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Abstract  

Purpose: The contributions of the limbs to velocity and metabolic parameters in front-crawl 

swimming at different intensities have not been identified with the consideration of both stroke 

and kick rate. Consequently, velocity, oxygen uptake (V̇O2) and metabolic cost of swimming 

with the whole body (swim), the upper-limbs only (pull) and lower-limbs only (kick) were 

compared with stroke and kick rate controlled. Methods: Twenty elite swimmers completed 

six 200m trials; two swim, two pull and two kick. Swim trials were guided by underwater lights 

at paces equivalent to 65±3% and 78±3% of participants’ 200m freestyle personal best pace; 

paces were described as ‘low’ and ‘moderate’, respectively. In the pull and kick trials, 

swimmers aimed to match the stroke and kick rates recorded during the swim trials, 

respectively. V̇O2 was measured continuously, with velocity and metabolic cost calculated for 

each 200m effort. Results: The velocity contribution of the upper-limbs (mean±SD: low 

63.9±6.2%; moderate 59.6±4.2%) was greater than that of the lower-limbs to a large extent at 

both intensities (low ES=4.40; moderate ES=4.60). The V̇O2 utilized by the upper-limbs 

differed between the intensities (low 55.5±6.9%; moderate 51.4±4.0%; ES=0.74). The lower-

limbs were responsible for a greater percentage of the metabolic cost compared to the upper-

limbs at both intensities (low 56.1±9.5%, ES=1.30; moderate 55.1±6.6%, ES=1.55). 

Conclusions: Implementation of this testing protocol before and after a pull or kick training 

block will enable sports scientists to identify how the velocity contributions and/or metabolic 

cost of the upper- and lower-limb actions have responded to the training program.  

Keywords: Stroke rate; kick rate; physiology; limb contributions; front-crawl 
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Introduction 

In high performance swimming, coaches dedicate a substantial portion of the total 

training volume to training using the upper-limbs only (pull) and the lower-limbs only (kick) 

to ensure these muscle groups are able to produce propulsive forces in an energy-efficient 

manner. The distribution of pull and kick training is based on the coaches’ perceptions of the 

relative importance of the upper- and lower-limbs in velocity production and their associated 

metabolic demands. Within the literature, it is generally accepted that the upper-limbs 

contribute approximately 90% to front-crawl swimming velocity.1-3 However others have 

found that, when using the lower-limbs only, swimmers can achieve approximately 60-65% of 

the velocity attained during whole body swimming.1 Thus, when the reported contribution of 

the upper-limbs (~90%) is summed with the contribution of the lower-limbs (~60%), the total 

far exceeds the velocity achieved during whole body swimming (100%). In lieu of agreeance 

on the relative importance of the upper- and lower-limbs on velocity production within the 

scientific literature, swimming coaches may be sub-optimally prescribing pull and kick 

training.  

Furthermore, in studies where the anaerobic and aerobic capacities of swimming with 

the upper-limbs only, the lower-limbs only and the whole body have been estimated4,5, the 

summation of pull and kick energy expenditure have exceeded the total energy expenditure 

observed in whole body swimming even when basal metabolic rate is accounted for. Authors 

have suggested that synergistic stabilizing muscles (e.g. trunk muscles) could be active in both 

the pull and kick trials. Additionally, muscular activity could be present and unaccounted for 

in actions such as pushing off from the wall after each lap and the isometric contractions 

required to hold a kickboard or pull buoy. As a result, these muscles require oxygen in both 

conditions and, when summing the net V̇O2 values from pull and kick trials, this energy overlap 

is not accounted for. While this may be true, the difference between whole body swimming net 
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V̇O2 and the sum of the net V̇O2 of swimming with the upper-limbs only and the lower-limbs 

only is likely too great to be solely attributed to the ‘duplication’ of V̇O2 requirements of the 

synergistic stabilizing muscle groups.5  

Possible reasons for the discrepancy in previous findings, aside from the unaccounted 

costs associated with holding a kickboard and changes in body position and drag profiles 

between testing conditions, could relate to lack of control over stroke and kick rate across trials, 

as these parameters can influence swimming velocity and metabolic cost.6,7 Recent research8,9 

has investigated the importance of the lower-limb actions on velocity and metabolic cost by 

analysis of whole-body and arms-only swimming at matched stroke rates. However, the 

contributions of the arm and leg movements to swimming velocity, and the associated energy 

expenditure, while controlling stroke and kick rate, is yet to be examined. Controlling these 

parameters will provide a closer match for the mechanical demands of swimming using the 

whole body versus swimming with the upper-limbs only or the lower-limbs only. Knowledge 

of how much of the total available energy in swimming is utilized by the upper-limbs compared 

to the lower-limbs, and to what extent the limbs contribute to velocity will enable coaches to 

make evidence-based decisions regarding the required volume and intensity of pull and kick 

training to stimulate physiological adaptations to enhance performance.  

