NPPV (MP) & PPV 
Ilium, posterior (4-LA) 

74
 PPV & NPPV (DP) 

Ilium, posterior with erector spinae (4,5-LA) 
75

 NPPV (MP) 
Femur, greater trochanter with quadratus femoris 

(MCFA) 

76
 NPPV (MP) 

Femur, medial condyle (DGA) 
28

 PPV 
Femur, adductor tubercle (DGA) 

77
 NPPV (MP) 

Femur, distal anterior with vastus intermedius (LCFA) 
78

 NPPV (MP) 
Femur, posterior with lateral head of gastrocnemius 

(LSA) 

79
 NPPV (MP) 

Fibula, epiphysis (PerA & ATA) 
35

 NV & PPV 
Fibula (PerA) 6

 NV & NPPV (DP/MP) 
Fibula, distal (PerA) 

45
 NPPV (DP/MP) 

Calcaneus (PTA & tarsal branches) 
80

 NPPV (DP/MP) & PPV 
1st metatarsal (DPA) 

81
 NPPV (DP) 

2nd metatarsal (DPA) 
82

 NV & NPPV (DP) 
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