To extend upon recent research,8,9 the aim of this cross-sectional study was to determine 

the velocity production and metabolic cost of swimming with the upper-limbs only and lower-

limbs only relative to whole body swimming using the novel approach of controlling the stroke 

and kick rate among the testing conditions.  

Methods 

Participants 

Eleven male and nine female elite swimmers who had competed in the 2014 Australian 

Swimming Championships and were currently training ≥ 7 swimming sessions in the pool per 
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week (≥ 2 hr per session) volunteered to participate in this study. Participant characteristics are 

presented in Table 1; height, mass, arm span  and sum of 7 skinfolds were measured by an 

accredited anthropometrist as previously described.10 The study was approved by the Human 

Research Ethical Committee of The University of Queensland.  

Design 

Following an 800 m standardized warm up, participants completed 6 x 200 m 

swimming trials; two using the whole body (swim), two using the upper-limbs only (pull) and 

two using the lower-limbs only (kick). The two swim trials were standardized at 60% and 75% 

(described within the manuscript as ‘low’ and ‘moderate’, respectively) of the mean 200 m 

velocity for the male and female gold medalists from the 2012 Olympic Games (average 

velocity from the final 150 m to remove the influence of the dive). These paces were chosen 

following pilot testing that a) observed velocities commonly performed in aerobic training sets, 

and b) confirmed the submaximal nature of these velocities (classified by the absence of a slow-

component V̇O2 response) in our participant group. The velocities, physiological responses and 

biomechanical parameters observed in the pilot testing were consistent with previous 

research11,12 utilizing low-to-moderate exercise. Both swim trials were completed prior to the 

pull and kick trials, with the order of intensities and order of the pull and kick trials randomized 

and counterbalanced by a research assistant using an online number generator. Swimmers 

started each 200 m in-water by pushing off the wall and were guided by pre-programmed 

underwater pacing lights (Pacer2Swim, Portugal) to help maintain even pacing in both swim 

trials. The rates at which participants were required to stroke and kick in the pull and kick trials, 

respectively, were programed into an audible pacer (Tempo Trainer Pro, FINIS Inc.®, USA) 

inside the swimmer’s cap. In the pull trials, swimmers matched the stroke rates (stroke cycles 

∙ min-1) recorded during the swim trials (measured by the lead researcher and a research 

assistant (ICC 0.99, 95% CI 0.99-0.99, P<0.001) as previously described8). The lower-limbs 
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were supported by a pull buoy (buoyant force: 12 N), with the ankles fastened with a swimming 

band in both pull efforts, while the kick trials were completed with a kickboard. The kick rates 

(kick cycles ∙ min-1) observed in the swim trials (calculated by the primary researcher 

(Technical Error of Measurement: 2.2%) using a previously described calculation8) were 

matched in the kick efforts. All participants used the same pull buoy and kickboard within their 

testing sessions; equipment typically used during training sessions. Participants were requested 

to hold the kickboard with minimal force and to relax the legs as much as possible in the kick 

and pull trials, respectively. Trials were separated by five minutes of passive rest. Testing was 

conducted in a 25 m indoor swimming pool (mean±SD: water temperature 26.1±0.1°C, 

ambient air temperature 23.4±2.2°C, relative air humidity 59.7±11.8%) no sooner than 12 

hours following a high intensity training session. 

Outcome measures 

All trials were filmed using two synchronized video cameras (Sony HXR-NX5P, Sony, 

Japan) positioned in a perpendicular plane 8.5 m from the swimmer at 5 m and 20 m from the 

starting wall of the pool (sampling rate 50 Hz). For all six trials, velocity (m ∙ s-1) was measured 

between 5 and 20 m of each lap from the video footage using Dartfish (Fribourg, Switzerland) 

and was computed as the distance divided by the time taken to cover the specified distance. 

Stroke rate was also verified through Dartfish analysis (ICC with average of lead researcher 

and research assistant: 0.996, 95% CI 0.995-0.997, P<0.001). With a total of eight 

measurements for each 200 m trial, the mean velocity and stroke rate value was used for data 

analysis. An underwater camera (GoPro® HERO4, San Mateo, California) was secured from a 

lane rope approximately 6 m from the wall of the pool (parallel to the direction of swimming) 

and recorded video footage at 50 Hz. The underwater footage was imported into Windows 

MovieMaker® (Microsoft Corporation, USA) for the frame-by-frame analysis of kick rate.  
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During each trial, oxygen uptake (V̇O2) and ventilation (V̇E) were measured using a 

telemetric gas analysis system (Cosmed K4b2, Rome, Italy) connected to the swimmer by a 

breathing tube and valve system (developed by the Queensland Academy of Sport and 

validated against the Cosmed Aquatrainer and the Cosmed Facemask: ICC for V̇O2: 0.98 (95% 

CI: 0.96–0.99, P<0.001). Participants were not able to tumble turn; instead open turns with 

minimal gliding were performed at the end of every lap, with participants pushing off from the 

wall at the beginning of the test and after each turn. Familiarization with the gas analysis 

equipment, turning strategy, pacing lights and metronome was included in the warm up. The 

gas analysis system was calibrated in accordance with the manufacturer’s instructions prior to 

each 200 m trial. Breath-by-breath expired air was analyzed for V̇O2 (mlO2 ∙ kg-1 ∙ min-1) and 

V̇E (L ∙ min-1)with the average of the final 30 seconds of data used for analysis.   

Heart rate (HR; Polar T31, Polar®, USA) was recorded immediately after each 200 m 

trial. Ear lobe capillary blood lactate concentration ([La-]) was measured before the first 200 m 

trial and again 1 and 3 minutes following each trial (Lactate Pro 2™, Tokyo, Japan). After 

converting the net [La-] to V̇O2 equivalents,13,14 aerobic and anaerobic energy consumption 

were converted into SI units based on 1 mlO2 being equivalent to 20.9 J 15,16 and then summed 

and divided by 60 to yield the total metabolic power (ĖTotal; J ∙ s-1).  ĖTotal was then expressed 

relative to the swimmer’s body mass (J ∙ kg-1 ∙ s-1) and divided by the average velocity to obtain 

the total metabolic cost (J ∙ kg-1 ∙ m-1).16,17 

Each outcome measure (velocity, V̇O2 and metabolic cost) is expressed as an absolute 

value for each condition. For the pull and kick trials, data are also expressed relative to swim 

data (PullRelative and KickRelative; %). Equations 3 and 4 were used to determine the percentage 

of swim velocity, V̇O2 and metabolic cost resulting from the actions of the upper- and lower-

limbs when the pull and kick trials were normalized to the swim trial as 100% (PullNormalized, 

KickNormalized): 

D
ow

nl
oa

de
d 

by
 U

ni
ve

rs
ity

 o
f 

Q
ue

en
sl

an
d 

on
 1

2/
21

/1
6,

 V
ol

um
e 

0,
 A

rt
ic

le
 N

um
be

r 
0



“Velocity, Oxygen Uptake and Metabolic Cost of Pull, Kick and Whole Body Swimming” by Morris KS et al.  

International Journal of Sports Physiology and Performance 

© 2016 Human Kinetics, Inc. 

 

PullNormalized (%) = PullRelative · ∑(PullRelative, KickRelative)
-1    (3) 

KickNormalized (%) = KickRelative · ∑(PullRelative, KickRelative)
-1    (4) 

Statistical analyses 

Data were analysed using SPSS (version 22.0, SPSS, Inc., Chicago, IL) to determine 

differences between swim, pull and kick at the two intensities. Normality of the distribution 

for outcome measures was tested using the Shapiro-Wilk test. Standard descriptive statistics 

for the measured biomechanical and physiological parameters for each 200 m swim were 

reported. A one-way repeated measures analysis of variance (ANOVA) was used to determine 

whether differences existed in the velocity, V̇O2 and metabolic cost observed in swim, pull and 

kick. A two-way ANOVA determined whether differences in the outcome measures of pull 

and kick relative to swim were evident between the two intensities and between males and 

females. The magnitude of the effect of sex on the outcome measures is described by partial 

eta squared (ηp
2) values and were interpreted following the Cohen’s criteria18 where ηp

2 of 

0.01, 0.06 and 0.14 represent small, moderate and large effects, respectively. Where significant 

F ratios were identified from the ANOVA analyses, pairwise comparisons were made using 

the Bonferroni correction to locate the source of significant differences. The importance of the 

differences observed between the relative and normalized pull and kick data was assessed and 

reported using the Cohen effect size (ES) statistics18, where 0.2, 0.5, and 0.8 were considered 

small, medium and large effects, respectively. Statistical significance was set at P<0.05. 

Results are reported as the mean ± SD, unless stated otherwise. 

Results 

When the outcome measures of pull and kick were expressed relative to swim velocity, 

V̇O2 and metabolic cost, a small effect of sex was observed on velocity (P=0.50, ηp
2=0.03) and 

V̇O2 (P=0.32, ηp
2=0.06), with sex having a moderate effect on metabolic cost (P=0.16, 
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ηp
2=0.13). Sex had a moderate effect on PullNormalized or KickNormalized velocity (P=0.27, 

ηp
2=0.08), and no effect on V̇O2 (P=0.99, ηp

2=0.00) or metabolic cost (P=0.99, ηp
2=0.00). The 

effect of sex on the outcome measures of interest was insignificant in all cases. Therefore, all 

results are reported as grouped data.  

The low and moderate intensities equated to 65±3% and 78±3% of participants’ personal 

best 200 m freestyle times. Participants used the same stroke rates in the swim (25.8±2.7 stroke 

cycles ∙ min-1) and pull efforts at the low intensity (25.6±2.5 stroke cycles ∙ min-1) (P=0.32). At 

the moderate intensity, the stroke rates used in the swim (33.5±3.1 stroke cycles ∙ min-1) and 

pull (32.9±3.6 stroke cycles ∙ min-1) differed (P=0.01), as did the kick rates between the swim 

and kick trials at low (63.8±18.1 and 65.2±18.4 kick cycles ∙ min-1, respectively; P=0.03). Kick 

rates in the swim and kick trials at the moderate intensity did not differ (89.5±22.7 and 

88.6±19.1 kick cycles ∙ min-1, respectively; P=0.87). Velocity and V̇O2 in the swim efforts were 

higher than in pull and kick trials at both intensities (Figure 1; all P<0.01). At both intensities, 

metabolic cost of pull was lower than swim (P<0.02), while the metabolic cost of kick did not 

differ from that of swim (P>0.01). When the velocities of pull and kick were summed, the result 

was greater than swim velocity at both intensities (both P<0.001). The same pattern was 

observed for V̇O2 (P<0.001) and metabolic cost (P<0.001) with the sum of pull and kick 

exceeding swim at both intensities (Figure 1). Heart rate, ventilation and peak blood lactate 

concentration are reported in Table 2. 

At both intensities, pull velocity expressed relative to swim velocity (PullRelative) was 

higher than the relative velocity of kick (KickRelative) (low P<0.001, ES=1.60; moderate 

P<0.001, ES=3.90), while the opposite was true for the metabolic cost (low P=0.01, ES=-0.86; 

moderate P=0.01, ES=-1.00). The difference between PullRelative and KickRelative V̇O2 was large 

at the low intensity (P=0.02, ES=0.93), while the difference was small and insignificant at the 

moderate intensity (P=0.12, ES=0.30).  
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When PullRelative and KickRelative were normalized to the swim trial as 100% (Figure 2), 

PullNormalized velocity was greater than KickNormalized velocity to a large extent at both the low 

(P<0.001, ES=4.40) and moderate (P<0.001, ES=4.60) intensities. The difference between 

PullNormalized V̇O2 and KickNormalized V̇O2 was large at the low intensity (P=0.02, ES=1.61) and 

of a medium magnitude at the moderate intensity (P=0.02, ES=0.68). There was a large 

difference between PullNormalized metabolic cost and KickNormalized metabolic cost at the low 

intensity (P=0.01, ES=-1.30) and moderate intensity (P=0.04, ES=-1.55).  

Discussion 

The present study compared the velocity, V̇O2 and metabolic cost of swim, pull and 

kick front crawl swimming at two intensities while controlling the stroke and kick rates. While 

previous studies have expressed pull and kick data relative to swim data (i.e. velocity, V̇O2 and 

metabolic cost), this study describes the relative contributions of the upper- and lower-limbs to 

velocity, V̇O2 and metabolic cost by normalizing the sum of pull and kick data, a method that 

has never been employed. Results show that, despite controlling the stroke and kick rate among 

conditions, the sum of pull and kick exceeded that of swim for velocity, V̇O2 and metabolic 

cost. Following the normalization process, the arms contributed ~62% of the velocity, utilized 

~53% of the V̇O2 and were responsible for ~45% of the metabolic cost. Implementation of the 

testing protocol utilized in the present study could be used to assess specific energetic 

adaptations in the upper- and/or lower-limbs following a period of pull and/or kick training. 

Subsequently, these observations can be used to inform pull and kick training practices. 

The majority of previous research investigating the upper- and lower-limb contributions 

to swimming performance have utilized maximal intensity efforts,1,2,19 with relatively few 

investigations using submaximal intensities.3,4 The physiological (V̇O2, heart rate and [La-]) 

and biomechanical (velocity and stroke rate) data observed at the low and moderate intensities 

in the present study are similar to those reported by others investigating the effects of intensity 
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on V̇O2 kinetics,12 3D kinematics,11 and arm coordination and stroke parameters.20 Despite the 

fact previous research has investigated the limb contributions to swimming performance at 

maximal intensity efforts, pull velocity was lower than swim velocity by ~10% at the low 

intensity. However, a difference of ~17% was observed between swim and pull velocities at 

the moderate intensity. This large (ES=3.90) difference between the intensities may be 

explained by the controlled stroke rate between swim and pull efforts in the present study 

compared to previous investigations. The stroke rates statistically differed between swim and 

pull (1.8% difference) at the moderate intensity in the present study, however a difference of 

less than 3.3% is within the typical error of measurement and is unlikely to have had a 

meaningful influence on arm-stroke parameters and performance.21 While V̇O2 in the pull and 

kick trials was expected to be lower than the swim trial due to reduced velocities, the greater 

relative difference between swim and pull V̇O2 at the moderate intensity (~25.5%) compared 

to the low intensity (~7.3%) was not anticipated. Considering the relative velocity difference 

was also greater at the higher intensity, it is likely that V̇O2 responded proportionately. 

While swimming intensity influenced the relative velocity and V̇O2 difference between 

swim and pull, the same result was not observed between swim and kick velocity, with kick 

velocity ~45% lower than swim velocity, regardless of intensity. This velocity difference is 

higher than previously reported (e.g. ~40%,1 ~30%,22 ~25-30% 23), most likely due to the 

controlled kick rate in the present study. Without the control of kick rate during kicking efforts, 

swimmers may choose to kick at a faster rate than what was used during the swimming efforts, 

thus producing more propulsive actions over a given distance, resulting in a kicking velocity 

closer to swim velocity. Additionally, when kicking with a high frequency, the observed body 

position would be more hydrodynamic in comparison to kicking with a low frequency, thereby 

resulting in lower frontal surface area and greater propulsion. The role of the kick would also 

shift from being primarily responsible for buoyancy and balance at a low velocity, to a 
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relatively greater contribution to propulsion at a higher velocity. The relatively larger variance 

in the kick rates compared to the stroke rates used by swimmers in the swim trials is likely a 

reflection of the tendency for swimmers of different distance specialization inheriting different 

self-selected kick rates. The majority of participants specialized in events ≤ 100 m, while only 

two participants specialized in distance events ≥ 800 m; this uneven distribution of distance 

specialization among participants may have influenced the variance in self-selected kick rate.   

Metabolic cost of pull and kick has not previously been expressed relative to swim data; 

most studies compare V̇O2 only.4,5 In the present study, the metabolic cost of the kick expressed 

relative to swim was ~100% at the moderate intensity and was greater than 100% (115.9 ± 

46.7%) at the low intensity, indicating that the kick had a higher metabolic demand despite 

being significantly slower than the swim. By controlling the kick rate during the kick trials, 

participants were required to kick with a frequency that may have been much slower than those 

typically used during kick sets in training, particularly for the swimmers (N=5) who used a 

two- or three-beat kick during the swim trials. As such, the efficiency with which the kick trials 

were completed may have been compromised due to the slower kick rates being less familiar 

to participants. Furthermore, a hydrodynamic body position is typically maintained by the kick 

during whole body swimming.24 However, because the kick rates were quite slow, an increase 

in the kick depth was observed, but not quantified, in comparison to the kick depths during the 

swim trials, possibly resulting in a sub-optimal body position. With a poor body position, 

increased frontal surface area, increased drag forces and an increased metabolic cost are 

typically observed.25 Previous research7 has identified kick depth to have minimal impact on 

the internal mechanical power demands during whole body front crawl swimming and barefoot 

flutter kicking. However in these analyses, participants were able to use a self-selected kick 

rate. Thus it is likely that the kick pattern was inherently economical with reduced depth of the 

kicks, minimizing the internal mechanical power and metabolic cost. An increase in the intra-
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cyclic velocity variation (IVV) and an imposition of an inefficient coordination pattern may 

have also been present during the kick trials considering the upper-limbs, which are generally 

considered to be the primary velocity generators, were restricted during the kick trials. If the 

IVV and coordination style were negatively affected by the absence of the upper-limb 

movements, there would have been a greater metabolic cost during the kick trials.  

Despite controlling the stroke and kick rates among the testing conditions, the sum of 

pull and kick velocity, V̇O2, and metabolic cost still exceeded swim velocity, V̇O2, and 

metabolic cost. By controlling the stroke and kick rates, it was expected that the sum of pull 

and kick data would more closely align with swim data than previously reported,4,5 as these 

parameters directly influence velocity26 and metabolic cost.7 Rather, it is evident that even 

when the stroke and kick rates are controlled among testing conditions, other factors (e.g. 

kinetic energy losses, drag forces, neuromuscular alterations, body position changes, and IVV) 

are likely to explain the significant differences observed in velocity, V̇O2 and the metabolic 

cost. Thus, utilizing the sum of pull and kick data to draw conclusions on the relative 

contributions of the upper- and lower-limbs is likely to be misleading. Following normalization 

of the present data, the upper-limbs were still responsible for the majority (~62%) of the 

velocity production. Despite being the dominant propulsion generators and utilizing a smaller 

portion of muscle mass, the normalized data indicate that the upper-limb movements are 

associated with a lower metabolic cost than the lower-limb movements. Consequently, 

prescribing training sets with the aim of decreasing the energy cost of the kick would result in 

more energy being available for the upper-limbs to produce the propulsive forces.  

Practical Applications 

The protocol utilized in the present study could be implemented in high performance 

training environments for identification of individual athlete velocity and metabolic 

contributions of the upper- and lower-limbs. Identification of individual upper- and lower-limb 
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contributions and associated energetic demands can help the coach, athlete and scientist to 

detect potential weaknesses in the efficiency of the upper-limbs or lower-limbs to produce 

velocity with minimal energy cost, thus informing targeted training practices. Furthermore, 

implementation of this testing protocol before and after a pull or kick training block will enable 

scientists to identify how the velocity contributions and/or metabolic cost of the upper- and 

lower-limb actions have responded to the training program. By obtaining insight into the 

relative contributions of the upper- and lower-limbs to velocity and understanding what 

proportion of the total available energy is used by limbs during whole body swimming, coaches 

can make informed decisions regarding the prescription of pull and kick training. Other 

potential applications from this research could involve the monitoring of stroke and kick rate 

during training efforts; this information could be used for subsequent training prescription for 

pull and kick sets. Waterproof accelerometers may provide a useful means of obtaining kick 

rate data when implementing this training strategy.  

While stroke and kick rate were controlled throughout the pull and kick trials, the 

breathing frequency was unable to be controlled among the trials and as a result, small 

differences were observed in the breathing frequencies between the swim and kick trials at the 

moderate intensity. It is possible that differences in breathing frequency could influence the 

V̇O2 and metabolic cost, however the extent to which these differences have the potential to 

impact the data are unknown. It must be emphazised that only submaximal intensities were 

explored in the present study, thus it is still unknown whether the metabolic demands and 

velocity production of the upper- and lower-limbs during maximal swimming vary from the 

contributions reported here. As the size of the pull buoy used in the pull efforts in this study 

was very small (adding 12 N of buoyancy), the relative contributions may vary slightly when 

larger pull buoys are used, which is often the case during swimming training. It is possible that 

metabolic energy was used by the lower-limbs in the push-off in each turn. While this energy 
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was not accounted for in the data analysis, it is postulated that the energy expended by the 

lower-limbs in the push-off would be consistent among all three testing conditions, and 

therefore the subsequent influence on results would be minimal. Finally, it is likely that the 

upper- and lower-limbs are performing isometric work during the kick and pull trials, 

respectively. Due to restrictions in methodology, the energy used in these situations cannot be 

quantified. However, the portion of energy that would be utilized in these situations could be 

considered minimal in comparison to the energy utilized for moving the upper- and lower-

limbs through the stroke-cycle and kick-cycle, respectively. 

Conclusion 

Normalizing the pull and kick data relative to the swim trial demonstrates that the legs 

contribute more to swimming velocity than previously reported. After normalization the upper- 

and lower-limbs appear to contribute equally to the V̇O2 during whole body swimming, with 

the upper-limbs using this energy more effectively.  

Acknowledgments  

The investigators would like to thank the athletes for their participation and cooperation and 

the Queensland Academy of Sport for providing access to equipment and facilities. We would 

also like to thank Mark Andrews from the Queensland Academy of Sport for sharing his 

comprehensive knowledge of the Cosmed K4b2 and the energetics of swimming. The research 

assistants from the University of Queensland who helped with data collection and 

randomization of the testing order are also thanked.  

Conflict of interest 

The authors report no conflicts of interest. 

  

D
ow

nl
oa

de
d 

by
 U

ni
ve

rs
ity

 o
f 

Q
ue

en
sl

an
d 

on
 1

2/
21

/1
6,

 V
ol

um
e 

0,
 A

rt
ic

le
 N

um
be

r 
0



“Velocity, Oxygen Uptake and Metabolic Cost of Pull, Kick and Whole Body Swimming” by Morris KS et al.  

International Journal of Sports Physiology and Performance 

© 2016 Human Kinetics, Inc. 

 

References 

1. Bucher W. The influence of the leg kick and the arm stroke on the total speed during the 

crawl stroke. In: Lewillie L, Clarys JP, eds. Swimming II. Brussels, Belgium: University Park 

Press; 1975:180-187. 

2. Deschodt VJ, Arsac LM, Rouard AH. Relative contribution of arms and legs in humans to 

propulsion in 25m sprint front crawl swimming. Eur J Appl Physiol. 1999;80:192-199. 

3. Hollander AP, De Groot G, van Ingen Schenau GJ, Kahman R, Toussaint HM. Contribution 

of the legs to propulsion in front crawl swimming. In: Ungerechts B, Wilke K, Reischle K, 

eds. Swimming Science V. Champaign, IL: Human Kinetics, Inc; 1986:39-43. 

4. Holmér I. Energy cost of arm stroke, leg kick, and the whole stroke in competitive swimming 

styles. Eur J Appl Physiol. 1974;33(2):105-118. 

5. Ogita F, Hara M, Tabata I. Anaerobic capacity and maximal oxygen uptake during arm 

stroke, leg kicking and whole body swimming. Acta Physiol Scand. 1996;157:435-441. 

6. Barbosa TM, Fernandes RJ, Keskinen KL, Vilas-Boas JP. The influence of stroke mechanics 

into energy cost of elite swimmers. Eur J Appl Physiol. 2008;103(2):139-149. 

7. Zamparo P, Pendergast DR, Mollendorf J, Termin A, Minetti AE. An energy balance of front 

crawl. Eur J Appl Physiol. 2005;94(1-2):134-144. 

8. Morris KS, Osborne MA, Shephard ME, Skinner TL, Jenkins DG. Velocity, aerobic power 

and metabolic cost of whole body and arms only front crawl swimming at various stroke 

rates. Eur J Appl Physiol. 2016;116(5):1075-1085. 

9. Peterson Silvera R, de Souza Castro FA, Figueiredo P, Vilas-Boas JP, Zamparo P. The effects 

of leg kick on the swimming speed and on arm stroke effiency in front crawl. Int J Sports 

Physiol Perform. 2016;13:1-26. 

10. Stewart A, Marfell-Jones M, Olds T, de Ridder H. International standards for anthropometric 

assessment. New Zealand: The International Society for the Advancement of 

Kinanthropometry; 2011. 

11. de Jesus K, Sanders R, de Jesus K, et al. The effect of intensity on 3-dimentional kinematics 

and coordination in front-crawl swimming. Int J Sports Physiol Perform. 2016;11(6):768-775. 

12. de Jesus K, Sousa A, de Jesus K, et al. The effects of intensity on V̇O2 kinetics during 

incremental free swimming. Appl Physiol Nutr Metab. 2015;40:918-923. 

13. di Prampero PE, Pendergast D, Wilson DW, Rennie DW. Blood lactatic acid concentrations 

in high velocity swimming. In: Eriksson B, Furberg B, eds. Swimming Medicine IV. 

Baltimore: University Park Press; 1978:249-261. 

14. Thevelein X, Daly D, Persyn U. Measurement of total energy use in the evaluation of 

competitive swimmers. In: Bachl N, Prakup L, Suckert R, eds. Current topics in sports 

medicine. Wien: Urban & Schawarzenerg; 1984:668-676. 

15. Capelli C, Pendergast DR, Termin B. Energetics of swimming at maximal speeds in humans. 

Eur J Appl Physiol. 1998;78:385-393. 

16. di Prampero PE. The energy cost of human locomotion on land and in water. International 

journal of sports medicine. 1986;7:55-72. 

D
ow

nl
oa

de
d 

by
 U

ni
ve

rs
ity

 o
f 

Q
ue

en
sl

an
d 

on
 1

2/
21

/1
6,

 V
ol

um
e 

0,
 A

rt
ic

le
 N

um
be

r 
0



“Velocity, Oxygen Uptake and Metabolic Cost of Pull, Kick and Whole Body Swimming” by Morris KS et al.  

International Journal of Sports Physiology and Performance 

© 2016 Human Kinetics, Inc. 

 
17. Figueiredo P, Zamparo P, Sousa A, Vilas-Boas JP, Fernandes RJ. An energy balance of the 

200 m front crawl race. Eur J Appl Physiol. 2011;111(5):767-777. 

18. Cohen J. Statistical power analysis for the behavioural sciences. 2nd ed. Hillsdale, NJ: 

Erlbaum; 1988. 

19. Ribeiro J, Figueiredo P, Sousa A, et al. VO2 kinetics and metabolic contributions during full 

and upper body extreme swimming intensity. Eur J Appl Physiol. 2015;115:1117-1124. 

20. Figueiredo P, Morais P, Vilas-Boas JP, Fernandes RJ. Changes in arm coordination and 

stroke parameters on transition through the lactate threshold. Eur J Appl Physiol. 

2013;113(8):1957-1964. 

21. Anderson ME, Hopkins WG, Roberts AD, Pyne DB. Monitoring seasonal and long-term 

changes in test performance in elite swimmers. Eur J Sport Sci. 2006;6(3):145-154. 

22. Marinho DA, Oliveira RC, Costa MA. The relationship between front crawl swimming 

performance and hydrodynamic variables during leg kicking in age group swimmers. Int J 

Swim Kinet. 2012;1(1):3-12. 

23. McCullough AS, Kraemer WJ, Volek JS, et al. Factors affecting flutter kicking speed in 

women who are competitive and recreational swimmers. J Strength Cond Res. 

2009;23(7):2130-2136. 

24. Watkins J, Gordon AT. The effects of leg action on performance in the sprint front crawl 

stroke. In: Hollander AP, Huijing PA, De Groot G, eds. Biomechanics and Medicine in 

Swimming. Champaign, IL: Human Kinetics Publishers; 1983:310-314. 

25. Capelli C, Zamparo P, Cigalotto A, et al. Bioenergetics and biomechanics of front crawl 

swimming. J Appl Physiol. 1995;78(2):674-679. 

26. Craig Jr AB, Skehan PL, Pawelczyk JA, Boomer WL. Velocity, stroke rate, and distance per 

stroke during elite swimming competition. Med Sci Sports Exerc. 1985;17(6):625-634. 

  

D
ow

nl
oa

de
d 

by
 U

ni
ve

rs
ity

 o
f 

Q
ue

en
sl

an
d 

on
 1

2/
21

/1
6,

 V
ol

um
e 

0,
 A

rt
ic

le
 N

um
be

r 
0



“Velocity, Oxygen Uptake and Metabolic Cost of Pull, Kick and Whole Body Swimming” by Morris KS et al.  

International Journal of Sports Physiology and Performance 

© 2016 Human Kinetics, Inc. 

 

 

 
 

Figure 1. Group mean and standard deviation for (A) velocity (m · s-1), (B) oxygen 

consumption (ml · kg-1 · min-1) and (C) metabolic cost (J · kg-1 · m-1) for swim (black dots), 

and the sum of pull (light grey) and kick (dark grey) for low and moderate intensities.  

* significantly different to the swim trial at the 0.05 level.  
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Figure 2. Velocity (v), oxygen consumption (V̇O2) and metabolic cost (C) of pull and kick 

swimming expressed relative to swim (%) and normalised to the swim trial as 100% (%) for 

the ‘low’ (A) and ‘moderate’ (B) intensities. Light and dark grey bars represent pull and kick 

data, respectively. * = significant difference (0.05) between pull and kick.  
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Table 1. Descriptive characteristics for male and female participants 
 

 
Age 

(y) 

Mass 

(kg) 

Height 

(cm) 

Arm Span 

(cm) 

Σ7SF 

(mm) 

200 m PB 

(min:ss) 

Male (n=11) 20.9 ± 2.1 78.8 ± 7.0 188.0 ± 4.3 194.8 ± 7.6 45.9 ± 9.5 1:53 ± 0:04 

Female (n=9) 22.2 ± 3.9 65.7 ± 6.8 171.9 ± 6.1 175.2 ± 6.8 78.5 ± 19.0 2:00 ± 0:05 

All (n=20) 21.5 ± 3.1 72.9 ± 9.5 179.9 ± 9.7 185.0 ± 12.3 62.2 ± 22.0 1:56 ± 0:06 

Sum of 7 skinfold measures (Σ7SF); 200 m freestyle long course metres personal best time (200 m 

PB). 

 

 

 

Table 2. Heart rate, ventilation and peak blood lactate concentration measured from the swim, 

pull and kick trials at low and moderate intensities. Data are displayed as mean ± SD. 

 
 Low Intensity Moderate Intensity 

 Swim Pull Kick Swim Pull Kick 

HR (bpm) 116±14 105±18 95±16* 155±17^ 127±17*^ 110±20*^ 

V̇E (L ∙ min-1) 60.8±14.3 56.3±11.5 44.1±16.4* 101.0±20.5 71.4±14.3* 60.2±16.8* 

[La-]p (mmol ∙ L-1) 1.5±0.6 1.8±1.0 1.5±0.7 3.8±1.8^ 2.4±1.3*^ 1.8±0.9* 

Heart rate (HR); Ventilation (V̇E); peak blood lactate accumulation ([La-]p) 

* = significantly different to the swim trial at the 0.05 level 

^ = significantly greater than the ‘low’ intensity at the 0.05 level 

 

D
ow

nl
oa

de
d 

by
 U

ni
ve

rs
ity

 o
f 

Q
ue

en
sl

an
d 

on
 1

2/
21

/1
6,

 V
ol

um
e 

0,
 A

rt
ic

le
 N

um
be

r 
0


